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CHAPTER 4

COMPUTER MODELING

4.1 Introduction

In this chapter, the underlying concepts related to the computer modeling of the

flow around bridges are discussed. The issues related to solving the equations of structure

and fluid numerically are explained with reference to the Fluid Structure Interaction. The

solution procedures and the pertinent equations for the fluid and the structure are stated

and enunciated. The relevant boundary and initial conditions and the advantages of the

solution procedures adopted are also studied.

4.2 The Structure

The structure used in this work is the Great Belt East Bridge(GBEB) girder

section. The GBEB is a 3 span box girder suspension bridge of span lengths 535m-

1624m-535m, which carries a four-lane motorway across the international shipping route

of the Great Belt, Denmark (Larsen et. al. 1999). The design of the bridge was initiated in

1989 and opened to traffic in 1998 after construction. Two different cross-sections were

used for the approach and the suspension spans as shown in Figures 4.2 and 4.3. From

Figure 4.1, it can be seen that the center of gravity for the suspension section is different

from the shear center and lies above the shear center. This is worth noting in the sense

that the section rotates about the shear center due to the moment, whereas the

translational displacement occurs about the center of gravity. Since both are located along

the line of symmetry, there is no coupling of the rotational and translational
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displacements. Tacoma’s Narrows bridge is also shown here as a comparison against the

GBEB bridge section.

Figure 4.1 Cross-section of the Great Belt East Bridge (GBEB) suspension span.

(All dimensions are in mm). Picture from Walther, 1994.

Figure 4.2 Great Belt East Bridge girder - Approach span

Figure 4.3 Great Belt East Bridge girder - Suspension span
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Figure 4.4 1st Tacoma Narrows Bridge

(The pictures of bridge cross-sections are from Larsen and Walther, 1996)

Structural property Mass(Kg/m) Inertia(Kgm2/m) fh (Hz) fα (Hz)

GBEB Suspension

GBEB Approach

1st Tacoma Narrows

22.7* 103

16.0*103

1.3*103

2.47*106

1.05*106

28.19*103

0.099

0.46

0.13

0.272

2.76

0.20

Table 4.1. Structural properties of bridge cross sections (Larsen 1996).

4.3 Flow Parameters

The flow is characterized by parameters like Reynolds number, Strouhal number,

coefficient of drag force, lift force and moment. They are defined as follows.

eR  = 
υ

VB
  4.1

dC  = 
BWV

Fx
25.0 ρ

lC  = 
BWV

Fy
25.0 ρ

mC  = 
WBV

M
225.0 ρ
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tS = 
TV
H

Where

WHB ,,         width, height, length in the z direction of the bridge respectively

yx FF ,      drag and lift forces

V  reference velocity,

υ kinematic viscosity,

 M moment

 T                     period of oscillation of the lift forces

ρ  density.

 For 2D computation, W is considered to be one.

4.4 Governing Equations for Flow

In the modeling, the fluid is assumed to be viscous and incompressible and the

Navier Stokes equations are used to study and describe the fluid flow around the bridge

girder. The governing Navier Stokes equations in two and three-dimensions for an

incompressible fluid using the Large Eddy Simulation (LES) model in general tensor

notation, as reported by Selvam (2000) are as follows.

  Continuity Equation: 0, =iiU     4.2

  Momentum Equation: =−+ jijjti UVUU ,, )( -(
ρ
p

+
3

2k
) i,  + jijjit UU )],)([( ,. ++υυ     4.3

where

tυ = 2)( hCs 2/
2

ijS ,     
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,., ijjiij UUS +=

h = 3
321 hhh  for 3D

h = 21hh  for 2D

2









=

hC
k

k

tυ

Empirical constants sC =0.15 for 2D and 0.1 for 3D and kC =0.094

Here

            iU                  mean velocity

           p                    pressure

iV                            grid velocity

            k           turbulent kinetic energy

tυ           turbulent eddy viscosity

ρ                   fluid density

21 ,hh  and 3h              control volume spacing in the x, y, z directions

For the computation of h , the area is used if it is a two-dimensional model or the volume

is used if the model is three-dimensional. Here a comma represents differentiation, t

represents time and i =1, 2 and 3 mean variables in the x, y and z directions. Selvam

(2000,1998b) reports that to implement higher order approximation of the convection term

the following expression is used in Equation 4.3 instead of jijUU ,

2/],))([()( ,, kjikkjjjijj UVUVUUVU −−−− θ                               4.4
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He states that depending upon the values of θ , different procedures can be implemented.

For balance tensor diffusivity (BTD) scheme, tδθ = is used; where tδ  is the time step used

in the integration. For streamline upwind procedure suggested, θ  is considered as:

θ  = 1/max (| 1U |/ dx ,| 2U |/ dy ,| 3U |/ dz )                  4.5

Here

dydx,  and dz                     control volume length

21 ,UU and 3U                   velocities in the x, y and z directions

In this computation tδθ =  is used. This has less numerical diffusion as compared to

benchmark problems in Selvam (1998). For moving grid the maximum of the BTD or 0.3

times equation 4.5 is considered for better stability of the solution.

4.5 Governing Equations for Structure

When the wind flows over the structure, the structure is subjected to both

translation (vertical) and rotational (twisting) motion. Figure 4.5 shows the GBEB section

with both the vertical and rotating degrees of freedom. The differential equations

describing both these types of motion are as follows. The equations are non-

dimensionalised with respect to the dimension B and then solved in a non-dimensional

form. The non-dimensionalised representation of time( t ), vertical displacement( y ),

angular displacement( )α  and velocity(V ) are as shown below. The asterisk represents

the non-dimensional value.

B
tV

t ∞=*    ;          
B
y

y =*   ;            αα =
*

  ;    
B

V
u

ω
∞=*
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Fig 4.5 Structural model of the GBEB section.

Fig 4.6  The FEM grid system of the suspension span of the GBEB section.

4.5.1 Translation motion

The differential equation for the translatory motion is given by

)(tFyKym lh =+&&      4.6

where lF         Lift force as described in section 4.3

hK                 vertical stiffness

y          vertical displacement

y&&          vertical acceleration

y

α
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m           mass

Rewriting equation (4.6) gives

m
tF

yy l
h

)(2 =+ω&& where 2
hω         

m
K h     4.7

Non-dimensionalising each of the terms in the above equation, we get

dt
dy

y =&  = 










∞V
Bt

d

Byd
*

* )(
where  *Byy =  and 

∞

=
V

Bt
t

*

The second derivative becomes

2

2

dt
yd

y =&&  = 2*

*2 )(










∞V
Bt

d

Byd
 = 2*

*22

dt

yd
B

V∞

Now substituting the non-dimensional terms y&&  and y&  and rewriting equation 4.7 in non-

dimensional terms, we get

m
tF

Byy
B

V l
h

)(*2*
2

=+∞ ω&&     4.8

Multiplying both sides of (4.8) by 2
∞V
B

 gives

2
*

2

2
2* )(

∞∞

=+
V

B
m

tF
y

V
B

y l
hω&&     4.9

Now including the lift force, BVCtF ll
25.0)( ∞= ρ  and non-dimensional form of velocity

BuV hω*=∞  into 4.9, we get the final dynamic equation for translation in the non-

dimensional form as follows.
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m

lh
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u
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&&      where 2B
m

Rm ρ
=     4.10

4.5.2 Rotational Motion

The differential equation for rotational motion is given by

)(tMKI ααα αα =+&&     4.11

where  αI Mass moment of inertia

α Angular displacement

α&& Angular acceleration

αK Rotational stiffness

)(tMα    Force due to moment

Proceeding in the same manner as previously, rewriting equation (4.11) gives

I
tM )(2 α

α αωα =+&& where 2
αω         

α

α

I
K

    4.12

Non-dimensionalising each of the terms in the above equation, we get

dt
dα

α =&  = 










∞V
Bt

d

d
*

* )(α
where  *αα =  and 

∞

=
V

Bt
t

*

The second derivative becomes

2

2
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d α
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Now substituting the non-dimensional terms 
..

α , 
.

α  and rewriting equation 4.12 in non-

dimensional terms, we get

α

α
α αωα

I
tM

B
V )(*22

2

2

=+∞ &&     4.13

Multiplying both sides of (4.13) by 2

2

∞V
B

 gives

2

2
*

2

2
2* )(

∞∞

=+
V
B

I
tM

V
B

α

α
α αωα&&     4.14

Now including the lift force, 225.0)( BVCtM m ∞= ρα  and non-dimensional form of

velocity BuV αω*=∞  into 4.14, we get the final dynamic equation for rotation in the non-

dimensional form as follows.

I

m

R
C

u 2
1 *

2

*
* =






+ αα&&      where 4B

I
RI ρ

α=                 4.15

The ratio of the frequency of heave and pitch oscillation is a factor called whp  that is

used in the computations.

The parameters IR , mR  and whp  are calculated from the physical properties of

the GBEB bridge girder for an air density of ρ =1.228 kg/m3 as given below.

4B
I

RI ρ
α= =2.178

2B
m

Rm ρ
= =19.236

αω
ω hwhp = =0.364
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4.6 Computational Grid

A structured body conforming grid was used for the GBEB bridge section in the

simulation process. As mentioned in the grid generation chapter, several issues like

variation of spacing, aspect ratio, alignment and size and shape of the elements, optimum

number of elements is to be considered. Four different grids are generated keeping in

mind the parameters like the total number of nodes, spacing close to the bridge deck and

the concentration of density in flow separation regions. The finite element code was run

using these four grids in order to assess the influence of the grid parameters on the

results.

The grids A and B were generated by an in-house program developed by the

author. In this program, each line segment of the bridge cross-section was divided into

zones and the desired number of grid points in each of the zones was fed as an input in

the data file. The spacing among the points in each zone is calculated by the series of

geometric progression. At the intersection of the two line segments of the bridge cross-

section, a smooth transition of the grid is ensured by merging the spacing of the previous

zone into the start of a new zone. Within each zone the spacing is varied in an increasing

or decreasing fashion according to the direction and nature of the flow occurring around

that region of the cross-section. Controlling the common ratio in the geometric series of

progression effects the desired rate of increase/decrease in the variation of spacing. Here,

the common ratio is defined as the percentage increase or decrease from the previous

value.

The other two grids, namely C and D, were developed using the software

GRIDGEN (Version 9) developed by NASA Ames Research Center. This software is
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sophisticated and has more options for the grid generation process. This offers the choice

of several blending functions and grid point distribution functions. A lot of details are

mentioned in the Gridgen user manual. It has solvers like elliptic PDE solver and

algebraic solver that can be iteratively applied to the grid to smoothen it. With

GRIDGEN, two highly refined grids, C and D with a spacing of 0.0033 and 0.00065

respectively was developed. The elliptic PDE solver was used to refine and smoothen the

grid. The tanh grid point distribution function was used in spacing the grid points radially

from the corner of the bridge section to the outer boundary of the fluid domain. The

details of the grid types A, B, C and D are given in Table 5.2. The pictures of the grid

used are shown in Figures 4.9 through 4.14.

Grid Type Grid Points Elements Nodes Spacing close to
deck

A 216 x 57 13515 13280 0.002

B 216 x 63 14805 14570 0.001

C 302 x 65 20745 20424 0.0033

D 312 x 57 18807 18476 0.00065

Table 4.2 Specifications of the configuration of the various grid types used.

4.7 Boundary and Initial conditions

The computational domain and the boundary conditions used are illustrated in Fig

4.1 for the fixed grid as reported by Selvam and Govindaswamy (2000). They also state that

the cylinder surface has no slip condition. The upstream boundary has uniform velocity of

one in the x direction and zero in the y direction. At the outflow boundary the normal
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gradient of the velocities are zero and the sides have slip boundaries. The computation is

done for Re of 105.

Figure 4.7 shows the schematic representation of the domain chosen for the problem

and the boundary conditions applied in the computations.

Fig 4.7 Solution domain and the Boundary conditions.

4.8 Finite Element Solution Procedure to solve the Fluid equations

The bridge section is subjected to the wind flow and the modeling is done as

follows. The turbulence is modeled using Large Eddy Simulation (LES) and the

governing equations are solved by Finite element method (FEM). The pressure on the

bridge is computed by solving the Navier-Stokes equations and using this pressure the

new position of the bridge is calculated by solving the structural mechanics equations.

The flow is now solved over the new position of the structure and the grid is updated and

the process is repeated for each time step. The time step size is calculated using a CFL

(Courant-Frederick-Lewis) number less than one as reported by Selvam (1998). The Navier-

Stokes equations are solved by Finite element procedure in a non-dimensional form. The
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velocity and pressure are approximated using equal order interpolation. Eight noded brick

element is used for 3D and four noded quadrilateral element is used for 2D.

The Navier-Stokes equations are solved using an implicit method suggested in

Selvam (1998) in a four-step advancement scheme as follows:

Step 1: Solve for iU  from equation 5.3.

Step 2: Get new velocities as ),(*
iii ptUU δ+=  where iU is not specified

Step 3: Solve for pressure from iip ),,( = tU ii δ/,
*

Step 4: Correct the velocity for incompressibility: ),(*
iii ptUU δ−=  where iU  is not

specified

In step 1, the diffusion and higher order convection terms are considered implicitly

to be in the current time and the first order convection terms are considered explicitly from

the previous time step. Implicit treatment of the convective and diffusive terms eliminates

the numerical stability restrictions. The pressure is considered in the right hand side of the

equation. This set of equations leads to a symmetric matrix and the preconditioned

conjugate gradient (PCG) procedure is used to solve. For simplicity here on 
ρ
p

 is

considered as p . Step 2 eliminates the checkerboard pressure field created when using

equal order interpolation for velocity and pressure in the case of FEM.

The equations are stored in a compact form as discussed in Selvam (1998). To solve

the velocities an under-relaxation factor of 0.7 is used. The iteration is done until the

absolute sum of the residue of the equation reduces to 1x10-7 times the number of nodes for

each time step. Usually the pressure and momentum equations take about 50 and 10

iterations for PCG solution respectively as reported by Selvam and Govindaswamy (2000).
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4.9 Finite Element Scheme to solve the equations for Structure

Once the Navier-Stokes equations are solved, the pressure and velocity from the

flow is obtained. This calculated pressure is applied as a force over the bridge section.

The force along the x direction is the drag force ( dC ), in y direction it is the lift force

( )lC  and the force inducing a rotation is the moment ( )mC .  The results of the solution of

fluid equations, in terms of the lift ( dC ) and moment ( mC ) coefficients along with the

values of the non-dimensional velocity ( *U ), IR , mR and whp  are fed into the equations

of motion for structure as given by (4.10) and (4.15). The resultant displacement in the

form of heave ( h ) and pitch ( )α  is obtained by solving the non-dimensional form of the

translatory and rotational equations of motion as given by 4.10 and 4.15 respectively. The

bridge rotates about the shear center and moves vertically from the center of gravity.

Since both these displacements occur along the line of symmetry, there is no coupling.

The structural dynamics equations are solved in time explicitly using the central

difference integration scheme. A constant time step size of 0.001 is used as against the

variable time step size, used for the fixed computations.  A time history of the data for

these five variables, namely ,,,, hCCC mld  and α are calculated and plotted.

4.10 Moving Grid

An arbitrary Lagrangian Eulerian (ALE) co-ordinate system is used for the

description of both the structure and the fluid in the computational domain. Here the grid

is moved according to the fluid structure interaction using the rigid body moving method.

In this method, the grid is treated to be a rigid one during the flow and moved as a whole.

The convective flux terms of the equations are modified in order to incorporate the
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change in velocity of the moving elements. The correction is made by subtracting the

velocity of the grid jV  from the velocity of the fluid jU as shown by equation 4.4. The

grid is treated as rigid and rotated as a whole about the shear center of the bridge section

to match the corresponding structural deflections calculated during each time step. Thus

the same grid is used for updating at each time in conformance with the flow.

The variables ,,,, *UwhpRR mI  and time step, as discussed in section 4.5 are

given as input parameters in the moving bridge program and the response is plotted

against time and the flutter velocity is calculated from these plots.

             (a) Initial grid
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 (b) Displaced grid

Fig 4.8 (a)-(b) Movement of grid using the rigid body method.

4.11 Critical Flutter Velocity computation for Bridges

The critical velocity for bridges is calculated using the free oscillation procedure.

In the Free motion of the bridge, the aeroelastic stability is observed directly. Here the

cross-section is elastically suspended in the flow and the stability of the cross-section is

observed for various wind speeds. In this procedure the bridge cross-section is given an

initial perturbation of 1.8° and the subsequent displacements on the structure in-terms of

heave and pitch is observed. The pressure is computed for the given position of the bridge

by solving the Navier-Stokes equations. The force along x direction represents drag, the y

direction represents lift, and the force that causes rotation represents moment. This pressure

force is then applied at the center of gravity and the moment force is applied at the shear



56

center and the non-dimensional structural dynamic equations are solved. The solution gives

the heave and pitch displacements. The grid is now updated by applying these displacements

in a rigid body fashion. The grid velocity to be applied is the difference in the position from

one time step to the next divided by the time step size. This process is continued for several

times steps. The grid velocity is then incorporated in the Navier stokes equations (equation

4.4) to account for the movement of grid. The plot of the bridge position in time for various

approach wind speeds gives the detail of the aeroelastic stability. The model is run for

various non-dimensional velocities ranging from 0.4 to 1.5 to study the stability of the

bridge during motion. This initial perturbation dies down to zero and stabilizes as time

progresses, if the velocity is less than the critical flutter velocity. As the models are run

with increasing velocities, the flutter velocity is reached and the initial perturbation

gradually increases in time till it reaches catastrophic levels before it fails. The critical

flutter velocity may be calculated in a few computer runs from the time history plots of the

motion-induced response from the structure. This is explained in detail in the chapter 6.
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Fig 4.9 Grid-A

                           Fig 4.10 Grid-B                                                     Fig 4.11 Grid-C
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Fig 4.12 Close-up view of Grid-A
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Fig 4.13 Close-up view of Grid-B
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Fig 4.14 Close-up view of Grid-C


