
FEDERAL AVIATION ADMINIST
SEPG

IN
T

E
R

FA
C

E
N

E
W

SL
E

TT
E

R 
O

F 
TH

E
  S

O
FT

W
AR

E
 E

N
G

IN
E

E
RI

N
G
 P

RO
CE

SS
 G

RO
U

P

VO
LU

M
E
 6

, N
U

M
BE

R 
2 

 �
  M

AY
 1

99
7

THE PERFECT REQUIREMENT  MYTH
by Geoff Mullery
© Requirements Engineering Journal, Springer-Verlag London Limited

We seem to have enshrined a
concept of the Project Life Cycle in
which a discrete Requirement
Specification phase figures as the
first or, at least, an early stage.  The
norm has been to attempt a complete,
consistent, unambiguous specifica-
tion of the requirements before later
stages of the project are allowed to
start.  The author’s personal experi-
ence on performing and monitoring
projects over more than 20 years has
shown that to be unattainable, at
least for real, non-trivial projects.
Although there are those who still
would argue otherwise.

In order to preserve this ideal of
perfection in the face of our inability
to achieve it, the notion of “require-
ments maintenance” was introduced.
This normally is based on the idea
that the original requirements, though
appearing largely to meet the goals of
perfection, may have some unfore-
seen problems at the edges, which

require a “small” maintenance effort
to put right.

But, for the major systems which
are so notorious for disastrous
failure, the belief that an initial “near-
perfect” requirement specification
exercise, followed by a minor mainte-
nance activity, will be all that is
needed is a myth.  A myth which
retains credibility through the
inability of the development commu-
nity to recognize that there is no such
thing as a single requirement specifi-
cation.  There are at least three
overlapping and generally conflicting
requirement specifications involved
in a large, long-running development
project—each with its own built in
forces for change.  There is a
continuous need to weigh the
consequences of change against its
impact on each specification.

First is the Domain (or Opera-
tional or User) Requirement, which

continued on page 4

REALISTIC  REQUIREMENTS  ENGINEERING :
DEALING  WITH  CHANGE
by Anthony Hall, Praxis Critical Systems, Bath, UK

One certain fact about require-
ments is that by the time you’ve
fielded the system they will have
changed.  It is futile to think of this as
a problem.  Some method proponents
treat it as a blemish on their otherwise
perfect method—you may as well claim
that you have a perfect method for
space travel, but unfortunately it
won’t work if the planets move.
Instead this fact has to be one of  the
starting points for a realistic require-
ments engineering approach.

Everyone knows that you can’t
build a system if you keep changing its
specification.  But it’s a certainty that
the requirements are going to change.
There is only one possible conclusion:
you are not going to get a system
which meets all requirements when it is
delivered, whatever you do.  You have
to accept that fact.  Requirements
creep happens when people pretend to
themselves that there is some magic
way round this inescapable fact.

There isn’t, so you should give up
trying to find one.  It isn’t possible to
achieve perfection, so don’t even try.

Even if requirements don’t
change very fast before you deliver
the system, they will certainly change
dramatically once the system is in
place.  This is a consequence of
another fundamental law of require-
ments engineering, the IKIWISI
principle: I’ll Know It When I See It.
What the IKIWISI principle tells us is
that as soon as the system is
delivered, people will try it out and
then discover what it was they really
wanted.  It is crucial to realize that
this does not mean that they will
necessarily want more than they
originally thought.  On the contrary,
they will often find that many things
provided in response to explicitly
stated user requirements aren’t really
needed at all.  Remember this—it’s
important!

continued on page 2



Page 2

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

May 1997

is published quarterly by SEPG

DOT/FAA/AIT-5
800 Independence Avenue, SW

Washington, DC 20591
t

Chief Scientist for Software Engineering
Arthur Pyster    (202) 267-8020

t

Editor
Norman Simenson    (202) 267-7431

t

FAX    (202) 267-5080

inter

FACE

�Realistic Requirements Engineering:
Dealing with Change�  continued from page 1

It’s also important to realize that
although you can substantially reduce
IKIWISI effects by doing lots of
prototyping, that is never sufficient.  For
one thing, what users want will change
as a result of having the system.  So,
however clever you have been in
searching out the proper requirements
beforehand, you will never have
captured those requirements which are
due to the way the system changes the
user’s behaviors and his or her percep-
tions of the job.

What you can try to achieve,
realistically, is a system which:

1. meets a reasonable number of require-
ments;

2. is delivered in time to be useful;

3. is highly adaptable to the anticipated
environment, so that even after it’s
delivered, it can evolve as requirements
change.

To achieve these more realistic
goals, you do need to do three things:

First, get a clear definition of the
requirements at the time you gather
them.  Write down not just what the
requirement is, but who said so, and
why they think that.  Most important of
all, write down what facts about the
world the requirement depends on—the
context of the requirement.  For example,
don’t just say “vertical separations must
be 2000 feet.”  Explain what assumptions
about instruments, pilot’s limitations
(physical and psychological), and
environmental conditions are used in
deriving this requirement.

Do not fall for the nonsensical idea
that you can be flexible by being vague.
If you are vague, then you won’t get
anything that you want either now or in
the future.  If you are precise, then you
will at least get what was once wanted,
which isn’t that bad, if you think about
it.

Second, think about which require-
ments are least likely to change.  It
would be nice if you could build
systems that were indefinitely flexible
but you can’t.  So you’ve got to do
some work to build in the right kind of
flexibility.  Concentrate efforts on the
things that are going to change only
slowly.  This isn’t as difficult as it might
seem because more than you might think

will stay reasonably constant.  Require-
ments always depend on facts about the
real world, as well as people’s wishes,
and the facts change much more slowly
than the wishes.  Even if details change,
the underlying facts remain the same.
For example, aircraft continue to have
positions, altitudes and headings, even
if the technology for measuring them
changes.

Third, build a small system that
contains the core of the application.
Make sure that this core system de-
pends fundamentally only on the
unchanging facts, and not on the
changeable details.  This system will
have only a small fraction of the func-
tionality that has been asked for.
However, to your surprise, this will turn
out to be quite a large fraction of the
functionality that is really needed.  Such
a system can be produced more quickly
than a “complete” system, because it
has less in it, and of course it costs less.
If you build this system carefully, you
will be able to add to it and adapt it in
the field as the detailed requirements
change.

Beware: the kind of system I am
suggesting is very different from a quick
and dirty prototype.  It must be properly
architected, so that it is robust when the
time comes to change it.  It must capture
the essence of the real world and the
user’s needs, so that it is of some real
use straight away.  Both of these require
a substantial investment of time and
careful thought during requirements
analysis and architectural development.

This approach does not guarantee
success, but unlike some other ap-
proaches such as freezing a “complete”
requirements document, it does not
guarantee failure.  By recognizing the
reality of change and managing its
consequences, it does offer a fighting
chance of producing something useful.
[editor’s note:  Anthony has recently
published an article in the March, 1996 issue
of IEEE Software on “Using Formal Methods
to Develop an ATC Information System.”]

For further information, contact:
Anthony Hall

Praxis Critical Systems
20, Manvers Street
Bath BA1 1PX   UK

+44 1225 444700
jah@praxis.co.uk. n

Commercial-off-the-shelf (COTS)
products for networks are typically
bought and implemented very quickly—
from a few weeks to a few months.  They
tend to be selected and tailored for
highly specific problems, applications,
and infrastructures.  For example, a
product may be purchased to track
trouble calls for a specific application on
the Internet.  The highest and sometimes
sole priority is to solve the immediate
problem so that the end user will quickly
have access to a usable application and/
or the normal flow of work is not
interrupted.  Although the immediate
problem gets solved, stovepipes are
created which make future intercommuni-
cation and interoperation among
applications virtually impossible.

There is a need to be able to solve
such problems within a framework which
can manage all of the major and minor
assets of an enterprise, including local
area networks (LANs), metropolitan area
networks (MANs), and wide area
networks (WANs).

We are not speaking simply of
automated inventory control, but also of
automated interface control.  We must
ensure that those applications that need
to communicate and interoperate can
indeed do so.  Such wide-ranging needs
require a top down approach—
preferrably based on an asset manage-
ment tool which can be customized for

MANAGING  LOW LEVEL

REQUIREMENTS

continued on next page



Page 3

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

May 1997

ROME LABORATORY  REQUIREMENTS ENGINEERING  ENVIRONMENT
by Bill Rzepka, Rome Laboratory/USAF

The U.S. Air Force Rome Laboratory
(RL) has developed a unique set of
integrated rapid prototyping tools for
capturing complex user requirements and
modeling them in a functional prototype.
The set of tools is known as the Re-
quirements Engineering Environment
(REE).  REE allows requirements engi-
neers to build functional, user interface,
and performance prototypes of the
sytems components.  The models can be
constructed rapidly and easily from
reusable components with varying levels
of abstraction or granularity.  The tools
have been designed to make require-
ments engineering technology available
to users at different levels of technical
understanding.

The REE tools enable users and
engineers to see and execute realistic
prototypes of their systems early in the
development cycle when changes to the
requirements and specifications are least
expensive.

The REE consists of two tools.  The
Rapid Interface Prototyping (RIP) tool
uses menus, windows, scenerio and map

generators, and application graphics as
aids for conceptualizing and designing
user interfaces.  The PROTO tool is a
visual programming environment used
for constructing system architectures,
and models of logic control, information,
and data flow.

Together, RIP and PROTO provide a
mechanism for executing an entire target
system prototype with minimal user
effort.  Prototypes can be quickly
developed and presented to all the key
stakeholders very early in the concep-
tion of a new system.  Thereafter, it
provides a visual and tactile demonstra-
tion of the developing system at each
key milestone and review.  It provides an
ideal means of communicating about the
developing system among all of the
participants: customers, users, archi-
tects, requirements engineers, designers,
etc.  It can be used to reconcile assump-
tions tendencies, preferences, and
perspectives and to experiment with
different approaches, problem solutions,
and desired outcomes. The PROTO
model can be used to drive a RIP user
interface prototype.  The PROTO tool

has a set of predefined functions
facilitating the manipulation of RIP
objects.  Minimal programming is needed
to connect a PROTO model with a RIP
user interface.  The result is a user
interface reacting to and acting upon
real-world stimuli.

The REE has been used success-
fully on a number of actual programs.  It
is in use by NASA; Naval Underseas
Warfare Center; The Analytic Science
Corporation; Lockheed Martin; Interna-
tional Software Systems; Defense
Research Establishment, UK; and the
U. S. Air Force Satellite Control Facility.

For more information about getting copies,
instruction materials, etc.
about the REE, contact:

Bill Rzepka
Rome Laboratory/USAF

525 Brooks Road
Rome, NY  13441-4505

(315) 330-2762
eMail: bill@se.rl.af.mil

the hundreds of individual sites (nodes)
within the larger enterprise.

A further complication is that the
technology and its use are changing so
rapidly that detailed, low level require-
ments frequently become obsolete and
inaccurate even before they are com-
pleted.  Consequently, these low level
requirements are expensive to produce
and maintain.

One approach, adopted by many
Fortune 100 companies and several
government agencies, is to write high
level requirements permitting the
selection of an asset management tool
that is customizable for the rapidly
changing, low level operations of an
individual site.  A requirement of this
approach is the ability to capture and
document the low level requirements
automatically as they are developed and
as they evolve.  These low level require-
ments are derived from the dialog
between the network site designer and
the tool during the initial customization
of the tool for a particular site.  Later, as
the requirements for the site evolves and
the site is recustomized, changes to the

original low level requirements are
captured and documented in the same
way.

This approach expends far less
resources on up front requirements
development, but better insures that the
detailed requirements remain in synchro-
nization with each other and with the
major requirements as the system is
customized, and later recustomized, for
current operations.  This is Managed
Evolutionary Development, which has
been used for a decade in the Depart-
ment of Commerce and the Department
of Defense.  The resources are spent on
acquiring and/or developing, and on
implementing, a system to automate
operations and operational evolution.
The system is selected via high level
requirements and samples of operational
scripts, not through detailed operational
requirements which are quickly obsolete.

This is exactly the approach needed
for desktop management.  It is an
industry tested approach to major cost
avoidance in the very near (18 months or
less) and further out future.  It is a
single, strategic solution to the hun-
dreds of tactical problems arising from

setting up and maintaining many
individual help desks and network
operations centers.

Still, there are currently hundreds of
such asset management tools being
marketed by companies such as Hewlett
Packard and IBM.  Cutting through the
hype and choosing the best tool for a
particular enterprise is nontrivial.  A
major problem in deploying these
systems is that most are weak in
capturing and documenting the lower
level operational requirements during
customization.  This seems to be a
chronic, but not insurmountable,
problem.  Currently, the best method
seems to be to take the data output by
the tool during customization and
manually translate them into require-
ments language.

The enterprise-wide COTS asset
management system development and
deployment would be in stages and/or
by system boundaries.  Each help desk
or network operations center can be
installed separately and the
requirements documented.  The end
result will be a single, consistent
enterprise system with many individu-
ally customized sites. n

�Managing Low Level Requirements�
continued from previous page



Page 4

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

May 1997

expresses those aspects of the domain
where proposed changes need to be
realized.  Second is the requirement
which has been traditionally produced to
guide the engineers—the Technical (or
System) Requirement.  This requirement
attempts to translate an understanding of
the Domain Requirement into an engi-
neering specification of what the
proposed system must provide in order
to achieve the desired affect.  The third
requirement, which is almost universally
ignored but which severely compromises
the quality of the other two, is the
Contractual Requirement, which ex-
presses the restrictions on the time and
resources which must/can be used and
the legal criteria for acceptance.

Nature is homeostatic.  Introduction
of a new element into a reasonably stable
environment causes the environment to
adapt, eventually to find a new balanced
state.  This may involve the disappear-
ance of old elements (extinction) or
modifications in their structure or
behaviour (evolution) or rejection of the
new element as unfitted (an evolutionary
dead-end).  Nevertheless, when a new
Domain Requirement is expressed, it is
generally assumed to be a simple
extrapolation from the extant domain.
Resulting perturbations of the existing
domain are ignored unless compellingly
obvious.

The problem which is invariably
neglected is that the new system is
guaranteed to cause the evolutionary
perturbations mentioned above.  The
Domain Requirement as originally
expressed, if treated rigidly (as the
Contractual Requirement usually
demands), is almost guaranteed to be
rejected as an evolutionary dead-end,

since it cannot adapt to the changed
domain behaviour it has itself intro-
duced.  Add to that the near certainty
that the new system is not the only thing
to introduce evolutionary change to the
domain during the period of development
and operational introduction.  For
example, in the military world, it is not
only “our” side which introduces new
weapon systems or sensors.  You can see
that the hope that a basically fixed
Domain Requirement with just “minor
maintenance” will be all that is needed is
nonsensical.

Moreover, technology changes
appear to grow exponentially.  The rate of
change and the frequently revolutionary
nature of the change causes the same
evolutionary pressures to build on the
technology available for development of
the proposed system—and that can
dramatically influence both what is
required by the domain and what
technology is required to support it.  It
has frequently been the case that “new”
systems are introduced to service with
hardware or software that is already
obsolete, or with missing capabilities
which are critical to the now current
environment, because other elements of
the domain have recognized and adapted
to a radical new technology.  The world
does not conveniently stand still while a
new system is being developed.  Suffi-
ciently broad environmental changes can
obsolete the architecture of the develop-
mental system, which means the system
is probably not even salvageable.

Mapping the Domain Requirement to
the Technical Requirement is often
attempted—but simplistically—for
example, via compliancy tables relating a
paragraph in one requirement to a
paragraph in the other.  This takes no
account of the different change pres-

sures in the different requirements.  Nor
does it take into account the impact of
discovered and undiscovered omissions,
inconsistencies, and ambiguities in the
two.  The requirements are assumed to
be free of such problems when, in reality,
such problems are certain to be
present—even if undocumented.  A
much more comprehensive and prag-
matic approach to the development and
inter relation of specifications is needed
than is seen in current practice.  Due
allowance must be made for the orderly
evolution of requirements.

From the point of view of technical
development staff, the Cinderella of the
specification process is the Contractual
Requirement—the ignored step-child
who suddenly bursts upon the scene to
dominate and overwhelm the proceed-
ings.  It is the one which frequently
turns the development process into a
nightmare of impraticability and threat of
insolvency.  While a specification
technique may propose the need for
completeness, consistency, and freedom
from ambiguity—and may even try to
define techniques for their achieve-
ment—it makes the default assumption
that the time and other resources needed
will be available.

The Contractual Requirement
specifies the schedule time actually
available for development and may
identify penalties for failure to deliver in
that time.  This means that the specifier
must be able to forecast how long it will
take to produce a complete, consistent,
unambiguous specification, and then a
product—bearing in mind the two types
of evolutionary change (Domain and
Technical) which will be under way—
even as the system is under construc-
tion.

�The Perfect Requirement Myth�
continued from page 1

continued on next page

Practical Software Measurement
June 4

SLIM/SLIM Control
June 3-4
June 18-19

The FAA SEPG is offering the following classes in June:

Tra
ini

ng

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

○

Op
po

rtu
nit

ies
...

Software Development Cost and
Schedule Estimation

June 17-19
June 23-25

Software Project Planning and Tracking
with Delphi Estimation Techniques

June 24-27



Page 5

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

May 1997

in Geoff’s article apply.  No matter how
unnecessary or rarely used, the user simply will
not accept a system with many “missing”
capabilities.  She doesn’t have to—she already
has a “better,” “more complete” system!
Here we need to distinguish between the
customer, the operational user, and the
maintenance user.  The new (abbreviated)
system may well be far cheaper and easier to
maintain—so the sponsor and maintenance
user will be happy.  But the operational user
will not, and it is my experience that most of
the stakeholders have veto powers, so
consensus will not be obtained and the new
system will be rejected as “inadequate.”

Moreover, if you are planning to require
changes in operational procedures to go along
with the new system which are not of obvious,
immediate benefit to users—plan for very stiff
resistance.  In the long run, even if it adds to
the cost of the new system, it is cheaper to
build the new system so that it can accommo-
date the old procedures as well as the new,
allowing for gradual change.  People are
(understandably) very reluctant to learn new
ways of doing things if there is no obvious
benefit to them.

Look at the major areas of agreement
between Anthony and Geoff.  Both are
experienced practitioners and know full well

At first blush, the lead articles by Anthony
Hall and Geoff Mullery would seem diametri-
cally opposed.  Anthony advocates slashing
the requirements to the bone, freezing them
(or holding them firm) for the first delivery,
and getting the thing out the door as fast as
possible.  This allows the user to see what he is
getting and actually use it in a real environ-
ment before the bells and whistles are added.
It usually results in a substantial alteration of
what the user feels she can live with—and can
result in a corresponding reduction of
unneeded capability asked for.  In my
experience this is the way to go if the product
being delivered is a wholly new item which is
not replacing something else and if you can
get the product out the door within one to two
years.  If you actually deliver at least 50% of
the asked for capability, including the
backbone and most of the critical functions,
the customer and user are generally more than
happy with what you have delivered as the
first step in an evolutionary development.

However, if you are replacing a working
system with which the user is reasonably
comfortable and which has lots of capabilities
(which may have accrued over the years),
then you are in serious trouble if you try to
give users much less capability than they
already have.  In this case, all of the warnings

that the impact of a new system is substan-
tial—and can rarely be predicted.  Both agree
that the best way to go is via a step-by-step
development, building each successive step to
take advantage of what has been learned by
using the previous step in the real environ-
ment or close to it.  Both recognize that
requirements will change—and provide not
dissimilar solutions.  One recommends an
explicitly evolutionary approach (using
discrete steps completed one at a time) and
the other recommends what amounts to an
incremental approach (using overlapping
steps) which allows for lots of downstream
change.

My impression is that Anthony is not
comfortable with the incremental approach.
It is true that that approach can be a
configuration nightmare where you are
juggling concurrent developments each at
different stages of completion.  But for a very
large system, that may be the only way to
finish in a reasonable amount of time—like
less than ten years—and the only way to keep
the user from rejecting a step as wholly
inadequate.

Norm

REQUIREMENTS

�The Perfect Requirement Myth�
continued from previous page

The Contractual Requirement is
highly likely to place significant difficul-
ties in the path of responses to evolu-
tionary pressures during all stages of a
development—yet the pressures will
occur.  This means that, though the
changed Domain Requirement may be
understood, and the resulting Technical
Requirement changes may be easy to
apply, there is likely to be an enforced,
extensive contractual negotiation before
work can safely proceed without
financial risk.  This can make apparently
simple changes become extraordinarily
costly and even impractical.  Ignoring
the contractual implications can mean a
build-up of “simple” changes which can
result in serious financial penalty.
Hewing rigidly to the Contractual
Requirement is likely to result in an
unusable system.

Resource availability and schedule
limitations expressed in a Contractual
Requirement are likely to arise from other
components of the Domain, which are
also under change and which share
resources with the proposed system or
otherwise require collaboration during
the development and installation
process, even though they may not
directly communicate with the proposed
system.  This means that there may be
schedule or cost pressures on the
Contractual Requirement from forces
external to the project.

Deadlines may be brought forward
or resources may become unavailable
when planned for through no fault of the
project.  Coping with all of this is largely
a managerial responsibility, not techni-
cal.  But it does require cooperation
across disciplines (among user, manage-
ment, and technician) in a way which
typically does not currently happen.

Letter from
theEDITOR

Art Pyster AIT-5
  Chief Scientist for
  Software Engineering
Linda Ibrahim AIT-5
  SEPG Chairperson
Tanae Gilmore SETA
  SEPG Secretary
Rebecca Deloney AOS-1
Tom Marker ASU-250
Natalie Reed ACT-24
Ross Ridgeway AMI-100
David W. Robinson AIT-200
Raghu Singh AIR-200
Cindy King Skiles AUA-7
Tom Skiles ATR-300
Rebecca Taylor ASD-420
George Zerdian AND-500

Alternates
Adrian Caster AOS-5
Rob Hanes AUA-310
Bob Laws ASU-250
Louis Pelish AIT-500
Art Salomon ASD-130
Herman Tharrington AND-3

FAA SOFTWARE ENGINEERING
PROCESS GROUP

continued on page 7



Page 6

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

May 1997

REQUIREMENTS

ENGINEERING
by Norman F. Simenson, AIT-5

The first major engineering project
involving mankind was the building of
Noah’s Arc.  The requirements specifica-
tion was written by the Master Architect
and was succinct and to the point.

“Make thee an ark of gopher wood;
rooms shalt thou make in the ark, and
shalt pitch it within and without.

“And this is the fashion thou shalt
make of it: the length of the ark shall be
three hundred cubits, the breadth of it
fifty cubits, and the height of it thirty
cubits.”
[editor’s note: a cubit is the length of the
forearm to the tip of the middle finger, about
18 inches]

“A window shalt thou make to the
ark, and in a cubit shalt thou finish it
above; and the door of the ark shalt
thou set in the side thereof; with lower,
second, and third stories shalt thou
make it.”

It is a matter of record that the ark
was completed successfully on time and
within budget and satisfied its require-
ments fully.  But then, of course, the
engineers who built it were its chief
users.  As A. Gustave Eiffel said,
“Engineers should be made to live at the
top of their own structures.”  He
followed his own advice.

Mankind’s second major engineer-
ing project was the tower of Babel.  But,
by then, human engineers had invented
the “science” of requirements engineer-
ing and approached the task of obtain-
ing the requirements from the Customer
in the approved way.  Unfortunately,
there was a major miscommunication
between the Customer and mankind
which then deteriorated into total
miscommunication among all of the
workers on the project.  They ended up
speaking in totally different languages,
with predictably disasterous results.

The moral of this story is simple:
requirements “engineering” is neither
engineering nor a hard science.  At best,
it can be characterized as a form of
behavioral science.  It’s wise to get the
full cooperation of the sponsor and
user—and to clearly distinguish
between the two.  While good communi-
cations is important for almost any joint

human activity, it is crucial for getting
the requirements right.  In my experi-
ence, most projects fail because the
engineers do not know how to specify,
plan, design, or test a system novel to
them which they do not understand.
They fail at understanding the user or
his problem, and this starts at the
requirements phase with engineers who
are ignorant of the user’s environment
and problem domain.

Hiring a systems or software
engineer to build a system in a domain
foreign to her is a little like hiring an
English teacher to teach math.  So the
first purpose of the requirements
engineering process is to teach the
project engineers about the domain.  At
least some of  the requirements engi-
neers must be experienced in the user’s
domain and should be responsible for
training all of the other engineers on the
project.

The requirements engineers must
also have lots of user involvement.  The
engineers have to start with a clear
concept of what is needed and what is
being asked for by the user, and orga-
nize requirements along the lines of a
preliminary domain architecture.  A
formal approach can help here if it is
used to model the proposed system as
seen by the users and engineers.
Development of the system architecture,
however, should be delayed for as long
as possible in order to accomodate the
latest technology and the latest under-
standing of the problem.

A good domain architecture model
will allow users and engineers to
visualize the developing requirements
and readily spot any glaring omissions.
It can also help to bound the developing
system architecture and spot any
potential problems there, which can
eliminate many design and interface
problems before they occur.  At this
juncture, the developing architectures
should reflect the growing understand-
ing of the user’s problem and be seen as
a way to constrain the solution space.
The architectures need to be presentable

in an easily understood form to the user
for her concurrence.

Prioritizing requirements is key for
any development, but different priorities
will be assigned by the sponsor(s), the
various users, and the various develop-
ers.  A model must be constructed which
will accommodate all stakeholders.  This
too is best handled by a commonly
agreed upon domain architecture, which
is primarily expressed in the major
computer-human interfaces.  The system
architecture is the property of the
engineers, and impacts the development
only to the extent it constrains the
direction of future evolution of the
domain architecture or constrains
priorities assigned to requirements.  The
strategy should be to leave the system
architecture as open as possible and not
freeze any part of it until absolutely
necessary.  This strategy is not usually
the least expensive in the short run, but
it is always the least expensive in the
long run.  It is maximally tolerant of
change and accomodates well to the
evolving understanding of requirements
and requirements changes.  It tends to
produce system architectures which are
maximally tolerant to future changes—
modifications and enhancements.  This
reduces maintenance costs and results
in longer lived systems.

So, the requirements engineers had
better hold long and searching conver-
sations with the users in a language that
both understand.  In that regard, the
software community is a major part of
the problem.  It is bad enough that most
software engineers believe that exten-
sive domain knowledge is unnecessary,
but they also tend to try to dazzle the
users and other engineers (who could
care less) by their technical grasp of the
very latest hot thing in software.  And
the industry has a nasty habit of
plowing everything under and reinvent-
ing itself every five years or so.  Unwar-
ranted claims and unproved methods
form a sea of hype encapsulated in a
technobabble whose primary function is
to separate the new from the old.

We need to cut through the hype
and rationalize the process of gathering
requirements.  For some time, it has been
recognized that a more fundamental
examination of the whole software
engineering enterprise is needed,
including the place of requirements
engineering. n



Page 7

○ ○ ○ ○ ○ ○ ○ ○ ○

INTERFACE

May 1997

When writing a Contractual
Requirement, it is necessary to allow for
the influence of evolution by devoting
significant down-stream resources to the
requirement maintenance activity and by
allowing greater flexibility in the time and
cost profile.  If cost and/or schedule are
constrained, the user must be willing to
settle for far less than he or she wants.

When writing a Domain Require-
ment, it is necessary to allow for the
probability of incompleteness, inconsis-
tency and ambiguity.  This may well
extend through the design and imple-
mentation stages, depending on the
novelty and size of the proposed
system.  Even when using a good
prototype, both the user and the
technician still will have to learn how the
domain really works in the area of
interest, what changes really are
required, and what impact the newly
engineered changes really will have.

The best thing they can do is specifi-
cally to allocate resources to capture
these effects and update the require-
ments as soon as possible.  The best
people to do it are the architectural
team—who should be there looking out
for the user throughout the development
and fielding of the new system.

When writing a Technical Require-
ment, it is necessary to forecast where
the Domain Requirement is most likely to
change, to cater for the imperfections
guaranteed to remain in the Domain
Requirement, to insulate against the
possibilities of foreseeable technology
and domain change, and to allow for
evolution of the requirements even as
the system is developed.

We can go on trying to deal with
requirement specification as a mono-
lithic, near perfect entity concerned only
with the proposed engineering solution
system which is the primary purpose of
the requirement exercise.  If we do, we

will continue to fail when we attempt to
specify and implement non-trivial novel,
complex, and/or long-lived systems for a
living, evolving environment.  Alterna-
tively, we can explore how to allow for
the process of change—both during the
initial specification process and later as
development and in-service use pro-
ceeds.
[editors’s note: this article has been reduced
from a somewhat longer article appearing in
the Requirements Engineering Journal (1996)
1: 132-134  (Viewpoints section)  Springer-
Verlag London Limited, by permission of the
editor and author.  The Journal can be
contacted for further information at
<http://www.mac.co.umist.ac.uk/RE/
journal.html>]

Geoff Mullery operates as an independent
consultant on methods, tools and project

support.  His company is Systemic Methods
Ltd., 12 Firs Close Farnborough, Hants GU14

6SR, UK.  He has written extensively for the
IEEE, the British Computing Society

Requirements Engineering Specialist Group
Newsletter, and other publications.

�The Perfect Requirement Myth�
continued from page 5

CONFERENCE CALENDAR

Software Process Improvement Group (SPIN)
DC Chapter

June 18, 1997: Inspections, Tom Gilb
July 2, 1997: Software Capability Evaluations
Critical Success Factors, Paul Byrnes
Contact: Kathy Ditchkus (703) 641-2054

Federal Software Process Improvement Working Group
(FEDSPIWG)

Held monthly at NOAA
Contact: Martha Morphy at NOAA (301) 713-3345

Practical Software Measurement (PSM) Users Group
July 21 - 24, 1997
Vail, CO
Contact: Cheryl Jones (401) 841-4581

The Software Engineering Symposium
August 25 - 28, 1997
Washington, DC
Contact: SEI Customer Relations (412) 268-5800

Air Traffic Control Association (ATCA)
September 28 - October 3, 1997
Washington, DC
Contact:

International Function Point Users Group (IFPUG)
September 15 - 19,1997
Scottsdale, AZ
Contact: (614) 895-7130



FEDERAL AVIATION ADMINISTRATION
SEPG

interFACE

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

In This Issue

1
 The Perfect Requirement Myth

Geoff Mullery

1
Realistic Requirements Engineering:

Dealing With Change
Anthony Hall

2
Managing Low Level Requirements

3
Rome Laboratory Requirements

Engineering Environment
Bill Rzepka

5
Letter from the Editor:

Requirements
Norm Simenson

6
Requirements Engineering

Norm Simenson

7
Conference Calendar

NEWSLETTER OF THE

SOFTWARE ENGINEERING

PROCESS GROUP

�

VOLUME 6, NUMBER 2
MAY 1997

DOT/FAA/AIT-5
800 INDEPENDENCE AVENUE, SW
WASHINGTON, DC 20591


