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ABSTRACT

In this paper, we examine the relationship between origin and destination (O&D)
travel and local area characteristics. By combining data from the Bureau of
Transportation Safety of the U.S. Department of Transportation (BTS/USDOT) on
O&D travel with that of local area economic and demographic activities supplied by
the Bureau of Economic Analysis of the Department of Commerce (BEA/DOC), we
specify a semi-log linear demand relationship for O&D travel. The resultant dataset
has more than 50,000 observations. Using a limited information maximum likelihood
estimation procedure, we estimate demand for air travel in 11 market segments within
the contiguous national airspace system (NAS), defined by non-stop distance traveled
between O&D pairs. Our results confirm that local area income and
demographyaffect travel positively for most of the markets. However, the levels of
travel tend to peter out and eventually go down as the intensity of economic activities
increases. We further find that shorter distance travel tends to be relatively more fare-
inelastic than that for longer distances. Average fare tends to affect passenger travel
negatively for all distances. Large hubs are important for passenger travel; so are the
higher market share of established airlines and the presence of Southwest airlines in
the O&D market. We then discuss approaches using our methodology for deriving
bottom-up forecasts. These forecasts have distinct characteristics that make it more
useful for analyzing flow features, such as passenger and aircraft flows within the
NAS, determining and prioritizing infrastructure investment, and determining
workload of Federal Aviation Administration (FAA) personnel at centers. Results
from our forecasts can be easily complemented with those produced by the terminal
area forecasts (TAF) and similar forecasts derived from top-down approaches.
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INTRODUCTION

Existing empirical research explains the rationale behind location
choices of commercial air carriers, large hubs in particular, fairly well
(Bhadra and Hechtman, 2002; see Button, Stough & Trice, 1999). Major
and spoke airports that airlines choose to hub and serve depend largely on
market demand and cost conditions. Hub-and-spoke networks have formed
the basis for studies on industry structure (Brueckner, Dyer, & Spiller,
1992; Brueckner & Spiller, 1994; Oster & Strong, 2001; Rutner & Munday,
1996) and provided a foundation for policy prescriptions (USDOT,2001).
While research probing into the structure of the industry has recognized the
role and importance of local market conditions (Mumayiz & Pulling, 1992;
Corsi, Dresner, & Windle, 1997), the methodologies for estimating air
travel demand are still “top-down” approaches that employ little local
information. As a result, aggregate knowledge is frequently at odds with
those derived from micro data, e.g., T100 and 10% origin and destination
(O&D) sample data from BTS/DOT. Due to a lack of use of local
information, it is possible that trends that are being observed at the industry
level—and are often expressed in representative company
projections—may not coincide with that of top-down forecasts, and that of
the (FAA), in particular. In other words, there is a potential inconsistency
between what micro data may represent and what have been concluded
from using macro data and a top-down structural approach.

While both the FAA (see, for example, FAA, 2003) and projections of
the Regional Airline Association (RAA) seem to be in broad agreement
concerning the overall trends for the future, there are some noticeable
differences as well. For example, the growth rates of projected
enplanements in regional jet market for the period of 2000-2010, according
to the FAA and RAA, are, 5.5% and 5.0%, respectively, on an annual basis
(see RAA, 2002). This is indeed a small difference. This difference,
however, creates a bigger wedge in the future (2001-2010) when the initial
numbers for the current year (2001) differ by 5 million, or more than 5% of
the total (80 million by FAA and 85 million by RAA). Consequently, this
leads to a major difference in estimating the number of aircraft in the future.
By FAA’s estimate, the number of regional aircraft [both regional jets (RJs)
and turboprops] is expected to be 4,457 while RAA estimates it to be 4,777,
a difference of 320 aircraft, or worth more than US $7 billion. This is a
large number indeed! Other available estimates indicate that RAA’s
estimate is somewhat on the conservative side. For example, Bombardier
(2001) estimates that the total delivered units in 2020 will be 8,345, almost
twice what RAA projects for 2010; and almost four-times compared to
what RAA estimated for the year 2001 or 2323 (see RAA, 2002). Some
other differences arise from the details as well. For example, Bombardier
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and the industry as a whole anticipate that RJs will grow in size faster than
what the FAA projects. Average size of an RJ aircraft has been projected by
the FAA to become 48 seats in 2013, from its current size of 40, while
Bombardier (2001) projects it to attain an average size of 61 by 2011.
Similar differences, such as stage lengths, load factor, and the resultant
revenue conditions can also be noticed between the FAA and the industry
projections.

In this paper, we present a methodology that can be used to estimate and
forecast O&D pairs for the entire national airspace system (NAS). By
combining 10% O&D data with the data from respective cities from the
BEA/DOC, we created a unique dataset that reveals important information
regarding economic and demographic determinants for O&D travel.
Despite its uniqueness, our analysis and data are somewhat limited and
contain a few limitations. For example, our data demonstrate the final
market as represented by city-pairs and thus is somewhat biased in its
coverage. In addition, our dataset does not reveal the true itinerary for
travelers. Finally, a calculated average one-way fare is reported in our
dataset. While this is a good substitute, it does not allow us to understand
the true impact of fares on those itineraries. Despite these limitations, our
analysis is fairly indicative of O&D travel and thus can be used to derive
forecasts of bottom-up travel by (O&D) city pairs.

The paper is organized as follows. Section II gives a brief background
preceding our work and the context; Section III provides the analytical
framework demonstrating the determinants of passenger demand for O&D
air travel. Section IV provides the econometric framework together with
description of the data and the process through which datasets have been
combined. Section IV also provides detailed results together with
explanations for each of the determinants. Section V explains the steps
through which we can use the econometrically estimated framework to
derive forecasts by O&D pairs. Section VI describes the process through
which passengers can be mapped, both estimated and forecasts, into
deriving optimal number of aircraft by O&D pairs. Section VII draws the
implications of these forecasts, once derived, on measuring the workload
pressures of the FAA. Section VIII concludes the paper by drawing policy
implications and outlining future research. Finally, there are five
appendices. Appendix A provides the definition of the demand model.
Appendix B and C provide the standard air traffic hubbing map (i.e.,
FAA/USDOT) and commercial air carriers’ hubbing map, respectively.
Appendix D provides the current code-sharing partnerships between the
commercial air carriers and regional air carriers. Appendix E provides a
table detailing the concepts that have been used in the paper along with the
contributions of this research over the existing work.
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BACKGROUND

In a seminal workshop convened in 1989 by the Transportation Research
Board (TRB), the FAA laid out the methodologies that have been in use for
both short and long-term forecasting' including ways to study structural
changes, such as effect of deregulation on the industry (Mayer, 1989).
Noticing that large-scale structural micro-econometric modeling was
neither possible nor desirable—due both lack of quality micro data and
large fluctuations in activities following the deregulation—the FAA had
made use of a macro-structural model combined with judgement and
intuition in producing forecasts. The relative importance of modeling over
intuition and judgement has always been a matter of contention in the
forecasting community, FAA included. While using too much intuition
may blur professional judgement on political grounds, using none may be
equally problematic (Mayer, 1989). Use of a top-down macro econometric
model may have made sense throughout the 1980s and perhaps in the
beginning of the 1990s. However, relatively cleaner data—10% O&D
sample data after 1995 in particular—and increasingly cheaper
computations make structural econometric modeling at micro levels
possible. The top-down structural econometric model, while easier to
formulate and estimate, misses out interesting development at both sector
levels (e.g., large jets versus RJs) and at the regions (e.g., those taking place
in different metros). Sector changes, as well as changes in route choices,
characterized the entire 1990s. Rapid growth in the industry led by the RJs
and an explosion of routes carrying over half of a billion passengers a year
throughout the NAS created a national air transportation infrastructure that
had never been observed before. A top-down econometric framework is
unable to describe and analyze complex and dynamic route networking,
increasing complementarity between large carriers and RJs, and mounting
substitutions of turbo-props by RIJs, just to name some of the characteristics
of the decade. Faced with increasingly restrictive labor rules created by
scope clauses and observing relative cost efficiency of the RJs, many of the
large carriers have found a natural ally in RJ carriers. Thus, code-sharing
has become an important vehicle for seamless travel in the U.S. and abroad.
Understandably, demand for air travel management (ATM) services, i.e.,
workload measures at towered airports, Air Route Traffic Control Centers
(ARTCCs), and the need for other infrastructures, have become inherently
dynamic and dependent on the evolving air transportation network.
Forecasts based on a top-down approach, thus, essentially miss many of the
intricate complexities of the NAS.

Notwithstanding the above, much is at stake in understanding the
location choices at the local level. In the wake of deregulation of the
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industry, both industry watchers and policy-makers predicted competitive
outcomes resulting in lower prices for air travelers. Many of the
competitive outcomes have indeed come true, thanks to the 1978 Air
Deregulation Act (ADA). However, spatial monopolization of markets by a
few airlines remains a constant worry among policy-makers two decades
later, casting doubt on the long-run future of competitive outcomes.
Available empirical evidence shows that airlines indeed use their locational
advantages commonly exhibited by hubbing to garner monopoly
advantages. Predatory pricing to drive out potential competitors,
manipulation of gates and physical facilities at the airports to narrow
choices for the flying public, and consolidation of markets by mergers are
some examples of these practices.

However, events following September 11, 2001, may have shaken this
process somewhat. The Air Transportation Safety and System Stabilization
Act of 2001, and insurance guarantees by the federal government, have
gained wide industry support. Indirect pressures, on the other hand, on
local and state governments to create a more favorable climate than would
be otherwise required by competition or made available to competitors are
also noticed in cities where airlines hub.

Factors governing the industry combined with factors that are
essentially local are critical for the existence of airlines as a whole. All
these point to the fact that local economics play, and will continue to play,
significant roles in determining the fate of the emerging business models in
the future. It appears that choosing the right business model(s) has become
the key for survival of the entire industry, especially post 9/11 (Executive
Flight, 2002; Costa, Harned & Lundquist, 2002). Finally, aircraft
manufacturing, to a large extent, is also dependent on the patterns of
networks emerging from the future of the dominant business models
(Economist, 2002). For example, the steady rise of Southwest Airlines in
the second half of the 1990s and its apparent reliance on spoke-to-spoke
network have led many to suggest that the future of the air transportation
network may very well be a diffused one compared to the current hub-and-
spoke network that dominates the U.S. air travel.

AN ANALYTICAL FRAMEWORK OF
WHAT DRIVES PASSENGER DEMAND IN THE NAS

It is essential, therefore, that we understand how demand for air travel is
determined at the local levels. After all, the local economies and
demographics, together with industry characteristics in the market routes,
influence the way airlines meet travelers’ demands and results in the route
network that we observe in the NAS today.
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The empirical literature stipulates that personal income and
population—next to fare—are the key factors determining the demand for
air travel (Battersby & Oczkowski, 2001; Corsi, Dresner, & Windle, 1997;
Mumayiz & Pulling, 1992). It is reasonably certain that personal income,
like gross domestic product (GDP), will affect air travel between O&D
pairs positively. Instead of using aggregate GDP for the country or for the
state as a whole, however, we propose to use local area personal income as
it corresponds well to the local area air travel under this approach. In other
words, we stipulate that local area air travel demand can be best estimated
by local area income. Even though this specification alters the way we
handle the demand for air travel under a macro-structural model, it builds
on the central theoretical deduction that income—Ilocal area personal
income as opposed to country’s GDP—still drives air travel demand
reported in O&D data.

A clear distinction should be made, however, between our approach and
standard top-down approach including that of the FAA. First, demand, as
represented by revenue passenger miles (RPMs), is determined
econometrically by GDP, among other things, under FAA’s approach. This
estimated relationship is then allocated from the top down to the terminal
areas, taking into consideration the historical shares of the airport, master
plans, and expert opinion, to derive TAF. Hence it is a top-down approach.
In contrast, our approach is based on econometric relationships that are
estimated at a lower level [i.e., O&D travel between metro statistical areas
(MSAs) as defined by the Office of Management and Budget (OMB)], and
hence can be called a bottom-up approach. While TAF is primarily
designed to serve as a terminal area planning tool, our approach is focussed
on market routes and flows, i.e., passengers and aircraft, within.

Second, it is possible that other local factors, such as population,
density, and interactions between economic and demographics may affect
air travel. In order to account for these, we consider the following variables:
population density (per square mile) of the origin MSA and the destination
MSAC(s), and the interactions between population and income representing
the degree of economic strength of the (O&D). Effects of population,
density, and interactions may not be as obvious, as it is for income. For
instance, one can expect that as population increases, and the level of
economic activities increase, O&D travel will increase establishing
positive relationships with demand for air travel.> However, as the intensity
of economic activities increase, so does the congestion and negative
externalities. This is often experienced in the north-eastern
corridor—where with the persistent increase in delays at airports and
permanent changes in behavior of those who travel short distances may
occur—establishing a negative linkage between the extent of economic
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activities and air travel. Therefore, it is possible that beyond a certain range,
intensity of economic activities may actually affect the O&D travel
negatively. Thus, we can not be certain, a priori, about the sign of the
estimated coefficients for these variables.

Third, empirical literature has established that in situations when
passengers have choices between airports that are large hubs and those
which are not, i.e., medium, small hub airports, and airports without any
hub status, passengers tend to choose large hubs (Button, Stough & Trice,
1999; Bhadra & Hechtman, 2002). This makes sense because large hubs
represent more choices due to the predominance of hub-and-spoke
networks in the US. Thus demand for air travel may be positively
influenced by large hubs compared to those that are not. It is not surprising
that major hub airports account for more than 75% of scheduled air travel,
measured in terms of enplanements in the country (FAA, 2001). As with
intensity of economic activities, the presence of large hubs may affect air
travel negatively beyond its obvious positive ranges. Some of the large hubs
are congested airports as well and perhaps demonstrate that they may have
saturated the positive externalities that are often exhibited in large hubs. We
account for this by creating a proxy variable categorizing O&D areas into
large hubs and those which are not.

Fourth, the empirical literature in urban economics postulates that
distance is bad in the sense that it reduces utility by reducing leisure which
is good. Thus, as distance increases, it is expected that demand will go
down. We may call this a direct effect of distance on passenger demand.
Evidence on rising quality of services, including more leg-space and
complete sleep travel for business class passengers in particular, offered by
many airlines tend to suggest that there may be a negative relationship
between air travel and utility, especially for longer haul travels. Passenger
demand will go down as distance increases under these circumstances
(Mills and Hamilton,1993). However, this may not be true when air travel is
limited to shorter distances. Notice that on shorter trips, air travelers have
more choices. Thus, in choosing air travel over other modes, a
representative traveler makes a conscious decision by comparing the net
marginal gain from traveling an extra mile by air as compared to an extra
mile traveled by other modes. This process takes into account marginal
utility from different travel options, and their prices. Utility can be expected
to increase—so will the passenger demand—with an extra mile traveled as
long as net returns from air travel exceed that of by other modes. We can
call this the substitution effect of distance on passenger demand. One may
expect to observe, therefore, a positive impact of distance on passenger
demand for short-haul distances (and thus, stronger substitution effect);
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while a negative impact otherwise (and thus, direct effect dominating
substitution effect).

In addition to the above area characteristics, we have a host of industry
characteristics that tend to differ from market to market defined by O&D
distances. Fare is critical in determining the passenger demand. In order to
account for that, we consider one-way fare for O&D travel. Data reported
by the BTS are disaggregated by O&D pairs. Without the number of
coupons and the prices charged for each leg of the journey (which are not
available at this time), it is difficult to calculate more accurate fares and
yield per mile. In the absence of more precise data, one-way fare may
account well for O&D travel price. It is obvious that fare would affect the
demand negatively.

Sixth, empirical literature cites evidence for and against the stipulation
that airlines practice discriminatory pricing measures based upon market
share (USDOT, 2001; Oster & Strong, 2001; GAO, 2001). While it is true
that having a large market share may facilitate some power over pricing,
market share of competitors may also deter such practices. Hence, we
construct a ratio representing the share of the airline occupying the major
market to that of those with lower market share. Therefore, if the market
share of the major airline goes up, and/or the share of the minor airlines
goes down, the ratio will increase, and hence may impact the demand for
passengers through pricing. It appears to be still an open empirical question
as to how market power may influence pricing and thus worth our while to
test it in our dataset as well.

Seventh, the empirical literature shows that low cost carriers such as
Southwest Airlines play an important role in determining the shape and
structure of the market (Morrison, 2001). Southwest has traditionally
captured market shares by offering low prices for less differentiated travel
services, or what has become known as spoke-to-spoke services. Thus, the
entry of Southwest in a market may have two impacts: first, a substitution
effect of lower fares where air travelers switch from high-fare established
route carriers to services to low-cost spoke-to-spoke services; and, second,
a complementarity effect where lower prices of Southwest may actually
induce more travelers into using air transportation as opposed to other
modes, especially those in the short-haul markets (i.e., less than 1,500
miles of stage length). This latter effect may benefit both Southwest and
other airlines thus establishing complementarity. While the competitive
aspects of the Southwest effect have received much attention, the
complementarity aspect® has received very little.* In order to capture the
totality of the Southwest effect in determining passenger travel, we create a
dummy variable representing Southwest’s presence in markets where it is
the primary carrier as well those where it has a minor share.
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Finally, congestion and delays have serious consequences. Financial
cost, scheduling complexities, and withdrawal of services leading to lack of
competition are some of the consequences of airport delays and en-route
congestion (Garvey, 2001). FAA data show that during the first nine months
of 2000, delayed, canceled or diverted flights affected 119 million
passengers. Initial analysis indicates that delays in 2000 cost the airlines an
estimated $6.5 billion, up from $5.4 billion in 19995 As FAA
Administrator Jane Garvey pointed out, there are many conditions that
cause delays: bad weather, inoperable runways, airport capacity
limitations, aircraft equipment problems, airline maintenance and flight
crew problems, and air traffic equipment outages (FAA, 1995). Studies
show that bad weather is the primary cause for delays (more than 70%,
(Jensen, Kuhn, Shavell, Spear, Taber, & White, 1999). Convective weather
takes place during the late spring and summer months. During these
periods, weather is often unpredictable, leading to serious en-route and
airport delays. In order to mitigate this problem, the FAA initiated a
collaborative partnership with the airline industry, known as the spring-
summer initiative, that contributed into the Operational Evaluation Plan
(OEP; FAA, 2002). To take into account the weather effect at particular
times of the year, we consider a quarterly proxy, roughly approximating
spring and summer weather, as a factor influencing passenger demand for
air travel between O&D pairs.

Based on above discussion, the framework, therefore, can be stipulated
as follows [for a complete list of variables used in this paper, please see
Appendix A:

P, =F (f;; PI,

i Flij,
Market PowerP

hub..,

Density;;, Interactions;;, Distance ;;, i

Market Power™P,, Southwest ;, season) (1)

ij» ij»
where 1 = origin city; j = destination city; P = average daily passengers; D
and ND = dominant airlines and non-dominant airlines; f = one-way fare;
PI = personal income; Density = population density per square mile;
Interactions = intensity of economic activities as represented by
interactions between population and income; Distance = distance traveled
between O&D markets; Market Power = share of passenger demand by
airlines in total O&D market; Southwest = presence (major or minor
presence) of Southwest in the O&D market; and season = adverse spring
and summer weather.
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The signs of the variables, following the logic laid out above, can be
shown to have an impact on passenger demand in the following fashion:

SQ i / 8 fij < 0, SQU / 8 PI[:/- > 0,

8Q ;; / & Density;; = ? 0Q;; / & Interactions;; = ?

dQ ;; / & Distance;; = ? 6Q; / & Market Power; =7 (2)
3Q ;; / & Southwest;; = ? 0Q;;/ 8 Seasons; =<0

8Q /& Hub, = ?

The above discussion is summarized in the following diagram:

Figure 1. Determinants of Demand and their Effects

Phrso \
One-Way Fare ($) |. "eome ) Note: bold lines represent directional certainty.
between O&D Pairs || :':::;'b- ‘\ Therefore, while personal income is certain to
'

VS AN increase demand, bad weather is certain to
€ Ideactions Sm reduce it. Dashed lines represent ambiguity.

D: O&D Demand
between City-Pairs

Average No. of
Passengers/Day

It is clear from the above exposition that beyond standard stipulations,
such as on fare and personal income, we do not have clear a priori
hypotheses on most of the variables. Therefore, it makes sense to estimate
demand for air travel by O&D markets and derive useful information from
estimated coefficients.

ECONOMETRIC ESTIMATION:
DATA, METHODOLOGY AND RESULTS

Conceptually speaking, our econometric framework makes use of the
same underlying economic logic presently employed in the top-down
framework. That is, the passenger demand, as represented by revenue
passenger miles (RPM), is a function of income as represented by gross
domestic product of the country. All available approaches, based on our
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research and knowledge reveal that both the industry and FAA employ
some variant of top-down approaches. This perhaps makes sense for the
industry, given the typical short-term considerations and lack of resources.
However, from a medium and long-term planning considerations, trend
projections often arising from top-down approaches may not be an effective
tool. More detailed approaches, such as examining the characteristics of
0&D travel may become necessary for situations where aggregate results
may be misleading. In addition, however, we postulate that the demand for
O&D air travel is also determined by the level of population, spatial
variables, airport characteristics, airline characteristics, and network
characteristics in both origin and destinations.

Primary data for this analysis is based on the 10% O&D sample obtained
from the BTS/DOT (USDOT, 2002). The 10% data of BTS/DOT is based
on tickets ending with a ‘0’ (or, tenth-coupon as it is commonly referred to)
of all scheduled itineraries. Based on an average monthly travel of 45
million passengers, 4.5 million records are fairly substantial and
statistically representative of scheduled travel. In addition, we use T-100
schedule data collected by the BTS. We combine the O&D travel data with
local economic, demographic and spatial variables collected by the BEA.
The combined dataset has a little over 50,000 records for eight quarters.®

Figure 2. Segmentation of national airspace system
by equi-distance of 250 miles: An Example
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Using this data, we segment the contiguous NAS into 12 equi-distance
air travel markets in 250 mile increments (see Figure 2). The rationale
behind this segmentation is to capture the inherent differences between
markets that may be essentially different. For example, a 250-mile-radius
market may be very different than a 1,000-mile-radius market. While the
demand for travel in the first market may be different than for those who
travel in the later market, as often expressed in choices available, and
responsiveness to fares, it is also different from a fleet planner’s
perspective. A fleet planner may fly a standard turboprop in the former
market, while an RJ may be a better choice for the latter market.
Furthermore, travel below any radius below 250 miles is often
uneconomical for air transportation, scheduled air transportation in
particular. Other modes of transportation, e.g., automobile, make travel by
air in areas less than a 250 mile radius less attractive as well. Based on these
rationales and to capture the qualitative differences between the markets in
the NAS, we came up with a 12-segment market for the entire NAS.

A BROAD OVERVIEW OF DATA:
TRAFFIC AND FINANCIAL STATISTICS

Economists have been using the 10% sample for O&D travel and Form
41 data for numerous studies, including that of determining the competitive
structure of the industry, cost structure, pricing, and regulatory issues. See,
for example, Brueckner (2001) for a comprehensive study on failed British
Airways/American Airlines alliances; and Pitt and Norsworthy (1999) for a
comprehensive study on the impact of productivity, technology, and
deregulation on U.S. commercial airlines. Since these data play an
important role in deriving conclusions on many important issues, it is
useful to give a broad overview of what these two datasets truly capture.

BTS/DOT Ten Percent Sample of Tickets Lifted/Used:
O&D Survey Data Records

The FAA requires large U.S. scheduled passenger air carriers to
participate in an ongoing (O&D) survey of 10% of passengers carried
through the system. It is called the 10% survey and often known as DBI1A,
the name of the BTS database. Foreign air carriers do not directly
participate in the survey, although some of their data are captured in the
survey since passengers who share a ticketed itinerary between a U.S.
carrier and a foreign carrier may be sampled by the US carrier (see 14 CFR
part 241; section 19-7).

Reporting on the fifteenth of May, August, November, and February for
quarters of the calendar year a carrier responding to this survey examines
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the coupon itinerary for each flown ticket number ending in a zero. If the
lifting carrier is the first reporting carrier on the itinerary (or has a
codeshare relationship with same in that market) the operating carrier
should include that ticket information in his O&D survey quarterly filing to
the USDOT.

Figure 3. Flow Charts of O&D Reporting from Tickets

Select Ticket Report Summary
Records to DOT
yes Eleven or More
Group Ticket? Passengers yes
no T See Reporting
[ Instructions
no Serial No. End in
6‘0”?
yes no
Two Coupon Round
Trip?
yes yes -
Domestic Routing? i
yes no
Major
Market? yes| Count Ticket as
yes | Serial No. End in “00”? | “10” Passengers
no ]

Source: Office of Airline Information, Department of Transportation (1999).

The data which is reported includes: a) the gross fare, including Federal
Excise Tax (FET) and Passenger Facility Tax (PFC), on the ticket; b) the
number of coupons on the ticket; c¢) the number of passengers on the ticket;
and d) the coupon itinerary which includes: each airport of enplanement
and deplanement, the operating and marketing carrier on each leg of travel,
and the fare class on each leg of the passengers journey.

Prior to submission of the carriers O&D survey filing, the carrier is
instructed to sort the reportable data into unique records (other than
passenger count) and then summarize identical records together reporting
the aggregate number of passengers. The DOT adds distances to each leg,
calculated on the basis of great-circle distance, and a total distance for each
ticket. They also determine what the passenger’s probable destination was
for each ticket. To accomplish this, the DOT examines the itinerary of
travel, keeping track of the distance from the origin and the amount of
circuity involved to determine a best guess as to where the passenger’s
directional break occurred (for details, see Database Products, Inc., 1999).
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T100 Market and T100 Segment Schedules

T100 Segment is the Data Bank 28DS of Form 41 that provides traffic
and capacity data of U.S. air carriers. The data are reported by U.S. air
carriers operating non-stop between airports located within the boundaries
of the U.S. and its territories. Information by aircraft type and service class
for departures performed, available capacity and seats, passengers
transported, freight and mail transported, scheduled departures, and aircraft
hours ramp-to-ramp and airborne are provided. Data Bank 28DM of Form
41 or T100 market schedule, on the other hand, provides domestic market
data of U.S. air traffic carriers. These data are often referred to as either
Market or On-Flight Origin-Destination records. The data fields contain
information on passengers, freight and/or mail enplaned at the origin
airport of the flight, and deplaned at the destination airport of the flight (for
more information see BTS/DOT, 1999).

It is evident from above that there are some important differences
between market and segment data. One such important difference is
demonstrated by the passenger coverage in the T100 segment and market
data. As Table 1 demonstrates, while the market data capture revenue
passengers’ enplanement and segment data capture revenue passengers’
transported, confusion remains in interpretation between these two data.
Figure 4 attempts to illustrate the difference between the two datasets.

Therefore, the essential differences between the two datasets are in
number of stops (i.e., in segments) it made (as captured by on-flight

Figure 4. Segment and Market Data: How Are They Different?

Flights from LAX to SLC tg
> >
» »
LAX SLC DEN
100 enplane 40 deplane; 110 deplane
50 enplane.
Non-Stop Segments: Represented by straight arrows above, 1.e., number of passengers transported

between points, (between take-off and landings).
LAX to SLC: 100 passengers transported;
SLC to DEN: 110 passengers transported;

On-Flight Markets: Represented by curved lines above, i.e., where | gers are enplaned and depl
on a flight (flight number).
LAX to SLC: 40 passengers; For a one-stop flight, the number of passengers
LAX to DEN: 60 passengers; would be the same number under segment and
SLC to DEN: 50 passengers; market.

Source: Office of Airline Information (1999)

Source: Office of Airline Information, Department of Transportation (1999).
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Table 1. Data Description, Types of Records, and Form and Schedule Numbers

Code Description Type of Record Applicable Form 41
Segment  Market  Schedule Number

Carrier, carrier entity code S M T-100()1,2,3
Reporting period date S M T-100(f)1,2,3
Origin airport code S M T-100(f)3
Destination airport code S M T-100(f)
Service class code S M T-100(f)1,2,3
Aircraft type code S T-100()1,2,3

110 Revenue passengers enplaned M T-100(H)1,3

111 Total psgrs. in market—first cabin M T-100

113 Total psgrs. in market—middle cabin M T-100

112 Total psgrs. in market—coach cabin M T-100

130 Revenue passengers transported S T-100(f)

131 Passengers transported—first cabin S T-100

133 Passengers transported—middle cabin S T-100

132 Passengers transported—coach cabin S T-100

140 Revenue passenger-miles CFD* 1,2

210 Revenue cargo tons enplaned CFD*

217 Enplaned freight M T-100(f),3

219 Enplaned mail M T-100 3

230 Revenue tons transported CFD*

237 Transported freight S T-100(f)

239 Transported mail S T-100

240 Revenue ton-miles CFD* 1,2

241 Revenue ton-miles passenger CFD* 1

247 Revenue ton-miles freight CFD* 1,2

249 Revenue ton-miles mail CFD* 1,2

270 Available capacity payload S T-100

280 Available ton-miles CFD* 1,2

310 Available seats, total S T-100

311 Available seats—first cabin S T-100

313 Available seats—middle cabin S T-100

312 Available seats—coach cabin S T-100

320 Available seat-miles CFD* 1,2

410 Revenue aircraft miles flown CFD* 1,2

430 Revenue aircraft miles scheduled CFD* 1

501 Interairport distance CFD* 2

510 Revenue aircraft departures performed S T-100()1,2,3

520 Revenue aircraft departures scheduled S T-100 3

610 Revenue aircraft hours (airborne) S T-100 1,2

630 Aircraft hours (ramp-to-ramp) S T-100 1,2

650 Total aircraft hours (airborne) 2

810 Aircraft days assigned to service-equip. 2

820 Aircraft days assigned to service-routes 2

921 Aircraft fuels issued (U.S. gallons) 2

*CFD = Computed by DOT from detail Schedule T-100 and T-100(f) data.

T-100 = Form 41 Schedule T-100 for U.S. air carriers

(f) = Form 41 Schedule T-100(f) for foreign air carriers

1— = Form 41 Schedule T—1; 2 = Schedule T-2; 3 = Schedule T-3

NOTE: Cabin data are reported only in Group III international operations; in all other
instances, totals are reported in items 110, 130 and 310.

Source: 14 CFR Ch II (1-1-01 Edition), Pt. 241, Office of the Secretary, Department of Transportation,
2001.
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markets segments), and consequently, the number of passengers it
delivered to destination points.

Financial Statistics Data: Form 41 Reporting

The financial information required from large certificated air carriers is
laid out in Part 241 of Title 14 of the Code of Federal Regulations
(14 CFR), entitled, Uniform System of Accounts and Reports for Large
Certificated Air Carriers. There are, broadly speaking, ten financial
statistics that are required from the large carriers:

1. Inventory of Airframes and Aircraft Engines
Airframe and Aircraft Engine Acquisitions and Retirements
Balance Sheet
Aviation Fuel Costs in cents per gallon
Aviation Fuel Consumption
Operating Expenses by Functional Groupings
Operating Expenses by Objective Groupings
Aircraft Operating Costs by Aircraft Type
Employment Statistics by Labor Category
Income Statement

COXRXTRAN R LN

—_

DATA

Our data come from multiple sources. We combine data on passenger
movements by origin and destination areas with local area characteristics
(e.g., income, population, and area), and industry characteristics (e.g.,
fares, market concentration, and presence of competitive airlines such as
Southwest). Aviation statistics come from the BTS while the local area data
come from the BEA and the U.S. Census Bureau. Some other
characteristics, e.g., status of hubs and weather influence during spring and
summer, have been given special attention as well.

We use USDOT-defined hubs based on aviation activities rather than
those defined by commercial airlines’ activities. See appendices A and B
for maps describing the DOT definition and hubs defined by commercial
operations. In order to associate BTS datasets with economic statistics
released by the BEA, we used data within commercial geographic
information systems (GIS) software. Using shapefiles—spreadsheets or
database tables whose records contain a geographical component—issued
by the BTS in its 2000 National Transportation Atlas Data (NTAD), we
overlaid map layers showing U.S. air traffic hubs (BTS, 1999) and primary
MSASs. Our map overlay is restricted to the MSAs and to airports that had
one or more domestic enplanements in 1999 and are contained within these
MSAs. The MSAs that we chose roughly correspond to the hubs listed in
the BTS report entitled Airport Activity Statistics of Certificated Air
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Carriers. We arrived at the list of MSAs by taking all the areas listed in the
BTS report and breaking those areas into component MSAs. There were
two hubs in the BTS report (Valparaiso, Islip, and Palm Springs) whose
names are not found within the list of MSAs defined by the OMB. In these
instances, we added to our list the MSAs in which these towns are located.
Our list excludes MSAs outside of the 48 contiguous states. Our list also
ignores consolidated metropolitan statistical areas (CMSAs), instead
focusing on primary metropolitan statistical areas (PMSAs) and regular
MSA:s.

We combine the above data with that of local area personal income
compiled by the BEA(n.d.). Our analysis takes into account MSA
population and per capita personal income, grouped by MSA, for 1999 and
2000. The land area measurements used to calculate these densities were
taken from the U.S. Census Bureau report State and Metropolitan Area
Data Book: 1997-98 (1998). By using MSA codes to join the airport
information, population, per capita income, and population density tables,
we built a data base that indexes these datasets by airport. Once these
datasets were imported into a single spreadsheet, we calculated total
enplanements and commercial services by MSA.

We also placed the airports and their corresponding MSAs into three
groups: large hubs, medium hubs, and small hubs. The MSAs in which
1.00% or more of domestic enplanements took place are considered large
hubs. There are 31 primary large hubs at present. Medium hubs are those at
which at least 0.25% and fewer than 1.00% of passengers enplaned. There
are 35 such primary hubs at present. Small hubs are those with greater than
or equal to 0.05% and below 0.25 percent of domestic enplanements. There
are 71 small hubs at present. Non-hubs were those that fell below 0.05% of
domestic enplanements and defined in primary and non-primary
categories. At present, there are 282 primary and 127 non-primary non-
hubs (FAA, 2001). Unlike the BTS, we applied these definitions to both the
hub MSAs and their component airports. Thus, we have data for both
MSAs and airports.

Despite its uniqueness, the dataset we use for our analysis and
demonstration is somewhat limited in comparison to the 10% O&D
sample. The 10% sample is also much larger in magnitude. For example,
the sample has more than 4.5 million records (i.e., 10% of more than 450
million total scheduled domestic O&D passengers) for the year 2000. Our
dataset also contain a few limitations that we should mention at this point.
First, the O&D travel indicated by the data here have been extracted from
the original DB1A. BTS/DOT personnel then combine these data with
other market information to come up with the information they report to the
public. BTS/DOT does not report the actual airport-to-airport travel (as
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reported by 10% sample); rather, it is reported for the final market as
represented by city-pairs. This is done, understandably, to protect market-
specific information that airlines report in the 10% sample. Consequently,
the data for markets in which proportionately more travel takes place (e.g.,
Atlanta) tends to be biased in its representation of those markets. Second
and most importantly, this dataset does not reveal the true itinerary for
travelers. As a result, information relating to network travel (i.e., hub-and-
spoke travel) is lost. Passengers in this dataset travel between nonstop O&D
pairs. Although this is likely for smaller distances, hub-and-spoke travel is
a fundamental part of today’s air travel. A quick calculation suggests that,
on average, 25-30% of passengers use some sort of hub to reach their
destination. Third, other information, such as fares that are uniquely
associated with an itinerary is not revealed as well. In contrast, a calculated
average one-way fare, based on the itinerary fares, is reported. While this is
a relatively good substitute, it does not allow us to understand the true
impact of fares on those itineraries. In order to solve these issues, we
conduct a much larger study in our subsequent research where we build and
test models, similar to the one presented in this paper, but based on more
detailed 10% dataset instead of the one we report here for demonstration
purposes.

ECONOMETRIC FRAMEWORK FOR ESTIMATING
O&D PASSENGER TRAFFIC

Following our analytical specification in equation (2), we specify the
following equation for estimation in semi-logarithmic form:

In (Py) = o+ B * In(f) + % * In(PL)+ y * (hub status)
+ 8 * In(Density;) + ¢ * In(Interactions;;)
+ ¢ * In(Distance;) + N * In(Market PowerDij)
+ 1 * In(Market Power™P;) + x * (Southwest ;)
+ A * (season) + ¢; 3)

We take the log of those independent variables for which logarithmic
interpretations are meaningful. Thus, we leave out the hub status,
Southwest presence and season as dummy variables. Second, log-linearity
of the demand function implies that the underlying root function is of
Cobb-Douglas (C-D) type. This may or may not be true. We make this
assumption for two reasons: estimated coefficients of a C-D function have
interesting interpretations and can be easily compared with a vast number
of other studies for which similar functions have been estimated; and, these
functions are computationally less expensive.’ In a larger context, however,
appropriateness of the functional form itself can be empirically tested.
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Given that, i # j and D # ND, therefore, full specification of the above
can be written as follows:

In (Py) = oo+ B * In(fy) + x; * In(PL)+ x; * In(PL)
+ &, * In(Density;) + 6, * In(Density;)
+ 0; * In(Interactions;) + ¢; * In(Interactions;;)
+1 * In(Market PowerP;) + 1 * In(Market Power™D,)
+xkP * (Southwest ;) + kNP * (Southwest ;)
+v;* (hub statusOrigin) + v* (hub statusDestination)
+ ¢ * In(Distance;)+ p * (season) + g; 4)

where ¢g; distributed normally.

It is evident that equation (4) resembles a demand function. However, it
is well established in econometrics literature that equation (4) is part of a
simultaneous equation system consisting of both supply and demand
functions. Therefore, a straightforward estimation of equation (4) will
produce biased and inconsistent estimates.

Generally speaking, an economic system typically consists of many
interdependent variables and relationships among them. In estimating the
equations of such systems, econometricians frequently encounter an
obstacle known as the identification problem. It is known to be more
pronounced when estimating one equation from the system.

The identification problem can be illustrated by describing the process
by which fares and travel are simultaneously determined in the O&D
market. To model this process in its entirety, we must develop a quantitative
estimate of both the demand and supply functions in a system. Typically the
data used to estimate these functions are past observations of price and
output determined by the points of intersection between the demand and
supply curves. Therefore, if, in the past, the supply curve has been shifting
due to changes in production and cost conditions for example, while the
demand curve has remained fixed, the resultant intersection points will
trace out the demand function. On the other hand, if the demand curve has
shifted due to changes in personal income, while the supply curve has
remained the same, the intersection points will trace out the supply curve.
The most likely outcome, however, is movement of both curves yielding a
pattern of fare and quantity intersection points from which it will be
difficult, without further information, to distinguish the demand curve from
the supply curve or estimate the parameters of either. Fare and travel are
determined by the solution of two simultaneous equations. Therefore, fare
and travel are said to be jointly determined. This is a very common
occurrence in economics. Under these circumstances, ordinary least
squares estimators are biased and inconsistent (Greene, 2001).
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Fortunately, several techniques have been developed for the estimation
of the structural parameters of an a priori specified system of simultaneous
stochastic equations. These include indirect least squares, two stage least
squares, instrumental variables, three stage least squares, full information
maximum likelihood, and limited information maximum likelihood.

STATISTICAL RESULTS: PASSENGER DEMAND
AND ITS DETERMINANTS

We use SAS (version 8) for our estimations. In our estimation, we use
limited information maximume-likelihood (LIML) estimation to estimate
one equation from a system of equations. The LIML method results in
consistent estimates that are exactly equal to two-stage least squares (2sls)
estimates when an equation is exactly identified (see Greene, 2001 for
formal proofs of these assertions). LIML can be viewed as least-variance
ration estimators or as maximum likelihood estimators. LIML minimizes
the ratio A = (rvar_eq) / (rvar_sys), where rvar_eq is the residual variance
associated with regressing the weighted endogenous variables on all
predetermined variables appearing in that equation, i.e., all the right-hand
side variables. The rvar_sys, on the other hand, is the residual variance
associated with regressing weighted endogenous variables on all
predetermined variables in the system. The k-class interpretation of LIML
is that K = A and thus stochastic, unlike that under ordinary least squares
and 2sls where 0 < K < 1.

Table 2. Model Summary

N (no. of N (no. of (Nin
observations) observations) Est/N
Market Hauls (in miles of in the used in Data)
non-stop distance) (1) Dataset Estimation (%) Adj. R®  F-Value
<250: Short Haull 2424 1785 74 0.57 170.53*
250-499: Short Haul2 8161 4601 56 0.51 346.92%
500-749: Short Haul3 9935 5685 57 0.41 287.69*
750-999: Short Haul4 8894 5396 61 0.42 289.44*
1000-1249: Short Haul5 6686 3981 60 0.35 155.47*
1250-1499: Medium Haull 4252 2457 58 0.37 102.79%
1500-1749: Medium Haul2 3239 1934 60 0.50 139.35%
1750-1999: Medium Haul3 2983 1652 55 0.54 141.66*
2000-2249: Long Haull 2184 1392 64 0.55 123.54*
2250-2499: Long Haul2 2160 1310 61 0.48 87.26%*
2500-3000: Long Haul3 996 510 51 0.48 34.24%
Contiguous US NAS Total 51914 30703 59%

"*': Significant at 99%.
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Many of the interesting results from the estimations for the 11 markets®
separated by non-stop distances of 250 miles for the first 2,500 miles and
500 miles for the segment of 3,000 miles have been summarized in tables 2
through 4. We use SYSLIN procedure from SAS that uses a Limited
Information Maximum Likelihood (LIML) with K class estimation. K-
class estimators are instrumental variable estimators where the first-stage
predicted values take a special form: Y* = (1-k)Y + kY for a specified value
of k. The probability limit of k must equal 1 for consistent parameter
estimates.

Results are self-explanatory but some remarks are in order. As table 2
indicates, the estimation suffered quite a bit, on average it lost 40% due to
larger specification and an incomplete dataset. Therefore, we could only
use 30,703 observations (59%) from the complete dataset containing
51,914 observations.

As is also clear from the table 2, the overall model results, represented
by Adj R? and F-Value, are quite significant. The fraction of the variance of
the dependent variable, i.e., average daily passenger demand on a day,
explained by the independent variables (R%)° ranges between 35% to as
high as 74%. For a small time series (2 years) pulled cross-section data, this
is relatively good.

The F-statistic for the specified model tests the hypothesis that all the
slope coefficients, excluding the intercept, in a regression equation are
zero. Under the null hypothesis with normally distributed errors, this
statistic has an F-distribution with k-1 numerator degrees of freedom and
T-k denominator degrees of freedom. The p-value given next to the
F-value, denoted Pr>F, is the marginal significance level of the F-test. In
all our 11 models, the p-value is essentially zero. Therefore, we reject the
null hypothesis that all of the regression coefficients are zero. Notice,
however, that the F-test is a joint test of model suitability. Thus, even if all
the t-statistics are insignificant, the F-statistic can be highly significant
making the model’s overall appropriateness.

Average One-Way Fare

Average one-way fare affects all market segments negatively, as
expected. However, in some markets, the responsiveness of travelers to fare
changes are relatively less responsiveness, i.e., inelastic, than others. For
example, least inelastic market appears to be Short-Haul2 where non-stop
distance is between 250-499 miles.'°

Travel in the shorter haul markets may tend to be relatively less
responsive to changes in fares for several reasons.'! First and foremost is
the structure of passengers. It is relatively well known that most of the
passengers who travel shorter distances are business class passengers. They
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tend to pay a higher premium to purchase tickets at the last moment.
Consequently, they have very little or no choice to respond to changes in the
fares. Passengers who are more capable of responding to fare changes, i.e.,
leisure class, tend not to fly these shorter distances. This occurs even
though other modes of transportation should make the demand curve
flatter, and therefore, more elastic. An overall inelastic demand curve,
therefore, suggests that travel is perhaps dominated by the business class
passengers in the shorter-haul markets.

Judging from the results above, it appears that the short haul markets
4 & 5 have similar characteristics as do short haul markets 1, 2, and 3. On
the other hand, all medium haul markets tend to share similar elasticity with
long haul market 1 (i.e., 2000-2249 miles). It is not clear why long haul

Table 3. Fare Elasticities of Demand by Distances

Elasticity of
Market Hauls (in miles Demand with
of non-stop distance) respect to fares t-value Pr>11
<250: Short Haull -0.66650 -11.16 <.0001
250-499: Short Haul2 -0.55762 -11.32 <.0001
500-749: Short Haul3 -0.73791 -15.35 <.0001
750-999: Short Haul4 -1.45383 -28.27 <.0001
1000-1249: Short Haul5 -1.81597 -29.63 <.0001
1250-1499: Medium Haull -0.85086 -11.55 <.0001
1500-1749: Medium Haul2 -1.07697 -10.22 <.0001
1750-1999: Medium Haul3 -0.84224 -8.28 <.0001
2000-2249: Long Haull -1.06010 -9.22 <.0001
2250-2499: Long Haul2 -1.38358 -9.64 <.0001
2500-3000: Long Haul3 -0.85995 -3.79 <.0001

Figure S. Fare Elasticity of Air Travel in US

Fare Elasticity of O&D Travelin the US NAS
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Table 4. Distance Elasticities of Demand by Market Hauls

Elasticity of Demand

Market Hauls (in miles with respect to

of non-stop distance) average distance (miles) t-value Pr>1t1
<250: Short Haull 1.5862 20.99 <.0001
250-499: Short Haul2 -0.44612 -6.16 <.0001
500-749: Short Haul3 -0.16116 -1.46 0.1432
750-999: Short Haul4 0.585804 3.56 <.0004
1000-1249: Short Haul5 0.162264 0.61 0.5417
1250-1499: Medium Haull -0.24265 -0.67 0.5054
1500-1749: Medium Haul2 0.052665 0.11 0.9155
1750-1999: Medium Haul3 0.587395 1.08 0.2803
2000-2249: Long Haull 4.070675 5.89 <.0001
2250-2499: Long Haul2 0.491526 0.47 0.6399
2500-3000: Long Haul3 -0.84207 -0.47 0.6391

markets 2 and 3 appear to be so different in terms of their elasticity
magnitudes.'?> We plan to examine the 10% data in more detail to probe the
above results further.

Average Distance

We have postulated that the average distance between O&D pairs can
have either negative or positive effects. As it turns out, average distance
may have played any role in passenger demand for only 4 markets. It is
interesting to note that while for the shortest distance, average distance
affected the demand positively, for the markets right above it, it affects the
demand negatively. These results indicate that our understanding, and
therefore, the specification will have to be cast on a firmer ground than we
have done here. While it appears that distance may play some roles in
affecting passenger demand, its role is not as clear cut as some of the other
variables.

Market Share

Market share index, the market share of larger airlines relative to those
who have smaller shares, strongly affects the demand for O&D travel in all
markets except the last two long-haul markets. The index is constructed by
taking the share of larger airlines compared to those who have smaller
market share. Thus, arising index, i.e., due to an increasing share of already
established airlines, or due to a decreasing share of smaller airlines, or a
combination of both, may actually increase the passenger demand. Since
we have already taken fare into consideration in our framework, this result
may be indicative of the choices that are often associated with those
increased shares. Generally speaking, larger airlines tend to operate in a
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hub-and-spoke network. Thus, an increasing market share may
alternatively represent greater expansion of hub-and-spoke network. An
increasing share may affect passenger demand via offering more choices.
Those choices appear to be important for passengers who are flying within
the 2249 miles distances.

Density: Origin and Destinations

Density is representative of economic activities. Thus, it is possible that
the higher the density, the more the air travel there will be. However,
beyond a certain range of density, negative externalities may set in and thus
may affect the air travel negatively. Our results indicate that while the
positive effects are still prominent, there are situations where densities have
affected travel demand negatively.

Income: Origin and Destination

Unlike density, income (both O&D) tends to have a positive impact on
travel decisions over almost all market segments. A negative relationship, if
found, would imply that air travel is an inferior commodity. Given the state
of the technology in alternative modes of transportation, it appears from our
results that air travel is still income-elastic for most of the distances. One
can identify, just like in the case of fare elasticity, income elasticity by
looking at the estimated parameters of personal income for both O&D.
Looking at those results, we find that air travel in the shortest market
segments (i.e., 0-250 miles) is the most income-sensitive with respect to
origin. Thus, as income increases 1% at the origin, travel increases by
almost 3%, far higher than the reported national average. In contrast, air
travel is least sensitive (around, one-half) to the origin income in the 1,750-
1,999 miles market, among all those elasticities which are statistically
significant. Destination income, on the other hand, is positive and elastic
wherever they have been found to be statistically significant.

Interactions: Origin and Destination Economic Activities

For almost all the markets, other than the longest market distance
market, economic interactions (between population and income in 1999) at
origin tend to have a negative impact on demand for passengers. This is
interesting since it tends to imply, together with results of density, that
negative externalities may influence passenger demand at origin cities.
Much of the discussion that centers ondelays, and how it tends to affect air
travelers, seems to focus on those who are departing from origin airports.
Thus, statistically relevant negative coefficients confirm the hypotheses
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that the higher the intensity of economic activities at origin cities, the less
likely passengers will want to fly. For destination cities, results are mixed,
and there are still positive benefits that affect the passenger demand.

Hub Status: Origin and Destination

Dummy variables representing the O&D cities, as defined by
BTS/USDOT, capture the hub status. Hub dummies are equal to 1 if the
cities are assigned large hub status, and equal to O if they have been
assigned non-large hub status. Our results indicate that the size of hubs, at
both O&D, is a critically important and positive factor determining
passenger’s travel decision. Thus, for all market distances, large hub status
tends to affect air travel decisions positively. Highly statistically
significant, these results point out, together with the results from market
share, that air travel is still dominated by hub-and-spoke networks.

Southwest Effect: Major and Minor Presence

One of the important questions in recent times, especially after 9/11 and
the economic recession of 2001-2002, has been the viability and long-run
existence of the network structure of the major carriers. As the major
carriers struggle through the period, Southwest Airlines and many other
low-cost carriers, have continued their expansions in almost all markets.
Starting from shorter haul distances, Southwest flies almost all the
distances throughout the NAS. As noted earlier, Southwest’s presence may
have both substitution and complementary effects on air travel. To capture
these effects, we have used two dummy variables: one representing when
Southwest has the major market share; and, the other when Southwest has a
minor presence in the market. Clearly, Southwest has a strong positive
impact in the shorter haul markets. However, beyond the market of 1000
miles of non-stop distance, these effects are not so clear on the demand for
passenger travel.

Spring-Summer Effect

Our dataset does not show any statistically meaningful relationships
between the spring-summer dummy variable and passenger demand. One
of the reasons is that passengers’ decisions to fly are made, generally
speaking, before weather’s effects can be known. As a result, there may not
be any relationship other than some observed spurious positive correlations
in our results.
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FROM ESTIMATED PASSENGER DEMAND TO
FORECASTS OF PASSENGERS BETWEEN O&D PAIRS:
THE PROCESS TO DERIVE RESULTS BY CENTERS

It is evident that the estimated equations from the 11 market segments
can be used to forecast O&D passenger demand. It is obvious that there are
some variables for which forecasted values are available, e.g., income,
density, population, hub status, but for others, forecasts are not available. In
particular, future fare information is not available; neither are available
future values for market shares and Southwest presence.

The unavailability of this information poses limitations on the forecasts
of passengers by O&D market. However, they also provide opportunities to
derive a range of forecasts based on assumed values for the variables'® for
which forecasts are not available. At the core, however, we are still able to
derive passenger forecasts by using the forecasts of local area personal
income, demographics, and other characteristics.'*

A FRAMEWORK FOR MAPPING PASSENGERS TO AIRCRAFT

To establish the statistical relationships between passenger demand and
aircraft fleet choice, we use the following methodology.

First, we define the markets by stage lengths, i.e. short-haul (1,200 miles
or less), medium-haul (between 1,201 and 2,001 miles) and longer hauls
(2,001 or more miles). Second, we classify aircraft into different categories,
i.e., piston (2 classes), helicopter & stol, turboprops (2 classes), and jet
crafts (3 classes) from the disaggregated 59 types that had been observed
(from the T100 segment of Form 41) to be in use during the 1990s. It is also
possible to go into further desegregations, i.e., model types, if
computational resources were not a constraint and users required such data.

Based on the data (T100 segment of Form 41), over 1.75 million records
for 1991-2000, we determine answers to the following qualitative question:
What is the probability that one type of plane category (from those 7
defined above) will be chosen over others given airline characteristics,
market characteristics, number of passengers, proportion of non-
passengers (i.e., mail, freight) to passengers, and other performance
indicators, such as departures scheduled and performed, elapsed time
ramp-to-ramp and airborne, market distance, year, and quarter.

Once we have estimated the qualitative model underlying this question,
we then determine the probable types of aircraft by stage lengths (i.e.,
short, medium, and long) by using estimated coefficients and number of
passengers, market distance, year, quarter, and airline characteristics which
are also inputs to our passenger demand model.
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Once the above mapping is complete, we use the forecast from the

passenger demand model to generate the forecast of aircraft by O&D pairs.
Figure 6 describes the process.

Figure 6. From Passenger Demand to Demand for Aircraft Operations by Market
Segments: A Suggested Framework

Qualitative Choice of
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WORKLOAD ISSUES: DEMAND BY FAA CENTERS
OR ANY OTHER UNITS

This forecasting framework can be used to determining the workload at
the FAA centers where workload is related to aircraft traffic.

At present, the NAS is divided into nine FAA regions ( Figure 7). We
merge our dataset with this information uniquely identifying both O&D
travel with a center or centers. Thus, the entire contiguous NAS flow of
travel can be associated with centers. The distribution of workload can be
easily derived from the distribution of travel by centers.

Figure 7. FAA Centers
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Source: http://www.faa.gov/ats/aaf/asr/locations/ctrsrgns.htm
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CONCLUSIONS AND THE WORK AHEAD

Several conclusions emerge from this paper. First, it appears that slight
modifications of econometric estimation and using micro data can result in
substantial insights to O&D travel. For example, it is possible, as the
present paper demonstrates, to determine city-pair travel and forecasts by
using local area information. Local area information appears to be more
relevant in determining local O&D travel than of national information such
as gross domestic product. While the methodology does not depart from the
basic economic premise, this paper demonstrates that local area data are far
better indicators for local area travel than the national counterparts.
Forecasts of O&D travel make use of the local area information, and hence,
this methodology should be called a bottom-up approach, distinct from the
traditional top-down approaches (see Appendix E).

The results from this work can be used to complement the work done by
the TAF that is derived from top-down models. For example, it is well
known among those who use the TAF that the distribution of hub structure
within the NAS does not change over time. Thus, it is likely that there will
be twice as many large hubs as small hubs in 15 years than it is now (i.e., 29
large hubs compared to 56 small hubs of today). Thus, a doubling of hubs,
keeping with its relative distribution fixed, is a direct result of doubling of
passengers in the NAS. This is likely to change under our suggested
methodology because hub status itself can be endogenously determined.
Second, it is also well known that the TAF is meant to serve as a planning
tool, especially for airport planning. It was not designed to capture the
traffic flow within the NAS. While the TAF has been stretched to fit this
need including its most recent use in OEP, the TAF is better suited for
longer-term planning. Our methodology, on the other hand, is based on the
traffic flow between O&D cities and thus is designed to answer those
questions which are related to dynamic flows. These include, but are not
limited to, determining the workload distribution based on the forecasts of
passenger and aircraft flow between O&D by centers; determining and
prioritizing multi-modal infrastructure investments such as those under
OEP; determining and prioritizing multi-modal investments within a
broader framework; understanding the role of RJs in the national air space;
understanding the role of changing industry characteristics, and so on.

Results from this econometric estimation provide some detailed insights
into O&D travel as well. First, based on our results in this paper, now we are
able to distinguish between different distance markets. Clearly, travel of
2,000-2,250 miles is distinctly different than shorter distances, such as that
of less than 500 miles. Elasticity measures show that travels of shorter
distances is relatively more inelastic than previously known. Second, our
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results also indicate that travel between O&D city pairs, distinguished by
miles traveled, is relatively income-elastic and that elasticity changes with
distance. This is true for both O&D. We also find that economic activities
tend to have negative impact beyond a certain range as represented by the
interactions of income and population. Third, our results indicate that
market dominance by major airlines tend to have a positive impact on
number of passengers traveled between O&D pairs, perhaps representing
the effects of choice more than anything else. Many of these airlines also
operate hub-and-spoke networks and thus higher dominance may provide
more destination choices for passengers. However, such effects may not be
conclusive as shown by the effects of Southwest in the markets. The
presence of Southwest, both as a major or minor player, tends to have a
positive impact on passenger demand.

Clearly, these are interesting results. However, like in any other
research, our study is somewhat restricted by the data as reported above.
Thus, any policy discussion should await results from our larger work.
Nonetheless, this paper demonstrates that much can be learned from
studying the O&D traffic. Furthermore, the paper demonstrates that it is
possible, and perhaps desirable, to devise O&D-based market traffic
forecasts. While the TAF will continue to play an important role in longer-
range planning, our methodology could be used for studies works that
relate to the network flow aspects of the NAS.

ENDNOTES

1. For a more recent discussion on aviation demand forecasting methodologies see TRB,
2002.

2. Standard derivation of this assertion comes from the economics literature where
individual or household utility is specified to be dependent on consumption of goods - travel
being one such good - which in turn depends on levels of income, number of people in a
household, and other factors. More formally, U =f [ t(y; N, p, s; ¢); z) where U is an index of
utility, t is levels of travel as a function of disposable income (y), number of people in a
household (N), average fare (p), season (s) and a vector of other factors (¢). Composite
commodity, z, is assumed to capture effects of all other factors influencing U. Assuming
some simple restrictions on functional properties of f, we can easily derive demand functions
for t* and z*. We show travel demand relationships graphically in Figure 1.

3. In a recent article, Morrison (2001) states that Southwest’s low fares were directly
responsible for $3.4 billion of savings to air passengers. In addition, $9.5 billion was saved
due to the effect that actual, adjacent, and potential competition from Southwest had on other
carriers’ fares. Author finds that these savings ($12.9 billion) amount to 20 per cent of the
domestic scheduled passengers’ revenue in 1998. This is the first comprehensive, and perhaps
the only quantitative estimation, of Southwest effect that I am aware of.

4. Itis important to note here that Southwest had a little over 6% of the total market share
in 2000. The large three, United, American, and Delta combined had a market share slightly
over 50% (ATA, 2002).
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5. Thereis abill (#H.R. 1407) entitled The Airline Delay Reduction Act pending whereby
the House Subcommittee on Aviation was to review requests for provision of antitrust
immunity to the airlines to allow them to discuss ways to reduce delays and to consider other
possible solutions to the airline delay problem. In order to address these issues, the
Committee held a hearing on April 26th last year [see
http://www.house.gov/transportation/aviation/04-26-01/04-26-0 1 memo.html for details].

6. Choice of eight quarters is purely arbitrary for this demonstration. This dataset is
somewhat restrictive because BTS/DOT guards some information to protect airlines’
proprietary interests. At the time we were putting this dataset together, data for three years,
1998-2000 was available. We decided to drop 1998 because O&D travel was mistakenly
identified by airport-pairs, and not city-pairs as reported in later years. Furthermore, we
wanted to create a representative sample for this time-series pulled cross-section dataset
without getting into serious computational difficulties for our limited purpose. Given our
ultimate need for a bottom-up econometric estimation and forecasting framework, eight
quarters observations for more than 50,000 observations appear to be substantial for the
industry as well as for our purpose. A more detailed model using complete 10% data, along
with its other apparatus reported later in this paper, exist at MITRE/CAASD.

7. Initial estimations with the larger 10% sample indicate that the larger the datasets,
relatively longer time it takes to run estimations. While a large part is simply that it is
computationally time-consuming, another part of the problem may be purely infrastructural,
i.e., matching records through object database connections (ODBC) and working with SAS.

8. We combine the last two markets, i.e., 2500-2749; and, 2750-3000 together. The last
market haul, 2750-3000, did not have enough data and thus combining it with the segments
before that made sense.

9. One problem with using R? as a measure of goodness of fit is that it never decreases
with the additions of regressors. Therefore, one can always obtain a high R? by including as
many independent regressors as there are sample observations. Obviously, that would not
make any sense! The adjusted R? penalizes the R for the addition of regressors which do not
contribute to the explanatory power of the model, and therefore, can be called a weighted
measure.

10. One of the advantages of using a C-D specification is that the estimated coefficients
of the log-linear model are elasticities. However, this is not true for other specifications, such
as constant elasticity of substitution and translog functions.

11. See Battersby and Oczkowski (2001) for a study on Australian domestic
market; and Vakil and Russon (1996) for short haul markets. For a
comprehensive review of empirical results on air travel demand, see
http://www.fin.gc.ca/consultresp/Airtravel/airtravStdy_3e.html. See also Brons et. al
(2001) for comparative international experiences.

12. Available empirical estimates are not distance specific. Published studies document
fare elasticities to range between —3.2 to 0.2 [see Brons et. al (2001) for original studies and
accompanying explanations].

13. This process parallels what is known as policy simulations. For example, it is clear
that (assumed) declining fare in the future would be representative of stronger industry
competitiveness. While an increase in market share by majors and/or a decline of shares by
minors would reduce the competition. Assuming those scenarios (i.e., competitive outcomes
emanating from different sources), we would be able to derive forecasts of passengers for the
future.
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14. There are quite a few nationally well-known forecasting companies available. After
BEA stopped forecasting these variables a few years ago, industry forecasters had
traditionally depended on these companies for local area forecasts. For our study here and for
the larger study, we use DRI/WEFA forecasts for the MSA level local area forecasts.
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APPENDIX A
Definition of Variables for Demand Modeling

In (P,) = o + B * In(fy) + x; * In(PI)+ x; * In(PL)
+ 8, * In(Density;) + §; * In(Density;)
+ ¢; * In(Interactions;) + ¢; * In(Interactions;;)
+ 1 * In(Market PowerP;) + 1 * In(Market Power™P,)
+ kP * (Southwest ;) P + NP * (Southwest ;) NP
+ v * (hub statusOrigin) + vy, * (hub statusDestination)
+ ¢ * In(Distance;)+ p * (season) + g;

f;; : one-way average fare between i (origin) and j (destination) Metropolitan
Statistical Areas (MSAs);

PI; ; : per capita personal income at i and j;

Densityy ; : Density (per sq mile) at i-th/j-th MSAs;

Interactionsy ; : multiplicative interactions between population and income as a
measure of degrees of economic activities at ith and jth MSAs;

Market PowerDij : market power (%) of dominant airlines at the i-jth market;
share of airlines (%) is defined (%) share in total number of enplanement;
Market PowerNDij : market power (%) of non-dominant airlines at the i-jth
market;

Southwest ;; D : presence of Southwest Airlines as major airlines (% share is
higher than the nearest competitor); 0 = no (presence); 1 = yes (presence);
Southwest i ND . presence of Southwest Airlines as minor airlines; 0 = no;
1 =yes;

hub statusOrigin : hub status of Origin MSAs defined by DOT/BTS: 0 = large
hubs; 1 = non-large hubs (medium, small, and non-hubs);

hub statusDestination : hub status of Destination MSAs defined by DOT/BTS:
0 =large hubs; 1 = non-large hubs (medium, small, and non-hubs);

Table Al. Enplanements for Hub Type 2000

Percent of total Number of
Hub classification enplaned passengers enplaned passengers
Large (L) 1.00 or more 6,106,287 or more
Medium (M) 0.25 to 0.999 1,526,571 to 6,106,287
Small (S) 0.05 to 0.249 305,314 to 1,526,571
Nonhub (N) Less than 0.05 Less than 305,314

Adapted from Federal Aviation Administration (2001). Enplanements for Hub Type 2000. Retrieved May
28, 2003, from http://www.faa.gov/arp/Planning/hubtype.htm

Distance;; : distance (miles) between I-jth market;

Season : spring, summer, Fall and winter; equivalent to Ist, (2nd, 3rd), and
(4th) quarters respectively;

g;j ¢ is distributed normally with mean = 0 and a constant variance.

In = natural log.
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APPENDIX B
Air Traffic Hubs
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Note: Large hubs = 31; medium hubs = 35; and, small hubs = 71.

Adapted from Bureau of Transportation Safety (BTS) (1999). Airport Activity
Statistics of Certificated Air Carriers Summary Tables: Twelve Months Ending
December 31, 1999. Retrieved May 28, 2003, from http://www.bts.gov/
publications/airport_activity_statistics_of_certified_air_carriers/1999/air_traffic_
hubs.html
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APPENDIX C
Hubbing by Commercial Airlines

Alling Hub Cltes:
Amgricon, Soullvessl &
Haorthweest

Ajrling Hulb Cithes:
Umitad, US Alrways & Dalta

Adrling Hulb Cities;
Alazka. Comtinental ared

Arrericn Wast

Source: http://airtravel.about.com
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APPENDIX D
Regional Airline Code-Sharing Partnerships as of April 2002
Airline Partner(s) Primary Hub(s)
Alaska Airlines Era Aviation ANC
Horizon Airlines BOI/GEG/PDX/SEA
Peninsula Airways ANC
Aloha Airlines Aloha Islandair HNL
America West Airlines Big Sky Airlines DEN/DFW/GEG
Chautauqua Airlines CMH
Continental Express Airlines CLE/EWR/IAH
Mesa Airlines LAS/PHX

American Airlines

American Trans Air

Continental Airlines

Delta Air Lines

Frontier Airlines

Hawaiian Airlines

Midwest Express Airlines

Northwest Airlines

American Eagle Airlines
Chautauqua Airlines
Corporate Express Airlines
Executive Airlines

Trans States Airlines

Chicago Express Airlines

Commutair

Continental Express Airlines
Express Airlines

Gulfstream Int’l Airlines
Horizon Airlines

Mesaba Airlines

American Eagle Airlines
Atlantic Coast Airlines
Atlantic Southeast Airlines
Comair

SkyWest Airlines

Great Lakes Aviation
Mesa Airlines

Horizon Airlines

Air Midwest
American Eagle Airlines

Astral Aviation/Skyway Airlines

American Eagle Airlines
Big Sky Airlines
Continental Express Airlines
Express Airlines
Gulfstream Int’l Airlines
Horizon Airlines

Mesaba Airlines

BOS/DFW/JFK/LAX/LGA/MIA/ORD
STL
STL
SJU
STL

MDW

ALB
CLE/EWR/IAH
DTW/MEM/MSP
FLL/MIA/TPA
PDX/SEA
DTW/MEM/MSP

LAX

BOS/CVG/JFK/LGA
ATL/DFW/JFK/ORL
ATL/BOS/CVG/DFW/JFK/LGA/ORL
DFW/SLC

DEN
DEN

PDX/SEA

MCI
DFW/LAX
MCI/MKE

LAX
BIL/BIS/GEG
CLE/EWR/IAH
DTW/MEM/MSP
FLL/MIA/TPA
PDX/SEA
DTW/MEM/MSP
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Airline Partner(s) Primary Hub(s)
United Airlines Air Wisconsin DEN/ORD
Atlantic Coast Airlines IAD/ORD
Great Lakes Aviation DEN/ORD
Gulfstream Int’l Airlines MIA
SkyWest Airlines LAX/PDX/SFO/SEA
US Airways Air Midwest CLT/MCI/PHL/PIT/TPA
Allegheny Airlines BOS/DCA/LGA/PHL/PIT
CCAIR CLT
Chautauqua Airlines BOS/LGA/PHL/PIT
Colgan Airways BOS/LGA/PIT
Mesa Airlines CLT/DCA/PHL/PIT
Piedmont Airlines CLT/DCA/LGA/PHL/PIT/TPA
PSA Airlines CLT/DCA/PHL/PIT
Shuttle America LGA/PHL/PIT
Trans States Airlines PIT

Note: Carriers indicated by boldface are fully-owned by the Major/National Airline.
© 2002 AvStat Associates, Inc. for the Regional Airline Association. www.raa.org
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APPENDIX E
Concepts, Explanations and Contributions of our Research

Market & Industry
Characteristics

Explanations

Existing work

Our Research &
Its Contributions

Fare Elasticities

Income Elasticities

Distance Elasticities

Seasonality

Low-cost carriers, aka
Southwest Airlines

Industry
concentrations &
market powers

Local economies, &
demographics

This standard
eccnomic concepl
measures
responsiveness of air
travelers in changes in
fares

This is essential for
measuring air
traveler’s long-tem
physical movements,
including that of other
economic decisions,
e.g., choice of mode.

This measures
traveler’s sensitivity to
changes in distances
within a pre-defined
market segment.

Seasonal changes in
air travel are well-
known. This measures
the quantitative impact
of spring, summer,
fall, and winter.

This measures the
quantitative impact of
Southwest Airlines in
particular O&D
markets.

Similar to Southwest,
this measures effects

of market powers on

O&D markets.

Local economies and
demographics play
important roles in
determining choice of
markets, modes, etc.

All present empirical
work, including that
of FAA’s, does not
incorporate market-
specific effects.
Instead, a NAS-wide
number is used to
capture traveler’s
sensitivity to fare
changes.

Economy-wide flow
concept of income,
such as gross domestic
product (GDP), is
used. This is not
capable to explain
regional disparities
and imbalances in the
NAS.

None of the present
framework
incorporates this
measure.

Most of the passenger
flow data are adjusted
for to take the
seasonality out to
measure the real
value.

Some earlier empirical
work have attempted
to model Southwest
by both accounting for
direct and indirect
impact of Southwest
entry. Most of the
government (DOT,
DOJ) measures the
effects as part of anti-
trust procedures

At present,
government
(DOT,DOJ) addresses
these issues as part of
anti-trust procedures.

There is no general
framework
incorporating these
info. FAA includes
these info through
qualitative canvassing
of master plans of
airports.

Market-specific effects
have been modeled. Effects
of policy changes
(affecting fare, schedules,
and access) can be looked,
at and quantitatively
estimated, by market pairs
& segments.

Market-specific effects
have been modeled. In
addition to explaining
effects from policy
changes, market-
differentiated measures are
important tools for
explaining the present and
future disparities and
imbalances in the NAS.

Distance within the well-
defined market segments
have been modeled. These
empirically estimated
values will play important
roles in determining
traveler’s choice (for
airport, for example).

Effects of seasonality have
been modeled clearly to
capture the seasonal
changes that characterize
air travel.

Presence of Southwest
Airlines, both as major and
minor airlines in O&D
markets, have been
modeled. Therefore, we
can estimate - for example
- benefits of Southwest on
passenger flows, fares, and
the value of a particular
market.

Market powers of airlines
have been modeled in our
framework. Thus, cost and
benefit of such
concentrations can be
easily measured for a
particular market.

Our model specifically
model local information.
Local economic and
demographic factors are
believed to be the primary
drivers for air
transportation.




