
Monitoring Weaving Sections

Prepared by:
Osama Masoud

Scott Rogers
Nikolaos P. Papanikolopoulos

Artificial Intelligence, Robotics, and Vision Laboratory
Department of Computer Science

University of Minnesota
Minneapolis, MN 55455

October 2001

Published by:

ITS Institute
University of Minnesota

CTS 01-06

Executive Summary

Traffic control in highway weaving sections is complicated since vehicles are crossing

paths, changing lanes, or merging with through traffic as they enter or exit an expressway.

There are two types of weaving sections: (a) single weaving sections which have one point of

entry upstream and one point of exit downstream; and (b) multiple weaving sections which

have more than one point of entry followed by more than one point of exit. Sensors which are

based on lane detection fail to monitor weaving sections since they cannot track vehicles which

cross lanes. The fundamental problem that needs to be addressed is the establishment of

correspondence between a traffic object A in lane x and the same object A in lane y at

a later time. For example, vision systems that depend on multiple detection zones simply

cannot establish correspondences since they assume that the vehicles stay in the same lane.

The motivation behind this work is to compensate for inefficiencies in existing systems

as well as to provide more comprehensive data about the weaving section being monitored. We

have used a vision sensor as our input. The rich information provided by vision sensors is

essential for extracting information that may cover several lanes of traffic. The information that

our system provides includes (but is not limited to): (a) Extraction of vehicles and thus a count

of vehicles, (b) Velocity of each vehicle in the weaving section, and (c) Direction of each

vehicle (this is actually a trajectory versus time rather than a fixed direction, since vehicles may

change direction while in a highway weaving section). The end-product of this research is a

portable system that can gather data from various weaving sections. Experimental results

indicate the potential of the approach.

TABLE OF CONTENTS

Chapter 1 USER INTERFACE AND CALIBRATION TOOL ..1

Introduction..1
Previous Work..1
Description...2
Results..4

Chapter 2 A CAMERA CALIBRATION ALGORITHM FOR TRAFFIC SCENES..............5

Introduction..5
Camera Calibration...5
Traffic Scenes...6
Calibration Algorithm...8

Camera Coordinate System...9
Vanishing Point .. 9
Ground Plane Coordinate System.. 11
Distances .. 11
Parameter Estimation .. 12

Results.. 12
Conclusion ... 13

Chapter 3 MONITORING WEAVING SECTIONS .. 17

Chapter 4 BLOB ANALYSIS ... 23

Features Level .. 23
Blobs Level .. 24
Blob Tracking... 24

Chapter 5 MODELING VEHICLES ... 31

Vehicle Model.. 31
Vehicle Tracking .. 32

Relating vehicles to blobs ... 32
Prediction ... 33
Calculating vehicle positions... 33
Estimation .. 35
Refinement ... 35

Chapter 6 RESULTS AND CONCLUSIONS.. 38

Experimental Results.. 38
Conclusions.. 39

LIST OF FIGURES

Figure 1. Definition of parallel lines and distances between them ...3
Figure 2. Definition of distances along the lane markings ...4
Figure 3. Different camera roll angles (with respect to the vanishing direction) visualized with

the aid of an overlaid grid with attached normals.. .. 10
Figure 4. Near vertical pitch, far zoom.. 14
Figure 5. Near vertical pitch, close zoom.. 15
Figure 6. Near horizontal pitch, close zoom.. 16
Figure 7. Feature image (corresponds to the image in Figure 5(c)).. 22
Figure 8. Original image. Camera axis is not perpendicular to the street. 29
Figure 9. (a) Blobs in frame)1(−i . (b) Blobs in frame i . (c) Relationship among blobs.......... 29
Figure 10. Overlap area. Vehicles 1p and 2p share blob 2b while 1b is only part of 1p 37
Figure 11. Three snapshots from a day sequence .. 41
Figure 12. Two snapshots from a night sequence .. 42
Figure 13. A large vehicle tracked as two vehicles.. 43
Figure 14. A visualization of vehicle trajectories on four lanes over a period of one hour 44

LIST OF TABLES

Table 1. RMS errors for each scene. ... 13
Table 2. Sample output... 44

1

CHAPTER 1

USER INTERFACE AND CALIBRATION TOOL

INTRODUCTION

This chapter describes the complete calibration tool and user interface that is used for

calibrating transportation scenes. Processing of any image requires some knowledge of the

pan and tilt angles of the camera, along with the mounting height and the distance of the

camera from the scene being monitored. Accurate knowledge of these parameters can

significantly impact the computation of such things as the vehicle velocities and how vehicles

are classified. It does not affect the general vehicle counts. These parameters are not easily

obtained. A user interface has been developed so that the user can point to some locations on

the image (e.g., the endpoints of a lane divider line whose length is known). Then, the system

can compute the calibration parameters automatically. An additional feature of the interface is

that it allows the user to define traffic lanes in the video, and the direction of traffic in them.

PREVIOUS WORK

In this project, calibration of the algorithms required explicit knowledge of the camera

position and orientation with respect to the road. These parameters are difficult to measure

2

directly, especially while one is away from the scene, which is often the case. It should be

noted that even at the scene, the user may have difficulty determining these parameters. One

way to compute them is to look at the known facts about the scene. For example, we know that

the road, for the most part, is restricted to a plane. We also know that the lane markings are

parallel and lengths of markings as well as distances between those markings are known

numbers. We can use these to calculate the position and orientation of the camera with respect

to those lane markings.

Previously the various points of the image were determined using the image editing

software Paint Shop Pro and these values were then processed in Mathematica to determine the

camera position and orientation. Aside from being a laborious and time consuming task, the

Mathematica algorithm made several assumptions that are not reasonable in the more general

case. The system described here combines a method of marking an image of the scene as well

as using these marks to calculate the calibration values needed. The proposed system is easy to

use and intuitive to operate, using obvious landmarks, such as lane markings, and familiar

tools, such as a line-drawing tool.

DESCRIPTION

The Graphical User Interface (GUI) prompts the user to first open a bitmap image of the

scene. The user is then able to draw different lines and optionally assign lengths to those lines.

The user may first draw lines that represent lane separation (green, Figure 1). They may then

draw lines to designate the width of the lanes (red, Figure 1). The user may also designate

known lengths in conjunction with the lane separation marks (). The blue line is used to mark

special hot spots in the image, such as the location where we want to compute vehicles speeds.

3

From the orientation of the green lines, we can find the vanishing point of the road and all

lines parallel to it. Once we obtain perpendicular lines and distances and various distances

along the lane markings we can determine those parameters of the camera such as distance,

pitch, roll, etc. to sufficiently calculate velocities and relative position within the scene. How

these parameters are determined from the information given by the GUI is fully outlined in the

following chapter. It is sufficient for now to know that these parameters can be obtained by

simply marking what is already known in the scene using this GUI.

Figure 1. Definition of parallel lines and distances between them

4

RESULTS

The GUI interface has proven to be much more intuitive than the previous methods. The

only real difficulty arose with respect to accuracy in determining distances in the direction of

the road. Some of these inaccuracies arise because the markings on the road themselves are not

precise. The user s ability to mark endpoints in the image also affects accuracy.

In general, however, in spite of the inaccuracies discovered, this method of calibration

proved to be much quicker than those previous used, equally accurate, and more adaptable to

generic scenes.

Figure 2. Definition of distances along the lane markings

5

CHAPTER 2

A CAMERA CALIBRATION ALGORITHM FOR

TRAFFIC SCENES

INTRODUCTION

Camera calibration for traffic scenes is necessary to obtain accurate information about

position and velocity from a vision system. Unfortunately, calibration can be a tedious process

when done outside a laboratory. Many calibration techniques that rely on taking images of a

grid are impractical in this case. In this work, we propose to use cues from the scene itself to

perform camera calibration. The algorithm we propose performs a minimization on camera

parameters to fit the data given to it. This algorithm is the backend to the graphical user

interface described in the previous chapter.

CAMERA CALIBRATION

In the most general case, camera calibration involves finding the camera s intrinsic and

extrinsic parameters. Intrinsic parameters are usually given by the matrix

A

u

v

u u

v=

−















α α θ
α

θ

cot

sin

0

00

0 0 1

(1)

6

The parameter uα corresponds to the focal length in pixels along the horizontal axis of

the image. In fact, α u ufk= , where f is the focal length and ku is image sensor resolution

given in pixels per unit length. The two terms are not separable and therefore, only their

product (α u) can be recovered. α v is similar but corresponds to the vertical axis. It is equal to

α u when the sensor has square pixels. The horizontal and vertical axes may not be exactly

perpendicular. The parameter θ is the angle between them. The optical axis may not intersect

the image plane at the center of the image. The coordinates of this intersection are given by

(,)u v0 0 . In addition to these parameters, there are parameters that can be used to model radial

lens distortion.

The extrinsic parameters specify the location and orientation of the camera and can be

given by the matrix

T Rt= [] , (2)

where R is a rotation matrix and P P1 2− is a translation vector. Therefore, the total number of

extrinsic parameters is six. These describe the pose of the camera in some world-coordinate

system.

There has been a considerable amount of research that deals with camera calibration

(both intrinsic and extrinsic). The calibration process normally involves taking a few images

and matching some features. To achieve a good level of accuracy, one can take images of a

specially constructed grid and then match corners (either manually or automatically).

TRAFFIC SCENES

Classical calibration techniques are not suitable for traffic cameras simply because in

most cases, it is not feasible to place calibration objects in the scene, for that may interfere with

7

traffic. It is also not feasible to take multiple images from different locations in the scene since

that would require mounting the camera at different locations (simply panning the camera does

not help in calibration). It is highly desirable to be able to perform calibration using the images

captured by the camera.

Of all the intrinsic parameters, the focal length (and hence, α u and α v), is the only

parameter that could change due to changing the level of magnification (zoom). The ratio

between the two (the squareness of pixels) can be easily computed at the laboratory or even

looked up in the camera specs. The rest of the intrinsic parameters usually remain constant and

can be calibrated for at the laboratory. Moreover, making the assumption that θ = °90 and

(,)u v0 0 to be at the center of the image works well enough since they are rarely different from

that. This reduces to one the number intrinsic parameters that must be estimated.

As for extrinsic parameters, traffic scene geometry simplifies the situation. The motion in

a traffic scene can be assumed to be constrained to a plane (the road). This is also known as the

ground-plane constraint (GPC) [27]. The number of extrinsic parameters can therefore be

reduced from six to four: camera roll, pitch, yaw, and elevation above the plane. Therefore, the

total number of parameters (both intrinsic and extrinsic) that need to be estimated is five. One

of these parameters (implicit in elevation) is the scale which is trivial to estimate and can be

determined as a last step by taking one measurement in the real-world coordinate system. This

leaves four nontrivial parameters.

Previous work in camera calibration for traffic scenes was done by Worral et al. [27].

They developed an interactive tool that allows the user to pick two parallel lines in the scene to

find the vanishing point. This reduces the number of free variables from four to two. The two

remaining parameters are camera roll about an axis through the vanishing point and the focal

8

length. The former is set by allowing the user to slide a bar and watch the effect on a grid

overlaid on the road until the grid appears to be squared with respect to the road. The focal

length can be set in a similar way or by providing a second measurement on the road

(perpendicular to that used to determine the scale).

The main shortcoming of this approach is that what appears squared with respect to the

road can be subjective and hard to judge correctly. This is especially true when the road lanes

converge weakly (see Figure 3). After the completion of the calibration process, the grid may

appear to be lying correctly on the road.

In our approach, we propose to use more information taken from the scene itself in the

form of measurements. Besides the fact that this may be the only available information, there

are two other motivations for this approach. First, lane width and lane marking lengths and

separation comply with highway standards and therefore are more accurate than other cues in

the scene. Secondly, the purpose of camera calibration is to obtain accurate data regarding

velocities and distances and therefore, it makes sense to force the calibration to conform with as

many measurements scattered in the region of interest as possible.

In some cases, when lane markings are not available or are known to be inaccurate, it

may be possible to take some measurements manually. These measurements need to be in the

scene but not necessarily on the road to avoid the need to interrupt traffic.

CALIBRATION ALGORITHM

Our calibration algorithm utilizes GPC as in [27]. However, the user does not need to

make any decisions based on visual appearance. Instead, the user identifies features in the

image and provides measurement information. The algorithm performs an optimization to

minimize the error in the model conforming with these measurements. There are two main

9

stages in the process: identifying parallel lines (used to find the vanishing point) and providing

real-world distances.

Camera Coordinate System

We use a camera coordinate system similar to [27], where the X and Z axes are parallel to

the image plane and the Y axis is along the optical axis. Without loss of generality, we assume

that the optical axis intersects the ground plane at the point 0 1 0[] . The exact point of

intersection depends on the scale, which can be computed using one real-world measurement.

Vanishing Point

A minimum of two parallel lines is necessary. In this case, the vanishing point is the

apparent intersection of the two. For better accuracy, the user can specify more lines and the

intersection point is then computed as the point whose sum of squared distances to all the lines

is minimum. This point, pi , is easily computed by solving a system of linear equations of the

form Mx b= . M and b have as many rows as there are lines. If il is a unit vector

representing the direction of the i th line in the image and ip is a point on that line, then

M l li i i= −[]2 1 and b l pi i i

T T= ×() ⋅[]0 0 1 .

10

(a) (b)

(c) (d)

(e) (f)

Figure 3. Different camera roll angles (with respect to the vanishing direction)
visualized with the aid of an overlaid grid with attached normals. (a) Original image. (b), (c),
(d), (e), (f) show the grid at a roll angles of 30, 37.5, 45, 52.5, and 60 degrees, respectively. The
correct angle is shown in (c). It is difficult to discern the correct angle based on appearance in this
case due to the lack of other visual cues on the road. The fact that the grid lines do not coincide
with the middle lane markings cannot be used as a cue since the focal length can be always chosen
to make them coincide.

11

The vanishing direction, v , is then computed as xA 1− , where x is the vanishing point

and A is the camera intrinsic parameters matrix.

Ground Plane Coordinate System

The ground plane is described by three unit vectors: Gx which is perpendicular to the

vanishing direction, Gy which coincides with the vanishing direction, and the plane normal Gz

which completes the right-hand coordinate system. Let ˆ []v = v v vx y z be the normalized

vanishing direction. Therefore, G vy = ˆ . It can be shown [27] that

Gx

x x z

z x

z x z

T
v v v

v v

v v v

=
− +

−
− − +

















()cos sin

sin cos

()sin cos

1

1

2

2

β ϕ β ϕ
ϕ ϕ

β ϕ β ϕ
 and (3)

Gx

x x z

z x

z x z

T
v v v

v v

v v v

=
− +

− −
− +

















()cos sin

sin cos

()sin cos

1

1

2

2

β ϕ β ϕ
ϕ ϕ

β ϕ β ϕ
(4)

where β = +1 1/()vy and ϕ is the roll angle about the vanishing direction. The formulas

provide a complete parameterization of the plane in the two unknowns α u and ϕ .

Distances

 To compute the distance between the projections of two image points on the ground

plane, we first compute the projections. Given an image point x p A x, = −1 is a vector in the

direction of the ray from the camera center through x . We can solve for the intersection of this

ray and the ground plane to obtain P
G

p G
p=

⋅
z

z

2

ˆ
ˆ , where Gz2 is the second element of Gz , and

p̂
p
p

= .

12

Given two projections on the ground plane P1 and P2 , the distance is simply P P1 2− .

We can also compute the distance between P1 and P2 along the direction of Gx or Gy as

()P P G1 2− ⋅ x and ()P P G1 2− ⋅ y . This is particularly useful in case the measurements provided

are lane width measurements or lane marking measurements.

Parameter Estimation

To estimate α u and ϕ , we use the Levenberg-Marquadt nonlinear least squares method.

The residual we try to minimize is completely dependent on the relationship among the scene

measurements. We use one measurement, m0 , as a reference and relate all other measurements

to it. The residual is computed as

r
d m

d m
i

ii

n

= −




=

∑ 0

0

2

1

1 (5)

where mi are the measured distances and di are the computed distances.

Finally, the scale is computed as
m

d
0

0

.

RESULTS

Our algorithm was tested on a variety of real-time scenes and was always able to

converge and closely match the given measurements. To test the behavior in a more systematic

way, we constructed a sequence of scenes with different vanishing directions, camera locations

and zoom levels. These are shown in Figure 4, Figure 5, and Figure 6. The data provided in

each case was the four parallel lanes with distances separating them, and a total of 6

measurements along the middle two lanes. The algorithm converged in each case to a solution

that minimized the cost function (5). Table 1 shows the result for each case as r n , where n

13

is the number of measurements used. The results show a very small discrepancy between the

real and the estimated measurement ratios.

Scene RMS error

1(a) 0.0306

1(b 0.0154

1(c) 0.0600

1(d) 0.0194

1(e) 0.0148

2(a) 0.0066

2(b) 0.0087

2(c) 0.0184

2(d) 0.0201

3(a) 0.0161

3(b) 0.0453

3(c) 0.0236

Table 1. RMS errors for each scene.

CONCLUSION

We presented an algorithm to perform camera calibration suited to traffic scenes. The

algorithm uses measurements from the scene which can be provided by a graphical user

interface. The results demonstrate the accuracy of this technique in many different

camera/scene configurations.

14

(a) (b)

(c) (d)

(e)

Figure 4. Near vertical pitch, far zoom

15

(a) (b)

(c) (d)

Figure 5. Near vertical pitch, close zoom

16

(a) (b)

(c)

Figure 6. Near horizontal pitch, close zoom

17

CHAPTER 3

MONITORING WEAVING SECTIONS

Traffic control in weaving sections is a challenging problem because vehicles are

crossing paths, changing lanes, or merging with through traffic as they enter or exit a highway.

There are two types of weaving sections depending on the number of points of entry and the

number of points of exit: single weaving sections and multiple weaving sections. Sensors which

are based on lane detection or tripline detection often fail to accurately monitor weaving

sections since they cannot track vehicles which cross lanes. The fundamental problem that

needs to be addressed is the establishment of correspondence between a traffic object A in

lane x and the same object A in lane y at a later time. For example, vision systems which

depend on multiple detection zones [18,25] simply cannot establish correspondences since they

assume that the vehicles stay in the same lane.

The motivation behind this work is to compensate for inefficiencies in existing systems

as well as to provide more comprehensive data about the weaving section being monitored. In

this work, we use visual information as our sensory input. The rich information provided by

vision sensors is essential for extracting information that may cover several lanes of traffic. The

information we are considering includes:

1. Extraction of vehicles and thus a count of vehicles.

2. Velocity of each vehicle in the weaving section.

18

3. Direction of each vehicle. This is actually a trajectory versus time rather than a

fixed direction (since vehicles may change direction while in a highway weaving section).

Our goal is to build a portable system which can gather data in various settings

(something similar to the workzone variable message sign units). Such a system can have a

wide range of uses including:

1. Data collection for weaving sections,

2. Optimizing traffic control at weaving sections,

3. Real-time traffic simulation, and,

4. Traffic prediction.

Our system uses a single fixed camera mounted in an arbitrary position. We use simple

rectangular patches with a certain dynamic behavior to model vehicles. Overlaps among

vehicles and occlusions are dealt with by allowing vehicle models to overlap in the image space

and maintain their existence in spite of the disappearance of some features.

A large body of vision research has been targeted at vehicle tracking. One popular

research direction deals with three-dimensional tracking. Three-dimensional tracking uses

models for vehicles and aims to handle complex traffic situations and arbitrary configurations.

A suitable application would be conceptual descriptions of traffic situations [8]. Robustness is

more important than computational efficiency in such applications. Kollnig and Nagel [14]

developed a model-based system. They proposed to use image gradients instead of edges for

pose estimation. They fitted image gradients to synthetic model gradients projected onto the

image. A Kalman filter was used to stabilize the tracking. Optical flow was used to generate

object candidates at the initialization stage only. Selection of the model was done manually for

each vehicle since the emphasis was on robust tracking as opposed to classification. In [13], the

19

same authors increased robustness by utilizing optical flow during the tracking process as well.

Nagel et al. [19] and Leuck and Nagel [15] extended the previous approach to estimate the

steering angle of vehicles. This was a necessary extension to handle trucks with trailers which

were represented as multiple linked rigid polyhedra [19]. Experimental results in [15]

compared the steering angle and velocity of a vehicle to ground truth showing good

performance. They also provided qualitative results for other vehicles showing an average

success rate of 77%. Tracking a single vehicle took 2-3 seconds per frame.

Three-dimensional tracking of vehicles has been extensively studied by the research

group at the University of Reading. Baker and Sullivan [2] and Sullivan [21] utilized

knowledge about the scene in their 3D model-based tracking. This includes knowledge that the

vehicles move on a plane, the camera calibration, the vehicles, and their dynamics. The ground

plane assumption reduces the tracking search parameters to a translation and a rotation. The

matching is also done by comparing the projection of the model to features in the image.

Sullivan et al. [23] extended this approach so that image features act as forces on the model.

This reduced the number of iterations and improved performance. They also parameterized

models as deformable templates and used principal component analysis to reduce the number

of parameters. A filter that was used by Maybank et al. [16] to stabilize tracking was

demonstrated to surpass the extended Kalman filter when vehicles undergo complex motion

such as a three-point turn.

Three-dimensional methods are sensitive to initial pose estimate. Some interesting work

on extracting initial pose from static images was done in [24]. In addition, pose estimation and

tracking can be improved by using more refined models [14] which would require a large set of

models and therefore greater computational resources.

20

In the case of applications that require monitoring of controlled traffic situations, it is

usually possible to implement a much more efficient, yet still robust, system. Sullivan et al.

[22] developed a simplified version of their model-based tracking approach to achieve real-time

performance. The method was not designed to track vehicles across lanes, however.

Another tracking approach is feature-based. Features, such as corners and edges, are

tracked and grouped based on their spatial and temporal characteristics. This approach is robust

with respect to occlusions. However, the density of reliable features may not be high enough in

certain circumstances. If the application requires isolation of vehicles (e.g., a classification

application), there may be a need for an additional component to the tracking system. Feature

tracking is considered a computationally expensive operation due to the use of correlation.

Smith [20] used custom hardware to achieve tracking at 25Hz. Beymer et al. [3] used 13 C40

DSPs to achieve up to 7.5Hz tracking in uncongested traffic. This may not remain a big

disadvantage in the long run, however, considering the constant increase in computing power

of ordinary PCs. Active deformable contours were also used to track vehicles [12]. However,

initialization can be problematic especially for partially occluded vehicles. Combining (or

switching among) different approaches has been considered as a way of dealing with diverse

weather and lighting conditions. Some algorithms have been developed to quantify scene

illumination conditions (well lit, poorly lit, has shadows, etc.) [26] and road conditions (wet,

dry, snow, etc.) [28]. A method for combining multiple algorithms was given in [7].

Finally, some researchers tracked connected regions in the image (blobs) [10,11,4,5].

Region-based tracking is perhaps the most computationally efficient but in general suffers from

segmentation problems in cluttered scenes. This happens because blobs of several vehicles may

merge into a single blob. Alternatively, a single vehicle may be composed of several blobs. In

21

[4], the authors use a rule-based system to refine the tracking and resolve low-level

segmentation errors. The system we describe in this work is region-based. Our method differs

from other region-based methods by the way it handles relating blobs to vehicles. This relation

is allowed to be many-to-many, and is updated iteratively depending on the observed blobs

behavior and predictions of vehicles behavior. Processing is done at three levels (this structure

is based on our earlier work on pedestrian tracking [17]). Features are obtained at the lowest

level by a simple recursive filtering technique. In the second level, which deals with blobs,

feature images are segmented to obtain blobs which are subsequently tracked. Finally, tracked

blobs are used in the vehicles level where relations between vehicles and blobs as well as

information about vehicles is inferred.

The next two chapters describe the processing done at the three levels mentioned above.

22

Figure 7. Feature image (corresponds to the image in Figure 11(c))

23

CHAPTER 4

BLOB ANALYSIS

FEATURES LEVEL

Features are extracted using a recursive filtering technique (a slightly modified version of

Halevi and Weinshall s algorithm [9]). This technique is simple, time-efficient and therefore,

suitable for real-time applications. A weighted average at time i , Mi , is computed as

M I Mi i i= × + −() ×− −α α1 11 (1)

where Ii , is the image at time i , and α is a fraction in the range 0 to 1 (typically 0.5). The

feature image at time i , Fi , is computed as follows: F M Ii i= − . The feature image captures

temporal changes (features) in the sequence. Moving objects result in a fading trail behind

them. The feature image is thresholded to remove insignificant changes. Figure 7 shows a

typical thresholded feature image.

As it will be explained below, our algorithm makes use of bounding boxes in blob

tracking. The bounding boxes track most effectively when the targeted blobs fill the box, which

is achieved when they are aligned horizontally or vertically (i.e., diagonal blobs are not

desirable). Since the camera pan may be large as shown in Figure 8, we warp the original

image so that vehicles appear perpendicular to a virtual camera’s optical axis (Figure 12 (b) is

24

the warped version of Figure 8), and then perform feature extraction. Apart from camera pan,

rotated blobs can appear due to the diagonal motion of a weaving vehicle. However, this

rotation is small and does not affect our algorithm since it occurs over a long distance

compared to lane width. The warping process uses extrinsic camera parameters such as location

and orientation to perform inverse perspective projection. These parameters are estimated

interactively to a high precision at initialization by utilizing ground truth measurements in the

scene (such as lane width, lane marking length, etc.). The tracking algorithm is not sensitive to

errors in these parameters. However, since these parameters are also used at the vehicles level

to provide information on vehicle speed and location, precise estimation of these parameters is

desired. In [27], a simple interface has been developed which requires minimal operator

interaction and leads to good precision estimates.

BLOBS LEVEL

At the blobs level, blob extraction is performed by finding connected regions in the

feature image. A number of parameters are computed for each blob. These parameters include

perimeter, area, bounding box, and density (area divided by bounding box area). We then use a

novel approach to track blobs regardless of what they represent. Our approach allows blobs to

merge, split, appear, and vanish. Robust blob tracking was necessary since the vehicles level

relies solely on information passed from this level.

BLOB TRACKING

When a new set of blobs is computed for frame i , an association with the set of blobs in

frame ()i −1 is sought. The relation between the two sets can be represented by an undirected

bipartite graph, G V Ei i i,() , where V B Bi i i= ∪ −1. Here, Bi and Bi−1 are the sets of vertices

25

associated with the blobs in frames i and i −1, respectively. We will refer to this graph as a

blob graph. Figure 9 shows an example where blob 1 split into blobs 4 and 5, blob 2 and part of

blob 1 merged to form blob 4, blob 3 disappeared, and blob 6 appeared.

The process of blob tracking is equivalent to computing Gi for i n= 1 2, , ,K , where n is

the total number of frames. We do this by modeling the problem as a constrained graph

optimization problem where we attempt to find the graph which minimizes a cost function.

Let N ui() denote the set of neighbors of vertex u Vi∈ , N u v u v Ei i() = () ∈{ }, . To simplify

graph computation, we will restrict the generality of the graph to those graphs which do not

have more than one vertex of degree more than one in every connected component of the

graph. This is equivalent to saying that from one frame to the next, a blob may not participate

in a split and a merge at the same time. We refer to this as the parent structure constraint.

According to this constraint, the graph in Figure 9(c) is invalid. If, however, we eliminate the

arc between 1 and 5 or the arc between 2 and 4, it will be a valid graph. This restriction is

reasonable assuming a high frame rate where such simultaneous split and merge occurrences

are rare.

To further reduce the number of possible graphs, we use another constraint which we call

the locality constraint. With this constraint, vertices can be connected only if their

corresponding blobs have a bounding box overlap area which is at least half the size of the

bounding box of the smaller blob. This constraint, which significantly reduces possible graphs,

relies on the assumption that a blob is not expected to be too far from where it was in the

previous frame. This is also reasonable to assume if we have a relatively high frame rate. We

refer to a graph which satisfies both the parent structure and locality constraints as a valid

graph.

26

To find the optimum Gi , we need to define a cost function, C Gi(), so that different

graphs can be compared. A graph with no edges, i.e. Ei = φ, is one extreme solution in which

all blobs in Vi−1 disappear and all blobs in Vi appear. This solution has no association among

blobs and should therefore have a high cost. In order to proceed with our formulation of the

cost function, we define two disjoint sets, which we call parents, Pi , and descendents, Di ,

whose union is Vi such that D N ui i
u Pi

= ()
∈
U . Pi can be easily constructed by selecting from Vi all

vertices of degree more than one, all vertices of degree zero, and all vertices of degree one

which are only in Bi . Furthermore, let S u A vi
v Pi

() = ()
∈
∑ be the total area occupied by the

neighbors of u . The cost function that we use penalizes graphs in which blobs change

significantly in size. A perfect match would be one in which blob sizes remain constant (e.g.,

the size of a blob that splits equals the sum of the sizes of blobs it splits into). We now write the

formula for the cost function as

C G
A u S u

A u S ui
i

iu Pi

() =
() − ()

() ()()∈
∑ max ,

. (2)

This function is a summation of ratios of size change over all parent blobs.

Using this cost function, we can proceed to compute the optimum graph. First, we notice

that given a valid graph G V E(,) and two vertices u v V, ∈ , such that (,)u v E∉ , the graph

′ ∪ () (){ }()G V E u v v u, , , , has a lower cost than G provided that ′G is a valid graph. If it is not

possible to find such a ′G , we call G dense. Using this property, we can avoid some useless

enumeration of graphs which are not dense. In fact, this observation is the basis of our

algorithm to compute the optimum G .

27

Our algorithm to compute the optimum graph works as follows: A graph G is

constructed such that the addition of any edge to G makes it violate the locality constraint.

There can be only one such graph. Note that G may violate the parent structure constraints at

this moment. The next step in our algorithm systematically eliminates just enough edges from

G to make it satisfy the parent structure constraint. The resulting graph is valid and also dense.

The process is repeated so that all possible dense graphs are generated. The optimum graph is

the one with the minimum cost. The computational complexity of this step is highly dependent

on the graph being considered. If the graph already satisfies the parent structure constraint, it is

O()1 . On the other hand, if we have a fully connected graph, the complexity is exponential in

the number of vertices (bounded by 2mn). Fortunately, because of the locality constraint and the

high frame rate, the majority of graphs considered already satisfy the parent structure

constraint. Occasionally, a small cluster of the graph may not satisfy the parent structure

constraint and the algorithm will need to enumerate a few graphs. In practice, the algorithm

never took more than a few milliseconds to execute even in the most cluttered scenes. Other

techniques to find the optimum (or near optimum) graph (e.g., stochastic relaxation using

simulated annealing) can also be used. The main concern, however, would be their efficiency

which may not be appropriate for this real-time application due to their iterative nature.

At the end of this stage, we use a simple method to calculate the velocity of each blob, v ,

based on the velocities of the blobs at the previous stage and the computed blob graph. The

blob velocity will be used to initialize vehicle models as described later. If v is the outcome of

a splitting operation, it will be assigned the same velocity as the parent blob. If v is the

outcome of a merging operation, it will be assigned the velocity of the largest child blob. If v is

28

a new blob, it will be assigned zero velocity. Finally, if there is only one blob, u , related to v ,

the velocity is computed as

V
b b

V() () ()v
t

uv u=
−() + −β
δ

β1 (3)

where bv and bu are the centers of the bounding boxes of v and u , respectively, β is a weight

factor set to 0.5 (found empirically), and δt is the sampling interval since the last stage.

29

Figure 8. Original image. Camera axis is not perpendicular to the street.

1

2

5

1 4

2 5

4

 (a) (b) (c)

 3

6

3 6

Figure 9. (a) Blobs in frame ()i −1 . (b) Blobs in frame i . (c) Relationship among
blobs

31

CHAPTER 5

MODELING VEHICLES

The input to this level is tracked blobs and the output is the spatio-temporal coordinates

of each vehicle. The relationship between vehicles and blobs in the image is determined at this

point. Each vehicle is associated with a list of blobs. Moreover, a blob can be shared by more

than one vehicle. Vehicles are modeled as rectangular patches with a certain dynamic behavior.

We found that for the purpose of tracking, this simple model adequately resembles the vehicle

shape and motion dynamics. In our system we use the Extended Kalman Filter (EKF) in the

tracking process. We now present this model in more detail and then describe how tracking is

performed.

VEHICLE MODEL

Our vehicle model is based on the assumption that the scene has a flat ground. A vehicle

is modeled as a rectangular patch whose dimensions depend on its location in the image. The

dimensions are equal to the projection of the dimensions of an average size vehicle at the

corresponding location in the scene. The patch is assumed to move with a constant velocity in

the scene coordinate system. The patch acceleration is modeled as zero-mean, Gaussian noise

to accommodate for changes in velocity. The discrete-time dynamic system for the vehicle

model can be described by the following equation:

32

x Fx vt t t+ = +1 (4)

where the subscripts indicate time, x = []x x y y T˙ ˙ is the state vector consisting of the

vehicle location, x y,() and velocity, ˙, ˙x y(), F is the transition matrix of the system given by

1 0 0

0 1 0 0

0 0 1

0 0 0 1

δ

δ

t

t



















, and vt is a sequence of zero-mean, white, Gaussian process noise with

covariance matrix Q . We compute Q as in [1] (page 84) to become
A

A

0

0





q where

A =

() ()

()



















δ δ

δ δ

t t

t
t

3 2

2
3 2

2

 and represents the variance of the acceleration.

VEHICLE TRACKING

The next five subsections describe one tracking cycle.

Relating vehicles to blobs

We represent the relationship between vehicles and blobs as a directed bipartite graph,

GP VP EPi i i,(), where VP B Pi i= ∪ . Bi is the set of blobs computed from the i th image as in the

previous chapter. P is the set of vehicles. An edge (,)p u , p P∈ and u Bi∈ denotes that blob u

participates in vehicle p . We call GPi a vehicle graph. Given a blob graph, G V Ei i i,() , and a

vehicle graph, GPi−1, EPi is computed as follows:

EP p u u v E p v EPi i i= () () ∈ ∧ () ∈{ }−, | , , 1 . (5)

33

In other words, if a vehicle was related to a blob in frame i -()1 and that blob is related to

another blob in frame i (through a split, merge, etc.), then the vehicle is also related to the latter

blob.

Prediction

Given the system equation as in the previous section, the prediction phase of the Kalman

filter is given by the following equations:

ˆ ,

ˆ .

x Fx

P FP F Q

t t

t t
T

+

+

=

= +
1

1

(6)

Here, x̂ and P̂ are the predicted state vector and state error covariance matrix,

respectively. x and P are the previously estimated state vector and state error covariance

matrix, respectively.

Calculating vehicle positions

In this step, we use the predicted vehicle locations as starting positions and we apply the

following rule to update the locations of vehicle: Move each vehicle, p , as little as possible so

that it covers as much as possible of its blobs, u p u EPi| ,() ∈{ } ; and if a number of vehicles

share some blobs, they should all participate in covering all these blobs. The amount by which

a vehicle covers a blob implies a measure of overlap area. We have already used the bounding

box as a shape representation of blobs. However, since the blob bounding box area may be

quite different from the actual blob area, we will include the blob density as computed in the

previous chapter in the computation of the vehicle-blob overlap area. Let BB p() be the

bounding box of a vehicle p , and BB b() be the bounding box of a blob, b . The intersection of

BB p() and BB b() is a rectangle whose area is denoted by X BB p BB b() ()(), . The overlap area

between p and b is computed as X BB p BB b D b() ()() × (), . When multiple vehicles share a

34

blob, the overlap area is computed this way for each vehicle only if the other vehicles do not

also overlap the intersection area. If they did, that particular overlap area is divided by the

number of vehicles whose boxes overlap the area. Figure 10 illustrates this situation. The

overlap area for 1p is computed as a D b b D b
c D b

× () + × () +
× ()

1 2
2

2
. For p2 , the overlap area

is d D b
c D b

× () +
× ()

2
2

2
.

The problem of finding the optimum locations of vehicles can be stated in terms of the

overlap area measure that we just defined. We would like to place vehicles such that the total

overlap area of each vehicle is maximized. We restate the optimization problem as the problem

of finding the minimum total overlap area arrangement of vehicles which has the smallest

distances between old and new locations of the vehicle. We do not attempt to solve the problem

optimally because of its complexity. Instead, we resort to a heuristic solution using relaxation.

First, a large step size is chosen. Then, each vehicle is moved in all possible directions by the

step size, and the location which minimizes the overlap area is recorded. Vehicle locations are

then updated according to the recorded locations. This completes one iteration. In each

following iteration, the step size is decreased. In our implementation, we start with a step of 64

pixels and halve the step size in each iteration until a step size of 1 pixel is reached.

The resulting locations form the measurements that will be fed back into the EKF to

produce the new state estimates. Moreover, we use the overlap area to provide feedback about

the measurement confidence by setting the measurement error standard deviation, which is

described below, to be inversely proportional to the ratio of the overlap area to the vehicle area.

That is, the smaller the overlap area, the less reliable the measurement is considered to be.

35

Estimation

A measurement is a location in the image coordinate system as computed in the previous

subsection, z . Measurements are related to the state vector by

z h x wt t t= () + (7)

where h is a non-linear measurement function (the inverse perspective projection function) and

tw is a sequence of zero-mean, white, Gaussian measurement noise with covariance Rt given

by
σ

σ
t

t

2

2

0

0









 . The measurement error standard deviation, σ t , depends on the overlap area

computed in the previous section. We let H be the Jacobian of h. The EKF state estimation

equations become

K P H HP H R

x x K z h x

P I K H P

t t
T

t
T

t

t t t t t

t t t

+ + +

−

+ + + + +

+ + +

= +()
= + − ()()
= −()

1 1 1

1

1 1 1 1 1

1 1 1

ˆ ˆ ,

ˆ ˆ ,

ˆ .

 (8)

The estimated state vector x t +1 is the outcome of the vehicles level.

Refinement

At the end of this stage, we perform some checks to refine the vehicle-blob relationships

since vehicles have been relocated. These can be summarized as follows:

a. If the overlap area between a vehicle and one of its blobs becomes less than 10%

of the size of both, it will no longer be considered as belonging to this vehicle. This serves as a

splitting procedure when one vehicle passes another.

b. If the overlap area between a vehicle and a blob that does not belong to any

vehicles becomes more than 10% of the size of either one, the blob will be added to the vehicle

36

blobs. This makes the vehicle re-acquire some blobs that may have disappeared due to

occlusion.

c. If a cluster of blobs is found which are not related to any vehicles and whose age

is larger than a threshold value (i.e., they have been successfully tracked for a certain number

of frames), we do the following: A new vehicle may be initialized only if it will be more than

30% covered by the blobs cluster. The vehicle is given an initial velocity equal to the average

of the blobs velocities. This serves as the initialization step. The age requirement helps reduce

the chances of unstable blobs being used to initialize vehicles.

d. Select one of the blobs which is already assigned one or more vehicles but can

accommodate more vehicle patches. Create a new vehicle for this blob as in c. This handles

cases in which a more than one vehicle appear in the scene while forming one big blob which

does not split. If we do not do this step, only one vehicle would be assigned to this blob.

e. If a vehicle leaves the view of the camera or has not been covered by any blobs

for an extended period of time, the vehicle is deleted.

37

Figure 10. Overlap area. Vehicles p1 and p2 share blob b2 while b1 is only part of p1

a

bcd

b1

b2

p1

p2

38

CHAPTER 6

RESULTS AND CONCLUSIONS

EXPERIMENTAL RESULTS

The system was implemented on a dual-Pentium 200MHz PC equipped with a C80

Matrox Genesis vision board. Tracking was achieved at 15 frames/second even for the most

cluttered scenes. Several weaving sequences were used to test the system. Variations included

different lighting conditions, camera view angles, and vehicle speeds (e.g., rush hour). The

system was able to track most vehicles successfully (average accuracy 85%) and provided

accurate trajectory information. Ground truth was established by using manual counters. The

system dealt well with partial occlusions. The success is partly due to Kalman filtering since

the measurement error standard deviation is set to reflect confidence in the found features.

However, there were some failures especially with large trucks which, depending on the

camera view, may completely occlude other vehicles. Figure 11 and Figure 12 show some

snapshots of the tracking process performed on scenes with two different camera view angles

and during different times of the day. One drawback of the current implementation is the use of

a fixed size vehicle model for all vehicles. Even though this model works for most vehicles, it

does not correctly track very large vehicles. Figure 13 shows how a large vehicle is tracked as

two separate vehicles. Another drawback is apparent in the feature extraction component of the

39

system: large shadows are extracted as features and can confuse the tracking process. We are

currently working on ways to deal with these two problems. An interesting probabilistic

shadow handling approach is given in [6]. Wixson et al. [26] proposed using different

parameters (or in some cases different algorithms) for different scene illumination conditions

and provided an elegant condition assessment method.

By providing the location of lane boundaries, our system was used to perform data

collection for the Minnesota Department of Transportation. The data included the count and

average speed of vehicles in each lane as well as vehicles that move between the two lanes

farthest from the camera (weaving vehicles).

The data was provided cumulatively every 10, 30, 60, and 300 seconds. Sample data for

the two lanes farthest from the camera are shown in Table 2. In the table, periods are measured

in seconds and speed is measured in miles per hour. A visualization of vehicle trajectories

accumulated over an hour of heavy traffic is shown in Figure 14. Notice the crisp vehicle paths

for the two lanes closer to the camera. Also notice the gray area between the other two lanes

which shows that a great deal of weaving took place. The trail in lane 4 appears shorter because

the system starts the tracking a bit later than other lanes, due to the fact that vehicles in this

lane move faster in the image.

CONCLUSIONS

We presented a real-time model-based vehicle tracking system capable of working

robustly under many difficult circumstances. The main goal of the system is to provide data on

weaving sections. For each vehicle in the view of the camera, the system produces location and

40

velocity information as long as the vehicle is visible. There are some issues that still need to be

addressed. Dealing with large shadows and large vehicles are two such issues.

41

(a)

(b)

(c)

Figure 11. Three snapshots from a day sequence

42

(a)

(b)

Figure 12. Two snapshots from a night sequence

43

(a)

(b)

Figure 13. A large vehicle tracked as two vehicles

44

Figure 14. A visualization of vehicle trajectories on four lanes over a period of one
hour

Time/
period

Vehicles
no. (no. in

period)

Lane 1->2
Spd (no.)

Lane 2->1
Spd (no.)

Lane 2->2
Spd (no.)

16:30:40 /10 1243 (15) 34.5 (3) 37.6 (2) 42.1 (3)

16:30:50 /10 1265 (22) 32.6 (1) 25.2 (3) 42.3 (4)

16:31:00 /10 1289 (23) 28.4 (4) 0 (0) 38.4 (5)

16:31:00 /30 1289 (60) 31.2 (8) 30.2 (5) 40.6 (12)

16:31:00 /60 1289 (110) 28.8 (18) 29.2 (7) 38.3 (23)

Table 2. Sample output

45

REFERENCES

[1] Y. Bar-Shalom and T. E. Fortmann, Tracking and Data Association, Academic Press,
1988.

[2] K.D. Baker and G.D. Sullivan, Performance assessment of model-based tracking, in
Proc. of the IEEE Workshop on Applications of Computer Vision, pp. 28—35, Palm Springs,
CA, 1992.

[3] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, A real-time computer vision
system for measuring traffic parameters, in Proc. of the IEEE Conf. Computer Vision and
Pattern Recognition, pp. 496—501, June 1997, Puerto Rico.

[4] R. Cucchiara, M. Piccardi, and P. Mello, Image analysis and rule-based reasoning for a
traffic monitoring system, in Proc. of the IEEE Conference on Intelligent Transportation
Systems, pp. 758—763, Tokyo, Japan, October 1999.

[5] D. Dailey and L. Li, Algorithm to estimate vehicle speed using un-calibrated cameras,
in Proc. of the IEEE Conference on Intelligent Transportation Systems, pp. 441—446, Tokyo,
Japan, October 1999.

[6] N. Friedman, S. Russell, Image segmentation in video sequences, in Proc. of the
Thirteenth Conference on Uncertainty in Artificial Intelligence, Providence, Rhode Island,
1997.

[7] S. Gil, R. Milanese, and T. Pun, Combining multiple motion estimates for vehicle
tracking, in Proc. of the Fourth European Conference on Computer Vision, vol. 2, pp.
307—320, Cambridge, UK, April 1996.

[8] M. Haag and H.-H. Nagel, Incremental recognition of traffic situations from video
image sequences, Image and Vision Computing, vol. 18, pp. 137—153, 2000.

[9] G. Halevi and D. Weinshall, Motion of disturbances: detection and tracking of multi-
body non-rigid motion, in Proc. of the IEEE Conf. Computer Vision and Pattern Recognition,
pp. 897—902, June 1997, Puerto Rico.

[10] K.P. Karmann and A. Brandt, Moving object recognition using an adaptive
background memory, V. Cappellini, editor, Time-Varying Image Processing and Moving
Object Recognition, Amsterdam, Netherlands, 1990.

46

[11] M. Kilger, A shadow handler in a video-based real-time traffic monitoring system, in
Proc. of the IEEE Workshop on Applications of Computer Vision, pp. 1060—1066, Palm
Springs, CA, 1992.

[12] D. Koller, J. Weber, and J. Malik, Robust multiple car tracking with occlusion
reasoning, in ECCV, Stockholm, Sweden, 1994.

[13] H. Kollnig and H.-H. Nagel, Matching object models to segments from an optical flow
field, in Proc. of the Fourth European Conference on Computer Vision, vol. 2, pp. 15—18,
Cambridge, UK, April 1996.

[14] H. Kollnig and H.-H. Nagel, 3D pose estimation by directly matching polyhedral
models to gray value gradients, International Journal of Computer Vision, vol. 23, no. 3, pp.
283—302, 1997.

[15] H. Leuck, and H.-H. Nagel, Automatic differentiation facilitates OF-integration into
steering-angle-based road vehicle tracking, in Proc. of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 360—365, Fort Collins,
CO, June 1999.

[16] S.J. Maybank, A.D. Worrall, and G.D. Sullivan, Filter for car tracking based on
acceleration and steering angle, in Proc. of the Seventh British Machine Vision Conference
(BMVC ’96), vol. 2, pp. 615—624, Edinburgh, England, September 1996.

[17] O. Masoud and N. P. Papanikolopoulos, A robust real-time multi-level model-based
pedestrian tracking system, in Proc. of the ITS America Seventh Annual Meeting, Washington,
DC, June 1997.

[18] P.G. Michalopoulos, Vehicle detection video through image processing: The autoscope
system, IEEE Transactions on Vehicular Technology, vol. 40, pp. 21—29, 1991.

[19] H.-H. Nagel, T. Schwarz, H. Leuck, and M. Haag, T3wT: tracking turning trucks with
trailers, in Proc. of the IEEE Workshop on Visual Surveillance, pp. 65—72, Bombay, India,
January 1998.

[20] S.M. Smith and J.M. Brady, ASSET-2: real-time motion segmentation and shape
tracking, IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(8):814—820, 1995.

47

[21] G.D. Sullivan, Model-based vision for traffic scenes using the ground-plane
constraint, Phil. Trans. Roy. Soc. (B), 337, pp. 361—370, 1992.

[22] G.D. Sullivan, K.D. Baker, A.D. Worrall, C.I. Attwood, and P.M. Remagnino, Model-
based vehicle detection and classification using orthographic approximations, Image & Vision
Computing, vol. 15, no. 8, pp. 649—654, Aug. 1997.

[23] G.D. Sullivan, A.D. Worrall, and J.M. Ferryman, Visual Object Recognition Using
Deformable Models of Vehicles, in Proc. Workshop on Context-Based Vision, pp. 75—86,
Cambridge Massachusetts, June 1995.

[24] T.N. Tan, G.D. Sullivan, and K.D. Baker, Model-based localization and recognition of
road vehicles, International Journal of Computer Vision, vol. 27, no. 1, pp. 5—25, 1998.

[25] J. Versavel, Road safety through video detection, in Proc. of the IEEE Conference on
Intelligent Transportation Systems, pp. 753—757, Tokyo, Japan, October 1999.

[26] L. Wixson, K. Hanna, and D. Mishra, Improved illumination assessment for vision-
based traffic monitoring, in Proc. of the IEEE Workshop of Visual Surveillance, pp. 34—41,
Bombay, India, January 1998.

[27] A.D. Worrall, G.D. Sullivan, and K.D. Baker, A simple, intuitive camera calibration
tool for natural images, in Proc. of the 5th British Machine Vision Conference, pp. 781—790,
1994.

[28] M. Yamada, K. Ueda, I. Horiba, and N. Sugie, Discrimination of the road condition
towards understanding of vehicle driving environments, in Proc. of the IEEE Conference on
Intelligent Transportation Systems, pp. 20—24, Tokyo, Japan, October 1999.

