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1. Executive Summary

This report describes our research on transportation planning and scheduling supported by
the ARPA/Rome Lab Planning Initiative (ARPI). The main goal of this project was to
develop generic tools to support the construction of flexible, high-performance plaﬁning and
“scheduling software. Our technical approach is based on specification refinement technology
which allows the systematic machine-supported development of software from requirement
specifications. The development process can produce highly efficient code along with a proof
of the code’s correctness.

Our approach to developing scheduling software involves several stages. The first step is to
develop a formal model of the transportation scheduling domain, called a domain theory.
Second, the constraints, objectives, and preferences of a particular scheduling problem are
stated within a domain theory as a problem specification. Finally, an executable scheduler is
produced by applying a sequence of refinements to the problem specification. The refinements
embody programming knowledge about algorithms, data structures, program optimization
techniques, etc. The result of the refinement process is executable code that is consistent
with the problem specification.

Under this contract we developed a system called Planware, a domain-specific generator
of high-performance scheduling software. Architecturally, Planware is an extension of the
Specware system with domain-independent and domain-dependent parts. The domain-
independent part includes a general algorithm design facility (including mechanisms to syn-
thesize global-search and constraint propagation algorithms) and support. for constructive
. theorem-proving. The domain-dependent part includes scheduling domain knowledge and
architecture representations, and other domain-specific refinement knowledge that relates
the scheduling domain to general algorithm design and data type refinement. Using Plan-
ware, the user interactively specifies a problem and then the system automatically generates
a formal specification and refines it.

Another aspect of our project involved applying the Planware methodology to support au-
tomated synthesis of planners customized to specific domains. This work was carried out at
Arizona State University under a sub-contract from Kestrel. In the approach we developed,
a domain expert is allowed to input domain-specific control knowledge, which is then folded
into a a pre-existing declarative theory of refinement planning, to generate planner code
specific to that domain. We used this approach to successfully synthesize planners in several
benchmark domains, such as logistics planning.

During this contract we also worked on various applications of our synthesis technology. We
continued the development of ITAS (In-Theater Airlift Scheduler) for PACAF (Pacific Air
Force) at Hickham AFB. The most recent version simultaneously schedules the following
classes of resources: (1) aircraft, (2) aircrews and their duty day cycles, (3) ground crews for
unloading, and (4) ramp space at ports. Together with BBN and Carnegie-Mellon University,
we developed an advanced scheduling system for AMC TACC (Air Mobility Command,
Tanker-Airlift Operations Center) at Scott AFB. This system is scheduled for integration by
Logicon Corporation into the CAMPS system and deployed in 1999.
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2. Introduction

This report describes our research on the transformational development of transportation
plans and schedules. Our approach to developing scheduling software involves several stages.
The first step is to develop a formal model of the transportation scheduling domain, called a
domain theory. Second, the constraints, objectives, and preferences of a particular schedul-
ing problem are stated within a domain theory as a problem specification. Finally, an exe-
cutable scheduler is produced semi-automatically by applying a sequence of transformations
to the problem specification. The transformations embody programming knowledge about
algorithms, data structures, program optimization techniques, etc. The result of the trans-
~ formation process is executable code that is consistent with the given problem specification.
Furthermore, the resulting code can be extremely efficient.

Transportation scheduling tools currently used by the U.S. government are based on models
of the transportation domain that few people understand [7]. Consequently, users often do
not trust that the scheduling results reflect the characteristics of the current situation. Our
approach tries to address this issue by making the domain model and scheduling problem
explicit and clear. If a scheduling situation arises which is not treated by existing scheduling
tools, the user can specify the problem and generate a situation-specific scheduler.

One of the benefits of a transformational approach to scheduling is the synthesis of specialized
constraint management code. Previous systems for performing scheduling in Al (e.g. [4, 3,
13, 12]) and Operations Research [1, 5] use constraint representations and operations that
are geared for a broad class of problems, such as constraint satisfaction problems or linear
programs. In contrast, transformational techniques can derive specialized representations for
constraints and related data, and also derive efficient specialized code for constraint checking
and constraint propagation.

Figure 1 describes our vision of an advanced environment for producing planning/scheduling
software. Briefly, the idea is to rapidly develop a situation-specific domain model and
problem specification using a knowledge-elititation system, and then to synthesize high-
performance planning and scheduling tools that are specialized to the current situation. The
majority of users’ interaction would be codifying the domain theory and specification of the
current situation, to aid in synthesizing a customized planning/scheduling tool.

We now step through the process in more detail. Several classes of users are involved in the
construction and use of a scheduling system.

One class of users, who include domain experts and specialists in model construction, interact
with a knowledge elicitation system to help classify the features of the situation and select,
compose, extend, and refine, (possibly abstract) models from a preexisting library of domain
models. The result is a model and problem specification tailored to the details of the current
situation (as closely as expertise and time permit).

Another class of users, who specialize in software design and formal modeling of programming
knowledge, interact with a planning/scheduling synthesis system to develop code from the
problem specification. The interaction involves composing components from a library of
reusable parts, or selecting and applying representations of abstract programming knowledge
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Figure 1: Advanced Development Environment for Planning and Scheduling Software




about algorithms, data structures, code optimization techniques, planning and scheduling-
specific design strategies, and so on. Most of the design process is automated, with only a
few high-level design decisions made by the developer. Another interactive task for this user
is the evolution of the programming knowledge-base itself.

The output of the synthesis system is executable planning/scheduling code which can then
be embedded in a planning/scheduling system and executed by an end-user.

There is a feedback loop implicit in the figure. The end user/domain expert using the
synthesized code may detect missing constraints, or have preferences or other information
not accounted for in the code. This information is fed back to the model-building stage
and the process iterates. The fact that each synthesis step preserves consistency between
problem specification and generated code means that maintenance and evolution back up to
the specification/domain model level, not the code-level as in current practice.

We developed an approximation to this vision in the current project, called Planware, and
demonstrated its feasibility. Planware is a domain-specific generator of high-performance
scheduling software, currently being developed at Kestrel Institute. Architecturally, Plan-
ware is an extension of the Specware system with domain-independent and domain-dependent
parts. The domain-independent part includes a general algorithm design facility (includ-
ing mechanisms to synthesize global-search and constraint propagation algorithms), as well
as support for theorem-proving and witness finding. The domain-dependent part includes
scheduling domain knowledge and architecture representations, and other domain-specific
refinement knowledge that relates the scheduling domain to general algorithm design and
data type refinement. Using Planware, the user interactively specifies a problem and then
the system automatically generates a formal specification and refines it.

We first present an overview of Planware, then review Specware foundations, and then go into
detail regarding the theory of scheduling in Planware. We also provide some details on the
sub-contract research focused on the synthesis of domain-specific planners. The Appendices
describes foundational work on Designware which supports Planware, and describes our
-synthesis process for the Mission Planner in CAMPS.

3. Planware

This paper presents an overview of Planware, a generator of high-performance scheduling
algorithms, currently being developed at Kestrel Institute. Our aim is to convey a sense
of the rationale for Planware, the design process that it supports, the architecture of the
current Planware system, and our results to date. The reader may find more detail in the
references. '

Architecturally, Planware is an extension of the Specware system [14], a system for developing
formal specifications and refinements based on concepts from higher-order logic and category
theory. Planware and Specware embody theoretical developments stemming from Kestrel’
experience with previous systems such as KIDS [9] and DTRE [2]. '




The goal of Planware is to allow experts in planning and scheduling to assemble quickly
a specification of a scheduling problem, and to generate automatically a high-performance
scheduler from it. The user’s interactions with the system are designed to be entirely in the
scheduling domain — the user does not need to read or write formal specifications, nor to
understand the logical and category-theoretic foundations of the system. We have invested
substantial effort in automating the construction of scheduling domain theories.

To assemble a requirement specification and underlying domain theory, Planware requires
very little information from the user:

e to select from a menu various attributes that specify the tasks that need to be sched-
uled, and '

e to select from a taxonomy of resource theories the particular kind of resource against
which to schedule the tasks.

From this minimal amount of information, Planware can automatically

e generate a formal specification of the scheduling problem (plus the relevant background
concepts that comprise a domain theory),

e reformulate the specification using datatype refinements to build some of the problem
constraints directly into the schedule datatype, allowing a dramatic simplification of
the specification,

e apply domain-independent knowledge about designing global search (backtracking)
algorithms with constraint propagation,

e apply datatype refinements and optimization techniques, and finally

e generate Common Lisp code.

For example, after désign and refinement, the specification of a transportation scheduling
domain comprises about 10,000 lines of text of which about 3000 lines are the scheduling
algorithm (the remainder consists of axioms and datatype operations that are not needed

by the scheduler).

A key point here is that the high level of automation in Planware is achieved by applying
domain- specific control (via a hand-built tactic):

1. to construct a problem specification and domain theory,

2. to apply a series of domain-independent design theories and code-generation rules. The
result is a fast, correct, executable scheduler automatically constructed from the user’s
description of a scheduling problem. '

In the next section, we provide a brief introduction to the specification and refinement

formalisms in Specware. In Section 4, we describe Planware by stepping through its design
process, illustrating each step via the construction of a transportation scheduler.

4




spec PARTIAL-ORDER is
sort E
op leq: E, E -> boolean
axiom transitivity-axiom is
leq(x, y) & leq(y, z) => leq(x, 2)
axiom reflexivity-axiom is
fa(x: E) leq(x, x)
axiom anti-symmetry-axiom is
leq(x, y) & leq(y, x) =>x =y
end-spec

Figure 2: Partial-Order SPEC in Specware

spec DRO-SPEC is

sort D, R

op 0: D, R => boolean
end-spec

Figure 3: DRO-SPEC in Specware

4. Specware

Specware supports the modular construction of formal specifications and the stepwise and
componentwise refinement of such specifications into executable code. Specware may be
viewed as a visual interface to an abstract data type providing a suite of composition and
~ transformation operators for building specifications, refinements, code modules, etc. This
view has been realized in the system by directly implementing the formal foundatlons of
Specware; category theory, sheaf theory, algebraic specification and general logics. The
language of catéegory theory results in a highly parameterized, robust, and extensible archi-
tecture that can scale to system-level software construction. A more deta,iled description of
* Specware may be found in [14].

A specification (or simply a spec or theory) defines a language and constrains its possible
meanings via (higher-order) axioms and inference rules. A basic specification consists of
a list of sorts, operations and axioms. For instance, the theory of partial orders can be
presented as an abstract sort with a binary operation that satisfies the following properties:
reflexivity, transitivity, and anti-symmetry. A Specware spec for this theory is shown in
Figure 2 : ' :

Another example is a specification for a simple problem theory (DRO-SPEC) that consists
of input domain, output range and a predicate that relates input to output (see Figure 3).

Specifications can be used to express many kinds of software-related artifacts, including
application domain theories, formal software requirements, abstract data types, abstract




spec-morphism
INTEGER-AS-PARTIAL-ORDER:
PARTIAL-ORDER -> INTEGER is
{E-> integer, leq -> <=}

spec-morphism DRO-to-SORTING:
DRO-SPEC -> SORTING-SPEC is
{D -> set-of-integer, '
R -> sequence-of-integer,
0 -> sorting-pred}

Figure 4: Specification Morphisms

interpretation DRO-to-SORTING:
DRO-SPEC => SORTING-SPEC is
mediator SORTING-WITH-SORTING-PRED
dom-to-med S

{D -> set-of-integer,

R -> sequence-of-integer,

0 -> sorting-pred}
cod-to-med import-morphism

Figure 5: Interpretation in Specware

algorithms, formal interfaces for code rﬁodules, and so on..

A specification morphism (or simply a spec-morphism or morphism) consists of two specs
and one mapping, that maps the source spec to target spec via sorts and operations maps
such that the sorts map is compatible with the operations map, and moreover, axioms in
the source spec are theorems in the target spec. For instance, a spec-morphism from the
partial-order theory to integer can be represented by INTEGER-AS-PARTIAL-ORDER (in

Figure 4).

Assuming that there is a spec SORTING-SPEC for the problem of sorting sequences of
integers, a spec-morphism from DRO-SPEC to SORTING-SPEC can be expressed by DRO-
to-SORTING (Figure 4), where we assume that the sorting specification SORTING-SPEC
has a predicate sorting-pred to specify sorting requirements. ’

Specification morphisms underlie several aspects of software development, including the bind-
ing of parameters in parameterized specifications, specification refinement and implementa-
tion, datatype refinement, and algorithm design [10].

An interpretation between theories (or simply an interpretation) is a pair of spec-morphisms
that essentially enables mapping an item to a term, which is what we need to express a .
refinement (or implementation) from one spec to another. Returning to our previous spec-
morphism example with SORTING-SPEC, suppose that we do not have a predicate for
sorting-pred, then it is impossible to map O to any predicate symbol in SORTING-SPEC.

6




However, we can map it to a term of SORTING-SPEC by forming a conjunction of all pred-
icates that specify sorting requirements. This can be expressed via two spec-morphisms by
DRO-to-SORTING (Figure 5). Here, we created a new spec SORTING-WITH-SORTING-
PRED which imports SORTING-SPEC and adds another predicate sorting-pred that is
defined from the predicates in SORTING-SPEC. In the scheduling domain, a scheduling
spec has normally a list of constraints (some of them are provided by users, and thus the list
is dynamically constructed). To start the refinement process on a scheduling problem spec
(DOMAIN-SPECIFIC-SCHEDULING), we need to construct an interpretation from DRO-
SPEC to DOMAIN-SPECIFIC-SCHEDULING, which will be given in detail in Section 3.
It is indeed an interpretation since O in DRO-SPEC has to be mapped to the conjunction of
all scheduling constraints present in DOMAIN-SPECIFIC-SCHEDULING. More precisely,
an interpretation consists of two spec-morphisms: one from the source spec to the mediator
spec, and another from the target spec to a mediator spec that is required to be a defini-
tional extension of target spec. In the following, we will use the terms interpretation and
refinement interchangeably.

- In SPECWARE, the colimit operation is used to construct larger specs from smaller specs.
The input to the colimit algorithm is a spec-diagram (a graph with nodes labeled by specs
and arcs by spec-morphisms) called a base spec-diagram (also called a cover of that col-
imit/spec), and it computes a shared union of the specs in the spec-diagram. Colimits are
used intensively in the construction and factorization of the scheduling domain knowledge
‘base in Planware.

Given a spec, one refines it to more concrete specs via a sequence of refinements, so we
need a sequential composition of interpretations to put these refinements together. Given a
structured spec, for instance a spec formed via colimit, one only needs to give component
interpretations of the cover, using parallel composition operator, a refinement for colimit
object can be constructed automatlcally, provided the components interpretation are com-
patible with each other (this is where interpretation-morphism is used). Sequential and
parallel compositions are used in the various Planware design tactics that will be described
in Section 3.

Finally, after definitions have been created for all relevant sorts and operations in a spec,
code can be generated, currently CommonLisp or C++ in SPECWARE. Code generation
is ‘carried out by means of logic morphisms, based on Meseguer’s general logics [6] and
their morphisms, with some modification. Our work in Planware of extending and applying
Specware focuses basically on automating various combmatlons of sequential and parallel
compositions, and representing knowledge.

5. Planware design process

Planware aims to provide a framework that is general enough to allow the synthesis of
schedulers in a wide range of domains. The key to achieving this generality was our devel-
" opment of a specification for a generic scheduling problem that can be refined into a variety
of concrete scheduling problems. Our confidence in this abstract scheduling specification



arises from experience with using the KIDS system to generate schedulers for such domains
as transportation, manufacturing, power plant maintenance, satellite communications, pilot
training, and others [11]. : ‘

Briefly, here is how the Planware design process works. The user is asked to supply informa- |
tion about a particular scheduling problem. This information is used to refine the abstract
scheduling specification to a specification of the user’s problem. Planware then applies tac-
tics that automatically perform problem reformulation and simplification, algorithm design,
datatype refinement, expression optimization, and finally code generation. The following
sections describe the steps in the Planware design process in more detail.

The most time consuming and novel aspect of this work is the automatic construction of a
domain theory for the particular scheduling problem. In the KIDS system, this construction
typically required weeks or months of time. In Planware this time is reduced to minutes,

but for a sharply restricted domain.

5.1. Abstract scheduling problems

Abstractly, we consider a scheduling problem to be a set of reservations, where each reser-
vation consists of a start-time, tasks to be accomplished and resources allocated. We do not
specify the tasks and resources in detail, since these may vary from one scheduling domain
to another. We specify an abstract scheduling problem as a function that takes a set of
tasks and a set of resources as input, and returns a set of reservations (a schedule) that
accomplishes all tasks and uses only the provided resources. '

In the current system, the abstract scheduling spec is limited to problems of scheduling a

“single class of resource; e.g. scheduling cargo on aircraft, or scheduling the duty periods of
personnel. Our next challenge is extending the abstract scheduling spec to allow multiple
classes of resource, and the constraints on their interactions.

5.1.1. Abstract schéduling specification

The abstract scheduling problem is formulated as a structured spec. This structuring buys us:
reusability, extensibility, implementability and evolutionary support of (re-)design. Basically,
Planware’s abstract scheduling specification has the following components:

Time - time is a total order,

Cap - capacity is a linearly ordered gréup,
Pre-Sched - a set of abstract reservations,
Res - an abstract resource spec,

Task - an abstract task spec,




Res-Sched - an abstract schedule for resource allocation,
Task-Sched - an abstract schedule that accomplishes tasks,
Sched-Base — a set of abstract reservations,

Scheduling - an abstract scheduler with two key constraints: all tasks are scheduled and
only the provided resources are used.

This version is, however, a much simplified description of the actual spec in the system. The
spec-diagram of Figure 6 shows their dependencies. ‘

Ti

R

Res—éc ed Tagk-Sched

Sc 61- ase
Scheduling
Figure 6: Scheduling System Architecture

Some of the specifications in this diagram are presented in Figure 7. Note how the attributes
of Task and Resource are expressed as functions on those sorts (e.g. max-capacity). As new
attributes are added under user guidance, we simply add new function symbols to the spec.
Eventually, Planware refines Task and Resource to tuples and their attributes to projection
functions. '

5.1.2. Refining to a particular scheduling problem

Given the abstract scheduling specification, the very first step of refining to a given scheduling
problem is to get information from the user about how to refine the resource and task
components. For instance, a task in the user’s problem may have a release-date and a due-
date; if it is a transportation task then it may have an origin and destination. Currently
Planware provides a taxonomy of task attribute specs for the user to select from. This
taxonomy is straightforward to extend. Analogously, we have developed a taxonomy of
resource theories from which the user selects. The next step is to obtain constraints on the
scheduler from the user’s choices.

A key goal of Planware is to free the user from the need to read or write formal specifications.
To achieve this, we needed to find a way to lift information about tasks and resources into

9




spec RESOURCE is

import TIME, CAPACITY

sort Resource

op max-capacity: Resource -> Quantlty
end-spec

spec TASK is

import TIME, CAPACITY

sorts Task

op task-demand: Task -> Quantity
end-spec

spec SCHEDULING is
import SCHEDULING-BASE
op Only-Avail-Res-Used: Resource-Set, Schedule -> boolean
def of Only-Avail-Res-Used is
axiom Only-Avail-Res-Used(resources, valid-sched)
<=> in(a-reserv, valid-sched) => in(asset(a-reserv), resources
end-def
op All-Tasks-Scheduled: Task Set, Schedule -> boolean’
def of All-Tasks-Scheduled is
axiom All-Tasks-Scheduled is
Al11-Tasks-Scheduled (task-set, valid-sched)
<=> in(task, task- set)
=> ex(a-reserv: Reservation)
in(a-reserv, valid-sched)
& in(task, tasks(a-reserv))
end-def ,
op Scheduler: Task-Set, Resource- Set -> Schedule.
axiom CONSTRAINING- SCHEDULER is
Only-Avail- -Res-Used(resources, Scheduler(task-set, resources)) .
& All-Tasks-Scheduled(task-set, Scheduler(task set, resources))

end-spec

Figure 7: Scheduling Specifications in Specware

10



constraints on a scheduler. We observed that all of the constraints on tasks that we have
dealt with can be characterized abstractly by means of a partial order. Intuitively, a feasible
schedule of reservations must provide enough resource to meet the demand of the input tasks.
This notion of meeting task demand particularizes to a partial order on each task attribute.
For example, a due-date attribute on a task requires that the finish-time of its reservation be
before the task’s due-date (i.e. finish-time < due-date). For another example, the sum of the
weights of the cargo items in a transportation reservation must not exceed the max-capacity
of the transportation vehicle. Given partial order information about a task attribute, it is
easy to create a constraint over an entire schedule; returning to the due-dates example: if
valid-sched is the output of Scheduler(Tasks, Resources) then

fa(a-tsk: Task, a-reserv: Reservation, valid-sched: Schedule)
(in(a-reserv, valid-sched)
& in(a-tsk, tasks(a-reserv))
=> finish-time(a-reserv) <= due-date(a-tsk))

Figure 8: Due-Date Constraint

In fact, we require that a task attribute be not only partially ordered, but that it have
greatest lower bounds (i.e. be a meet semi-lattice). This requirement comes from the needs
of algorithm design — the global search/constraint propagation algorithms perform fixpoint
iteration in a semilattice.

By restricting to semi-lattice-structured task attributes, the task of constructing a formal
specification of a scheduling problem, which is usually tedlous and error-prone, is simplified
to just asking the user to input/select whether each attribute is a lower/exact /upper bound.
The corresponding constraints are constructed and asserted as output conditions of the
desired scheduler. Additional work is required to add in the appropriate constructors and
other operators for the refined datatypes of Task, Resource, Reservation, and Schedule.
At this stage, Planware also constructs a slightly Weakened version of the reservation and
‘schedule specs, called Partial-reservation and Partial-schedule. These form the basis for the
global search algorithm designed in a subsequent stage.

5.1.3. Example — transportation scheduling

In a simple transportation scheduling problem, the input tasks are movement requirements,
which are descriptions of cargo that have to be moved. In this simple version a movement
requirement includes information about ‘when the cargo is available to be moved and by
when it must arrive. So a schedule is a set of trips. Each trip has a start time and a manlfest
- the set of movement requirements.that it has been assigned to execute.

The first phase of our development is to construct a transportation scheduling speaﬁcatlon
Suppose we have enriched our resource taxonomy and task taxonomy to allow us to have
basic transportation domain information like release-date and due-date, as well as the origin
 and destination of a trip, which are expressed by key words POD and POE, respectively.

The Figures 9 and 10 show user selection interface.

N
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RELEASE-DATE
DUE-DATE
POE
POD

All of the Above
None of the Above
Do It
Abort

Figure 10: Task Taxonomy

Suppose we have selected transportation resource from the taxonomy and all task attributes
shown in the above figure. Here, the colimit operator is used to put all task attributes
together to form a domain-specific task spec. The parallel composition operator is used to
put all domain-specific interpretations together to form a domain-specific scheduling spec.

The next step in the development process, if we choose to go forward, automatically con-
structs a transportation scheduling specification via the tactics described above.

5.2. Data-type reformulation

The construction process described above produces a scheduling specification for a particular
problem. It is still formulated in terms of the schedule datatype which is a set of reservations.
This formulation is general and supports the initial problem acquisition stage in Planware,
but it is a relatively poor datatype for implementation purposes. In this stage, the Planware
design process applies a datatype refinement that is stored with the resource theory that
was chosen from the resource taxonomy. The effect is to refine Schedule = set(Reservation)
into a datatype that is better suited to the resource properties. The payoff is that we can
then simplify away some of the problem constraints because they are effectively built into
the schedule datatype. After Planware refines the schedule datatype, it invokes a context-
dependent simplification tactic [9] to simplify the constraints. '
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5.2.1. Example — transportation scheduling

After finishing the refinement of abstract scheduling to transportation-scheduling, a series
of refinements is carried out: adding complete constructors for transportation schedule data
type; refining set of reservations to a map that maps a resource to its scheduled tasks (in
sequence with increasingly start-time as ordering); etc.

The transportation scheduling problem uses a transportation resource which is a refinement
of a synchronous resource (i.e. all reservations on a synchronous resource must be synchro-
nized in the sense that two reservations must be either separated in time by at least some
minimal amount or else simultaneous — starting and ending at the same time). Planware has
refinements from set(Reservation) to map(Resource, seq(Trip)) which effectively implements
a schedule as an itinerary — for each resource we have the sequence of trips that it makes.
The characteristic synchronization constraint is then simplified from a complex disjunction
to a simple linear check over adjacent trips. For a typical input of 10,000 movement require-
ments, the original formulation will have several hundred millions ground disjuncts for the
synchronization constraint, versus about 100,000 in the refined formulation.

5.3. Algorithm design

A design theory for an algorithmic concept can be represented as a formal specification [10].
Any particular instance of that design theory corresponds to an interpretation from it to a
specification of the particular problem being solved. For instance, various interpretations
from divide-and-conquer theory to a sorting specification correspond to various sorting al-
-gorithms, such as quicksort, mergesort or Batcher’s sort. Design theories can be arranged
in a refinement hierarchy with specification morphisms providing the refinement links; e.g.
a hierarchy of algorithm theories is presented in [8]. The concepts and procedures described
below are intended to automate the process of algorithm design by choosing a chain of algo-
rithm design theories for a particular problem, and by constructing an interpretation from
the chosen design theory to that problem. Thus, an algorithm for the specific problem is
constructed. '

The representation of our algorithm design framework can be illustrated by the diagram in
Figure 11, let us call it an algorithm design cube, or simply the cube in this paper. The arrows
in the cube represent the relationship between abstract theory and the concrete problem.
Technically, the left square in the cube is a spec-diagram corresponding to the abstract
algorithm design knowledge; the right square in the cube corresponds to the domain-specific
problem and program scheme. The arrows in between are interpretations. Essentially, the
design tactics described below are based on sequential and parallel refinement composition
operators, as well as others. In the following the intended meaning of each arrow (and spec)
and the way to construct them is described in detail. - ' o

At the very beginning, we have only the node DRO labeled with the abstract problem domain
theory, as it can be seen in the above algorithm design cube. When a concrete (or domain-
specific) problem specification is chosen (along with the main function to be developed), a
problem domain specification can be extracted from it (and it is done via an extraction tactic
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Figure 11: Algorithm Design Diagram

that gives an interpretation as result). So, the upper morphism on the right side of the cube
is constructed. :

The second arrow construction tactic, the domain-specific interpretation tactic, is a little
more complex. The domain-specific interpretation tactic works as follows, first, use the
main function signature to construct an interpretation from DRO to the problem domain
specification. Second, using DRO and the main function signature, a DROF spec is chosen
from the possible solutions specifications, e.g. all solutions spec, one solution spec and
optimal solution spec, etc. Third, compute the colimit of the spec-diagram that include
DRO, the domain-specific problem domain specification and DROF, which gives, among
others, an interpretation from DROF to the colimit object. Finally, we check that the
computed colimit is isomorphic to the domain-specific problem specification. In doing so, we
have constructed and constructively proved that the base diagram of the computed colimit,
namely, DRO, DROF and the problem domain specification is a cover of the domain-specific
problem specification. Informally speaking, we can use DRO, DROF, and the problem
domain specification to construct a program scheme, and that will be a program scheme for

our specific problem too.

The third arrow construction tactic is called classification and it involves a process called
ladder construction (see [8] for details). Here we only give a brief description of it in the
context of algorithm design. Basically, this tactic consists of two steps: (1) selecting an
appropriate design theory from a refinement hierarchy of design theories, and (2) constructing
an interpretation. The first step is in general interactive, but can be automatic in certain
domains (e.g. scheduling domains). The second step is accomplished via the incrementally
constructing an interpretation, which is constructed by a constraint solving process that
involves user choices, the propagation of consistency constraints, calculation of colimits, and
constructive theorem proving. This is illustrated in the ladder construction diagram in Figure

12.

The result of the classification and ladder construction tactic is an intérpretation from an
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algorithm design theory to the problem domain.

The last tactic, the program scheme instantiation tactic, computes a colimit of the diagram
that consists of algorithm design theory, its program scheme and the extended problem
domain. The colimit object is domain-specific program scheme. Last but not the least,
there must be a specification morphism from domain-specific problem spec to the constructed
program. This is constructed and constructively proved to always exist by universal property
of colimits.

- With these four tactics, given a concrete problem, we can semi-automatically construct a
program theory for that problem based on the selected and successfully interpreted algorithm
design theory. Normally, further steps are needed to make it executable or more efficient.

The first design theory used in Planware is global—search theory and its extensmn with cutting
constraints. Since this decision is fixed it is applied with no need for further interaction.
Another algorithm design tactic used is constraint propagation. This amounts to generating
basic constraint propagation procedures given a kind of scheduling problem domain, and
synthesizing domain-specific constraint propagation procedures after the instantiation phase.
Basically, that amounts to generating constraint propagation procedures for a set of upper
bounds, exact bounds and lower bounds of domain-specific constraints. Technically, this is
related to data type refinement to get the right constructors for each data type used in the
constraints; and to the instantiation of the corresponding semi-lattices. After getting all
the constraint propagation procedures, they are composed together and a flat semi-lattice is
constructed that consists of a tuple of all component semi-lattices. Notice that this can only
be done dynamically, since the constraint structure varies from one domain to another.
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5.3.1. Example — transportation scheduling

The result of algorithm design is a domain-specific global search algorithm for the transporta-
tion scheduling problem (Figure 13), which is an instantiation of figure 11. That has cargo
and pax capacity constraints, release and due date constraints, trip origin and destination
constraints, as well as trip separation constraints.

Dro-Spec ' >Sched —l&
.\D rof= -Sched

Gs-F il& Ext—Dm\
V. .s.-

Prog Tr-Gs-Prog

Figure 13: domain-specific algorithm

5.4. Expression optimization

This stage will apply various expression ‘optimizra,tion refinements, such as context-dependent
simplification, common-subexpression elimination, finite differencing, partial evaluation, and
so on. These are not currently applied in Planware.

5.5.  Automatic code generation

We have developed a code-generation tactic that automatically generates code for a struc- -
tured spec, provided the structure is (recursively) of the following form:

1. directly implementable,

definitional extension or a translation of an implementable spec,
colimit, each component of which is implementable (recursively),

‘instantiation of implementable specs,

AN S S

can be interpreted to an implementable spec.
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If there are multiple choices, we use a heuristic to decide which way to go. In the Planware
context, given the scheduling system architecture, we can generate code for it if each in-
stantiated component is implementable, and we further specialize the code-generation tactic
by a specific implementation order imposed by the dependencies of the scheduling systems
architecture. ‘ :

6. Synthesis of customized planners |

Existing plan synthesis approaches in artificial intelligence fall into two categories — domain
‘independent and domain dependent. The domain independent approaches are applicable
across a variety of domains, but may not be very eflicient in any one given domain. The
domain dependent approaches need to be (re)designed for each domain separately, but can
be very efficient in the domain for which they are designed. One enticing alternative to these
approaches is to automatically synthesize domain independent planners given the knowledge
about the domain and the theory of planning. As part of our research, we investigated
the feasibility of using existing automated software synthesis tools to support such synthe-
sis. Specifically, we developed an architecture called CLAY in which the Kestrel Interac-
tive Development System (KIDS) is used to derive a domain-customized planner through
a semi-automatic combination of a declarative theory of planning, and the declarative con-
trol knowledge specific to a given domain, to semi-automatically combine them to derive
domain-customized planners.

The practicality of our approach is predicated on the availability of a software synthesis sys-
tem capable of deriving code from formal specifications. KIDS is a powerful semi-automated
~system for development of correct and efficient programs from formal specifications. Given
a domain theory and the input/output specification of a task, KIDS system helps in synthe-
sizing a program capable of solving the task. The input to KIDS is a task theory comprised
of the task specification and a declarative description of useful concepts and rules to reason
in the task space. In this research, we give planning as a task to KIDS and expect it to syn-
thesize and return a planner as the solution. The planner can then take planning problems
as input and return results (plans).

In order to support planner synthesis, we have to develop and input a theory of planning
to KIDS. Traditional plan synthesis techniques can be described in terms of a common
plan representation, with different planners corresponding to different ways of refining the
partial plans such as progression, regression and plan-space refinements. Consequently, our
planning theory will consist of a specification of the planning task (in terms of input and
output data types) and one or more refinement theories. Since we are also interested in
domain-customized planners, we have to provide the necessary domain knowledge to KIDS.

Given these inputs, KIDS semi-automatically synthesizes a program (in this case, a domain
dependent refinement planner) using generic algorithm design tactics (such as branch and
bound, global search). The resulting planner, like conventional planners, can handle any
v plannlng problem from the domain. ’
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Figure 14: Architectural overview of planner synthesis with KIDS in the CLAY approach.
The theories of refinement planning and domain knowledge are declaratively specified to
KIDS which in turn combines them to produce a customized planner for the domain. The
resulting planner, like conventional planners, can handle any planning problem from the

domain.
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Figure 15: The CLAY architecture for writing planning theory. Each level answers a question‘
relevant to that level of planning detail. CLAY uses KIDS’ feature of theory import to
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To understand the efficacy of plan synthesis in CLAY, we concentrated on the synthesis of
planners using state-space refinement theories.! Empirical evaluation shows that these syn-
thesized planners can be very efficient. For example, in the blocks world domain where the
goal was stack inversion, a KIDS synthesized planner solved a 14 blocks problem in under
a minute. In the logistics domain, a problem with 12 packages, 4 planes and 8 places was
solved in under a minute. Similarly, in the Tyre domain, the “fixit” problem was solved
in under a minute. To put these performance results in perspective, we compared KIDS’
synthesized planners to a set of classical planners implemented as the instantiations the UCP
planning system. In our experiments, the best of the KIDS’ synthesized planners outper-
formed the best of the UCP instantiations when given the same domain-specific information.
We hypothesize that this is because KIDS can profitably fold-in the doma1n—spec1ﬁc control
knowledge (i.e., the domain theory) into the planning code.

Our approach strikes a promising middle-ground between domain independent and domain
dependent planners. The theories of planning are encoded independent of domains, and the
domain control knowledge can be encoded independent of the specific planning theory being
used. The customization step compiles the domain control knowledge into the planning
algorithm and ensures that ‘the resulting planners are able to exploit the structure of the
domain. :

Results of this work have been published in the Journal of Aritificial Intelligence Reséarch,
as well as in the Proceedings of 1997 Automated Software Engineering conference.

7. Concluding remarks and future work

We have presented our Planware system for generating domain-specific high-performance
scheduling software in a highly automated way with minimal user input. Planware is an ex-
tension of the Specware formal development environment. Scheduling domain knowledge has
been represented abstractly and formally to enable user problems to be solved with minimal
- interaction. In particular, the resource and task taxonomies which specify general/domain-
specific scheduling knowledge have been developed as well as their architectural relationship
with the scheduling system architecture. For synthesizing domain-specific schedulers, a set
of design tactics for instantiation to the concerned problem, data-type refinement, algorithm
design with constraint propagation, and automatic code-generation have been developed and
successfully applied. We have experimented Wlth the transportatlon scheduling domain and
developed a variety of schedulers

We believe that Planware is a new paradigm for domain-specific software generators. Plan-
ware differs from other domain-specific software generators in that it is built on a founda-
tion of domain-independent general-purpose software specification and synthesis capabilities
(Specware/ Designware). In particular, Planware relies on

1. the Specware capabilities for composing specifications, reﬁning. them and translating
to code; :

'In future, we plan to extend our approach to plan-space and task-reduction refinements.
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9. the Designware libraries of domain-independent design knowledge about algorithms,
datatype refinements, and expression optimization techniques (and their application -
tactics) to construct refinements.

The domain-specificity of Planware comes in the form of

specifications of domain knowledge - the abstract scheduling specification, the tax-
onomies of task and resource theories, etc. ' : :

scheduling spec construction tactics - tactics for lifting properties of tasks to con-
straints on the scheduler, tactics for lifting resource constraints to scheduling con-
straints, tactics for constructing the constructors and other datatype operations needed

by the refined Task, Resource, Reservation, and Schedule specs,

embeded algorithm design tactic - tactics for generating a gloBal search theory for the
scheduling problem at hand, etc. '

The background of domain-independent design knowledge allows a user to derive software
even when the requirements fall outside the domain-specific scope of the system. The user
then gets less automation, and must supply more guidance in the construction process.

There are many things to be done before Planware can be deployed. One crucial exten-
sion is allowing the user more flexibility in supplying task information. We are developing
a spreadsheet-like interface that is derived from the user’s choice of resource theory and
presents the user with plausible options for lower/exact/upper bounds on all crucial at-
tributes of a reservation for that kind of resource. We are working to let the user choose and
modify arbitrary entries. As before the user only interacts with the system in domain-specific
terms. Another vital extension is to generalize the abstract scheduling spec to multiple re-
source classes. Another extension that is underway is to extend Planware to allow -the
synthesis of scheduling systems, including visual displays, editors, GUI, database mediators,
and so on. ‘
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