SANDIA REPORT
SAND2000-0729

\ff‘"fv\ Unllmlted Release
> 9 Printéd August 2000
”F\/’(\ — \J \
o S (. f/\r’

L s
fA\(ConflguratTl“e Object-Oriented,

Transportatlon»System Software
Framework AT

/f

f ,
/ \ S ff\ f/ ///,

\\\ */'

Suzanne M. Kelly, John W. Myre, MarkH Price, Eric D. Russell and Dan W. Scott

Prepared by /
Sandia Nationgl-Laboratories

Albuquerque/New Mexico 87185 and Livermore, California 94550

-
e

Sandia ls/a multlprogram Iaboratory operated by Sandia Corporation,

a LockHeed Martin Company, for the United States Department of P& f"ﬁ t , v E’
Energy under Contract DE- AC04-94AL.85000. D

T AUS 22 2000

Approvedfor public release; further dissemination unlimited.
)
OST]

@ Sandia National Laboratories

-

. - oy - e T : Yo e s, T T2 OS]
T O YA g4 ARl S SO I 2 1S AT, ST M SO e e S T T R R T N e oA e T PN

T 20

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401

Facsimile: (865)576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847

Facsimile: (703)605-6900

E-Mail: orders@ntis.fedworld.gov

Online order: http://www.ntis.gov/ordering.htm

B N X A RIAEET Sy R R Tt -
L ke T T R TR O T Ly AR e e, L 5 vy 8

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

e

SAND2000-0729
Unlimited Release
Printed August, 2000

A Configurable, Object-Oriented,
Transportation System Software Framework

Suzanne M. Kelly and John W. Myre
SECOM Systems Department

Mark H. Price
Communication Systems Department

Eric D. Russell
Scalable Computing Systems Department

Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM

Dan W. Scott, TECH REPS INC
Albuquerque, NM 87110

ABSTRACT

The Transportation Surety Center, 6300, has been conducting continuing research into and devel-
opment of information systems for the Configurable Transportation Security and Information

Management System (CTSS) project, an Object-Oriented Framework approach that uses Compo-
nent-Based Software Development to facilitate rapid deployment of new systems while improving
software cost containment, development, reliability, compatibility, and extensibility. The direction
has been to develop a Fleet Management System (FMS) framework using object-oriented technol-
ogy. The goal for the current development is to provide a software and hardware environment that

will demonstrate and support object-oriented development commonly in the FMS Central Com-
mand Center and Vehicle domains.

MR s Y RS TAWASS 2l RN 00> SN

Acknowledgment

The authors thank the other members of the CTSS develop-
ment team Robert N. Cook and Karl L. Green as well as our

managers for their efforts in helping realize the CTSS software
product.

A Configurable, Object-Oriented, Transportation System Software Framework

Contents

Executive Summary 1

GOALS eeeeeereeeeeeresiereeeeneeensaeeeerassstesete e s ssessasensesra et aesan e b eneensanes 1

RatioNaleooooviieeieieeeecetee et et eeccacss et sssan e s 2

Framework Advantages . -2

Component-Based Development Advantages 3

ATCHItECTUTE ..eveeeiereeeeeeeeneeeeeeeseeernceeeeeesaseennssessnsesssessssaessnsnnsnensns 4

Fleet Management System Domains 4

Framework Levels 4

Scope Of WOTK .ottt 5

Application Level 5

Framework Level 5

Middleware Level 6

Platform Level 6

CONCIUSIONS evreeevrerriecreeesteeereeseeesesessssescncersameessessssresessessssessnasssases 6

Successes 7

Disappointments 7

SECTION 1 Introduction 9

1.1 PUIPOSE oottt se e n 9

1.2 SCOPE corereteeteceeinttenesicseste e e e e e st a et e ene 9

1.3 Definitions, Acronyms, and Abbreviationscccceeeeeveeeeieniennans 10

1.4 REfEIEICES .ooceevieereeieerececrreeneeretesaesaesssneessessnesssenstasssasssassnassaannas 16

1.5 Personnel ..ot ettt s rs e s n e as 16

SECTION 2 Project Goals and Rationale 19

2.1 GOAIS ceeeeeieeeeeieeeenr e e ete e ee e ese st s s a e aa e a s e s s s e st ns 19

2.2 RaAHONAIE ..ooveeeeereieeceeereeetireeeceeecenreeesseesesssenasssssesssnasassssessssananes 20

August, 2000 iii
P TR L R BV TR TTRIER T TSRS N VERS e

Contents

2.2.1 Object-Oriented Technology and the Object-Oriented Framework 20

2.2.2 Component-Based Software Development —.......cooeeeeeeeenerenne 20
2.2.3 Software Development Approaches reteeeetenete et et r s seesesnen 22
SECTION 3 Architecture 29
3.1 ImPIEmMENtAtion ..ccceceeceererneerieerneeneeeeraeseeneeceeeseestesaeentssessesasenas 29
3.2 DOMMAINS eeoeceeuieieeiertretetetetscesseeaeesessaeseesaeseenssssesesacestessesseessnens 30
3.3 Functional Levels ..ottt 31
3.3.1 Application Leveleeceeeceecrerreecneeeeessansaeeasasnnsees 33
3.3.2 Framework Level 33
3.3.3 Middleware Leveleieeeiereeeeereareeeernanesscssnsenesasesasssasansassesessonss 35
3.3.4 Platform Level 35
SECTION 4 Design Detail 37
4.1 Command CENETcccccevererreeeeerrerreeereressresaeesteseeseeseeesesnessarases 37
4.1.1 Framework Level 37
4.1.2 Middleware Leveloeiiaonincacinrinnnvnnee e eeesasesecestasesaessconses 43
4.1.3 Platform Level . 44
4.1.4 Software Configuration Managementcooceceevveneecrecercesceascrecessenses 45

4.2 VENICIE oottt ceteet ettt et e st 45
4.2.1 Framework Level ... eoreceeeecsesereeieneseeesaeeessnsseseesasaneonsossosses 45
4.2.2 Middleware Level eereresteasarteatraas et s s e sar s anantaneamrnaes 49
4.2.3 Platform Level eeeeretenttanttesan et e e rene e et st eneas 49
4.2.4 Software Configuration Management - .50

APPENDIX A Vehicle Framework: Development

History and Lessons Learned 51
APPENDIX B Command Center Framework: Lessons Learnedeeeeeeeeeveeee 63
APPENDIX C Example Implementations 69

iv August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

LIST OF FIGURES
Figure 1 Cost and benefits of Object-Oriented Framework approach.cooeeveeninnnnee 3
Figure 2 An overview of component development approaches (from Kara, 1998). 21
Figure 3 Procedural programming approach. 23
Figure 4 Procedural versus framework approach. 27
Figure 5 Domains of a Fleet Management System 31
Figure 6 CTSS Framework functional levels. 32
Figure 7 Multiple host non-redundant client/server daemon pattern. ececeeeeeceecrcenees 34
Figure 8 Application using multiple CTSS transportation objects in the vehicle fleet and
command center. 69
Figure 9 Example of two vehicles using CTSS. 70
Figure 10 Application interface for CTSS-based vehicle. 71
Figure 11 Example of two command centers using CTSS. ... 72
Figure 12 MAP/Tracker application interface for CTSS command center. eceveneee 73
Figure 13 CTSS usage in SECOM Proof of Concept 74
Figure 14 CTSS usage in Satellite Camera Application. 75
Figure 15 CTSS usage in STORC Vehicle Application. 76
Figure 16 CTSS usage in STORC Command Center Application. 77
LIST OF TABLES
Table 1 CTSS Communication Objects 38
Table 2 CTSS Container Status Objects 38
Table 3 CTSS Information Management Objects 39
Table 4 CTSS Mapping Objects 39
Table 5 CTSS Message Handling Objects 39
Table 6 CTSS Tracking Objects 40
Table 7 CTSS Trailer Monitoring Objects 40
Table 8 CTSS Communication Objects 45
Table 9 CTSS Information Management Objects 46
Table 10 CTSS Message Handiing Objects 46
Table 11 CTSS Tracking Objects 46
Table 12 CTSS Trailer/Cargo Monitoring Objects 47
Table 13 CTSS Incident Management Objects 47
Table 14 CTSS System Diagnostics Objects 47
Table 15 CTSS System Configuration Objects 48
Table 16 CTSS Operator Interface Objects 48
Auugust, 2000 v

R T b

Contents

This page left intentionally blank.

vi

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Executive Summary

This document defines the software development for the Configurable
Transportation Security and Information Management System (CTSS)
project. It describes the CTSS Object-Oriented Framework and the CTSS
Component-Based Software Development approach.

CTSS is being developed to provide the center with an information man-
agement infrastructure suited to transportation surety that can support
production system upgrades and allows for the rapid development of
applications suited to new transportation customers. The product is a
library of components that developers can use, extend, and customize for
a specific transportation application.

Goals

The CTSS project has selected an Object-Oriented Framework architec-
ture and a Component-Based Software Development approach to meet
the following goals:

rapid development of highly customized applications

« increased developer productivity

« reduced costs for software development and maintenance

« increased software quality (i.e., enhanced reliability and robustness)
« improved software maintainability and modifiability

 computer platform independence

« better integration with legacy systems

August, 2000

-+~ —— S
TR TERRSITT R LT ETL AL

easier extendability to new transportation applications and other appli-
cations.

Rationale
To maximize the benefits of Object-Oriented Technology, the project is

developing an Object-Oriented Framework—a set of prefabricated
software building blocks (objects) that programmers can use, extend,
or customize for specific computing solutions

using a Component-Based Software Development approach, which
builds systems by means of combination, aggregation, and integration
of pre-engineered and pretested software objects.

As a result, developers benefit from a higher level of code and design
reuse than what is practical with other design approaches. Developers
using other approaches, which rely on procedural programming tech-
niques, cannot easily find the infrastructure and design guidance that is
built into framework components.

Framework Advantages
Key advantages of the Object-Oriented Framework approach include:

Infrastructure and architectural guidance. Much of the needed
functionality already exists in the framework, thus reducing coding,
testing, and debugging efforts. Applications developed using an
Object-Oriented Framework approach tend to be smaller, as well as
more robust, maintainable, and reusable.

Mechanism for reliably extending functionality. Applications are
developed by using the framework as a starting point and writing
smaller amounts of code to modify or extend the framework’s behav-
ior. Compatibility and interoperability are not sacrificed because the
interfaces are well defined.

Reduced maintenance. When a framework bug is fixed or a new fea-
ture is added, the benefits of those changes become available more
quickly to the derived classes. Also, changes are made only in one
place, thus, the chance of introducing additional errors in the code is
minimized.

Code reuse. By developing code as decoupled, stand-alone units,
other developers or customers may be able to make use of the code
developed for their own products.

Robustness. Objects by nature can be tested much more completely
than procedural programs, resulting in a more robust component.

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

* Long-term savings
» Leverages domain experts' experience

It is important to note, however, that benefits are not necessarily immedi-
ate. The Object-Oriented Framework requires a long-term investment in
learning, documentation, maintenance, and support, as Figure 1 shows.

Component-Based Development Advantages

Component-Based Development is the process of building systems by
combining, aggregating, and integrating pre-engineered and pretested
software objects. The Object-Oriented Framework approach described
above is one manifestation of component-based development. However,
the CTSS project is not limited to framework components and the objects
they incorporate. The CTSS project is also integrating complete applica-
tion programs for pre-anticipated needs. CTSS provides application pro-
grams for such typical functions as communication control and message
handling.

* Requires more effort
to build and learn

* Framework requires
documentation, maintenance,
and support

* Promote consistencey and better
integration across platforms

« Reduces maintenance—fewer lines of
code in applications, framework fixes
propagate through applications

* Enhances productivity—programmers
can focus on their applications’ unique

features

Figure 1

Cost and benefits of Object-Oriented Framework approach.

August, 2000

A ERAST D

R A IR o SE DI M P s el Tetbua A% g

Architecture

Fleet Management System Domains
The CTSS Framework defines a Fleet Management System as containing
some set of the following domains:

» Command center domain (e.g., resource allocation, mapping, vehicle
interface, operator interface)

» Vehicle domain (e.g., resource monitoring, driver interface, emer-
gency notification)

 Trailer domain (e.g., sensor monitoring, countermeasures, container
interface)

» Container domain (e.g., materials monitoring).

CTSS concentrates on the Vehicle and Command Center domains and
provides framework objects for interfacing with the other domains. Soft-
ware in the Trailer and Container domains have constraints that the CTSS
framework layers described below, do not support. Trailers and contain-
ers typically utilize embedded processors which have limited functional-
ity operating systems and compilers. In addition, they support only a few,
specialized external interfaces.

Framework Levels
The CTSS Framework consists of the following four functional levels:

» Application Level. The Application Level consists of high-level
applications written for tasks using common objects, application stan-
dards, and standard communication between applications provided by
the Framework Level services. The application level is the responsibil-
ity of the developer using CTSS components. As mentioned previ-
ously, CTSS provides a few applications programs that are routinely
used by transportation systems.

» Framework Level. The Framework Level interfaces to the Middle-
ware Level and the Application Level. It is the core of CTSS develop-
ment. The Framework Level consists of transportation-specific objects
that an application developer can utilize to build a tailored, customer-
specified application.

« Middleware Level. To provide support for the maximum number of
vendors, the Middleware Level is COTS system integration software,
which may be purchased or shareware. It provides application-inde-
pendent objects with service-oriented functions such as interprocess
communications, intraprocess communications, encryption algo-

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

rithms, distributed logging, distributed events, shared memory, and
time synchronization.

« Platform Level. The Platform Level consists of the vendor-supplied
software and hardware. The platforms are Windows 95/98/NT running
on PC hardware for the Vehicle domain and Windows NT in the Com-
mand Center domain. The command center also supports UNIX run-
ning on Silicon Graphics, Data General, or Compaq hardware.

Scope of Work

Application Level

Work in the Application Level includes development of the sample/proto-
type applications in the Vehicle domain:

o Fleet data communication using the QUALCOMM satellite system.

« Fleet data communication using the ORBCOMM satellite system.

« Fleet data communication using telephonic communication devices.

e Real-time tracking using a GPS unit.

« A graphical user interface which sends and receives messages to/from
the command center domain

« Integration with trailer monitoring/communications.

These applications will complement the applications prototyped in the
Command Center domain:

« Fleet data communication using the QUALCOMM satellite system.
Fleet data communication using the ORBCOMM satellite system.
Fleet data communication using telephonic communication devices.

A graphical user interface for messages and database queries.
A mapping/tracking subsystem.

Some programs from the MAP/Tracker project are reused as the basis for
the command center application work.

Framework Level

The bulk of CTSS development efforts are in the Framework Level.
Transportation-related entities have been defined as software objects.
These objects are described later in this document, and are more fully
defined in terms of their state and behavior in the CTSS Component

Library Reference Manual.

August, 2000

FRE S S A A (S S i

Lo TR TSy X - TR Pl

Example objects in vehicle domain are: GPS, Qualcomm, and Tele-
Comm. Example objects in the command center domain are Vehicle,
Sensor, LatLong, KeywordMessage, as well as complementary Qual-
comm and TeleComm objects.

Some objects from the MAP/Tracker project are reused in the Framework
Level.

Middleware Level

COTS software for the following have been identified, procured, and

integrated:

« device communication drivers

* encryption algorithms

« communications software to provide a wide spectrum of interprocess
communications functions

» database management systems to provide a persistent, client-server
architecture for storage of objects

o distributed logging
e auser-interactive agent (e.g. voice capture and message annunciation).

Piatform Level

At the Platform Level, initial development will be done on the following
platforms:

» Windows 95/98/NT (Vehicle domain)

¢ Windows NT (Command Center domain)

+ UNIX (Command Center domain).

The following compilers and tools are being used:
e C++ (Command Center domain)

» Visual Basic (Vehicle domain)

 runtime debuggers

Conclusions

Development of the CTSS software is complete. In general, CTSS has
been a successful endeavor, as evidenced by the number of number of
implementations described in Appendix C. As with any project, there

have been areas that were very successful, and others that were not.

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Successes

The architecture greatly enhanced the ability to develop compatible com-
ponents. By predefining the fleet management system domains and the
framework levels, clear interface demarcation points were a natural out-
come.

The goal of “rapid development of highly customized applications™ was
achieved. The STORC application described in Appendix C.4 gives evi-
dence to this achievement.

The goals of “increased developer productivity” and “reduced costs for
software development and maintenance” applied only to the specific
applications developed using CTSS. Because of their generalized nature,
component development takes 50% longer than software developed to a
specific set of customer requirements.

The goal of “improved software maintainability and modifiability” was
achieved because it was so easy to extend the components for specific
applications. For example, the CTSS messaging capability allowed tre-
mendous flexibility as each application had specific information manage-
ment requirements. Fixed message types would have required significant
rework for each application. Instead, the keyword message used by CTSS
allowed for extension and definition of new keywords with virtually no
changes to the primary class.

The goal of “better integration with legacy systems” was not verified on
the vehicle side. There were no specific applications developed with this
goal in mind. The command center software was able to successfully
integrate with the existing legacy system in the Sandia Proof of Concept.
(See Appendix C.2.)

The goal of “easier extendability to new transportation applications and
other applications” was shown when CTSS was integrated with the Cargo
Monitoring System. This system provided features in all domains of a
fleet management system. Also, as part of the CTSS work, a white paper
described how to extend CTSS to cooperate with a fixed-site Material
Monitoring System. While the implementation was never done, the
design appeared feasible.

Disappointments

The goal of computer platform independence was not achieved. Visual
Basic was the only language which provided sufficient robustness and
functionality needed for the CTSS vehicle-based components. Visual
Basic only runs on Windows-based operating systems.

August, 2000

R i e e e 2aa i T ——— T ey L

The goal of “increased software quality” was not verified or refuted dur-
ing the CTSS development. It will require the test of time to determine if
the software is more robust and reliable than that achieved by software
developed using other design philosophies.

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

SECTION 1 Introduction

1.1

1.2

The Configurable Transportation Security and Information Management
System (CTSS) software project is a framework-oriented, component-
based development initiative funded by Sandia National Laboratories’
Weapon Materials Stewardship (WMS) Program. The theme of the WMS
Program is to integrate technologies from the activity areas (e.g., Security
Technologies, Monitoring Systems, Advanced Sensors, Containers,
Transportation, and Automated Handling) to provide an integrated, com-
prehensive weapon materials management capability that can be applied
to multiple application areas (e.g., Pantex, other DOE, other U.S., Russia,
and IAEA).

Purpose

The purpose of this document is to describe the software component-
based development approach and architecture being used by the CTSS
project. The intended audience for this document is the CTSS develop-
ment team, independent architecture reviewers, developers utilizing the
CTSS software, and program management.

Scope

This document focuses on development of the CTSS framework. This
document does not provide designs for a specific system.

August, 2000

g e NRET, me YETT RN, T W\

Taber Al £y e mi i tor s o Taceriy sennliuling I S AR, : w5/ X O U

1.3 Definitions, Acronyms, and Abbreviations

The following definitions, acronyms, and abbreviations are used in this
document or may be used in CTSS-related discussions.

abstractclass . . .

A class whose primary purpose is to define an interface.
An abstract class defers some or all of its implementa-
tion to subclasses. An abstract class cannot be instanti-
ated.

Automatic Position Location system

Adaptive Communications Environment, shareware that
provides communication services such as connection
configuration, interprocess communication, and named

pipes.

application system An operating system-independent software environ-

big-endian

ment that supports applications and the way they inter-
act with users, other applications, and distributed
systems.

Describes a computer architecture in which, within a
given multi-byte numeric representation, the most sig-
nificant byte has the lowest address (the word is stored
“big-end-first.””) Most processors, including the IBM
370 family, the PDP-10, the Motorola microprocessor
families, and most of the various RISC designs are big-
endian. See little-endian.

One of the most used object-oriented languages, a
superset of C developed primarily by Bjarne Stroustrup
at AT&T Bell Laboratories in 1986. In C++, a class is a
user-defined type, syntactically a struct with member
functions. Constructors and destructors are member
functions called to create or destroy instances. A friend
is a nonmember function that is allowed to access the
private portion of a class. C++ allows implicit type con-
version, function inlining, overloading of operators and
function names, and default function arguments. It has
streams for I/O and references. C++ 2.0 (May 1989)
introduced multiple inheritance, type-safe linkage,
pointers to members, and abstract classes. C++ 2.1 was
introduced in [“Annotated C++ Reference Manual”, B.
Stroustrup et al., A-W 1990] supporting templates,
exception handling, name spaces, and run time type
identification.

10

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

class A template for defining the behavior of a particular type
of object. Objects of a given class are identical in form
and behavior. In C++, a class has zero or more data
members and zero or more member functions referred to
as the class interface. The class has levels of program
access, public, protected, or private. Non-public level
representation enforces encapsulation. The class has a
name.

class library A collection of one or more classes that programmers
use to implement an area of functionality. Compare:
framework.

client-server architectureA common form of distributed system in which
software is split between server tasks and client tasks. A
client sends requests to a server, according to some pro-
tocol, asking for information or action, and the server
responds. There may be either one centralized server or
several distributed ones. This model allows clients and
servers to be placed independently on nodes in a net-
work, possibly on different hardware and operating sys-
tems appropriate to their function, e.g. fast server/cheap

client.

COM.......... Component Object Model, an object sharing technology
developed by Microsoft.

component (a) Any standard, reusable, previously implemented

unit that is used to enhance the programming language
constructs and to develop applications. [Jacobson] (b) A
physical and replaceable part of a system that conforms
to and provides the realization of a set of interfaces.
[Booch]

component-based developmentDevelopment that primarily consists of inte-
grating instances of previously defined classes of
objects.

CORBA........ Common Object Request Broker Architecture, which
specifies a system that provides interoperability between
objects in a heterogeneous, distributed environment in a
way that is transparent to the programmer.

COTS......... commercial off-the-shelf
coupling....... The degree to which software components depend on
each other.
August, 2000 1

domaintask

extensibility

framework

encapsulation . . .

The Configurable Transportation Security and Informa-
tion Management System (CTSS) project

a program that runs unattended to perform a standard
service without overly interfering with the computer
system’s resources.

Data Base Management System

Distributed Component Object Model, a protocol that
enables software components to communicate directly
over a network in a reliable, secure, and efficient man-
ner. DCOM was developed by Microsoft Corporation

with the Microsoft Windows NT 4.0 operating system.

Data Encryption Standard
The Department of Energy

A task that involves customized applications, such as
banking transactions or the Fleet Management System
(FMS), or one involving a specific area of functionality,
such as multimedia.

A property that allows additions and modifications to
existing classes. There are several kinds of extensibility:
(1) new classes may be defined, commonly based on
existing classes; (2) existing classes may be modified to
add new operations, attributes, constraints, or imple-
mentations, extending the protocol of the class; and (3)
existing instances may acquire or lose a type (e.g. as
when a “student” becomes an “employee”). The term
“schema evolution” is used for operations that modify
existing class definitions or the inheritance graph; the
term “instance evolution” is used for the process of
making existing instances consistent with modified class
definitions.

A set of prefabricated software building blocks that pro-
grammers can use, extend, or customize for specific
computing solutions. With frameworks, software devel-
opers do not have to start from scratch each time they
write an application. Frameworks are built from a col-
lection of objects, so both the design and code of a
framework may be reused.

An object-oriented programming technique that keep
each object’s data and logic hidden from other objects

12

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

legacy system. ..

little-endian.

MAP/Tracker

so that the only thing an object “knows” about another
object is the object’s interface.

Fleet Management System, a communications system
that tracks, communicates with, and monitors vehicles
and possibly their cargo in real-time.

Global Positioning System

Graphical User Interface

International Atomic Energy Agency

A property that allows an object class to have the same
behavior as another class and extend or tailor that
behavior to provide special action for specific needs.
While primarily considered a programming language,
JAVA also provides an architecture and an environment
for program development. The architecture provides
portable, multi-threaded applications over heteroge-
neous hardware. The environment includes a wide range
of tools all developed for the JAVA Virtual Machine.
The language is an evolution of C++ and provides famil-
iar constructs in an object-oriented context.

A computer system or application program which con-
tinues to be used because of the prohibitive cost of
replacing or redesigning it and despite its poor competi-
tiveness and compatibility with modem equivalents. The
implication is that the system is large, monolithic, and
has difficult to modify interface functions.

Describes a computer architecture in which, within a
given 16- or 32-bit word, bytes at lower addresses have
lower significance (the word is stored “little-end-first”).
The PDP-11 and VAX families of computers and Intel
microprocessors and a lot of communications and net-
working hardware are little-endian. See big-endian.

An object-oriented real-time material-tracking and
emergency-response system developed by Sandia
National Laboratories. MAP/Tracker also provides a
data viewer to the object-oriented databases that MAP/
Tracker is based on.

Materials Management and Control

multi-tier architectureAn architectural style in which each tier performs a

pre-defined portion of the work. For example, in a 3-tier
architecture, the first, or most visible layer, does the pre-

August, 2000

wa STEYER

13

v e e g v i R g
s pr==aiiets Btt g ; 2

sentation which manages how users see and interact
with the system. The second layer is the functional por-
tion, which contains the application logic. The third
layer manages the data. Systems developed with this
architecture are able to “wrapper” existing systems and
combine them with new functions to produce a unified,

new system.
NIST.......... National Institute of Standards
object. A small, self-contained unit of software functionality. It

contains both data and the procedures for working with
that data. An object is defined by a class, which is a tem-
plate for an object.

OLE.......... Microsoft’s Object Linking and Embedding environ-
ment for components built on COM/DCOM.
OMG The Object Management Group, an industry consortium

whose mission is to define a set of interfaces for interop-
erable software.

OODBMS Object-Oriented DataBase Management System, a per-
sistent database providing distributed client-server
access to stored complex objects. Access is transparent
in that there are no explicit reading or writing of objects,
but the OODBMS maps the objects into the program
directly as if they were program objects. Objects cached
on the client system are accessed at the same speed as
program virtual memory references.

OOoT.......... object-oriented technology
OOP.......... object-oriented programming
ORB.......... Object Request Broker, the OMG’s standard that lets

clients invoke methods on remote objects.

persistence. The ability to store data in such a way that its existence
extends beyond the process that created it.

pipe and filter architectureAn architectural style in which each process in
the system has a set of inputs and outputs. Each process
reads streams of data on its inputs and produces streams
of data on its outputs, delivering a complete instance of
the result in a standard order. This is usually accom-
plished by applying a local transformation to the input
streams and computing incrementally so output begins
© before input is consumed. Hence processes are termed
“filters”. The connectors of this style serve as conduits

14 August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

polymorphism. . .

QUALCOMM

virtual function . .

for the data, transmitting outputs of one filter to inputs
of another. Hence the processes are termed “pipes”.

A property that allows two or more objects to respond

differently to the same message; 1.e., the ability to sub-
stitute objects of matching interface for another at runt-
ime.

The IEEE Portable Operating System Interface. Stan-
dard P1003.1c(3).

A company that develops, manufactures, markets,
licenses, and operates advanced communications sys-
tems and products based on its proprietary digital wire-
less technologies. The CTSS project uses
QUALCOMM’s OmniTRACS system, a geostationary
satellite-based, mobile communications system provid-
ing two-way data and position reporting services, to
communicate with vehicles.

RSA Data Security, Inc., a security products company.
C++ Standard Template Library

An independent sequence of execution of program con-
trol within a process. Threads may be based on the
UNIX International (Ul) standard or the more portable
POSIX pthread standard. Threads within a process are
scheduled by the operating system’s thread manager and
execute independently. On multiprocessors, different
threads may execute on different processors. On unipro-
cessors, threads may interleave their execution arbi-
trarily and indeterministically.

In C++, derived classes may overload functions from
their parent class(es) if the functions have been declared
as a virtual function. Every class with virtual functions
has a virtual function table, vtbl, that points to the vir-
tual functions. Every object with virtual functions has a
pointer to its class vtbl.

Weapons Material Stewardship
World Wide Web

Sun Microsystems’ eXternal Data Representation
library, which supports a communications protocol stan-
dard for portable object representation, which allows a
platform-independent mechanism for transparent access
to distributed objects.

August, 2000

- T Ry BT Y s L B e F T o a vl P Pt L TR A 94 7' JoaiPuiiin d o b 2 e o w i ol

15

G STTRTT YT TASTY R ATyt T T, Tt

1.4 References

15

Additional information on Object-Oriented Framework technology and
the CTSS project can be found in the following references:

Carroll, Martin D., and Margaret A. Ellis, Designing and Coding
Reusable C++, Addison-Wesley Publishing Co., 1995.

Firesmith, Donald G., and Edward M. Eykholt, Dictionary of Object
Technology, SIGS Books, Inc., 1995.

Gamma, Helm, Johnson, and Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Publishing Co.,
1995.

Garlan, David, and Mary Shaw, An Introduction to Software Architec-
ture, Technical Report CMU/SEI-94-TR-21.

Johnson, R.E., “Designing Reusable Classes,” The Journal of Object-
Oriented Programming, Vol. 1, No. 2, 1988, pp 22-35.

Kara, Dan, “Build vs. Buy: Maximizing the Potential of Components,”
Component Strategies, July 1998, pp 22-35.

Kelly, Suzanne M., et. al, CTSS-Configurable Transportation Security
and Information Management System Component Library Reference
Manual, October 30, 1998, Internal Department Document.

Schmidt, Douglas C., The Adaptive Communication Environment, An
Object-Oriented Network Programming Toolkit for Developing Com-
munication Software, Department of Computer Science, University of
‘Washington.

Singer, Alan, “Integrating Heritage Back-Office & Open Client/Server
Systems,” Object Magazine, November 1997, pp 28-31.

Taligent, Inc., “Building Object-Oriented Frameworks,” Taligent
White Paper.

Taligent, Inc. “Leveraging Object-Oriented Frameworks, A Technol-
ogy Primer from Taligent,” Taligent White Paper.

Personnel

The CTSS development personnel and program management are working
together to ensure that this project delivers a hardware and software envi-
ronment that will demonstrate and support object-oriented development
commonly needed in a Fleet Management System.

Team members are listed below:

Design and Development

16

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Suzanne M. Kelly, 6321, Command Center Domain, project lead
Robert N. Cook, ITI, 6321, Vehicle Domain

Karl L. Green, 6321, Encryption

John W. Myre, 6321, Command Center Domain, Encryption
Mark Price, 6321, Vehicle Domain

+ Management

Richard E. Thompson, 6321, Department Manager

Henry J. Abeyta, 6301, WMS Transportation Surety Area Man-
ager

Dennis Mangan, 5314, WMS Program Manager;

August, 2000

.

D L 4~ LA Py S Ay AP Kt Ay = aepis g 2 Sl PR PPRFe 1L At i i arsna - o iie duiuns Sl

17

RSSO . TER

This page left intentionally blank.

18

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

SECTION 2 Project Goals and

Rationale

2.1

Goals
The major objectives of the CTSS Software Architecture project include:

Rapid development of highly customized applications.
Increased developer productivity.

Improved containment of costs associated with hardware purchases,
software development and maintenance.

More straightforward development of multiple applications running
on a variety of platforms throughout the development cycle (from ini-
tial single-host proof-of-concept systems to final multiple-host fielded
systems)

Enhanced software reliability and robustness through reuse of soft-
ware from application to application.

Platform compatibility resolution through consolidated access to
existing software.

Better integration with legacy systems.

The capability to build new applications from a growing framework of
current applications.

Support of new transportation functions such as resource scheduling
and leveling.

August, 2000

19

P

2.2

221

222

Component-based development using an object-oriented framework has
been chosen as the most appropriate strategy for attaining these goals, for
the reasons detailed in this section.

Rationale

As with nearly all software development efforts over the last two
decades, software development for Weapon Materials Stewardship
(WMS) program by Sandia National Laboratories has continued to
evolve. These changes have been motivated by the need to produce soft-
ware more quickly and to deliver more value to end-users. Despite gains,
we still face long development cycles that produce software that runs the
risk of not addressing customer problems adequately. These limitations
have moved us to adopt object-oriented technology (OOT) because of its
potential to significantly increase developer productivity and encourage
accurate representation of the real-world environment.

Object-Oriented Technology and the Object-Oriented Framework

OOT has the potential to dramatically improve the software development
process for the WMS program. However, we are not focusing only on
OOT, but on how this technology is delivered (see Section 2.2.2 below).
We are developing an object-oriented framework approach for WMS
software development. This approach uses extensible sets of object-ori-
ented classes that are integrated to execute well-defined sets of comput-
ing behavior, thus providing a sound foundation for fully exploiting OOT.

An object-oriented framework approach will

« Empower developers to fully leverage OOT with a framework that
spans entire systems, delivering rich built-in functionality at all levels
and providing more computing value than when this functionality is
added on as an option.

« Provide well-defined mechanisms that allow software and hardware
developers to reuse, extend, and leverage this functionality for
increased productivity and integration.

» Provide an integrated development environment designed for object-
oriented programming (OOP) that includes a wide variety of develop-
ment tools all designed for rapid application development and custom-
ization.

Component-Based Software Development

From the perspective of component-based software development, the
framework-based approach is just one approach in a spectrum of compo-
nent-development approaches that the CTSS project is now making use

20

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

of or planning to make use of (Figure 2). While the object-oriented
framework approach has been suitable for initial CTSS development, the
CTSS project is now adopting a wider variety of component families and
using them in combination with each other to build and integrate more
substantive systems.

A description of the spectrum of component development approaches (as
described by Kara, 1998 and illustrated in Figure 2, also from Kara,
1998), follows:

» Integrative Approach: pieces of existing applications are encapsu-
lated and then integrated with other components to form a complete
solution.

- Integration” -

Generat«on ' L
- - . _Assemble. -

,‘. ‘ f Components ~ - .
- d .ﬁ-——-——# g -

Generatzon AT
el

* - Model CBuy Buy Bmld
App]icatlon - Framework - COmponents Compone

N e S B i A g i A sun

 MODEL'BASED rnmmonx BASED PROGRAMATIC
. APPROACH APPROACH- - APPROACH

Figure 2 An overview of component development approaches (from Kara, 1998).

August, 2000 21

LA gt N . A T g Mty NETTYTLTTR TR TTT, Y TP Py i et T TR - IS os Ol

« Programmatic Approach: applications built using class libraries and
encapsulated software objects. The same holds true in those instances
where pieces of existing applications are encapsulated and then inte-
grated with other components to form a complete solution.

« Framework-Based Approach: generic application programs or sub-
programs that developers tailor to the own particular needs by adding
highly specialized functionality, often in the form of other compo-
nents, that is called by the framework. The frameworks themselves
typically handle control flow, database access, and other low-level
functions throughout an application or subsystem. (While Figure 2
indicates that frameworks are purchased, the CTSS framework has
been developed in-house.)

« Model-Based Approach: modeling tools capable of generating soft-
ware modules and frameworks for combining components. The
model-based approach represents component development taken to a
higher abstraction, which increases developer productivity to a greater
degree than will using low-level reusable objects.

« Package Approach: complete applications that provide a generalized
interface that can be used with other components to build the system.
One class of applications, the enterprise application packages, now
have published interfaces to their suites, so that it is possible to modify
and extend these systems using component technology and tech-
niques.

2.2.3 Software Development Approaches

2.2.3.1 Procedural Programming
In a procedural environment, the developer writes an application by mak-
ing a series of calls to library routines provided by the system (as well as
to routines written by the developer as shown in Figure 3). The devel-
oper’s code sits on top of the system code. The developer’s code can
access all of the system’s services, but the system knows nothing about
the developer’s code. The developer is responsible for providing the over-
all behavior and flow of control of the application, with the system pro-
viding the functionality.

22 August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Developer's Code

Function 1 Function 2 Function 3
¥ ¥ N
Function 1.1 Function 1.2 Function2.1 Function 2.2 Function 3.1

R N |

SYSTEM CALL SYSTE'M CALL SYSTEM c?u. SYSTEM CALL SYSTEM CALL

I N I —

rs

SYSTEM

Figure 3

Procedural programming approach.

The procedural approach (also called structured programming) has
improved software quality over the last 20 years, but its limitations are
painfully apparent, due to the following:

« Difficulty in extending and specializing functionality. Because pro-
cedural systems do not provide flexible interfaces, developers cannot
selectively change or extend the structure or behavior.

« Difficulty in factoring out common functionality for reuse. It is dif-
ficult to consolidate common system functions for straightforward
reuse by other applications. Since it is difficult to factor out the com-
mon pieces in a procedural system, functionality has to be duplicated
every time a new feature is introduced, resulting in a longer develop-
ment time.

 Barriers to interoperability. Even when extensions and modifica-
tions are made in a procedural application, it is hard to ensure that the
changes will interoperate correctly with other systems that depend on
the modifications. The result is that the solutions from one developer
might not have anything in common with any other developer’s solu-
tions. So, instead of a small team of experts solving a particular prob-

August, 2000

23

2232

lem once, there are numerous teams repeatedly addressing the same
problem.

« Maintenance overhead. Since there is minimal reuse of code in a
procedural system, maintenance requirements increase due to the
greater amount of coding involved and the subsequent increased
potential for introducing new bugs.

Lack of extensibility, factorability, interoperability, and maintainability
inherent in the procedural approach adds up to lower code and design
reuse. The result is that developer productivity is severely hindered since
more time and resources are spent writing code instead of solving new
problems.

Object-Oriented Programming

Although the principles of procedural programming have improved the
clarity and reliability of programs, large-scale programming such as that
required for the WMS program still remains a challenge. Object-oriented
programming (OOP) brings a new approach to that challenge.

Unlike procedural programming, which emphasizes algorithms and pro-
cedures, OOP emphasizes the binding of data structures with the methods
to operate on the data. The idea is to design object classes that correspond
to the essential features of a problem. Rather than trying to fit a problem
to the procedural approach of a computer language, OOP allows the pro-
grammer to use the language to effectively model and solve real-world
problems. A vehicle tracking program, for example, might define classes
that represent vehicles that communicate over a QUALCOMM network
and vehicles that communicate over an HF network. The class definitions
would include common functionality that is the same for each class, such
as location reporting and velocity reporting. Then a developer would pro-
ceed to design a program by deriving subclasses and overriding existing
methods or implementing new methods within each class. Thus, once a
developer had taught the software how to display vehicle location and
velocity, the procedure would be the same regardless of whether it was a
QUALCOMM or HF vehicle. Also, new vehicles can be added by deriv-
ing new subclasses and overloading new behaviors but keeping useful old
behaviors.

This development approach allows developers to break problems into
small, manageable modules of code, where the principle of encapsulation
insulates developers from having to know the implementation details.
Due to the principle of inheritance, developers can subclass to derive new

24

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

classes from existing ones and be provided with the “hooks” to add
extensions.

In addition, polymorphism gives the developer flexibility to create multi-
ple definitions for functions. This allows classes to be more general and
hence more reusable. It also allows new components and functions to be
added easily and without disturbing the existing system. Implementing
OOP makes it possible to design software that is more extensible, reus-
able, and maintainable.

By helping developers design and produce code more productively, the
advantages of OOP have proven to be a significant revolution over tradi-
tional programming techniques. However, even though the programming
job is made easier, since the developer works at a higher level of abstrac-
tion with objects and class libraries, the developer still has to “put the
pieces together.” Simply changing from procedural techniques to OOP
does not fix the problem that developers still are responsible for provid-
ing infrastructure and are not provided with a clean mechanism for
extending functionality. Even with OOP, developers write a lot of code
since they are still responsible for providing the flow of control of the
application. The object-oriented framework approach and other compo-
nent development approaches carry the OOP paradigm further by provid-
ing infrastructure and flexibility for deploying OOT.

2.2.3.3 Framework-Oriented Programming
We define framework oriented programming as the exploitation of
object-oriented frameworks to maximize the benefits of OOT. A widely
accepted definition comes from Ralph E. Johnson of the University of
Ilinois:

“A framework is a set of classes that embodies an abstract design for
solutions to a family of related problems.” (Johnson, 1988)

An object-oriented framework can be thought of as a prefabricated struc-
ture, or template, of a working program.

Because the framework approach provides infrastructure and fiexible
interfaces, it avoids the problems and overhead that traditional program-
ming imposes on developers. With a well-designed framework, it is much
easier to add extensions, to factor out common functionality, to enable
interoperability, and to improve software maintenance and reliability.

August, 2000 25

R e e e P P A GNP T YT PP, S PR A TPV g o - * N, NG £ Y e i | e g pm—r . o

The way the Object-Oriented Framework approach achieves these bene-
fits over other development approaches are based on two fundamental
principles:

» The framework approach provides infrastructure and design. An
object-oriented framework is not simply a collection of classes.
Rather, it comes with rich functionality and strong “wired-in” inter-
connections between the object classes that provide an infrastructure
for the developer. It is these inter-connections that provide the archi-
tectural model and design for developers and frees them to apply their
expertise on the problem domain. By providing an infrastructure, the
framework dramatically decreases the amount of standard code that
the developer has to program, test, and debug. The developer writes
only the code that extends or specifies the framework behavior to suit
the program’s requirements. This code can be represented visually as a
“puzzle piece” since this is the creative and undefined part the devel-
oper provides (see Figure 4).

» The framework calls you, you don’t call the framework. Frame-
work-oriented programming requires a new way of thinking. In proce-
dural systems, the developer’s own program provides all of the
structure and flow of execution and makes calls to function libraries as
necessary (see Figure 2). However, in framework-oriented program-
ming, the roles are turned around. The role of the framework is to pro-
vide the flow of control, while the developer’s code waits for the call
from the framework. This is a significant benefit since developers do
not have to be concerned with the details, but can focus their attention
on their particular problem domain. However, this flip-flop in control
can be a significant change for developers experienced only in proce-
dural programming. The developer must learn to think in terms of the
responsibilities of the objects—what are the objects required to do—
and let the framework determine when the objects should do it. Once
the investment has been made to understand frameworks, developers
will begin to realize the enormous advantages that framework-oriented
programming can deliver over other development approaches.

26

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Procedural Framework Approach
Approach
Framework Code
7 CT L menu ;”:&/s"'—"e.: window | | mouse. |, | read &
L emae oo [B Ut || keybd i) vite |
3 User's . 5 _|7| menus |- events || file
. Code .. rmeaed T 1 - —
o JEZIR e
Lo L | |cal
¢call
call
Lib #1
Lib #2

Figure 4

Procedural versus framework approach.

The overall benefit of the object-oriented framework approach is that it
enables a higher level of code and design reuse than what is practical
with other design approaches. In addition to the framework approach,
there are certainly many other reuse technologies such as 4GLs, code
generators, and class libraries. However, 4GLs and code generators are
based on procedural programming techniques and cannot easily provide
the infrastructure and design guidance that are possible from frameworks.
While class libraries do improve code reuse, they provide functionality at
a very low level and force the developer to provide the interconnections
between the libraries. These advantages of the framework approach over
procedural approaches and class libraries are much more difficult to cre-
ate or recreate and constitute the real value of the object-oriented frame-
work approach.

Also, the developer should realize that the benefits from the framework

approach and reuse are gained over time, since the productivity gains do
not come just from the first or second use, but from multiple uses of the
technology. The following summarizes the major advantages:

« Infrastructure and architectural guidance. By virtue of the inter-
connections among the class libraries, much of the needed functional-
ity already exists in the framework, thus reducing coding, testing, and

August, 2000

ARl e Al il

Y- 74 T I

VL AT T T

27

v > s Ing g o v e - e i
L DT S A ecy S PR i st " Y TR Bl

2234

debugging efforts. In addition, frameworks encourage better design in
the code that developers do write by providing an “example” to guide
them to more effectively utilize object technology. Applications devel-
oped with frameworks tend to be smaller, as well as more maintain-
able and reusable.

» Mechanism for reliably extending functionality. While objects and
object classes provide interfaces for extending functionality at a fine-
grained level, the framework approach provides this flexibility at a
higher level. In this way, applications can be developed by using the
framework as a starting point and writing smaller amounts of code to
modify or extend the framework’s behavior. These extensions can be
added without sacrificing compatibility and interoperability because
the interfaces are well defined.

* Reduced maintenance. Due to inheritance, when a framework bug is
fixed or a new feature is added, the benefits of those changes become
available more quickly to the derived classes. Also, changes are made
only in one place, thus, the chance of introducing additional errors in
the code is minimized.

Other Component-Development Approaches

As was explained in Section 2.2.2 and illustrated in Figure 2, framework-
based programming is just one of a variety of object-oriented component-
development approaches. The CTSS project is now assimilating these
other component-development approaches to build and integrate more
substantive systems.

As Dan Kara explains in his article on component development (Kara,
1998), the real challenge will lie in knowing which components to select
and how to integrate them:

“The various component types and approaches have their own advantages
and disadvantages, together with their realm of applicability. The real
windfall for increasing developer productivity, however, happens when
larger-grained components, such as application frameworks, application
models, and complete pre-built applications are used and reused for
building systems. Unfortunately, the more large-grained the software
component, the less flexible and malleable it is, reducing its reuse poten-
tial. The best approach to component development and integration, there-
fore, is to employ higher-order tools that support the manipulation and
modification of large-grained objects, and use these in conjunction with
small-grained components offering specialized functionality.”

28

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

SECTION 3 Architecture

3.1

Implementation

The Configurable Transportation Security and Information Management
System, which is built using an object-oriented framework and other
component development approaches described in Section 2, has the fol-
lowing key features:

« High level of abstraction. The larger-grained component-develop-

ment approaches used in the CTSS project (e.g., the CTSS framework
and prebuilt application packages) raise the level of abstraction, allow-
ing less-technical developers to assemble components into sophisti-
cates applications while more knowledgeable developers can focus on
creating components. A higher level of abstraction leverages devel-
oper investment and accelerates development of new applications.

Reuseability. The CTSS framework is designed to be reusable and
grow in complexity. As objects are added to the framework to fulfill
the needs of one application, other applications may make use of
them. However, modifications made to objects for one application do
not necessarily have to be used by other applications (see next bullet).

Decoupled design. The framework is designed to be decoupled.
Objects are as independent as possible by design, following standards
and conventions. The framework does not require that features, ser-
vices, or objects required by certain applications be built into each
application that may access the framework. This approach allows sim-
ple or complex applications to be built using the same framework, and

August, 2000

29

o W A e . T S
RO 2 IRt L M AEDRART VHES v a N T

3.2

it simplifies code maintenance and modification. By keeping objects,
services, and applications decoupled, enhancements may be made
without the common problem of “breaking” (i.e., revising and recom-
piling) other code.

Standard, compatible objects. Objects follow common conventions,
standards, and interfaces to enhance maintainability, reuse, and exten-
sibility.

Database management. Commercial off-the-shelf (COTS) object ori-
ented database management systems (OODBMSes) and relational
database management systems (RDBMSes) will provide much of the
cross-platform data management and data translation. Currently,
CTSS supports the OBJECTSTORE and VERSANT OODBMSes and
the Oracle RDBMS.

Multiple platforms supported. The framework is intended to be sup-
ported on the Windows/NT, Windows 95/98, and UNIX platforms.
These environments support fairly complete compilers and a full list
of development tools.

Designed-in configurability. The framework is designed to be config-
urable. Multiple applications can be built using the same framework.

Domains

The Fleet Management System is broken into the following domains:

Command Center domain. The command center domain includes
the central site and the activities that take place there: database mainte-
nance, report generation, resource allocation, communication, incident
management, mapping, information management, vehicle interface,
and operator interface.

Vehicle domain. The vehicle domain includes the mobile application,
location determination, resource and sensor monitoring, emergency
notification, driver interface, and trailer interface.

Trailer domain. The trailer domain includes sensor monitoring, coun-
termeasures, vehicle interface, and the container interface.

Container domain. The container domain includes the trailer inter-
face and materials monitoring.

The value of architecture is in decomposing a system into logical units.
Taken as a whole, a fleet management system is a complex problem. By
breaking it down, each piece is more comprehensible and doable task to
implement. Figure 5 graphically depicts the domains.

30

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

. R Command
Container Trailer + Vehicle "~ Center
i Domain |: Domain | .
Domain in | Domam - Domain
matenas monitoning sensor monitonng [+ j:‘eééuic‘e ricnitoring | resource allocation,
countermeasures, [. driverinterface; - mapping,
contanerinterface § énvergency notification §. vehicle interface’
TSl T .- operator interface

Figure 5§

Domains of a Fleet Management System

3.3 Functional Levels

Once divided into domains, each domain can be further divided. CTSS
selected a layered architectural model for the command center and vehi-
cle domains. This model builds in an isolation between non-touching lay-
ers.

The CTSS Framework consists of the following four functional levels:

Application Level
Framework Level
Middleware Level
Platform Level.

The functions of each of these levels are introduced in Figure 6.

The lower three levels, which comprise the software base, are designed
for re-use by multiple transportation applications. The framework is

August, 2000

31

TE2 VT, PRI SONST T - St e e rie 5. -

object oriented and has been implemented in C++ (command center
domain) and Visual Basic (vehicle domain). The framework is making
use of commercial off-the-shelf software as much as possible. The frame-
work has been implemented initially on both a popular UNIX platform
(command center domain) and the Windows/NT/95/98 platform (vehicle
domain).

The architecture for the framework and middleware levels is the same in
the vehicle domain as it is in the command center domain. However, in
these two levels, some objects and services may not be necessary for a
given domain, and vehicle domain objects and services may complement
those in the command center domain. Therefore, in keeping with the
reusability goal of this project, the framework and middleware layers of
this architecture in the vehicle domain is a scaled subset of the same lay-
ers within the command center domain. Whereas the command center
domain can be implemented across multiple hosts, the initial instantiation
of the vehicle domain is scaled to a single host. However, no impedi-
ments to a multiple-host vehicle system should exist given the scalability
of this architecture. If a multiple-CPU platform were chosen for the vehi-
cle domain, this architecture should be easily scaled to such a platform.

User applications based on user
I Application Level | specific requirements
W N W W N
S Software components connecting
Framesork Level o applications to middieware level and
: indirectly to platform level
w
a Commercial-off-the-shelf (COTS)
Niddleware Level r software (e.g., DBMS and
¢ communications,)
b
Platform Level : Hardware specific software (e.g,
e operating system)

Figure 6

CTSS Framework functional levels.

32

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

3.3.1

3.3.2

3.3.2.1

3.3.2.1.1

3.3.2.1.2

Application Level

The Application Level consists of high-level applications written by the
user. This level makes use of common objects, application standards, and
communication between applications provided by the Framework Level
services to access the encapsulated transportation capabilities provided
by the Framework level and the links to the Middleware and Platform
Levels.

Framework Level

Encapsulated Transportation Services

The framework level has objects that provide encapsulated transportation
services. These objects are used from the Framework Class Library such
as Vehicle, Container, and so on.

Vehicle Domain Encapsulated Transportation Services
The following encapsulated transportation services are being imple-
mented as the framework architecture in the vehicle domain:

« Fleet data communications. Two-way data communications are
being implemented in the vehicle domain using the QUALCOMM and
ORBCOMM satellite systems and a satellite phone system. Voice
communications are not currently supported.

« Real-time tracking. An automatic position-location (APL) system is
being implemented in the vehicle domain using a GPS unit. The vehi-
cle domain stores the latest vehicle position, speed, and heading, but
does not keep a location history. Status of the GPS unit is stored as
well. All of this data is transmitted to the command center domain via
the fleet data communications application and is displayed to the user
in both the command center and vehicle domains upon request.

 Trailer monitoring/communications. An interface to a transporta-
tion data unit (TDU) that monitors containers as they are transported
in trailers and that provides the destination material management sys-
tem with an inventory and status of assets that were transported is cur-
rently being developed.

These applications complement the applications to be developed in the
command center domain. Objects and daemons are being reused across
domains wherever possible, but specific needs within the vehicle domain
do require some differences.

Command Center Domain Encapsulated Transportation Services
The following applications are being implemented as a proof of concept
of the framework architecture in the command center domain:

August, 2000

33

T TN T ST T T T L R . oy R

3.3.2.2

» Fleet data communications. Two-way data is being implemented in
the command center domain using the QUALCOMM and ORB-
COMM satellite systems and a satellite phone system to store and for-
ward messages.

« Mapping/tracking. A subsystem is integrating two-dimensional map-
ping to allow tracking of multiple types of vehicles of any number (or
quantity).

» Messaging. The following functionality is supported:

- transmission and reception of canned messages
- composition of messages using a2 modern text editor

- display of vehicle and trailer objects and their data.

Framework Services

The Framework Level also provides application-independent objects
(See Figure 7). These patterns provide applications with service-oriented
functions such as interprocess communications, distributed logging,
diagnostics, and system status.

Application Independent Client and Server Daemon Patterns
(Not Redundant)
Host A Host B

Application.

(Local Client)’
| |

Figure 7

Multiple host non-redundant client/server daesmon pattern.

34

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

3.3.3

3.34

The Framework Level provides the interface to Middleware software as
necessary. The Framework Level provides objects to encapsulate data
such as the CTSSMessage object. Some applications, or servers, may be
reused entirely from system to system.

The architecture of this layer in the vehicle domain is complementary to
that of the same level in the command center domain.

Middleware Level

The Middleware Level is COTS system integration software, which may
be purchased or shareware. Middleware generally is broken into distrib-
uted processing software (lower) and database and user interface soft-
ware (upper). The middleware chosen is object-oriented.

The architecture of this layer in the vehicle domain is comparable to that
of the same level in the command center domain.

Platform Level

The Platform Level consists of the vendor-supplied software and hard-
ware. The initial platforms will be Windows/NT/95/98 and UNIX. These
platforms are POSIX compliant to a degree. The Platform Level also con-
sists of the development software, editors, compilers, debuggers with
memory leak detection, source control software, and GUI testers. Third-
party software is required to run on a variety of platforms.

August, 2000

35

v e ————— A = TN S AT g A T A L eyl T T8 It

This page left intentionally blank.

36

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

SECTION 4 Design Detail

4.1

4.1.1

Command Center

Framework Level
The transportation-related functions that were selected for development
in the object-oriented framework were

communication
container status
information management
mapping

message handling
tracking

trailer monitoring
incident management
system diagnostics
system configuration
operator interface

These functions span the Vehicle and Command Center domains. The
framework is scalable from one vehicle and command center to multiple
command centers and vehicles.

August, 2000

B s st o

37

I TR SRR 1 andutt €22 vy suutesuteran A . ¥ 25 AP A rv 4 A o et e M Xl

4.1.141

4.11.1.1

These services require wide area communication with actual vehicles in
the vehicle domain, communication link handling, interprocess commu-
nication, an expandable real-time mapping function, and distributed per-
sistent information management.

The Framework Level encapsulated transportation objects are not
directly aware of what platform they are running on. The platform is
transparent to the application because the Platform Level will be shielded
by the Middleware Level (Section 3.3).

Some objects from the MAP/Tracker project have been reused as the
basis for the encapsulated transportation objects (i.e., objects from the
Framework Class Library).

Framework Layer Objects

Communication Objects
CTSS supports several objects for communication mechanisms. These
objects can be used for cross-domain or intra-domain communication.

Table 1

CTSS Communication Objects

Object Name Object Description

Fifo UNIX POSIX-named pipe

HayesModem Hayes Communication protocol implementation

Orbcomm ORBCOMM message

Qualcomm Qualcomm message

SerialPort UNIX and Windows NT implementations of a serial port

TeleComm Telephonic communications

41.1.1.2

Container Status Objects
CTSS supports the ability to interface to a FMS container domain.

Table 2

CTSS Container Status Objects

Object Name Object Description

Sensor Sensor id, location, type, state

38

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

4.1.1.1.3 Information Management Objects
CTSS supports the ability to persistently maintain information on trans-
portation objects that can be used by decision makers.

Table 3 CTSS Information Management Objects
Object Name Object Description
Contact Several classes of who to contact
Convoy Id, Member vehicles, Commander
Shipment Physical instance
4.1.1.1.4 Mapping Objects
CTSS supports several objects for mapping. These objects can provide
data on instances that can be mapped or can provide the messages which
support mapping actions.
Table 4 CTSS Mapping Objects
Object Name Object Description
Airport Complete DOT airport information
Hospital Location, contacts, beds, ER wards
MapTrackerMessage | Message formatted for MAP/Tracker map display
TrackingAnalystMes- | Message formatted for the Tracking Analyst extension of
sage ESRI’s ArcView product
TLPInterface Interface to TracerlinkPro map display software
4.1.1.1.5 Message Handling Objects
CTSS supports several objects to support messaging by the application. It
provides a generic keyword-based message. A cipher object can encrypt
or decrypt a message. The CTSSMessage object can package and send
the message for interprocess communication.
Table 5 CTSS Message Handling Objects
Object Name Object Description
Cipher Encryption/Decryption capability
CTSSMessage Interprocess message delivery mechanism
KeywordMessage Generic message format

August, 2000

PR el o Ut o <7 B 3 vt M 2 Tt T B

B e e R A <y

39

41.1.1.6

Tracking Objects
CTSS supports two tracking objects. CTSS is designed to track vehicles
based on a latitude/longitude position.

Table 6

CTSS Tracking Objects

Object Name Object Description

LatLong Latitude and Longitude position in several representations

Vehicle Id, location history, events, state

41.11.7

Trailer Monitoring Objects
CTSS supports an interface to trailer domain.

Table 7

CTSS Trailer Monitoring Objects

Object Name Object Description

Container Vehicle container

411.2

Framework Level Services
The Framework Level provides application-independent service patterns
for

« interhost and intrahost connection management
« distributed logging

The generic daemons may be on one host or multiple hosts. The Frame-
work Level services may or may not use an Object Oriented Database
Management Systems (OODBMS) or an Object Request Broker (ORB),
depending on the number of hosts and the complexity of the system that
must be generated.

A system may use all or some of the services. Framework Class Library
objects are available to build generic applications.

Interprocess communication is a service that is both interprocess and
interplatform. This requires a connection daemon or gateway to authorize
connection requests and a message transmission object to encapsulate
data.

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

COTS software (Section 4.1.2) provides the actual multi-platform com-
munication middleware. This also provides the multiple platform support
required.

Applications that desire interprocess communications, for instance,
instantiate an object that requests a service from a server. Message
objects are then sent/received on the socket object from the server. Serv-
ers build on the ACE (Active Communications Environment) middleware
described below to provide multi-host servers that authorize socket com-
munication requests, provide message transmission of the CTSSMessage
class using sockets, and encapsulate shared memory objects.

4.1.1.3 Framework Daemons

4.1.1.3.1 Gateway Daemon
A required gateway communications daemon, or connection daemon,
provides a single host-to-host communication path. The daemon also
provides intrahost process-to-process connections. This daemon is built
using the ACE package. It provides authorized connections between
hosts. Message encryption is optional. The gateway provides a single
point of connection between hosts for event messages and object updates.
Host connections are used to transmit events and object updates. Pro-
cesses then look up complete objects in the object databases. The gate-
way daemon processes CTSSMessage objects. The gateway daemon also
has an optional message filtering capability.

Cross-platform connection objects could be instantiated in every pro-
gram, rather than the gateway, but we choose to use one connection dae-
mon. The advantages to having one connection daemon is that it
improves program control, security control, and extensibility. It is easier
to demonstrate that the one connection daemon is configured correctly
than having to monitor all socket connections from every process.

Typically, most objects reside in a database and are accessed in a client/
server fashion. However, socket transmissions are used to transmit notifi-
cation of events that may be applied to an object, such as database object
changes, events, errors, and state changes. Examples include VehicleUp-
date, ErrorText, and Text messages.

The gateway daemon connects to local processing using objects from the
ACE package (Section 4.1.2). These objects are either local authenticated
sockets or named pipes. These are streamed objects to provide some buff-
ering.

August, 2000 41

EOb T Sl il = Viaay T it v o '¢ YiaC TN S I o S I o B A AT X 4 B g e - AL

4.11.3.2

41.1.4

The gateway daemon has a configurable host-to-host buffering capability
by storing messages to disk or memory. When a connection is then made,
the pending messages, if desired, are delivered. The buffering may be
zero if thus configured.

Connections to the gateway are made using connection objects provided
by the Framework Level. Each connection is maintained by a separate
POSIX thread so that multiple connections can be handled.

To make expansion and configuration changes easier, all application mes-
sages on a host go through the one gateway. To add a new application that
needs to connect to other applications, only the gateway’s configuration
file is updated, and the gateway can be reset to read the data. This
approach keeps applications from having to know about each other. By
default, all messages go to all applications on a host. Since this may be
costly, the filter file identifies what message types go to what applications
for the gateway’s routing data.

A required configuration file or database contains the remote connection
information, local process connections, port addresses, types of connec-
tions, and retry and store information. Types of CTSSMessage objects to
pass on each connection are optional.

Logger Daemon

An optional distributed logger daemon managed the application log data-
base. If there are multiple loggers in the generated system, one logger
daemon is the global master and is responsible for keeping its database
complete and up to date. Applications connect to a local logger client.
The local applications find a logger server that actually stores the mes-
sage in persistent storage.

Framework Level Platform Independence

The Framework Level, which is intended to be platform independent,
provides support to common UNIX systems based on System V UNIX
and to Windows 95/98/NT. The platforms should be POSIX compliant so
that POSIX threads and numerous other functions such as time standards
can be supported more easily.

Hardware differences are a bigger problem. Big-endian versus little-
endian problems (i.e., differences in where most- and least-significant
bytes are stored in multi-byte numeric representations; see Glossary in
Section 1.3) can be handled initially in several ways. Most data transfers
will be done by sharing databases using the DBMS or an ORB. These
packages handle the platform differences already. Data or event transfer

42

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

4121

4122

objects that do not go through middleware objects (i.e., transferred
directly through pipes, serial ports, ftp, and so on) can use the XDR stan-
dard to convert themselves to the standard format. Ultimately, it is hoped
that an automatic object decomposer middleware can be found to read
header files and produce the object layouts for all platforms. Some cod-
ing standards have to be followed to eliminate coding unportable code
such as C’s bit fields.

Middleware Level

Middleware is COTS software that provides system integration software
for object-oriented communication and object-oriented databases on mul-
tiple platforms.

Communication Software

The communication software provides a wide spectrum of functions to
provide the required communication between processes. The Adaptive
Communications Environment (ACE) is shareware written in C++ and
JAVA and is supported on multiple platforms. ACE provides the follow-
ing communication services:

o Connection configuration (Each host has a server that verifies connec-
tion validity.)

« Interprocess communication (shared memory, mapped shared file
objects)

» Named pipes (same host)

o Socket communication (This type of communication occurs across
hosts, and allows transmission of limited data (i.e., transient messages,
authentication requests, and so on) that are not supported by an
OODBMS. Data transmitted is encapsulated in the CTSSMessage
class. This code performs the actual connection maintenance, recon-
nection, error logging, and so on.)

o Time services (multiple host/platform time synchronization)

» Event notification (multi-threading, dynamic reconfiguration of ser-
vices, and so on).

DBMS

Object Oriented Database Management Systems (OODBMSes) provide a
persistent, client-server architecture for the storage of objects. Much
expertise has been acquired with the ObjectStore OODBMS in the MAP/
Tracker project. Persistent storage of objects such as Vehicle, Convoy,
Events, and Shipments are accomplished with ObjectStore. ObjectStore pro-
vides the cross-platform mapping of C++ objects to deal with the incom-
patibilities of various C++ compilers and hardware data formats. One or

August, 2000

43

%y (AT IR T T e NNV ey vy SR

4.1.3

more OODBMS servers now exist; typically one process updates a data-
base, and many clients read the data. These clients may be on multiple
hosts and access the data correctly. Objects are stored directly into an
OODB using whatever data structures desired.

To validate the flexibility of the CTSS middleware/framework layer inter-
face, two additional DBMS systems were incorporated. The OODBMS,
Versant, and the object-relational DBMS, Oracle were added. Versant
was chosen since it had a large percentage of the OODBMS market and
Oracle is the leader in the DBMS market.

Platform Level

COTS products do provide many functions, but they generally do restrict
the choices of other software and hardware that can be integrated.
Because it generally drives what other software is compatible and sup-
ported, COTS software must therefore be carefully selected. POSIX com-
pliance implies support of sockets, named pipes, and threads and many
other features. The degree of compliance varies from system to system so
some platform-dependent conditional code may be necessary. Most Mid-
dleware shields this level from the Framework Level. Java is rapidly
becoming a viable choice given its cross platform nature and built-in user
interface capability. However, at this time C++ will be used as the pri-
mary language due to its maturity, COTS APIs, third party packages, and
libraries.

Initial development is being done on the following platforms:

» Windows/NT. This is the most “industrial strength” of the multiple
Microsoft operating systems. It claims POSIX compliance to support
necessary threads and WinSock libraries. The selected Middleware is
supported.

» UNIX. UNIX is the still the system of choice for applications requir-
ing an around the clock operation. Its maturity and breadth of devel-
oper services make it a viable platform for the command center.

The following compilers and tools will be used:

o C++
« runtime debugger

The C++ Standard Template Library (STL) is being used rather than writ-
ing much code from scratch as is often the case. STL is supported on
many platforms including Microsoft and most UNIX platforms.

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

4.1.4

4.2

4.2.1

4.2.1.1

4.2.1.1.1

Software Configuration Management
A single software repository is available on host SATX2965 using the
CVS version control package.

Vehicle

Framework Level

The transportation-related functions that were selected for development
in the object-oriented framework were
¢ communication

« information management

« message handling

e tracking

e trailer/cargo monitoring

« incident management

» system diagnostics

» system configuration

« operator interface

Framework Layer Objects

These objects were constructed using Microsoft Visual Basic classes and
collections. While application independent, they are specific to a PC plat-
form running Microsoft Windows 95 or 98. All of the objects are also
compatible to Windows NT 4.0, with the exception of the clsParallelPort
object.

Communication Objects
The CTSS vehicle domain supports three primary communication medi-
ums.

Table 8 CTSS Communication Objects
Object Name Object Description
clsQCTransceiver Qualcomm satellite communications
clsTeleComm Telephonic communications (Hayes-modem compatible)
clsOCTransceiver Orbcomm satellite communications
clsSlipPort Serial Line Interface Protocol (SLIP) packet-based port
clsOCTPort Orbcomm packet-based port

August, 2000 45

42.1.1.2

Information Management Objects
CTSS supports the ability to persistently maintain information on trans-
portation objects that can be used by decision makers.

Table 9 CTSS Information Management Objects
Object Name Object Description
clsVidEntry Allows user entry and storage of the vehicle ID
clsRealTimeClock Provides timestamping for all messages and logs.
4.2.1.1.3 Message Handling Objects
CTSS supports several objects to support messaging by the application. It
provides a generic keyword-based message. A crypto-object can encrypt
or decrypt a message.
Table 10 CTSS Message Handling Objects
Object Name Object Description
clsMessage Generic message object
clsTextMessageEntry | Generic text-message entry object
clsDesCrypto DES Encryption/Decryption capability
clsMessageProcessor | Keyword-based message construction/deconstruction
4.2.1.1.4 Tracking Objects
The CTSS vehicle supports four tracking objects. CTSS is designed to
track vehicles based on a latitude/longitude position. These objects also
provide real-time-clock information for the vehicle computer system.
Table 11 CTSS Tracking Objects
Object Name Object Description
clsTrimbleGps Implementation of a Trimble GPS receiver interface
cIsNMEAGps Implementation of a NMEA/Delorme GPS receiver inter-
face
clsSimulateGps Implementation of a GPS simulator for laboratory demon-
strations and testing.
clsOCTransceiver Implementation of an Orbcomm internal GPS interface
clsSerialPort Implementation of simple serial communications for GPS.
46 August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

4.2.1.1.5 Trailer/Cargo Monitoring Objects

The CTSS vehicle supports an interface to trailer/cargo domain, with the
capability to auto-configure to different trailer types.

Table 12 CTSS Trailer/Cargo Monitoring Objects
Object Name Object Description
clsTrUhfMgr Master interface object to all trailers/cargo
clsSgtTrailer Implementation of interface to the Transport
clsTrailerEvent Generic trailer event object
clsContainer Generic object for cargo container
(supports INUMM and T1 tag types)
clsContainerEvent Generic container event object
4.2.1.1.6 Incident Management
The CTSS vehicle supports several objects to provide the capability to
handle incidents in the field.
Table 13 CTSS Incident Management Objects
Object Name Object Description
colPriorityQueue Priority-based message queue
clsPriorityContainer Priority-based message holder for colPriorityQueue
clsDigitalInput Generic digital input for emergency switches, etc.
clsDigitalOutput Generic digital output for warning lights, etc.
clsParallelPort Generic interface to parallel port for digital I/O.
4.2.1.1.7 System Diagnostics
The CTSS vehicle supports two objects to provide system diagnostics for
easy maintenance of the vehicle hardware and software.
Table 14 CTSS System Diagnostics Objects
Object Name Object Description
clsLog Object for logging all vehicle events in a chronological
fashion to an ASCII file
clsinterfaceMonitor Object for monitoring hardware interfaces at a binary level.
August, 2000 47

YO T T mmgesmgsemp s £ VR,

IR ngPAY sl e w g’ 1 Al 4 Ve 8 %A MU

e T T e e e e, T) S

4.2.1.1.8 System Configuration

The CTSS vehicle supports two objects to provide easy system configu-
ration and reconfiguration from an initialization file.

Table 15 CTSS System Configuration Objects
Object Name Object Description
collnitKeys Collection of keyword/value pairs representing an initializa-
tion file
clsInitKey Object containing a single keyword/value pair (e.g.
TRAILER_PORT=3)
4.2.1.1.9 Operator Interface
The CTSS vehicle supports several objects to provide easy building of
operator interfaces to vehicle computer applications.
Table 16 CTSS Operator Interface Objects
Object Name Object Description
clsVidEntry Allows user entry and siorage of the vehicle ID
clsTextMessageEntry | Allows user entry of text messages
clsAgent Provides speech synthesis and recognition
clsSound Provides audible alarms using simple WAV files
clsPwrControl Provides safe-shutdown of the vehicle computer
clsMsgBox Provides simple information displays to the operator
clsMsgBox YesNo Provides simple yes/no prompts to the operator
clsAlarm Provides alarm displays to the operator
4.2.1.2 Framework Level Components
The Framework Level provides application-independent components for
» application configuration and initialization
« communications to/from the command center domain
« communications to/from the trailer/cargo domains
« tracking/real-time-clock data from a variety of sources
« event logging
48

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

422

4.2.2.1

4222

4223

4224

423

» digital I/O (e.g. emergency switches, warning lights)
« speech recognition/synthesis

A system may use some or all of the components. Communication and
data transfer between different components is handled in the application
layer and varies from application to application.

Middleware Level

Middleware is COTS software that provides commercial implementa-
tions of serial ports, telephonic communications, hardware interfaces,
etc.Several COTS components were encapsulated within the Framework
objects.

Process Control

Microsoft Visual Basic timers provided the multi-tasking used by each
component in the framework. One timer was allocated per component,
with a maximum of 6 timers per any single application.

Communication Software

The Microsoft Comm Control included with Microsoft Visual Basic pro-
vided an interface to standard PC serial ports and was used by most of the
interfaces requiring serial communications.

Crescent PDQComm provided modem control and file transfer for tele-
phonic communications and was an extension of the Microsoft Comm
Control. It was purchased from Crescent separately from Microsoft
Visual Basic.

Operator Interface

Microsoft Agent provided speech recognition and synthesis for operator
interactions with the application. This component was distributed with
Microsoft Windows 98 and was also freely available from Microsoft for
use with Windows 95 and NT.

Encryption Package

The Bokler Software Corporation’s encryption package, DESCipher/
OCX was used for cryptography rather than developing custom crypto-
graphic code. This package meets the FIPS Publication 46-2 requirement
for the DES algorithm and has been NIST-certified.

Platform Level

Development was done initially on PCs running Microsoft Windows 95

and NT 4.0 and using Microsoft Visual Basic 5.0. The operating system
was eventually migrated to Windows 98 due to NT restrictions on access

August, 2000

49

TAYR SN TSI TR T T T . PP W W7 A o ROl N AN

4.24

to hardware interfaces, particularly the PC parallel port. During the
course of the CTSS project, the compiler was migrated to Visual Basic
6.0.

Software Configuration Management

The archive for the vehicle domain resides on sass2753 at this time. Ini-
tially, Microsoft Visual SourceSafe was used in conjunction with
Microsoft Visual Basic to provide version control and configuration man-
gament. Microsoft Visual Basic projects are structured in such a way that
general version control systems cannot be used with it. Visual Source-
Safe was found, after some use, to be unreliable as a control package (it
corrupted several projects and failed to archive the latest copies of the
source code correctly). Another package is being sought at this time that
will provide reliable archival and also work within the Visual Basic
project structure.

50

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

APPENDIX A Vehicle Framework:
Development History
and Lessons Learned

A1

Initial Studies

At the beginning of the CTSS project, initial studies were conducted to
determine the best platform, operating system, and programming lan-
guage to use for the vehicle framework. Original plans for the framework
were to make it portable to several different hardware platforms (includ-
ing PCs, workstations, and embedded computers) and operating systems
(including Unix, WindRiver VxWorks, and Microsoft Windows) using
individual processes for each component.

The processes in each component were to communicate using the Adap-
tive Communications Environment (ACE) to provide a portable inter-
process communications mechanism. Initially, the project team was able
to make ACE work properly only on Unix platforms, and not on
Microsoft Windows NT. (It was not advertised to run at all on Microsoft
Windows 95 or 98.) Several computers were considered for the vehicle
computer, but none ran Unix or Microsoft Windows NT, and political
concerns prohibited the use of Unix in the vehicle environment. There-
fore, ACE was not a viable option for the vehicle computer. Because of
these concerns, the project team decided to limit the vehicle platform and
operating system to PCs running Microsoft Windows 95 or 98, using a
single-threaded application.

Some time was spent attempting to perform efficient serial communica-
tions using Microsoft C++ and a third-party product, GreenlLeaf Com-

August, 2000

g ————— Y. T At re gy e wn

51

W A VTI e pprp——— T R YT w e E e N e I Y T ey e S PR — Ty Ty TR s

A.2

A.21

A2.11

A2.1.1.1

mLib. (This was attempted because Microsoft Visual C++ contained no
built-in components for serial communications other than the same one
used in Visual Basic.) After repeated failures, Microsoft Visual Basic was
chosen as the programming language, primarily because development of
serial communications and GUIs were extremely easy under this pro-
gramming language, and because, with the advent of Visual Basic 5.0,
classes and objects were introduced into the language.

Vehicle Framework, FY97

Development

The first year of framework development for the vehicle focussed on
communications between the vehicle and the command center and navi-
gational tracking of the vehicle from the command center.

Communications: The QualComm Component

For communications, the first medium chosen was the Qualcomm satel-
lite messaging system. This system uses a store-and-forward packet net-
work, and had already been used successfully in the production system
for several years. Implementation of the interface to this system followed
lines similar to that used within the Vehicle Interface Controller, but the
software was written as an encapsulated, reusable object within Visual
Basic. The interface between the QualComm Mobile Communications
Terminal (MCT) and the vehicle computer used RS232C protocol and
was in a Serial Line Interface Protocol (SLIP)-based binary format. The
specification of the interface itself was proprietary and was obtained from
QualComm under a non-disclosure agreement.

Middleware

Microsoft Visual Basic proved to be particularly easy to use for develop-
ment of the serial interface, but bit manipulation under the Visual Basic
environment was somewhat limited. (Visual Basic did not contain any
bit-shifting functions, so these had to be written to process the binary
data to/from the QualComm MCT.)

Two middleware objects were used from Visual Basic to implement the
platform interface: the Microsoft Comm Control and Visual Basic timers.
Several problems were encountered with these middleware objects.
“Wrappers™ were used to encapsulate the objects wherever possible to
mitigate these problems.

52

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

The Microsoft Comm Control is a component included within Visual
Basic which allows easy reading and writing to a standard RS232C serial
port. A serious defect was found in the Comm Control which caused all
null bytes (0) received from the serial port to be thrown away, even if the
Comm Control’s “null-discard” property was set to false. However, the
Comm Control would still indicate the null bytes in the count of bytes
received on the serial port. This defect was corrected by the wrapper
placed around the Comm Control.

Visual Basic timers are components included within Visual Basic that can
be set to periodically execute code on an adjustable interval. Initially,
several Visual Basic timers were used to perform periodic tasks, includ-
ing polling the MCT for status and incoming messages and transmitting
outgoing messages on 3 to 5 second intervals. As more interfaces were
implemented, it was found, contrary to assertions in Visual Basic docu-
mentation, that no more than 6 Visual Basic timers can be included in any
single application. If more than 6 timers were used, the timer system
within the application began to malfunction (e.g. lock-ups, unreliable
timing). When this was discovered, the development team decided to
limit the application to one Visual Basic timer per interface, plus one or
two for the top-level application. This limits the entire application to no
more than 5 interfaces which use timers. An alternative that was consid-
ered but never implemented was to write each framework component as a
separate single-threaded application, which would allow each component
to use up to 6 timers. However, it was recognized that this implementa-
tion would require the application layer to communicate with the frame-
work layer via slower interprocess communications. The development
team decided not to implement this approach; instead, it was held in
reserve should circumstances require its use.

A.2.1.1.2 Framework

At this time, the first attempt was made at “standardizing” the application
interface to be used by this and all future communication framework
components. These interface properties/functions included 1) sending a
message, 2) receiving a message, and 3) communications status. Other
interface functions were provided to the QualComm framework object,
but these were specific to QualComm, and their use in the application
layer would interfere with the interchangeability of the application with
other future communication framework components.

August, 2000 53

Wy = n Wl AN Cqm oy AN N, RYmTO Cvmmppeaimean Snewwoute e vee - - B P~ St S P2 Gl A T =L it il st 143, At B T w4

A21.2

A21.21

Tracking: The Trimble Component

For navigational tracking, the first unit chosen was the Trimble Placer-
400 GPS unit. Again, this unit had already been used successfully in the
production system for several years, and implementation of the software
interface to this unit was also done as an encapsulated, reusable object.
The interface between the Trimble unit and the vehicle computer was an
RS232C packet-based ASCII protocol. The specification of this interface
was provided freely by Trimble. Since the Trimble GPS interface was
packet-based ASCII characters, no bit manipulation was required, mak-
ing implementation fairly easy and straightforward in Visual Basic.

Middleware

The problems encountered with the Microsoft Comm Control while
developing the MCT-vehicle computer interface were not a factor in
development of the Trimble-vehicle computer interface, since the inter-
face was entirely in ASCII and no null (0) bytes were used. A single
Visual Basic timer was used to poll the serial interface for data, just as
was finally used in the QualComm component.

A.2.1.2.2 Framework

A2.1.3

As with the QualComm component, a first attempt was made at “stan-
dardizing” the application interface to be used by this and all future track-
ing framework components. These interface properties/functions 1)
latitude, 2) longitude, 3) speed, 4) heading, and 5) time.

The only problem encountered during the development of the Trimble
component was determining how to parse the Trimble packet data
received from the serial interface. GPS devices, including the Trimble,
usually broadcasted various packets at 4800 baud and tended to overrun
the ability of a receiving computer to process them. Finally, it was
decided to grab blocks of bytes from the serial interface and search them
only for the desired packets. Thus, not all the packets were or needed to
be individually parsed. This corrected the performance problems seen
within the component, while still providing timely updates of the track-
ing information (once every 2-3 seconds).

Other Components

Some smaller components were developed to support the primary com-
munication and tracking components. For example, to allow text-mes-
sage entry from the application layer, an already existing Visual Basic

54

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

form for entry of text messages was encapsulated into a small “text-mes-
sage-entry” component.

A.2.1.4 |Integration: The Vehicle Computer

The Qualcomm component and the Trimble component were imple-
mented in parallel by two different developers, each of whom wrote a
simple application-layer to test each component. The two components
were integrated using a single, simple application layer which would
serve as the first vehicle computer.

A.2.2 Evaluation

One of the primary goals of CTSS with respect to the vehicle domain was
to make development of vehicle computer applications quick and easy.
The integration and implementation of the first vehicle computer took
less than 1 hour.

Following its initial implementation, the vehicle computer application
was tested on several PCs running Microsoft Windows 95. Before run-
ning the vehicle computer application, the system CPU was, on average,
less than 1% loaded. With the vehicle computer application running
(using two serial interfaces, the system CPU was, on average, approxi-
mately 65% loaded. (Measurements were taken using the performance
monitor included within Microsoft Windows, and no other applications
were running while the vehicle computer application was measured.) As
an experiment, the application was also measured running under Win-
dows NT on a 200MHz Pentium I system. The results were similar. How-
ever, given the PC/Windows architecture, which is designed for general
office use and not for large amounts of serial I/O, this was to be expected.
This system was demonstrated to management during the 4th quarter of
FYO97.

A.3 Vehicle Framework, FY98

A.3.1 Development

The second year of framework development for the vehicle focussed on
alternate and encrypted communications between the vehicle and the
command center, alternate navigational tracking, and interfaces between
the vehicle computer and the trailer and cargo domains.

August, 2000 55

A3.1.1

A3.1.1.1

Communications: The TeleComm Component

Another communications component (referred to as the TeleComm com-
ponent) was developed specifically for telephonic communications using
Hayes-compatible modems. In a mobile environment, this was expected
to be used with cellular modems or satellite telephones containing
modems. With telephony, the communications link was a point-to-point,
session-based methodology, which differs greatly from the store-and-for-
ward packet network within the QualComm system.

Middleware

The TeleComm component encapsulated a third-party Visual Basic add-
on called PDQComm, developed by Crescent. This was an expanded ver-
sion of the Microsoft Comm Control included with Visual Basic. (Cres-
cent wrote the Comm Control for Microsoft, who included in the Visual
Basic software.) PDQComm contained all the features of the Microsoft
Comm Control, plus the ability to perform file transfers using various
protocols, such as Xmodem, and the ability to easily process serial/
modem events (such as loss of carrier).

As development of the TeleComm component proceeded, another serious
limitation of Visual Basic timers was encountered. Use of Visual Basic
“MsgBox” forms caused all Visual Basic timers within the vehicle com-
puter application to “freeze” while the form was displayed. This “fea-
ture” is noted in the Visual Basic documentation, and the same
documentation suggested that concerned developers construct their own
“MsgBox” forms to prevent this from happening. The project team did,
and discovered that any “modal” Visual Basic form caused an intermit-
tent failure of all the timers within the same application. (A “modal”
form is one that stays on top of all other forms and prevents the operator
from using any other form in the application while it is displayed.) Also,
it was discovered that any kind of “wait” loop within the application layer
could cause the same failure. At this point, both the vehicle computer
application developed from the previous year and the SATCAM/FIRST
application were modified to prevent this failure from occurring.

A.3.1.1.2 Framework

The TeleComm component was designed using the “standard” interface
between the application and the communication component that was set
down during development of the QualComm component. The TeleComm
component implemented the standard functions: 1) sending a message, 2)
receiving a message, and 3) communications status. Since telephonic

56

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

A3.12

A3.1.3

A3.14

connections are by nature point-to-point sessions, a feature specific to the
TeleComm component included: the ability to automatically dial up a
remote computer on a specified interval. In addition to the messaging
capabilities of the Telecomm component.

At this point, fixed-length FIFO message queues were added to both the
TeleComm and QualComm components to allow the application layer to
send messages without having to wait for previous ones to be transmitted,
and to allow incoming messages to stack up until the application layer
was ready for them. The queues were designed to handle a maximum of
200 incoming and 200 outgoing messages. A fixed length was used
because, at the time, the developers did not know of a variable-length,
linked-list equivalent in Visual Basic.

Tracking: The NMEA GPS Component

Another tracking object was developed for any NMEA-compliant GPS
unit, with special allowances made for the inexpensive Delorme Tripmate
GPS. This object maintained the same interface as the Trimble GPS
object to allow for drop-and-swap replacement within the existing vehi-
cle application.

Trailer/Cargo Monitoring Components

Toward the end of this year, trailer and container objects were developed.
The trailer object was based on the existing trailer interface in the VIC
software and, at the protocol level, is very similar to the QualComm
interface. The container objects which represented the cargo were based
on work being done by Bill Pregent and Dave Skogmo with the Cargo
Monitoring system. For each of these objects, objects were also con-
structed to represent various events in this domain, such as connection of
a trailer or detection of a container status change.

Other Components

A standard key-word message format was agreed to by the developers on

the vehicle and command center domains of CTSS, and a “message pro-

cessor” object was developed in the vehicle framework to allow easy con-
struction/deconstruction of messages sent to/from the vehicle.

Following development of the message format, the Bokler DESCypher
component was encapsulated into a DES cryptographic component and
integrated with the standard key-word message format to provide crypto-

August, 2000

57

A3.1.5

A3.2

graphic capabilities for both QualComm and TeleComm communica-
tions.

Integration: The Vehicle Computer

The simple vehicle computer application which was developed at the end
of FY97 was modified to allow the operator to configure for different
GPS units and to indicate that a trailer and cargo were to be monitored. A
similar vehicle application was also developed to test the TeleComm
object. To date, no vehicle application has been developed which allows
for switching between communication objects, although this should be
feasible.

Evaluation

Integration of the TeleComm component into a new vehicle computer
went smoothly, but options had to be added to support telephone number
entry and call originator settings at the application layer. Integration of
the NMEA GPS component were equally smooth. Two vehicle applica-
tions were built: one with the QualComm component and one with the
TeleComm component. However, both applications contained selectable
interfaces for either Trimble or NMEA GPS components at run-time.

Several problems were encountered during the development and testing
of the TeleComm component: 1) the unreliability of general telephonic
communications, 2) the unreliability of cellular data links, and 3) the
incompatibility of so-called “Hayes-compatible” modems.

Telephonic communications were unreliable primarily due to the vari-
ability of telephone line conditions from call to call and site to site. This
was mitigated through the development of an extremely robust handshak-
ing protocol and retry procedure between the command center and the
vehicle.

Data connections through cellular modems/telephones proved highly
unreliable during testing. Two different modems were tested: the Motor-
ola “Montana” modem and the USRobotics Megahertz 33.6 PCMCIA
modem. These two modems were designed to be used over both land-
line-based and cellular-based data links. Both modems auto-configured
themselves depending on whether a regular telephone or a cellular tele-
phone was used. During testing with cellular telephones, both were found
to have serious problems losing this auto-configuration information and
attempting to use the cellular data link as a regular land-line based link,
which caused the link to fail completely. After much research, the devel-

58

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

opment team also discovered that cellular data links were only consid-
ered to be reliable in stationary use (i.e. the vehicle cannot be moving
while the data link is established and operating). (See article on The cel-
lular telephone network automatically adjusts the bandwidth of any link
based on the traffic in a particular cell, which causes unreliable data
throughput. Also, movement of the vehicle causes frequent “hand-offs”
from one cellular tower to another, causing severe noise bursts which
subsequently cause the data link to fail. It was finally determined that use
of cellular telephones for data communications in a mobile environment
was not viable at this time.

Data connections through an AMSC satellite telephone proved more reli-
able, but the “Hayes-compatible” modem within the telephones were not
very “Hayes-compatible”. Two AMSC satellite telephones were tested: a
Westinghouse AMSC telephone and a Mitsubishi AMSC telephone. The
Westinghouse telephone, with its omnidirectional antenna, was the only
one usable in a mobile vehicle. The Mitsubishi telephone comes with a
directional “aim-and-shoot” antenna which fails in a mobile environ-
ment. Certain commands which should work on any Hayes-compatible
modem caused errors within the Westinghouse telephone, so the Tele-
Comm component was limited to sending only a subset of the Hayes
command protocol. Also, the modem within the Westinghouse telephone
did not implement a certain RS232C line correctly. The “CDHolding”
line, which provides a constant indication as to the state of the data link,
appeared to not be implemented at all.

This component was immediately used in another project (SATCAM/
FIRST), which proved out the framework architecture using AMSC sat-
ellite telephones to transfer digital pictures from remote vehicles to a
command center. The SATCAM/FIRST project used only the file-trans-
fer features of the TeleComm object; the CTSS vehicle computer applica-
tion used only the messaging features.

An interesting problem with data formats, the Visual Basic compiler, and
the Bokler DESCypher middleware component occurred during testing.
Visual Basic stores strings in Unicode format (two bytes per string char-
acter), but only sends the lower-order byte over the serial port using its
Comm Control object. The Bokler component encrypts and decrypts
using both the higher-order and lower-order bytes of the Unicode strings.
Modifications were made to the encapsulation of the Bokler component
to compensate for this “feature”. The result was that 16-byte blocks were
required for encryption/decryption rather than the 8-byte blocks that DES

August, 2000

59

A4

A4.1

Ad11

Ad12

A413

normally requires. Because of this, the command center was also
required to send encrypted messages in multiples of 16-bytes.

Vehicle Framework, FY99

Development

The third year of framework development for the vehicle focussed on
more alternate communications between the vehicle and the command
center, more alternate navigational tracking, modifications to the inter-
faces between the vehicle computer and the trailer and cargo domains,
incident management, system diagnostics, system configuration, and sys-
tem power control.

Communications: The Orbcomm Component

At the time of this report, a framework component is being developed to
provide communications to the command center and other vehicles via
the Orbcomm satellite communication system. The operation of this
component is very similar to the QualComm component, except that this
component must retry messages if the Orbcomm transceiver indicates
that a message is lost.

The Orbcomm transceiver that is being used in this development also
contains an internal GPS unit. The interface to this unit has been imple-
mented through the Orbcomm transceiver interface.

Tracking: The Orbcomm internal GPS

As mentioned above, the Orbcomm transceiver being used in the devel-
opment of the Orbcomm communication component contains an internal
GPS receiver. The Orbcomm component therefore acts like two different
standard components: a communications component and a tracking com-
ponent.

Tracking: The GPS Simulator

A component which reads GPS data from a file and simulates the track-
ing component interface to the application layer was developed for dem-
onstrations and for laboratory testing without requiring the use of actual
vehicles. The component does not utilize any hardware interface on the
platform.

60

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

A4.1.4

A4.15

A4.16

Incident Management

To perform efficient incident management in the vehicle, priority-based
queuing was added to all the communication components at this time.
The application may specify any of priority levels from 0 to 255 for any
outgoing message to the command center. The higher the number, the
higher the priority. Setting all messages to the same priority causes the
queues to act as FIFOs. The “URGENCY” keyword in the keyword-
based messaging format was finally used int messages between the vehi-
cle and command center domains to indicate the priority level of certain
messages.

To allow the generation of events within the vehicle, three components
were developed: a wrapper which encapsulates a standard PC parallel
port, a digital-input class, and a digital-output class. A hardware interface
box was developed to allow easy connections of switches and LEDs to
the port, and to allow buffering of port inputs. Switches, such as an emer-
gency switch, could be connected to the PC parallel port via this hard-
ware interface box. The digital-input class could then be used by the
application to determine if a switch-flip or button-press had been made
and generate an appropriate incident report to the command center. Also,
LEDs could be connected to the PC parallel port via this hardware inter-
face box to indicate system status.

System Diagnostics

A component for time-stamped component-stamped logging was devel-
oped. This log was ASCII-based, using a keyword-format similar to the
one used in messaging. Also, each log event was timestamped to allow
easy compilation/sorting of different logs from different vehicles and
domains. Most of the communication, tracking, and trailer/cargo compo-
nents were modified to use this logging component if so specified by the
application.

Another component, one for monitoring the raw data streaming across
any data interface, was developed. This component was linked into the
communications, tracking, and trailer/cargo components and made acces-
sible via the status forms for each component.

System Configuration

Due to the need to easily reconfigure applications to different ports,
users, etc., a component to read keyword/value pairs from an initializa-
tion file was developed to allow data-driven configuration of the applica-

August, 2000

PRy A R Sy 4 N

61

N A S TNy e, & 77 A M S S o~ L LA S e o S A D

Ad17

A4.1.8

A4.2

tion. This file was put in an ASCII format. The application decides how
to use these keyword/value pairs, and whether to default to some “safe”
settings if these values are erroneous or nonexistent.

Other Components

Changes were made to the trailer, container, and container event objects
to support a new type of container tag being used in the Cargo Monitor-
ing system. This change did not effect the component interfaces to the
application.

A power control/system shutdown component was added to the frame-
work to allow the application to shut itself and the computer down when
necessary. This component could activated by the application as needed.

Integration: The Vehicle Computer

The vehicle computer applications which were developed at the ends of
FY97 and FY98 were modified to allow the operator to configure for an
emergency switch and for automatic shutdown of the vehicle computer
based on an external input.

Evaluation

Evaluation of the Orbcomm communications and tracking component is
ongoing at the time of this report.

Testing of the incident management features added to the vehicle frame-
work showed that Windows NT would not allow manipulation of the par-
allel port at the level required by the parallel port object. At this point, the
vehicle framework was limited to use under Windows 95 and 98. The pri-
ority-based queues for messaging worked as expected, allowing emer-
gency messages to jump ahead of lower priority messages outbound to
the command center.

The diagnostic components for logging and interface monitoring were
very successful, and the vehicle development team agreed that they
should have been developed sooner in the project.

The system configuration component was used by the STORC and the
SATCAM/FIRST projects to allow easy reconfiguration of those applica-
tions. It was very easy to integrate and to utilize.

62

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

APPENDIX B Command Center
Framework: Lessons
Learned

B.1

B.1.1

Development of the Encryption Classes for the Command
Center

In implementing encryption for CTSS, two basic lessons stood out. The
first relates to the software design process, and is an instance of a well
known fact: sometimes new requirements conflict with prior design deci-
sions - and cannot in fact be implemented without going back and modi-
fying the design. In this case, the CTSS communication design was not
sufficiently versatile to allow the encryption layer to include a key-
exchange component. The second lesson is well known to any security
practitioner: encryption is easy, security is hard. Beyond encryption
algorithms and protocols, issues of software quality, key management,
and platform weaknesses present difficult (read “expensive”) problems to
solve. It may be of some use, however, to set out a few details of how
that fact presented itself during the CTSS project.

CTSS Encryption and the Software Design Process

The idea of encrypting CTSS communications was added late in the
design process. At least, this is true formally: although it was known for
the entire life of the project that encrypting messages would be a useful
capability, the actual design process did not take encryption into account
until the end. The main result of this is that encryption did not fit natu-
rally into the software structure, and some capabilities could not be inte-
grated at all.

August, 2000

. T TR T -

e p——

63

L v sraladulih A aleine e snuo Pt R AN A DM T’ Lr api el DOAL vt SVt aGalERET, - sn Pt R A

There are actually two aspects to consider. The first aspect is the commu-
nications protocol. That is, CTSS defines the message format (both syn-
tax and semantics) for messages between the control center and the
vehicles. Any changes to this interface affect both sides, and are there-
fore expensive. CTSS followed a model that will be common in any
project dealing with two different environments (in this case, the control
center and the mobile components) - that different development person-
nel work in each environment. Therefore the communications protocol is
in fact an interface at the highest level of the project: between the two
halves of the development team.

It is of course well known that great care must be taken in defining inter-
faces at this level. Although the message format was chosen with the
concurrence of all involved, it is clear in hindsight that it was not enough:
the encryption requirement was not considered. The particulars of how
the message format specification made certain capabilities difficult are
set out later. At this point it suffices to note a couple of lessons. Gener-
ally, one must recognize which interfaces are important in order to give
them sufficient attention. An interface that affects developers from two
different teams must be treated as though it affects the entire teams. And
communication protocols are almost inevitably interfaces at the highest
level.

In addition to the communication protocol definition, the actual imple-
mentation of communications was not constructed so as to allow new lay-
ers to be added. To begin with, the class TeleComm implemented
message exchange, as supported by HayesModem and SerialPort. Then
actual encryption (and key exchange) was implemented with Cipher and
related classes. Finally, ProtTeleComm inherits from TeleComm and
adds encryption capability using Cipher. This is a moderately successful
use of object-oriented techniques: it was not necessary to implement the
original class again, but it was necessary to modify it. The modification
made certain behavior overridable (so that ProtTeleComm could override
it!). The result was also limited because TeleComm did not have any
concept of different levels of messages, which is necessary to properly
implement key exchange. ProtTeleComm supports some key exchange
in spite of this, but is not robust: it fails if one side to a communication
has to restart (because the other side won’t recognize the restart). To reit-
erate, supporting robust key exchange requires both sides to be able to
recognize which messages are key exchange messages and which mes-
sages are (encrypted) application messages.

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

B.1.2

In fact it is the message format and meaning, i.e., the protocol, that is the
root cause of TeleComm’s inflexibility. The comments in the file header
lay out the protocol, including some limitations. In addition to the fact
that the protocol only defines one kind of (application) message, there is
another limitation. To quote: “This protocol implements a non-dialog
approach to vehicle/command center communication. There is no
requirement or envisioned usage that would necessitate a dialog. As
implemented, this protocol can be used to send one request and receive
one reply. Or, it can be used to send lots of messages, but not receive a
reply after each one.” This is a fatal limitation for key exchange.

Another way to interpret these results is a failure to abide by the rule
“don’t reinvent the wheel”. There is in fact a great deal of literature on
communication protocols. For example, the ISO defined a Reference
Model for networking comprising seven layers before 1980. Also, the
Internet provides a rich source of protocol definitions, starting with TCP/
IP; the SSL (secure sockets layer) could have been applicable. The Unix
“streamio” package is another example; it defines a way to add “mod-
ules” to a bi-directional data stream. Jon Bentley describes the useful-
ness of “self-describing data” in recognizing what to do with a set of
information. What happened in CTSS is that the communication step
itself was regarded as a simple problem, and there was no need to do any-
thing more than construct a simple solution - a new wheel. In the end, the
simple solution was too simple.

From the point of view of software design, there are two ways in which
the CTSS project could have done better in regards to encryption. The
first way would be to consider encryption early: even relatively simple
design changes, done early enough, would leave adequate “hooks” to add
encryption in later. One could include robust key exchange, compres-
sion, and other facilities. The other way would be to recognize that the
communication protocol is an interface at a very high level, and needs to
be designed with a lot of flexibility to begin with, using ideas from other
systems.

CTSS Encryption and Real Security

The algorithms used for encrypting messages for CTSS are more than
adequate in terms of cryptographic strength. But other security concerns
are addressed in only the simplest ways.

Consider, first of all, the need to generate good keys. The CTSS imple-
mentation simply allows the users to specify passwords (or passphrases),

August, 2000

65

with no particular check on their quality. We do not even provide guid-
ance on what constitutes a good password. A secure system requires
good quality keys, and CTSS does not prevent that, but neither does it
provide any help. If the user chooses passwords of sufficient complexity
and length, then the enemy will not be able to guess them and the
encrypted messages will remain safe. A better system, however, does not
depend on user skill for security.

Another requirement on a secure system is to store keys securely - that is,
to hide them. CTSS simply stores keys (at the control center) in an ordi-
nary file, with no extra protection added. Either the control center com-
puters must be physically protected from the enemy (including insiders!),
or we presume that the enemy doesn’t realize how the key file is used. It
is possible to operate in this way, but it is easy to see the potential for fail-
ure here. A simple improvement would be to encrypt the key file with a
master key - but make sure that the master key itself is good - and pro-
tected! And there is more to come, below.

Another aspect of secure key storage is to ensure that the cryptographic
module (software, in the case of CTSS) protects the keys from accidental
exposure. One usual requirement is an extremely careful inspection of
the code. One would hate for a bug to result in sending the key out in a
message, instead of the user data. While every reasonable care was taken
in implementing the CTSS encryption, it could not be fairly said, for
example, that the development procedures would pass the stringent NSA
requirements. Another problem for CTSS is the platform on which the
control center operates - an ordinary workstation computer. The operat-
ing system (e.g., Unix or Windows NT) can be counted on to swap appli-
cation data to disk, including encryption key values. While it seems
unlikely that a key can be found by examining swap area (and of course
the existence of the key file mentioned above obviates this technique any-
way), a truly secure system needs to protect against even this kind of
accident. There are techniques for avoiding swap problems, but CTSS
did not go to the trouble (expense) of doing this.

Finally, I will mention the key distribution problem. Both sides of an
encrypted channel must know the key. CTSS provides no facilities at all
for distributing keys (passwords). The user is responsible for communi-
cating passwords through some other channel - which should, of course,
be secure. Public key methods for key exchange are perfect for this, but
(as described earlier) CTSS does not have that capability.

66

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

The above difficulties will not surprise anyone who has attempted to
design a very secure system. For those who supervise such work, or pay
for it, this information might provide a better feel for the difficulty inher-
ent in the security problem.

One more note. In recent years many standards for encryption have
appeared. It would be beneficial for any future system, whether based on
CTSS or not, to be cognizant of these standards. Like software in gen-
eral, it pays to avoid reinventing the wheel in encryption. RSA Labs
maintains a set of numbered standards known as PKCS (Public Key
Cryptography Standards) #1, #2, and so forth. At present they can be
found on the Internet at http://www.rsa.com/rsalabs/pubs/PKCS/. There
is also an effort by IEEE to create a set of standards, known as P1363.
That group’s web site is http://grouper.ieee.org/groups/1363/. The U.S.
government standards agency, NIST, is at http://www.nist.gov/, and has a
lot of useful information, including Federal Information Processing Stan-
dards at http://www.nist.gov/fips/.

B.1.3 Summary

In the end, the CTSS encryption capability works, and is capable of keep-
ing communication private, but is not particularly sophisticated. Future
systems may benefit from the lessons learned in implementing CTSS. In
software design, it pays to be careful with high level interfaces, particu-
larly communication protocols, and this includes considering all require-
ments to begin with. For security, the least of the problems is the
encryption algorithm; key management is much harder and may influ-
ence many decisions, including the choice of platform and overall system
architecture.

August, 2000 67

68

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

APPENDIX C Example
Implementations

The CTSS software has been deployed with several applications.
Descriptions follow of implementations in the vehicle and command cen-
ter domains. These implementations can be intermixed to support spe-
cific customer requirements. Figure 8 shows how one system can support
various types of vehicles and command centers

o QuatComm Satellite
PS onsteliation . .
Vi o N

° ~

a4 < ity
. .Vf; e \ D ObjectStore, Versant
/./ or Oracle Data Base
\ s e “\ CTSS Gatoway
S/ . =
< >/ OS] _

CualComm Hub]
o
486 Laptop - Windows 98 m
Tomble GPS
Qualcomm MCT

. ey
MapTracker

@Panuum Laptap - Windows 95 Display Application Application
oTumble GPS
#S3telite Phone with Modem

Figure 8 Application using muitiple CTSS transportation objects in the vehicle fleet and command
center.

August, 2000 69

. g N 2 = s a2y PO R .- Ve e o . [T P
AT N A T a7 AT A AN 1 200 IO L > .o LN e’z N T gt

C.1 Vehicle Domain

The CTSS software for the vehicle domain has been developed for Win-
dows environments. Several commercial vendors are beginning to pro-
duce ruggedized PCs designed for mobile environments. While these
products still need to mature, it appears that the PC hardware platform
may be adequate for some mobile applications. Problems areas are:

e The standard, overt, windows shutdown mechanism is incompatible
and non-intuitive with an automobile shutdown.

» Mobile applications require multiple inputs. In particular, multiple
serial ports are needed for monitoring and data acquisition. The new
USB (universal serial bus) interface appearing on some computers
may address this problem.

Notwithstanding these problems, vehicles applications have been devel-
oped using the CTSS framework. Figure 9 diagrams the CTSS compo-
nents used in building two vehicles. One vehicle supports a
QUALCOMM communications unit. and the other supports a satellite

telephone.
Application Vehicle Vehicle
(custom software) with Qualcomm MCT with Satellite Phone
Framework o sAgent ,
2 ’_o‘ti_jecf‘:: .

(reusable CTSS components) o
- trinoutcing

Middleware PDQ Serial MS Interactive
(COTS) \senal comm Agent*
messagnE) Mezhin arumation
Platform N IR . \}lsu(}]” B N TSN
corgy | Windows 95 (WindowsNT. “Basic i | - o ofon [T
- T A N 50 ., L B
Figure 9 Example of two vehicles using CTSS.

A rudimentary application interface has been developed and is shown in
Figure 10. The interface has been designed to support either keyboard,
mouse, or touch screen input.

70 August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

. i s 5t

CWMC"%W
00000 €0

190000002 *4C<>

I SRS
¢ ande ORI “f mcrxﬁ;m—"j
w&ﬁcﬁw— UTCD&'. W““‘_ .
Speedirghy [0 Suﬂu‘auud](g—-,‘.
N A . sua.mmﬁ— o
mmm .
RowGPS Shriwee - “"“""“f———,’*

TRLHTSZ51 250+ 350450392 1065452551 +0054291 50000~000035000501

RTMI540005528091 95912

Figure 10

c.2

Application interface for CTSS-based vehicle.

Command Center Domain

The CTSS software for the command center was originally developed on
a Silicon Graphics Computer, running IRIX, which is a UNIX derivative.
During fiscal year 1998, the software was ported to two other UNIX-
based operating systems: Digital UNIX and Data General DG/UX. The
port of the command center software to Windows NT was not completed
in fiscal year 1998, as planned, but was completed in fiscal year 1999.

The CTSS components have been used in two command center applica-
tions. Figure 11 diagrams the CTSS components used in building these
two applications.

August, 2000

7

ot e PR
o, A e .

Application MAP/Tracker TracerlinkPro
(custom software) Application Application
Framework Veinéle b it La(tﬂLox:g
(reusable CTSS components) bbjcf?t: Ga 2 object
Middleware Object Store ACE IogViews
'
(COTS) Versant DB DB Communications GUL
Platform h DA C BRI SGI IRIX . :
(CCTS) o ~Compiler-- | » .08 -
Figure 11 Example of two command centers using CTSS.

The MAP/Tracker application has a relatively rich user interface. It sup-
port a large number of the CTSS objects. Figure 12 shows the start-up
screen for MAP/Tracker using CTSS components.

72

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Py s p—

Map Systat-Edit:Routes” . o~ . ' Help|

C\r\ - [Mén'Sep 28 12:02:23 1938 |

243 486

Mlles, T

Message loput Window. " -

e R ||

Figure 12 MAP/Tracker application interface for CTSS command center.

The CTSS component library was also used in the development of the
Sandia Proof of Concept (SPOC) during fiscal year 1998. SPOC uses a
database-centric architecture. The CTSS layered approach adapted very
well to this architecture. By using one database as the focal point, the
issue of platform-specific software became a moot point. The CTSS com-
ponents used in SPOC are diagramed in Figure 12.

August, 2000 73

Ry 5

Application SPOC SNL-developed COTS pre-integrated with ORACLE
{(custom software) Application Application

Framework ’\Zehicl’e ’\,CH‘SS I;;eyf“d R ESRI .
(reusable CTSS components) object’ Qateway ;1&?5:3?7 Spaial Dara Engine

Middleware Oracle ACE
(COTS)
Platform Dlglta] Unl“(r ; ‘:)CH— v s
(COTS) <208 - of: - Compiler - |7
Figure 13 CTSS usage in SECOM Proof of Concept

C.3 Satellite Camera

The CTSS vehicle components were used to develop the Satellite Camera
product. The unique feature was that the vehicle components were also
used to develop the command center portion of the application. Figure 12
diagrams CTSS usage in the satellite camera application.

74 August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Applicaton SATCAM SATCAM

(custom software) for comm and center for vehicle

Framework | - 7.
(reusable CTSS compenents) [= .« <

Middleware
(COTS)
le transfer &
Platform BC
(COTS) | seispat, | U000
sound cepatity] Stmers 0P
*optional (used 1n command center application only)
Figure 14 CTSS usage in Satellite Camera Application.
C.4 STORC

The CTSS software and architecture was the basis for developing a track-
ing demonstration system for the Air Force Space BattleLab. The Satel-
lite Tracking OF Re-entry vehicle Convoys is referred to by the initial
ism STORC. This system used both the command center and vehicle
implementations.

This particular application gave specific evidence to the successfully hav-
ing achieved the goal of “rapid development”. The application was
designed, developed, and tested in 3.5 staff months. This is a notable
achievement for a very customized application.

Here are the block diagrams showing which components of the CTSS
library were used to develop STORC.

August, 2000 75

R Ty, B U SR O L S

A

Application
(custom software)

Framework
(reusable
components)

Middleware
(COTS)

Platform
(CCTSfeustom)

STORC Application

Media

communtcations WAV player
PC Visual
2 serist ports, Windows Basic
1 peraliel port, 98
sound eapability . ‘ 6.0

Figure 15

CTSS usage in STORC Vehicle Application.

76

August, 2000

A Configurable, Object-Oriented, Transportation System Software Framework

Application CTSS daemon/service COTS Tracking Analyst
{custom software) Applications Application by ESRI
Framework o CISS . CISS : Cry;itp S;;)lrt ..atLpng
(reusable CTSS components) A Gateway Object Message| Object otject .object’
Middleware Sh‘}ift}ﬁa Shared ACE ESRI
(COTS) Data P | Disks |Communications| ARCView
. " WindowsNT, | - ¢* pairgainmodems| - FT
atform MBS I N SLeT e s |- Lseral potts, -
©ors) | OS::-|. - Compiler” |.fornetworking . -5 monitor
Figure 16 CTSS usage in STORC Command Center Application.
Figure 17
August, 2000 77
I e N TTTE : -

DISTRIBUTION:

—_ = = N = N e NN e e e

MS 0775
MS 0775
MS 0775
MS 0775
MS 0775
MS 0775
MS 0775
MS 0775
MS 1110
MS 9018
MS 0899
MS 0612

MS 0161

R. C. Beckman, 5852

G. M. Corbett, 5852

K. L. Green, 5852

S. M. Kelly, 5853

J. W. Myre, 5853

S. W. Ratheal, 5853

D. W. Scott, 5853

C. A. Ulibarri, 5853

E. D. Russell, 9223

Central Technical Files, 8940-2
Technical Library, 9616

Review and Approval Desk, 9612
For DOE/OSTI

Patent and Licensing Office 11500

78

August, 2000

