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ABSTRACT: Many recent qforts to integrate transportation and deployment simulations, although beneficial, have
lacked a feature vital for seamless integration: a common data class representation. It is an objective of the Depart-
ment of Defense (DoD) to stanalzrdize ail classes used in object-oriented deployment simulations by developing a stan-
dard class attribute representation and behavior for all deployment simulations that rely on an underlying class repre-
sentation. Tk ~tensive @ierarc/y and Qbject ~epresentation for &-ansportation Simulations (EXHOR~ is a collec-
tion of three hierarchies that together will constitute a standard and consistent class attribute representation and be-
havior that could be used directly by a iarge set of deployment simulations. Thejirst hierarc~ is the Transportation
Class Hierarc@ (TC.H), which describes a signij%ant portion of the defense transportation system; the other two deal
with in@structure and resource classes. EXHORT will allow deployment simulations to use the same set of underlying
class ahta, ensure transparent exchanges, reduce the effort needed to integrate simulations, and permit a detailed
analysis of the defense transportation system. This paper describes EXHORT ’sj%st hierarchy, the TCH, andprovides a
rationale for why it is a helpful tool for modeling major portions of the defense transportation system.

1. Introduction

1.1 Background and Purpose

Logistics and mobility have become increasingly import-
ant because of the rapidly changing nature of the world.
There is a critical need to move more people and supplies
with fewer resources. With the pullback of U.S. military
forces to the continental United States (CONUS), contin-
gency planning for deploying forces to overseas locations
is now of central importance. The U.S. Department of
Defense (DoD) also has new missions, including disaster

.

relief, both in the United States and overseas, and
peacekeeping. Over the past 5 to 10 years, the DoD has
made greater use of simulations to help meet its mission
objectives [1]. These tools are used to analyze, plan, train
for, and execute deployments. Such needs have moti-
vated investment in new simulation models and technolo-
gies. It is more efficient and effective to simulate de-
ployments first on a computer than to test them in the real
world.

The Military Traftlc Management Command Transporta-
tion Engineering Agency (MTMCTEA) and others are



DISCLAIMER

This repofi was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.



DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available originai
document.



developing simulations to analyze military deployments.
In conducting analyses of the defense transportation sys-
tem, deployment models and simulation systems rely
heavily on data regarding military cargo, transportation
assets, and infrastructure. Currently, the military cargo
and transportation asset data are entered into simulation
models separately and in various formats. This practice
results in many data inconsistencies and makes simulation
integration very ditllcult and time-consuming.

Simulations need to be reused to the maximum possible
extent, and new simulations should be designed only
when existing simulations cannot effectively provide DoD
with the needed capability [1]. To realize the greatest
return on investment DoD must team these simulations
together in different combinations to satis@ a diverse and
ever-evolving set of user needs. Using and adhering to
standards, accepted measures that define or represent and
are used to establish norms, can meet these goals.

Many recent efforts to integrate transportation and de-
ployment simulations, although beneficial, have lacked a

resources needed to support deployment (e.g., ramps,
rough terrain container handlers [RTCH], cranes, and
forklifts). All three hierarchies are needed to describe
major portions of the defense transportation system. The
goal is to use EXHORT to provide a standardized code
structure for object-oriented deployment simulations to
ensure meaningfid data exchanges.

1.2 Deployment Simulations

feature vital for seamless integration: a common data
class representation. It is an objective of the DoD to stan- .
dardize all classes used in object-oriented deployment
simulations that rely on an underlying class representa-
tion. This paper describes a class framework called the
~tensive lJierarchy and Qbject ~epresentation for
lJansport Simulations (EXHORT), which is designed to
standardize the classes used in object-oriented deploy-
ment simulations. ●

EXHORT is a collection of three hierarchies that together
will constitute a standard and consistent class attribute
representation and behavior that could be used directly by
a large set of deployment simulations. The hierarchies are .
unusual in that they take a bottom-up rather than a top-
down approach. The class abstractions in EXHORT are
specified at a detailed level that encapsulates the charac-
teristics of deployment simulations, rather than at the
higher, more generic level that is used more frequently in
object modeling. This bottom-up approach is well suited
for DoD’s rapid prototyping environment.

●

These three hierarchies will allow many deployment
simulations to use the same set of underlying class data
and significantly reduce the effort needed to integrate , ~

Argonne National Laboratory (Argonne), in collaboration
with the MTMCTEA, has developed three force projec-
tion simulation systems (ELIST — Enhanced Logistics
Intra-theater Support Tool, PORTSIM — Port Simulation
Model, and TRANSCAP — Transportation System Ca-
pability Model) and is beginning work on a fourth (CITM
— Coastal Integrated Throughput Model). These systems
simulate the processes required for the different compo-
nents of the defense transportation system. While devel-
oping these force projection simulations, Argorme has
gained experience in working with transportation logis-
tics, class frameworks, and simulation interoI)erabili&’..

ELIST — Simulates movement from ports across the
land transportation system through intermediate lo-
cations to the final destinations. ELIST also predicts
whether the inthstructure and transportation assets
can support the wartlghting commander’s required
force delivery dates.

PORTSIM — Simulates seaport operations and de-
termines port throughput. The simulation also identi-
fies system and infrastructure constraints and port-
specific force clearance profiles.

TRANSCAP — Simulates installation transportation
operations, computes time-phased outloading capa-
bility, and compares computed capability to outload-
ing requirements. It will also identi& system and in-
frastructure constraints and installation-specific force
clearance profiles.

CITM — Will simulate logistics over-the-shore op-
erations at austere ports linking the bare beach to
transportation infrastructure.

,.= Content and Organization
simulations and to analyze the defense transportation
system. The first hierarchy is the Transportation Class
Hierarchy (TCH), which covers commercial transporta- This paper describes EXHORT’s first hierarchy, the TCH,

tion assets and milita~ cargo (Section 3). The second and provides a rationale for why it is a helpful tool for

hierarchy is the Infrastructure Class Hierarchy (ICH), modeling major portions of the defense transportation

which deals with locations where activities are performed system.

and with the physical infi-astructure, such as a motor pool
at a fort or a berth at a port. The third hierarchy is the Section 2 introduces programming standards and their

Resource Class Hierarchy (RCH), which describes the relation to the TCH. Section 3 provides specific informa-



tion about the classes of the TCH. Finally, Section 4 dis-
cusses the benefits and future directions of EXHORT.

2. Programming Standards

Programmers use standards as a guide to designing “stan-
dard” components that ensure reusability and
interoperability among simulations. When developing
state-of-the art models and simulation tools for DoD, pro-
grmqmers must follow the DoD standards and compliance
mandates. Two of these are the Defense Information In-
frastructure Common Operating Environment (DII COE)
and the High Level Architecture (HLA) [2]. DII COE
and HLA are completely separate and parallel undertak-
ings. DII COE sets the standard for how simulations will
use a common operating environment whereas HLA
standardizes how the simulations will communicate.
Aside Ilom the DoD standards, it is also useful to incor-
porate non-DoD standards into simulations to ensure
greater standardization. One such standard is the Com-
mon Object Request Broker Architecture (CORBA)
which standardizes distributed objects so that simulations
can interact in a heterogeneous environment (e.g., differ-
ent platforms or programming languages) [3,4]. The next
three parts of this section provide an overview of DII
COE, HLA, and CORBA, and the final part illustrates the
relationship among these standards and the TCH.

2.1 The Defense Information Infrastructure Common
Operating Environment (DII COE)

2.1.1 What is the Purpose of DII COE?

DII COE is a flexible approach for building interoperable
systems. It was developed and implemented by the De-
fense Information Systems Agency (DE3A). DII COE is
comprised of a collection of reusable software compo-
nents, a software infrastructure for supporting mission-
area simulations, and a set of guidelines, standards, and
specifications. The guidelines, standards, and specifica-
tions describe how to reuse existing software and how to
build new software properly to ensure seamless and
automated integration. The core concept of DII COE
compliance is ensuring that simulations use as many stan-
dard conventions and modules as possible for maximum
interoperability.

2.1.2 How Does DII COE Work?

The heart of DII COE is the Integration and Runtime
Specification (I&RTS), which describes the steps pro-
grammers need to follow to achieve DII COE compliance.
Compliance is measured by the degree to which a simula-
tion follows the I&RTS guidelines. There are four com-
pliance categories: runtime environment, style guide, ar-

chitectural compatibility, and soflware quality. Currently,
DISA focuses only on the first category, runtime envi-
ronment. There are eight levels of runtime environment
compliance, with a minimum compliance of Level 5.
Acceptance as an ofticial product requires demonstrated
interoperable compliance (Level 7) and a migration strat-
egy for attaining full DH COE compliance (Level 8).

2.2 High Level Architecture (HLA)

2.2.1 What Is the Purpose of HLA?

The DoD’s Defense Modeling and Simulation Oftice
(DMSO) is leading a DoD-wide effort to support reuse
and interoperability throughout the DoD’s wide spectrum
of models and simulations — 451 simulations, each with
unique user-defined needs [5]. HLA is a general-purpose
architecture to encourage reuse and interoperability of
simulations [2,5]. HLA brings together systems built for
separate purposes, technologies from different eras, prod-
ucts from various vendors, and platforms from various
services, enabling them to interoperate in a virtual envi-
ronment [2].

HLA is based on the premise that no one simulation can
satisfy all uses and users. From this premise comes an
approach that links different ~es of simulations at mul-
tiple locations to create a realistic, complex, virtual world.
The intent of HLA is to support reuse of capabilities
available in different simulations, ultimately reducing the
cost and time required creating virtual environments for
new purposes.

The DoD has adopted HLA as a standard for fiture de-
fense simulation development [6]. Even though HLA
originated from the military, the architecture is also suited
for civilian simulations [7]. The Institute of Electrical and
Electronics Engineers (IEEE) is now in the process of
codifiing HLA in three IEEE 1516 standards [1].

2.2.2 How Does HLA Work?

An individual simulation or set of simulations developed
for one purpose can then be applied to other simulations
under a federation — the concept used in HLA for a
group of interacting simulations. HLA defines rules and
specifications governing how these simulations, or feder-
ates, interact with each other in a federation [8]. The fed-
erates structure data according to an Object Model Tem-
plate (OMT) and communicate through a data distribution
mechanism called the Runtime Intlastructure (RTI).

2.2.3 The Object Model Template (OMT)

The OMT provides a standard format for documenting the
objects, attributes, and interactions that are exchanged



during a federation execution [6,7]. The OMT promotes
the reuse of single federates or a federation as a whole.
The OMT can be viewed as a contract between federates
on how a common federation is executed.

2.2.4 The Interface Specification

The Interface Specification is a precise specification of
actions a simulation may perform, or be asked to perform,
during an HLA federation execution [6,7]. The Interface
Specification prescribes the interface between each feder-
ate and the RTI and provides communication and coordi-
nation services to the federates. Federation communica-
tion takes place only betsveen each federate and the RTI,
not among the federates themselves. The RTI is, in ef-
fect, a distributed operating system; designed to provide
the simulations with a standardized set of services that
were previously handled by the individual simulation [9].

2.3 The Common Object Request Broker Architec-
ture (CORBA)

2.3.1 What Is the Purpose of CORBA?

CORBA was developed to address a troublesome ver-
sioning problem in large-scale, worldwide client/sener
applications. Client/server computing is characterized by
a two-tiered architecture, with a client tier and a server
tier. In a two-tiered model, the client (the requestor of
information) consists of a graphical user interface (GUI)
and program logic that manipulates the data from the
server [the repository or provider of information). The
server simply provides raw data requested by the client,
and the client is responsible for processing and displaying
the raw data. In the two-tiered approach, the client is re-
ferred to as “fat” because the program logic to process the
raw data and the GUI code to display the raw data are
physically located in the client sotlware — thus making
the code large in size, i.e., “fat.”

Consider a single deployment server with the client dis-
tributed to many locations around the world. All clients
connect to the single server for raw data. When the raw
data changes (e.g., a new type of material handling
equipment is introduced), the distributed copies of the
simulation software are not affected. However, a change
to the client (e.g., new logic for staging area usage) re-
quires that all copies of the client software be updated.
Since changes to the client simulation logic can be fre-
quent, the “fat-client” approach presents a versioning
problem: it is difficult to ensure that all client simulations
are the latest version.

This versioning problem can be avoided by using a three-
tiered approach that separates the simulation logic from
the GUI. The simulation logic can then be maintained on

a single server, and the clients are “thin” (consisting pri-
marily of the GUI). The client simulation communicates
with the model-logic server, which, in turn, communicates
with the data server. This is the approach taken by
CORBA. A new complexi~, however, is introduced by
this distributed object architecture. Objects residing in
the GUI need to communicate with objects residing on the
simulation server. But if the server and client both use the
same class framework (e.g., EXHORT), this complexity
is minimized and the communication is simplified.

2.3.2 How Does CORBA Work?

CORBA, developed by the Object Management Group (a
large, ad hoc organization of different companies), stan-
dardizes communications among distributed objects.
CORBA defines the structure and design of a system. It
allows objects to communicate in a heterogeneous com-
puting environment regardless of where an object resides
or how it is implemented. Only the public interface needs
to be known. The public interface allows an object re-
siding on system X to invoke a method of an object re-
siding on system Y, where X and Y can be completely
different systems or objects implemented in different pro-
gramming languages. This interaction is possible because
each object must have an intefiace defined according to
the Interface Definition Language. This interface defines
the operation, parameter types, user-defined exceptions
for operation failure, and the context or environment. The
Interface Definition Language interfaces are registered
with the Object Request Broker (ORB) and are stored in
the interface repository, where they can be referenced
when a request for an operation is received [3,4].

The ORB is responsible for delivering requests and re-
plies between clients and servers. The ORB provides the
communication infrastructure needed to deliver requests
and associated parameters to the servers. It is responsible
for making the connection to the server, sending the pa-
rameters for transfer across a network, and returning the
operation result to the client. If the client knows which
server object it will interact with, all references can be
made through the Static Invocation Interface. [n this case,
the exact reference of the object and its location are
known (e.g., Internet address) at the time the programmer
is writing the code, and the code can be written to “get X
at Y.” These requests are synchronous, meaning they wait
until the server returns with a value (a positive return —
e.g., a document) or an exception (a negative return —
e.g., no such data available). The Dynamic Invocation
Interface is available for requests that will not be known
at compile time. Because the programmer does not know
the location of some of the data or code at the time the
code is written, the code “get X at Y“ cannot be written.
Instead, the programmer writes the generic code “get” and
X and Y are Ietl to be found at runtime. Essentially, the



code contacts a search engine to find the values. This
second strategy allows the client to (1) dynamically query
the ORB for a set of objects that can fidflll a specific op-
eration, (2) retrieve the interface of the selected object, (3)
construct the request, (4) invoke the request, and (5) re-
ceive the results at runtime [3,4].

2.4 Programming Standards and the TCH

The TCH supports the efforts under DII COE to create a
collection of reusable parts, some very basic, some com-
plicated, so that programmers can work by assembling
existing components rather than creating completely new
ones. As a faster, more reliable code development sys-
tem, the TCH could quali~ as a reusable component un-
der DII COE. The other hierarchies to be developed un-
der EXHORT would also be candidate components, as
would the EXHORT framework itself.

For interactions among simulations, the TCH would en-
hance the usefulness of HLA by adding a means to ensure
the information exchanged through HLA mechanisms is,
in fact meaningful and accurate. HLA compliance satis-
fies the most important condition for interoperability and
reuse: a common, efficient technical means to join simu-
lations together in a federation, optionally including live
players, and to exchange information in a coherent man-
ner [5]. However, HLA does not speci~ what constitutes
an object. Thus, while HLA allows simulations to com-
municate, the potential variation in object definitions
means that HLA compliance does not guarantee a valid,
meaningtld exchange of information throughout a federa-
tion. Adoption of the TCH as a standard, consistent class
attribute representation for deployment simulations would
provide simpler and more accurate communication among
federated simulations.

For example, once the ELIST and TRANSCAP deploy-
ment simulations use the TCH, the Railcar class will be
the same in both. In an integrated scenario execution un-
der HLA, a railcar object will be loaded by TRANSCAP
and transferred (without any alterations) to ELIST for
processing through the rail network. Similarly, the object
used in TRANSCAP to represent a vehicle loaded on a
railcar will be identical to the object used in ELIST to
represent the vehicle that is unloaded from the railcar
once it reaches its destination. While HLA can manage

this data exchange between TRANSCAP and ELIST, data
translations may be required. Combining HLA with the
TCH makes this translation step unnecessary.

This verification of meaningful exchanges can also be
accomplished through CORBA, but the TCH provides a
more direct method. CORBA allows components from
different simulations to interact with the same data struc-
tures (objects) by means of an intermediary, the “object
broker.” Roughly speaking, CORBA is a distributed op-
erating system. In contrast, components that use TCH
objects will “know” how to interact with TCH objects in
other components without an intermediary.

Simulations using the TCH may also use CORBA strate-
gies. That architecture is valuable because its require-
ments lead to designs that foster reuse. Under it, compo-
nents are designed and built independently and then used
dynamically as programs are running. CORBA-like inter-
faces are being built into the TCH to make it easier to use
in developing standards-compliant deployment simula-
tions. For example, instantiations of the TCH objects
could be stored in a CORBA server/object adapter and
thus centralized for use by several simulations. Such
combinations of TCH and CORBA. could ease interac-
tions within HLA federations.

The following example illustrates the interrelationships
among DII COE, HLA, CORBA, and the TCH. Figure 1
illustrates the “ABCD Federation,” where A, B, C, and D
are cargo deployment simulations and are federates of the
ABCD Federation. Simulation A and Simulation C are
both using the TCH to represent their transportation
classes, one of which is the Cargo class.

Simulations A and C use a CORBA server to hold all the
instantiations of the TCH Cargo class. This ensures that
every CORBA client using that server has access to the
same definition and the same instantiation of the Cargo
class. Without this global access, each simulation would
have to set up its own definition of a cargo class, intro-
ducing the possibility of mismatches between simulations
and resulting errors. In addition, Simulations A and C are
both using segments that are DII COE-compliant, which
ensures that they have been verified and tested.



Figure 1. ABCD Federation

w
During the execution of a simulation, all the simulations
communicate by the mechanisms of HLA, for example,
the RTI. Suppose Simulation A provides information
about a railcar objec~ and Simulation C needs to use that
information. SirnuIation A publishes the raiIcar informa-
tion in its public interface. Through the RTI, Simulation C
finds out that the information is available. To retrieve the
information, Simulation C must construct a railcar object
identical to that in Simulation A. If Simulation C used a
“proprietary” definition of the railcar class rather than the
TCH Railcarclass, the two simulations might use the
same field name to refer to different properties of a rail-
car, Therefore, Simulation C might successfully retrieve
a value for that field tkom Simulation A, but the value
would be incorrect. By using the TCH, Simulation C can
use the Railcar class to construct a faithfid replica of the
original object in Simulation A, The issue now becomes
an internal one of filling the fields in the object, rather
than an intermodel problem of translating between
classes.

3. The TCH

In designing the TCH, Argonne drew upon the experi-
ences gained from designing three force projection simu-
lations (ELIST, PORTSIM, and TRANSCAP). The TCH
defines the different types of transport assets and military
cargo upon which actions (e.g., loading or moving) are
performed in a simulation. These assets and cargo are
essentially the “clients” that are served at various inspec-
tion, loading, and waiting areas. EXHORT, which is the
entire fiarnework, proposes a standardized code structure

for object-oriented deployment simulations. EXHORT
will standardize the way deployment simulations inter-
operate by allowing them to speak the same language,
define terms the same way, and break data up in the same
fashion.

3.1 TCH and JAVA

The .Java programming language was selected for imple-
menting the TCH. Java provides the needed standardiza-
tion and at the same time promotes the use of Internet
capabilities in the development of simulation and anima-
tion tools [7]. Java is an object-oriented programming
language that provides the encapsulation and inheritance
required for the TCH. Java is platform-independent and
provides support for netsvork communications. It is ro-
bust and provides extensive error detection and handling.
Java’s syntax is similar to the C and C++ languages, but
its programmers have removed several C-language con-
structs that tended to cause problems in programming and
replaced them with constructs that make Java programs
more robust.

3.2 Benefits of the TCH

Using the TCH provides several benefits, because it

. Allows deployment simulations to use the same set of
underlying class data, ensuring transparent ex-
changes.



●

●

●

●

Reduces the effort needed to integrate applications
and to analyze a defense transportation system,

Reuses code that is already tested and verified, al-
lowing simulations to be developed more quickly.

Ensures that simulations can communicate and in-
teroperate easily.

Uses modem design strategies and accommodates
programming standards.

3.3 TCH Description

The TCH is comprised of 24 classes and one interface, as
shown in Figure 2 in the Unified Modeling Language.
Continuous arrows imply art inheritance relationship.
Classes are represented by rectangles. Interfaces are rep-
resented by rectangles with <<Interface> written on the
fwst line. Dotted arrows imply a “realize relationship: of
which the Java “implements” relationship is one. The
keyword “implements” is included to speci@ which type
of realization relationship a set of arrows represents. Ab-
stract classes are written in Italics.

While the listing of the fields common to deployment
simulations is finished for the TCH, as well as their set
and get methods (one to obtain and one to change the
value of a field), the important interface methods in the
TCH that form the communication among the three hier-
archies in EXHORT are still being designed as the ICH
and RCH are developed. For example, some of the fields
of the Physical class are height, length, width, and
weight. The ciass must have methods named setl?eight,
setLength, set Width, and set Weight, as well as getHeight,
getLength, get Width, and get Weight, to allow the simula-
tion to communicate with the object.

It is expected that the TCH will be expanded for use in
actual simulations. The hierarchy as described here does
not necessarily include everything that is required in a
real simulation. The TCH resembles a CORBA design
strategy because it possesses small, generic, modular,
self-suftlcient classes, whereas the real simulation spe-
cifics will exist in other classes. Gaps may exist in the
TCH because the other two hierarchies of EXHORT have
not yet been developed. EXHORT wifl continue evoIving
as work on the ICH and RCH identifies needs for addi-
tional data fields.

transportClass I cargoCIass

t t

1A,~,&~&~ZG!XF,~~ ~&,ChJsi.]=,,~atJedc,m,
I 11 1
1 88 I

L---------i------ _---- *---------- J-- L------4
1 implements

n

<<Interface>>
movingInterface

btankerClass

Figure 2. Transportation Class Hierarchy



3.3.1 Moving Interface

An interface is a device or system that allows unrelated
entities to interact. Similarly, a Java interface allows un-
related objects to interact. A Java interface defines a set
of methods but does not implement them. A class that
implements an intetiace agrees to implement all methods
defined by the interface, thereby agreeing to a certain
behavior [10].

The Moving interface provides a mechanism for objects
within the TCH to include capabilities for moving from
one location to another. It will list methods describing
interactions with resources and locations generic to mov-
ing things. The six classes that represent a prime mover
(anything that can move by itself — Train, Convoy,
Ship, Aircraft, Truck and Vehicle classes) must imple-
ment this interface.

3.3.2 Physical Class

Physical is an abstract class containing the physical di-
mensions, naming conventions, and other information that
simulations require. It is generic to every asset acted
upon at a node. A node is an origin or destination such as
a fort, a por$ an intermediate staging base, a tactical as-
sembly area, or a beach.

3.3.3 Cargo Class

Cargo is an abstract class that encapsulates cargo. Cargo
is anything that needs to be shipped (e.g., vehicle, con-
tainer, or passengers PAX]). Some cargo can move un-
der its own power (e.g., a vehicle); other cargo cannot
(e.g., a container). At this level of the hierarchy, this in-
formation is currently unknown and therefore is left to the
child classes to determine. Later this class will speci~
how cargo calls a transport (e.g., heavy equipment trans-
port) for pickup and how the transport will pick up the
cargo (how they connect) by means of interactions with
resources (e.g., RTCHS and forklifts) at a node. Cargo
inherits from its parent class, Physical.

3.3.4 Transport Class

Transport is an abstract class encapsulating entities (e.g.,
trucks, trains, and aircraft) that transport cargo (e.g., vehi-
cles, containers, trailers, or PAX). Once the TCH is inte-
grated with the two other EXHORT hierarchies (ICH and
RCH), the TCH will contain processes of interaction with
resources that are generic to all types of transports.

3.3.5 Vehicle Class

include tanks or high-utility motor vehicles that are being
shipped from a continental United States home fort to a
tactical assembly area outside the continental United
States. Vehicle inherits from Cargo, because it is a de-
ploying piece of cargo. Since a vehicle is a prime mover,
this class will implement future methods that describe
how the moving piece interacts with servers (e.g., in-
spectors, drivers, or end ramps) and must be implemented
by means of the Moving interface.

3.3.6 Container, Pallet, Trailer, and Breakbulk
Classes

The Container, Pallet, Trailer, and Breakbulk concrete
classes inherit tlom their parent Cargo. Containers, pal-
lets, trailers, and breakbulk are cargo that have physical
dimensions and a name (inherited tlom Physical) and
must be processed and shipped (inherited t?om Cargo).
They are not prime movers because they cannot move
themselves and require a vehicle or transport asset (e.g., a
commercial chassis or a container car) to move them
around.

3.3.7 PAX Class

PAX is a concrete class that encapsulates the military
persomel who will be united with their equipment (e.g.,
cargo) in the host country. In EXHORT, PAX are con-
sidered as pieces of cargo that have physical dimension
and a name (inherited from Physical) and must be proc-
essed and shipped (inherited from Cargo). PAX are not
prime movers because they cannot move themselves and
require a vehicle or a transportation asset (e.g., an aircraft)
to reach a destination.

3.3.8 Petroleum, Oils, and Lubricants (POL) Class

Petroleum, Oils, and Lubricants (POL) is a concrete
class that inherits from its parent Cargo. POL is cargo
that has physical dimensions and a name (inherited from
Physical) and must be processed and shipped (inherited
from Cargo). POL is not a prime mover because it can-
not move itself and requires a tanker truck to haul it
around.

3.3.9 Convoy Class

Convoy is a concrete class that inherits fi-om its parent
Transport. Convoy encapsulates a group of road-
capable military vehicles, prime movers, and towing trail-
ers. Convoys move from node to node under their own
power without assistance from transport assets. Because
Convoy is a collection of prime movers (towing trailers),
it implements the Moving interface.

Vehicle is a concrete class encapsulating military vehi-
cles, at the bumper-number level of detail. Examples



3.3.10 Railcar Class

Railcar is an abstract class that will contain the fields and
methods common to all railcars, such as how they interact
with locomotives or how they are placed on the tracks of
interchange and classification yards. Railcar inherits
from Transport because it moves cargo in groups. It
does not implement the Moving interface because it
moves as part of a train.

3.3.11 Flatcar, Container Car, Boxcar, and DODX
Classes

Flatcar, Container Car, Boxcar, and DODX (a DoD
railcar) are concrete classes encapsulating types of rail-
cars either rented from commercial carriers or owned by
the DoD. A flatcar is a flat payload that moves lighter
equipment. A container car is designed for moving con-
tainers. A boxcar moves mostly pallets of cargo. A
DODX moves heavier equipment. These four classes
inherit from RailCar and will contain fields and methods
describing the different ways such railcars interact with
the different types of resources (e.g., a flatcar with an end
ramp or a container car with an RTCH).

3.3.12 Truck Class

Truck is an abstract class that inherits tlom Transport
and will contain the fields and methods common to all
commercial truck transport assets, such as how they inter-
act with a resource such as a lane or a gate. Truck im-
plements two methods regarding the speed of the trans-
port object. Since trucks are prime movers, Truck im-
plements the methods of the Moving interface.

3.3.13 HET, Chassis, Flatbed, and Tanker Classes

HET, Chassis, Flatbed, and Tanker are concrete
classes encapsulating commercial truck transport assets,
usually rented from commercial carriers. A HET (heavy
equipment transport) is a tractor/cabin attached to a pay-
load equipped for moving heavy equipment. A chassis is
a tractor/cabin with an I-beam to which a container is
attached. A flatbed is a tractorlcabin with a flatbed pay-
load designed for lighter equipment. A tanker is a trac-
tor/cabin attached to a liquid storage container used for
transporting POLS. These four classes inherit from Truck
and will contain the fields and methods describing the
different ways they interact with the different types of
resources (e.g., a flatbed with an end ramp or a chassis
with an RTCH).

3.3.14 Train Class

Train is a concrete class that inherits from its parent
Transport and will contain methods speci@ing how it

moves a group of cargo. A train is a string of DODX,
general purpose flatcar, hi-level, or container cars that is
loaded and unloaded with cargo at different nodes during
deployment. Since a train is a prime mover, having a
locomotive and a caboose that move the whole train under
its own power, Train will implement methods describing
how a moving piece interacts with servers (e.g., a train
interacting with an RTCH while loading a container or a
ramp while loading vehicles) and must be implemented
by means of the Moving interface.

3.3.15 Ship Class

Ship is a concrete class encapsulating an ocean-going
vessel that carries cargo. Since ships are powered, Ship
implements the methods of the Moving interface. Ship
inherits from its parent Transport. Ship implements
methods to describe the different ways a ship interacts
with different types of resources (e.g., a boom or a crane).

3.3.16 Aircraft Class

Aircraft is a concrete class encapsulatingan airborne ves-
sel, such as a transport airplane (e.g., a C-130) or a trans-
port helicopter that carries cargo. Since aircraft are pow-
ered, Aircraft implements the methods of the Moving
interface. Aircraft inherits from its parent Transport.

4. Future Directions

The U.S. military is being called upon to make large-scale
deployments for new types of missions, including disaster
relief and peacekeeping. Modeling and simulation can
help the DoD plan for and improve such deployments.
However, efficient and effective modeling of deployment
logistics depends on “interoperability” — the accurate
and efficient exchange of data among the many and var-
ied simulations available.

To promote interoperability, the defense community is
encouraging, and in some cases requiriig, software pro-
grammers to follow certain standard practices and archi-
tectures. Three major standards are the Defense Informa-
tion Infrastructure Common Operating Environment (DII
COE), the High Level Architecture (HLA), and the
Common Object Request Broker Architecture (CORBA).
Each has a slightly different role in standardizing the
modeling environment. DII COE is focused on veri@ing
levels of standardization in the runtime environment.
HLA provides conventions for streamlining data sharing
among a specified group of simulations (a federation).
CORBA provides conventions for setting up a “clearing-
house” function to manage distributed objects used by
multiple simulations.



To augment this set of standards, Argonne National Labo-
ratory has designed EXHORT, a flarnework of three hier-
archies that together will constitute a standard and con-
sistent class attribute representation and behavior applica-
ble to transportation deployment simulations. Argonne is
currently developing EXHORT’s first hierarchy, the
Transportation Class Hierarchy (TCH), and the two other
hierarchies, for representing intlastructure and resources,
are planned for 1999-2000. When completed, all three
hierarchies will be integrated into EXHORT and used to
describe major portions of the defense transportation sys-
tem. EXHORT provides a standardized code structure for
object-oriented deployment simulations that will help
ensure meaningful data exchanges.

EXHORT eliminates the need for translation among class
representations, thereby reducing the risk of introducing
errors when different simulations communicate. It uses
modern design strategies and accommodates programm-
ing standards. EXHORT is an efficient and reliable
development method and could be a candidate as a reus-
able component in the DII COE. It could improve the
accuracy of exchanges among simulations in an I-WA
federation. EXHORT may also be used with CORBA to
make exchanges more accurate among simulations that
share a distributed object architecture. EXHORT is cur-
rently a candidate as an Army Model Simulation OffIce
deployment.1redeployment standardj and it provides DoD
with another tool to improve the efficiency and accuracy
of deployment simulations. EXHORT allows deployment
simulations to use the same set of underlying class data,
ensures transparent exchanges, reduces the effort needed
to integrate simulations, and permits a detailed analysis of
the defense transportation system.
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