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ABSTRACT: One of the objectives of the U.S. Department of Defense is to standardize all classes used in object-
oriented deployment simulations by developing a standard class attribute representation and behavior for all deploy-
ment simulations that rely on an underlying class representation.  The EXtensive Hierarchy and Object Representation 
for Transportation Simulations (EXHORT) is a class framework composed of two hierarchies that together constitute a 
standard and consistent class attribute representation and behavior that could be used directly by a large set of de-
ployment simulations.  The first hierarchy, the Transportation Class Hierarchy (TCH), was submitted to the Army Mod-
eling & Simulation Office’s (AMSO) Army Standards Repository in 1999 and presented at the Fall Simulation Interop-
erability Workshop in the same year.  The second hierarchy, the Infrastructure Class Hierarchy (ICH), describes the 
encapsulation of the rest of the defense transportation system and is the primary focus of this paper.  The entire EX-
HORT framework lets deployment simulations use the same set of underlying class data, ensures transparent ex-
changes, reduces the effort needed to integrate simulations, and permits a detailed analysis of the defense transporta-
tion system.  
 
1.  Introduction 
 
1.1  Background and purpose 
 
Logistics and mobility have become increasingly impor-
tant in our rapidly changing world.  Since September 11th, 
it has become even more critical to move soldiers and 
supplies with limited resources in support of the war on 
terrorism.  After the Cold War, 
U.S. military forces were 
pulled back to the continental 
United States, so contingency 
planning for deploying forces 

to overseas locations took on central importance.  Besides 
the new war-fighting missions it appears are on the hori-
zon, the U.S. Department of Defense (DoD) has been 
called upon to perform an ever-increasing number of non-
traditional missions, including peacekeeping and disaster 
relief, both in the United States and overseas.  Such needs 
have motivated investment in new simulation models and 
technologies, because it is more efficient and effective to 

initially simulate deployments on 
a computer than to first test them 
in the real world.  Accordingly, 
over the past 5 to 10 years, the 
DoD has made greater use of 
simulations to help meet its mis-
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sion objectives.  These tools are used to analyze, plan, 
train for, and execute deployments.   
 
In conducting analyses of the defense transportation sys-
tem, deployment models and simulation systems rely 
heavily on data pertaining to military cargo, transportation 
assets, and infrastructure.  Currently, throughout the simu-
lations in the military transportation/deployment commu-
nity, the military cargo and transportation asset data are 
entered into simulation models separately and in various 
formats.  This practice results in many data inconsisten-
cies and makes simulation integration very difficult and 
time-consuming.   
 
To get the greatest return on investment, the DoD has 
attempted to team sometimes very different simulations in 
various combinations to satisfy a diverse and ever-
evolving set of user needs, a practice that has mandated a 
rigid adherence to standards and a greater focus on simu-
lation interoperability guidelines.  In response, the Army 
Transportation and Deployment Community has moved to 
standardize all classes used in object-oriented deployment 
simulations that rely on an underlying class representa-
tion.  This paper describes a class framework called the 
EXtensive Hierarchy and Object Representation for 
Transport Simulations (EXHORT), which is designed to 
standardize the classes used in object-oriented deploy-
ment simulations. 
 
EXHORT consists of two hierarchies that together consti-
tute a standard and consistent class attribute representa-
tion and behavior that could be used directly by a large set 
of deployment simulations.  The hierarchies are unusual 
in that they provide for a detailed design class factoring, 
rather than merely an aggregate analysis view.  In order to 
encapsulate the characteristics of multiple deployment 
simulations written at different levels of aggregation, the 
class abstractions in EXHORT needed to be specified at a 
design level view rather than at the higher, analysis level 
view that is more typical of community object modeling.  
This greater detail was incorporated because we decided 
that these classes were “key abstractions” and are well 
suited for use in new federations of simulations where 
reusability and intercommunication for new simulations is 
important. 
 
The two EXHORT hierarchies will allow many deploy-
ment simulations to use the same set of underlying class 
data and will significantly reduce the effort needed to 
integrate simulations and analyze the defense transporta-
tion system.  The first hierarchy, the Transportation Class 
Hierarchy (TCH), covers commercial transportation assets 
and military cargo, and is summarized in Section 3 [1].  
This hierarchy is already an Army Modeling and Simula-
tion Office (AMSO) Deployment/Redeployment Com-
munity Standard [2].   

 
The second hierarchy is the Infrastructure Class Hierarchy 
(ICH), which deals with locations where activities are 
performed and with the physical infrastructure, such as a 
motor pool at a fort or a berth at a port.  These areas con-
tain the resources needed to support deployment (e.g., 
ramps, rough terrain container handlers, cranes, and fork-
lifts).  Both hierarchies are needed to describe major por-
tions of the defense transportation system.  The goal is to 
define EXHORT so it could provide a standardized code 
structure for object-oriented deployment simulations to 
ensure meaningful data exchanges.  
 
1.2  Deployment simulations 
 
Argonne National Laboratory (Argonne), in collaboration 
with the Military Traffic Management Command Trans-
portation Engineering Agency, has developed three de-
ployment simulation systems (ELIST — Enhanced Logis-
tics Intra-theater Support Tool, PORTSIM — Port Simu-
lation Model, and TRANSCAP — Transportation System 
Capability Model) and prototyped a fourth (CITM — 
Coastal Integrated Throughput Model).  These systems 
simulate the processes required for the different compo-
nents of the defense transportation system.  While devel-
oping these force projection simulations, Argonne has 
gained experience in working with transportation logis-
tics, class frameworks, and simulation interoperability.   
 
• ELIST — Simulates military transportation move-

ment across a theater of operations.  ELIST also pre-
dicts whether infrastructure and transportation assets 
can support the war-fighting commander’s required 
force delivery dates. 

 
• PORTSIM — Simulates seaport operations and de-

termines port throughput.  The simulation also identi-
fies system and infrastructure constraints and port-
specific force clearance profiles. 

 
• TRANSCAP — Simulates installation transportation 

operations and computes time-phased outloading ca-
pability.  It will also identify system and infrastruc-
ture constraints and installation-specific force depar-
ture profiles. 

 
• CITM — Simulates logistics for over-the-shore op-

erations at austere ports linking the bare beach to the 
transportation infrastructure. 

 
1.3  Content and organization 
 
This paper summarizes EXHORT’s first hierarchy, the 
TCH, describes the second, the ICH, and describes why it 



is a helpful tool in modeling major portions of the defense 
transportation system.   
 
Section 2 introduces programming standards and their 
relation to EXHORT.  Section 3 summarizes the TCH, 
while Section 4 provides information about the classes of 
the ICH.  Finally, Section 5 describes the benefits and 
future directions of EXHORT. 
 
 
2.  Programming Standards 
 
Programmers use standards as guides to designing “com-
ponents” that ensure reusability and interoperability 
among simulations.  When developing state-of-the art 
models and simulation tools for DoD, programmers must 
follow the DoD standards and compliance mandates that 
are intended for all software applications.  Two of these 
are the Defense Information Infrastructure Common Op-
erating Environment (DII COE) and the High Level Ar-
chitecture (HLA).  For real-time distributed simulation 
systems, another was produced, called the Real-time Plat-
form Reference Federation Object Model (RPR FOM).  It 
extends HLA and the Institute of Electrical and Electron-
ics Engineers’ (IEEE) Standard for Distributed Interactive 
Simulation (DIS). DII COE specifies how simulations 
will use a common operating environment, whereas HLA 
and the RPR FOM superset specify how the simulations 
will communicate.   
 
It is also useful to incorporate non-DoD standards into 
simulations.  One such standard is the Common Object 
Request Broker Architecture (CORBA) that standardizes 
distributed objects so that simulations (as well as other 
computer applications) can interact in a heterogeneous 
environment (e.g., different platforms or programming 
languages) [3].  The next three parts of this section pro-
vide an overview of DII COE, HLA, CORBA, and RPR 
FOM, leading to an illustration of the relationship be-
tween these standards and the entire EXHORT frame-
work. 
 
2.1  The Defense Information Infrastructure Common 
Operating Environment (DII COE)  
 
DII COE is a flexible approach to building interoperable 
systems that was developed and implemented by the De-
fense Information Systems Agency (DISA).  DII COE 
includes a collection of reusable software components, a 
software infrastructure for supporting mission-area simu-
lations, and a set of guidelines, standards, and specifica-
tions.  The guidelines, standards, and specifications de-
scribe how to reuse existing software and properly build 
new software to ensure seamless and automated integra-
tion.  The core concept of DII COE compliance is ensur-

ing that simulations use as many standard conventions 
and modules as possible for maximum interoperability. 
 
The heart of DII COE is the Integration and Runtime 
Specification (I&RTS), which describes the rules pro-
grammers need to follow to achieve DII COE compliance.  
Compliance is measured by the degree to which a simula-
tion follows the I&RTS guidelines.  There are four com-
pliance categories: runtime environment, style guide, ar-
chitectural compatibility, and software quality.  Currently, 
DISA focuses on only the first category, runtime envi-
ronment.  The entry level at which DISA will evaluate 
mission applications for runtime environment compliance 
is Level 5.  Acceptance as an official product requires 
demonstrated interoperable compliance (Level 7) and a 
migration strategy for attaining full DII COE compliance 
(Level 8).   
 
2.2  High Level Architecture (HLA)  
 
The DoD’s Defense Modeling and Simulation Office 
(DMSO) is leading a DoD-wide effort to support reuse 
and interoperability throughout the DoD’s wide spectrum 
of models and simulations [4].  HLA is a general-purpose 
architecture to encourage reuse and interoperability of 
simulations [5].  HLA brings together systems built for 
separate purposes, technologies from different eras, prod-
ucts from various vendors, and platforms from various 
services, enabling them to interoperate in a virtual envi-
ronment [5].   
 
HLA is based on the premise that no one simulation can 
satisfy all uses and users.  From this premise comes an 
approach that links different types of simulations at mul-
tiple locations to create a realistic, complex, virtual world.  
HLA’s intent is to support reuse of capabilities available 
in different simulations, ultimately reducing the cost and 
time required to create virtual environments for new pur-
poses [5].  Both the Object Management Group (OMG), a 
large ad hoc organization composed of several companies, 
and the DoD has adopted HLA as a standard for future 
defense simulation development [5], and the IEEE is 
codifying HLA as three IEEE 1516 standards [6]. 
 
2.2.1  How HLA works 
 
An individual simulation or set of simulations developed 
for one purpose can then meet the dynamic data needs of 
other simulations under a federation — the concept used 
in HLA for a group of interacting simulations.  HLA de-
fines rules and specifications governing how these 
simulations, or federates, interact with each other in a 
federation [5]. The federates structure data according to 
an Object Model Template (OMT) and communicate 
through a data distribution mechanism called the Runtime 
Infrastructure (RTI). 



 
2.2.2  The Object Model Template (OMT) 
 
The OMT provides a standard format for documenting the 
objects, attributes, and interactions that are exchanged 
during a federation execution [5]. The OMT promotes the 
reuse of single federates or a federation as a whole and 
can be viewed as a contract between federates regarding 
how a common federation is executed. 
 
2.2.3  The Interface Specification  
 
The Interface Specification specifies actions a simulation 
may perform, or be asked to perform, during an HLA 
federation execution [5].  The Interface Specification pre-
scribes the interface between each federate and the RTI 
and provides communication and coordination services to 
the federates.  Federation communication takes place only 
between each federate and the RTI, not among the feder-
ates themselves.  The RTI is, in effect, a distributed oper-
ating system that is designed to provide the simulations 
with a standardized set of services that were previously 
handled by the individual simulation [5].  
    
2.3  The Common Object Request Broker Architec-
ture (CORBA)  
 
CORBA was developed to address troublesome version-
ing and security problems in large-scale, worldwide cli-
ent/server applications.  Client/server computing is char-
acterized by a two-tiered architecture having a client tier 
and a server tier.  In a two-tiered model, the client (the 
requestor of information) consists of a graphical user in-
terface (GUI) and program logic. The latter manipulates 
the raw data from the server (the repository or provider of 
information).   
 
Consider a single deployment server with clients distrib-
uted among many locations around the world.  All clients 
connect to the single server for raw data. A change to the 
client (e.g., new logic for staging area usage) requires that 
all copies of the client software be updated.  Since 
changes to the client simulation logic can be frequent, the 
“fat client” approach makes it difficult to ensure that all 
client simulations are the latest version. 
 
This two-tiered approach has the additional problem of 
encoding potentially sensitive, proprietary, or copyrighted 
information into the business logic, which is the part of 
the system that is distributed to clients.  This information 
could constitute a company’s competitive advantage over 
its competitors.  Such a loss of control is a calculated risk 
that many organizations are not willing to take. In addi-
tion, there may be legal issues concerning the distribution 
of certain information, even in an encoded format.   
 

The security and versioning problems can be avoided by 
using a three-tiered, or n-tiered approach that separates 
the program or business logic from the GUI.  The pro-
gram logic can then be maintained on a single server, un-
der the control of the organization, while the part of the 
application that is actually distributed can remain “thin” 
(usually consisting primarily of the GUI).  In a Web-
based simulation using a “multi-tier” architecture, the 
client simulation communicates with the model-logic 
server, which, in turn, communicates with the data server.  
This is the approach taken in CORBA applications, as 
well as in other modern, distributed, “multi-tiered” com-
mercial applications built using Java, particularly Java 
applications that conform to Sun’s J2EE specification [7]. 
 
A new complexity, however, is introduced by this distrib-
uted object architecture, because objects residing in the 
GUI need to communicate with objects residing on the 
simulation server.  But if the server and client both use the 
same class framework (e.g., EXHORT), this complexity 
is minimized and the communication is simplified.   
 
2.3.1  How CORBA works 
 
CORBA, developed by the OMG, standardizes communi-
cations among distributed objects. CORBA defines the 
structure and design of a system.  It allows objects to 
communicate in a heterogeneous computing environment 
regardless of where the objects reside or how they are 
implemented. Only the public interface needs to be 
known.  The public interface allows an object residing on 
system X to invoke a method of an object residing on 
system Y, where X and Y can be completely different 
systems or objects implemented in different programming 
languages. This interaction is possible because each ob-
ject must have an interface defined according to the Inter-
face Definition Language. This interface defines the op-
eration, parameter types, user-defined exceptions for op-
eration failure, and the context or environment.  Interface 
Definition Language interfaces are registered with the 
Object Request Broker (ORB) and are stored in the inter-
face repository, where they can be referenced when a re-
quest for an operation is received [4].   
 
The ORB is responsible for delivering requests and re-
plies between clients and servers.  The ORB provides the 
communication infrastructure needed to deliver requests 
and associated parameters to the servers.  It is responsible 
for making the connection to the server, sending the pa-
rameters for transfer across a network, and returning the 
operation result to the client.  If the client knows which 
server object it will interact with, all references can be 
made through the Static Invocation Interface.  In this case, 
the exact reference of the object and its location are 
known (e.g., Internet address) at the time the programmer 
is writing the code, and the code can be written to “get X 



at Y.”  These requests are synchronous, meaning they wait 
until the server returns with a value (a positive return 
value — e.g., a document) or an exception (a negative 
return value — e.g., no such data available). The Dy-
namic Invocation Interface is available for requests that 
will not be known at compile time.  Because the pro-
grammer does not know the location of some of the data 
or code at the time the code is written, the code “get X at 
Y” cannot be written.  Instead, the programmer writes the 
generic “get” code and X and Y are left to be found at 
runtime.  Essentially, the code contacts a search engine to 
find the values. This second strategy allows the client to 
(1) dynamically query the ORB for a set of objects that 
can fulfill a specific operation, (2) retrieve the interface of 
the selected objects, (3) construct the request, (4) invoke 
the request, and (5) receive the results at runtime [3]. 
 
2.4  EXHORT and the Real-Time Platform Reference 
Federation Object Model (RPR FOM) 
 
RPR FOM was designed to support real-time simulations 
where the principal participants are discrete physical enti-
ties such as planes, ships, soldiers, and munitions [9].  At 
first glance, RPR FOM seems designed to address the 
same entities as EXHORT.  However, several differences 
exist that make them incompatible and designed for dif-
ferent types of applications.  
 
Real-time Platform Reference Federation Object Model 
(RPR FOM) is built on the Distributed Interactive Simula-
tion (DIS) and implements the DIS protocol data units in 
the form of a hierarchy of classes and interactions.  The 
primary mission of DIS is to define an infrastructure for 
linking simulations of various types at multiple locations 
to create realistic, complex, virtual “worlds” for the simu-
lation of highly interactive activities [8].  Conversely, 
EXHORT’s mission is to develop an infrastructure for 
linking transportation and infrastructure models to create 
realistic, complex, logistics systems for simulating logis-
tics activities.  Their difference is fundamental — RPR 
FOM is designed to be used in continuous, real-time, vir-
tual environment simulations, whereas EXHORT is de-
signed to be used in simulations in discrete-event, delib-
erative planning involving mathematical throughput and 
utilization studies of military transportation logistics sys-
tems.  The different intended audiences give rise to differ-
ences in design.  
 
EXHORT also addresses the issue of transportation enti-
ties differently than RPR FOM.  RPR FOM’s entities usu-
ally are at a higher level of detail, whereas the class ab-
stractions in EXHORT are more aggregate, encapsulating 
only the characteristics required of deployments simula-
tions. Specifically, soldiers and munitions are addressed 
aggregately in EXHORT, but RPR FOM simulations of-
ten address each soldier and munition.  The TCH defines 

a PAX as one piece of cargo, even though it really is a 
collection of soldiers.  The individual soldiers are only 
defined as part of an aggregate that must be processed and 
shipped.  EXHORT simulations may model a 1-soldier 
unit or a 1-soldier leftover after the rest of his unit moved, 
but both of these cases are extremely unlikely. Even then, 
it is still represented as a PAX object, not as an individual 
soldier object. RPR FOM allows for the definition of in-
dividual soldiers as their own object when they cannot be 
addressed as part of a larger object [9], but EXHORT 
simulations do not require this level of detail.   
 
EXHORT and RPR FOM address transportation entities 
differently because of the level of detail needed to run 
real-time simulations. Although some of the classes found 
in RPR FOM and EXHORT may seem structurally simi-
lar (e.g., Aircraft/Aircraft, Physicalentity/Physical, and 
Groundvehicle/Vehicle), the attributes of these classes 
lend themselves to very different outcomes.  For example, 
RPR FOM’s Aircraft class represents entities, such as 
airplanes or balloons, which operate mainly in the air [9].  
The TCH Aircraft class encapsulates airborne vessels, 
such as transport airplanes or helicopters, which carry 
cargo.  Moreover, the attributes of RPR FOM’s Aircraft 
class provide a simulation with information for depicting 
how an airplane will look at any given moment during a 
simulation.  This information is ultimately used to provide 
visible cues to a trainee in a simulator.  RPR FOM’s more 
detailed attributes are not germane to the needs of EX-
HORT because EXHORT is concerned with only the out-
come of the simulation. TRANSCAP uses EXHORT to 
simulate installation transportation operations, compute 
time-phased outloading capabilities, compare computed 
capabilities to outloading requirements, identify system 
and infrastructure constraints, and installation-specific 
force departure profiles.  All of these goals are outcome-
oriented.  Because of RPR FOM’s differing mission, logi-
cal separation, differing approach in addressing transpor-
tation entities, and focus on real-time attributes, EX-
HORT does not use RPR FOM’s extendible class frame-
work. 
 
2.5  Programming standards and EXHORT  
 
EXHORT supports the efforts under DII COE to create a 
collection of reusable parts — some basic, some very 
complicated — so that programmers can work by assem-
bling existing components rather than continually creating 
completely new ones.  If the EXHORT hierarchies were 
built in a distributed architecture, a factory pattern in a 
business logic server with the EXHORT objects could 
qualify as one or two reusable segments under DII COE.  
In addition, a very detailed DII COE segmentation might 
identify reusable algorithm segments. An example better 
explaining these concepts follows in the next section. 
 



For interactions among simulations, the EXHORT hierar-
chies would enhance the usefulness of HLA by adding a 
means of ensuring that the information exchanged 
through HLA mechanisms is meaningful and accurate.  
HLA compliance satisfies a condition for interoperability 
and reuse: a common, efficient technical means of joining 
simulations in a federation, optionally including live play-
ers, and exchanging information in a coherent manner [5].  
However, HLA does not specify what constitutes an ob-
ject. Thus, while HLA allows simulations to communi-
cate, potential variations in object definitions mean that 
HLA compliance does not guarantee a valid, meaningful 
exchange of information throughout a federation. Adop-
tion of the EXHORT hierarchies as a standard, consistent 
class attribute representation for transporta-
tion/deployment simulations would provide simpler and 
more accurate communication among federated simula-
tions in our community. 
 
For example, once the ELIST and TRANSCAP deploy-
ment simulations use TCH and ICH, TRANSCAP could 
track the sizes and quantities of cargo and railcars at a 
detailed level, making uses of groups of Railcar Objects 
[TCH] and Siding Objects [ICH], which would be con-
tained by an Interchange Yard object [ICH]. Since the 
Interchange Yard object also has characteristics inher ited 
from the Point of Interest class, TRANSCAP could also 
place aggregated information into the Interchange Yard 
Object, making it an object that ELIST could use.  In this 
way, ELIST and TRANSCAP can use the identical Rail-
car and Point of Interest objects.  While HLA can manage 
this data exchange between TRANSCAP and ELIST, data 
translations may be required beyond those forced by 
simulations operating at different levels of aggregation.  
Combining HLA with EXHORT makes this translation 
step unnecessary.  
 
Simulations using EXHORT may use a CORBA design 
strategy. That architecture is valuable because its re-
quirements lead to designs that foster reuse.  Under it, 
components are designed and built independently and 
then used dynamically as programs are running.  For ex-
ample, instantiations of the ICH or TCH objects could be 
stored in a CORBA server/object adapter, and thus cen-
tralized for use by several simulations.  Such combina-
tions of EXHORT and CORBA could ease interactions 
within HLA federations. In addition, CORBA-like inter-
faces can be built into subclasses of EXHORT to make it 
easier to use in developing standards-compliant deploy-
ment simulations. 
 
2.6 Bringing All the Standards Together 
 
The following example illustrates the interrelationships 
among DII COE, HLA, CORBA, RPR FOM, and ICH.  
Figure 1 illustrates the “ABCD Federation,” where A, B, 

C, and D are cargo deployment simulations and are feder-
ates of the ABCD Federation.  Simulation A and Simula-
tion C both use EXHORT to represent some of their 
transportation (Cargo class) and infrastructure (Inter-
change Yard class) objects.  
 
Simulations A and C use a CORBA server to hold, for 
example, all of the instantiations of the TCH Cargo class 
and ICH Interchange Yard classes.  This ensures that 
every CORBA client using that server has access to the 
same definitions and instantiations of the Cargo and In-
terchange Yard classes. Without this global access, each 
simulation would have to set up its own instantiation of 
each class, introducing the possibility of mismatches be-
tween simulations and resulting errors.  In addition, Simu-
lations A and C are both using rail deployment segments 
that are DII COE-compliant, which ensures that they have 
been verified and tested.  
 
During the execution of a simulation, all of the simula-
tions communicate by means of HLA mechanisms, for 
example, the RTI.  Suppose Simulation A provides infor-
mation about a Railcar object that is needed by Simula-
tion C.  Simulation A publishes the railcar information in 
its public interface. Through the RTI, Simulation C finds 
out that the information is available. To retrieve the in-
formation, Simulation C must construct a Railcar object 
identical to that in Simulation A.  If Simulation C used a 
“proprietary” definition of the Railcar class rather than 
the TCH Railcar class, the two simulations might use the 
same field name to refer to different properties of a rail-
car.  Therefore, Simulation C might successfully retrieve 
a value for that field from Simulation A, but the value 
would be incorrect.  By using the TCH, Simulation C can 
use the Railcar class to construct a faithful replica of the 
original object in Simulation A.  The issue now becomes 
an internal one of filling the fields in the object, rather 
than an intermodel problem of translating between 
classes. 
 
2.7  EXHORT and Java 
 
The Java programming language was selected for imple-
menting EXHORT because it provides needed standardi-
zation and promotes the use of Internet capabilities in the 
development of simulation and animation tools [7].  Java 
is an object-oriented programming language that provides 
the encapsulation and inheritance required for EXHORT.  
Java is platform-independent and supports network com-
munications.  It is robust and provides extensive error 
detection and handling.   
 
2.8  Benefits of EXHORT  
 
Using EXHORT provides several benefits, because it 
 



• Allows deployment simulations of varying levels 
of aggregation to use the identical data struc-
tures, ensuring exchanges of greater trans-
parency. 

 
• Reduces the effort needed to integrate applica-

tions and analyze a defense transportation sys-
tem. 

 
• Reuses code that is already tested and verified, 

allowing simulations to be developed more 
quickly. 

 
• Ensures that simulations at different levels of 

aggregation can communicate and interoperate 
easily. 

 
• Uses modern design strategies and accommo-

dates programming standards. 
 

• Provides simulations that implement the EX-
HORT system with the added flexibility of creat-
ing generalized methods or abstract interfaces 
that are only part of the ICH or TCH, or part of 
both, because TCH and ICH are divided logi-
cally while having a common root class. 

 
3.  The TCH 
 

In designing the TCH hierarchy of the EXHORT frame-
work, Argonne drew upon the experiences gained from 
designing three force projection simulations (ELIST, 
PORTSIM, and TRANSCAP).  The TCH defines the dif-
ferent types of transport assets and military cargo upon 
which actions (e.g., loading or moving) are performed in a 
simulation.  These assets and cargo are essentially the 
“clients” that are served at various inspection, loading, 
and waiting areas.    
 
The TCH is comprised of 35 classes and one interface (as 
shown in Figure 2) in the Unified Modeling Language 
(UML).  Continuous arrows imply an inheritance relation-
ship.  Classes are represented by rectangles.  Interfaces 
are represented by rectangles with the stereotype <<inter-
face>>.  Dotted arrows imply a “realize relationship,” of 
which the Java “implements” relationship is one.  Ab-
stract classes, which exist for generalization of common 
information between related classes, are written in italics. 
For more information, see [1]. 
 
The depth of the TCH hierarchy is due to the small differ-
ences in the treatment of cargo and transports during the 
various inspection, staging and loading processes, espe-
cially when simulated at different levels of aggregation. 
The TCH hierarchy has many levels of abstract classes, 
allowing for more generalization in the simulation spe-
cific sub-classes that inherit from the TCH. 
 



 
4.  The ICH 
 
The ICH is comprised of 40 classes, as shown in Figure 3, 
which is similar to Figure 2. The ICH is written in UML 
at an early analysis phase, for simplicity.  To reduce com-
plexity in reading the drawing for this overview article, 
the association links between the classes.  Most of these 
associations are composition links that are described in 
this section. The ICH deals with locations where activities 
are performed and with the physical infrastructure, such 
as a motor pool at a fort or a berth at a port. 
 
4.1 Relationship between the TCH and the ICH 
 
It is difficult to define the key abstractions in one hierar-
chy without reference to the other hierarchy, since our 
definitions are restricted to the needs of transportation 
simulations.  For example, a car is a transportation vehicle 
that moves across a road.  Now, how could a road be de-
fined?  A road is an open public way used by cars — the 
infrastructure upon which cars move.  
 
In terms of EXHORT, the TCH is a hierarchy of classes 
that encapsulates the transportation assets that “move 
across a road,” or something that exists in nature (i.e., an 
object instantiating the NamedItem class or instantiating a 

class that inherits from NamedItem) that moves across 
infrastructure (e.g., a road).  Conversely, the ICH is a hi-
erarchy of classes that encapsulates “the infrastructure 
upon which cars move” or something that has an object 
from the TCH (i.e., an object representing a car, truck, 
railcar, locomotive, or container) moving across it.   
 
CORBA-style interface methods are the “links” between 
the two class hierarchies in a class framework.  These are 
the methods whereby the relationships between the TCH 
and ICH objects are established.  Just as with a car (TCH) 
driving on a road (ICH), there also needs to be a drives on 
method.  Because cars enter and exit a parking lot (ICH), 
there should also be enters and exits methods.  So, all 
infrastructure needs enter and exit methods that accept a 
TCH object as an input argument.  That TCH object is 
entering or exiting this infrastructure, so that the object is 
passed to the infrastructure object and the infrastructure 
object holds it and changes it, as needed (e.g., changing 
the infrastructure’s location pointer from the previous 
piece of infrastructure to this current one, changing its 
state to, e.g., looking for a parking spot).  Our current 
implementation of the TCH and ICH does not include 
these methods.  Instead, the methods are left to be de-
fined, with an actual simulation’s need in mind, by the 
implementer of the subclasses that are actually instanti-
ated in the simulation using EXHORT.  More specifically, 



the listing of the fields common to deployment simula-
tions is finished for the TCH and ICH, but the important 
interface methods that form the communication between 
the two hierarchies in EXHORT are best left to the im-
plementer of an actual simulation. It is expected that the 
ICH will be extended for use in actual simulations.  The 
hierarchy as described here does not necessarily include 
everything that is required in a real simulation. The hier-
archy of classes has been detailed at a design level view, 
but the details of the classes are still left at an analysis 
level view.  The ICH classes are small, generic, modular, 
self-sufficient classes, whereas the real simulation specif-
ics will exist in its sub-classes.  
 
4.2  ICH class descriptions 
 
4.2.1  Named Infrastructure class 
 
Named Infrastructure is an abstract class that encapsu-
lates the measurements and location of infrastructure. 
Named Infrastructure describes the physical characteris-
tics of any piece or place of infrastructure where or upon 
which deployment operations occur.  Named Infrastruc-
ture inherits from its parent class, Physical. 
 
4.2.2  Landmark class 
 

Landmark is a concrete class that inherits from its parent, 
Named Infrastructure. A landmark is any piece or place 
of infrastructure where deployment operations may occur.  
Landmark describes a place of infrastructure where de-
ployment operations occur. 
 
4.2.3  Link class 
 
Link is an abstract class encapsulating different types of 
routes along which TCH objects move during deployment 
operations.  A link is contained within a landmark or con-
nects two landmarks.  Link inherits from its parent, 
Named Infrastructure/Physical, and describes the link’s 
origin and destination landmarks, whether or not the link 
supports one-way movement and which link is preferred. 
 
4.2.4  Link Feature class 
 
Link Feature is an abstract class encapsulating a specific 
and notable piece of infrastructure on a Link between two 
landmarks that constrains movement (e.g., tunnel or 
bridge). Link Feature inherits from its parent, Named In-
frastructure, and implements one field that references the 
link upon which this feature appears. 
 
4.2.5  Point of Interest class 
 



Point of Interest is a concrete class encapsulating a land-
mark modeled at a more detailed level.  Landmarks would 
be modeled in an aggregate model, such as ELIST, by a 
few simple, often sequential processes.  A Point of Inter-
est would be modeled at a more detailed process level by 
simulations with more complex nonlinear systems.  
 
These differences could involve the containership of “re-
source objects” that perform specific, detailed processes 
that a detailed simulation would track. These resources 
could be spelled out as a separate hierarchy or simply 
become fields and methods of Point of Interest sub-
classes.  
 
Landmarks and points of interest are the same places. 
What differentiates them is user interest in a more de-
tailed analysis of some areas.  A landmark might be a 
structure (e.g., gate), an area of land (e.g., staging area), 
or an area of water (e.g., berth); that is, a landmark is any 
place where processing is simulated.  Point of Interest 
inherits from its parent, Landmark, and describes the 
point of interest’s physical characteristics: the storage 
capacity of equipment, POL, PAX, vehicles, trucks, con-
tainers, railcar, and truck transport, and whether or not 
lights are available for night deployment operations. 
 
4.2.6  Rail, Road, Waterway, Air, and Pipeline classes 
 
These are concrete classes that encapsulate ordered lists 
of segments connecting two landmarks that some appro-
priate TCH object can move across during a deployment 
operation. These classes inherit from their parent, Link. 
The assumed subclasses of each of these classes, which 
are not part of EXHORT, will contain fields and methods 
describing the unique aspects of these types of links ger-
mane to the particular simulation in which this class will 
be used. 
 
4.2.7  Pass, Bridge, and Tunnel classes 
 
These classes are concrete classes that encapsulate spe-
cific obstacles on a link.  They are link features that a 
deployment simulation might employ to affect through-
put.  They inherit from their parent, Link Feature. The 
assumed subclasses will contain fields and methods de-
scribing the unique aspects of tunnels germane to the par-
ticular simulation in which this class will be used. 
 
4.2.8  Siding, Lane, and Runway classes 
 
These classes are concrete classes that encapsulate or-
dered lists of segments that are contained inside a Land-
mark object.  These classes are the locations where TCH 
objects can be parked, loaded, or otherwise have work 
performed on them in a deployment operation.  
 

4.2.9  Water Point of Interest class 
 
Water Point of Interest is an abstract class that encapsu-
lates a point of interest that has attributes shared by all 
subclasses that involve water operations.  Water Point of 
Interest inherits from its parent, Point of Interest. 
 
4.2.10 Berth, Seaport, Channel, and Anchorage classes 
 
These are concrete classes that encapsulate water-oriented 
landmarks where cargo and/or transport ships (both TCH 
objects) have services performed on them, with the goal 
being that the various types of cargo objects in the TCH 
will be loaded onto or loaded off of Ship objects. They 
inherit from Water Point of Interest.  A Seaport object 
may contain Berth, Seaport, and Channel objects (among 
other, non-water-oriented landmarks), depending on the 
level of aggregation of the simulation. 
 
4.2.11  Fort, Airport, Transport Head, Parking, Rail 
Yard, and Gate classes 
 
These are concrete classes that encapsulate landmarks 
where cargo and transports (both TCH objects) have ser-
vices performed on them, towards various goals.  While 
the Gate class is an interchange point between a landmark 
and a Road object, the other classes listed have a principle 
goal of loading/unloading various types of cargo objects 
in the TCH onto/off the different types of Railcar and 
Truck Transport objects. They inherit from Point of Inter-
est.  Fort and Airport objects may contain Transport 
Head, Parking, Rail Yard, and Gate objects (among other, 
non-loading landmarks), depending on the level of aggre-
gation of the simulation. 
 
4.2.12  Austere Port, Break Bulk Berth, RORO Berth, 
and Container Berth classes 
 
These are concrete classes that encapsulate specific berth 
landmarks at a port that loads cargo from or onto cargo 
ships.  They inherit from their parent, Berth.  An Austere 
Port class is not intended to be the container class of an 
entire austere port operation.  A Seaport class should still 
be used. Instead, it simply describes the roll-on/roll-off 
spots for the cargo, elevated piers with a crane for loading 
and unloading of lighters, and floating piers with a crane 
that load and unload lighters. 
 
4.2.13  Classification Yard and Interchange Yard 
classes 
 
These are concrete classes that encapsulate landmarks at a 
fort, port, or airport.  They are places where Railcar ob-
jects can be inspection, stored, and sorted. They inherit 
from Rail Yard. The simulation-specific subclasses will 
contain fields and methods describing the unique aspects 



germane to the particular simulation in which this class 
will be used. 
 
4.2.14  Truck Head and Rail Head classes 
 
These are concrete classes that encapsulate landmarks at a 
fort, port, or airport that serve as places where cargo is 
unloaded or loaded from or onto transports.  They inherit 
from Transport Head. The assumed subclasses will con-
tain fields and methods describing the unique aspects of 
transport heads germane to the particular simulation in 
which this class will be used 
 
4.2.15  Chassis Storage, Container Yard, Staging Area, 
and Motor Pool classes 
 
These are concrete classes that encapsulate landmarks at a 
fort, port, or airport where different levels of staging and 
inspection-oriented processing are done on different types 
of cargo in advance of loading and unloading at other 
landmarks. They inherit from Parking.  The simulation-
specific subclasses will contain fields and methods de-
scribing the unique aspects germane to the particular 
simulation in which this class will be used. 
 
4.2.16  Aircraft Staging class 
 
Aircraft Staging is a concrete class that encapsulates a 
landmark at a fort, port, or airport.  It is an inspection or 
storage area where groups of airplanes leave in small 
groups or convoys headed for another landmark at an air-
port. Aircraft Staging inherits from its parent, Staging 
Area, and implements four fields and eight methods that 
describe whether there is space available for maximum-
on-ground wide, narrow, and small-body planes. 
 
5.  Summary and Future Directions 
 
With the current war on terrorism, the U.S. military ap-
pears to be entering a new era in which it will be called 
upon to make even more war-fighting deployments while 
simultaneously continuing to perform nontraditional mis-
sions, including disaster relief and peacekeeping.  Model-
ing and simulation can help the DoD plan for, improve 
upon, and reduce the costs of many deployments.  How-
ever, efficient and effective simulation of deployment 
logistics depends on “interoperability” — the accurate 
and efficient exchange of data among the many and var-
ied simulations available. 
 
To promote interoperability, the defense community is 
encouraging, and in some cases requiring, software pro-
grammers to employ certain standard practices and archi-
tectures. Three major standards are the Defense Informa-
tion Infrastructure Common Operating Environment (DII 

COE), the High Level Architecture (HLA), and the 
Common Object Request Broker Architecture (CORBA).  
Each has a slightly different role in standardizing the 
modeling environment.  DII COE is focused on verifying 
levels of standardization in the runtime environment.  
HLA provides conventions for streamlining data sharing 
among a specified group of simulations (a federation).  
CORBA provides conventions for setting up a “clearing-
house” function to manage distributed objects used by 
multiple simulations. To augment this set of standards, 
Argonne National Laboratory has designed EXHORT, a 
framework of two hierarchies that together will constitute 
a standard and consistent class attribute representation 
and behavior applicable to transportation deployment 
simulations.  EXHORT describes major portions of the 
defense transportation system, providing a standardized 
code structure for object-oriented deployment simulations 
that can help ensure meaningful data exchanges. 
 
EXHORT reduces the need for translation among class 
representations, thereby reducing the risk of introducing 
errors when different simulations communicate.  It uses 
modern design strategies and accommodates program-
ming standards.  EXHORT is an efficient and reliable 
development method and could be a candidate as a reus-
able component in the DII COE.  It could improve the 
accuracy of exchanges among simulations in an HLA 
federation.  EXHORT may also be used with CORBA to 
make exchanges more accurate among simulations that 
share a distributed object architecture.  EXHORT’s first 
hierarchy, the TCH, has been accepted as an Army De-
ployment/Redeployment community standard (SRD 
00068). The ICH is currently a candidate to the same 
body. EXHORT allows deployment simulations to use the 
same set of underlying class data, ensures transparent 
exchanges, reduces the effort needed to integrate simula-
tions, and permits a detailed analysis of the defense trans-
portation system.   
 
In the future, Argonne would like to document further 
work that we have done in building a third hierarchy, the 
Resource Class Hierarchy.  This hierarchy separates proc-
ess-performing components from the physical entities in 
the ICH. This achieves a smoother, more logical separa-
tion that would reduce some of the coupling between the 
classes at no loss of cohesion. 
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