
Adding the Infrastructure Class Hierarchy
To the EXHORT Framework for

Object-Oriented Deployment Simulations

James F. Burke, Jr.
Charles N. Van Groningen

Mark J. Bragen
Charles M. Macal

Argonne National Laboratory
9700 S. Cass Ave., Bldg. 900

Argonne, IL 60439
630-252-9009
jay@anl.gov

Keywords:

class framework
class hierarchy

Common Object Request Broker Architecture (CORBA)
Defense Information Infrastructure Common Operating Environment (DII COE)

deployment
High Level Architecture (HLA)

logistics
object-oriented analysis and design

simulation
transportation

ABSTRACT: One of the objectives of the U.S. Department of Defense is to standardize all classes used in object-
oriented deployment simulations by developing a standard class attribute representation and behavior for all deploy-
ment simulations that rely on an underlying class representation. The EXtensive Hierarchy and Object Representation
for Transportation Simulations (EXHORT) is a class framework composed of two hierarchies that together constitute a
standard and consistent class attribute representation and behavior that could be used directly by a large set of de-
ployment simulations. The first hierarchy, the Transportation Class Hierarchy (TCH), was submitted to the Army Mod-
eling & Simulation Office’s (AMSO) Army Standards Repository in 1999 and presented at the Fall Simulation Interop-
erability Workshop in the same year. The second hierarchy, the Infrastructure Class Hierarchy (ICH), describes the
encapsulation of the rest of the defense transportation system and is the primary focus of this paper. The entire EX-
HORT framework lets deployment simulations use the same set of underlying class data, ensures transparent ex-
changes, reduces the effort needed to integrate simulations, and permits a detailed analysis of the defense transporta-
tion system.

1. Introduction

1.1 Background and purpose

Logistics and mobility have become increasingly impor-
tant in our rapidly changing world. Since September 11th,
it has become even more critical to move soldiers and
supplies with limited resources in support of the war on
terrorism. After the Cold War,
U.S. military forces were
pulled back to the continental
United States, so contingency
planning for deploying forces

to overseas locations took on central importance. Besides
the new war-fighting missions it appears are on the hori-
zon, the U.S. Department of Defense (DoD) has been
called upon to perform an ever-increasing number of non-
traditional missions, including peacekeeping and disaster
relief, both in the United States and overseas. Such needs
have motivated investment in new simulation models and
technologies, because it is more efficient and effective to

initially simulate deployments on
a computer than to first test them
in the real world. Accordingly,
over the past 5 to 10 years, the
DoD has made greater use of
simulations to help meet its mis-

The submitted manuscript has been created by the University of
Chicago as Operator of Argonne National Laboratory (“Argonne”)
under Contract No. W-31-109-ENG-38 with the U.S. Department
of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable world-
wide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

sion objectives. These tools are used to analyze, plan,
train for, and execute deployments.

In conducting analyses of the defense transportation sys-
tem, deployment models and simulation systems rely
heavily on data pertaining to military cargo, transportation
assets, and infrastructure. Currently, throughout the simu-
lations in the military transportation/deployment commu-
nity, the military cargo and transportation asset data are
entered into simulation models separately and in various
formats. This practice results in many data inconsisten-
cies and makes simulation integration very difficult and
time-consuming.

To get the greatest return on investment, the DoD has
attempted to team sometimes very different simulations in
various combinations to satisfy a diverse and ever-
evolving set of user needs, a practice that has mandated a
rigid adherence to standards and a greater focus on simu-
lation interoperability guidelines. In response, the Army
Transportation and Deployment Community has moved to
standardize all classes used in object-oriented deployment
simulations that rely on an underlying class representa-
tion. This paper describes a class framework called the
EXtensive Hierarchy and Object Representation for
Transport Simulations (EXHORT), which is designed to
standardize the classes used in object-oriented deploy-
ment simulations.

EXHORT consists of two hierarchies that together consti-
tute a standard and consistent class attribute representa-
tion and behavior that could be used directly by a large set
of deployment simulations. The hierarchies are unusual
in that they provide for a detailed design class factoring,
rather than merely an aggregate analysis view. In order to
encapsulate the characteristics of multiple deployment
simulations written at different levels of aggregation, the
class abstractions in EXHORT needed to be specified at a
design level view rather than at the higher, analysis level
view that is more typical of community object modeling.
This greater detail was incorporated because we decided
that these classes were “key abstractions” and are well
suited for use in new federations of simulations where
reusability and intercommunication for new simulations is
important.

The two EXHORT hierarchies will allow many deploy-
ment simulations to use the same set of underlying class
data and will significantly reduce the effort needed to
integrate simulations and analyze the defense transporta-
tion system. The first hierarchy, the Transportation Class
Hierarchy (TCH), covers commercial transportation assets
and military cargo, and is summarized in Section 3 [1].
This hierarchy is already an Army Modeling and Simula-
tion Office (AMSO) Deployment/Redeployment Com-
munity Standard [2].

The second hierarchy is the Infrastructure Class Hierarchy
(ICH), which deals with locations where activities are
performed and with the physical infrastructure, such as a
motor pool at a fort or a berth at a port. These areas con-
tain the resources needed to support deployment (e.g.,
ramps, rough terrain container handlers, cranes, and fork-
lifts). Both hierarchies are needed to describe major por-
tions of the defense transportation system. The goal is to
define EXHORT so it could provide a standardized code
structure for object-oriented deployment simulations to
ensure meaningful data exchanges.

1.2 Deployment simulations

Argonne National Laboratory (Argonne), in collaboration
with the Military Traffic Management Command Trans-
portation Engineering Agency, has developed three de-
ployment simulation systems (ELIST — Enhanced Logis-
tics Intra-theater Support Tool, PORTSIM — Port Simu-
lation Model, and TRANSCAP — Transportation System
Capability Model) and prototyped a fourth (CITM —
Coastal Integrated Throughput Model). These systems
simulate the processes required for the different compo-
nents of the defense transportation system. While devel-
oping these force projection simulations, Argonne has
gained experience in working with transportation logis-
tics, class frameworks, and simulation interoperability.

• ELIST — Simulates military transportation move-

ment across a theater of operations. ELIST also pre-
dicts whether infrastructure and transportation assets
can support the war-fighting commander’s required
force delivery dates.

• PORTSIM — Simulates seaport operations and de-

termines port throughput. The simulation also identi-
fies system and infrastructure constraints and port-
specific force clearance profiles.

• TRANSCAP — Simulates installation transportation

operations and computes time-phased outloading ca-
pability. It will also identify system and infrastruc-
ture constraints and installation-specific force depar-
ture profiles.

• CITM — Simulates logistics for over-the-shore op-

erations at austere ports linking the bare beach to the
transportation infrastructure.

1.3 Content and organization

This paper summarizes EXHORT’s first hierarchy, the
TCH, describes the second, the ICH, and describes why it

is a helpful tool in modeling major portions of the defense
transportation system.

Section 2 introduces programming standards and their
relation to EXHORT. Section 3 summarizes the TCH,
while Section 4 provides information about the classes of
the ICH. Finally, Section 5 describes the benefits and
future directions of EXHORT.

2. Programming Standards

Programmers use standards as guides to designing “com-
ponents” that ensure reusability and interoperability
among simulations. When developing state-of-the art
models and simulation tools for DoD, programmers must
follow the DoD standards and compliance mandates that
are intended for all software applications. Two of these
are the Defense Information Infrastructure Common Op-
erating Environment (DII COE) and the High Level Ar-
chitecture (HLA). For real-time distributed simulation
systems, another was produced, called the Real-time Plat-
form Reference Federation Object Model (RPR FOM). It
extends HLA and the Institute of Electrical and Electron-
ics Engineers’ (IEEE) Standard for Distributed Interactive
Simulation (DIS). DII COE specifies how simulations
will use a common operating environment, whereas HLA
and the RPR FOM superset specify how the simulations
will communicate.

It is also useful to incorporate non-DoD standards into
simulations. One such standard is the Common Object
Request Broker Architecture (CORBA) that standardizes
distributed objects so that simulations (as well as other
computer applications) can interact in a heterogeneous
environment (e.g., different platforms or programming
languages) [3]. The next three parts of this section pro-
vide an overview of DII COE, HLA, CORBA, and RPR
FOM, leading to an illustration of the relationship be-
tween these standards and the entire EXHORT frame-
work.

2.1 The Defense Information Infrastructure Common
Operating Environment (DII COE)

DII COE is a flexible approach to building interoperable
systems that was developed and implemented by the De-
fense Information Systems Agency (DISA). DII COE
includes a collection of reusable software components, a
software infrastructure for supporting mission-area simu-
lations, and a set of guidelines, standards, and specifica-
tions. The guidelines, standards, and specifications de-
scribe how to reuse existing software and properly build
new software to ensure seamless and automated integra-
tion. The core concept of DII COE compliance is ensur-

ing that simulations use as many standard conventions
and modules as possible for maximum interoperability.

The heart of DII COE is the Integration and Runtime
Specification (I&RTS), which describes the rules pro-
grammers need to follow to achieve DII COE compliance.
Compliance is measured by the degree to which a simula-
tion follows the I&RTS guidelines. There are four com-
pliance categories: runtime environment, style guide, ar-
chitectural compatibility, and software quality. Currently,
DISA focuses on only the first category, runtime envi-
ronment. The entry level at which DISA will evaluate
mission applications for runtime environment compliance
is Level 5. Acceptance as an official product requires
demonstrated interoperable compliance (Level 7) and a
migration strategy for attaining full DII COE compliance
(Level 8).

2.2 High Level Architecture (HLA)

The DoD’s Defense Modeling and Simulation Office
(DMSO) is leading a DoD-wide effort to support reuse
and interoperability throughout the DoD’s wide spectrum
of models and simulations [4]. HLA is a general-purpose
architecture to encourage reuse and interoperability of
simulations [5]. HLA brings together systems built for
separate purposes, technologies from different eras, prod-
ucts from various vendors, and platforms from various
services, enabling them to interoperate in a virtual envi-
ronment [5].

HLA is based on the premise that no one simulation can
satisfy all uses and users. From this premise comes an
approach that links different types of simulations at mul-
tiple locations to create a realistic, complex, virtual world.
HLA’s intent is to support reuse of capabilities available
in different simulations, ultimately reducing the cost and
time required to create virtual environments for new pur-
poses [5]. Both the Object Management Group (OMG), a
large ad hoc organization composed of several companies,
and the DoD has adopted HLA as a standard for future
defense simulation development [5], and the IEEE is
codifying HLA as three IEEE 1516 standards [6].

2.2.1 How HLA works

An individual simulation or set of simulations developed
for one purpose can then meet the dynamic data needs of
other simulations under a federation — the concept used
in HLA for a group of interacting simulations. HLA de-
fines rules and specifications governing how these
simulations, or federates, interact with each other in a
federation [5]. The federates structure data according to
an Object Model Template (OMT) and communicate
through a data distribution mechanism called the Runtime
Infrastructure (RTI).

2.2.2 The Object Model Template (OMT)

The OMT provides a standard format for documenting the
objects, attributes, and interactions that are exchanged
during a federation execution [5]. The OMT promotes the
reuse of single federates or a federation as a whole and
can be viewed as a contract between federates regarding
how a common federation is executed.

2.2.3 The Interface Specification

The Interface Specification specifies actions a simulation
may perform, or be asked to perform, during an HLA
federation execution [5]. The Interface Specification pre-
scribes the interface between each federate and the RTI
and provides communication and coordination services to
the federates. Federation communication takes place only
between each federate and the RTI, not among the feder-
ates themselves. The RTI is, in effect, a distributed oper-
ating system that is designed to provide the simulations
with a standardized set of services that were previously
handled by the individual simulation [5].

2.3 The Common Object Request Broker Architec-
ture (CORBA)

CORBA was developed to address troublesome version-
ing and security problems in large-scale, worldwide cli-
ent/server applications. Client/server computing is char-
acterized by a two-tiered architecture having a client tier
and a server tier. In a two-tiered model, the client (the
requestor of information) consists of a graphical user in-
terface (GUI) and program logic. The latter manipulates
the raw data from the server (the repository or provider of
information).

Consider a single deployment server with clients distrib-
uted among many locations around the world. All clients
connect to the single server for raw data. A change to the
client (e.g., new logic for staging area usage) requires that
all copies of the client software be updated. Since
changes to the client simulation logic can be frequent, the
“fat client” approach makes it difficult to ensure that all
client simulations are the latest version.

This two-tiered approach has the additional problem of
encoding potentially sensitive, proprietary, or copyrighted
information into the business logic, which is the part of
the system that is distributed to clients. This information
could constitute a company’s competitive advantage over
its competitors. Such a loss of control is a calculated risk
that many organizations are not willing to take. In addi-
tion, there may be legal issues concerning the distribution
of certain information, even in an encoded format.

The security and versioning problems can be avoided by
using a three-tiered, or n-tiered approach that separates
the program or business logic from the GUI. The pro-
gram logic can then be maintained on a single server, un-
der the control of the organization, while the part of the
application that is actually distributed can remain “thin”
(usually consisting primarily of the GUI). In a Web-
based simulation using a “multi-tier” architecture, the
client simulation communicates with the model-logic
server, which, in turn, communicates with the data server.
This is the approach taken in CORBA applications, as
well as in other modern, distributed, “multi-tiered” com-
mercial applications built using Java, particularly Java
applications that conform to Sun’s J2EE specification [7].

A new complexity, however, is introduced by this distrib-
uted object architecture, because objects residing in the
GUI need to communicate with objects residing on the
simulation server. But if the server and client both use the
same class framework (e.g., EXHORT), this complexity
is minimized and the communication is simplified.

2.3.1 How CORBA works

CORBA, developed by the OMG, standardizes communi-
cations among distributed objects. CORBA defines the
structure and design of a system. It allows objects to
communicate in a heterogeneous computing environment
regardless of where the objects reside or how they are
implemented. Only the public interface needs to be
known. The public interface allows an object residing on
system X to invoke a method of an object residing on
system Y, where X and Y can be completely different
systems or objects implemented in different programming
languages. This interaction is possible because each ob-
ject must have an interface defined according to the Inter-
face Definition Language. This interface defines the op-
eration, parameter types, user-defined exceptions for op-
eration failure, and the context or environment. Interface
Definition Language interfaces are registered with the
Object Request Broker (ORB) and are stored in the inter-
face repository, where they can be referenced when a re-
quest for an operation is received [4].

The ORB is responsible for delivering requests and re-
plies between clients and servers. The ORB provides the
communication infrastructure needed to deliver requests
and associated parameters to the servers. It is responsible
for making the connection to the server, sending the pa-
rameters for transfer across a network, and returning the
operation result to the client. If the client knows which
server object it will interact with, all references can be
made through the Static Invocation Interface. In this case,
the exact reference of the object and its location are
known (e.g., Internet address) at the time the programmer
is writing the code, and the code can be written to “get X

at Y.” These requests are synchronous, meaning they wait
until the server returns with a value (a positive return
value — e.g., a document) or an exception (a negative
return value — e.g., no such data available). The Dy-
namic Invocation Interface is available for requests that
will not be known at compile time. Because the pro-
grammer does not know the location of some of the data
or code at the time the code is written, the code “get X at
Y” cannot be written. Instead, the programmer writes the
generic “get” code and X and Y are left to be found at
runtime. Essentially, the code contacts a search engine to
find the values. This second strategy allows the client to
(1) dynamically query the ORB for a set of objects that
can fulfill a specific operation, (2) retrieve the interface of
the selected objects, (3) construct the request, (4) invoke
the request, and (5) receive the results at runtime [3].

2.4 EXHORT and the Real-Time Platform Reference
Federation Object Model (RPR FOM)

RPR FOM was designed to support real-time simulations
where the principal participants are discrete physical enti-
ties such as planes, ships, soldiers, and munitions [9]. At
first glance, RPR FOM seems designed to address the
same entities as EXHORT. However, several differences
exist that make them incompatible and designed for dif-
ferent types of applications.

Real-time Platform Reference Federation Object Model
(RPR FOM) is built on the Distributed Interactive Simula-
tion (DIS) and implements the DIS protocol data units in
the form of a hierarchy of classes and interactions. The
primary mission of DIS is to define an infrastructure for
linking simulations of various types at multiple locations
to create realistic, complex, virtual “worlds” for the simu-
lation of highly interactive activities [8]. Conversely,
EXHORT’s mission is to develop an infrastructure for
linking transportation and infrastructure models to create
realistic, complex, logistics systems for simulating logis-
tics activities. Their difference is fundamental — RPR
FOM is designed to be used in continuous, real-time, vir-
tual environment simulations, whereas EXHORT is de-
signed to be used in simulations in discrete-event, delib-
erative planning involving mathematical throughput and
utilization studies of military transportation logistics sys-
tems. The different intended audiences give rise to differ-
ences in design.

EXHORT also addresses the issue of transportation enti-
ties differently than RPR FOM. RPR FOM’s entities usu-
ally are at a higher level of detail, whereas the class ab-
stractions in EXHORT are more aggregate, encapsulating
only the characteristics required of deployments simula-
tions. Specifically, soldiers and munitions are addressed
aggregately in EXHORT, but RPR FOM simulations of-
ten address each soldier and munition. The TCH defines

a PAX as one piece of cargo, even though it really is a
collection of soldiers. The individual soldiers are only
defined as part of an aggregate that must be processed and
shipped. EXHORT simulations may model a 1-soldier
unit or a 1-soldier leftover after the rest of his unit moved,
but both of these cases are extremely unlikely. Even then,
it is still represented as a PAX object, not as an individual
soldier object. RPR FOM allows for the definition of in-
dividual soldiers as their own object when they cannot be
addressed as part of a larger object [9], but EXHORT
simulations do not require this level of detail.

EXHORT and RPR FOM address transportation entities
differently because of the level of detail needed to run
real-time simulations. Although some of the classes found
in RPR FOM and EXHORT may seem structurally simi-
lar (e.g., Aircraft/Aircraft, Physicalentity/Physical, and
Groundvehicle/Vehicle), the attributes of these classes
lend themselves to very different outcomes. For example,
RPR FOM’s Aircraft class represents entities, such as
airplanes or balloons, which operate mainly in the air [9].
The TCH Aircraft class encapsulates airborne vessels,
such as transport airplanes or helicopters, which carry
cargo. Moreover, the attributes of RPR FOM’s Aircraft
class provide a simulation with information for depicting
how an airplane will look at any given moment during a
simulation. This information is ultimately used to provide
visible cues to a trainee in a simulator. RPR FOM’s more
detailed attributes are not germane to the needs of EX-
HORT because EXHORT is concerned with only the out-
come of the simulation. TRANSCAP uses EXHORT to
simulate installation transportation operations, compute
time-phased outloading capabilities, compare computed
capabilities to outloading requirements, identify system
and infrastructure constraints, and installation-specific
force departure profiles. All of these goals are outcome-
oriented. Because of RPR FOM’s differing mission, logi-
cal separation, differing approach in addressing transpor-
tation entities, and focus on real-time attributes, EX-
HORT does not use RPR FOM’s extendible class frame-
work.

2.5 Programming standards and EXHORT

EXHORT supports the efforts under DII COE to create a
collection of reusable parts — some basic, some very
complicated — so that programmers can work by assem-
bling existing components rather than continually creating
completely new ones. If the EXHORT hierarchies were
built in a distributed architecture, a factory pattern in a
business logic server with the EXHORT objects could
qualify as one or two reusable segments under DII COE.
In addition, a very detailed DII COE segmentation might
identify reusable algorithm segments. An example better
explaining these concepts follows in the next section.

For interactions among simulations, the EXHORT hierar-
chies would enhance the usefulness of HLA by adding a
means of ensuring that the information exchanged
through HLA mechanisms is meaningful and accurate.
HLA compliance satisfies a condition for interoperability
and reuse: a common, efficient technical means of joining
simulations in a federation, optionally including live play-
ers, and exchanging information in a coherent manner [5].
However, HLA does not specify what constitutes an ob-
ject. Thus, while HLA allows simulations to communi-
cate, potential variations in object definitions mean that
HLA compliance does not guarantee a valid, meaningful
exchange of information throughout a federation. Adop-
tion of the EXHORT hierarchies as a standard, consistent
class attribute representation for transporta-
tion/deployment simulations would provide simpler and
more accurate communication among federated simula-
tions in our community.

For example, once the ELIST and TRANSCAP deploy-
ment simulations use TCH and ICH, TRANSCAP could
track the sizes and quantities of cargo and railcars at a
detailed level, making uses of groups of Railcar Objects
[TCH] and Siding Objects [ICH], which would be con-
tained by an Interchange Yard object [ICH]. Since the
Interchange Yard object also has characteristics inher ited
from the Point of Interest class, TRANSCAP could also
place aggregated information into the Interchange Yard
Object, making it an object that ELIST could use. In this
way, ELIST and TRANSCAP can use the identical Rail-
car and Point of Interest objects. While HLA can manage
this data exchange between TRANSCAP and ELIST, data
translations may be required beyond those forced by
simulations operating at different levels of aggregation.
Combining HLA with EXHORT makes this translation
step unnecessary.

Simulations using EXHORT may use a CORBA design
strategy. That architecture is valuable because its re-
quirements lead to designs that foster reuse. Under it,
components are designed and built independently and
then used dynamically as programs are running. For ex-
ample, instantiations of the ICH or TCH objects could be
stored in a CORBA server/object adapter, and thus cen-
tralized for use by several simulations. Such combina-
tions of EXHORT and CORBA could ease interactions
within HLA federations. In addition, CORBA-like inter-
faces can be built into subclasses of EXHORT to make it
easier to use in developing standards-compliant deploy-
ment simulations.

2.6 Bringing All the Standards Together

The following example illustrates the interrelationships
among DII COE, HLA, CORBA, RPR FOM, and ICH.
Figure 1 illustrates the “ABCD Federation,” where A, B,

C, and D are cargo deployment simulations and are feder-
ates of the ABCD Federation. Simulation A and Simula-
tion C both use EXHORT to represent some of their
transportation (Cargo class) and infrastructure (Inter-
change Yard class) objects.

Simulations A and C use a CORBA server to hold, for
example, all of the instantiations of the TCH Cargo class
and ICH Interchange Yard classes. This ensures that
every CORBA client using that server has access to the
same definitions and instantiations of the Cargo and In-
terchange Yard classes. Without this global access, each
simulation would have to set up its own instantiation of
each class, introducing the possibility of mismatches be-
tween simulations and resulting errors. In addition, Simu-
lations A and C are both using rail deployment segments
that are DII COE-compliant, which ensures that they have
been verified and tested.

During the execution of a simulation, all of the simula-
tions communicate by means of HLA mechanisms, for
example, the RTI. Suppose Simulation A provides infor-
mation about a Railcar object that is needed by Simula-
tion C. Simulation A publishes the railcar information in
its public interface. Through the RTI, Simulation C finds
out that the information is available. To retrieve the in-
formation, Simulation C must construct a Railcar object
identical to that in Simulation A. If Simulation C used a
“proprietary” definition of the Railcar class rather than
the TCH Railcar class, the two simulations might use the
same field name to refer to different properties of a rail-
car. Therefore, Simulation C might successfully retrieve
a value for that field from Simulation A, but the value
would be incorrect. By using the TCH, Simulation C can
use the Railcar class to construct a faithful replica of the
original object in Simulation A. The issue now becomes
an internal one of filling the fields in the object, rather
than an intermodel problem of translating between
classes.

2.7 EXHORT and Java

The Java programming language was selected for imple-
menting EXHORT because it provides needed standardi-
zation and promotes the use of Internet capabilities in the
development of simulation and animation tools [7]. Java
is an object-oriented programming language that provides
the encapsulation and inheritance required for EXHORT.
Java is platform-independent and supports network com-
munications. It is robust and provides extensive error
detection and handling.

2.8 Benefits of EXHORT

Using EXHORT provides several benefits, because it

• Allows deployment simulations of varying levels
of aggregation to use the identical data struc-
tures, ensuring exchanges of greater trans-
parency.

• Reduces the effort needed to integrate applica-

tions and analyze a defense transportation sys-
tem.

• Reuses code that is already tested and verified,

allowing simulations to be developed more
quickly.

• Ensures that simulations at different levels of

aggregation can communicate and interoperate
easily.

• Uses modern design strategies and accommo-

dates programming standards.

• Provides simulations that implement the EX-
HORT system with the added flexibility of creat-
ing generalized methods or abstract interfaces
that are only part of the ICH or TCH, or part of
both, because TCH and ICH are divided logi-
cally while having a common root class.

3. The TCH

In designing the TCH hierarchy of the EXHORT frame-
work, Argonne drew upon the experiences gained from
designing three force projection simulations (ELIST,
PORTSIM, and TRANSCAP). The TCH defines the dif-
ferent types of transport assets and military cargo upon
which actions (e.g., loading or moving) are performed in a
simulation. These assets and cargo are essentially the
“clients” that are served at various inspection, loading,
and waiting areas.

The TCH is comprised of 35 classes and one interface (as
shown in Figure 2) in the Unified Modeling Language
(UML). Continuous arrows imply an inheritance relation-
ship. Classes are represented by rectangles. Interfaces
are represented by rectangles with the stereotype <<inter-
face>>. Dotted arrows imply a “realize relationship,” of
which the Java “implements” relationship is one. Ab-
stract classes, which exist for generalization of common
information between related classes, are written in italics.
For more information, see [1].

The depth of the TCH hierarchy is due to the small differ-
ences in the treatment of cargo and transports during the
various inspection, staging and loading processes, espe-
cially when simulated at different levels of aggregation.
The TCH hierarchy has many levels of abstract classes,
allowing for more generalization in the simulation spe-
cific sub-classes that inherit from the TCH.

4. The ICH

The ICH is comprised of 40 classes, as shown in Figure 3,
which is similar to Figure 2. The ICH is written in UML
at an early analysis phase, for simplicity. To reduce com-
plexity in reading the drawing for this overview article,
the association links between the classes. Most of these
associations are composition links that are described in
this section. The ICH deals with locations where activities
are performed and with the physical infrastructure, such
as a motor pool at a fort or a berth at a port.

4.1 Relationship between the TCH and the ICH

It is difficult to define the key abstractions in one hierar-
chy without reference to the other hierarchy, since our
definitions are restricted to the needs of transportation
simulations. For example, a car is a transportation vehicle
that moves across a road. Now, how could a road be de-
fined? A road is an open public way used by cars — the
infrastructure upon which cars move.

In terms of EXHORT, the TCH is a hierarchy of classes
that encapsulates the transportation assets that “move
across a road,” or something that exists in nature (i.e., an
object instantiating the NamedItem class or instantiating a

class that inherits from NamedItem) that moves across
infrastructure (e.g., a road). Conversely, the ICH is a hi-
erarchy of classes that encapsulates “the infrastructure
upon which cars move” or something that has an object
from the TCH (i.e., an object representing a car, truck,
railcar, locomotive, or container) moving across it.

CORBA-style interface methods are the “links” between
the two class hierarchies in a class framework. These are
the methods whereby the relationships between the TCH
and ICH objects are established. Just as with a car (TCH)
driving on a road (ICH), there also needs to be a drives on
method. Because cars enter and exit a parking lot (ICH),
there should also be enters and exits methods. So, all
infrastructure needs enter and exit methods that accept a
TCH object as an input argument. That TCH object is
entering or exiting this infrastructure, so that the object is
passed to the infrastructure object and the infrastructure
object holds it and changes it, as needed (e.g., changing
the infrastructure’s location pointer from the previous
piece of infrastructure to this current one, changing its
state to, e.g., looking for a parking spot). Our current
implementation of the TCH and ICH does not include
these methods. Instead, the methods are left to be de-
fined, with an actual simulation’s need in mind, by the
implementer of the subclasses that are actually instanti-
ated in the simulation using EXHORT. More specifically,

the listing of the fields common to deployment simula-
tions is finished for the TCH and ICH, but the important
interface methods that form the communication between
the two hierarchies in EXHORT are best left to the im-
plementer of an actual simulation. It is expected that the
ICH will be extended for use in actual simulations. The
hierarchy as described here does not necessarily include
everything that is required in a real simulation. The hier-
archy of classes has been detailed at a design level view,
but the details of the classes are still left at an analysis
level view. The ICH classes are small, generic, modular,
self-sufficient classes, whereas the real simulation specif-
ics will exist in its sub-classes.

4.2 ICH class descriptions

4.2.1 Named Infrastructure class

Named Infrastructure is an abstract class that encapsu-
lates the measurements and location of infrastructure.
Named Infrastructure describes the physical characteris-
tics of any piece or place of infrastructure where or upon
which deployment operations occur. Named Infrastruc-
ture inherits from its parent class, Physical.

4.2.2 Landmark class

Landmark is a concrete class that inherits from its parent,
Named Infrastructure. A landmark is any piece or place
of infrastructure where deployment operations may occur.
Landmark describes a place of infrastructure where de-
ployment operations occur.

4.2.3 Link class

Link is an abstract class encapsulating different types of
routes along which TCH objects move during deployment
operations. A link is contained within a landmark or con-
nects two landmarks. Link inherits from its parent,
Named Infrastructure/Physical, and describes the link’s
origin and destination landmarks, whether or not the link
supports one-way movement and which link is preferred.

4.2.4 Link Feature class

Link Feature is an abstract class encapsulating a specific
and notable piece of infrastructure on a Link between two
landmarks that constrains movement (e.g., tunnel or
bridge). Link Feature inherits from its parent, Named In-
frastructure, and implements one field that references the
link upon which this feature appears.

4.2.5 Point of Interest class

Point of Interest is a concrete class encapsulating a land-
mark modeled at a more detailed level. Landmarks would
be modeled in an aggregate model, such as ELIST, by a
few simple, often sequential processes. A Point of Inter-
est would be modeled at a more detailed process level by
simulations with more complex nonlinear systems.

These differences could involve the containership of “re-
source objects” that perform specific, detailed processes
that a detailed simulation would track. These resources
could be spelled out as a separate hierarchy or simply
become fields and methods of Point of Interest sub-
classes.

Landmarks and points of interest are the same places.
What differentiates them is user interest in a more de-
tailed analysis of some areas. A landmark might be a
structure (e.g., gate), an area of land (e.g., staging area),
or an area of water (e.g., berth); that is, a landmark is any
place where processing is simulated. Point of Interest
inherits from its parent, Landmark, and describes the
point of interest’s physical characteristics: the storage
capacity of equipment, POL, PAX, vehicles, trucks, con-
tainers, railcar, and truck transport, and whether or not
lights are available for night deployment operations.

4.2.6 Rail, Road, Waterway, Air, and Pipeline classes

These are concrete classes that encapsulate ordered lists
of segments connecting two landmarks that some appro-
priate TCH object can move across during a deployment
operation. These classes inherit from their parent, Link.
The assumed subclasses of each of these classes, which
are not part of EXHORT, will contain fields and methods
describing the unique aspects of these types of links ger-
mane to the particular simulation in which this class will
be used.

4.2.7 Pass, Bridge, and Tunnel classes

These classes are concrete classes that encapsulate spe-
cific obstacles on a link. They are link features that a
deployment simulation might employ to affect through-
put. They inherit from their parent, Link Feature. The
assumed subclasses will contain fields and methods de-
scribing the unique aspects of tunnels germane to the par-
ticular simulation in which this class will be used.

4.2.8 Siding, Lane, and Runway classes

These classes are concrete classes that encapsulate or-
dered lists of segments that are contained inside a Land-
mark object. These classes are the locations where TCH
objects can be parked, loaded, or otherwise have work
performed on them in a deployment operation.

4.2.9 Water Point of Interest class

Water Point of Interest is an abstract class that encapsu-
lates a point of interest that has attributes shared by all
subclasses that involve water operations. Water Point of
Interest inherits from its parent, Point of Interest.

4.2.10 Berth, Seaport, Channel, and Anchorage classes

These are concrete classes that encapsulate water-oriented
landmarks where cargo and/or transport ships (both TCH
objects) have services performed on them, with the goal
being that the various types of cargo objects in the TCH
will be loaded onto or loaded off of Ship objects. They
inherit from Water Point of Interest. A Seaport object
may contain Berth, Seaport, and Channel objects (among
other, non-water-oriented landmarks), depending on the
level of aggregation of the simulation.

4.2.11 Fort, Airport, Transport Head, Parking, Rail
Yard, and Gate classes

These are concrete classes that encapsulate landmarks
where cargo and transports (both TCH objects) have ser-
vices performed on them, towards various goals. While
the Gate class is an interchange point between a landmark
and a Road object, the other classes listed have a principle
goal of loading/unloading various types of cargo objects
in the TCH onto/off the different types of Railcar and
Truck Transport objects. They inherit from Point of Inter-
est. Fort and Airport objects may contain Transport
Head, Parking, Rail Yard, and Gate objects (among other,
non-loading landmarks), depending on the level of aggre-
gation of the simulation.

4.2.12 Austere Port, Break Bulk Berth, RORO Berth,
and Container Berth classes

These are concrete classes that encapsulate specific berth
landmarks at a port that loads cargo from or onto cargo
ships. They inherit from their parent, Berth. An Austere
Port class is not intended to be the container class of an
entire austere port operation. A Seaport class should still
be used. Instead, it simply describes the roll-on/roll-off
spots for the cargo, elevated piers with a crane for loading
and unloading of lighters, and floating piers with a crane
that load and unload lighters.

4.2.13 Classification Yard and Interchange Yard
classes

These are concrete classes that encapsulate landmarks at a
fort, port, or airport. They are places where Railcar ob-
jects can be inspection, stored, and sorted. They inherit
from Rail Yard. The simulation-specific subclasses will
contain fields and methods describing the unique aspects

germane to the particular simulation in which this class
will be used.

4.2.14 Truck Head and Rail Head classes

These are concrete classes that encapsulate landmarks at a
fort, port, or airport that serve as places where cargo is
unloaded or loaded from or onto transports. They inherit
from Transport Head. The assumed subclasses will con-
tain fields and methods describing the unique aspects of
transport heads germane to the particular simulation in
which this class will be used

4.2.15 Chassis Storage, Container Yard, Staging Area,
and Motor Pool classes

These are concrete classes that encapsulate landmarks at a
fort, port, or airport where different levels of staging and
inspection-oriented processing are done on different types
of cargo in advance of loading and unloading at other
landmarks. They inherit from Parking. The simulation-
specific subclasses will contain fields and methods de-
scribing the unique aspects germane to the particular
simulation in which this class will be used.

4.2.16 Aircraft Staging class

Aircraft Staging is a concrete class that encapsulates a
landmark at a fort, port, or airport. It is an inspection or
storage area where groups of airplanes leave in small
groups or convoys headed for another landmark at an air-
port. Aircraft Staging inherits from its parent, Staging
Area, and implements four fields and eight methods that
describe whether there is space available for maximum-
on-ground wide, narrow, and small-body planes.

5. Summary and Future Directions

With the current war on terrorism, the U.S. military ap-
pears to be entering a new era in which it will be called
upon to make even more war-fighting deployments while
simultaneously continuing to perform nontraditional mis-
sions, including disaster relief and peacekeeping. Model-
ing and simulation can help the DoD plan for, improve
upon, and reduce the costs of many deployments. How-
ever, efficient and effective simulation of deployment
logistics depends on “interoperability” — the accurate
and efficient exchange of data among the many and var-
ied simulations available.

To promote interoperability, the defense community is
encouraging, and in some cases requiring, software pro-
grammers to employ certain standard practices and archi-
tectures. Three major standards are the Defense Informa-
tion Infrastructure Common Operating Environment (DII

COE), the High Level Architecture (HLA), and the
Common Object Request Broker Architecture (CORBA).
Each has a slightly different role in standardizing the
modeling environment. DII COE is focused on verifying
levels of standardization in the runtime environment.
HLA provides conventions for streamlining data sharing
among a specified group of simulations (a federation).
CORBA provides conventions for setting up a “clearing-
house” function to manage distributed objects used by
multiple simulations. To augment this set of standards,
Argonne National Laboratory has designed EXHORT, a
framework of two hierarchies that together will constitute
a standard and consistent class attribute representation
and behavior applicable to transportation deployment
simulations. EXHORT describes major portions of the
defense transportation system, providing a standardized
code structure for object-oriented deployment simulations
that can help ensure meaningful data exchanges.

EXHORT reduces the need for translation among class
representations, thereby reducing the risk of introducing
errors when different simulations communicate. It uses
modern design strategies and accommodates program-
ming standards. EXHORT is an efficient and reliable
development method and could be a candidate as a reus-
able component in the DII COE. It could improve the
accuracy of exchanges among simulations in an HLA
federation. EXHORT may also be used with CORBA to
make exchanges more accurate among simulations that
share a distributed object architecture. EXHORT’s first
hierarchy, the TCH, has been accepted as an Army De-
ployment/Redeployment community standard (SRD
00068). The ICH is currently a candidate to the same
body. EXHORT allows deployment simulations to use the
same set of underlying class data, ensures transparent
exchanges, reduces the effort needed to integrate simula-
tions, and permits a detailed analysis of the defense trans-
portation system.

In the future, Argonne would like to document further
work that we have done in building a third hierarchy, the
Resource Class Hierarchy. This hierarchy separates proc-
ess-performing components from the physical entities in
the ICH. This achieves a smoother, more logical separa-
tion that would reduce some of the coupling between the
classes at no loss of cohesion.

6. Acknowledgements

This work was supported under a military interdepartmen-
tal purchase request from the U.S. Department of De-
fense, Military Traffic Management Command Transpor-
tation Engineering Agency (MTMCTEA), through the
U.S. Department of Energy contract W-31-109-ENG-109.
The authors acknowledge the support of our program
manager, Melvin Sutton, of MTMCTEA.

7. References

[1] Burke, J. F., Macal, C. M., Nevins, M. R., VanGron-

ingen, C. N., Howard, D. L., and Jackson, J., “Stan-
dardization of Transportation Classes for Object-
Oriented Deployment Simulations,” 99F-SIW-193 in
Simulation Interoperability Standards Organization
1999 Fall Simulation Interoperability Workshop,
Volume III, pp. 1142-1152, 1999.

[2] SRD 00068 at AMSO’s Army Standard Repository,

at http://www.msrr.army.mil/astars.

[3] Object Management Group, “CORBA Basics,” at

http://www.omg.org/gettingstarted/corbafaq.htm,
May 2002, accessed June 2002.

[4] DMSO, “High Level Architecture,” at https://

www.dmso.mil/public/transition/hla/, Defense Mod-
eling and Simulation Office, U.S. Department of De-
fense, February 2002, accessed June 2002.

[5] AMSO, “HLA Overview Briefing,” at http://

www.amso.army.mil/topic/hla/overview.ppt, Sep-
tember 1999, accessed June 2002.

[6] SISO, “HLA Standards Development,” at http://

www.sisostds.org/stdsdev/hla, accessed June 2002.

[7] Sun Microsystems, “Java Developer Connection: Java

2 Platform, Enterprise Edition: Overview,” at
http://java.sun.com/j2ee/overview.html, accessed
June 2002.

[8] DIS Steering Committee, “The DIS Vision: A Map to

the Future of Distributed Simulation,” Version 1, In-
stitute for Simulations & Training, Orlando, FL,
1994.

[9] SISO, “Guidance, Rationale, and Interoperability

Modalities for the Real-time Platform Reference
Federation Object Model (RPR FOM),” Sean Reilly
and Keith Briggs (eds), draft 1.0v2, 10 September
1999.

Author Biographies

JAMES F. BURKE, JR., is a software engineer in the
Modeling, Simulation, and Visualization Section of the
Decision and Information Sciences Division of Argonne
National Laboratory. He is the project leader and lead
designer of the TRANSCAP model, which is a part of the
Logistics Modeling and Simulation Program. He is work-
ing on a Ph.D. at the Illinois Institute of Technology,
studying simulation component reuse and standardization.

He received an M.S. in computer science from the Illinois
Institute of Technology and a B.S. in computer science
from Benedictine University. His research interests in-
clude reuse and standardization of object-oriented simula-
tions, simulation modeling, and object-oriented analysis
and design. He is a member of IEEE and ACM.

CHARLES N. VAN GRONINGEN leads the develop-
ment team for the ELIST model at Argonne National
Laboratory. He received his Ph.D. in artificial intelligence
from the Illinois Institute of Technology in 1993; his M.S.
in computer science is from DePaul University and his
B.S. in math is from Trinity Christian College. His re-
search interests include knowledge representation, model-
ing, and simulation. He is a member of the Military Op-
erations Research Society and the American Association
for Artificial Intelligence.

CHARLES M. MACAL directs the Simulation and
Visualization Section and leads the Logistics Modeling
and Simulation Program at Argonne National Laboratory.
His research interests include simulation modeling and
architectures and agent-based modeling. He received a
Ph.D. in operations research from Northwestern Univer-
sity, as well as degrees from Purdue University. He is a
registered professional engineer in Illinois and a member
of INFORMS, the American Association for Artificial
Intelligence, the Society for Computer Simulation, and
Tau Beta Pi.

MARK J. BRAGEN is a software engineer in the Model-
ing, Simulation and Visualization Group of the Decision
and Information Sciences Division of Argonne National
Laboratory. He leads the development of the PORTSIM
model. He received a BA and MS in Computer Science
from the Illinois Institute of Technology. His research
interests include simulation modeling and relational data-
bases. He is a member of IEEE and ACM.

http://www.amso.army.mil/topic/hla/overview.ppt

	Author Biographies

