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EXECUTIVE SUMMARY

Structural evaluation can be very useful at the network level for project prioritization
purposes. In the project priority ranking procedure of the Kansas Department of Transportation
(KDOT), a pavement rating attribute, Pavement Structural Evaluation (PSE), is used. These
ratings ére subjective and based on the condition of the pavement as indicated by the visual
distresses and maintenance histories and the ability of the section to provide an adequate surface
for the prevailing traffic. PSE is expected to be an indicator of the structural deficiency of the
pavement sections. However, since KDOT does not collect any deflection data at the network
level, the PSE computation. process does not directly take into account any structural evaluation.
This study outlines an approach based on the classical multiple regression analysis resulting in a
better estimation of the PSE values using the results from the Falling Weight Deflectometer
(FWD) tests and network-level distress survey.

The regression models proposed in this study predict the decrease in PSE values by taking
into account the FWD data, age, thickness, and distress levels of the pavements, and very closely
approximate the current PSE ratings obtained at the district level. FWD data on approximately
20% of the KDOT network is needed for network level structural evaluation. This translates into
750 lane-miles of FWD testing per year. Three FWD tests per mile are recommended for the
network-levél evaluation. This testing would also be necessary for using/updating the models
developed in this study. The decrease in the structural number values obtained from the models
developed in this study was about 33% higher than the KDOT design assumption.

A parallel study at Kansas State University used the Bayesian Regression methodology
developed by the Canadian Strategic Highway Research Program. The Bayesian regression models
developed are very similar in form to the classical regression models and yielded statistically
similar results when tested on a different set of pavements. However, the Bayesian regression

models appeared to give slightly better results for some pavements during testing.
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1.0 INTRODUCTION

1.1  General Problem Statement

Pavement evaluation in pavement management systems (PMS) is generally directed toward
the following objectives (Haas et al. 1994):

1. Selection of projects and treatment strategies at the network level, and

2. Identification of specific maintenance requirements at the project level.

Each of these objectives requires pavement evaluation information to greater or lesser
degrees of detail. In the case of lesser detail, aggregation of the individual measures comprising
the information, such as a composite or combined measure of pavement quality, is widely used.
Such a combined measure for each pavement section is helpful at the network level for technical
decisions, e.g., project selection.

Atthe network level, Nondestructive Testing (NDT) can be used to identify the beginning and
end of management sections and group pavement sections with similar structural capacities for
condition predigtion, and to identify pavement projects for project-level testing and evaluation
(Shahin 1994). Without NDT testing, there is a risk of defining pavement management sections that
may appear uniform based on observed distress alone, but in reality they are not. In Kansas, one type
of pavement management section is known as a “control section.” A control section is “a segment

of roadway with reasonably uniform geometric, traffic, surface, and base characteristics for its entire

length.” These sections are used for project prioritization purposes by the Kansas Department of

Transportation (KDOT).
Due to limited resources and large size of the network (17,660 km or 10,971 miles), network-
level structural data collection annually by KDOT at the same intervals (5 to 10 tests per mile) as the

1



project level is not realistic. Although guidelines exist for test intervals at the project level (Karan et
al. 1981; Koole 1979; Way et al. 1981; Mamlouk et al. 1990; Hossain and Zaniewski 1992; Shahin

1994), not many studies have been conducted to determine the test intervals at the network level.
Lytton et al. (7990) evaluated the minimum number of Falling Weight Deflectometer (FWD) tests
required to provide accurate representation of the structural capacity of the pavement section at the
network level. They concluded that a minimum of five tests per mile are required to provide a ran]éing
of a pavement section which is highly correlated to the actual ranking. The actual ranking is the one
that would be obtained by doing as many tests as possible. KDOT owns two Dynatest 8000 FWD.
Currently, each unit is capable of testing up to 20 lane-miles in a 10-hour day during a deflection
survey period which runs from April thru October. With this production level, to test the entire
network (17,660 lane km or 10,971 lane miles) annually, 275 days of testing would be necessary just
at the network level! This does not include the time spent in travel from one project to the other.
Thus, one of the objectives of this study was to determine the test sample size (percent mileage) at
the network level as well as the test intervals and frequency.

In the Priority Ranking Procedure of KDOT, a composite measure of pavé'ment quality,
Pavement Structural Evaluation (PSE), is used. The rating for pavements is on a scale of 0 to 10,
10 being the best or no work required. In the ranking procedure, PSE is expected to be an indicator
of the control section structural deficiency (Clark 1989). The attributes and relative weights used in

the prioritization process for the interstate highways are as follows:

Attribute Relative Weight
Commercial Traffic Index 0.140
Rideability 0.189
PSE 0.447
Observed condition 0.224

2



Thus the relative weight of the PSE attribute in the interstate roadway priority formula is
twice the next weighted attribute of observed condition. The same importance is attached to the PSE
rating attribute for non-interstate roadways (Comstock 1992).

PSE ratings are furnished by the district offices of KDOT and are based on the condition and
strength of base and surface, as indicated by maintenance costs, subgrade failures, and ability of the
section to provide an adequate surface for the type of expected traffic (Chowdhury 1998). Table 1.1
shows the rating guide used by the KDOT districts for the bituminous pavements. Since the
implementation of a network-level PMS (known as Network Optimization System or NOS) by
KDOT in the late eighties, PSE is the only input the Districts have into the project prioritization
process.

The Geotechnical unit provides a possible range of PSE values for each control section based
on algorithms developed by the experts in that unit using the PMS data. However, these values did
not appear to be helpful to the districts and in some cases, led to confusion. Since KDOT does not
collect any deflection data at the network level, the PSE computation process does not take into
account any structural evaluation. However, some of the distresses considered are structure-related.

Engineering judgment indicates that a better measure of structural evaluation can be developed using
results from the in-situ deflection tests, such as Falling Weight Deflectometer (FWD) tests and

network-level distress survey.



Table 1.1

PSE Rating Guide for Bituminous Surfaces

PSE
Value

Pavement Condition

10

Nearly new condition. No maintenance or distress expected for three or more years.
When a recent action produces a current condition that is expected to last less than
three years, consider making the rating in light of the condition before recent action.

8~9

Slight (<1/4") rutting in at least 1 wheelpath; and/or fine alligator cracks; little or no
surface maintenance needed.

6~7

Moderate (1/2") rutting continuous in 2 or more wheel paths; and/or secondary
transverse cracks or moderate (1/4") transverse cracks with little or no roughness
associated with crack; and/or alligator cracks associated with ruts; and/or minor
shoving, spot edge failures, or hairline block cracks; requires spot patching and major
patching.

4~5

Significant (>1/2") rutting in wheel paths; and/or wide (>1/2") transverse cracks with
roughness developing at cracks and/or shoving may be present; and/or alligator
cracks associated with deep ruts, or vertical displacement; and/or edge failures,
and/or spalling associated with block cracks; requires frequent patching and major
patching.

2~3

Very wide (>3/4") or depressed transverse cracks resulting in unacceptable surface
roughness; and/or continual edge failures or shoving along pavement edge at
transverse cracks; and/or block cracking that is <4" in any dimension with spalling

associated with the cracks; requires major patching; high potential for winter or
spring breakup.

Continual patching and major patching required; or milling required to remove ruts
and/or roughness due to depressed transverse cracks; beyond economical
maintenance by KDOT forces.

1.2 Objective of the Study

The primary objective of this study was to investigate the potential of FWD deflection data

to augment the Pavement Structural Evaluation (PSE) value computation. Another objective was to
determine the FWD test sample size (percent mileage) at the network level, and test intervals and

frequency needed to provide input into the network-level structural evaluation and PSE computation

process.



1.3 Approach of the Study
The following variables, which directly or indirectly influence the pavement structural
condition, were investigated as potential predictors of the PSE values:

1. Age of the pavement (in years) since the last rehabilitation action,
Cumulative 18 kip Equivalent Single Axle Loads (ESAL’s) that have passed over the

section since the last action,

3. Asphalt Concrete (AC) layer thickness,

4. Structural number (SN) of the pavement, and

5. Distress level due to transverse cracking.

It is to be noted that pure deflection values were not used as predictors. Rather the structural
number of the pavement which can be derived from the deflection results is used as a predictor. This
was done because a pavement with a strong subgrade and weak AC, base and subbase layers may
have the same first sensor deflection value as a pavement with a weak subgrade and strong AC, base
and subbase layers. The structural number, on the other hand, is known to be more representative of
the structural condition of the layers above subgrade. However, since the deflection results are mostly
unaffected by transverse cracking (FWD tests are conducted away from the cracks), the distress level
of transverse cracking was used as a predictor. Multiple linear regression models were developed with
the above predictors as independent variables to objectively quantify the decrease in the PSE values.

A parallel study by the junior author for his master’s thesis (Chowdhury 1998) used the
Bayesian regression modeling approach to objectively quantify the decrease in the PSE values.
XLBAYES, an EXCEL-based software, was used to develop similar models using the same variables
used in the multiple linear regression analysis done earlier. Bayesian regression modeling has been

introduced by the Canadian Strategic Highway Research Program (C-SHRP) for analyzing the

Canadian Long-Term Pavement Performance (C-LTPP) data. Chowdhury (7998) also tested the



models developed by the classical regression and Bayesian regression on a different set of data, and

appropriate models were recommended for global use on the KDOT network.
1.4 Synopsis

This report is divided into seven chapters. In Chapter 1, the introduction to the problem,_the
objectives of this study, and study approach are discussed. In Chapter 2, a literature review of
previous work is presented. Chapter 3 deals with the determination of FWD test sample size (percent
mileage), and test intervals, and frequency at the network level. It also discusses the network-level
pavement structural evaluation. Regression models were developed to predict the decrease in the
structural number, and thus, forecasts were made on the structural deterioration of the pavements in
Kansas. In Chapter 4, multiple linear regression analysis was performed to predict the decrease in
PSE values by using variables which reflect the structural, climatic, traffic and surface condition of
the pavements. Chapters 5 and 6 have been borrowed from the master’s thesis of Chowdhury (7998).
Chapter 5 describes the Bayesian Regression and its application in the determination of PSE values
using the same set of variables as in the classical regression analysis. Chapter 6 analyzes the
perférmance of the selected models on a different set of pavements with data from different years.
The performances of the classical and Bayesian models are also compared. Finally, Chapter 7 presents

the conclusions and recommendations.



2.0 LITERATURE REVIEW

An extensive literature search was conducted to obtain a thorough knowledge about
deflection tests, backcalculation of pavement layer moduli, and determination of effective
structural number from the NDT tests. Also, the need to predict the deterioration of pavements
and the role of empirical study in this respect was assessed from different studies.

2.1  The Need to Predict Deterioration

A World Bank study in 1987 estimated that a quarter of the paved roads outside urban
areas in developing countries were in need of reconstruction, and that an additional 40 percent of
paved roads required strengthening then or in the next few years (Paterson et al. 1987). Similar
situations have been arising in developed countries to varying degrees from the eighties. For
example, the accelerated deterioration of federally-aided highways in the United States required
a 44 percent increase in funding in 1982 to meet the repair and rehabilitation costs of the system.
Extensive rehabilitation programs have also been planned in most European countries (Paterson
et al. 1987). A recent journal of the National Asphalt Pavement Association (NAPA) reveals the
fact that "America's interstate highway system- 42,700 miles of it, once the envy of the world,
is visibly deteriorating” (NAPA .1998). The system already carries 2 1/2 times the traffic it did in
1975, and congestion is still increasing. In the past seven years, highway capacity has grown 2%
while the traffic has increased to 37% (NAPA 1998). In May of 1998, the Congress passed the
TEA-21 (Transportation Equity Act for the 21st Century), the six-year $216 billion highway bill
for roads, bridges and mass transit. Until the year 2003, the bill is believed to guarantee that all
incoming revenues to the Highway Trust Fund can only be used for highway and mass transit

investments. It is also believed that even if the entire $216 billion is spent on repairing interstates,



it would not be enough to restore, upgrade, and maintain them (NAPA: Focus on Hot Mix Asphalt
Technology 1998).

Such projections at the international and national levels exemplify the problems facing the
highway planners, financiers, managers and engineers everywhere at national or local levels and
to varying degrees. The problem concerns deterioration of an aging road infrastructure and how
best to control it, taking into account the best interests and constraints of the economy and
resources. Largely because of the worldwide need for extensive rehabilitation programs in the
1980s and 1990s, and in order to avoid such sharp peaks in highway expenditure, increasing
efforts are being made to develop and implement improved road management and planning tools.
These tools are required for evaluating the allocation of financial needs of the road maintenance
and rehabilitation programs, for evaluating the design and maintenance standards appropriate for
the ﬁmding available to the highway sector, and for planning and prioritizing works in the
program. Tools are also needed for evaluating the costs of road use as a basis of pricing and
taxation in the transport sector (Paterson et al. 1987).

All such projections and evaluations depend upon prédictions of the rate at which roads in
the network will deteriorate and of the effectiveness of different mainténance options, dependent
on current state and projected trends of traffic, economic growth and available resources. At the
heart is a model of road deterioration, which may be as simple as a fixed estimate of life, such
as, paved roads need major rehabilitation evéry 20 years. The model may be more complex, for
example, taking into account the traffic projections, existing road structure, and specific standards
of service and design. Paterson et al. (7987) also argued that the increasing demands for improved

management and planning techniques, and for economic justification of expenditures and standards



in the highway sector, are placing much more exacting requirements on the rhodels of road
deterioration.
2.2  The Roles of Empirical and Mechanistic Methods

While much of the knowledge of pavement behavior historically has been based on
theoretical considerations, empirical observations have always provided the basis fér formulating
the criteria to be applied in practice. The reason for this is clear. Under traffic and climate, Wthe
long term behavior of natural and treated road materials is influenced by numerous and complex
factors and is highly variable. Thus the criteria for acceptable performance involves subjectively
determined limits of riding quality and other modes of distress. The large number of variables
involved, however, strains the method, and the capability to improve the structural efficiency of
pavements. It also extrapolates design to the magnitude of loading and to the types of material that
are beyond the scope of available field data. These have been the factors behind the recent effort
toward developing the mechanistic analysis techniques (Paterson et al. 1987). Mechanistic
methods are based on a theoretical analysis of the stresses included in a pavement under load,
mechanical properties of materials, and experimental models of the behavior of materials under
repetitive loadings at different environmental conditions. However, the methods need validation
and calibration to the full range of réal conditions. These methods currently lack the prediction
of roughness and surface disintegration which are important determinants for maintenance needs
(Paterson et al. 1987).

Empirical study can be used to quantify and distinguish the long term parallel effects of
mixed traffic loading and environmental factors on pavement performance. Perhaps, it is the only

method by which the real rates of distress development, the interaction between distress types, and



the relative effectiveness of different maintenance activities can be quantified. On the other hand,
mechanistic analyses and accelerated loading studies have been invaluable in identifying the

fundamental variables and appropriate functional forms for the development of each type of

distress (Paterson et al. 1987).
2.3 Structural Evaluation of Existing Pavements
Structural deterioration is defined as any condition that reduces the load-carrying capaci_ty

of the pavement (AASHTO 1993). In the AASHTO Pavement Design Guide, the structural
capacity of a new pavement is denoted as SC, (Figure 2.1). For flexible pavements, structural
capacity is expressed by the structural number, SN. For rigid pavements, structural capacity is the
slab thickness, D. For existing composite pavements (asphalt concrete overlay over Portland
cement concrete, AC/PCC), the structural capacity is expressed as an equivalent slab thickness,
D This research deals with the flexible pavements only.

| The structural capacity of the flexible pavements declines with time and traffic. The
effective structural capacity of existing flexible pavements is expressed as SN,,. The primary
objective of a structural evaluation program is to determine the effective structural capacity of the
existing pavements. However, no single specific methods exists for evaluating structural capacity.
The evaluation of effective structural capacity must consider the current condition of the existing
pavement materials, and also consider how those materials will behave in the future. Three
alternative methods are recommended by the 1993 AASHTO Guide to determine the effective
structural capacity:
1. Structural capacity based on visual survey and material testing.
This involves the assessment of current conditions based on the distress and drainage surveys, and

10
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usually some coring and testing materials.
2. Structural capacity based on nondestructive deflection testing.

This approach is a direct evaluation of the in situ subgrade and pavement stiffness along the
project.
3. Structural capacity based on fatigue damage from traffic.
Knowledge of past traffic is used to assess the existing fatigue damage in the pavement. This
method is most applicable to the pavements which have very little visible deterioration.
2.4  Nondestructive Deflection Testing

Nondestructive deflection testing (NDT) is an extremely valuable and rapidly developing
technology. When properly applied, NDT can provide a vast amount of information and analysis
at a reasonable expenditure of time, money and effort. The analyses, however, can be quite
sensitive to the unknown con&itions and must be performed by knowledgeable, experienced
personnel (AASHTO 1993). For flexible pavement evaluation, NDT serves two functions:

1. To estimate the roadbed soil resilient modulus, and

2. To provide a direct estimate of SN, of the pavement structure.

For this research project, NDT data was used to calculate the effective structural number
(SN, of the pavement. The method recommended in the 1993 AASHTO Guide was followed
in the process.
2.4.1 Temperature-Deflection Correction

A wide range in modulus of an asphalt material may occur as the temperature varies from

cool to warm conditions. At very cold temperatures, the modulus of an asphalt mix may approach

12



the stiffness values of Portland Cement Concrete (6.9 GPa to 13.78 GPa or 1 to 2 million psi)
while at very warm temperatures, the mix may have an elastic modulus slightly greater than the
high quality unbound stone base (3.4 MPa to 1.4 GPa or 50,000 to 200,000 psi). This is due to
the fact that asphalt is a viscous material and its properties are highly dependent on temperature.
Therefore, the FWD first sensor deflection data must be corrected and standardized (at 20°C or
68°F) before it can be used in the calculation of effective structural number. However, the ﬁ;st
task is to determine the average pavement temperature during the FWD deflection test.
2.4.2 Determination of Average Pavement Temperature

The most direct way to determine the temperature of the asphalt layers during an NDT
deflection test is to physically measure the temperature. Care must be taken to recognize that with
increased depth into the asphalt layer fairly high temperature gradients may occur at a given time.
Thus in many cases, the measurement of temperature only at the surface will not suffice as an
accurate measurement of the 'average' or 'effective’ temperature of the entire layer. The thicker
the asphalt layer, the greater the need to evaluate the overall pavement temperature for the entire
layer rather than simply relying on the surface temperature measurements.

- The 1986 AASHTO Guide recommended an alternative procedure for determination of
effective pavement temperatu‘fe w};ich was adopted in the 1993 Guide. It is generally
recommended that the pavement temperature be calculated from the graph provided by AASHTO
at three depth locations within the pavement structure: (1) near surface (less than 25 mm or 1-inch
depth), (2) mid layer, and (3) bottom of the asphalt concrete layer. The average temperature
computed from these values then yields the estimate of the pavement temperature at the time of

the FWD deflection testing. This procedure requires the following information:
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1. Pavement _surface temperature during the FWD test, and
2. Average air temperature data at the site for the five days previous to the FWD test.
Previous research indicated that this procedure showed excellent consistency when applied
to some states in the U.S. (4ASHTO 1986). Therefore, in this study, the AASHTO approach was
followed to calculate the average pavement temperature.
2.4.3 Effective Structural Number (SN,
At sufficiently large distances from the load, deflections measured at the pavement surface
~are due to the subgrade deformation only and are also indepéndent of the size of the load plate
(AASHTO 1993). This permits the backcalculation of the subgrade resilient modulus (M,) from
a single deflection measurement and load magnitude using the following equation:
=(0.24 *P)/ (d, *r) (2.1)
where,
M, = backcalculated subgrade resilient modulus, psi,
P = applied load, pounds,
d, = deflection at a distance r from the center of the load, inches, and
r = distance from the center of the load, inches.
It should be noted that no temperature adjustment is needed in determining M, since the
deﬂéction used is only due to subgrade deformation. The deflection used to backcalculate the
subgrade resilient modulus must be measured far enough away that it provides a good estimate of

the subgradé modulus, independent of the effects of any layers above, but also close enough that
it is not too small to be measured accurately. The minimum distance may be found from the
following relationship:

r>0.7a, - (2.2)

a, = [a* + D’ * (E/M)**] * (2.3)
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where, a,= radius of the stress bulb at the subgrade-pavement interface, inches
a = NDT load plate radius, inches
D = total thickness of pavement layers above the subgrade, inches
E, = effective modulus of all pavement layers above the subgrade, psi.

E, values may be determined from the ratio E /M, (Figure 1.2) or based on the following

equation:
{ r 1
p [E,) I
)4
d,=15pay 1 MR\/;+ ; _A}: + 1——‘—“7 Ep (2.4)
1+ (—)
\ L a - J
where, d, = deflection measured at the center of the load plate (and adjusted to

a standard temperature of 20 °C or 68 °F), inches
Once the E, value is calculated, the effective structural number can be easily determined by
the Equation 2.5 provided by AASHTO:

SN, =0.0045 * D * (E )" (2.5)

15



100

Figure 2.2

Mg do / P (Mg psi, d, mils, P Ibs)

F T e e e P :“‘::“_a_!_sj——a_nél'\_e“s ’
e R I U [ _':ﬁ_'ﬁ_"_"’__.';'.:"_..Z::éL:TMi- 2.

! :
!
|

0 5 10 1 20 25 30 35 40 45 50

Total pavement thickness D, inches

Determination of E /M, (After AASHTO 1993)

16

55

60



3.0 NETWORK-LEVEL FWD TESTING

3.1 Introduction
Structural evaluation provides a wealth of information concerning the expected behavior of
pavements (Haas et al. 1994). However, due to the expense of data collection and analysis,
structural capacity is not currently evaluated at the network level of pavement management by many
agencies. The practice is more common at the project level of management. It has been argued that
the structural capacity information, even derived from less intensive sampling than for project level
purposes, can be very useful at the network work level for project prioritization purposes. The
practice exists in a few states and Canadian provinces, such as Idaho, Minnesota, Utah, Alberta, and
Prince Edward Island (Haas et al. 1994). As mentioned earlier, due to limited resources and the large
size 6f the network, network-level structural data collection annually in Kansas at the same rate (5
to 10 tests per mile) as the project level is not realistic. One of the objectives of this research was to
determine the sample size (percent mileage), test intervals and frequency to be used as guides by
KDOT for network-level FWD testing so that the deflection data can be used as input into the PSE
computation process.
3.2 Data Collection
Deflection data was collected on the asphalt pavements in District IV from 1993 to 1996.
KDOT maintains two types of flexible pavefnents - Full-Design and Partial-Design Bituminous
Pavements. Full-Design Bituminous (FDBIT) pavements were designed for the current énd
projected traffic and usually carry heavier traffic than the Partial-Design Bituminous (PDBIT)

pavements which resulted from the paving and maintenance of the original "farm to market" roads
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in the forties and fifties. District IV was chosen as the test network since its mileage most closely
approximates the pavement types on the whole KDOT network and thus, deflection data collected
on this district would be very representative of the KDOT network. The FDBIT and PDBIT
pavement mileages in District IV are 545 and 695 miles, respectively. They represent roughly
15% and 14%, respectively, of the total network mileage in Kansas for the two pavemént types.
Data for this study was collected on the non-Interstate routes in District IV.

Pavement surface deflections were measured by a Dynatest 8000 Falling Weight
Deflectometer (FWD). Ten (10) FWD tests per mile were performed on the outer wheel path of the
travel lane. Table 3.1 summarizes the project details for data collection. FWD tests were conducted
each year of the study period on the projects selected by NOS for the long-term rehabilitation
program.. Thus the projects tested in a given year are the candidates for rehabilitation for a certain
future year and should be in a "similar" condition state. The condition states are defined by NOS
based on roughness, rutting, transverse cracking, fatigue cracking and/or block cracking. In total,
approximately 20% of the FDBIT pavements and 36% of the PDBIT pavements from 96 "control"
sections in District IV were included in the study.

Table 3.2 shows some geometric and loading characteristics of the sections selected. The
annual ESAL’s varied from 42,000 to 264,000 and are fairly representative of the traffic loads on
KDOT’s non-Interstate network. On average, the loading on the FDBIT pavements was three to

four times the loading on the PDBIT pavements.
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Table 3.1 Data Collection Summary

, Pavement Type No. of Control
Year Sections
Full Design Partial Design
Miles % of Miles % of
1993 36 6.6 107 15.4 43
1994 15 2.7 71 10.2 25
1995 25 4.6 9 1.3 11
1996 34 6.2 60 8.6 17
Total 110 20.1 247 35.5 96

Table 3.2 Characteristics of the Study Sections

Year Pavement Average Average No. of
Type Length Annual Control
(mile) ESAL:s Sections
1993 FDBIT 3.027 198,000 12
PDBIT 3.359 71,000 31
1994 FDBIT 3.003 264,000 5
PDBIT 3.548 58,000 20
1995 FDBIT 3.116 128,000 8
' PDBIT 12686 44,000 3
1996 FDBIT 5.654 188,000 6
PDBIT 6.624 42,000 15

3.3  Response Variables and Analysis Method
The following attributes were selected as response variables:
1. Normalized and Temperature-corrected first sensor deflection (d,),

2. Subgrade Resilient Modulus (M,), backcalculated from the FWD data following the
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AASHTO Guide algorithm, and

3. Effective Pavement Modulus (E,), also computed following the AASHTO Guide
algorithm. .

The FWD first sensor deflection values were normalized to 40 kN (9,000 1b) load level
and then corrected to a temperature of 20° C (68° F) following the methodology proposed by
Southgate and Deen and adopted by AASHTO (AASHTO Guide 1993).

3.4  Trends of Response Variables

Table 3.3 shows the summary statistics for d;, M, and E, for the years 1993 thru 1996 for the
control sections. It appears that the coefficients of the variations for the backcalculated subgrade
moduli were similar over the years, indicating the effects of spatial va.riatién rather than variation over
the time period considered. The coefficients of the variations are the highest for the E,'s which is
derived from the other two parameters. It appears that the variabilities in those parameters are
magnified in the calculation process. Table 3.3 shows the results of the student's t-tests between the
means of these variables for the four years of study period. For all variables, there were no significant
differences among the means of these variables for 1993, 1994, and 1995. Thus, the mean values of
d;, M; and E, did not change significantly over three years. However, significant differences were
noted between the first-sensor deflection values for 1996 and 1993 for both pavement types.

These results imply that the average structural capacity of the pavement network in Kansas
most likely change over a three year period.. In other words, it takes about three years of traffic
and climatic affect to significantly change the average structural condition of the network.

3.5  Limit of Accuracy Curves
It is well known that tests conducted on pavement analysis units provide an estimate of the

actual mean and standard deviation of the attribute under investigation. As the number of test
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Table 3.3 Summary Statistics of the Response Variables

Variable | Year Pavement Type
Full Design Partial Design
Mean Std. Dev. CV.(%) | n Mean Std. Dev. | C.V. (%) n
d, 1993 113 5.6 50 12 23.6 10.3 44 31
mils) 1 1004 | 9 0.8 9 5| 243 10.5 43 20
1995 14 5 36 8 19.7 5.5 28 3.
1996 193 9 47 6 19.7 7.2 37 11
M, 1993 17.7 43 25 12 12.5 33 26 31
(ksi) 1994 14.9 3.1 21 5 10.7 31 29 20
1995 16.4 42 26 8 13.2 2.6 20 3
1996 12.7 3.2 25 6 12.6 2.0 16 11
Ep 1993 250 190 75 12 318 241 76 31
(ksi) 1994 267 110 40 5 447 412 92 20
1995 149 58 39 8 352 167 48 3
1996 207 115 56 6 317 285 90 11
Note: 1 psi = 6.89 kPa
1 mil = 0.025 mm
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Table 3.4 Students t-test Results at 5% level of Significance

Response | Pavement Test t- d.o.f. Results
Variable Type _ statistic
d, FDBIT 1996 vs. 1995 -1.413 7* not significant
1996 vs. 1994 -2.207 8* not significant
1996 vs. 1993 -2.309 16 significant
PDBIT 1996 vs. 1995 -0.0076 12 not significant
1996 vs. 1994 1.284 29 not significant
1996 vs. 1993 2.141 40 significant
M, FDBIT 1996 vs. 1995 1.824 12 not significant
1996 vs. 1994 1.183 9 not significant
1996 vs. 1993 2.499 16 significant
PDBIT 1996 vs. 1995 0.45 12 not significant
1996 vs. 1994 -1.794 29 not significant
1996 vs. 1993 0.059 31* not significant
E, FDBIT 1996 vs. 1995 -1.118 7* not significant
. 1996 vs. 1994 0.902 9 - not significant
1996 vs. 1993 2.596 15* significant
PDBIT 1996 vs. 1995 0.199 12 not significant
1996 vs. 1994 0.928 29 not significant
1996 vs. 1993 2.287 34** not significant

* unequal variances
** a few projects were eliminated due to unreliable thickness data
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increases, the estimated value more closely approximates the true value. However, as mentioned
earlier, more tests translate to more expenses and in some cases, unrealistic data collection and
analysis expenses. The principles of statistical confidence levels can be used to determine how many
tests will be necessary to ensure that the estimated mean is within a certain limit of the actual mean.
Statistical limit of the accuracy curves helps assess the impact of the number of tests conducted on
the precision of the estimate. The limit of accuracy, R, represents the probable range of the variaﬁon

of the "true" mean from the average obtained by "n" tests at a given degree of confidence.

Mathematically,
R=K, (o /Vn) (3.1)
where,
K, = standardized normal deviate, which is a function of the desired
' confidence level,
c = standard deviation of the variable (d,),
n = number of FWD tests conducted or percent network mileage
tested at a fixed interval, and
R = allowable error in the random variable being considered.

It is to be noted that for a given confidence interval, standard deviation and number of tests,
the corresponding error could be computed using Equation 3.1. For a given variable (e.g.,
deflection), if the confidence level (e. 8., 95%), K, and o are known, the R value would be inversely
proportional to the square root of the number of tests randomly selected. The relationship between
the R value and the number of'tests is depicted in Figure 3.1. AASHTO defines three zones a]dng the
accuracy curve. In Zone I, characterized by a steep slope, the precision of the estimate signiﬁcéntly
increéses with each additional test or sample and the benefit-cost ratios for increasing the number of
tests per analysis are quite high. Zone III, on the other hand, is a region with little slope, where even

large increases in the number of tests/samples obtained will not significantly improve the precision
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of the estimate, ahd the costs asséciated with additional testing may outweigh the benefits. Zone Il
represents the “optimal” range in developing a test program, because it represents the area where
accurate estimates will be made using a minimum number of tests (AASHTO Guide 1993).

3.6  Error Analysis

For this analysis, the temperature-corrected first sensor deflection (d,) was chosen as the
response variable and the values of d, for 1993, 1994 and 1995 were aggregated for the analysis. The
error values associated with d; were computed as:

% Error = ( Absolute Error/ Average value ) * 100 (3.2)
All error calculations were done at 95% confidence level for which the value of K, is 1.96.

For each project, the average and standard deviation of the first-sensor deflections were
computed. For error analysis of the FWD tests on thé percentage of network mileage covered, it was
assumed that the “true” standard deviation of the first-sensor deflections of each project is equal to
the standard deviation obtained from the tests on 100% of the network covered without errors.

Table 3.4 shows the error analysis results for the network mileage tested. It is interesting to

note that the percent error values corresponding to the percent network mileage tested are similar for

the FDBIT and PDBIT pavements. Thus the percent error values for the two pavement types were

‘combined and the following regression equation for the percent error was developed:

percent (%) error = exp (4.096 - 0.5115 In (% network mileage)) (3.3)
(R?=0.976, Standard Error = 1.142)
Figure 3.2 shows a plot of Equation 3.3. It is apparent that the FWD tests on more than
approximately 20 percent of network mileage will not significantly increase the precision of the
estimate or the first-sensor deflection value. Hence 20 percent mileage could be selected as a

reasonable sample size in network-level structural evaluation of flexible pavements. This would
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Table 3.5 Error Analysis Results
Pavement Type
Full Design Partial Design
% Network R Error (%) % Network R Error (%)
14 1.9 16 27 2.7 11
10.5 23 19 20 2.9 13
7 2.55 . 22 135 32 16
3.5 34 33 7 3.7 20
Network Level FWD Testing Requirement
30
25 T
=20 T
S
L 15 \-\
§\
—
10 — =
5
5 10 15 20 25 30 35
Network Percentage
Figure 3.2  Network Level FWD Testing Requirements
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translate into approximately 3,542 lane-km (2,200 lane-miles) of testing in three years. Thus, KDOT
should test its system on a 3-year cycle or approximately 1,208 lane-km (750 lane-miles) each year
for network evaluation. With two FWD units, this would require 19, 10-hour work days of testing
each year.

For the error analysis of the FWD test rate on a particular project, it was assumed that the
“true” standard deviation of the first-sensor deflections of each project is equal to the stand;rd
deviation obtained from 10 tests per mile. Percentage errors for the test intervals of seven, five, three,
and one test per mile were computed. The 10 tests were done at about 160 m intervals. For seven
tests per mile, every third test point was ignored. For five tests per mile, every other test point was
ignored. For three tests per mile, the first, fourth and seventh test points were taken for analysis. The
one test per mile was assumed to be at the beginning of each project. Results in Table 3.5 show
that the average error does not vary significantly for seven, five, or three tests per mile. Thus,
the lowest test rate, three tests per mile could be taken as the spatial test frequency at the network
level.

The suggested test coverage of 20% mileage and spatial frequency of three tests per mile
were tested with the FWD data collected in 1995. That year, 25 miles of FDBIT pavements were
tested. Twenty percent mileage translated to only five miles of testing in 1995. Different
combinations of the control sections which would result in five miles of testing showed that the
average error for the spatial frequency of three tests per mile ranged from 14 % to 16%, compared
to 13% to 15% for five tests per mile, and 12% to 13% for seven tests per mile.

This testing would be necessary for network level structural evaluation of the KDOT

pavements and also for using/updating the models to be developed in this study.
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Table 3.6 Determination of the Number of Tests Per Mile at the Network Level

Percent error in FWD 1st sensor deflection for various test intervals

(1995 data)

Route Number of Tests Per Mile
7 5 3 1
US 54 14 16 18 39
US 59 6 8 9 15
US 59 4 12 14 17 35
US 59 8 9 13 25
K 68 15 18 21 44
K 68 10 12 21 44
K 68 14 16 19 40
K103 9 10 12 25
K 103 7 9 11 22
K 126 16 21 23 47
US 169 9 10 12 25
Average 11 12 14 29
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3.7  Prediction of the Decrease in Structural Number

In this study, the network-level structural deterioration was predicted through
quantification of the decrease in the structural number of the existing pavements estimated from
the FWD data. This was necessary because this decrease in structural number will be used as a
predictor for estimating PSE valﬁes for the control section. It is apparent that in the future, FWD
test results will not be available for all control sections on the network. However, the decrease in
structural number still could be estimated for any section based on the models to be developed.

The approach for structural evaluation was based on the second technique for pavement
structural evaluation suggested by the 1993 AASHTO Pavement Design Guide. The technique,
based on nondestructive testing (NDT) as discussed in Chapter 2 of this report, was used.
Following this approach, the effective structural numbers (SN.¢) of the pavement sections were
calculated using FWD data collected in 1993, 1994, and 1995.

The FWD first sensor deflection values were normalized to 40 kN (9,000 1b) load and
were also corrected for temperature at 20°C (68°F). The deflection values were then used to
calculate the subgrade resilient modulus (M,). The effective E, values were determined from
Equation (2.4). Once the E, value had been calculated, the effective structural number was found
by the following formula provided b); AASHTO:

SN, = 0.0045 *D * (E)"" (3.4)

The original structural numbers of the existing flexible pavements after rehabilitation
actions, calculated according to the algorithms in KDOT’s HYNELIFE program, were obtained
from the KDOT’s CANSYS database.

The decrease in structural number (ASN) was then computed as:
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ASN = SN (CANSYS) - SN« (3.5)
3.7.1 Model Development

The major factors contributing to the structural deterioration of asphalt pavements are traffic
and climate. In this study, the age of the pavement was taken as a surrogate variable for the climatic
affect or aging. Three variables were selected to predict the decrease in structural number (ASN) to
assess structural deterioration at the network level: |

1. Age (in years) of the pavement since the last rehabilitation action,

2. Cumulative number of ESAL's that have passed over the pavement since the last
rehabilitation action, and

3. Thickness (in inches) of the asphalt concrete (AC ) layer.

The thickness and rehabilitation histories of the pavement sections under study were collected
from the HYNERES database of KDOT. Specifically, the following information was obtained:

() Years corresponding to different rehabilitation actions,

(i) Type of rehabilitation action, and

(iii)  Thickness of the overlay (s).

The AC layer thickness, the total thickness of the pavement sections above subgrade, and the
age of the pavement since the last rehabilitation action were then calculated. The total thickness of
the pavement sections is necessary during computation of the effective pavement modulus, E,.

During this analysis, the FDBIT and PDBIT pavements were treated separately since the
structural behavior of these pavements is different. By doing simple linear regression analysis, it was
apparent that the decrease in structural number was highly correlated with the age, cumulative
number of ESAL's and AC layer thickness for the FDBIT pavements, and the age and cumulative

ESAL's for the PDBIT pavements. To select the correct variables, three variable selection methods
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of the Statistical Analysis System (SAS) software were used:

a. Forward Selection Method,
b. Backward Elimination Method, and
c. Stepwise Method

The results of these three variable selection methods are shown in Table 3.6. All three
variables were selected for the FDBIT pavements, but the AC layer thickness was not selected
for the PDBIT pavements. As mentioned earlier, PDBIT pavements are “built up” paveme-nts-
basically asphalt surfaced pavements which trace back to “farm to market roads” in the mid forties
and fifties. The thicknesses of such pavements were really not designed to carry a specific traffic. This
fact also is supported by the three independent variable selection methods of SAS indicating that the
AC layer thickness of the existing pavement does not play an important role in determining the
decrease in structural number of the PDBIT pavements. Therefore, thickness was dropped from the
PDBIT model as a predictor variable. Also, a correlation study among the proposed variables
revealed that the age and cumulative ESAL's are highly correlatc_ad to each other (64.3% for FDBIT
and 62.1% for PDBIT pavements). Thus, to avoid multicolinearity, only one of them was included
in the model, and the variable 'age' was selected because of its greater contribution to the R? value.
Two types of models were selected in each case. The first one was a regular regression model with
an intercept. The other model was forced to have a zero intercept. From a practical point of view,
a zero-intercept model is more justifiable since it implies that the structural number will remain
unchanged if the age since the last action is zero (i.e., just after the rehabilitation action) and the AC
layer thickness is zero. For FDBIT pavements, the R? value for the intercept model was 83.4% and
for the zero-intercept model, 81.3%. These values for the PDBIT pavements were 75. 8% and 72.0%,

respectively. For both types of pavements, the zero-intercept model was selected for being practical.

31



Table 3.7 Variable Selection Process Summary

Method of Selection

Variables selected by SAS

FDBIT Pavements PDBIT Pavements
1. Age 1. Age
Forward 2. AC layer thickness 2. Cumulative ESAL
Selection 3. Cumulative ESAL
1. Age 1. Age
Backward 2. Cumulative ESAL 2. Cumulative ESAL
Elimination 3. AC layer thickness
1. Age 1. Age
Stepwise 2. AC layer thickness 2. Cumulative ESAL
Method 3. Cumulative ESAL

3.8  Models Obtained and the 'Model Utility' Test
FDBIT Pavements: For the FDBIT pavements, the model to predict a decrease in structural

number is:
ASN =0.0218 * age + 0.001 * AC layer thickness (3.6)

As shown in Table 3.7, the R? of the FDBIT pavements model is 0.8127. The significance
values (p-values) for the parameters are: age: 0.0001 and AC layer thickness: 0.0176, indicating that
both variables are significant at a level of more than 98%. The analysis of variance (ANOVA) for
this model showed that the model has an F-value of 320 and its significance value 1s 0.0001. Since
the selected model has a high F-value and a very low p-value, it satisfactorily passes the model
uﬁlity test. The test shows that the model is helpful and adequate in predicting the dependent

variable, ASN. Also, the estimated root mean square error (o) value for the model is 0.044, which

indicates the selected model will predict the decrease in structural number (ASN) at the network

level with a variability of +20 or £0.088 for a confidence level of 99.99%.
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Table 3.8 SAS ANOVA Results for the Model Developed for FDBIT Pavements
Source Degrees of Sum of Mean F Prob >
Freedom Squares Square | Value F
Model 2 1.29274 0.6463 | 320.03 | 0.0001
Error 37 0.07473 0.0020
Total 39 1.36747
Root MSE: 0.04494  R-square: 0.8127
Dep. Mean: 0.15758  Adj. R-sq: 0.8095
C.V. 28.51995
Parameter Estimates
Variable Deg. of | Parameter | Standard T for Ho: Prob >
Freedom | Estimate Error Parameter =0 {T}
AGE 1 0.021872 0.00189 11.56 0.0001
THICKNESS 1 0.001025 0.00099 1.034 0.0176

PDBIT Pavements: For the PDBIT pavements, the selected model is:

ASN = 0.0166 * age (3.7)

The R? valﬁé for this model is 0.7195 and the significance (p) value for the parameter age is
0.0001; i.e., the variable age is significant at a level more than 99%. The ANOVA results in Table
3.8 for this model indicates that the model has an F-value of 842, and its significance value is
0.0001. Since the selected model also has a high F-value and a very low p-value, it satisfactorily
passes the model utility test. Also the estimated root mean square error (0) value for the model is

0.046, which reveals that the selected model will predict the decrease in structural number at a

variability of 20 or +0.092 with a confidence level of 99%.

The FDBIT and PDBIT models indicate that a 25-mm (1.0-inch) AC overlay with a structural
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Table 3.9 SAS ANOVA Results for the Model Developed for PDBIT Pavements

Source Degrees of Sum of Mean F Prob>F
Freedom Squares Square | Value

Model 1 1.84718 1.84718 | 841.8 0.0001

Error 84 0.18432 | 0.00219

Total 85 2.03150

Root MSE: 0.04684  R-square: 0.7195
Dep. Mean: 0.14286  Adj. R-sq: 0.7098

C. V.. 32.79012
Parameter Estimates
Variable | Deg. of Parameter | Standard T for Ho: Prob >
Freedom Estimate Error Parameter =0 {T}
AGE 1 0.016685 0.000575 29.014 0.000

layer coefficient of 0.42 on 200-mm (8.0-in) thick asphalt pavements will have no affect on the
decrease of the structural number of the pavement in about 19 and 25 years, respectively, for these
two types of pavement. In other words, the fatigue lives of these AC layers will be fully consumed
by that time. According to the algorithms in HYNELIFE, in 10 years the decrease in structural
number of this overlay would be 0.08 (= 0.42-0.34). Moreover, the decrease in the structural number

of a 25-mm (1-inch) AC layer which has been overlaid two times over a period of 20 years (one

overlay every 10 years) is 0.28 (i.e., ASN=0.28). However, the models in this study (Equations 3.6

& 3.7) show that after 20 years, on average, the decrease in structural number of a 25-mm (1-inch)
overlay would be 0.42. Thus, these models overestimate the damage by 0.42/0.28 (= 150%,) or 50%

higher compared to the assumptions in HYNELIFE.
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4.0 CLASSICAL REGRESSION ANALYSIS TO PREDICT THE
' DECREASE IN PSE VALUES

4.1 Multiple Regression Analysis

The major objective of this research was to objectively and quantitatively determine the
PSE values of the pavements since the last rehabilitation action. However, the decrease in PSE
value was taken as the dependent variable because it somewhat represents a "normalized” value. '
Classical multiple regression analysis was performed to estimate the decrease in the PSE (APSE)
values. One of the most important aspects of classical regression analysis is the selection of
independent variables which are strong indicators of the dependent variable. The selection was
done in two steps (Ort 1993):

(i) Enumerating the independent variables, and

(ii)  Evaluating and selecting independent variables subjectively or by analyzing

correlation.

42  Selection of Independent Variables for the Prediction of Decrease in the PSE Values

Extensive literature search was done to select the independent variables to predict the
decrease in the PSE values. Expert opinion was also sought for this purpose. Since PSE ratings are
based on the condition of the base and surface, as indicated by the maintenance costs, subgrade
failures, and ability of the section to provide an adequate surface for the prevailing traffic, the
following variables were selected to reflect those conditions:
Age of the pavement since the last rehabilitation action (in years),
Cumulative ESAL’s that have passed over the pavement since the last action,
AC layer thickness (in inches),
PSE value assigned to the pavement immediately after the last action,

Decrease in structural number (ASN), and
Distress level due to transverse cracking.

S S e

The selected variables were plotted on scatter plots against the dependent variable, APSE
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values, and were inspected for possible trends. Also, correlation coefficients for different pairs were

determined. It was apparent from the scatter plot that age and ASN were not linearly related to APSE
values. In the case of age, the rationale is that PSE values do not decrease at the same rate with time.
During the initial years this rate is lower, but after a certain period, the PSE values start to decrease
drastically. A trial-and-error approach was followed to determine the transformed functional form
for an independent variable (Chowdhury 1998). After several trials, the variable age was
transformed to (age)'. For the relationship between the dependent variable, APSE, and the
independent variable, age, the Pearson's correlation coefficients improved from 0.35 to 0.68 for
thé FDBIT and 0.39 to 0.56 for the PDBIT pavements, when the transformation was performed.
Similarly, the variable, decrease in structural number, ASN, was transformed to exp(ASN) to
improve the correlation coefficient of the relationship from 0.49 to 0.61 for the FDBIT and 0.48
to 0.55 for the PDBIT pavements, respectively. The variable AC layer thickness was dropped
from the PDBIT model as a predictor since the thickness of this type of pavement was not
designed to carry the expected traffic. Another important fact to note is that the variables age and
cumulative ESALs have a very high correlation between themselves (correlation coefficient of
0.65 for FDBIT and 0.58 for PDBIT). Therefore, only one of them, (age), was included in the
model to avoid possible multicolinearity or overspecification of the model (Chowdhury 1998).

Transverse cracking was included in the model as a binary variable. Transverse cracking
on the pavements in Kansas is measured by the number of equivalent roadway-width cracks.
According to the KDOT PMS rating guide (KDOT 1996), the crack severity is categorized using
three severity codes:

Code 1: No roughness, 6 mm (0.25 in.) or wider with no secondary cracking; or
any width with secondary cracking less than 1.2 m (4 ft) per lane.

Code 2: Any width crack with noticeable roughness due to depression or bump.
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Also includes cracks that have greater than 1.2 m (4 ft) of secondary
cracking, but no roughness.

Code 3: Any width crack with significant roughness due to depression or bump.
Secondary cracking will be more severe than code 2.

Different combinations of the coded cracks will result in different distress levels due to

transverse cracking (KDOT 1996). Distress levels due to transverse cracking are defined as shown

in Table 4.1.
Table 4.1 Distress Levels Due to Transverse Cracks
TRANSVERSE CRACK CODES
DISTRESS
LEVELS CODE 1 CODE 2 CODE 3

DL 1 <3 0 0
DL2 >3 <3 <2
DL 3 ANY NO. >3 >2

4.3 Criteria Used to Select a Model
The following criteria were used to select a model:

@) Minimize mean sum square errors (MSE): The smallest MSE will result in the narrowest
confidence intervals and largest test statistics. The model with the smallest MSE involving
the least number of independent variables can generally be considered as the best model
(Ort 1993).

(i)  Maximize the Coefficient of Determination (R?): R*is a measure of how well the estimated
model fits the observed data. The best model selected is generally the one with the largest
R%.

(i)  Minimum increase of R? : The best model is selected as the model associated with the
smallest increase in R with the addition of an extra variable.
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(iv)  Mallows C, statistic: The best model is usually thought to have a C, value closest to p,
where, p is the number of regression coefficients. Models associated with C, greater than
p are usually thought to be biased or misspecified models (O 1993).

4.4 Models Obtained and the 'Model Utility' Tests

FDBIT Pavements: Detailed analyses and summary statistics of the model development

have been described by Chowdhury (1998). For FDBIT pavements, the selected models are: -

Distress Level 1

APSE = 0.216* (AGE)"* - 20.82*exp[ASN] + 0.138*TH + 0.328* PSE + 17.65*DL1

(4.1)

Distress Level 2

APSE = 0.216* (AGE)"* - 20.82*exp[ASN] + 0.138*TH + 0.328* PSE + 18.06* DL2

(4.2)

Distress Level 3

APSE = 0.216* (AGE)"* - 20.82*exp[ASN] + 0.138*TH + 0.328* PSE + 18.38* DL3

where, APSE=
AGE=
TH=
PSE=
ASN=
DL=

(4.3)

Predicted decrease in the PSE value,

Age of the pavement since the last rehabilitation action (in years),
AC layer thickness (in inches),

PSE value assigned to the pavement immediately after the last action,
Decrease in structural number, and

Distress level due to transverse cracking (i = 1, 2 and 3).

The p-values for the parameters imply that all the variables are significant at a level of more

than 95%. The ANOVA shown in Table 4.2 for the models implies that the model has an F-value

of 37 and its significance value is 0.0001. Since the selected model has a high F-value and a very low

p-value, it satisfactorily passes the model utility test, which indicates that the model is helpful and

adequate in predicting the dependent variable. Also the estimated root mean square error (c) value
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for the model is 0.47, which reveals the fact that the selected model will predict the decrease in PSE
values at a variability of +2¢ or +0.94 with a confidence of 99%.

It should be noted that the decrease in structural number, ASN, values can be computed from
the FWD data following the methodology described in Chapter 3 or can be estimated using Equations
3.6 & 3.7 developed previously in Chapter 3.

PDBIT Pavements : For PDBIT pavements, the selected models are:

Distress Level 1

APSE = 0.024* (AGE)"’ - 1.145%exp[ASN] +0.171* PSE +0.229*DL1 (4.4)

Distress Level 2

APSE = 0.024* (AGE)"* - 1.145*exp[ASN] + 0.171* PSE + 0.958*DL2 (4.5)

Distress Level 3

APSE = 0.024* (AGE)" - 1.145%*exp[ASN] +0.171* PSE +0.2.27*DL3 (4.6)

The variables in the above equations have been described before. The p-values for the
parameters imply that all the variables are significant at a level of more than 95%. The ANOVA
shown in Table 4.3 for the models implies that the model has an F-value of 132 and its significance
value is 0.0001. Since the selected model has a high F-value and a very low p-value, it satisfactorily
passes the model utility test, which indicates that the model is helpful and adequate in predicting the
dependent variable. Also the estimated root mean square error (c) value for the model is 0.47, which
reveals the fact that the selected model will predict the decrease in PSE values at a variability of +2c

or +0.94 with a confidence of 99%.
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Table 4.2

SAS ANOVA Results for the Model Developed for FDBIT Pavements
Source Degrees of Sum of Mean F Prob>F
Freedom Squares | Square | Value

Model 7 59.413 8.487 37.011 0.0001

Error 20 4.586 0.229

Total 27 64.000
Root MSE: 0.478  R-square: 0.7835
Dep. Mean: 1.259  Adj. R-sq: 0.7717
C.V. 38028
Parameter Estimates
Variable Deg. of Parameter | Standard T for Ho: Prob >
Freedom Estimate Error Parameter =0 {T}
(AGE)*? 1 0.21668 0.239 0.906 0.0105
exp[ASN] 1 -20.820 29.999 -0.694 0.0512
THICKNESS 1 0.138 0.049 2.785 0.0114
PSE 1 0.328 0.109 2.989 0.0073
DL1 1 17.655 30.628 0.576 0.0487
DL2 1 18.064 30.636 0.590 0.0197
DL3 1 18.381 30.636 0.600 0.0185
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Table 4.3 SAS ANOVA Results for the Model Developed for PDBIT Pavements
Source Degrees of | Sum of Mean F Prob > F
Freedom Squares | Square | Value
Model 6 138.178 | 23.029 | 131.67 | 0.0001
Error 39 6.821 0.174
Total 45 145.000
Root MSE: 0.412  R-square: 0.8665
Dep. Mean: 1.444  Adj. R-sq: 0.855
CV. 28953
Parameter Estimates
Variable Deg. of | Parameter | Standard T for Ho: Prob >
Freedom | Estimate Error Parameter =0 {T}
(AGE)1.5 1 0.0246 0.0182 1.352 0.0184
exp[ASN] 1 -1.145 0.5559 -2.061 0.0460
PSE 1 0.171 0.0619 2.766 0.0086
DL1 1 0.229 0.4534 0.506 0.0415
DL2 1 0.958 0.4292 2.233 0.0314
DL3 1 2227 0.4439 5.017 0.0010
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5.0 BAYESIAN REGRESSION ANALYSIS

5.1 Bayesian Regression Methodology

5.1.1 Imtroduction

Predictive equations are very important tools for the pavement management systems.
However, databases to support the developments and updating of these models are lacking. These
databases are often inadequate in sample size, noisy, or incomplete. Conventional statistical
- modeling tools, such as classical regression analysis, may have limited success in these
applications (Kajner er al. 1996). A promising solution lies in the use of Bayesian regression,
which explicitly allows experts to be used to supplement poor quality data (Kwaeski and Nickeson
1997). Bayesian regression methodology was adopted by the Canadian Strategic Highway
Research Program (C-SHRP) for the Canadian Long Term Pavement Performance (C-LTPP)
monitoring program. Nesbit and Sparks (7990) discussed the complete rationale for employing
the Bayesian approach for the C-LTPP program in the report "Design of Long Term Pavement
Monitoring System for the Canadian Strategic Highway Research Program."

5.1.2 An Overview of the Bayesian Regression Approach

In its simplest sense, Bayesian regression is a specialized adaption of the Bayes' Theorem
involving development of multivariate regression models which explicitly consider two disparate
sources of information:

1. A prior information, i.e. information that is known prior to an experiment, and

2. Experimental data, i.e. information that is derived from an experiment.
The interpretation and conclusion drawn from the experimental data can be quite different
depending on what other evidence exists on the subject at hand. However, this difference in

interpretation does not simply mean biasing a result. Interpretation of results using Bayes'
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Theorem is a mathematically consistent way to interpret new evidence/information (Kwaeski and
Nickeson 1997).

The Bayesian statistical method for model development, represented in Figure 5.1, is to
systematically combine prior knowledge and experience with data to improve the predictive
relationship. The Bayes approach calculates a meaningful and credible answer without relying
solely on a small database. In doing so, the Bayes technique allows decisions to be made in the
short term while improvements to the data, judgement and the model continue to be made

(Kwaeski and Nickeson 1997).

Prior———>| Bayes |——» Posterior

Data

Figure 5.1  The Bayesian Statistical Approach (Kwaeski and Nickeson 1997)

In assembling information for Bayesian regression, data collected in the traditional manner
is supplemented with prior knowledge. This approach is summarized in the Figure 5.1. The so-
called 'prior' may be drawn from expeft judgement, "old" data sets, or knowledge that is
generally accepted in the field. Expert judgement can also be encoded by polling experts and
asking them to estimate the value of the dependent variable for a combination of contributory.

variables. Once collected, the experts’ observations are intérpreted similar to the traditional data.
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5.1.3 Bayesian Regression Software

Two Bayesian regression software packages, B-STAT and XLBayes, were developed by
VEMAX Management, Inc., Canada, under contract to C-SHRP. B-STAT provides an EXCEL
spreadsheet interface to a FORTRAN based Bayesian regression program, PC-BRAP. XL Bayes,
on the other hand, is a much faster Bayesian regression program based entirely in the EXCEL
environment (Kwaeski and Nickeson 1997). The analysis features and numerical results of the two
programs are identical. XLBayes was selected for this research because it is relativeiy
straightforward and faster.
5.2  Bayesian Regression to Predict the Decrease in PSE Values

The Bayesian regression analysis using the XLBayes software requires prior data to be
combined with the sample data to obtain the desired posteriors. The prior data can be drawn from
the expert judgement, old data sets or knowledge that is generally accepted in the field. For this
research project, the data set for a number of pavements from Districts I and IV for 1993 and 1994
were used as prior data, and the data for 1995 were used as the sample data. The same functional
form and transformations of the independent variables as in the classical regression were used.

5.2.1 Developing Prior and Assembling Sample Data

The prior can be derived either subjectively using expert judgement or objectively based on
existing data or models. Both approaches require that the prior information be put into either an N-
prior or G-prior format. Both the N-prior or G-prior summarize a linear regression which represents
the prior state of knowledge in the Bayesian regression calculation. The prior includes the coefficients
of the linear regression equation along with the corresponding regression statistics such as the
variance of the regression coefficients. The regression statistics indicate the certainty of the prior and
are used to weigh the balance between the prior and the data in the Bayesian regression calculation.

A brief overview of the information required to define the N-prior or a G-prior is provided in Table
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5.1 (Kwaeski and Nickeson 1997). The G—érior option is typically used when the coefficient means
have been estimated directly by the experts. The G-prior derives the variance/covariance matrix for
the coefficient means based on a set of independent variable data. The G-prior factor is used to
increase or decrease the influence of the prior in the calculation of the posterior. The G-prior factor
is denoted by g. A typical value for g is 1. This essentially gives the prior variance/covariance matrix
weight equal to that of the experimental data. The greater the value of g, the more influence the

prior will have on the posterior. Since the pseudo/prior data used in this research were not derived

from expert opinion only, the N-prior option of Bayesian regression was used in this analysis.

Table 5.1 Required Prior Information (4fter Kwaeski and Nickeson 1997)

Prior Information Required for N-prior Required for G-prior
Means vector v v
Variance/Covariance Matrix v -
G-prior data set - v
G-prior factor - v
Residual variance v v
Degrees of freedom v v

5.2.2 Results of Bayesian Regression and Selected Pos‘terior Models

The classical regression results using pseudo data, development of the N-prior and the
posterior regression coefficients for the FDBIT and PDBIT pavements have been reported in detail
by Chowdhury (7998). The selected posterior models using N-prior Bayesian regression analysis are
shown below.

FDBIT Pavements: The selected models for FDBIT pavements are :

Distress Level 1

APSE = 0.123* (AGE)"S - 9.329%exp[ASN] + 0.106*TH + 0.374* PSE + 5.89*DL1
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(5.1)

Distress Level 2

APSE = 0.123* (AGE)™S - 9.329%exp[ASN] + 0.106*TH + 0.374* PSE + 6.04*DL2
(5.2)

For Distress Level 3

APSE = 0.123* (AGE)"® - 9.329*exp[ASN] + 0.106*TH + 0.374* PSE + 6.47*DL3

(5.3)
PDBIT Pavements: The selected models for PDBIT pavements are :
Distress Level 1
APSE = 0.021* (AGE)'* - 1.873*exp[ASN] + 0.303* PSE + 0.392*DL1 (5.4)
Distress Level 2
APSE = 0.021* (AGE)'” - 1.873*exp[ASN] + 0.303* PSE + 0.881*DL2 (5.5)
Distress Level 3
APSE = 0.021* (AGE)"” - 1.873*exp[ASN] + 0.303* PSE + 1.974*DL3 (5.6)
where, APSE= Predicted decrease in PSE value,
AGE= Age of the pavement since the last rehabilitation action (in years),
TH= AC layer thickness (in inches),
PSE= PSE value assigned to the pavement immediately after the last action,
ASN= Decrease in structural number, and
DL= Distress level due to transverse cracking (i =1, 2, 3).

5.3 Model Evaluation

The purpose of evaluating the model results is to draw conclusions about the Bayesian
posterior results. Evaluation emphasizes comparisons between the data, the prior, and the posterior.
These comparisons may be used for additional iterations for analysis later on. The statistical

performance of a classical regression model is typically measured by evaluating the standard error
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(S), coefficient of determination (R?), F-statistic, and t-statistic. In Bayesian regression, only S, and
t-statistic can be evaluated. Neither R? nor the F-statistic can be calculated because they rely on the
experimental data which does not exist for the posterior results (Kaweski et al 1997).

5.3._1 Data, Prior, and Posterior PDF Plots

An important output of XLBayes is the PDF (Probability Density Function) plots for each

coefficient in the model. These plots graphically compare the distribution of the same coefficient when

based on the data alone, the prior alone, or the Bayesian posterior. Figures 5.2 through 5.14 show

the PDF plots for all coefficients in the models developed in this study.

Under the assumptions of both classical linear regression and the Bayesian regressions, the
model coefficients follow t-distribution. The width of the bell shaped curve shows the confidence in
the estimating coefficients. The PDF plots of all coefficients reveal the fact that the probability
distribution for the posterior estimate is 'tighter' than either the prior or the data. This is intuitively
reasonable as the prior and the data reinforce each other with similar estimates of the coefficients.
Bayesian regression models can always be updated by inserting more data in the model which makes
the posterior more and more definitive.

5.3.2 t-Statistic
. The t-test is used to determine whether a regression coefficient is significantly different from
zero. The t-value for a regressidh coei‘flcient is calculated by dividing the mean of the regression
coefficient by its standard deviation:
t=b,/0y
The null hypothesis in this test is :
H,:b,=0
which is tested against the alternative hypothesis :
H;:b, #0
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At 5% level of significance, where the number of degrees of freedom is very large (i.e., the
t distribution is approximately the same as the normal distribution), the critical vélue oftis+ 1.96.
If the t-value is greater than 1.96 or less -1.96, the null hypothesis is rejected and it is accepted that
the estimate of b, is statistically significant. The higher the value of t, the more is the confidence
about its value and significance. If the t-value is between 1.96 and -1.96, the null hypothesis is
accepted and it is concluded that the estimate of b, is not statistically significant. The values
calculated for the coefficients may only be different from zero due to chance. If the regression
coefficients in the prior and posterior are not statistically significant it may be useful to re-run the
analysis after excluding the variable in question. If the standard error term does not increase
significantly, the excluded variable may not be a statistically significant contributory variable.

The ideal result is for the data and prior to reinforce each other, resulting in a posterior
coefficient that has a smaller standard error than either one individually. This is not always the case,
however, and the posterior may in fact have a larger standard error. Irrespective of how much the
variance has changed, it is desirable that the coefficients in the posterior model all be statistically
significant. |

The t-statistics and the standard deviations of different coefficients are presented in Table 5.8.
It is observed that the t-statistics of all selected variables are outside the range of 1.96 and -1.96
which means that the null hypothesis is rejected in all cases. Thus, the variables used in the models
are significant at 5% level of significance.

5.3.3 Standard Error of the Residuals (S,)

The standard error of the reSiduals, S., is a basic measure of regression model performance.

The standard error (or standard deviation) of the residuals is simply the square root of the residual

variance, S.2. The lower the S,, the closer the predictions made by the model are to the actual
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Table 5.2 Standard Deviation and t-Statistic of the Posterior Coefficients

Pavement type Variable Std. Deviation t-value Res. Var. (S.%)
FDBIT (Age)'’ 0.034 3.620 0.329
Thickness 0.041 2.547
Exp[a(SN)] 4.240 -2.200
PSE 0.107 3.486

DL1 2.979 1.98

DL2 2.876 2.101

DL3 2.424 2.670

PDBIT (Age)? 0.008 2.349 0.203

| Expla(SN)] 0.500 -3.746
PSE 0.038 7.850

DL1 0.196 1.990

DL2 0.383 2.301

DL3 0.466 4234

observations of the dependent variable, and therefore, the better the model.

| Under the assumptions of regression, the residual has a mean of zero and is normally
distributed. Thus the confidence interval for the forecasts made by the model can be calculated using
a table of areas under the standard normal curve. For example, 95% confidence interval for a forecast
corresponds to the mean forecast plus or minus 1.96 times the standard deviation of the residual.
Therefore, the selected models will predict the A(PSE) values within £1.1 units of actual ratings for

FDBIT and +0.88 units for PDBIT pavements with 95% confidence.
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6.0 RESULTS AND DISCUSSION

6.1 Prediction of APSE Values Using the Selected Models

As mentioned earlier, data from 1993, 1994, and 1995 were used in the regression
analysis. Statistical tests were performed on the models which yielded very convincing and
satisfactory results. To get an idea about how well the models would perform in the field, data
from a different set of control sections collected in different years were selected. These sections
were not included in the regression analyses. For 1996, 12 FDBIT and 26 PDBIT sections and
for 1997, 10 FDBIT and 19 PDBIT sections were chosen randomly to test the models developed
in this study. Both classical and Bayesian regression models were used to predict the APSE values
on those pavement sections. At the same time, the rated decrease in the PSE values assigned by
the KDOT engineers were also collected. Figures 6.1 through 6.4 show the results graphically.

The PSE values are always assigned as integer numbers. Since the coefficients of
regression equations are not integers nor the independent variables, the output from the models
are evidently nonintegers. So the output values were rationally rounded up or down to the nearest
integer. The predicted APSE values for most of the pavement sections, very closely, approximate
the rated APSE values. A few cases of discrepancies were encountered in the KDOT ratings. For
example, Project No. 18 in Figure 6.3 (Route K-68), the PSE rating has been increased by two
although no rehabilitation action had been taken on this pavement for the last four years. On the
other hand, both the Bayesian and Classical regression models suggest that the PSE value should
decrease by two. Similarly, other discrepancies in the present rating system were rationally and

objectively addressed by the selected models as evident in Figures 6.1 through 6.4.
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6.2 Range of the Independent Variables
Like all other regression equations, there is a range of each independent variable for which
the selected models are expected to predict the dependent variable with sufficient accuracy. The

- prediction interval band will be wider outside that range, and it is statistically inaccurate to use
the model in those cases. The suggested ranges of the independent variables of the selected

models are:

1 Age since last rehabilitatidn action: (1 to 18 years),

2 AC layer thickness: (4 to 30 inches),

3. PSE rating at the base year: (2 to 10),

4 Decrease in structural number ASN: (0.001 to 2.5), and
5

Distress level due to transverse cracking: (1 to 3)

6.3  Paired t-Test Results

Paired t-tests were performed to determine whether the data from two different sources
have the same mean or in other words whether they are statistically similar. Rated decrease in the
PSE values were compared with the predicted decrease derived from both classical and Bayésian
regression. The null hypothesis was:

H,: p, = p, (or the two sets of data have the equal means)

which was tested against the alternate hypothesis:

H, : u; # p, (or the two sets of data are significantly different)

The results of the t-tests are tabulated in Table 6.1. The results indicate that for all
regression models for both FDBIT and PDBIT pavements the absolute t-value was less than the

critical value of t, which implies that the null hypothesis was accepted in all cases. In other words,
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Table 6.1 Results of Paired t-Test

PAVEMENT TYPE RESULTS OF PAIRED t-TEST
BAYESIAN CLASSICAL
t . (two tail) = 2.079 t . (two tail) = 2.079
FDBIT t=-1.46 t=-1.89
sum of sq. err. = 16.74 | sum of sq. err. = 16.87
t . (two tail) = 2.015 t . (two tail) = 2.015
PDBIT t=-1.39 t=-1.93
sufn of sq. err. = 7.78 sum of sq. err. = 12.41

there was no significant difference between the two sets of data. From the sum of squared errors,
it can be concluded that for the FDBIT pavements the Bayesian and classical regression models
yield similar results, while for the PDBIT pavements, the Bayesian regression models appear to

be more accurate.
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7.1

7.0 SUMMARY

Conclusions

The following conclusions can be drawn based on the results of this study:

There were no significant differences among the means of the response variables, first
sensor deflection (d,), subgrade resilient modulus (M,), and effective pavement modulus
(E,), for the years 1993, 1994, and 1995. However, significant differences were observed
between the first sensor deflection values in 1996 and 1993 for both FDBIT and PDBIT
pavements. Therefore, FWD tests up to a 3-year interval at the network level would yield
statistically similar pavement responses and layer properties.

At the network level, FWD tests on more than 20% of network mileage will not
significantly increase the precision of the mean first sensor deflection value. Therefore,
at the network level, FWD tests on 20% of the mileage appear to be a valid statistical

choice and could be selected as a reasonable sample size in structural evaluation of asphalt

| pavements. For KDOT, it would translate into approximately 2,200 lane-miles of testing

over three years or approximately 750 lane-miles each year. The average percentage of
error for seven, five, and three FWD tests per mile does not vary significantly. Therefore,
three tests per mile can be taken as the minimum test frequency at the network level. This
testing would be necessary for network level structural evaluation of the KDOT pavements
and also for using/updating the models developed in this study. The decrease in the

structural number values obtained from the models developed in this study was about 50%
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higher than the KDOT design assumption.

PSE rating is a very important attribute in the project prioritization process of KDOT and
the current PSE rating system has discrepancies. The classical regression models proposed
in this study predict the PSE values by taking into account the FWD data, age, thickness,
and distress level of pavements and hence, is representative of the actual structural
condition of the pavement. The proposed models very closely approximate the present PSE

ratings obtained at the district level.

The following conclusion was drawn by Chowdhury (7998) in his study of the Bayesian regression

methodology:

1.

7.2

The models obtained from the classical and Bayesian regression are very similar in form
and they yield statistically similar results when tested on a different set of pavements.
Both the classical and the Bayesian regression models appear to be statistically sound from
the view point of predicting capability and model utility since they pass the individual
statistical tests. Although very similar in form, the Bayesian regression models yielded
slightly better results during testing.

Recommendations

FWD tests are recommended to be performed at 3-year intervals at the network level since
there is no significant difference in pavement responses during those years. Three tests per
mile is the minimum recommended test interval required for network level structural
evaluation and also for using/updating the models developed in this study.

The PSE values obtained by the proposed models are recommended to be used as
"suggested PSE values" along with the KDOT's recommended maximum and minimum

PSE values currently in use.
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The following recommendations were made by Chowdhury (7998):

1..

The Bayesian regression models perform slightly better than the Classical regression

models when tested on a different set of pavements and are, therefore, recbmmended for
use for predicting APSE values.

The Bayesian regression is a continuous process of updating the existing "partial state of
knowledge" (Kaweski et al. 1997). As the existing database is enriched with more data,
the Bayesian regression will result in a posterior with an even smaller confidence interval.
Hence, it is highly recommended that the existing models be updated every third year with

more recent data.
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APPENDIX A : Typical SAS Code Files, Log Files, and Output of the
Selected Models for the Prediction of Decrease in Structural

Number
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Statistical Analysis System (SAS) Codes

Titlel 'FDBIT PAVEMENTS';
Title2 'Prediction of del(SN) from age,thickness and cumulative ESAL';
options 1s=80 ps=60;

data;

input dsn age th cumESAL,;
cards;

0.098 4 16.5 599087

0.0924 6 13.9 745738

0.0582 3 13.8 129687

0.0876 5 9.8 301154

0.023 1 11.8 53125

0.1116 6 10.3 925514

0.1292 6 12.4 810048

0.1225 7 13.5 407297

0.204 13 7.8 965029
0.08 5 19 298817
0.09 6 14.4 385079
0.13 8 12.6 889037
0.08 5 14.7 461194

0.09 6 11.4 238113
0.099 6 17.5 394265
0.236 15 14 1782951

0.18 6 15.6 1326061
0.168 6 18.8 1722453
0.171 6 17 1636727
0.1515 14.1 531323
0.1715 12.2 675370
0.14 5 12.2 675370
0.184 7 11.9 1126211
0.16 6 15.6 2135526
0.281 9 19.4 623234
0.219 10 19.8 3723550

0.055 2 14.6 995321

0.19 7 14.9 2087479
0.1315 17.4 2388042
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0.0592 17.6 1119591
0.204 7 10.5 176723

0.49 17 18.7 4041889

0.09 3 10 227849

0.08 3 12.3 267089

0.13 12.3 267089

0.09 3 12.3 365729

0.27 9 19.1 2013217

0.39 16 16.2 3295945

0.44 16 16.7 1363570

proc anova;

class dsn;

model dsn=age th;

proc reg;

model] dsn = age th cumESAL;
model dsn = age th cumESAL/noint;
model dsn = age cumESAL,;

model dsn = age cumESAL/noint;
model dsn = age th;

model dsn = age th/noint;

proc stepwise;

model dsn = age th cumESAL/F B stepwise;
proc rsquare;

model dsn = age th cumESAL/adjrsq cp rmse;
proc corr;

run;

I
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The SAS System : Log File

NOTE: Copyright © 1989-1996 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Release 6.12 TS020
Licensed to KANSAS STATE UNIVERSITY, Site 0003010005.

This message is contained in the SAS news file, and is presented upon
initialization. Edit the files "news" in the "misc/base" directory to
display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: AUTOEXEC processing beginning; file is /usr/local/lic/sas612/autoexec.sas.

NOTE: SAS initialization used:
real time 0.760 seconds
cpu time 0.533 seconds

NOTE: AUTOEXEC processing completed.

1

2 Titlel 'FDBIT PAVEMENTS';

3 Title2 'Prediction of del(SN) from age, thickness and cumulative ESAL';
4 options Is=80 ps=60;

5 data;

6 input dsn age th cumESAL;

7 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: DATA statement used:
real time 0.230 seconds
cpu time 0.113 seconds

52 | proc anova;

53 class dsn;
54 model dsn=age th;
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NOTE: PROCEDURE ANOVA used:

real time 0.020 seconds
cpu time 0.019 seconds
55 proc reg;
56 model dsn = age th cumESAL,;
57 model dsn = age th cumESAL/noint;
58 model dsn = age cumESAL,;
59 model dsn = age cumESAL/noint;
60 model dsn = age th;
61 model dsn = age th/noint;

NOTE: The PROCEDURE REG printed pages 1-6.
NOTE: PROCEDURE REG used:

real time 0.410 seconds
cpu time 0.141 seconds
62 proc stepwise;

63 model dsn = age th cumESAL/F B stepwise;

NOTE: The PROCEDURE STEPWISE printed pages 7-10.

NOTE: PROCEDURE STEPWISE used:
real time 0.310 seconds
cpu time 0.082 seconds

64 proc rsquare;
65 model dsn = age th cumESAL/adjrsq cp rmse;

NOTE: The PROCEDURE RSQUARE printed page 11.
NOTE: PROCEDURE RSQUARE used:

real time 0.290 seconds
cpu time 0.059 seconds
66 Proc corr;
67 run;

NOTE: The PROCEDURE CORR printed page 12.
NOTE: PROCEDURE CORR used:

real time 0.010 seconds

cpu time 0.018 seconds

NOTE: The SAS System used:
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real time
cpu time

2.110 seconds
1.029 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

Output : FDBIT PAVEMENTS

Model: MODEL6

) Selected Model

NOTE: No intercept in model.
Dependent Variable: DSN

Source

Model
Error
U Total

Root MSE

Dep Mean
C.V.

Variable DF

AGE 1
TH ‘

Analysis of Variance

81

Sum of Mean
DF Squares Square  F Value Prob>F
2 1.29274  0.64637  320.035 0.0001
37 0.07473  0.00202
39 1.36747
0.04494  R-square 0.8127
0.15758 Adj R-sq 0.8095
28.51995
Parameter Estimates
Parameter Standard T for HO:
Estimate Error Parameter =0 Prob > |T|
0.021872 0.00189214 11.560 0.0001
1 0.001025 0.00099054 1.034 0.0176



Forward Selection Procedure for Dependent Variable DSN

Step 1 Variable AGE Entered R-square = 0.80739593 C(p) = 7.25384676

DF - Sum of Squares  Mean Square F Prob>F
Regression 1 0.32221333 0.32221333 155.10 0.0001
Error 37 0.07686390 0.00207740
Total 38 0.39907723

Parameter Standard Type I
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP 0.00160524 0.01449521 0.00002548 0.01

0.9124

AGE 0.02339575 0.00187856 0.32221333 155.10
0.0001
Bounds on condition number: 1, 1

Step 2 Variable TH Entered R-square = 0.83423771 C(p) = 3.36524639

DF Sum of Squares =~ Mean Square F Pb>F

Regression 2 0.33292527 0.16646264 90.59 - 0.0001
Error 36 0.06615196 0.00183755
Total 38 - 0.39907723

Parameter Standard Type 11
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP -0.07279728 0.03369669 0.00857622 4.67 0.0375
AGE 0.02235521 0.00181859 0.27766797 151.11 0.0001

TH 0.00563853 0.00233535 0.01071194 5.83 0.0210

Bounds on condition number:  1.059501, 4.238002
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All variables have been entered into the model.

Summary of Forward Selection Procedure for Dependent Variable DSN

Variable Number Partial Model
Step Entered In R**2 R**2 C(p) F Prob>F
1 AGE 1 0.8074 0.8074  7.2538 155.1039 0.0001 .
2 TH 2 0.0268 0.8342  3.3652  5.8295 0.0210
3 CUMESAL 3 0.0062 0.8405 4.0000  1.3652 0.2505

Backward Elimination Procedure for Dependent Variable DSN

Step 0  All Variables Entered ~ R-square = 0.84046086 C(p) = 4.00000000

DF Sum of Squares ~ Mean Square F Prob>F

Regression 3 0.33540879 0.11180293  61.46 0.0001
Error 35 0.06366844 0.00181910
Total 38 0.39907723

Parameter Standard Type 11
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP  -0.05017719  0.03871490 0.00305571 1.68 0.2034
AGE 0.02062992  0.00233545 0.14194129 78.03 0.0001
TH . 0.00392011  0.00274992 0.00369669 2.03 0.1629
CUMESAL 0.00000001  0.00000001 0.00248352 1.37 0.2505

Bounds on condition number:  2.389366, 16.9151

Step 1 Variable CUMESAL Removed R-square = 0.83423771 C(p) = 3.36524639

DF Sum of Squares =~ Mean Square F Prob>F
Regression 2 0.33292527 0.16646264 90.59 0.0001
Error 36 0.06615196 0.00183755

Total 38 0.39907723
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Parameter Standard Type I
Variable ’ Estimate Error Sum of Squares F Prob>F
INTERCEP -0.07279728 0.03369669 0.00857622 4.67 0.0375
AGE 0.02235521  0.00181859 0.27766797 151.11 0.0001
TH 0.00563853 0.00233535 0.01071194 5.83 0.0210

Bounds on condition number: 1.059501, 4.238002

All variables left in the model are significant at the 0.1000 level.
Summary of Backward Elimination Procedure for Dependent Variable DSN

Variable Number Partial Model
Step Removed In R**2 R*¥2 C() F Prob>F

1 CUMESAL 2 0.0062 0.8342  3.3652 1.3652 0.2

Stepwise Procedure for Dependent Variable DSN

Step 1 Variable AGE Entered R-square = 0.80739593 C(p) = 7.25384676

DF Sum of Squares ~ Mean Square =~ F Prob>F
Regression 1 0.32221333 0.32221333 155.10 0.0001
Error 37 0.07686390 0.00207740 _
Total 38 0.39907723

Parameter Standard Type I1
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP 0.00160524 0.01449521 0.00002548 0.01 0.9124
AGE 0.02339575 0.00187856 0.32221333 155.10

0.0001

Bounds on condition number: 1, 1

Step 2 Variable TH Entered R-square = 0.83423771 C(p) = 3.36524639

DF Sum of Squares =~ Mean Square F Prob>F
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Regression 2 0.33292527 0.16646264 90.59 0.0001
Error 36 0.06615196 0.00183755
Total 38 0.39907723
Parameter Standard Type 11
Variable Estimate Error Sum of Squares F Prob>F
INTERCEP  -0.07279728 0.03369669 0.00857622 4.67 0.0375
AGE 0.02235521 0.00181859 0.27766797 151.11 0.0001 '
TH 0.00563853 0.00233535 0.01071194 5.83  0.0210
Bounds on condition number:  1.059501,  4.238002
All variables left in the model are significant at the 0.1500 level.
No other variable met the 0.1500 significance level for entry into the model.
Summary of Stepwise Procedure for Dependent Variable DSN
Variable Partial Model
Step Entered/ Removed R**2 R¥*2  C(p) F Prob>F
1 AGE 1 0.8074 0.8074 7.2538 155.1039 0.0001
2 TH 2 0.0268  0.8342 3.3652 5.8295 0.001
Number in R-square Adjusted C{p) Root Variables in Model
Model R-square MSE

1 0.80739593  0.80219041  7.25385 0.04557853 AGE

1 0.48461521 0.47068589 78.06610 0.07455786 CUMESAL

1 0.13846268 0.11517788 154.00569 0.09639725 TH

2 0.83423771  0.82502869  3.36525 0.04286670 AGE TH

2 0.83119775 0.82181985 4.03216 0.04325799 AGE CUMESAL

2 0.48478711 0.45616418  80.02838 0.07557368 TH CUMESAL

3 0.84046086 0.82678607 4.00000 0.04265089 AGE TH CUMESAL
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Correlation Analysis

Variable N Mean  Std Dev Sum Minimum  Maximum
DSN 39  0.15758 0.10248 6.14550 0.02300 0.49000
AGE 39 6.66667  3.93589 260.00000 1.00000 17.00000
TH 39 14.42564 3.06497 562.60000 7.80000  19.80000

CUMESAL 39 1081320 988399 42171493 53125 4041889

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0

DSN AGE TH CUMESAL

DSN 1.00000 0.89855 - 0.37211 0.69614

0.0 0.0001 0.0197 0.0001
AGE 0.89855 1.00000 0.23698 0.64328

0.0001 0.0 0.1463 0.0001

TH 0.37211 0.23698 1.00000 0.55025

0.0197 ‘ 0.1463 0.0 0.0003
CUMESAL  0.69614 0.64328 0.55025 1.00000

0.0001 0.0001 0.0003 0.0
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" APPENDIX B : Typical SAS Code Files, Log Files, and Output of the Selected

Models for the Prediction of Decrease in PSE Values
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Appendix B : FDBIT Pavements

Statistical Analysis System (SAS) Codes

Titlel 'FDBIT PAVEMENTS';
Title2 'Prediction of del(PSE)';
options 1s=80 ps=60;

data;

input age th cumESAL pse dpse DL1 DL2 DL3;
agel = age**1.5;

dsn = age*(.021872+th*0.001025;
expdsn = exp(dsn);

cards;

313.812968781010
59.830115471001
111.85312560100

6 10.392551482001
612.481004871010

51929881761100
614.438507961001
514.746119482010

611.423811361010
617.539426594001

615.6132606192001
618.8 172245372100
617 163672772001
514.153132381010
512.267537081100
512.267537081100
615.6213552692001
618 172245392100

214.699532171100
714.9208747981100
517.4238804282010
217.6111959171010
710.517672382010

31022784960100
312.326708970100
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Appendix B

312.326708970100
312.336572970100

proc reg;

model dpse = agel expdsn th pse DL1 DL2 DL3;

model dpse = agel expdsn th pse DL1 DL2 DL3/noint;

model dpse = agel dsn pse DL1 DL2 DL3;

model dpse = agel dsn pse DL1 D12 DL3/noint;

model dpse = agel dsn th pse DL1 DL2 DL3;

model dpse = agel dsn th pse DL1 DL2 DL3/noint;

model dpse = agel expdsn pse DL1 DL2 DL3;

model dpse = agel expdsn pse DL1 DL2 DL3/noint;

proc stepwise;

model dpse = agel expdsn th pse DL1 DL2 DL3/F B stepwise;
proc rsquare;

model dpse = agel expdsn th pse DL1 DL2 DL3/adjrsq cp rmse;
Proc corr;

run;

The SAS System : Log File

NOTE: Copyright © 1989-1996 by SAS Institute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Release 6.12 TS020
Licensed to KANSAS STATE UNIVERSITY, Site 0003010005.

This message is contained in the SAS news file, and is presented upon
initialization. Edit the files "news" in the "misc/base" directory to
display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

: FDBIT Pavements

NOTE: AUTOEXEC processing beginning; file is /usr/local/lic/sas612/autoexec.sas.

NOTE: SAS initialization used:
real time 1.290 seconds
cpu time 0.639 seconds

NOTE: AUTOEXEC processing completed.

1
2 Titlel '"FDBIT PAVEMENTS';
3 Title3 'Prediction of del(PSE)’;
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Appendix B : FDBIT Pavements
options 1s=80 ps=60;
data;
input age th cumESAL pse dpse DL1 DL2 DL3;
agel = age**1.5;
dsn = age*0.021872+th*0.001025;
expdsn = exp(dsn);
10 cards;
NOTE: SAS went to a new line when INPUT statement reached past the end of a
line.
NOTE: The data set WORK.DATA1 has 27 observations and 11 variables.
NOTE: DATA statement used:

NoBo SRR Be W, I

real time 0.450 seconds
cpu time 0.188 seconds
44 proc reg;
45 model dpse = agel expdsn th pse DL1 DL2 DL3;

46 model dpse = agel expdsn th pse DL1 DL2 DL3/noint;
47 model dpse = agel dsn pse DL1 DL2 DL3;

48 model dpse = agel dsn pse DL1 DL2 DL3/noint;

49 model dpse = agel dsn th pse DL1 DL2 DL3;

50 model dpse = agel dsn th pse DL1 DL2 DL3/noint;

51 model dpse = agel expdsn pse DL1 DL2 DL3

52 model dpse = agel expdsn pse DL1 DL2 DL3/noint;
NOTE: The PROCEDURE REG printed pages 1-8.

NOTE: PROCEDURE REG used:

real time 0.930 seconds
~ cpu time 0.258 seconds
53 proc stepwise;

54 model dpse = agel expdsn th pse DL1 DL2 DL3/F B stepwise;
NOTE: 27 observations read.

NOTE: 27 observations used in computations.

NOTE: The PROCEDURE STEPWISE printed pages 9-16.

NOTE: PROCEDURE STEPWISE used:

real time 0.340 seconds
cpu time 0.114 seconds
55 proc rsquare;

56 model dpse = agel expdsn th pse DL1 DL2 DL3/adjrsq cp rmse;
NOTE: The PROCEDURE RSQUARE printed pages 17-19.
NOTE: PROCEDURE RSQUARE used:

real time 0.370 seconds
cpu time 0.103 seconds
57 proc corr;
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58 run;

NOTE: PROCEDURE CORR used:
real time 0.060 seconds
cpu time 0.041 seconds

59

NOTE: The SAS System used:
real time 3.710 seconds
cpu time 1.436 seconds

Appendix B : FDBIT Pavements

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414
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Appendix B : FDBIT Pavements

Output: FDBIT PAVEMENTS

Model: MODEL2 ) Selected Model

NOTE: No intercept in model.
Dependent Variable: DPSE

Source

Model
Error
U Total

Root MSE
Dep Mean
C.V.

Variable DF

AGEl 1
EXPDSN 1
TH

PSE

DL1

DL2

DL3

Analysis of Variance
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Sum of Mean
DF Squares Square F Value Prob>F
7 59.41349  8.48764 37.011 0.0001
20 4.58651 0.22933
27 64.00000
0.47888  R-square 0.7835
1.25926  Adj R-sq 0.7717
38.02865
Parameter Estimates
Parameter  Standard T for HO:
Estimate Error Parameter=0 Prob > |T|
0.216685  0.23914791 0.906 0.0105
-20.820483 29.99936689 -0.694 0.0512
1 0.138074 0.04958408 2.785 0.0114
1 0.328737 0.10999755 2.989 0.0073
1 17.655164  30.62681612 0.576 0.0875
1 18.064029  30.63639956 10.590 0.0975
1 18.381956  30.63624915 0.600 0.0885



In

Appendix B : FDBIT Pavements

93

R-square Adjusted  C(p) Root Variables in Model
R-square MSE
1 0.4412660 0.4189166 28.6161 0.6880954 EXPDSN
1 0.4242109 0.4011794 30.1917 0.6985184 PSE
1 0.4063750 0.3826300 31.8394 0.7092547 AGEI
1 0.2644231 0.2350000 44.9529 0.7895146 DLI
1 0.2509777 0.2210168 46.1950 0.7966976 TH
1 0.2447552 0.2145455 46.7699 0.8000000 DL3
1 0.0071885 -.0325239 68.7164 0.9172327 DL2
2 0.6033276 0.5702715 15.6448 0.5917340 EXPDSN PSE
2 0.5872546  0.5528591 17.1296 0.6036034 AGE1 PSE
2 0.5638447 0.5274984 19.2922 0.6204847 AGEl1 TH
2 0.5600446 0.5233817 19.6433 0.6231819 EXPDSN TH
2 0.5518015 0.5144516 20.4048 0.6289929 PSE DLI
2 0.5462266 0.5084121 20.9198 0.6328926 TH PSE
2 0.5395534 0.5011828 21.5363 0.6375293 PSE DL3
2 0.5223561 0.4825525 23.1250 0.6493257 EXPDSN DLI1
2 0.5062316 0.4650842 24.6146 0.6601949  EXPDSN DL3
2 0.5056879  0.4644952 24.6648 0.6605583 TH DL1
2 0.4930660 0.4508215 25.8308 0.6689386 AGEI DL1
2 0.4815786  0.4383768 26.8920 0.6764754  AGE1 EXPDSN
2 0.4766080 0.4329920 27.3512 0.6797106 AGEI1 DL3
2 0.4732349  0.4293378 27.6628 0.6818974 TH DL3
2 0.4451075 0.3988665 30.2612 0.6998661  EXPDSN DL2
2 0.4278426 0.3801628 31.8562 0.7106705 PSE DL2
2 0.4103105 0.3611697 33.4758 0.7214765 AGE1 DL2
2 0.3332605 0.2776989 40.5937 0.7671647  DL1 DL3
2 0.3332605 0.2776989 40.5937 0.7671647 DL2 DL3
2 0.3332605 0.2776989 40.5937 0.7671647 DL1 DL2
2 0.2604255 0.1987942 47.3223 0.8079816 TH DL2
3 0.6887634 0.6481673 9.7522 0.5354236  AGE1 TH PSE
3 0.6866526 0.6457812 9.9472 0.5372362 TH PSE DL1
3 0.6837208 0.6424670 10.2180 0.5397437 EXPDSN TH PSE
3 0.6657695 0.6221742 11.8764 0.5548496  TH PSE DL3
3 0.6630709 0.6191236 12.1257 0.5570850 AGEI TH DL1
3 0.6609352 0.6167093 12.3230 0.5588478 EXPDSN PSE DLI1
3 0.6593062 0.6148678 12.4735 0.5601887 EXPDSN TH DL1 .
3 0.6494018 0.6036716 13.3884 0.5682731  EXPDSN PSE DL3
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3 0.6469807 0.6009347 13.6121 0.5702318 AGE1 PSE DLI

3 0.6389619 0.5918700 14.3529 0.5766718 AGE1 TH DL3

3 0.6357582 0.5882484 14.6488 0.5792248 EXPDSN TH DL3

3 0.6354413 0.5878901 14.6781 0.5794767 AGE1 PSE DL3

3 0.6212076 0.5717998 15.9930 0.5906808 AGEI1 EXPDSN PSE
3 0.6060122 0.5546225 17.3968 0.6024120 EXPDSN PSE D12
3 0.5899411 0.5364551 18.8814 0.6145757 AGEI1 PSE DL2

3 0.5868383 0.5329477 19.1681 0.6168964 PSE DL1 DL2

3 0.5868383 0.5329477 19.1681 0.6168964 PSE DL2 DL3

3 0.5868383  0.5329477 19.1681 0.6168964 PSE DL1 DL3

3 0.5694920 0.5133388 20.7705 0.6297132 AGE1 TH DL2

3 0.5679853 0.5116355 20.9097 0.6308142 AGEI!1 EXPDSN DL
3 0.5655092 0.5088365 21.1385 0.6326194 EXPDSN TH DL2

3 0.5642544 0.5074180 21.2544 0.6335323 AGE]1 EXPDSN TH
3 0.5637505 0.5068484 21.3009 0.6338984 TH DL2 DL3

3 0.5637505 0.5068484 21.3009 0.6338984 TH DL1 DL3

3 0.5637505 0.5068484 21.3009 0.6338984 TH DL1 DL2

3 0.5515024 0.4930028 22.4324 0.6427355 TH PSE DL.2

3 0.5514541 0.4929481 22.4369 0.6427701 AGE1 EXPDSN DL3
3 0.5426597 0.4830066 23.2493 0.6490407 EXPDSN DL1 DL.2
3 0.5426597 0.4830066 23.2493 0.6490407 EXPDSN DL1 DL3
3 0.5426597 0.4830066 23.2493 0.6490407 EXPDSN DL2 DL3
3 0.5153431 0.4521270 25.7728 0.6681430 AGE1 DL2 DL3

3 0.5153431  0.4521270 25.7728 0.6681430 AGE1 DL1 DL3

3 0.5153431 0.4521270 25.7728 0.6681430 AGE1 DLI DL2

3 0.4855279 0.4184228 28.5272 0.6833878 AGE1 EXPDSN DL2

4 0.7615447 0.7181892 5.0286 0.4791906 AGE1 TH PSE DL1

4 0.7573542 0.7132368 5.4157 0.4833828 EXPDSN TH PSE DL1

4 0.7436757 0.6970713 6.6794 0.4968207 AGE1 TH PSE DL3

4 0.7397534 0.6924359 7.0417 0.5006074 EXPDSN TH PSE DL3

4 0.7206141 0.6698167 8.8098 0.5186890 TH PSE DL1 D12

4 0.7206141 0.6698167 8.8098 0.5186890 TH PSE DL1 DL3

4 0.7206141 0.6698167 8.8098 0.5186890 TH PSE DL2 DL3

4 0.6928186 0.6369674 11.3776 0.5438790 AGE1 TH PSE DL2
4 0.6925526 0.6366530 11.4021 0.5441144 AGE1 EXPDSN TH PSE
4 0.6876838 0.6308991 11.8519 0.5484058 EXPDSN TH PSE DL2
4 0.6853437 0.6281335 12.0681 0.5504565 AGE1 TH DL1 DL3
4 0.6853437 0.6281335 12.0681 0.5504565 AGE1 TH DL2 DL3
4 0.6853437 0.6281335 12.0681 0.5504565 AGE1 TH DL1 DL2
4 0.6833599 0.6257889 12.2514 . 0.5521890 AGE!1 EXPDSN PSE DL1
4 0.6820114 0.6241953 12.3759 0.5533636 EXPDSN TH DL1 DL2
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EXPDSN TH DL1 DL3
EXPDSN TH DL2 DL3
EXPDSN PSE DL1 DL2
EXPDSN PSE DL1 DL3
EXPDSN PSE D12 DL3
AGE1 EXPDSN PSE DL3
AGE] EXPDSN TH DL1
AGEIl PSE DL2 DL3
AGE!l PSE DL1 DL2
AGE1 PSE DL1 DL3
AGEl EXPDSN TH DL3
AGE1 EXPDSN PSE DL2
AGE1 EXPDSN DL1 DL2
AGE!1 EXPDSN DL1 DL3
AGE1 EXPDSN DL2 DL3
AGEl EXPDSN TH DL2

AGEl TH PSE DL1 DL2
AGEIl TH PSE DL1 DL3
AGEIl TH PSE DL2 DL3
EXPDSN TH PSE DL1 DL.2
EXPDSN TH PSE DL1 DL3
EXPDSN TH PSE DL2 DL3
AGE1 EXPDSN TH PSE DL1
AGE1 EXPDSN TH PSE DL3

AGE1 EXPDSN PSE DL1 DL2
AGE1 EXPDSN PSE DL1 DL3
AGE! EXPDSN PSE DL2 DL3
AGEI1 EXPDSN TH PSE DL2
AGE!1 EXPDSN TH DL2 DL3
AGE! EXPDSN TH DL1 DL3
AGE!1 EXPDSN TH DL1 DL2

7.0000 0.4788793 AGE1 EXPDSN TH PSE DL2 DL3
7.0000 0.4788793 AGE1 EXPDSN TH PSE DL1 DL3

4 0.6820114 0.6241953 12.3759 0.5533636
4 0.6820114 0.6241953 12.3759 0.5533636
4 0.6756293  0.6166528 12.9655 0.5588890
4 0.6756293  0.6166528 12.9655 0.5588890
4 0.6756293  0.6166528 12.9655 0.5588890
4 0.6712764 0.6115085 13.3676 0.5626266
4 0.6645175  0.6035207 13.9920 0.5683812
4 0.6625829 0.6012343 14.1708 0.5700177
4 0.6625829 0.6012343 14.1708 0.5700177
4 0.6625829 0.6012343 14.1708 0.5700177
4 0.6397344 0.5742316 16.2815 0.5890012
4 0.6240152 0.5556544 17.7337 0.6017137
4 0.5901095 0.5155840 20.8659 0.6282590
4 0.5901095 0.5155840 20.8659 0.6282590
4 0.5901095 0.5155840 20.8659 0.6282590
4 0.5700067 0.4918261 22.7230 0.6434809
5 0.7782900 0.7255019 5.4817 0.4729325

5 0.7782900 0.7255019 5.4817 0.4729325

5 0.7782900  0.7255019 5.4817 0.4729325

5 0.7746173  0.7209548 5.8210 0.4768335

5 0.7746173  0.7209548 5.8210 0.4768335

5 0.7746173  0.7209548 5.8210 0.4768335

5 0.7668402 0.7113259 6.5394 0.4849906

5 0.7478856  0.6878583 8.2905 0.5043190

5 0.6995658 0.6280338 12.7543 0.5505303
5 0.6995658 0.6280338 12.7543 0.5505303
5 0.6995658 0.6280338 12.7543 0.5505303
5 0.6968404 0.6246595 13.0060 0.5530217
5 0.6868211 0.6122547 13.9316 0.5620859
5 0.6868211 0.6122547 13.9316 0.5620859
5 0.6868211 0.6122547 13.9316 0.5620859
6 0.7835040 0.7185553

6 0.7835040 0.7185553

6 0.7835040 0.7185553

7.0000 0.4788793 AGE1 EXPDSN TH PSE DL1 DL2

. NOTE: Models of not full rank are not included
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Simple Statistics
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Variable Mean Std Dev Sum Minimum  Maximum
AGE 4.77778 1.64862 129.00000 1.00000 7.00000
TH 14.09259 2.81109 380.50000 9.80000 19.00000
CUMESAL 826563 696944 22317191 53125 2388042
PSE 7.44444 0.97402 201.00000 6.00000 9.00000
DPSE 1.25926 0.90267 34.00000 0 4.00000
DL1 0.44444 0.50637 12.00000 0 1.00000
DL2 0.29630- 0.46532 8.00000 0 1.00000
DL3 0.25926 0.44658 7.00000 0 1.00000
AGEl 10.92259 5.00700 294.90990 1.00000 18.52026
DSN 0.11894 0.03667 3.21150 0.03397 0.16838
EXPDSN 1.12703 0.04078 30.42982 1.03455 1.18338
Pearson's Correlation Coefficients : FDBIT Pavements
Age | Th C.ESAL | PSE | DSN | Agel | EXPDSN | DPSE

Ase 100 { 0.18 0.65 042 1061 0.99_ _ 0.42 0.35

Th - 1.00 0.51 0251038 1 0.17 0.25 0.51

C.ESAL - - 1.00 045 1069 1| 0.60 0.55 0.55

PSE - - - 1.00 1043 | 0.42 0.28 0.65

DSN - - - - 1.00 | 0.58 0.99 0.49

Agel - - - - - 100 0.43 0.68

EXPDSN - - - - - - 1.00 0.61

DPSE - - - - - - - 1
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