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Figure 1: A simple road junction.

1 Introduction

Traffic control is an important topic that has great impact on the life in
urban areas. Proper scheduling of traffic lights reduces congestion, speeds up
the movement, prevents accidents, and improves the air quality by avoiding
unnecessary use of engines.

Generally the performance analysis of complex traffic systems is done either
by monitoring traffic flows near road junctions, or with simulators. Basic Petri
Net formalisms [1] are rarely seen in this area. They are typically used for
proving freedom of deadlocks and other important properties of distributed
systems, which are not so interesting in traffic control. However, using the
Deterministic and Stochastic Petri Net formalism [2, 3], it is possible to obtain
performance indices either with analytic means or by simulation. To our
knowledge, this was first done in [5], where a network of intersections with
four-phase signal control was modelled with coloured DSPNs.

In this paper, we develop a formal DSPN model for a simple road junction
with two-phase signal control (one phase for vertical traffic and another for
horizontal traffic). The DSPN formalism has in the past decade shown to
be a very effective tool in analyzing the performance of parallel systems. We
show how the behaviour of a road junction can be intuitively described with
a DSPN model, and how the model can be extended to describe networks of
several interconnected traffic junctions.

In order to keep the crossroad model compact and readable, we use a coloured
DSPN, just like [5]. Our notation and terminology are those of SWN (Stochas-
tic Well-Formed Nets [4]), but our net does not belong to the class of SWNs
because it contains deterministic timed transitions, which the SWN model



doesn’t have.

We present a model of a generic four-road junction (Figure 1), with sensors for
arriving vehicles. The model and its parameters are based on the conditions in
Finland, where two-phased traffic control is common for small intersections.[6].

The parameters of our model must be set according to measured data (ve-
hicles’ arrival rates and time needed to pass the junction) or to the control
system specification (green phase length etc.) In Section 2.5 we will show how
junctions can be chained together.

This paper is organized as follows. In Section 2, a coloured DSPN model of a
single intersection is developed and extended to cover multiple intersections.
Simulation results from the model are represented in Section 3, and discussion
can be found in Section 4.

2 DSPN model of a single intersection

The traffic signal control mechanism is rather simple, based on the following
principles:

1. The signals are initially red for all directions.

2. When a car shows up, the signal is switched green for it to pass the
junction.

3. Even if vehicles keep coming, the mazimum green time will not be ex-
ceeded.

4. If there is a gap long enough in the queue of incoming vehicles, the signal
will be switched to red.

Figure 2 shows our coloured DSPN model of the intersection given in Figure 1.
A DSPN consists of places (round circles), which can contain tokens (tuples of
integers in our model), and transitions (rectangles or thin lines) that can fire,
consuming tokens from its input places (places from where an arrow-headed
arc leads to the transition) and putting tokens to its output places (places
where an arc leads to from the transition). A transition can only fire if the
proper combination of tokens is present in its input places, and in the case of
timed transitions, if enough time has elapsed. Our model also has inhibitor
arcs, arcs with a small circle attached to a transition. The presence of a token
in the inhibitor place can inhibit the firing of the transition. In coloured Petri
Nets, arc expressions specify what kind of tokens the transitions require as



Figure 2: A high-level Petri Net model for the junction of Figure 1.

Table 1: Variables used in the arc expressions of Figure 2.

Symbol | Description

r Road 0 north—south
1 east—west
r,d Road, direction | 0,0 north

0,1 south
1,0 east
1,1 west
a Action 0 drive straight ahead or turn right
1 turn left

input or produce as output. The arc variables used in Figure 2 are described
in Table 1.

The places P, P;1 and Py represent the state of the signal controller, and the
places P, and P,y represent the queues of arriving and departing vehicles.
The departing vehicles will become interesting when connecting intersections
together; when modelling a single junction, the place F,, can be omitted.

Bidirectional arcs (arcs with arrows on both ends) are shortcuts, meaning that
there are unidirectional arcs both ways with the same arc expression. This
means that the transition will only fire if there is a suitable token in the place,
but the firing of the transition will not change the token contents in the place.
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The double arcs attached to transitions 77 and T» in Figure 2 are our own
notation; actually these are macro transitions which will be explained in Sec-
tion 2.2. The transition 7 represents the departure of the first vehicle(s) when
the signal turns green, and 7% takes care of the following vehicles until the sig-
nal turns red. This is useful, because [6] shows that the first vehicle passes the
junction somewhat faster than the following ones. With more control places
and macro transitions, it would be possible to have different passing times for
vehicles in different queue positions.

There is a tradeoff between the size and the accuracy of the DSPN model. We
wanted to keep the model as simple as possible, and assumed that vehicles in
queue positions 2 and greater will pass the intersection using the same amount
of time. Also, we assumed that no vehicle can drive through the intersection
without slowing down or stopping, in which case it could pass it faster than
vehicles starting from the queue. In the model, there are no privileges for
public transportation. Finally, there are no pedestrians, bicyclists or trams in
our example city.

2.1 Overview of the model

Initially, all queues are empty, so there are no tokens in the places Py and
P,yt. The place P, contains the token (0), meaning that the current road is
0 (north-south). When there is a token in P, all signals are red. There are
two places associated with a green signal. Py; contains a token right after the
green signal has been switched but before any vehicle has passed the junction,
and Py will contain the token after the first vehicles have passed the junction
until the signal is switched red.!

Vehicles are represented by triples of integers (r,d,a), where r is the road
(north-south, east—west), d is the direction (north (east), south (west)), and
a is the action (proceed straight through or turn right, turn left).? Each of
these fields is coded with the integer numbers 0 and 1.

The arrival of a vehicle is modelled by the transition Ti,, whose firing causes a
token to appear in P;. Then, either Tyq or T, will become enabled and fire,
corresponding to switching the signal to green. The transition Ty, represents
switching the signal green on the same road where it was previously, and Tyq
represents switching it green on the other road. A token appears in Py and
enables the macro transition T, which removes the first token(s) from P, and

YThe yellow signal is not covered by our model; the firing times of the signal-changing
transitions are made so long that they include the yellow phases.

2The discrimination of vehicles driving straight through and vehicles turning right will
be made with a stochastic choice on the output side of our model.
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Figure 3: Turn combinations.

moves the control to place Pyo. Meanwhile Py, may have received more tokens,
which will be removed by the macro transition Tb, until Tinax fires, meaning
that the maximum green phase time has elapsed. The green phase will also
be terminated if there is a gap long enough in the queue (transition Tgap), or
after a minimum green time (by transition Ty if there are no vehicles in the

queue.?

2.2 The macro transitions 7) and 75

Our example intersection has two-phase signal control, meaning that there is
no separate signalling for left-turners. It is up to the motorists to avoid col-
lisions when taking left turns.* There are eight non-interfering combinations
of routes through the intersection, shown in Figure 3.

The leftmost column of combinations in Figure 3 can be omitted because of
symmetry, which leaves us with five different cases. These cases are handled
in our model by the five transitions of the subnet in Figure 4, representing
the transitions T} and T» of Figure 2. Priorities are handled by inhibitor arcs,
which prevent the transitions handling left turns from firing while there are
tokens representing oncoming traffic in the queue place Pin. For clarity, only
the places Py and Py of Figure 2 are included.

There is one intermediate place in the subnet, labelled Pyyy. This place will
collect tokens representing vehicles that are either proceeding straight through
or turning right. The two immediate transitions leading from this place to the
output place Poy; will choose which route was taken by the vehicle. Again,
we kept the model simple and assumed that right-turners need approximately
the same time for passing the junction as vehicles passing straight through.’

3 Actually Thmin can never fire in our model, because the green phase will only be activated
when there are vehicles in the queue. But most signalling control systems have the concept
of minimum green time.

4Four-phase signal control, with separate phases for left-turners, has been modelled in [5].

5In [5], the incoming vehicles were assigned their complete route through the intersection
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The place Pyym can contain four different tokens, numbered from 0 to 3: north
(east), south (west), east (south), and west (north). The words in parentheses
are the exit directions when a right turn is taken, and the non-parenthesed
words are the exits when passing straight through. Likewise, the place Pyut
can hold four kinds of tokens, numbered from 0 to 3: west, east, north, and
south. The arc expressions on the right side of the immediate transitions
perform the mapping. To keep the formulas short, the ternary 7: operator
familiar from the C programming language was used: a < b7c¢ : d evaluates
to ¢ if @ < b, and to d otherwise.

{r,1—d,a)

(r,0,0)+(r,1,0

(s) /{K{s—l—&;—s)

|

Figure 4: A subnet for the macro transitions 7} and T3 in Figure 2.

2.3 Invariants

An invariant is an expression that yields the same value in all markings (distri-
butions of tokens in the model’s places) reachable from the initial marking.[1]
Our model describing one intersection (Figure 2) has only one invariant, stat-
ing that in the three control places of the network, there is one token circulat-
ing at all times: # P, +#P;1 +#P; = 1, where e.g. #P, denotes the number
of tokens in the place F,. When combining several independently controlled
intersections, there will be one such invariant for each intersection.

network at their arrival time. That approach may be more intuitive.



Table 2: Transition parameters of the DSPN model of Figures 2 and 4.

Transition Time/s
T negative exponential 1.5
Tyq | deterministic, resampling 5.0
Tys | deterministic, resampling 5.0
Ty | deterministic, enabling memory 1.9
T, | deterministic, enabling memory 1.9
Tmin | deterministic, resampling 5.0
Tyap | deterministic, resampling 5.0
Tmax | deterministic, enabling memory 45.0

2.4 Transition parameters

The model presented in Figures 2 and 4 contains three types of transitions:
exponential, deterministic and immediate transitions. Incoming traffic is mod-
elled with a timed transition with negatively exponentially distributed firing
time. All other timed transitions have a deterministic (constant) firing time.
Non-deterministic choices are made by immediate transitions, whose relative
firing probabilities are determined by their weights. The parameters of the
transitions in Figures 2 and 4 are presented in Table 2.

The transition firing times presented in Table 2 are merely examples, and they
need not be equal for all instances of the high-level transitions. For example,
the average rate of incoming traffic, in the table 1.5 seconds between vehicles,
or 2,400 veh/h, is typically unevenly distributed. With that amount of traffic,
if there were as many left-turners as cars passing straight through, the queue
of left-turners would grow infinitely long.

Most deterministic transitions obey the resampling policy, meaning that when-
ever another transition fires, the clocks associated with these transitions will be
reset. The Thyayx transition, which takes care of the maximum green phase time,
is an exception: it must keep counting until the maximum time is reached.
Similarly, the two macro transitions 77 and T, obey the enabling memory
policy.® All transitions in the model use the single-server policy.

2.5 Connecting intersections

Each four-road intersection can have up to four neighbours. We consider a
system consisting of two four-road intersections, presented in Figure 5.

6The parameters of these macro transitions are distributed to the parameters of the
timed transitions in the subnets of Figure 4.
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Figure b: Two interconnected road junctions.

This system can be translated into a DSPN by translating each intersection
to a DSPN, and by connecting the output place of one DSPN to the input
place of the other DSPN, and vice versa. In this case, we create two DSPNs
like those shown in Figure 2.

Transition Ti, must be broken down to pieces, because the situation is not
symmetric any more. Some vehicles arrive from outside the system, but oth-
ers will come from other intersections’ output places. For the simplicity of
modelling, the vehicles stochastically choose their route in each intersection.
This does not notably change the statistical properties of the model, but makes
it homogenous: when intersections are connected, they will not need any in-
formation of each other. So, vehicles coming from other junctions must decide
whether they take a left turn or proceed straight through or turn right. This
is taken care of by the four immediate transitions in Figure 6.

In our example with two intersections, one of the input transitions in Figure 6
for each intersection will be connected to the other intersection’s output place.
That transition can be either deterministic or exponential, depending on the
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Figure 6: A subnet for the transitions T}y of Figure 2.

distance between the intersections, and its firing time must be set to the
time it takes to travel from one intersection to the other. The other three
transitions will be exponential. The proportion of the weights (in a sense firing
probabilities) associated with the immediate transitions in Figure 6 transitions
determines the proportion of vehicles turning left and vehicles driving stright
ahead or turning right.

The timed transitions with resampling policy should not resample when tran-
sitions of subnets describing other intersections fire. If this was not the case,
the arrival of a vehicle in any intersection would reset the queue gap counters
of all transitions, to name one unfortunate consequence.

The approach presented here makes the intersections independent of each
other. Synchronizing the signal control between intersections would make the
model somewhat more complicated, or it would require a centralized control
network.

3 Simulation

Deterministic and Stochastic Petri Nets where more than one deterministic
transition is enabled in a marking cannot be analyzed easily.[3] Until the
theory and the software tools have been developed to cope with such DSPNs,
simulation is the only way to obtain performance indices from such models.

Two software tools were considered for simulating the system, DSPNexpress
and its successor TimeNET (Timed Petri Net Evaluation Tool), developed at
Technische Universitit Berlin. Both are tools for low-level timed Petri Nets.
Had we known about POSES earlier, a'commercial high-level Petri Net sim-
ulator written by Gesellschaft fiir ProzeRautomation & Consulting mbH, we
could have chosen differently. We chose TimeNET over DSPNexpress, because
it is better supported and more widely available. We also experimented with
a self-developed DSPN simulator in Matlab.
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3.1 Creating the model

Because TimeNET is a low-level Petri Net tool, the high-level model had to
be unfolded. We wrote a Perl script that constructed the TimeNET input
file, because with its 14 places and 62 transitions the low-level network was
too complicated to be managed with TimeNET’s graphical editor. The script
made it also easier to create models of multiple intersections. The low-level
model for two intersections has 52 places and 154 transitions.

3.2 Results

As TimeNET’s support for transitions with resampling policy is somewhat lim-
ited, the simulation results obtained from it cannot be accurate. In TimeNET,
it is impossible to have a transition that is resampled only when certain other
transitions fire. As a result, the transition Tgap is resampled too frequently,
and gaps in the queues are not always detected.

Fortunately TimeNET’s lack of support for group weights for immediate tran-
sitions in models with continuous time is not a problem in our model, because
the input places of immediate transitions are mutually exclusive.

3.2.1 Single junction

The intersection of Figure 1 with the parameters in Tables 2 and 3 was simu-
lated for 33 years of simulated time. Since the model parameters are symmet-
ric, it is no surprise that also the results are. The queue length for left-turners
is remarkably high, comparing it to the traffic flow. Unfortunately we were
not able to obtain average waiting times from the simulator. Anyway, in real
life, one or two vehicles would take a left turn after the light has turned red,
and the queue would be shorter.

We ran several simulations on this junction, varying the amount of vehicles
driving straight through (or turning right) and vehicles turning left, keeping
the parameters symmetric. The result curves in Figure 7 and especially in
Figure 8 express the exponential behaviour familiar from [6].

3.2.2 Two junctions

We simulated the two-intersection system of Figure 5, with the parameters
listed in Tables 2 and 4, for 4.75 years of simulated time. The performance
measures obtained from the simulation are presented in Table 4. The system
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Table 3: Queue lengths for a single junction.

Direction Rate, veh/h | Queue length, veh
north 600 6.75
south 600 6.75
east 600 6.75
west 600 6.75
north, turning left 120 8.34
south, turning left 120 8.34
east, turning left 120 8.34
west, turning left 120 8.34
5 T T T T
straight —Q——-

05 ! | i |
60 80 100 120 140 160

Figure 7: Expected queue lengths of a single intersection with 500 veh/h
driving straight through and varying amount of left-turners. '
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Figure 8: Expected queue lengths of a single intersection with 120 veh/h
turning left and varying amount of vehicles driving straight through.

was fairly symmetrical; only the varying percentage of right-turners breaks
the symmetry.

4 Discussion

Analyzing the performance of traffic signal control may seem trivial at first,
but bringing all the factors of the real-life system to the simulation model is
all but trivial. Our model does not include pedestrians or bicyclists.

In our models, we assumed that the vehicles are indistinguishable of each
other, and thus did not need to maintain the queue position for individual
vehicles. This works well, as long as most vehicles are of the same type. A
truck or a bus accelerates slower than a small car and also occupies more
place. Our model assumes that all vehicles pass the junctions in equal time,
and that the roads have infinite capacity.”

The traffic is generated with timed transitions with exponentially distributed
firing times. For more accurate results, the rate of incoming vehicles should
be varied, to model rush hours and other events.

DSPNs are probably not the most flexible tool for modelling very sophisticated
traffic control systems. Special-purpose traffic simulators take care of many

"If all cars were almost the same size, the capacity could be easily limited with a
complement-place construction on the queue places.
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Table 4: Queue lengths for two junctions.

Junction Direction veh/h | Queue, veh
1 north, 80% turning right 540 4.57
1 east, 70% turning right 540 4.55
1 west, 80% turning right 540 4.55
1 north, turning left 60 0.82
1 east, turning left 60 0.92
1 west, turning left 60 0.92
2 south, 45% turning right 540 4.61
2 east, 40% turning right 540 4.65
2 west, 30% turning right 540 4.65
2 south, turning left 60 1.06
2 east, turning left 60 0.95
2 west, turning left 60 0.95

things that would be very difficult to model with a DSPN, such as vehicle
deceleration and acceleration, driving in a queue or priorities for public trans-
portation. Also, fuzzy logic based traffic controllers are becoming increasingly
more common, and they would be quite difficult if not impossible to model
with Petri Nets.

A Petri Net based approach has the advantage over simulators [5] that the
model is mathematically defined, which makes it possible to verify that the
control logic enforces all required mutual exclusions, that capacities are not
exceeded and that gridlock will not occur as a result of the logic. Simulators
can only find errors; they cannot verify the absence of them.
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