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Chapter 1: INTRODUCTION

Problem Statement

For several decades, transportation planners have estimated and created model systems to
predict travel demand on urban networks, primarily to identify deficiencies in an existing
highway network and to evaluate major infrastructure investments, such as a new transit rail line
or a substantial increase in highway capacity. The sensitivity and accuracy of peak hour volume
and speed predictions produced by these models are generally sufficient for evaluating such
investments.

However, legislation such as the Intermodal Surface Transportation Efficiency Act
(ISTEA) of 1991, in combination with increasing traffic congestion and decreasing urban space
for expanding highways, has resulted in transportation planners investigating other methods of
increasing supply or reducing demand of current highways. These methods include
transportation system management (TSM) and transportation control measures (TCM) such as
improved public transit, trip reduction ordinances, traffic flow improvements, and employer-
based programs, all aimed at making the most efficient use of existing transportation facilities

[1].

Although these new strategies tend to have small effects on the network and travel
patterns of a transportation system, potentially high benefit to cost ratios makes them desirable
alternatives. These small effects are difficult to model in existing travel models, often resulting
in predicted outputs that are either unrealistic or unfounded due to the insensitivity of these
models to small impacts. Therefore, methods to increase the accuracy and sensitivity of
quantitative predictions by travel demand prediction models have become increasingly important
for evaluating travel time savings, air quality improvements, and safety in the face of such
strategies.

The Clean Air Act Amendments (CAAA) of 1990 recognized vehicle emissions as one of
the major factors contributing to air pollution. CAAA requirements created a need to increase
the degree of interaction between travel demand models and air quality models which predict
vehicular emissions and pollution dispersion [2]. In order to meet data requirements for air
quality analysis, travel demand models need to produce accurate predictions of speeds by hour of
the day and by vehicle type, due to the variation in emission levels produced by different types of
vehicles and vehicle speeds. Since peak period and peak hour congestion levels help explain air
quality problems, prediction of accurate volumes and speeds during these times is essential.

Transportation planners have created a number of enhancements to meet the required
output for air quality analysis. These include revisions to the traffic assignment process to
provide link volumes by vehicle operating mode, improvements in volume-speed functions, and
assignment post-processors providing more accurate speed and link volume estimates. This
document describes the estimation of a post-processor aimed at enhancing existing models by
predicting more accurate peak hour volumes on highway links, and thus, more accurate peak
hour speeds.



Background

Transportation planning is the process of making decisions regarding whether or not
transportation alternatives such as new highways or transit routes, and less substantial
alternatives such as those previously discussed, should be implemented. Travel demand models
produce the necessary output to analyze the potential benefits and impacts on travelers, society,
and the environment that would result from these alternatives. The traditional method of
estimating a model for analysis of transportation alternatives and air quality consists of four
major steps. These steps are trip generation, trip distribution, mode choice, and trip assignment,
and are commonly referred to as the Four-Step Process. The Connecticut Department of
Transportation (ConnDOT) Statewide Person Trip Forecasting Model (PERFORM), depicted in
Figure 1, uses this traditional four-step modeling procedure with additional intermediate steps as
indicated.

Trip Generation

v

Trip Distribution

v

Level of Service

!

Mode Choice

v

Occupancy

Trip Assignment

Figure 1. Four-step Process as Implemented in PERFORM [3]

PERFORM is a network-based computer model using the travel demand modeling
software package TRANPLAN [4]. The system models highway and transit networks, allowing
for proposed changes in highway or transit service to be modeled. PERFORM models five trip
purposes: home-based work, home-based non-work, non-home based, truck, and through-trips,
and four travel modes: auto drive alone, auto shared ride, bus, and rail. The generated output



(trips) from PERFORM is for an average weekday. The four major steps and two intermediate
steps to produce this output are reviewed below.

Trip generation predicts the number of person trips produced from and attracted to a
traffic analysis zone (TAZ) on an average daily basis by trip purpose. The number of person
trips are determined by estimating a relationship between socioeconomic and land use data and
the number of trips produced and attracted for a base year [5]. These relationships are then used
with land use projections to predict future year estimates of trip productions and attractions.

Trip distribution determines how the trip productions and attractions predicted in trip
generation are distributed among the TAZ's. The process is based on the Gravity Model, where
the number of trips between two areas (zones) is directly related to the activities in those areas
and inversely related to the distance between those areas. The amount of activity in an area is
the number of trip productions and attractions predicted in trip generation, while the distance is
represented by the travel time between the two areas. The output is a series of trip matrices,
depicting the number of average daily person trips produced and attracted between every pair of
TAZ's, by trip purpose. \

Level of service determination is an intermediate step in PERFORM, where service
characteristics of the competing transportation modes for trip interchanges are input. The most
common service characteristics of the modes used are travel time and cost. The mode choice
step then allocates the interzonal person trips computed in the trip distribution step to each
available travel mode. The output is average daily person trip matrices by purpose, broken down
by travel mode.

The occupancy module is another intermediate step in PERFORM, in which the shared
ride person trips computed in the mode choice step are converted to shared ride vehicle trips by
trip purpose. The shared ride vehicle trips are then added to the single occupant vehicle (person)
trips for assignment to the highway network.

Trip assignment in PERFORM employs an equilibrium algorithm producing average
daily link volumes. Vehicle trips are iteratively assigned to the network to balance the travel for
alternate paths between an origin and destination. Equilibrium is achieved when travel times for
all used paths between an origin and destination are equal and no unused paths have travel times
less than the used paths.

The products and uses of PERFORM are shown below:

- Highway assignments are used to design and evaluate alternative highway proposals.

- Vehicle miles of travel (VMT), the product of traffic volumes and travel distances, is
the basic input to highway source emissions models.

- Trip tables are used to examine town-to-town movements and mass transit and
carpooling potential.

- Level of Service is used to evaluate the quality of service on highway sections.

- Transit forecasts are used to evaluate transit systems and new transit alternatives.



As mentioned earlier, policy changes, increasing congestion and lack of urban space are
requiring transportation improvement alternatives other than expansion of highways or major
transit investments to be examined. Transportation planners are in need of more accurate peak
period and peak hour estimates, since these are times when congestion and air quality problems
are most prevalent. A traditional method (used by ConnDOT) for predicting peak hour link
volumes is to first forecast link volumes on a daily basis and then apply constant, or “K”, factors.
While this procedure may provide representative average peak hour traffic volumes on a network
basis, the accuracy at the link level is highly questionable. This view is supported by research by
Loudon ez al. [6], where the peak hour volume as a percentage of the daily volume was shown to
vary widely throughout a network. This is because the likelihood of a particular trip being made
during the peak hour is not identical for all trips in an area, or even for all trips on the same link,
but varies according to characteristics of the trip and the individual making the trip. In general,
peak period models have been developed by creating a peak period trip table from the percentage
of each trip type that falls within the peak period. However, Loudon et al. note that a factor is
still applied to the peak period to produce the peak hour volume, with no effort made to relate
peaking characteristics to the anticipated level of congestion for the assignment.

Gaining an understanding of how travel behavior patterns in a congested transportation
system change when capacity or congestion increases is important when creating methods to
produce better peak period and peak hour forecasts [7]. A common response of travelers to
increasing congestion (especially as workers are being allowed more flex time) is to depart for
work earlier or later than normally desired (with a similar response for the trip home), to avoid
the peak congestion. This results in a reduction in the proportion of peak hour to peak period
volume, or a widening and flattening of the peak profile, a phenomenon known as “peak
spreading.” Hounsell [8] defined this form of peak spreading as “active” peak spreading, due to
travelers retiming their journeys to avoid unacceptable levels of congestion during the peak.
This in turn causes traffic volumes to grow more slowly in peak periods than adjacent off-peak
periods. Hounsell also defines another form of peak spreading called “passive” peak spreading.
This spreading can happen when increased congestion causes unserved trips in the most intense
part of the peak period to shift into later time periods. Most research on peak spreading has not
distinguished between active and passive peak spreading, but on capturing the overall effects of
the combination.

The phenomenon of peak spreading is of great interest for several reasons. First,
increasing capacity may not alleviate the low speeds associated with congestion. The increased
capacity can entice travelers who had previously forgone their trips or begun their trips earlier or
later than desired to shift their travel back into the heart of the peak period, causing the peak hour
volume to rise back up to congestion levels. Second, the shift from funding of new highway
construction to upgrading, rehabilitating, and incremental improvements to the existing
infrastructure is requiring more accurate modeling of the gains that can be expected from these
less substantial improvements. Third, by not capturing peak spreading, there may be an over-
prediction of traffic volumes and an under-prediction of speeds for the peak hour assignment.
These outputs would then cause higher estimates of pollutant emission levels.

To improve on the traditional method of predicting peak hour volumes, the effect of
congestion on travel behavior in the peak period needs to be incorporated. A method is needed



to account for individuals adjusting their start times to avoid the most congested hour of the peak
period and for capturing the shifting of trips into later periods caused by insufficient capacity. A
post-processor method can be used to reflect the capacity-restraining impact the highway
network has on traffic volumes and the behavior of trip makers in a congested system. Relating
the proportion of peak hour to peak period volume to a congestion measure is appropriate, with
the idea that as this congestion measure increases, the proportion decreases as a result of
individual trip time changes and trips being shifted into later time periods. Since other factors
may influence a trip maker's decision whether or not to adjust his or her travel time, other
characteristics of the trips using the links need to be incorporated, accounting for the differences
between links in the likelihood of making a trip in the peak hour. The peak hour volumes
predicted will then be more consistent with the capacity of individual links and the type of trips
using the links, and allow more accurate evaluation of capacity increases and prediction of
emission levels.

Objective and Scope

This research uses the Loudon ef al. [6] peak spreading methodology to estimate models
for predicting peak hour to peak period volume proportions. This peak spreading model would
best be applied in the form of a post-processor following a peak period trip assignment, but it
could also be applied to a factored daily assignment.

The peak spreading model uses a volume to capacity ratio (v/c) computed by dividing the
peak period link volumes output from trip assignment by the peak period link capacity to predict
the proportion of the peak period volume that occurs in the highest hour. The relationship
between the proportion and v/c ratio is shown below:

Peak Hour Volume _ ( Peak Period Volume ] 1)

Peak Period Volume ° \ Peak Period Capacity

The effects of increasing congestion were modeled with the v/c ratio in a decreasing non-linear
function, resulting in a reduction in the proportion as congestion increases.

These models were estimated using data from ten interstate freeway locations in
Connecticut where congestion was prevalent. Investigation of the ten sites clearly showed the
peak spreading phenomenon to be present. Estimated coefficients varied from site to site even
when controlling for congestion level and travel direction, indicating that influences other than
congestion are affecting the spreading of the peak. Results from models with additional
variables showed site attribute, site location, and trip length distribution variables to be
significant in explaining differences in the degree of spreading between sites.

Chapter 2 of this thesis contains a review of related research on capturing the peak
spreading phenomenon. Chapter 3 presents the general methodology used to estimate our
preliminary peak spreading models, along with discussion of the results from these estimations.
Chapter 4 discusses the creation of trip variables and presents the results of estimations with
these variables. Chapter 5 discusses the creation of site attribute and location variables and
presents the results of estimations with these variables. Chapter 6 discusses creation of area type



and regional variables and presents the results of estimations with these variables. Chapter 6 also
offers more discussion on a particular model that is viewed to be the most promising and how
that model could be applied following a peak period assignment. Chapter 7 offers conclusions
and suggestions for future research.



Chapter 2: RELATED RESEARCH

Techniques to Account for Over-assignment and Peak Spreading

With the passing of Federal legislature requiring more sensitive and accurate travel
demand modeling has come an increased need to close the gap between “state of the practice”
and “state of the art”. How fast that gap is closed depends on the availability of personnel,
technical “know-how”, and financial resources, which restrict possibilities for improving current
models used by Metropolitan Planning Organizations (MPO) and State agencies. Techniques
aimed at improving the accuracy of model outputs are continually being researched to allow
improvements to the state of the practice, while not making demands that can't be met by these
planning agencies. Such techniques include methods to capture the effects of congestion on
travel behavior. When demand levels rise and cause unacceptable levels of service, drivers may
choose not to travel, change the time they travel, or change mode. AL-Azzawi describes three
methods that may be used to simulate drivers' decisions in a congested network: shadow
networks, matrix capping, and elastic assignment [9].

According to AL-Azzawi, a shadow network is a duplicate of the modeled real highway
network, connected to the real network at origin and destination zones only, essentially creating
an alternative path for trips between an origin and destination. A simple example of a shadow
network is depicted in Figure 2, with the shadow links indicated with dashed lines. The number
of links in the network is approximately doubled. All shadow links have infinite capacities and
fixed speeds with lengths equal to those in the real network. As traffic is assigned to the real
network and travel time between an origin and destination increases beyond the fixed travel time
of the corresponding path on the shadow network, the shadow network becomes the more
attractive alternative. When this occurs, those trips that have not yet been assigned between that
origin and destination are diverted to the shadow network, representing trips that have been
suppressed or canceled due to unacceptable levels of congestion.

Figure 2. Example of Real Modeled Network With Shadow Network



The shadow network contains more links than is necessary to connect all origin-
destination pairs. A skeletal representation of the alternative network can be used, but care must
be taken in not using too dense a skeletal network with unnecessary links, or too sparse a
network that cannot properly reflect the real network travel cost associated with traveling
between an origin and destination. Link lengths in the skeletal network must be increased to
reflect the trip portion along any omitted coding of the real network. The main problem with the
shadow network is that when the "suppression" or threshold speed on the real network is
reached, all further growth in demand diverts to the shadow network. AL-Azzawi admits there is
doubt to the realism of this assumption. Itend to agree, as the suppression speed is not likely to
be the same for all individual trip makers and all types of trips. Shadow networks will tend to
suppress short trips, as congestion on a section of a road will have greater effects on average
speeds of shorter trips.

Simulation of peak spreading is one of the possible applications of the shadow network
technique, where the true costs of changing trip departure time from peak to off-peak periods are
more accurately represented. Rather than fixing speeds on the shadow network, an off-peak
demand matrix can be assigned to the shadow network producing off-peak travel conditions
(volumes, speeds, and travel times). The ‘cost’ of changing a trip from peak to off-peak periods
is then represented by applying a penalty to the connectors of the real network. The amount of
peak spreading is measured by the number of trips being diverted to the shadow network as the
peak demand matrix is assigned.

Another method of modeling peak spreading described by AL-Azzawi is called matrix
capping. While the shadow network method is applied during assignment, the matrix capping
method is performed afterward. Matrix capping constrains traffic to match network capacity by
retaining only those trips that can be made on the network in the time period being modeled.
This technique can be viewed as a way to capture the “passive” spreading that occurs in a
congested network. The technique first identifies links in the network where the demand
exceeds capacity. Select link analysis is used to determine the origin-destination matrix of trips
loading these links. The identified trips on overloaded links are then reduced proportionally to
reduce the demand matrix to near supply and the revised matrix is then reassigned. These steps
are repeated until all links have volumes that are less than or equal to their capacity, or some
acceptable level of network overloading is met. In a multi-stage transportation model, the trips
not served or "lost" in the modeled period would be reallocated by the ass1gnment modal split
and/or distribution models.

This process has an advantage over the shadow network because there is no need to
increase network representation or to specify speed diversion criteria. Unlike the shadow
network, the capping technique does not discriminate between short and long distance trips. The
main disadvantage is that depending on the amount of overloaded links and size of the network,
the whole process can take a considerable amount of computing time.

The third method of modeling peak spreading described by AL-Azzawi is elastic
assignment, which considers that demand for travel for any origin-destination pair is not fixed,



but rather a decreasing function of the cost of making that trip. The function is as follows:
-bCy
@

where T;;= constrained demand for travel between zones 7 and j,
T;™ = unconstrained demand for travel between zones 7 and j,

T =7 ¢

ij i —bC}; —BCY
e V+e TV

C’; = minimum cost of travel from zones 7 to j,
C°; = acceptable fixed cost of travel from zones i to j, and
b = an elasticity parameter.

Each origin-destination pair is connected with a pseudo-link allowing for diversion of trips with
increasing congestion. At the minimum cost of travel, 7} trips are assigned to the real network

and T,™ T, trips are assigned to the pseudo-link from 7 to . The equations can be solved as a

fixed demand equilibrium assignment problem. As the highway network becomes more
congested, and the cost C; increases, more trips are diverted to the pseudo links, representing

suppressed trips, mode changes, or changes in departure times to avoid the congestion. The
number of links in an N zone network is increased by N(N-1). This method has the advantage of
allowing suppression functions to be defined on a zone to zone basis. The main problem with
elastic assignment is the choice of the demand function. A logit form (shown above), has a
tendency to suppress long trips, while the power function formulation shown in Equation (3)
tends to suppress short trips. The parameters a and b in the functions determine the overall level
of suppression. The greater a and b are, the greater the level of suppression.

c:Y”
I, =T | =& 3
y i [Cy]

Like the shadow network, the elastic assignment could be used to simulate peak spreading as a
result of unacceptable levels of congestion.

The three techniques by AL-Azzawi that account for over-assignment and peak spreading
are intended to aid transportation planners in traffic modeling studies. The shadow network and
elastic assignment techniques allow suppression of trips, based on the concept that increasing
costs to the trip maker will reduce the number of trips being made on the highway network. The
matrix capping approach accounts for overestimation by iteratively adjusting the demand matrix
to near supply level, retaining only those movements that could be made during the modeled
period on the network. While these techniques seem to do a good job of just that, they do not
capture any of the factors other than congestion that cause trip makers to change their time of
travel or suppress their trip. Characteristics of the site, trip, or trip maker are not used in
determining the extent of peak spreading on a link or differences between links. For example, a
work trip may not be as easily adjusted and certainly not suppressed, as a non-work trip might
be. Therefore, the type of trips on a link may determine at what level of congestion (cost) trip
makers adjust their time of travel. The following research aims at identifying and capturing
additional factors that influence the degree of spreading that occurs.



Peak Spreading Models

Research by Allen presents a methodology for forecasting future flattening or shifting of
the peak hour on a link-specific basis as congestion increases [10]. The technique uses a
modified Poisson distribution to describe the spread of four-hour volumes (6-10 AM) across
each 15-minute period within the four hours. The data used in the study came from Interstate 80
in northern New Jersey, and includes four-hour volumes by 15-minute periods and a
comprehensive ramp survey providing information about trip origin, destination, purpose,
vehicle occupancy, and other roadways used. The technique consists of tabulating and graphing
the 15-minute traffic counts for each link in the corridor as a proportion of the total four-hour
volume. The modified Poisson curve was then hand-fit to each of the graphs by adjusting the
Poisson coefficients until the best fit was determined. These curves are then used as the
observed data, to be fitted to one Poisson model for all links. A calibration file is built
containing the Poisson coefficients and all available independent variables for each link. These
variables were then used to estimate the Poisson coefficients using regression analysis. The
independent variables used to estimate the Poisson coefficients included a speed difference
variable equal to the free-flow minus congested speed, a delay variable, a dummy variable
representing the link location, and a volume variable. Allen admits the research effort is an
awkward attempt to quantify and forecast peaking and the results may be difficult to generalize
for use elsewhere. However, his technique was able to identify and use variables other than a
single congestion measure. This is an important part of estimating a peak spreading model that
is transferable to all links.

Research involving the “peak-spreading” phenomenon under congested conditions has
also included the development of a post mode choice procedure. Allen ef al., using an O-D
survey and highway networks with peak and off-peak speeds, estimated models by trip purpose
that predict the flattening of the AM peak hour as congestion and trip length increase [11]. The
method estimates peak hour vehicle trips by first estimating the share of the peak hour travel
occurring in the three hour peak period and then applying this share to the estimated peak period
trips.

A file was assembled for the calibration of the peak spreading model containing auto trips
by purpose. Only those trips with valid production and attraction zones, valid start and end
times, and were in progress between 6:30 and 9:30 AM, were kept. Network peak and off-peak

‘travel times and distances were attached to each record. For each trip record, the vehicle hours
of travel (VHT) spent between 6:30 and 9:30 AM and between 7:30 and 8:30 AM were
calculated. The ratio of peak hour VHT to peak period VHT was used as the dependent variable
in estimation. The independent variables used in the model are the trip distance and a measure of
congestion, defined as the difference in minutes between the AM peak one-hour travel time and
the off-peak travel time. No a priori assumptions were made about the model form, and initial
data investigation found a great deal of scatter. The trip distance and congested time difference
data were then grouped into ranges to accommodate the variation in data. The final model
structure was a series of stratified curves.

The main findings from this research were that trip purpose and trip distance, in addition
to a congestion measure, are important variables for predicting the share of peak hour travel
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within a peak period. One of the good things about this model is that it incorporates a zone-to-
zone congestion measure. This is a good travel time measure for determining if an individual
will adjust his or her travel time in order to avoid unacceptable levels of congestion because it
considers the entire trip.

Another congestion measure that can be used for capturing travel behavior of an
individual when faced with unacceptable levels of congestion is the v/c ratio on individual links.
The following research utilized this congestion measure in predicting the degree of peak
spreading that occurs on a link.

Loudon ef al. conducted research for the Arizona Department of Transportation (ADOT)
on the phenomenon of peak spreading on congested roadways [6]. The research used data from
forty-nine freeway and arterial corridors in Arizona, Texas, and California. The corridors were
chosen because they had historical hourly count information covering at least a five-year period.
Examination of the data showed the ratio of maximum one-hour volume counts to daily volume
counts across sites varied widely from the most often assumed value of 0.10, suggesting the need
for more accurate modeling of peak hour volumes. The research was designed to result in
recommended changes to the UTPS-based forecasting system used by the Maricopa Association
of Governments (MAG) Transportation Planning Office, allowing future year forecasting to
reflect the peak spreading phenomenon. '

The first step in producing peak hour assignments was dividing total daily travel by trip
purpose into three periods: 6-9 AM, 3-6 PM, and off-peak (all other hours). These periods were
chosen based on the feeling that there was some degree of stability within each period, that is,
travelers would not tend to shift out of these peak periods to avoid congestion. With no trips
shifting out of these peak periods, the percentage of travel predicted for each peak period should
remain constant with the level of congestion. This hypothesis was tested using least squares
regression between the ratio of the three-hour peak period volume to twenty-four-hour volume
(dependent variable) and the three-hour peak period v/c ratio (independent variable). The
hypothesis is rejected if the coefficient estimated for the independent variable is significant,
indicating a relationship between the independent and dependent variables. Results from thirty-
six regressions showed some tendency for peak spreading to affect the three-hour peak period as
twenty-eight of the estimated coefficients had the correct sign (negative), but most were not
significantly different from zero at the 95 percent confidence level.

Using the historical count data, a functional relationship was estimated between two
quantities; the ratio of the peak hour volume to the peak period volume, and the overall v/c ratio
during the peak period. Using ordinary least-squares regression, the parameter estimates were
obtained. Analysis of the signs and significance of the coefficients on the v/c variable clearly
demonstrated the presence of peak-spreading, as eighteen of the nineteen corridors in the
analysis had a negative v/c coefficient (indicating a decrease in the proportion of the peak hour to
peak period volume as the v/c increases), and more than half had slopes that were significantly
different from zero with 95 percent confidence.

The average value of the slope for each facility type (freeway and arterial) was estimated
by aggregating the data from all the individual corridors. Only observations with a v/c ratio of
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0.50 and above were used, since the peak spreading phenomenon occurs only at higher
congestion levels. The freeway sites were also broken down into two groupings, one containing
freeways that have two or three lanes, and another with freeways having four or five lanes.
Regression results using these two groupings produced slope values significantly different from
zero, and a trend of decreasing slope (more negative) with an increase in the number of lanes.
Aggregate analysis on the arterial corridor sites resulted in an estimated slope coefficient that
was not significant at even a 90 percent confidence level. This is attributed to the lack of high
v/c ratios in these corridors. Because of this, the results of a single arterial site having a
significant slope coefficient were chosen to represent arterial corridors in the MAG models.

In order to reflect current conditions in Phoenix more closely, the model was then
recalibrated for different facility type and area type combinations in the Phoenix network using
current observed data. The observed data allowed computation of an average peaking factor (or
the dependent variable in the estimations) and an average v/c ratio for each area type-facility
type combination. These values were used with the slope coefficients from the previous
estimations to calibrate the constant to a specific link type.

A test of the peak-spreading procedures was conducted by comparing the new
assignments resulting from use of a three-hour peak period and the peak spreading model with
observed data on the links where volume counts and speeds were available. A significant
increase in the accuracy of peak hour link volumes and speeds was found when the new
assignments were compared with results previously obtained from MAG for the Phoenix area
using a twenty-four hour assignment with a constant peak hour factor.

Although the results of the model estimations showed a clear pattern of peak spreading as
congestion arises, and implementation of the modeling procedures demonstrated a great
improvement in accuracy, there are limitations to this procedure. First, two adjacent links having
different v/c ratios in the peak period could result in a different amount of peak spreading
predicted for each, and thus, potentially, inconsistent peak hour volumes. The impact of this is
likely to be small, since the authors point out that calibration of the peak spreading model is
performed on a facility type rather than a link-specific basis, thereby averaging the effects over a
facility.

Second, the peak-spreading model is applied at the link level, while the peak-spreading
on a link could be attributed to congestion at another location in the network, or because the link
is in a corridor where the level of congestion is perceived to be high. To the extent that links in a
corridor have capacities that are generally proportional to the peak period volume flow on the
link and are fairly homogenous, the results of this limitation will not be serious.

Third, the procedure recommended does not reflect spreading of the peak outside of a
three-hour period. Because the procedure depends on the assumption of a stable peak period, a
larger peak period may be needed in other locations.

Several factors were examined in determining the direction and method of the research

presented in this thesis, including the availability of data, results from previous research, and the
results that are needed to accomplish our objective. These factors led to the decision to extend
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the Loudon ef al. procedure just described by incorporating site variables likely to influence peak
spreading at a given site, thus making the model transferable statewide. A four-hour peak period
(3-7 PM) is used instead of the commonly used two to three hour peak period to allow for
stability within the peak period. This peak period will also allow the peak spreading model to be
applicable to peak period link forecasts, which could be estimated using a peak period model
previously estimated for ConnDOT's statewide model [12]. Since trip purpose has been shown
in previous research to be important in determining the degree of peak spreading that occurs, and
air quality impacts are associated with higher volumes, the PM peak was chosen, as it generally
contains a more diverse set of trip purposes and higher volumes than the AM peak.
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Chapter 3: INDIVIDUAL SITE MODELS

Methodology

Because this study defined a four-hour peak period, the basic functional form for the
peak-spreading model is:

P=1+ae” 4
where
P = the ratio of the peak-hour volume to the four-hour peak-period volume,
X = the volume/capacity ratio for the four-hour period, and
a,b = parameters to be estimated.

The functional form has several advantageous characteristics:

1. The lowest value it can have is 0.25, representing a totally flat peak period.

2. For large values of X, P approaches 0.25.

3. Valid values of P can exist for values of X greater than 1.0. This precludes any
discontinuities in applying the function.

Figure 3, a plot of the function, shows how the parameters a and b adjust the shape of the curve.
The parameter a adjusts the curve by shifting the intercept up or down (indicating how the peak
period traffic is distributed at a low congestion level), while the parameter b adjusts the

convexity of the curve (indicating how sensitive the peak spreading is to increasing congestion).

Function Transformation

By transforming the equation, ordinary least squares regression can be used to estimate
the model parameters. The transformation consists of moving the constant to the dependent
variable side of the equation and then taking the natural log of both sides of the equation,
resulting in Equation (5), which resembles the linear regression model formulation.

In(P-=lna+dbX €)
Equation (6) simplifies further, where C =Ina

In(P-1)=C+bX ©6)
ATR Data

Automatic traffic recorder (ATR) station data at sixteen locations providing hourly
volume counts over a five-year period were obtained from ConnDOT. The raw ATR data in
ASCII file format contains functional classification, station number, town number, month, day
and year, day of the week and directional code, and traffic volumes by hour. The format of the
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ASCII files is shown in Table 1. Ten sites were selected for analysis, all with extensive
congestion along the corridors during the peak period. The selected sites are located
along freeways I-95, I-91, and 1-84 and are shown in Figure 4. Four of the sites are
located near Hartford, four are in the southwest region of Connecticut, and two are in the
southeast region of Connecticut.

The ASCII site data were imported into the statistical software package SPSS for
processing and analysis. For each site and day, the PM peak period volume (PPV) was
calculated by totaling the hourly volumes from 3:00 to 7:00 PM. The ratio (P) of the
peak hour volume (PHV), or the highest of the four-hour volumes, to the four-hour peak
period volume (PPV) was calculated and used as the dependent variable in the regression

analysis.

Other variables that were created include the capacity of the roadway at each site
for the peak period and the volume to capacity ratio (X) during the four-hour period.
Capacity was based on the number of lanes and the geometric characteristics at each site,
with a reduction imposed for heavy vehicle percentages obtained from Highway
Performance Monitoring System (HPMS) station data.

The number of lanes at each site was counted using a ConnDOT photolog station,
a laser video disc system containing images of the entire 6300 centerline kilometers
(3,900 miles) of the Connecticut state-maintained highway network. Two photolog vans
gather photographic images of the roadway and its immediate surroundings at 16-meter
(0.01-mile) intervals. Highway geometric data, location and direction are also
simultaneously collected and recorded.

Data Set Exploration

Frequencies and summary statistics were run on the variables discussed above and
are shown in Table 2. The variable PHV contains the volume of the highest hour within
the peak period. The values for the dependent variable P, the ratio of PHV over PPV,
range from a minimum of 0.25 to a maximum of 0.43. The value of 0.25 is the lowest
value the proportion can have, and represents the PPV being equally distributed among
the four hours (or a totally flat peak period). The extreme case here where 43 percent of
the PPV is in the peak hour indicates a rather high peaking of traffic volumes. The values
for the main independent variable X range from 0.50 to 0.94. The value of 0.50 was used
as the criterion for selecting the study sites, as the peak spreading phenomenon is most
valid for congested conditions. All observations with a v/c ratio above 0.50 were kept.
The maximum value of 0.94 suggests extreme congestion over the four-hour period. The
mean is the average value of all cases and the standard deviation is a measure of how
widely values are dispersed from the mean. Overall, the summary statistics show a wide
range of values for each variable.
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Table 1. ASCII File Format of ATR Station Data

Column Field Length | Alpha/Numeric Description

1 1 N Record Type
2-3 2 N FIPS State Code
4-5 2 N Functional Classification

16-11 6 A Station Identification
12 1 N Direction of Travel
13 1 N Lane of Travel
14-15 2 N Year of Data
16-17 2 N Month of Data
18-19 2 N Day of Data
20 1 N Day of Week
21-25 5 N Traffic Volume Count, 00:01-01:00
26-30 5 N Traffic Volume Count, 01:01-02:00
31-35 5 N Traffic Volume Count, 02:01-03:00
36-40 5 N Traffic Volume Count, 03:01-04:00
41-45 5 N Traffic Volume Count, 04:01-05:00
46-50 5 N Traffic Volume Count, 05:01-06:00
51-55 5 N Traffic Volume Count, 06:01-07:00
56-60 5 N Traffic Volume Count, 07:01-08:00
61-65 5 N Traffic Volume Count, 08:01-09:00
66-70 5 N Traffic Volume Count, 09:01-10:00
71-75 5 N Traffic Volume Count, 10:01-11:00
76-80 5 N Traffic Volume Count, 11:01-12:00
81-85 5 N Traffic Volume Count, 12:01-13:00
86-90 5 N Traffic Volume Count, 13:01-14:00
91-95 5 N Traffic Volume Count, 14:01-15:00
96-100 5 N Traffic Volume Count, 15:01-16:00
101-105 5 N Traffic Volume Count, 16:01-17:00
106-110 5 N Traffic Volume Count, 17:01-18:00
111-115 5 N Traffic Volume Count, 18:01-19:00
116-120 5 N Traffic Volume Count, 19:01-20:00
121-125 5 N Traffic Volume Count, 20:01-21:00
126-130 5 N Traffic Volume Count, 21:01-22:00
131-135 5 N Traffic Volume Count, 22:01-23:00
136-140 ) N Traffic Volume Count, 23:01-24:00
141 1 N Footnotes
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Table 2. Summary Statistics of Major Variables

Number of { Minimum | Maximum Mean Standard

Cases Deviation

PHYV 14,894 2,177 7,070 4169.01 1150.49
PPV 14,894 8,531 24,796 14650.32 3903.68
P 14,894 0.25 0.43 0.2842 0.01519
X 14,894 0.50 0.94 0.6336 0.08885

Graphing P versus X for each travel direction at each site demonstrated the
difference in the peak spreading phenomenon between travel directions. For example,
Figure 5 shows the relationship between P and X in the commute direction (or the
direction that typically has heavier volumes) for Site 30 in Norwalk. P decreases fairly
rapidly as X increases (for values above 0.5). The rate of decrease in P gradually
diminishes asymptotically as the level of congestion increases. This may be because as
the four-hour volume approaches saturation, the benefit of moving out of the peak also
diminishes. This would appear to validate the choice of an exponential model form.

The reverse-commute direction shown in Figure 6 (also for site 30 in Norwalk)
has smaller P values, indicating traffic is fairly well spread through the peak period for all
congestion levels. In other words, peak spreading is less sensitive to increases in
congestion levels than in the commute direction. This is likely due to the different
distribution of trip purposes between the two directions, as a higher percentage of
discretionary trips in the reverse-commute direction would tend toward peak period trips
being less concentrated in one hour.

These observations led to the creation of two additional variables, which account
for the directional differences at a site. First, a directional dummy variable Dy was
created, equal to 1 if the direction of flow was in the reverse-commute direction. This
allows estimation of different constants for each flow direction. Second, a directional v/c
variable Xg was created, equal to X if the direction of flow was in the reverse-commute
direction. This allows estimation of different slopes for each flow direction, as well as
direct statistical testing of the significance of their difference. Essentially, an individual
model is estimated for each direction. A sample of the data set containing these two
variables, the main independent variable X, and the dependent variable In(P - 1/4) used in
base model estimation is shown in Table 3.

Each study site has a unique atr code defining the direction of travel at the site.
For example, 9014 _ 1 is the northbound direction of travel on I-91 in Wethersfield, while
9014 _5 is the southbound direction of travel on I-91 in Wethersfield. 9024 3 is the
eastbound direction of travel on I-84 in Newtown, while 9024 7 is the westbound
direction of travel on I-84 in Newtown. Notice that the northbound direction of flow in
Wethersfield was defined as the reverse-commute direction, and has a value of 1 for Dy
and the value of X for Xx.
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Table 3. Sample Data for Estimation of Base Model

ATR PPV | PHV P In(P - 1/4) Drg X Xr
9014 1 | 19370 | 5370 | .277 -3.60 1 .549 | .549
9014 1 | 17735 | 4832 | .272 -3.80 1 .503 | .503
9014 1 | 18306 | 5083 | .278 -3.59 1 519 | 519
9014 1 | 17824 | 5003 | .281 -3.48 1 .505 | .505
9014 1 [ 17834 | 4668 | .262 -4.44 1 505 | .505
9014 5 [ 16750 | 5031 | .300 -2.99 0 .633 | .000
9014 5 | 17119 | 5080 | .297 -3.06 0 .647 | .000
9014 5 | 17300 | 5103 | .295 -3.10 0 .654 | .000
9014 5 | 17099 | 5012 | .293 -3.14 0 .646 | .000
9014 5 [ 18958 | 5090 | .268 -3.99 0 716 | .000
9024 3 [ 10368 | 3008 | .290 -3.22 0 .588 | .000
9024 3 [ 10399 | 3180 | .306 -2.89 0 589 | .000
9024 3 [ 11941 | 3508 | .294 -3.13 0 677 | .000
9024 3 | 10211 | 2992 | .293 -3.15 0 .579 | .000
9024 3 | 10317 | 2982 | .289 -3.24 0 585 | .000
9024 7 | 10191 | 2713 | .266 -4.12 1 577 .5T77
9024 7 | 9819 | 2573 | .262 -4.42 1 556 | .556
9024 7 | 9391 [ 2427 | .258 -4.77 1 532 | 532
9024 7 | 9700 | 2548 | .263 -4.37 1 550 | 550
9024 7 [ 9627 | 2545 | .264 -4.24 1 546 | .546

Hypotheses

The congestion measure, or v/c ratio, of the link is most likely the best variable
for capturing the peak-spreading phenomenon, but other variables are likely to be
significant as well. As previously mentioned, the likelihood of a trip being made during
the peak-hour is not the same for all trips in a given area or even for all trips on the same
link, but varies according to characteristics of the trip and the individual making the trip.
For example, Allen showed that trip distance and purpose were both significant when
predicting the peak hour to peak period proportion [11]. Trip purpose is likely to be
significant because work trips are less discretionary than non-work trips, meaning a
higher percentage of non-work trips don’t have to be made during the peak-hour.
Therefore, different sites will most likely have different levels of peak spreading,
influenced by characteristics such as the distribution of trip purposes and trip lengths at a
site, as well as a site’s location and physical attributes.

To test this hypothesis the model formulation was adjusted to incorporate site-
specific dummy variables and site-specific v/c variables, representing those factors which
may influence differing degrees of peak spreading among sites. Because the reverse-
commute direction tends to have fewer work trips, and thus, more discretionary trips, the
directional dummy variable and directional v/c variable were included. These variables
may be somewhat representative of the general effect of trip purposes. The transformed
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model formulation used for estimation is now of the form:

where

In(P-1)=C, + C,S +C,D; +b,X +b, X +5,X, 7

Co, Ca, bo, by = scalar parameters to be estimated,

C1, b = vector parameters to be estimated, each with one value for all but one of
the analysis sites,

S = vector of site-specific dummy variables having values of 1 or 0, with one
value for all but one of the sites,

Dr = directional dummy variable having a value of 1 if the flow direction is in the
reverse-commute direction, 0 otherwise,

X = the volume/capacity ratio for the four-hour period,

X = vector of site-specific variables equal to the volume/capacity ratio for the
four-hour period X multiplied by the site-specific dummy vector S, with one value
for all but one of the sites, and

Xz = directional site-specific variable having the value of the volume/capacity
ratio for the four-hour period if the flow direction is in the reverse-commute
direction, O otherwise.

Results and Discussion

Before estimating a model using the transformed equation, a more generic model

was run without any site-specific variables. The results are shown in Table 4 as the
generic model. Then Equation (7) was used to estimate a regression model with variables
distinguishing the 10 sites. The results are shown in Table 4 as the site-specific model.
East Lyme has coefficients equal to zero as it was chosen to be the base site.

The total effect on the intercept and slope of the model can be determined by

adding the like terms, which results in a function resembling Equation (6):

In(P -

1/4) = C +bX . The constant C for a given site i is calculated by adding the

general model constant Cy, the site-specific constant Cy;, and the directional constant C; if
the flow is in the reverse-commute direction. Similarly, the slope & of a given site is
calculated by adding the generic v/c coefficient by, the site-specific v/c coefficient by, that
acts as a correction to the generic coefficient, and the v/c directional coefficient b, if the
flow is in the reverse-commute direction. Essentially, an individual model is estimated
for each site. For example, for I-95 in Norwalk in the reverse-commute direction, C and
b are computed as follows:

C =-2364+(-2.743)+3.733=-1374
b=-2.476+3.375+(~5.382) = —4.483

The peak-spreading phenomenon is clearly seen in both models, but the discussion will
focus on the site-specific model. All factor categories explain variation among sites and
direction, and are significant. The coefficient estimated for the base v/c ratio is negative
and significant, indicating that, overall, the ratio of peak-hour to peak-period volume
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decreases as the v/c ratio on the link increases; this is the basic definition of peak
spreading. The nine site-specific differential v/c coefficients act as corrections to the
generic v/c coefficient by increasing or decreasing the slope relative to the East Lyme
base site. Seven of these coefficients are significantly different from O at the 95 percent
confidence level. This variation from the base case and among each other indicates that
other variables besides congestion are affecting the amount of peak spreading that occurs.
The coefficient on the directional v/c variable is positive and highly significant,

- indicating peak spreading is affected by the orientation of the trip as well as the location,
possibly representing the trip purpose or characteristics of the trip-makers using the link.
The positive coefficient flattens the slope, decreasing sensitivity of spreading to the v/c
ratio relative to the commute direction.

The constants are of interest in that eight of the nine site-specific constants have t-
statistics that are significantly different from O at the 95 percent confidence level. Seven
of the nine are positive, indicating there are characteristics at these sites that resist the
spreading of the peak relative to the base case. These constants could capture effects
attributable to the characteristics of the trip and trip-maker, as well as characteristics of
the site. The coefficient on the directional dummy variable is negative and significant,
indicating that the reverse-commute direction does not have a highly concentrated peak
even for low v/c levels. The distribution of the peak-period volume in the reverse-
commute direction is flatter, probably because of the higher percentage of discretionary
trips being made in the reverse-commute direction.

Overall model fit is very good as the R-squared value indicates. The F-statistic is
large, rejecting the null hypothesis that all coefficients are equal to zero. Comparison
between the generic and site-specific models is done by using the F-test, which tests
whether the restricted, or generic model, provides almost as good a fit as the unrestricted,
or site-specific model. The hypotheses are formulated as follows:

Hy: Unrestricted (Site-Specific) Model does not explain more variation than the
Restricted (Generic) Model.

H,: Unrestricted (Site-Specific) Model does explain more variation than the
Restricted (Generic) Model.

The test statistic depends on the reduction in unexplained variance, and is computed with
the following equation:

f= (SSES SESLj’E D1k =1) ®)
(n-k)
where
SSE}, = sum of square errors or unexplained variation for the unrestricted model,
SSE; = sum of square errors or unexplained variation for the restricted model
k = number of parameters in unrestricted model,
/= number of parameters in restricted model, and
n = sample size.
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Table 4. Regression Results

Generic Model Site-Specific Model
Coefficient | t-statistic Coefficient t-statistic

Constants (O)
Base -2.450 -66.246 -2.364 -16.657
Dr -0.464 -4.035 -2.743 -29.002
1-91, Wethersfield - - 0.963 5.748
1-84, Newtown - - 0.170 s
1-84, Manchester - - -0.989
1-95, Norwalk - - 3.733
1-95, Branford - - 2.649 15.842
1-95, East Lyme - - 0 -
1-95, Groton - - 0.607 3.761
1-84, W. Hartford - - 0.480 3.121
I-91, Enfield - - -0.473 -2.631
1-84, Middlebury - - 0.749 3.952
Slopes (b)
X -1.402 -25.193 -2.476 -10.031
Xr -0.351 3.375
1-91, Wethersfield - - 0.080
1-84, Newtown - - 0.665 2.115
1-84, Manchester - - 2.752 10.103
1-95, Norwalk - - -5.382 -19.782
1-95, Branford - - -3.443 -12.182
1-95, East Lyme - - 0 -
1-95, Groton - - 0.353
1-84, W. Hartford - - 0.630 2.424
1-91, Enfield - - 1.994 6.499
1-84, Middlebury - - -0.734 -2.206
Statistics
R-squared 0.198 0.559
SSR 934.305 2643.920
SSE 3791.555 2081.940
F-statistic 1223.051 critical F =2.60 899.353 critical F = 1.57
Degrees of Freedom 14,890 14,872

Shading indicates failed t-statistics at 95% confidence level
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The rejection region for the test at a confidence level o is:
f 2 Fzz,k—l,n-—k (9)

The F-test for a 95% confidence level shown below rejects the null hypothesis, indicating
the site-specific model to be the significantly better model:

F05,18,14872 =1.6
f= (3791.555-2081.940)/18 _
(2081.940/14872)

f> Fos18.148m

678.5 (10)

Further statistical examination of the site-specific v/c coefficients and constants
was done using paired t-tests to examine whether sites could be grouped with similar
coefficients. It was hoped that by grouping sites, it would be easier to identify
characteristics that influence the different levels of peak spreading between these groups.
The hypothesis is that each pair of site-specific constants are equal to each other, and
likewise for each pair of site-specific slope coefficients. Tests were evaluated for the
constants and slope coefficients at the 95% confidence level, with the resulting t-statistics
presented in Tables 5 and 6 respectively. The pairs that have t-statistics less than the
critical 1.96 are shaded, indicating the hypothesis can’t be rejected and we can't say that
these sites are unique. Overall, Groton and West Hartford were the only grouping of sites
that could not reject the null hypothesis for both the site-specific constants and the site-
specific v/c coefficients, although other site groupings were not rejected for either one or
the other.

The results show that an important factor for determining the extent of peak-
spreading is differentiating between direction of flow, as the constant and v/c coefficient
are significantly different for the commute and reverse-commute directions. The model
results show the extent of peak-spreading at the various sites studied differs substantially,
which might be attributed to the effect of characteristics such as trip purpose
distributions, trip distances, and a site’s location and physical attributes. The next three
chapters discuss these variables and results from more specific hypothesis testing
concerning these variables.
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Chapter 4: TRIP VARIABLES

Approach

The results of the individual site model estimations showed that factors other than
congestion are influencing the spreading of the peak. This chapter focuses on the
creation and testing of trip variables which are intended to capture the variability in peak
spreading from site to site, and thus, improve the transferability of the model results to
other highway links in Connecticut or elsewhere.

The addition of these new variables to the generic, or base model will allow
testing of hypotheses regarding these variables. To distinguish between direction of flow
(commute vs. reverse-commute), the base model in addition to the main independent
variable X contains the directional dummy and directional v/c variables for the reverse-
commute direction. Originally it was hypothesized that a trip purpose distribution may
help explain the differences in peak spreading between directions. A daily trip purpose
distribution for each link was calculated from select link analysis files from PERFORM,
but examination of the distributions showed them to be of no significant use. The daily
trip purpose distributions did not represent the expected trip purpose distributions within
the peak period, and thus, would not help in explaining the differences in peak spreading
between directions.

Variables

Characteristics of the trips using links in a network may have an effect on the
likelihood of a trip being made in the peak hour. Trip characteristics such as total trip
length and elapsed trip time (time spent traveling from origin to study site) are thought to
be possible factors influencing the degree of peak spreading at our study sites. To test
this assumption, trip length and elapsed trip time distributions at each site were created.
Moreover, different distributions among sites may help explain the differences in the
degree of spreading among sites. Origin/destination matrices for each site, generated by
TRANPLAN select link analysis from PERFORM, along with congested and
uncongested skim matrices from ConnDOT's model provided the data with which to
create these distributions. a

Trip length frequencies were created for each site to test the hypothesis that total
trip length is a factor in whether trip makers will change their time of travel. It is
hypothesized that it may be easier for an individual making a short trip to adjust his or
her time of travel to avoid the highest congestion level than an individual making a
longer trip. By calculating percentages for ranges of trip lengths for each link, it was
hoped that differences among sites would prove to be a good indicator of the level of
peak spreading which will occur at each site.

In order to produce trip length frequencies, select link files have to be used in
conjunction with the congested skim matrix in a TRANPLAN function called TRIP
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LENGTH FREQUENCY. Since travel times for external-external (E-E) and internal-
external/external-internal (I-E/E-I) travel only include the portion of each trip inside the
state, a decision was made to use only the internal to internal (I-I) zone trips when
computing the frequencies. This was accomplished by modifying the select link files to
contain only the I-I zone trips. In place of trip length frequencies for the E-E and I-E/E-I
movements, variables were created by totaling the number of trips made by each of these
movements and dividing by the total number of trips traversing the study link.

The TRANPLAN code for calculating trip length frequencies for the I-I trips is
shown in Appendix 2. The output contains the number of I-I trips associated with trip
lengths in one-minute increments. Percentages of trips falling in specified ranges of trip
lengths were calculated by dividing the number of I-I trips in that range by the total
number of trips traversing the site. These percentages were then used as variables in
model estimation. The I-I trip ranges and percentages for each range are shown in Table
7, along with the percentages of E-E and I-E/E-I trips and a statistical summary of the
variables. '

Elapsed trip time frequencies are similar to trip length frequencies, but only
include the time from trip origins to the study link. This was thought to be a more
powerful variable than the total trip length, since the time spent travelling before reaching
the link may influence the time of departure more than the entire trip length might.
Travelling only a short time before reaching the link may allow a traveler to adjust his or
her start time to avoid the highest level of congestion, while a longer elapsed time from
the start of the trip to the link may make it harder to avoid the peak hour on this link. The
steps to calculate these elapsed trip time frequencies are shown below.

1) The highway network link file in PERFORM was modified by connecting an external
centroid to the node at both ends of each study link and a new skim matrix was then
created, that includes these relocated centroids.

2) TRANPLAN's MATRIX UPDATE function was then used to replace all skim entries
with zeros except those with destinations at each relocated centroid. This function
was run for each study link in both directions.

3) Travel times from all zones to the study link centroids were then reported using the
REPORT MATRIX function in TRANPLAN.

4) The number of trips from each origin zone to each destination zone were then
reported using REPORT MATRIX on the select link files for each study link.

5) Origin zone numbers were then matched between the travel time files and the trip
files created in Step 3 and 4, creating an elapsed time frequency distribution for each
study link.

6) Percentages of trips falling in specified ranges of elapsed trip lengths were calculated
by dividing the number of trips in that range by the total number of trips traversing
the site. These percentages were then used as variables in model estimation.

The corresponding external centroids connected to study link nodes and TRANPLAN
code for executing MATRIX UPDATE and REPORT MATRIX are in Appendix 3a and
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3b respectively. The elapsed trip time ranges and percentages for each range are
shown in Table 8, as well as a statistical summary of the variables.

Hypotheses Testing with Trip Variables

Models were first run with the trip length distribution variables. Only the E-E or
THRU variable was used in conjunction with the I-I variables due to colinearity problems
associated with having all movements incorporated in estimation. Trip length variables
for the I-I distribution were created by determining appropriate ranges of trip lengths and
calculating the percentage of trips in each range. Initially, trip length ranges were set at
0-15 (INT0 _15), 15-30 (INT15_30), 30-60 (INT30_60), and over 60 minutes (INT60UP)
with the idea that these ranges were comparable to short, medium, medium-to-long, and
long range trips. Alternative trip length ranges were then set by determining the 25"

50" and 75" percentiles of the overall trip length distribution. These ranges are 0-18
(INTO_18), 18-28 (INT18_28), 28-42 (INT28_42), and over 42 minutes (INT42UP) which
are similar to the initial ranges, except with regard to the longer range trips. The model
forms used in estimation for the first and second representations, respectively, are shown
below.

Y =C, +C,Dy +C,(INT0_15)+C,(INTI5_30)

11
+C,(INT30_60) + C,(INT60UP) + C,(THRU) + b, X + b X, (1)
Y =C, +C,D, +C,(INT0_18)+C,(INTI8_28) 12
+C,(INT28_42)+C,(INT42UP) + C,(THRU) + b,X +b X,

The elapsed trip time variables were then used in model estimation. Again, only
the E-E or THRU variable was used in conjunction with the I-I variables due to
colinearity problems associated with having all movements incorporated in estimation.
Elapsed trip time variables were created using 5-minute interval ranges. A total of seven
variables were created with the first six having a range of 5-minutes. The last variable
contains the percentage of trips with elapsed trip times greater than 30-minutes. The
model form used in estimation is shown below.

Y =C, +C,D, +C,(ELAO_5)+C,(ELA5_10)+C,(ELAI0_15)
+C,(ELAI5 20)+C,(ELA20 25)+C,(ELA25_30)+C,(ELA30UP)  (13)
+C,(THRU) + B, X + b, X,

A listing and description of all variables used in model estimations covered in this
chapter is shown in Table 9.
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Table 9. List and Description of Variables in Model Estimations

Variable Variable Description
Name
Y =In(P - 1/4) | Dependent variable which is the natural log of the ratio of peak hour
to peak period volume minus one-fourth
Dr Dummy variable having the value of 1 if the direction of travel is in
the reverse-commute direction
X Volume to capacity ratio for the peak period
Xr Volume to capacity ratio for the peak period if the direction of travel
‘ is in the reverse-commute direction
INTO 15 Pct. of I-1 trips with travel times 0-15 minutes divided by one-
hundred
INTI5_30 | Pct. of I-I trips with travel times 15-30 minutes divided by one-
hundred
INT30_60 | Pct. of I-I trips with travel times 30-60 minutes divided by one-
hundred
INT60UP Pct. of I-] trips with travel times >60 minutes divided by one-
hundred
INTO 18 Pct. of I-I trips with travel times 0-18 minutes divided by one-
hundred
INTI8 28 | Pct. of I-I trips with travel times 18-28 minutes divided by one-
hundred
INT28 42 | Pct. of I-I trips with travel times 28-42 minutes divided by one-
hundred
INT42UP Pct. of I-I trips with travel times >42 minutes divided by one-
hundred
ELAO 5 Pct. of I-I trips with elapsed travel time of 0-5 divided by one-
hundred
ELAS 10 Pct. of I-I trips with elapsed travel time of 5-10 divided by one-
hundred
ELAIO_I5 | Pct. of I trips with elapsed travel time of 10-15 divided by one-
hundred
ELAI5 20 | Pct. of I-Itrips with elapsed travel time of 15-20 divided by one-
hundred
ELA20_25 | Pct. of I-I trips with elapsed travel time of 20-25 divided by one-
hundred
ELA25 30 | Pct. of I trips with elapsed travel time of 25-30 divided by one-
hundred
ELA30UP | Pct. of I-I trips with elapsed travel time of >30 divided by one-
hundred
THRU Pct. of E-E (thru) trips at each site divided by one-hundred
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Results and Discussion

Results from using the trip length variables in model estimation are shown in Table 10.
The addition of the trip length distribution variables produces a significantly better model
than without these variables. This is shown with F-test comparisons to the base model.
The first test is for the first set of ranges and the second is for the second set of ranges.

Fos,s,msss =221
f = (3791.555—3343.941)/5 _
L= =

398.50 (14)
(3343.941/14885)

_ (3791.555-3195.471)/5
(3195.471/14885)

ya =555.33 (15)

Ji > Flos 510885
Jo > Flos 510885

Therefore, the null hypothesis is rejected in both cases.

It was hypothesized that a site with a greater number of short trips would tend to
have a peak profile that was more spread. The signs of the coefficients on the trip length
variables determine if this hypothesis is accepted. The coefficients for the first range in
both models is negative, indicating a site with a higher percentage of short trips will tend
to have a peak period profile which is more spread than one with a lower percentage of
short trips. The coefficient for the second range of trip lengths in both models is positive,
indicating that a site with a higher percentage of these trip lengths will tend to have a
peak period profile which is more peaked than one with a lower percentage of trips in this
range. The coefficient for the third range of trip lengths is positive in the first set of
ranges, but negative in the second set of ranges. The positive value is more consistent
with our hypothesis, in that a majority of these trips are likely to occur in the peak hour,
therefore contributing to a higher peaking of the profile. The coefficient for the last range
of trip lengths is negative in both models, indicating an increase in spreading of the peak
profile with a higher percentage of these long trip lengths. The coefficient for the THRU
variable is significant and negative, indicating a site which has a high percentage of
"thru" trips will tend have a peak profile that is more spread. This sign seems to be
correct, as an individual making a thru trip would likely make an effort to avoid the peak
hour congestion. The thru trip may be more discretionary in nature, allowing for advance
planning of departure time in order to minimize the time traveling under congested
conditions.

Overall, these two models tend to support the hypothesis that the peak period
distribution at a site with a high percentage of short trips will tend to be more spread.
The negative coefficient on the short trip range suggests a number of these trips are
avoiding the peak hour, while the positive coefficient on the medium range trips suggests
a number of these trips cannot avoid the peak hour. The possible inconsistency in the
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hypotheses lies in the change from the medium to longer trips, as the coefficient once
again becomes negative. This change in sign may be appropriate, as a majority of these
trips could be arriving at the site before or beyond the peak hour due to their length,
depending on the distance between their departure location and the study link. For
example, a trip maker who completes a majority of their trip before reaching the study
site may arrive beyond the peak hour due to the time it takes to reach the site. Moreover,
trip makers may be adjusting their departure time to avoid the peak hour at a site, as any
increase in trip time associated with traveling in the peak hour at that site would make the
trip length unacceptable. The elapsed trip time variables attempt to account for these
possibilities by only considering the travel time from an origin to a study site.

Results from estimation with the elapsed trip time variables are shown in Table
11. The addition of the elapsed trip time variables produces a significantly better model
than without these variables. This is shown with the following F-test:

'F.05,8,14882 =194
f= (3791.555- 2762.600)/8
(2762.600/14882)

= 692.87 (16)

S> Fos 108

Therefore, the null hypothesis is rejected.

Although all elapsed trip time coefficients are significant, their effects (signs) are
not consistent with the hypothesis, as they are positive through the first two ranges and
then alternate from range to range until the last range where the coefficient stays positive.
There is no clear pattern that can be associated with the behavior of the trip makers from
these coefficients.

The possible reason that these trip length distribution variables are giving mixed
results (a better fit with inconsistent coefficient signs) is that the outputs from a daily
assignment were used to create the variables, since a peak period assignment was not at
our disposal. The daily trip length distribution may not be representative of the peak
period distribution due to temporal variations in trip making patterns during the day.

The next chapter discusses the creation of site attribute and location variables and
results from model estimations with these variables.

36



JOAS] 30UIPIUOD 2/4,G6 18 SONSTIRIS-] PafIey S3jeoIpur Suipeys

$88V1 $88Y1 068v1 WOP3AI] JO $32139(]
660°168 £€C6'89L [S0°€TT1 JnsmeIs-J
[LY'S61€E Y6 €rEE GSS16LE dSS
06€0€£ST 616 18¢€1 SO0EPEL dssS
¥ZE0 2670 861°0 parenbs-y
SonsnEIS
SIv'L 1A A 9T 01 20T [6€0- ¥y
0891~ ¢0S'C- 06T b~ £€p8'C- €61°SC- ov'1- X
(¢) sedofs
yeo'61- 8SI'C - - - - d1CrINT
9re0l- €0S'C- - - - - ct 8TINT
9SE' 1Y £€68°'11 - - - - 8§C SIINT
6E1°€¢- LEY'T- - - - - &I 0INI
- - 19v°9C- 68S°S- - - d(109.INIT
- - ovL'6 €0T'1 - - 09 0£INI
- - TL9Y1 966'C - - 0¢ SLINT
- - eve L 0L8°0- - - ST O0INT
9/L8° €T 168°1- €911~ 968°0- - - ¥HI
sojqenreA dij,
LOL'ST- SIL'T- LeyLi- SL6'T- SE0p- Y90~ 4q
0569~ L96°1- 61y 1+ cI8'1- YT 99- oSV T asvg
(D) sweisuo)
onIsTIRIS-} Jua1o1ffa0,) onsne)s-} ua11ff200) a1ISTIR)S-) Jua101ff207)
TNV - SI|qelIep 1 3V - S9[qeLIvp
P3udY dra], \PIs PPOy Iseq PI3ua diy, yim Ppoy aseq [°POJAl 95eg

Sd[qeLIe A uonnqLysIiq P3udT diLr ], :S)MSIY UOISSAATNY (] I[qEL

37



Table 11. Regression Results: Elapsed Trip Time Variables
Base Model Base Model with Elapsed Trip
Time Variables
Coefficient t-statistic Coefficient t-statistic
Constants (C)
Base -2.450 -66.246 -1.162 -27.142
Dr -0.464 -4.035 -0.823 -8.268
Trip Variables

THRU - - -3.393 -43.983

ELAO 5 - - 1.054 17.753

ELA5 10 - - 0.929 9.717

ELAI0 15 - - -4,931 -38.537

ELAI5 20 - - 8.331 45.094

ELA20 25 - - -9.771 -35.692

ELA25 30 - - 6.690 24.608

ELA30UP - - 0.689 3.125

Slopes (b)
X -1.402 -2.446 -42.196
Xr -0.351 -0.393 -2.250
Statistics

R-squared 0.198 0.415

SSR 934.305 1963.260

SSE 3791.555 2762.600

F-statistic 1223.051 961.454

Degrees of 14,890 14,882

Freedom

Shading indicates failed t-statistics at 95% confidence level
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Chapter 5: SITE VARIABLES

Variables

Like the trip characteristics discussed in Chapter 4, physical attribute and location
characteristics of a site may influence the spreading of the peak. To test whether or not
some site characteristics affect the spreading of the peak, several location and site
attribute variables were created and included as independent variables in estimation.

A variable called "Distance From Central Business District (CBD)" was
calculated for each site to test the hypothesis that the relative location of a site within the
metropolitan area may help predict the amount of spreading that occurs there. CBDs for
each link were selected by first identifying the commute direction of the PM peak period
traffic flow at each study link. That flow direction was then associated with a CBD
thought to be the economic center of each respective region in Connecticut. Three
general regions were identified in Connecticut with regard to where the study sites are
located: the Hartford region, the Southwest region, and the Southeast region. For these
regions, the major CBDs identified were Hartford, New York City, and New London,
respectively. Upon further consideration, other CBDs were identified for Southwest
Region sites due to the multi-centric nature of that region. The elapsed trip time
distribution and the number of I-I and I-E/E-I trips at each site helped in this review, by
identifying travel times from origins to the study sites, the amount of thru travel, and the
amount of out-of-state travel, all clues as to where a majority of the trips at a site could be
originating.

The PM peak commute direction of flow for the four sites around Hartford
indicate most of this travel is coming from Hartford, or the Capitol region surrounding
Hartford. Therefore, Hartford as before was assigned to these sites as the CBD. Review
of the elapsed trip time distribution for these sites seems to validate this CBD association
to Hartford. Forty-nine percent of the trips traveling west at the West Hartford site have
elapsed trip times of 10 minutes or less. Similarly, forty-nine percent of the trips
traveling south at the Wethersfield site have elapsed trip times of 15 minutes or less. At
the Manchester site, forty-three percent of the trips have elapsed trip times of 20 minutes
or less. These elapsed trip times are consistent with the physical distances from Hartford
to each study site. A similar direct observation cannot be made about the Enfield site, as
only twenty-seven percent of its total travel is comprised of I-I trips. However, the
Enfield site has sixty-three percent of its total travel being comprised of I-E/E-1 trips,
indicating that a great deal of commuting is being done from Massachusetts to
Connecticut and then back to Massachusetts in the evening. It is believed the Capitol
region is attracting a great deal of these trips.

Previously the Southeast sites were associated with New London as the CBD for
this area. The elapsed trip times along with the direction of flow also seem to validate
this assignment. Thirty-two percent of the commute direction of travel at the Groton site
is comprised of I-I trips, with more than half having elapsed trip times of 10 minutes or
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less. The site at Groton also has forty-four percent of its total travel being comprised of
I-E/E-I trips, indicating a great deal of travel from out of state, which is similar to the
Enfield site situation. For the East Lyme site, a clear commute direction in the PM peak
period could not be seen. However, there are shorter elapsed trip times in the southbound
direction of travel, indicating trips are being produced somewhere not far east of East
Lyme. Therefore, the association with New London for these two sites seems
appropriate.

New York City was previously identified as being the major economic center for
the Southwest region. This association to the Norwalk site is likely correct, as the
commute direction has forty-three percent of its total travel being comprised of I-E/E-I
trips. This observation, along with the physical location of the Norwalk site confirms
New York City as the CBD to be measured from.

The remaining sites that comprise the rest of that Southwest region had also been
previously associated with New York City. Review of the elapsed trip times at these sites
indicates this may not have been the most appropriate assumption. The commute
direction at the Middlebury site has the highest percentage of E-E trips among all sites.
Forty-one percent of the travel at this site is comprised of either E-E or I-E/E-I trips. The
remaining trips (I-I) have elapsed trip times that are fairly evenly distributed within our
ranges. The commute direction at the Newtown site has thirty-four percent of its travel
with elapsed trip times of 10 minutes or less. On the other hand, fifty-two percent of its
total travel is comprised of either E-E or I-E/E-I trips. Danbury was the only other viable
city identified that provides some consistency between the physical distance and the
elapsed trip times. Therefore, Danbury was also chosen as a potential CBD for these two
sites. The Branford site was also previously associated with New York City. Review of
the elapsed trip times at the Branford site shows fifty percent of the trips in the commute
direction have elapsed trip times of 15 minutes or less. The Branford site also has the
least percentage of I-E/E-I trips among all sites. These observations led to New Haven
and Bridgeport being identified as viable CBD's for the Branford site. Although New
Haven is considered as a CBD here, the travel times may be indicative of commuters
taking the train to New Haven and then beginning an auto trip.

For the most part, the elapsed trip time distributions and percentage of thru and
out-of-state travel have helped confirm some of our previous CBD associations, while
also identifying other CBD associations that should be considered. Our assumption
which may or may not be true is that the daily travel patterns produced by PERFORM are
representative of the PM peak period. Overall, three different CBD associations to the
study sites were identified. The commute direction of flow, CBD associations, and
distance between the CBD and the study sites for each association is shown in Table 12.

A variable containing the number of lanes at each site was used for testing the
hypothesis that the number of lanes at a site may help predict the amount of spreading,
and thus, explain some of the variation in peak spreading among sites. As discussed
previously, the number of lanes at each site was counted using a Connecticut photolog
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station for the purpose of calculating capacity at each site. The number of lanes at each
site is also shown in Table 12.

Hypotheses Testing with Site Variables

Models were first run with the three DISTCBD variables. The model forms are
shown below:; v

Y =Co+C,Dy +C,(DISTCBDI) +b,X +b,X, (17)
Y =Co+C,D, +C,(DISTCBD2) +b,X +b,X, (18)
Y =Co+C,D, +C,(DISTCBD3) +b,X +b,X,, (19)

It was hypothesized that a site with a greater value of DISTCBD would have a lower peak
hour to peak period proportion at low congestion levels than a site with a smaller value
for it. This is supported by the idea that a majority of the trips leaving the CBD in the
PM peak period will concentrate within a relatively small range of time on a link that is
close to the CBD, due to a high percentage of work trips. As these trips progress outward
from the CBD, additional traffic comprised of other trip purposes joins in, causing a link
that is farther away to have trips arriving over a less concentrated, but longer period of
time. Thus, a site farther from the CBD for its area would tend to have a peak profile that
is more evenly distributed at low levels of congestion than a site with a closer CBD.

It was also hypothesized that a site with a greater number of lanes would tend to
have a higher peak hour to peak period proportion at low levels of congestion than a site
with fewer lanes. This is supported by the same basic idea, that a site with more lanes
tends to be located closer to the CBD for its area. In other words, a site that is farther
from the CBD for its area tends to have fewer lanes, and thus, less peaking of traffic.
This relationship between the DISTCBDI and LANES variables was identified by the
high correlation between the two variables. The LANES model formulation is shown
below:

Y =Co+C,Dy +C,(LANES) +b,X +b,X,, (20)

A list and description of the variables used in model estimations covered in this chapter
are shown in Table 13.
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Table 13. List and Description of Variables in Model Estimations
Variable Name Variable Description

Y=In(P - 1/4) | Dependent variable which is the natural log of the ratio of
peak hour to peak period volume minus one-fourth

Dr Dummy variable having the value of 1 if the direction of
travel is in the reverse-commute direction

X Volume to capacity ratio for the peak period

Xr Volume to capacity ratio for the peak period if the direction of

travel is in the reverse-commute direction

LANES Number of lanes at each site

Dranes Dummy variable having the value of 1 if the number of lanes
is>3
XranEs Volume to capacity ratio for the peak period if Dyves = 1
DISTCBDI | Distance from CBD to study site for Alt - 1 divided by one-
hundred
DISTCBD?2 | Distance from CBD to study site for Alt - 2 divided by one-
hundred
DISTCBD3 | Distance from CBD to study site for Alt - 3 divided by one-
hundred

CBDI Dummy variable having the value of 1 if DISTCEDI £ .25

CBD2 Dummy variable having the value of 1 if DISTCBD1 > .25

and <.50
Xcapi Volume to capacity ratio for the peak period if CBDI = 1
Xcap? Volume to capacity ratio for the peak period if CBD2 = 1
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Results and Discussion

Results from the model estimations using Equations 17, 18, 19, and 20 are shown
in Table 14. Once again, the Base model is shown for comparison purposes. The
addition of the DISTCBD variable produces significantly better models than without the
variable. This is shown below with the F-test comparisons of the DISTCBD]1,
DISTCBD2, and DISTCBD3 models to the base model, respectively.

F05,1,14889 =3.84
_ (3791.555-3406.377)/1

s =1683.58
(3406.377/14889)

7, - BTOLSSS=3320169)/1 )10 o0 (21)
(3320.169/14889)

£, Q701555 -3157513) 11 _ g0 47

(3157.513/14889)
Ji> Fos )y 1asss
J2 > Fos 1 ramo
J3 > Fos 118

All three DISTCBD coefficients are negative and significant indicating that a site
which is further from the CBD for its area will tend to have a peak period profile which is
flatter at low levels of congestion than a site that is closer. This is consistent with the
hypothesis. Although a direct F-test cannot be computed between the three CBD models,
an increase in the explanatory value of the model is seen as we progress from the
DISTCBD1 model to the DISTCBD3 model. This increase in explanatory value is
attributed to the reordering of sites relative to CBD distance, which results in Norwalk
having the largest CBD distance among all sites. Norwalk tends to have the most peak
spreading among all sites. Having the largest CBD distance results in an increase in the
correlation between the CBD distance and the dependent variable resulting in a better
model fit, which is seen from the increase of the t-statistic on the DISTCBD2 and
DISTCBD3 variables and the increase in R-squared. The DISTCBD1 and DISTCBD3
models are viewed as better than the DISTCBD2 model, since the latter has an adverse
effect on the Xrgy coefficient, causing it to become even more insignificant than without
the DISTCBD?2 variable. The DISTCBD1 and DISTCBD3 models cause the Xzzy
coefficient to become significant and positive. This is may be due to the CBD for each
site being identified with the commute direction of flow, causing the reverse-commute
slope variable to capture the difference between directions. The positive sign is
consistent with the reverse-commute direction being less sensitive to increasing
congestion.
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The addition of the LANES variable to the base model also produced a
significantly better model than without the variable. This is shown below with the F-test
comparison to the base model.

F05,1,14889 =3.84
f _ (3791.555 — 3650.606)/1
(3650.606/14889)

f> Fos 114889

=574.86 (22)

The LANES coefficient is positive and significant indicating that a site with more
lanes will tend to have a peak period profile that is more peaked at low levels of
congestion than a site with less lanes. This is also consistent with the hypothesis.
Another important observation made from the results is that the Xzzy coefficient becomes
positive and significant when this variable is included.

DISTCBD with LANES

The results of incorporating both the DISTCBD and LANES variables in the same
model are shown in Table 15. The model formulation is shown below:

Y =Co+C\D, +C,(DISTCBD) +C,(LANES) + b, X + b, X, (23)

The DISTCBD1 and LANES model shows the results of a high correlation between the
two variables. Because of the correlation between the two variables, the LANES
coefficient becomes insignificant. Moreover, the model coefficients are essentially
identical to the model estimated with the addition of the DISTCBDI variable only.
Addition of the LANES variable to the DISTCBD1 model provides no increase in the
explanatory power of the model, which is shown below with the F-test comparison
between this model and the model containing only the DISTCBDI variable. Therefore,
the LANES variable should not be included with the DISTCBD/ variable in estimation.

F05,1,14sss =3.84
f= (3406.377 - 3406.377)/1 ~0
(3406.377/14888)

f < f05,1,14888

(24)

The DISTCBD? variable is not as correlated with the LANES variable, and therefore, no adverse
effect on either variable is seen. Actually, the addition of the LANES variable to the DISTCBD2 model
significantly increases the explanatory value of the model and causes the reverse commute slope correction
coefficient to become significant. The F-test comparison between this model and the DISTCBD2 model is
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shown below:

F05,1,14888 =3.84
f= (3320.169 — 3016.557)/1
(3016.557/14888)

J > Fos ) 1uss

=1498.46 (25)

The DISTCBD3 variable is the least correlated variable with the LANES variable
among the DISTCBD variables. The results show a significant increase in the
explanatory value of the model with the addition of the LANES variable to the
DISTCBD3 model. The F-test comparison between this model and the DISTCBD?3
model is shown below:

F05,1,14888 =3.84
f= (3157.513 - 3048.420)/1
(3048.420/14888)

f> F05,1,14ss

=532.79 (26)

The next section analyses the CBD and LANES variables in categorical and
dummy variable representations as an alternative to using the actual values of the
variables which forces a linear relationship. This will help to determine how these
variables are best represented.

Representations of LANES and DISTCBD

The LANES and DISTCBD variables were also represented using dummy and
categorical variable representations. This allowed the testing of different representations
of the variables and creation of slope variables, allowing for non-linear relationships. A
variable D7ngs was created and coded as 1 if the number of lanes was greater than or
equal to 3 and 0 otherwise. A slope effect for the number of lanes at a site was
incorporated by creating a variable Xznzs, equal to X if the Dyangs variable is equal to 1.
Three categories of distance were used for the creation of two new variables CBDJ and
CBD?2 using the DISTCBDI variable. CBDI was coded as 1 for CBD distances less than
or equal to 25 miles. CBD2 was coded as 1 for CBD distances greater than 25 and less
than or equal to 50 miles. To incorporate the effect of the CBD distance on the slope,
two additional variables were created. The first variable Xcgp; is equal to Xif the CBD]
variable is equal to 1, otherwise the value is zero. The second variable Xcap: 1s equal to
Xif the CBD2 variable is equal to 1, otherwise the value is zero. The model formulations
are shown below:

Y =C, +C1DR +C2(DLANES)+b0X+leR +b2(XLANES) (27)
Y=C,+ C,D, + C,(CBDI) + C,(CBD2)

(28)
+ bOX + leR + b2 (XCBDI) + b3 (XCBDZ)
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Results and Discussion

Results from the model estimations using Equation 27 and 28 are shown in Table
16. The addition of the new LANES variables to the base model produces a significantly
better model than without these variables which is shown below with the F-test
comparison to the base model.

Fos,z,msss =3.00
f= (3791.555-3682.380)/2
~ (3682.380/14888)

f> Fos.2,14888

=1220.70 (29)

However, the slope coefficient for the X, 4yzs variable is not significant and should
not be included. This indicates that sites differing only by their number of lanes are
equally sensitive to increasing congestion. A direct F-test comparison to the LANES
model cannot be made, but model statistics such as the t-statistics on the LANES variables
and R-squared values show the linear relationship to be stronger and that using the actual
number of lanes at a site for the variable seems to be better. The addition of the new
categorical CBD variables allowing for non-linear relationships produces a significantly
better model than without these variables which is shown below with the F-test
comparison to the base model.

F05,4,14886 =237
f= (3791.555-2606.651)/ 4
(2606.651/14886)

f > F05,4,14886

=1691.68 30)

A direct comparison to the DISTCBD1 model cannot be made, but a large
increase in the R-squared value and F-statistic shows this categorical representation is the
better model formulation for the DISTCBD variable. This representation of the CBD
variable is interesting in that by not forcing a linear relationship and incorporating both
intercept and slope effects a better model fit is achieved over the DISTCBD1 model. The
intercept is adjusted by the CBDJ and CBD?2 coefficients. The results indicate that the
study sites in the CBD category tend to have the flattest peak period profiles at low
congestion levels, while Norwalk (CBD2) tends to have a peak period profile that is the
most peaked. With regard to the slope effects, the sites in the CBD1 category tend to be
the least sensitive to increasing congestion, while Norwalk (CBD2) tends to be the most
sensitive to increasing congestion. The ordering of the intercept and slope coefficients
are important in that they show these categories are "out of order", meaning they do not
line up in their respective order of increasing distance from CBD, validating the non-
linear representation. Furthermore, these categories were chosen fairly arbitrarily and
might be chosen in such a fashion as to result in a different outcome. Because of this, the
categories were examined further to examine other possibilities of groupings that may be
more theoretically sound and stable. The results of this re-examination proved to be
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useful, as groupings of sites by region and area type resulted in models that are
statistically and theoretically sound. The next chapter discusses the results from using
these regional and area type variables in model estimation.

Table 16. Regression Results: Categorical DISTCBD and LANES

Variables
Base Model LANES Dummy and | Categorical CBD and
LANES Slope CBD Slope Variables
Variables Based on DISTCBD1
Coeff. t-statistic | Coeff. t-statistic | Coeff’ t-statistic
Constants (C)
Base -2.450 -66.246 -2.258 -40.801 -1.587 -25.374
Dr -0.464 -4.035 -0.948 -8.200 -1.776 -18.147
D1 ngs - - 0.157 2.385 - -
CBD1 - - - - -1.240 -18.631
CBD2 - - - - 2.165 23.764
Slopes ()
X -1.402 -25.193 -1.860 -20.790 -3.079 -30.296
Xz -0.351 0.410 1.989 11.577
X anes - - 0.049 - -
Xepor - - - - 2.522 23.347
Xcpp2 - - - - -3.676 -25.408
Statistics
R-squared 0.198 0.221 0.448
SSR 934.305 1043.480 2119.210
SSE 3791.555 3682.380 2606.651
F-statistic 1223.051 843.766 1728.905
Degrees of 14,890 14,888 14,886
Freedom

Shading indicates failed t-statistics at 95% confidence level
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Chapter 6: REGIONAL AND AREA TYPE MODELS

Approach

Model results of linear and categorical representations of the DISTCBD variable
show significant improvements for each over the base model. The results of the
categorical representation also show the scale adjustments for the ranges to be "out-of-
order", and therefore, non-linear with increasing CBD distance. This indicates the factor
influencing peak spreading is probably not CBD distance, but something else that these
ranges help to capture. The categorical representation is also viewed to be stronger than
the linear, because it allows for different effects on both the intercept and slope of the
curve, rather than just adjusting the intercept.

However, the ranges of CBD distance used to create the categorical CBD
variables don't necessarily separate the sites into groups with common attributes.
Consequently, this chapter presents the results from a re-examination of the sites with
regard to the CBD distances of variables DISTCBD1 and DISTCBD3, resulting in slightly
different categorical groups defined by similarities such as geographical location and area
type characteristics, respectively. Differences among these groups with regard to the
amount of peak spreading that occurs is shown by the estimated constants and
coefficients for these groups. These differences may then be attributed to specific
differences among these groups with respect to regional or area type characteristics of
each group.

Regional Model

Table 17 shows the groupings that resulted from the previous categorical
breakdown of the DISTCBD1 variable. What is noticed from the sites within these
categories is that they are representative of regions within the state. For instance, Range
1 contains all of the Capitol regional sites as well as the Southeast regional sites. The
Norwalk site (Range 2) is located in a region that vastly different from the other site

Table 17. Sites in DISTCBDI1 Categories

Range 1 Range 2 Remaining Sites
Wethersfield Norwalk Newtown
Manchester Branford
W. Hartford Middiebury

Enfield

East Lyme

Groton

locations in Connecticut. This was shown by the estimated constants and slope
coefficients in the Categorical CBD Model, which indicate Norwalk has significantly
higher peak hour to peak period proportions at low levels of congestion and more
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sensitivity to increasing congestion than the other categories. The third category of sites
contains the sites in the Southwest region of Connecticut. With this observation a new
set of regional variables was created, separating the Southeast sites from the Capitol
region sites, resulting in the four regional categories shown in Table 18. The model
formulation for estimation is shown below:

Y = Co+C,Dy + C,(CAPITOL) + C,(SOUTHEAST)

+C,(SOUTHWEST)+ b,X + b, X +b,( X p) + 0, (X ) + 0, (X ) G1)
Table 18. Sites in Regional Categories
Capitol Southeast Southwest Norwalk
Wethersfield East Lyme Newtown Norwalk
Manchester Groton Branford
W. Hartford Middlebury
Enfield |

A statistical comparison of the estimated constants and coefficients for the Capitol and
Southeast sites will indicate whether or not the Southeast sites should be separated from
the Capitol sites. A list and description of all variables used in model estimations
covered in this chapter are shown in Table 19.

The results of model estimation using the formulation in Equation 31 are shown
in Table 20 along with the Categorical CBD model for comparison purposes. The results
show that there are clear differences between regions with respect to the amount of peak
spreading that occurs. Examination of the coefficients affecting scale indicates the base
site, or Norwalk, tends to have a peak period profile that is more peaked at low levels of
congestion than any other region. The Southeast region tends to have the flattest peak
period profile at low congestion levels, followed by the Capitol and the Southwest
regions, respectively. Examination of the coefficients affecting slope indicates the
Southeast region to be the least sensitive region with regard to increasing congestion,
followed by the Capitol region. The Southwest is also less sensitive to increasing
congestion with respect to Norwalk, but more sensitive than the Capitol and Southeast
regions.

An F-test comparison between this model and the Categorical CBD Model can be
performed, as the latter is just a restricted version of the Regional Model. The only
difference is that in the Regional model we are not forcing the Southeast and Capitol
regions to have equal coefficients. The F-test is shown below.

F05,2,14884 =3.00
f= (2606.651 —2529.437)/2 ~97718 (32)
(2529.437/14884)

f> Fos 204854

52



Table 19. List and Description of Variables in Model Estimations

Variable Name Variable Description
Y=In(P - 1/4) | Dependent variable which is the natural log of the ratio of peak hour to
peak period volume minus one-fourth
Dp Dummy variable having the value of 1 if the direction of travel is in the
reverse-commute direction
X Volume to capacity ratio for the peak period
Xr Volume to capacity ratio for the peak period if the direction of travel is
in the reverse-commute direction
CAPITOL Dummy variable having the value of 1 for Capitol region sites
CAPTITOLgzy | Dummy variable equal to Dr multiplied by CAPITOL
SOUTHEAST | Dummy variable having the value of 1 for the Southeast region sites
SOUTHEASTrgy | Dummy variable equal to Dr multiplied by SOUTHEAST
SOUTHWEST | Dummy variable having the value of 1 for the Southwest region sites
WEST Dummy variable having the value of 1 for the West region sites
WESTrgy Dummy variable equal to Dz multiplied by WEST
BRANFORD or | Dummy variable having the value of 1 for the Branford site
GROUP4
BRANFORDgzy | Dummy variable equal to Dr multiplied by BRANFORD
NORWALKgrgy | Dummy variable having the value of 1 for the Norwalk site in the
reverse-commute direction of flow
GROUPI Dummy variable having the value of 1 for the urban area sites
GROUP2 Dummy variable having the value of 1 for the semi-rural sites
GROUP3 Dummy variable having the value of 1 for the suburban sites
Xcap Volume to capacity ratio for the peak period if CAPITOL = 1
XrEv.cap Volume to capacity ratio for the peak period if CAPITOLggy =1
Xsg Volume to capacity ratio for the peak period if SOUTHEAST = 1
Xrev-se Volume to capacity ratio for the peak period if SOUTHEAST ggy = 1
Xsw Volume to capacity ratio for the peak period if SOUTHWEST =1
Xw Volume to capacity ratio for the peak period if WEST = 1
Xrev.w Volume to capacity ratio for the peak period if WESTggy = 1
Xzr or Volume to capacity ratio for the peak period if BRANFORD or
XGROUP4 GROUP4 =1
Xrevsr Volume to capacity ratio for the peak period if BRANFORDggy =
Xrev.Norw Volume to capacity ratio for the peak period if NORWALKzgy =1
Xcroury Volume to capacity ratio for the peak period if GROUPI =1
Xeroupz Volume to capacity ratio for the peak period if GROUP2 =1
Xcrours Volume to capacity ratio for the peak period if GROUP3 = 1
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Table 20. Regression Results: Categorical CBD and Regional Variables

Categorical CBD Model Regional Model
Coefficient t-statistic Coefficient t-statistic
Constants (C)
Base -1.587 -25.374 0.857 10.970
Dr -1.776 -18.147 -2.116 -21.535
CBDI1 -1.240 -18.631 - -
CBD2 2.165 23.764 - -
CAPITOL - - -3.338 -43.057
SOUTHEAST - - -3.900 -37.694
SOUTHWEST - - -2.289 -25.437
Slopes (b)
X -3.079 -30.296 -7.144 -60.316
Xr 1.989 11.577 2.477 14.439
Xcspg 2.522 23.347 - -
Xcap2 -3.676 -25.408 - -
Xcap - - 6.157 51.529
Xse - - 6.688 41.522
Xsw - - 3.842 26.909
Statistics

R-squared 0.448 0.465
SSR 2119.210 2196.423
SSE 2606.651 2529.437
F-statistic 1728.905 1436.049
Degrees of Freedom 14,886 14,884

Norwalk is base case
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This test indicates we should reject the null hypothesis that there is no difference
between the two models. The Base constant is also much smaller for the Regional
Model, meaning this representation is capturing more of the behavior associated with
peak spreading. Therefore, the Regional Model, or unrestricted model with the Southeast
region being considered separately from the Capitol region, is the better model. A paired
t-test was done between each region for both the constant and slope coefficient. This was
done because the Capitol and Southeast regions have similar estimated constants and
slope coefficients. The results of these tests shown in Table 21 and 22 reject the null
hypothesis that the constant or slope coefficient of any region is equal to the constant or
slope coefficient of any other region.

Table 21. Paired t-tests between Regional Constants

Norwalk Capitol Southeast
Capitol -43.06
Southeast -37.69 7.07
Southwest -25.44 15.57 17.48

Table 22. Paired t-tests between Regional Slope Coefficients

Norwalk Capitol Southeast
Capitol 51.53
Southeast 41.52 4.25
Southwest 26.91 21.30 19.13
Area type model

Similar to the regional categories discussed above, the CBD distances in the
DISTCBD3 model were analyzed and grouped based on area type groupings rather than
an arbitrary selection of distances. These area type groupings and the ranges of CBD
distances are shown in Table 23. These groups are viewed to have different area type
characteristics or traits, rather than regional type characteristics. The speculated area or
effects for each group are shown in parentheses below each group. The v/c range (min.
and max. values) and mean for each group were calculated to examine any distinct
differences that might help to explain the area type differences. The results are also
shown in Table 23. The first three groups we categorized as urban, semi-rural, and
suburban. Group 4 is categorized as having an I-95 effect and Group 5 as having a New
York City (NYC) effect. A model was run incorporating group specific dummy and v/c

Results and Discussion
The results from model estimation with the formulation in Equation 33 are shown in
Table 24. Again, by not forcing a linear relationship between the variables, a better fit is

obtained. For example, Group 2 (semi-rural) tends to have a peak profile that is the most
spread at low levels of congestion, meaning it has lower peak hour to peak period
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Table 23. Groupings Based on DISTCBD3 Variable

Group DISTCBD3 Sites X
Range Minimum | Maximum | Mean
1 Oto 8 W. Hartford 0.50 0.90 0.7231
(urban) Wethersfield
2 8to 12 Newtown 0.50 0.94 0.6408
(semi-rural) Groton
Manchester
East Lyme
3 12to 21 Enfield 0.50 0.81 0.5870
(suburban) Middlebury
4 21to 28 Branford 0.50 0.84 0.6617
(1-95 effect)
5 28 to 39 Norwalk 0.50 0.82 0.7020
(NYC effect)

proportions at lower levels of congestion than the rest of the groupings. The Group 3
(suburban) area type constant is very similar to Group 2, indicating a fairly spread peak
period profile at a low level of congestion. Group 1 (urban), which has the shortest CBD
distances, has a peak period profile that is more peaked at lower levels of congestion than
Group 2 and 3. Group 4's area type coefficient is much greater (less negative) than the
other three groupings, indicating that the area is more closely associated with Group 5 or
the Norwalk site. With regard to the slope coefficients for the groupings, Group 2 tends
to be the least sensitive to increasing congestion, followed by Group 3 and Group 1
respectively. Group 4 is much more sensitive to increasing congestion than these
groupings, but is less sensitive than Group 5 or the Norwalk site.

From these observations, the groupings are shown to be "out of order", meaning
they do not line up in their respective order of 1 to 5, validating the non-linear
representation. The coefficients for Group 1 place it after Group 2 and 3. Furthermore,
the results indicate that the Branford site should not be included in the Southwest region
of sites but should be viewed as an area of its own. Paired t-tests shown in Table 25 and
26 were done between each grouping for both the constant and slope coefficient. This
was done because Group 2 and Group 3 have similar estimated constants and slope
coefficients. The results of these tests rejected the null hypothesis that the constant or
slope coefficient of any area is equal to the constant or slope coefficient of any other area.

Regional model revisited
With the observation that the Branford site is significantly different than the
Southwest Sites, the Regional model formulation in Equation (31) was modified by

pulling the Branford site out of the Southwest region and renaming the Southwest region
as the West region. The resulting model formulation is shown below:
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Y = Co+C,D, +C,(CAPITOL) + C,(SOUTHEAST) + C ,(WEST)

+C;(BRANFORD) + b, X + b, X +b,(X(4p) + b, (X ) +b,(X},) (34)
+ b (X )
Table 24. Regression Results: Area Type Variables
Base Model Area Type Model
Coeff. t-statistic | Coeff. t-statistic
Constants (C)
Base -2.450 -66.246 1.427 17.809
Dr -0.464 -4.035 -2.720 -27.259
GROUPI - -3.068 -38.768
GROUP2 - -4.617 -52.590
GROUP3 - -4.384 -38.973
GROUP4 - -1.096 -10.246
Slopes (b)
X -1.402 -7.936 -65.709
Xrey -0.351 3.303 19.141
Xarours - 5.819 47.852
Xcroupz - 7.818 58.009
Xacrours - 7.417 40.606
XGroup4 - 1.956 11.591
Statistics

R-squared 0.198 0.477
SSR 934.305 2255.275
SSE 3791.555 2470.585
F-statistic 1223.051 1235.004
Degrees of Freedom 14,890 14,882

Shading indicates failed t-statistics at 95% confidence level.

Norwalk is base case.

Table 25. Paired t-tests between Group Constants

Group 1 Group2 Group 3 Group 4
Group 2 23.12
Group 3 13.57 2.44
Group 4 20.84 34.80 26.72
Group 5 38.77 52.59 38.97 10.25
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Table 26. Paired t-tests between Group Slope Coefficients

Group 1 Group2 Group 3 Group 4
Group 2 19.88
Group 3 10.05 2.50 ,
Group 4 25.97 36.86 27.15
Group 5 47.85 58.01 40.61 11.59

The results of the re-estimation are shown in Table 27. Separation of the Branford site
produces a significantly better model than including the site in the Southwest region.
This is shown with the F-test comparison between the two Regional models below:

Fos,z,mssz =3.00
f= (2529.437 - 2457.523)/2
(2457.523/14882)

S > F.os,z,mssz

=217.74 (35)

The coefficients for the Branford site and West regions are significantly different
from each other. Results of paired t-tests (Table 28 and 29) between the regions showed
that the null hypothesis could not be rejected for the constants between the Capitol region
and West region. Their slope coefficients however, were shown to be significantly
different. Attributing the differences in the amount of peak spreading that occurs among
these regions to specific characteristics within each region is difficult. However, each of
these regions of the state in general have different labor forces or specific attributes that
may be affecting the amount of peak spreading that occurs. For example, a number of the
jobs in the Capitol region are comprised of Government and Insurance related jobs. The
Southeast has a large number of jobs relating to the support of the U.S. military. The
Southwest and West regions are the most densely populated parts of the state. The
Branford and Norwalk sites along the I-95 corridor possess unique attributes in an area of
the state that is highly congested and highly influenced by the New York City
metropolitan area. Clearly, different travel patterns and socioeconomic characteristics of
the travelers in these regions must exist from these regional differences alone. Although
it is beyond the scope of this project to clearly identify the distinguishing differences in
these regions, these observable differences and others like them are likely contributing to
the amount of peak spreading that occurs.

Best Model

These regional models are viewed as a better alternative to the Area type models,
which may not be as easily defined and supported as different regions of the state may be.
Therefore, the regional model was chosen as the "best" representation, and a new regional
model was run with separate variables for the reverse-commute direction. This allowed
each region's reverse-commute constant and slope coefficient to be estimated relative to
the commute direction in that region, rather than an aggregated difference estimated for
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all sites. Essentially, a unique model for each region in the commute and reverse-
commute direction of flow was estimated.

Results of the final model estimation are shown in Table 30. The estimation
showed that the reverse-commute constant for the Southeast and reverse-commute slope

correction coefficients for the Southeast and West regions were insignificant. Essentially

no difference is seen between the reverse-commute and commute directions of travel in
the Southeast region in terms of peak spreading. These variables were then excluded

from estimation and the results of final estimation are shown as the Final Model in Table

30.
Table 27. Regression Results: Final Regional Variables
Regional Model Final Regional Model
Coeff. t-statistic | Coeff. t-statistic
Constants (C)

Base 0.857 10.970 1.048 13.453
Dr -2.116 -21.535 -2.331 -23.929
CAPITOL -3.338 -43.057 -3.428 -44.741
SOUTHEAST -3.900 -37.694 -4.089 -39.831
SOUTHWEST -2.289 -25.437 - -
WEST - - -3.554 -32.328
BRANFORD - - -1.059 -9.928

Slopes (b)
X -7.144 -60.316 -7.409 -62.870
Xr 2477 14.439 29777 16.355
Xcap 6.157 51.529 6.287 53.250
Xsg 6.688 41.522 6.950 43.555
Xsw 3.842 26.909 - -
Xw 5.911 32.882
Xgr 1.918 11.396

Statistics

R-squared 0.465 0.480
SSR 2196.423 2268.337
SSE 2529.437 2457.523
F-statistic 1436.049 1248.759
Degrees of Freedom 14,884 14,882

Shading indicates failed t-statistics at 95% confidence level.

Norwalk is base case.
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Table 28. Paired t-tests between Final Regional Model Constants

Norwalk Capitol Southeast West
Capitol 44.74
Southeast 39.83
West 32.33 4.92
Branford 9.93 25.71 26.55 20.63

Table 29. Paired t-tests between Final Regional Model Slope

Coefficients
Norwalk Capitol Southeast West
Capitol 53.25
Southeast 43.56 5.37
West 32.88 2.46 5.74
Branford 11.40 30.02 27.89 20.12
Model Application

In explaining how one of the estimated models might be applied, it was decided to
use the Regional model since it is viewed to be the “best”. The best model is defined not
only by the amount of variation it explains, but how theoretically sound the variables are,
and the application effort that would be needed for production of peak hour link volumes.

The results from the Final Regional model can be simplified by adding the like
terms of each region to produce the constant C and slope coefficient & in the equation
shown below:

In(P~1)=C+bX (36)

For example, the calculation of the Capitol region's constant and slope coefficient in the
commute direction using the values in Table 30 is shown below:

C =1.205-3.656 = —2.451
b=~7.639+6.618 =-1.021

The Capitol region's constant and slope coefficient in the reverse commute
direction is then calculated by adding the reverse-commute constant and reverse-
commute slope coefficient to the commute direction. Simplifying for each region results
in the equations shown below:
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In(2 ~ ) vormarx =1.205-2.895D, —7.639X + 3.737X,

In(P — ) pranrorp = —0.486 —2.351D, —4.845X + 3.103.X,

In(P — L) ppsr =-2.373-1.003D, —1.652X (37)
In(P = Deypigor =—-2.451-1.233D, —1.021X + 0.801X,

In(P - ) sovmsmssr = —3.080 —0.403.X

where

Dr = 1, if the direction of flow is in the reverse-commute direction, otherwise 0 and,
Xg = X, if the direction of flow is in the reverse-commute direction, otherwise 0.

Note that because the reverse-commute constant and slope coefficient for the Southeast
sites are not significant, the variables Dz and Xz are excluded from the Southeast region
equation. Similarly, the reverse-commute slope coefficient for the West region is not
significant and is therefore excluded from the West region equation.

Since we are interested in obtaining the actual parameters to calculate the peak
factors, a transformation back to the original form of the equation is needed. This entails
taking the inverse log of both sides of the equation and moving the 1/4 back to the right
hand side of the equation:

P=1+qge® (38)
where
a=e°

The different model parameters for each region in the commute and reverse-commute
direction of flow are shown below in Tables 31 and 32, respectively.

The next step would be to calculate the factors for application after a peak period
(3-7 PM) equilibrium traffic assignment or after a factored daily assignment. Highway
link-specific peak factors would be computed based on the four-hour .X. For example, a
link in the Capitol region (commute direction) with an X of 0.75 would have a peaking
factor calculated as:

P =0.25+0.0862¢207) = 0290 (39)

This factor would then be applied to the peak period volume on that link to produce the
peak hour volume estimate.

To demonstrate the application, the parameter estimates for each site were applied
to an aggregate peak period volume/capacity ratio to predict the highest hourly volume
within the peak period. The aggregate peak period volume/capacity ratio for each site in
the commute and reverse-commute direction was computed using all observed weekday
traffic volume data for each site. The predicted ratio of peak hour to peak period volume
(P), as well as the predicted peak hour volumes (PHYV) are shown in Table 33, along with
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Table 30. Regression Results: Final Model
Final Regional Model | Final Model with only
with Separate Significant Variables
Directional Variables
for Each Region
Coeff. t-statistic | Coeff. t-statistic
Constants (C)
Base 1.205 7.243 1.205 7.231
CAPITOL -3.656 -21.218 -3.656 -21.183
SOUTHEAST -4.244 -23.669 -4.285 -23.870
WEST -3.595 -18.957 -3.578 -18.989
BRANFORD -1.691 -1.691 -7.806
CAPITOLggy -1.233 -1.233 -6.964
SOUTHEAS Trey -3.265 - -
WESTrey -0.776 -2.422 -1.003 -43.192
BRANFORDrggy -2.351 -11.127 2351 | -11.108
NORWALKRgy -2.895 -12.271 -2.895 -12.251
Slopes (b)
X -7.639 -32.321 -7.639 -32.268
Xcap 6.618 6.618 26.947
Xse 7.178 7.236 27.835
Xw 6.015 5.987 21.452
Xgr 2.794 2.794 8.855
Xrev.cap 0.801 0.801 2.504
XRreV.SE 4.489 - -
XreVv-w -0.410 - -
XREV-BR 3.103 3.103 8.960
XrEVNORW 3.737 3.737 9.844
Statistics
R-squared 0.487 0.486
SSR 2303.582 2295.078
SSE 2422.278 2430.782
F-statistic 744.482 877.904
Degrees of Freedom 14,874 14,877

Shading indicates failed t-statistics at 95% confidence level.

Norwalk is base case.
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Table 31. Commute Direction Parameters

Region a b
Norwalk 3.3368 -7.639
Branford 0.6151 -4.845
West (Newtown, Middlebury) 0.0932 -1.652
Capitol (W. Hartford, Wethersfield, Manchester, Enfield) | 0.0862 -1.021
Southeast (East Lyme, Groton) 0.0460 -0.403

Table 32. Reverse-Commute Direction Parameters

Region a b
Norwalk 0.1845 -3.902
Branford 0.0586 -1.742
West (Newtown, Middlebury) 0.0342 -1.652
Capitol (W. Hartford, Wethersfield, Manchester, Enfield) | 0.0251 -0.220
Southeast (East Lyme, Groton) 0.0460 -0.403

the observed average weekday daily traffic (4WDT), peak period volume (PPV), peak
period volume/capacity ratio (PPV/C), and parameters a and b. For comparison purposes
the observed peak hour volume and percent difference between the predicted and
observed peak hour volumes are shown.

For statewide application in general, regional boundaries would have to be
established along with a method to extract the peak period v/c ratios of the freeway links.
Factors are then calculated for each highway link and applied to the PM peak period
volume on that link, producing peak hour volume estimates of the highest hour within the
peak period. The final chapter offers conclusions from the research, along with ideas for
future variable testing.
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Chapter 7: CONCLUSIONS

Increasing the accuracy of peak hour forecasts is becoming ever more important,
as model outputs are commonly being used for quantitative analysis in a time of limited
highway budgets and increasing congestion. The research of peak spreading in
Connecticut presented here shows this is an important phenomenon that needs to be
addressed when predicting peak hour volumes. It is directed at enhancing existing
traditional four-step models that often predict peak hour flow on links as a fixed
percentage of the daily assignment.

The exponential model form chosen for estimation has several inherent
characteristics that are ideal for capturing the effects of increasing congestion. For one,
the rate of decrease in P gradually diminishes asymptotically as the level of congestion
increases. This resembles the diminishing benefit of moving out of the peak as the four-
hour volume approaches saturation.

An important factor for determining the extent of peak spreading is differentiating
between direction of flow, as the constant and v/c coefficient are significantly different
for the commute and reverse-commute directions. This is most likely due to the different
distributions of trip purposes between the commute and reverse commute direction, as the
commute direction probably consists of a higher percentage of work trips than the reverse
commute direction, which consists of more discretionary trips.

The extent of peak spreading among the study sites was shown to differ
substantially, which again emphasizes that the likelihood of a particular trip being made
during the peak hour is not identical for all trips, but varies according to the
characteristics of the trip and trip maker. Adding trip and site variables to the model was
intended to increase the model's ability to capture the variation in the likelihood of
making a trip in the peak hour.

Related research [11] has shown trip distance to be an important variable in
predicting the amount of peak spreading that occurs with increasing congestion. In this
research, trip variable testing included using internal to internal zone trip length and
elapsed trip time distributions at each site. Accurate trip length distributions for thru trips
and internal-external trips could not be calculated, resulting in these trips being
represented as a percentage of the overall trip making at a site. In addition to not being
able to create a trip length distribution for the internal-external trips, the overall
percentage of these trips at each site means something different among sites. For
instance, a large percentage of trips at the Enfield site are comprised of internal-external
trips. A large percentage of these trips are likely work trips and may be very similar to
those that are started and ended within the state. Therefore, separating the internal-
external trips from the internal-internal trips at the Enfield site is not the same as doing so
at the Wethersfield site where there is a much smaller percentage of these trips.
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Future research could focus on this dilemma by obtaining more accurate locations
for trip ends outside the state. This would allow for an overall trip length distribution to
be calculated without differentiating between the type of trip. A trip purpose variable
would be the primary source of capturing the differences in the type of trips at a site.
This is a desirable thing to do as the trip length distribution at a site was shown to be an
important factor in determining the amount of peak spreading that occurs. A site that has
a higher percentage of short trip lengths tends to have smaller peak hour to peak period
proportions at low levels of congestion than a site with a lower percentage of short trip
lengths.

Although the elapsed trip time distributions produced a better model fit, the
coefficients were inconsistent with respect to their signs and did not provide any
conclusions as to their effect on travel behavior. This inconsistency may be due to the
fact that these variables were created from a daily trip assignment, and may not be
representative of the peak period trip length distribution. For example, a majority of the
trips in the peak period are likely to be work trips; including the trip length distribution
on a 24 hour basis may change that trip length distribution depending on the trip length
characteristics of those trip purposes we are now including. Therefore, confidence in
using these variables is not as high as it would be had a peak period trip length
distribution been available.

Site variable testing showed that the number of lanes at a site and the relative
distance from a CBD for a given area to a site are good indicators of how the peak period
profile is distributed at low levels of congestion. A site that has more lanes will tend to
have higher peak hour to peak period proportions at low levels of congestion than a site
with fewer lanes. The distance from CBD variable is seen as a possible indicator of the
type of trips at a site and was shown to be significant in explaining scale and shape. The
LANES and CBD variables together also proved to be a good formulation with the
exception of the DISTCBDI and LANES combination, which demonstrated the high
correlation effect between the two. Other representations of the CBD variable were
explored with great success. The CBD variable was expressed categorically allowing
effects on both the intercept and slope, resulting in a much better model than when
forcing the variable to be in a linear association with the dependent variable. One
problem with the CBD variables is assigning links to their respective CBD. By definition
of the CBD and observation of the elapsed trip times at each site in a region, several CBD
associations were tested. Another problem with the CBD variable was defining the
ranges of CBD distance for which categorical variables could be tested.

However, the CBD variable proved to be important in formulating the Area type
and Regional Models. Area type and Regional variables were found to be the best in
explaining scale and shape as they tend to consider overall differences between areas or
regions rather than a single specific characteristic of the site or trip. In addition to be
explaining a great deal of variation, the area type and regional variables tend to be more
theoretically sound and more easily applicable.
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The Final Regional Model incorporates directional and regional factors that were
shown to influence the spreading of the peak. Including these variables improves the
transferability of model results to other highway links in Connecticut, so the model can
be applied in conjunction with the statewide travel forecasting model.

The transferability of the Area type model to other regions of the country is more
easily applicable than the regional model, which is more specific to application to the
Connecticut statewide forecasting model. A further study with additional data from other
states would likely focus on the Area type variables, as common area types such as rural,
suburban, and urban among states are more easily identified than regions. Finally, further
testing is suggested using a trip purpose distribution variable, preferably from a PM peak
period or factored daily assignment from PERFORM. This would also enable the trip
length and elapsed trip time variables to be revisited to determine if the daily distributions
used in this research are representative of the peak period.
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Appendix 1. Select Link File Names for Study Sites

ConnDOT ran select links for different trip purposes as well as with all purposes
combined. The “?7?” in “MEM?7?” is replaced with HBW, HBO, NHB, THRU, GM,
and TOT, representing the purposes of home-based work, home-based other, non-home-
based, thru trips, trucks, and the total trip table which is combination of these purposes.
The select links were also run by zone and town and can be identified by their extensions
of “130” and “197” respectively.

Interstate  |{Town Link |Direction| File |Trip Table
84 Middlebury |2556-2992 |East MEM?771 1
95 Branford 6774-6778 |North MEM7?7771 4
91 Enfield 7406-7482 |North MEM??71 6
84 Manchester | 7201-7300 {West MEM?7?1 7
84 W. Hartford | 5947-5952 [East MEM?771 8
91 Wethersfield| 6562-6532 |North MEM?772 1
95 Groton 8668-8669 [North MEM?772 2
95 East Lyme |7852-7837 |North MEM?772 3
84 Newtown 1920-2510 |East MEM?772 5
95 Norwalk 1613-1683 |North MEM?772 6
84 Middlebury |2992-2556 [West MEM?773 1
95 Branford 6778-6774 |South MEM?773 4
91 Enfield 7482-7406 |South MEM?773 6
84 Manchester | 7300-7201 |East MEM?773 7
84 W. Hartford | 5952-5947 (West MEM?773 8
91 Wethersfield| 6532-6562 [South . | MEM?774 1
95 Groton 8669-8668 |South MEM?774 2
95 East Lyme |7837-7852 {South MEM?7?74 3
84 Newtown |2510-1920 {West MEM?774 5
95 Norwalk 1683-1613 |South MEM?774 6
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Appendix 2. Computation of Internal-Internal (I-I) Trip Table
and Trip Length Frequency Distribution

The file "MEMTOT]1.130" is a select link analysis trip table produced by
CONNDOT, which contains the number of trips by origin-destination which transverse
over the study link. There are three other trips tables beside this one that contain links
used in this research. They are named MEMTOT2.130, MEMTOT3.130, and
MEMTOT4.130. The output matrix "INTERNL1.130 contains only I-I trips and is used
as an input file with the congested skim matrix to produce the trip length frequency
distribution.

$MATRIX UPDATE
$FILES
INPUT FILE = UPDIN, USER ID = $MEMTOT1.1308$
OUTPUT FILE = UPDOUT, USER ID = $INTERNL1.130$
SHEADERS
EXTRACTION OF INTERNAL TRIPS
REMOVAL OF EE, EI, AND IE TRIPS
$OPTIONS
PRINT TRIP ENDS
$PARAMETERS
$DATA
ORIGIN, T1, 1249-1300, R 0
ORIGIN, T2, 1249-1300, R 0
ORIGIN, T3, 1249-1300, R 0
ORIGIN, T4, 1249-1300, R 0
ORIGIN, T5, 1249-1300, R 0
ORIGIN, T6, 1249-1300, R 0
ORIGIN, T7, 1249-1300, R 0
ORIGIN, T8, 1249-1300, R 0
DESTINATION, T1, 1249-1300, R 0
DESTINATION, T2, 1249-1300, R 0
DESTINATION, T3, 1249-1300, R 0
DESTINATION, T4, 1249-1300, R 0
DESTINATION, T5, 1249-1300, R 0
DESTINATION, T6, 1249-1300, R 0
DESTINATION, T7, 1249-1300, R 0
DESTINATION, T8, 1249-1300, R 0
$END TP FUNCTION
$REPORT TRIP LENGTH FREQUENCY
$FILE
INPUT FILE = SKIM, USER ID = $SKIM90C.130%
INPUT FILE = VOLUME, USER ID = $SINTERNL1.130$
$HEADERS
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TRIP LENGTH FREQUENCIES FOR INTERNAL TRIPS
MEMTOT1
$SOPTIONS
ZERO INTRAZONALS
$PARAMETERS
IMPEDANCE = TIME 2
$END TP FUNCTION
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Appendix 3a. External Centroids Connected to Link Nodes

Study Site External Centroid | Connected to Node
1-84 East, Middlebury 1265 2556
I-84 West, Middlebury 1262 2992
1-95 North, Branford 1257 6774
I-95 South, Branford 1258 6778
1-91 North, Enfield 1283 7406
I-91 South, Enfield 1282 7482
I-84 West, Manchester 1284 7201
I-84 East, Manchester 1285 7300
1-84 East, W. Hartford 1280 5947
I-84 West, W. Hartford 1281 5952
I-91 North, Wethersfield 1278 6562
1-91 South, Wethersfield 1279 6532
1-95 North, Groton 1297 8668
1-95 South, Groton 1298 8669
I-95 North, East Lyme 1295 7852
1-95 South, East Lyme 1296 7837
I-84 East, Newtown 1254 1920
1-84 West, Newtown 1255 2510
I-95 North, Norwalk 1252 1613
I-95 South, Norwalk 1253 1683
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Appendix 3b. Computation of Elapsed Trip Times to Study Links and
Reporting of Trip Ends for use in Elapsed Trip Time Analysis

The file "UCONNPTH.96E" is the skim matrix produced with the external
centroids connected to nodes at each study link. The MATRIX UPDATE function is run
for each study link in each direction by zeroing out the proper origins. The output file is
then reported.

$MATRIX UPDATE
$FILES
INPUT FILE = UPDIN, USER ID = $UCONNPTH.96E$
OUTPUT FILE = UPDOUT, USER ID = $SLINKSKIM.96E$
$SHEADERS
ELAPSED TRIP TIME ANALYSIS
NORWALK, I-95 SOUTH, 1683-1613
$OPTIONS
$PARAMETERS
$DATA
DESTINATION, T3, 1-1252, R 0
DESTINATION, T3, 1254-1300, R 0
$END TP FUNCTION
$REPORT MATRIX
$FILE
INPUT FILE = RTABIN, USER ID = $LINKSKIM.96E$
$HEADERS
REPORTING ROW SUMS
NORWALK, 1-95 SOUTH, 1683-1613
$OPTIONS
PRINT TRIP ENDS
$PARAMETERS
SELECTED PURPOSES = 3
SELECTED IMPEDANCES = 3
SELECTED ZONES = 1-1300
$END TP FUNCTION

The file "INTERNLI1.130" is the file that was created for trip length distributions
and contains only internal to internal trips.

$REPORT MATRIX
$FILE

INPUT FILE = RTABIN, USER ID = $SINTERNL1.130$
$HEADERS

REPORTING I-I TRIPS FROM SELECT LINK FILES
$OPTIONS
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PRINT TRIP ENDS
$PARAMETERS

SELECTED PURPOSES = 1,4,6,7,8
$END TP FUNCTION
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