PB2000-102910

A

Neural Network Computing Model
| for
Highway Construction Project
Scheduling and Management

by

Hojjat Adeli
Professor
The Ohio State University

Sponsored by
Ohio Department of Transportation
and

RRRRRRRRRRRRR

National Technical Information Service
Springfield, Virginia 22161

1. Repart No. 2. Govemment Accession No. 3. Racipient's Catalog No.
FHWA/OH-99/010
4. Title and Subtitie 5. Report Date

Neural Network Computing Maodel for Highway Construction Project |October, 1999

Scheduling and Management 8. Performing Organization Cada

8. Performing Organization Report No.

7. Author(s)

Hojjat Adeli

10. Work Unit No. (TRAIS)

9. Performing Organization Name and Address

11, Contract or Grant No.
The Ohio State University State Job No. 14634(0)
Department of Civil Engineering '

Columbus, OH 43215 13. Type of Report and Period Covered

Final Report

12. Sponsoring Agency Name and Address

Ohio Department of Transportation
1600 West Broad Street
Columbus, OH - 43223

14, Sponsoring Agency Code

15. Suppiementary Notes

Prepared in cooperation with the U.S. Department of Transportation, Federal Highway Administration

16. Abstract

A general mathematical formulation has been developed for scheduling of construction projects and applied to the
problem of highway construction scheduling. Repetitive and non-repetitive tasks, work continuity considerations,
multiple-crew strategies, and the effects of varying job conditions on the performance of a crew can be modeled.
An optimization formulation is presented for the construction project scheduling problem with the goal of
minimizing the direct construction cost. The nonlinear optimization problem is then solved by the recently
patented neural dynamics model of Adeli and Park (U.S. patent No. 5,815,394 issued on September 29, 1998). For
any given construction duration, the model yields the optimum construction schedule for minimum construction
cost automatically. By varying the construction duration, one can solve the cost-duration trade-off problem and
obtain the global optimum schedule and the corresponding minimum construction cost. The new construction
scheduling model provides the capabilities of both the CPM and LSM approaches. In addition, it provides features
desirable for repetitive projects such as highway construction and allows schedulers greater flexibility. It is
particularly suitable for studying the effects of change order on the construction cost. An object-oriented (00)
mnformation model has been developed for construction scheduling, cost optimization, and change order
management based on the new construction scheduling model. The OO model has been implemented in a
prototype software system for management of construction projects, called CONSCOM, in Visual C++.
CONSCOM is particularly suitable for highway construction change management. It can be used by the owner as

an intelligent decision support system in schedule reviews, progress monitoring, and cost-time trade-off analysis
for change order approval.

7. key worda Cchange order management, CONsSCLUCE LaIDesmegen Statement

scheduling, cost estimation, highway No Restrictions. This document is
construction, neural dynamics model of available to the public through the
Adeli and Park, neural network computing, {National Technical Information Service,
optimization Springfield, Virginia 22161

19. Security Classif. (of this report) 20. Security Classif. {of this page) 21. No. of Pages 22, Price
Unclassified Unclassified

Form DOT F 1700.7 (3-72) Reprod of completed page suthorized

Neural Network Computing Model for
Highway Construction Project Scheduling and Management

Principal Investigator: Hojjat Adeli, Professor, The Ohio State University

Executive Summary

A general mathematical formulation has been developed for scheduling of construction
projects and applied to the problem of highway construction scheduling. Repetitive and non-
repetitive tasks, work continuity considerations, multiple-crew strategies, and the effects of
varying job conditions on the performance of a crew can be modeled. An optimization
formulation is presented for the construction project scheduling problem with the goal of
minimizing the direct construction cost. The nonlinear optimization problem is then solved by
the recently patented neural dynamics model of Adeli and Park (United States patent number
5,815,394 issued on September 29, 1998). For any given construction duration, the model yields
the optimum construction schedule for minimum construction cost automatically. By varying the
construction duration, one can solve the cost-duration trade-off problem and obtain the global
optimum schedule and the corresponding minimum construction cost. The new construction
scheduling model provides the capabilities of both the CPM and LSM approaches. In addition, it
provides features desirable for repetitive projects such as highway construction and allows
schedulers greater flexibility. It is particularly suitable for studying the effects of change order on
the construction cost. This research provides the mathematical foundation for development of a
new generation of more general, flexible, and accurate construction scheduling systems.

Estimating the cost of a construction project is an important task in the management of
construction projects. Quality of the construction management depends on the accurate
estimation of the construction cost. Highway construction costs are very noisy and the noise is
the result of many unpredictable factors. A regularization neural network is formulated and a
neural network architecture is presented for estimating the cost of construction projects. The
model is applied to estimate the cost of reinforced concrete pavements as an example. The new
computational model is based on a solid mathematical foundation making the cost estimation
consistently more reliable and predictable. Moreover, the problem of noise in the data is taken
into account in a rational manner.

An object-oriented (OO) information model has been developed for construction
scheduling, cost optimization, and change order management based on the new construction
scheduling model developed in this work. The goal is to lay the foundation for a new generation
of flexible, powerful, maintainable, and reusable software system for the construction scheduling
problem. The model is presented as a domain-specific development framework using the
Microsoft Foundation Class (MFC) library and utilizing the software reuse feature of the
Jramework. The OO model has been implemented in a prototype software system for
management of construction projects, called CONSCOM, in Visual C++. CONSCOM is
particularly suitable for highway construction change management. It can be used by the owner
as an intelligent decision support system in schedule reviews, progress monitoring, and cost-time
trade-off analysis for change order approval. CONSCOM includes an integrated management
environment (IME) as its user interface for effective control and management of construction
projects.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE

Reproduced from
best available copy.

Neural Network Computing Model for
Highway Construction Project
Scheduling and Management

Principal Investigator

Hojjat Adeli
Professor
The Ohio State University

October 1999

Sponsored by
Ohio Department of Transportation
and
Federal Highway Administration

Prepared in Cooperation with the Ohio Department of Transportation and the U.S.
Department of Transportation, Federal Highway Administration

"The contents of this report reflect the views of the authors who are responsible for the facts and the
accuracy of the data presented herein. The contents do no necessarily reflect the official views or policies of
the Ohio Department of Transportation or the Federal Highway Administration. This report does not
constitute a standard, specification or regulation."

Summary and Organization of the Report

This report consists of five parts presented as five different manuscripts. In the first
manuscript a general mathematical formulation is presented for scheduling of construction
projects and applied to the problem of highway construction scheduling. Repetitive and non-
repetitive tasks, work continuity considerations, multiple-crew strategies, and the effects of
varying job conditions on the performance of a crew can be modeled. An optimization
formulation is presented for the construction project scheduling problem with the goal of
minimizing the direct construction cost. The nonlinear optimization problem is then solved by
the neural dynamics model recently patented by Adeli and Park (United States patent number
5,815,394 issued on September 29, 1998). For any given construction duration, the model yields
the optimum construction schedule for minimum construction cost automatically. By varying the
construction duration, one can solve the cost-duration trade-off problem and obtain the global
optimum schedule and the corresponding minimum construction cost. The new construction
scheduling model provides the capabilities of both the CPM and LSM approaches. In addition, it
provides features desirable for repetitive projects such as highway construction and allows
schedulers greater flexibility. It is particularly suitable for studying the effects of change order on
the construction cost. This research provides the mathematical foundation for development of a
new generation of more general, flexible, and accurate construction scheduling systems.

Estimating the cost of a construction project is an important task in the management of
construction projects. Quality of the construction management depends on the accurate
estimation of the construction cost. Highway construction costs are very noisy and the noise is
the result of many unpredictable factors. In the second manuscript, a regularization neural
network is formulated and a neural network architecture is presented for estimating the cost of
construction projects. The model is applied to estimate the cost of reinforced concrete pavements
as an example. The new computational model is based on a solid mathematical foundation
making the cost estimation consistently more reliable and predictable. Moreover, the problem of
noise in the data is taken into account in a rational manner.

In the third manuscript an object-oriented (OO) information model is presented for
construction scheduling, cost optimization, and change order management based on the new
construction scheduling model described in the first manuscript. The goal is to lay the foundation
for a new generation of flexible, powerful, maintainable, and reusable software system for the
construction scheduling problem. The model is presented as a domain-specific development
Jramework using the Microsoft Foundation Class (MFC) library and utilizing the software reuse
feature of the framework. The framework reuse architecture is more flexible and powerful than
other software reuse techniques such as components and patterns.

In the fourth manuscript the OO model has been implemented in a prototype software
system for management of construction projects, called CONSCOM, in Visual C++. CONSCOM
is particularly suitable for highway construction change management. It can be used by the
owner as an intelligent decision support system in schedule reviews, progress monitoring, and
cost-time trade-off analysis for change order approval. Finally, the last manuscript presents the
recent and innovative capabilities and features of CONSCOM including an integrated
management environment (IME) as its user interface for effective control and management of
construction projects. A highway construction project is presented to demonstrate the unique
modeling capabilities of CONSCOM that cannot be modeled by CPM or CPM-like networks.

SCHEDULING/COST OPTIMIZATION AND NEURAL DYNAMICS MODEL
FOR CONSTRUCTION PROJECTS

Hojjat Adeli' and Asim Karim®
Abstract: A general mathematical formulation is presented for scheduling of construction
projects and applied to the problem of highway construction scheduling. Repetitive and
non-repetitive tasks, work continuity considerations, multiple-crew strategies, and the
effects of varying job conditions on the performance of a crew can be modeled. An
optimization formulation is presented for the construction project scheduling problem with
the goal of minimizing the direct construction cost. The nonlinear optimization is then
solved by the neural dynamics model developed recently by Adeli and Park. For any given
construction duration, the model yields the optimum construction schedule for minimum
construction cost automatically. By varying the construction duration, one can solve the
cost-duration trade-off problem and obtain the global optimum schedule and the
corresponding minimum construction cost. The new construction scheduling model
provides the capabilities of both the CPM and LSM approaches. In addition, it provides
features desirable for repetitive projects such as highway c;,onstruction and allows
schedulers greater flexibility. It is particularly suitable for studying the effects of change
order on the construction cost. This research provides the mathematical foundation for
development of a new generation of more general, flexible, and accurate construction

scheduling systems.

'Professor, Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio
State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, Ohio 43210
’Graduate Research Associate, Dept. of Civil and Environmental Engineering and
Geodetic Science, The Ohio State University

INTRODUCTION

Most construction projects involve a combination of repetitive and non-repetitive
tasks. A typical example is highway construction in which tasks such as clearing and
grubbing are performed repeatedly over the length of the highway, and tasks such as site
office construction are carried out only once. Presently, traditional network scheduling
methods such as CPM and PERT are used for the scheduling and monitoring of such

projects. Despite their extensive use these methods have a number of shortcomings:

Network methods do not guarantee continuity of work in time which may result in

crews being idle.

e Multiple-crew strategies are difficult to implement in the network methods.

¢ The network diagram is not suitable for monitoring the progress of a project.

e Network methods do not provide an efficient structure for the representation of
repetitive tasks. All tasks are represented similarly and there is no consideration of the
location of work in the scheduling.

To overcome these shortcomings new approaches have been proposed in the literature
particularly for repetitive projects. Figure 1 presents a linear planning chart which is a
graph of location (distance) versus time for the work to be carried out. Such a planning
chart represents the progress of a task and can be used to monitor a project. The linear
planning chart (also called LSM diagram) motivated the development of linear scheduling
method (LSM). Selinger (1980) presented equations for the lines in a linear planning chart
assuming non-interference of crews and continuity of work. Johnston (1981) showed the

LSM is flexible and can be used to model most situations encountered in highway

construction projects. Using optimal control theory, Handa and Barcia (1986) formulated
the problem as an optimization one minimizing the project duration. These early LSM
models had limitations such as constant rate of production for each task, binding
continuity constraints, and no provisions for the use of multiple crews.

Russell and Caselton (1988) presented a dynamic programming formulation to
minimize the project duration. Their formulation can accommodate variable production
rates for each task and noﬁ-binding work coptinuity consiraints. Russell and Wong (1993)
described and showed the use of a general sche&uling" model developed by incorporating
the capabilities of CPM and LSM. In their model, each task is defined by a set of attributes
which are then linked together using general precedence conditions to form a schedule.

Highway construction projects are large projects in terms of capital requirement.
Minimizing cost is therefore a primary goal in the planning and scheduling of such
projects. Cost, however, is closely related to time. In general, direct project cost increases
with a decrease in project duration and this trade-off problem is complicated by the
number of variables involved. A computer model to automate the process of project direct
cost minimization is therefore highly desirable.

In the recent literature, direct cost optimization systems have been presented for LSM
and CPM. Reda's (1990) LSM model assumes constant production rate for each task and
binding constraints on work continuity. The cost-duration relationship for each task is
assumed to be linear. Liang et al. (1995) present a hybrid linear/integer programming
approach for handling a combination of discrete and linearly continuous cost-duration

relationship for tasks.

W

In this article, a general mathematical formulation is presented for scheduling of
construction projects. Various scheduling constraints are expressed mathematically. The
construction scheduling is posed as an optimization problem where project direct cost is
minimized for a given project duration assuming any combination of linear and nonlinear
task cost-duration relationships. The robust neural dynamics model developed recently by

Adeli and Park (1995a) is adapted for optimization.

COST-DURATION RELATIONSHIP OF A PROJECT

The major cost of a project consists of direct and indirect costs. The resources
allocated to each task of a project determine the direct cost. Indirect costs are overhead
costs. Additional costs may be incurred by the contractor in the form of damages if the
project is not completed on time. The dura{iqp of a project is obtained by sequencing
individual tasks whose durations are estimated from a knowledge of the resources
allocated to each task and the job conditions. Thus, cost and duration are intricately
related. Both of these parameters are of great importance to the contractor who strives to
minimize cost while at the same time satisfying the contractual requirements, the most
important of which is the completion deadline. Figure 2 shows the typical variation of
direct, indirect and total costs of a construction project with the project duration.
Assuming the sequencing constraints are not changed, the direct cost, in general, has an
inverse relationship with the duration of a construction project. The indirect cost increases

with an increase in the duration of the project. The total cost is the sum of these two and

can increase or decrease with duration. By solving the direct cost optimization problem for
various durations the global optimum solution can be obtained from Figure 2.

There is also an inverse relationship between direct cost and the duration of an
individual task. A scheduler estimates the time required to complete a task from the
resources allocated to it. This time is based on assumed labor and ecjuipmcnt productivity
rates ignoring the effects of varying job conditions. Depending on the options and the
availability of resources the scheduler has for each task, a cost-duration curve can be
constructed. This curve can be continuous or discrete. For efficient mathematical
formulation the discrete relationship is approximated by a continuous linear (Figure 3a) or
nonlinear (Figure 3b) curve. In this way a continuous variable optimization technique can
be used to solve the construction time-cost trade-off problem.

In highway construction, it is convenient to represent cost and duration of a task in
unit quantities of work. If d; is the time required to complete a unit quantity of work of
task ! :nd Wj; is the total quantitv of work reaunired in sezment ; of task i, then the actual
duration, Dy, can be expressed as:

Dy = ,d,Wy M
where ; is the job condition factor reflecting the effects of variable conditions such as

weather, soil conditions, terrain, site congestion, learning effects, etc.

FORMULATION OF THE SCHEDULING OPTIMIZATION PROBLEM
A general mathematical formulation of the scheduling problem is presented in this

section. The advantage of such a general formulation is that it can be specialized and

reduced for the solution of specific and perhaps less complicated scheduling problems.
Further, it can be effectively integrated with the general neural dynamics model for
solution of optimization problems developed by Adeli and Park (1995a).

Both non-repetitive and repetitive tasks are considered in the formulation. The non-
repetitive tasks correspond to the activities of the traditional network methods such as
CPM. A non-repetitive task involves no internal logic as it is performed only once. A
repetitive task, on the other hand, may have an elaborate internal logic that connects the
segments assigned to various crews. By specifying appropriate constraints, work
continuity considerations and multiple-crew strategies can be modeled. A crew rarely
performs at ideal productiv_ity throughout; its performance is affected by the varying job

conditions. This is included in our scheduling model by means of a factor, W, , which

modifies the ideal productivity of a crew to reflect the effect of the job conditions. The
external logic of each task is specified by means of a full set of precedence relationships
and/or stage (distance) and time buffers.

Development of the general scheduling formulation for a construction project such as

highway construction involves the following steps divided into three main categories

(headings) as follows:

Breakdown the work into tasks, crews, and segments

Step 1

Break down the project into Ny tasks. Identify non-repetitive and repetitive tasks. Let
Nnr and Ngr be the number of non-repetitive and repetitive tasks, respectively. If Ngr = 0,
skip steps 2 to 5 and go to step 6.

Step 2

For each repetitive task i, choose the number of crews to be used (N¢;). Non-repetitive
tasks have only one crew that performs over one segment only.
Step 3

Assign N% segments of the highway to crew k of repetitive task i. The segments are

chosen considering the job conditions and quantity of work required, factors affecting the
production rate. In addition, predetermined breaks in the work of a crew may influence the

choice of segments. The segments are not required to have equal lengths or constructed in

sequence. Each segment is identified by Z,.f and Z} , the beginning and ending distances

i
at which repetitive task i is performed by crew k over segment j. Note that each crew of a
task is assigned a unique set of segments; two crews cannot perform the same task over

the same portion of the highway.

Spécify the internal logic of repetitive tasks
For each crew of a repetitive task, do the following:
Step 4
Specify the work continuity relationship between segments j and j+1, in the

following form:

T +Dj + S} ST, @

where Tij" is the time at which crew & of task i starts work on segment J, DU'.‘ is the duration of

work for crew & of task i on segment j, and S; is the idle or slack time of crew k of task {

between segments j and j + 1. For continuity of work, S,.j? must be equal to zero. If a task has

only one crew skip step 5 and go to step 6.
Step 5

Defme the start of a crew with respect to previous crew(s). The following precedence
relationships of start-to-start, finish-to-finish, and start-to-finish are used:

Start-to-start (SS):

T + Ly <T, 3)
Finish-to-finish (FF):

Tyr + D, + L < Toe + D, 4
Start-to-finish (SF):

Ty +Lg STy, + Dy, ®)

i
:
where the superscripts / and & refer to the current and the previous crews, respectively; L,
Ly, LY, are the start-to-start, finish-to-finish, and start-to-finish time lags between crews k

and /, respectively. These time lags may be given as a function of quantity of work and/or time.
If more than one relationship is specified for a particular crew, only one will govern in the final

minimum cost schedule obtained from the optimization algorithm. This particular relationship

usually is not known in advance and all possible relationships have to be specified in the

optimization model.

Specify the external logic of repetitive and non-repetitive tasks
Step 6
Describe the sequencing of the tasks in the project. Each task can be linked with any
number of previous tasks by specifying one or more of the following precedence relationships:
Start-to-start (SS):
Ty + Ly, <T) ' 6)
Finish-to-start (FS):

Ty + Dy + Ly <T; k=1,..,Ng)

lN Si
Start-to-finish (SF) (is specified when the task has only one crew):

T'+ Lg; < le +D! I=1 ®

JN S
Finish-to-finish (FF) (is specified when both tasks have one crew only)

k k 1 1} —] =
Tw§,+Dw;.+LFFz;—T +D' k=1=1 &)

iNg
The quantities Lgsy, Lrsy, Lsry and Lgr; are the respective time lags between task j and a
previous task i. The FS relationship can be used to ensure continuity from one task to another

by specifying L =0. The relationships represented by Egs. (6)-(9) can also be written for

any given crew or segment of a task rather than the whole task. For example, consider the case

where crew B of task Y is the same as crew A of a previous task X. Crew B can start work only

after crew A has finished. Therefore, an FS relationship has to be specified between crew A of

task X and crew B of task Y.
Step 7

Define the space and/or time buffer between tasks. These constraints are essential if
interference of ciews on different tasks is to be prevented. If task i precedes task j by a distance

buffer By, , the following constraints have to be satisfied:

Z,(T;)+Bg < Z} k=1,...,Ny,n=1,..,Nk (10)
Z,(T, +D})+By, sz,.’;/ k=1,...,Ny,n=1..,N& (11)
Z; + By, < Z(T}) k=1,..,Ng,n=1,..,Nk (12)
Z4 + By, < Z,(T% + D) k=1,.,Ng,n=1..,N} (13)

The term Z,(T};) denotes the location of task i at the time T'f . For tasks with a constant

production rate during a segment of work, Z, (Tj’,‘,) is found by a linear interpolation between

’

the values at the start (Z;,) and the finish (Z,) of segment m performed by crew [of task i.

m

(T -T,XZ;, —Z},)
(T, +D,)-T;,

Z(Ty)=Z, + (14)

Similarly, if task i precedes task j by the time buffer By, , then we have the following

constraints:
7::+an ST;(Z:I) k=19-'-’Nci9n=1’---,N§i (15)
(Tx + D) + By S T(ZH) k=1,..,Ng,n=1,..,N§ (16)

10

10

11

T.(Z})+ B, <Tf k=1,.,Ng,n=1,.,Ng 17
T.(Z;,)+ By < (Tf + DY) k=1..,Ng,n=1..,Ng (18)
Likewise, T,(Z;,) is found by a linear interpolation between the starting time (7.) and the

stopping time (7;,, + D,) for segment m performed by crew { of task i.

Z, - Z,){@, +D;,)-T.}
(Zzlm —Zi[m)

T.(Z}) =T, +

(19)

The optimization problem can now be formulated as the minimization of direct cost

£
Ny Npr Nei N

Cp =D WC(d)+Y. Y S wrc,dh, (20)

i=1 i=l k-1 j=1
subject to the scheduling constraints (Eqgs. (2)-(13) and (15)-(18)), plus initial constraint
T, = const, 21

project duration constraints

T - Dk g pm= =L Np k=1, Ny, j = L., NE, (22)
task duration constraints

df)™ <d} <(dFym™ i=1,...,N;,k=1,...,Ng, (23)
and, non-negativity constraints

Ty, df 20 i=1,.,N,k=1..,Ng,j=1..N§, (24)

where C; is the direct cost per unit quantity of work for task #; d/ is the time required by crew
k of task i to complete a unit quantity of work based on resource allocation only; (d))™®,

(/)™ are the minimum and maximum possible values of d*, respectively; and D™ is the

11

maximum acceptable project duration. Note that in this formulation, Eq. (1) can be written for

each crew k of task i as:

x kyirk '
Dy = p;dW] (25)

ARTIFICIAL NEURAL NETWORKS AND SCHEDULING

Artificial neural networks (ANN) are a functional abstraction of the biological neural
structures of the central nervous system. Their cofrlputing abilities have been proven in the
fields of prediction and estimation, pattern recognition, and optimization (Adeli and Yeh, 1989;
Adeli and Zhang, 1993; Adeli and Hung, 1995; Adeli and Park, 1995a, b, c; Adeli and Park,
1996a). The use of ANN for solving scheduling problems has been reported in the recent
literature; however, practically all work is in the area of job-shop scheduling (Gulati et al.,
1987; Watanabe et al., 1993; Willems and Rooda, 1994; Pellerin and Herault, 1994; Foo et al.,
1995). Job-shop scheduling is a resource allocation problem in which n jobs have to be
scheduled on m machines (the resources) given their operation pattern. The performance
criterion is usually the minimization of work completion time. The aforementioned papers pose
the problem as an optimization problem and use the Hopfield network (Hopfield and Tank,
1985), or its variations, to solve the problem. The job-shop scheduling problem has been
formulated as linear programming (Chang and Nam, 1993), integer programming (Willems and
Rooda, 1994) and mixed integer programming (Foo et al., 1995). The ANN models presented
in these papers are specific to the particular problem considered. Also, it should be mentioned

that the job-shop scheduling problem is an NP-complete problem which requires exhaustive

12

enumeration for solution. Construction scheduling problems, on the other hand, should be
formulated as a constrained nonlinear mathematical programming problem.

Recently, Adeli and Park (1995a) developed a nonlinear neural dynamics model as a new
optimization technique for solution of complex optimization problems by integrating penalty
function method. Lyapunov stability theorem, Kuhn-Tucker conditions, and the neural
dynamics concept. The Lyapunov stability theorem guarantees that solutions of the
corresponding dynamic system (trajectories) for arbitrarily given starting points approach an
equilibrium point without increasing the value of the objective function. This guarantees global
convergence and robustness. But, it does not guarantee the equilibrium point is a local
minimum. The Kuhn-Tucker conditions are used to verify that the equilibrium point satisfies
the necessary conditions for a local minimum. The robustness of the model was demonstrated
by application to both linear (Park and Adeli, 1995) and nonlinear (Adeli and Park, 1995b)
structural optimization problems. Most recently, the model was applied to optimization of very
large structures including a 144-story super-high-rise building structure with over 20,000
members subjected to actual design specifications (Adeli and Park, 1996b).

An ANN model for the complete scheduling of construction projects has not been
presented in the literature. Alsugair and Chang (1994) used a backpropagation learning
network to capture human knowledge of allocating construction resources. The ANN
determines the size and number of equipment units required for earthmoving processes.
Mohammed et al. (1995) formulated the problem of optimally allocating available yearly
budget to bridge rehabilitation and replacement projects among a number of alternatives as an

optimization problem using the Hopfield network.

13

13

NEURAL DYNAMICS COST OPTIMIZATION MODEL FOR CONSTRUCTION

PROJECTS

Formulation
Defining X = {T;{,d1i=1,N;,k=1,N, j=1,N%) as the vector of decision variables,

the optimization problem can be written as:

Minimize

C, = fX) (26)
subject to inequality constraints

g;(X)<0 ji=L.J (27)
and equality constraints

h(X)=0 k=1,....K (28)

where g, (X) is the jth inequality constraint function, h, (X) is the kth equality constraint

function, J is the total number of inequality constraints, and X is the total number of equality

constraints. Using the exterior penalty function method, a pseudo-objective function is defined

as:

PX,r,)=f(X)+ %{Z [g; 0T + Y[k, <X)]“} (29)

j=t

where g7 (X) = max{0, g ;(X)}and r, is a penalty parameter magnifying constraint violations.

A dynamic system is defined as:
ax _ X = F(X) (30)
dt

14

where X = {X1 @), X,(®),.... X, (t)}T is the state vector tracing a trajectory in N-dimensional

space where the superscript 7 indicates the transpose of a vector and

™=

T Ng Ny
N = ZN 5+ ZNO. . The dynamic system evolves until it reaches an equilibrium point.
k=1

i=1 i=1

The stability of such an equilibrium point is ensured by satisfying the Lyapunov stability

theorem which states that a solution X to the system of differential equations X =0 is

stable if

- <0 for all non-zero X 3D

where V(X) is the Lyapunov functional defined as an analytic function of the state
variables such that V(0)=0 and V(X)>0 for all |X|>0 (Kolk and Lerman, 1992). The
objective (direct cost) function and the constraint functions in our construction cost
optimization model individually satisfy the conditions for a Lyapunov functional.
Therefore, the pseudo-objective function P defined by Eq. (29) is also a valid Lyapunov
functional, V.

Following Adeli and Park (1995a), by defining

. J K
% =X =-Vf(X)- r{z g;Vg,(X)+ Z hVh, (X)} (32)
j=1 k=1

where Vf(X), Vg ,(X), and Vh,(X) are the gradients of the objective function, the jth

inequality constraint, and kth equality constraint, respectively, the Lyapunov stability theorem

for the dynamic system is satisfied.

15

15

dv _(dv dX Lo S 2
== (ﬁj{?) = {Vf(X) + r{; g Vg, (X)+ ; thhk(X)H <0 (33)

Kuhn-Tucker optimality conditions:

oL ofx) J agj(X) K
—_—= + > u, + ¥ Ve
X, X, oy A g
g .(X)+s2=0; j=1,
J J

hk(X)=O; k=1,
$5.=0; =1,
ujsj Jj=1
.20; =1,
uj J=1

Ve = unrestricted in sign

constraint functions:

LX,u,v,s) = f(X)+ i ug,(X)+5s2]+ i Vel (X),
F1 k=1

16

oh p X)

multipliers corresponding to the jth inequality and kth equality constraint, respectively.

This also shows that the dynamic system evolves such that the value of the pseudo-objective

function always decreases. Equation (32) is in fact the learning rule of the neural dynamics

For an equilibrium point X to be a local optimum solution, we also need to satisfy the

34

(35

(36)

37

(38)

(39)

where L is the Lagrangian function defined as a linear combination of the objective and

(40)

in which s;is the slack term for the jth inequality constraint, and u ; and v, are the Lagrangian

16

Finally, the optimum solution to the direct cost optimization problem can be found by the
integration:

X = det. . (41)

This integration can be performed by the Euler or Runge-Kutta method.

Topological characteristics

The neural network topology for the neural dynamics construction cost optimization
model is shown in Figure 4. The nodes in the network represent the variables and
constraints of the problem. The variable layer has N nodes corresponding to the total
number of decision variables. The constraint nodes are divided into Nyr layers
corresponding to non-repetitive tasks, Ngr layers corresponding to repetitive tasks, and an
initial constraint node. Nodes are grouped within each layer into the constraint categories
described in a previous section. Variable and constraint nodes are fully interconnected
(interlayer connections). In addition, recurrent and irwa-layer conreacticns ars alen used to
be described shortly.

Associated with each connection is a weight whose magnitude and sign affect the
impulse the connected node will receive. Both excitatory (positive connection weights)
and inhibitory (negative connection weights) connections are used in our model. The
coefficients of the constraint functions are assigned to the excitatory connections from the
variable layer to the constraint nodes. The gradients of the constraint functions are
assigned to the inhibitory connections from the constraint nodes to the variable layer. The
gradients of the objective function are assigned to the recurrent inhibitory connections of

17

17

the variable layer. A weight of one is assigned to the intra-layer connections. This allows
the outputs of nodes in competition to be compared. It should be noted that all the
connection weights are fixed in magnitude and sign for a given problem.

The output of the variable layer is the current state vector X . As the coefficients of
the constraint functions are encoded in the excitatory connections from the variable layer
to the constraint nodes, the input to a constraint node is the magnitude of the constraint at
any given state, that is, g,(X) for an inequality constraint j, and h,(X) for an equality
constraint k. The output of a constraint node will depend on the type of the constraint it

represents. For an inequality constraint j, the output is:

0 when g .(X)<0
B 1. when g.(X) >0
and for an equality constraint k the output is:
0 hen £, (X) = 0
= when £, (X) @)
U Ae. Y when A, (X) = 0

Equations (42) and (43) represent the activation functions. They are chosen such that the
output of a constraint node is the penalized constraint violation. When more than one
equation is specified for a particular category of constraint, such as external logic
constraint, a competition is created between the outputs of the nodes in that group. For a

group of n nodes with outputs O, 0.5,---,0,,...,0,, such that
0y =max{0,,,0,,...,0,,...,0,,} (44)

The outputs after competition are as follows:

0, =0, and (45)

18

18

0,,0,,....,0, =0 (46)

* T cen

Let w;and w, be the connection weight from the jth and kth inequality and equality

constraint node, respectively, to the ith variable node and Y; be the weight of the recurrent
connection to a node i in the variable layer. Then, the input to the ith variable node is

given by:

L=+ w,0,+Y w0, 47)

K
Jj=1 k=1

The new value of the ith decision variable is obtained by the integration:

X1 = [Idt (48)

This integration is done by the Euler or the Runge-Kutta methods. In the construction cost
optimization problem we found the simple Euler method to yield accurate results.

The network operates until no change in the decision variables occur within a given
tolerance, that is, when X =0. X s the solution to the minimum direct cost construction

scheduling problem.

ILLUSTRATIVE EXAMPLE |

A 5 km-long two-lane highway construction project is used to illustrate the capabilities
of the computational model presented in this article. The work required is divided into 14
repetitive and non-repetitive tasks summarized in Table 1. Tasks 1 to 5 represent the
establishment of a temporary site office at the beginning of the 5 km long stretch. The

erection of an asphalt concrete plant at a distance of 2.5 km from the beginning of the

19

19

roadway (at the center of the project) is represented by tasks 6 and 7 (together with

portion of task 9).

Cost-duration relationship

The relationship between direct cost and duration for unit quantity of work for each
task is given in Table 2. The direct cost-duration relationship for task 2 (a linear
relationship) and task 10 (a nonlinear relationship) are shown in Figures 5 and 6 as

examples. An initial cost of $5000 and, thereafter, a daily cost of $500 is used as the

indirect cost for this example.

Scheduling logic

The way in which each task is performed and the logic in which the tasks are carried
out for a given project is not always well defined. Different schedulers may have different
ideas for breaking down and sequencing each task. Often schedulers are constrained by the
scheduling model available, forcing them to make simplifying assumptions. The flexible
computational model presented in this article, however, allows schedulers a greater
control over the progress of work and enables them to complete the job more efficiently.

Details of the breakdown of repetitive tasks into crews and segments, the start and
finish distances, the quantities of work required,. and the job condition factors for segments
of work are given in Table 3. A constant number (1000 m) is used as the start distance of

the project to avoid division by zero in the computation.

20

20

How the variation in the quantities of work and the job condition factors affect the
breakdown of tasks can be explained by the clear and grub operations represented by tasks
1 and 9. Figure 7 shows the areas that have to be cleared and grubbed and the type of
vegetation involved. Task 1 operates on vthe first 200 m of the roadway but also includes
the area for the site office. Task 9 covers the remaining length of the highway including
the site for the asphalt concrete plant. A new segment of work is required whenever there
is a change in the quantity of work required per unit length of the highway and/or a change
in the job condition factor. Each change will affect the production rate. To reflect such a
change a separate segment of work is defined. Whenever there is no such changes, such as
for task 14, there is no need to break down the work into smaller segments.

Base laying and paving operations (tasks 12 and 13) require material from the asphalt
concrete plant. Therefore, as the operation moves away from the plant more time will be
taken to do the same amount of work. In our example, we increased the time required for
operations beyond 1250 m from the plant by 5 percent indicated by the job condition
factor of 1.05. Instead of a step function, a continuous linear or nonlinear function may be
used for the job condition factor that will reflect the impact of increasing haul distances on
the rate of operation.

The internal logic of repetitive tasks is given in Table 4. Work continuity relationships

between segments of work and multiple-crew strategies are specified. Usually no slack

time (S,.f =0) is allowed between segments of the work of a crew. However, the slack

term can be any function of the decision variables. We use a nonlinear slack term to model

the continuity of work constraint of task 8 in the form:

21

21

S=1-B<10 (49)
where B < 1.0 is the fractional portion of the finishing time (starting time plus duration) of

the previous segment of work. For example, for a finishing time of 10 days and 2 hours

(10.25 days assuming 8 hours per day) B = 0.25. This insures that the work on the next

segment will start on the following day. As a result, adequate time is provided for the crew
to move from one location to the next. Multiple-crew strategies become important when
more than two crews are used.

Table 5 gives the external logic of tasks for the illustrative example. The external logic
of the first 5 tasks, which are non-repetitive, can also be shown by an activity-on-node
(AON) diagram (Figure 8). Standard precedence relationships, Egs. (6) to (9), are used to
link the tasks. The time lag term, however, may be any function of the decision variables.

The construction of a culvert cannot start unless the area has been cleared and grubbed.
Therefore, the external logic of task 8 requires that work on any culvert be delayed until the
crews of repetitive task 9 has worked through the corresponding location. A space buffer of
150 m is provided around earthmoving operations (task 10) to make sure adequate space is
available for the equipment. Tasks 12 and 13 cannot start before the completion of the asphalt

concrete plant. A minimum time buffer of 2 days is provided between tasks 11, 12, 13 and 14.

Solution of the problem

The direct cost optimization problem is solved for project durations of 60, 65, 70, 80, 90

and 100 days. The penalty parameter, r,, is taken as (Adeli and Park, 1995a):

22

22

n

r,=r,+— (50)
a

where r, is the initial penalty, n the iteration number and o is a positive number. Through this
relationship the penalty is increased gradually in each iteration to avoid the possibility of
numerical ill-conditioning. As stopping criteria, a change of less than $1 in the original objective
(direct cost) function and a maximum of 450 iterations are chosen. The convergence curves for
the solutions are given in Figure 9. Table 6 and Figure 10 show the variation of direct, indirect,
and total costs for different values of project duration. From Figure 10 and Table 6, a project
duration of 70 days leads to the minimum total cost. The final global optimum schedule is

shown as a linear planning chart in Figure 11.

CONCLUSION

A general formulation was presented for the scheduling of construction projects. Both
repetitive and non-repetitive tasks are considered in the formulation. By specifying appropriate
constraints, worklcontinuity considerations and multiple-crew strategies can be modeled. The
effects of varying job conditions on the performance of a crew is taken into account by
introducing a job conditions factor which modifies the task duration computed on the basis of
resource allocation only. This factor can be a constant, a linear, or a nonlinear function
depending on the complexity of the situation. An optimization formulation is presented for the
construction project scheduling problem with the goal of minimizing the direct construction
cost. Any linear or non-linear function can be used for task direct cost-duration relationships.

The nonlinear optimization problem is then solved by the neural dynamics model developed

23

23

recently by Adeli and Park (1995a). For any given construction duration, the model yields the
optimum construction schedule for the minimum construction direct cost automatically. By
varying this construction duration, one can solve the cost-duration trade-off problem and
obtain the global optimum schedule and the corresponding minimum construction cost.

The new scheduling construction model provides the capabilities of both CPM and LSM
approaches, In addition, it provides feature desirable for repetitive tasks such as highway
construction projects and allows schedulers greater flexibility in modeling construction projects
more accurately. In particular, it is suitable for studying the effects of change order on the
construction cost. The new scheduling model can be specialized for the solution of specific and

perhaps less complicated scheduling problems.

ACKNOWLEDGMENT

This manuscript is based on a research project sponsored by the Ohio Department of

Transportation and Federal Highway Administration.

24

24

APPENDIX 1. REFERENCES
Adeli, H. and Hung, S. L. (1995), Machine Learning--Neural Networks, Genetic Algorithms,

and Fuzzy Systems, John Wiley & Sons, Inc., New York, NY.

Adeli, H. and Park, H. S. (1995a), "A Neural Dynamics Model for Structural Optimization--

Theory," Computers and Structures, Vol.. 57, No. 1, pp. 383-390.

Adeli, H. and Park, H. S. (1995b), "Optimization of Space Structures by Neural Dynamics, "

Neural Networks, Vol. 8, No. S, pp. 769-781.

Adeli, H. and Park, H. S. (1995c), "Counterpropagation Neural Networks in Structural

Engineering," Journal of Structural Engineering, Vol. 121, No. 8, pp. 1205-1212.

Adeli, H. and Park, H. S. (1996a), "Hybrid CPN-Neural Dynamics Model for Discrete
Optimization of Steel Structures," Microcomputers in Civil Engineering, Vol. 11, No. 5, pp.

355-366.

Adeli, H. and Park, H. S. (1996b), "Fully Automated Design of Super-High-Rise Buildings
Structures by a Hybrid AI model on a Massively Parallel Machine," Al Magazine, Fall Issue,

pp. 87-93.

25

25

Adeli, H. and Yeb, C. (1989), "Perceptron Learning in Engineering Design," Microcomputers

in Civil Engineering, Vol. 4, No. 4, pp. 247-256.

Adeli, H. and Zhang, J. (1993), "An improved Perceptron Learning Algorithm," Neural,

Parallel, and Scientific Computations, Vol. 1, No. 2, pp. 141-152.

Alsugair, A. M. and Chang, D. Y. (1994), "An Artificial Neural Network Approach to
Allocating Construction Resources," Proceedings of the First Congress on Computing in Civil

Engineering, Washington, DC, June 20-22, Vol. 1, ASCE, New York, NY, pp-950-957.

Chang, S. H. and Nam, B. H. (1993), "Linear Programming Neural Networks for Job-Shop
Scheduling," Proceedings of the International Joint Conference on Neural Networks, Nagoya,

Japan, Oct. 25-29, Vol. 2, IEEE Press, New York, NY, pp- 1557-1560.

Foo, S. Y., Takefuji, Y. and Szu, H. (1995), "Scaling Properties of Neural Networks for Job-

Shop Scheduling," Neurocomputing, Vol. 8, No. 1, pp. 79-91.

Gulati, S., Iyengar, S. S., Toomarian, N., Protopopescu, V. and Barhen, J. (1987), "Nonlinear
Neural Networks for Deterministic Scheduling," IEEE First International Conference on

Neural Networks, San Diego, CA, June 21-24, Vol. IV, IEEE Press, New York, NY, pp.745-

752.

26

27

Handa, M. and Barcia, R. M. (1986), "Linear Scheduling Using Optimal Control Theory,"

Journal of Construction Engineering and Management, Vol.. 112, No. 3, pp. 387-393.

Hopfield, J. J. and Tank, D. W. (1985), ""Neural' Computations of Decisions in Optimization

Problems," Biological Cybernetics, Vol.. 52, No. 3, pp. 141-152.

Johnston, D. W. (1981), "Linear Scheduling Method for Highway Construction," Journal of

the Construction Division, ASCE, Vol.. 107, No. CO2, pp. 247-261.

Kolk, W. R. and Lerman, R. A. (1992), Nonlinear System Dynamics, Van Nostrand

Reinhold, New York, NY.

Liang, L., Burns, S. A. and Feng, C, -W. (1995), "Construction Time-Cost Trade-Off Analysis

Using LP/IP Hybrid Method," Journal of Construction Engineering and Management, Vol.

121, No. 4, pp. 446-454,

Mohammed, H. A., Abd El Halim, A. O. and Razagpur, A. G. (1995), '"Use of Neural
Networks in Bridge Management Systems," Transportation Research Record, No. 1490, pp.

1-8.

27

Park, H. S. and Adeli, H (1995), "A Neural Dynamics Model for Structural Optimization--
Application to Plastic Design of Structures," Computers and Structures, Vol.. 57, No. 3, pp.

391-400.

Pellerim, D. and Herault, J. (1994), "Scheduling with Neural Networks: Applications to

Timetable Construction," Neurocomputing, Vol.. 6, No. 4, pp. 419-442.

Reda, R. M. (1990), "RPM: Repetitive Project Modeling," Journal of Construction

Engineering and Management, Vol.. 116, No. 2, pp. 316-330.

Russell, A. D. and Caselton, W. F. (1988), "Extensions to Linear Scheduling Optimization,"

Journal of Construction Engineering and Management, Vol.. 114, No. 1, pp. 36-52.

Russell, A. D. and Wong, W. C. M. (1993), "New Generation of Planning Structures," Journal

of Construction Engineering and Management, Vol. 119, No. 2, pp. 196-214.

Selinger, S. (1980), "Construction Planning for Linear Projects," Journal of Construction

Division, ASCE, Vol.. 106, No. CO2, pp. 195-205.

Watanabe, T., Tokumaru, H. and Hashimoto, Y. (1993), "Job-Shop Scheduling Using Neural

Networks," Control Engineering Practice, Vol.. 1, No. 6, pp. 957-961.

28

28

Willems, T. M. and Rooda, J. E. (1994), "Neural Networks for Job-Shop Scheduling," Control

Engineering Practice, Vol.. 2, No. 1, pp. 31-39.

29

29

30

APPENDIX II. NOTATIONS

The following symbols are used in this paper:

By

Do
F(X)
8,;,(X)

h (X)

J

K

LX,u,v,s)

L

kl
LFFi

space (distance) buffer between tasks i and j;
time buffer between tasks i and j;

direct cost of executing unit quantity of work of task i;

total project direct cost;

duration per unit quantity of work of task i performed by crew & based
on resource allocation only;,

maximum possible value of df;

minimum possible value of d} ;

the actual duration of executing segment j by crew k of task i;

maximum acceptable project duration;

objective function;

Jth inequality constraint;

kth equality constraint;

number of inequality constraints;

number of equality constraints;

Lagrangian function;

finish-to-finish time lag between task jand a preceding task i;

finish-to-finish time lag between new crew ! and a previous crew k of

30

LFSij

Lsrij

NCi

Si

Nyr

Ngr

Nr
PX,r,)
I'n

Yo

31
task i;
finish-to-start time lag between task j and preceding task i
start-to-finish time lag between task j and a preceding
task f;
start-to-finish time lag between new crew [and a previous crew k of task 7;
start-to-start time lag between task j and a preceding task i;
start-to-start time lag between new crew [and a previous crew k of
task i;
number of decision variables;
number of crews used for task i;
number of segments over which crew k of task i performs;
number of non-repetitive tasks;
number of repetitive tasks;

number of tasks in the project;

pseudo-objective function;

penalty parameter;
initial value of the penalty parameter;
slack for the jth inequality constraint;

slack time;

idle or slack time of crew k after segment j of task i;

time at which crew k of task i starts work on segment

31

T.(Z})

Vi

V(X)

32
time of task i defined by location ZJ;
Lagrangian multiplier for the jth inequality constraint;
Lagrangian multiplier for the kth equality constraint;
Lyapunov function;
quantity of work required in segment j of task i;

vector of decision variables;

distance at which crew k of task i starts work on segment j;

distance at which crew & of task i finishes work on segment J;
location of task i defined by time T ;

parameter used in the slack term;

= job condition factor for segment j performed by crew k of task.

32

Table 1. The description and type of tasks in the illustrative example

Tas Description Type
#
1 Clear and grub site for temporary offices plus right-of-way | Non-repetitive
2 | Grade site for temporary offices Non-repetitive
3 | Erect temporary offices Non-repetitive
4 | Construct temporary roads Non-repetitive
5 | Move-in Non-repetitive
6 | Grade asphalt concrete plant site Non-repetitive
7 | Erect asphalt concrete plant Non-repetitive
8 | Construct culverts Repetitive
9 | Clear and grub right-of-way Repetitive
10 | Earthwork Repetitive
11 | Lay sub-base Repetitive
12 | Lay base Repetitive
13 | Pave Repetitive
14 | Finish shoulders Repetitive

Table 2. The direct cost-duration relationship for each task

Task # Direct cost-duration Range
relationship (days)
1 C =-300d +1050 1.0<d<15
2 C =-280d + 960 05<d<20
3 C =-200d + 250 0.25<d<0.50
4 C =-200d + 550 0.50<d <125
5 C =-150d + 550 1.0<d<£2.0
6 C =-280d + 960 05<d<20
7 C =-400d + 5700 5£d<8
8 C=1600/d 2<d<3
9 C =-300d +1050 1.05d<15
10 C =(1600+500d)/d 1.0<d<20
11 C =-200d +850 0.75<d <125
12 C =-200d +950 0.75<d <125
13 C =-200d + 900 0.75<d<1.25
14 C =-100d + 800 2<d<4

34

Table 3. Task details for the illustrative example

Task# | Crew# | Segment Distances Quantity Unit u
(m) of work
Start Finish

1 1 - 1000 1200 3 hectares 1.0
2 1 . 1000 1200 3 hectares 1.0
3 1 - 1000 1200 5 units 1.0
4 1 - 1000 1200 3 100 m 1.0
5 1 - 1000 1200 100 | percent 1.0
6 1 - 3500 3650 1.5 hectares 1.0
7 1 - 3500 3650 100 percent 1.0
8 1 1 1300 1305 1 culvert 1.0
2 2750 2755 1 culvert 1.0

3 5500 5505 1 culvert 1.0

9 1 1 1200 3000 4.5 hectares 1.0
2 3000 3500 . 1.25 hectares 1.1

3 3500 3650 1.875 hectares 1.1
4 3650 6000 5.875 hectares 1.15

10 1 1 1000 3000 10 1000 m’ 1.0
2 3000 3500 6 1000 m® 1.15
2 1 3500 5000 8 1000 m® 1.05

2 5000 6000 5 1000 m® 1.0

11 1 1 1000 2000 425 | 1000 m® 1.0
2 2000 4000 8.5 1000 m* 1.05

3 4000 6000 8.5 1000 m’ 1.0

12 1 1 3500 2250 2.6 1000 m’ 1.0
2 2250 1000 2.6 1000 m® 1.05

2 1 3500 4750 2.6 1000 m® 1.0
2 4750 6000 2.6 1000 m’ 1.05

13 1 1 3500 2250 1.25 | 1000 m’ 1.0
2 3250 1000 125 | 1000 m® 1.05

2 1 3500 4750 1.25 | 1000 m® 1.0
2 4750 6000 1.25 | 1000 m’ 1.05

14 1 1 1000 6000 3 hectares 1.0

35

Table 4. The internal logic of repetitive tasks

Task# | Crew # | Segment | Continuity Multiple-crew strategy
relationship
Predecessor Relationship
crew
8 1 1 - - -
2 S=1-p°
3 s=1-p°
9 1 1 - - -
2 S=0
3 S=0
4 S=0 - -
10 1 1 -
2 S=0 1 S§,L=0
2 1 -
2 S=0
11 1 1 - - -
2 S=0
3. §=0
12 1 1 - - -
2 S=0
2 1 - 1 FF,L=0
2 S=0
13 1 1 - - -
2 S=0
2 1 - 1 SS,L=0
2 S=0

* PB is the fractional portion of the finishing time of the previous segment of work

36

Table 5. The external logic of tasks

37

Task 8: Crew 1, Segment 1
Crew 1, Segment 2

Task 9 at 1300 m
Task 9 at 2750 m

-

-

-

Task Predecessor Relationship
Task 1
Task 2 Task 1 ES,L=0
Task 3 Task 2 SS,L=0
Task 4 FS,L=0
Task 4 ~ Task 2 FS,L=0.25D
Task 5 Task 3 FS,L=0
Task 6 Segment 3, Crew 1, Task9 | FS,L=0
Task 7 Task 6 FS,L=0
FS,L=0
FS,L=0
FS,L=0

Crew 1, Segment 3
Task 9
Task 10
Task 11
Task 12

Task 13
Task 14

Task 9 at 5500 m
Task 1

Task 9

Task 10

Task 7

Task 11

Task 12

Task 13

-

FS,L=0

Space buffer, B =150 m
Space buffer, B = 150 m
FS,L=0

Time buffer, B = 2 days
Time buffer, B = 2 days
Time buffer, B = 2 days

Table 6. The direct, indirect, and total costs variation for the illustrative example

Duration Direct cost Indirect cost Total cost
(days) (dollars) (dollars) (dollars)
60 94118 30000 124118
65 91215 32500 123715
70 87314 35000 122414
80 85742 40000 125742
90 85438 45000 130438
100 84411 50000 134411

10.

11.

39

LIST OF CAPTIONS FOR FIGURES

A linear planning chart

Typical variation of direct, indirect and total costs of a construction project
Direct cost-duration curve for unit quantity of task i

(a) Linear, (b) Nonlinear

The neural network topology for the neural dynamics cost optimization model
The linear direct cost-duration curve for unit quantity of task 2

The nonlinear direct cost-duration curve for unit quantity of task 10

The areas and types of vegetation that have to be cleared by tasks 1 and 9
Activity-on-node diagram for the first five tasks of the illustrative example
The direct cost convergence curves for the illustrative example

Time-cost trade-off curve for the illustrative example

The linear planning chart for the minimum total cost schedule

40

Time

Figure 1

dueISI(]

250000

200000

T

150000 - - - - - - eae o e e - [

Cost

100000

50000

25 30 35 40 45 50 55
Duration (days)

Figure 2

—e— Indirect Cost
—#— Direct Cost
—a— Total Cost

41

o~
3

Duration/Quantity of Work
Figure 3a

NI0AA Jo Kinpuen()/3so)) 11

43

Duration/Quantity of Work
Figure 3b

<

Ha0M Jo Ayueng)/)so)) 10211

Initial
constraint

External logic
constraint

Project
duration
constraint

Task duration
constraints

YA] :
o . : .“ n—l n' ,'. ..’)
AL X o Xy Hf

7 M /4

2

Non-
negativity
constraints

".-.\\V' K bl
N: Xy - /

=3 ~, Continuity
1] .
+’ constraints

?\\‘ Multiple-
L/ crew
strategy
constraints

External
logic
° constraint

¢, _z—« Project
. ~ 1 .
L duration

Variable
layer

Inhibitory connection
Excitatory connection

Interlayer connections
Intra-layer connection

Recurrent connection

Figure 4

N\ constraints

b ‘_ - ~
3 ™y) Task duration
r” .
b ~” constraints
?. - kN Non'
K Ny

.,/ hegatvity
constraints

44

45

2.5

1.5

Figure 5

Duration for unit quantity of work (days)

0.5

900
800 |- --]
700 -
400 +
300 F--ccc-s
200 +
100 t

(s1eqjop) 1502 320u1(

Direct cost (dollars)

2400

2200
2000
1800
1600
1400
1200

1000

Duration for unit quantity of work (days)

Figure 6

46

1000 m 1200 m 3000m 3500 m 3650m 6000 m

) O .

Right-of-way

Task 1 Task 9

Light vegetation with sparsely distributed trees
Light vegetation with closely spaced trees

Dense forest

Figure 7

47

Task 3
L=0 Errect temporary| L =0
offices
1.25<D<250
Task 1 L=0 Task 2 Task 5
Clear and grub == Grade area L=0 Move-in
30<D<45 15<D<6.0 10<D<20
L=0
Task 9 Task 4
Clear and grub Construct
(repetitive task) L =025D"| temporary roads
150<D<375
D = Duration in days
L = Lag in days
Figure 8

48

M

Direct cost (dollars)

300000

250000

200000

150000

100000

50000

Project durations

90 days ,

80 days __

__ 65 days

100 days

70 days

60 days

—
\d

1

l‘

1 | |

0 50

100

150 200 250

Iterations

Figure 9

300 350 400

450

49

Cost (dollars)

140000

120000

100000

80000

60000

40000

20000

50

70 80 90
Duration (days)

Figure 10

—e— Direct cost
—m— Indirect cost
—&— Total cost

50

6000
5500
5000
4500
4000
3500

Distance (m)

3000

2500

2000

1500

1000

Figure 11

REGULARIZATION NEURAL NETWORK MODEL FOR HIGHWAY
CONSTRUCTION COST ESTIMATION

Hojjat Adeli” and Mingyang Wu™

ABSTRACT: Estimating the cost of a construction project is an important task in the
management of construction projects. Quality of the construction management depends on
the accurate estimation of the construction cost. Highway construction costs are very
noisy and the noise is the result of many unpredictable factors. In this article, a
regularization neural network is formulated and a neural network architecture is presented
for estimating the cost of construction projects. The model is applied to estimate the cost
of reinforced concrete pavements as an example. The new computational model is based
on a solid mathematical foundation making the cost estimation consistently more reliable
and predictable. Further, the result of estimation from the regularization neural network
depends only on the training examples. It does not depend on the architecture of the
neural network, the learning parameters, and the number of iterations required for training

the system. Moreover, the problem of noise in the data is taken into account in a rational

manner.

* Professor, Department of Civil and Environmental Engineering and Geodetic Science,
The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, Ohio,
43210.

** Graduate Research Associate, Department of Civil and Environmental Engineering and

Geodetic Science, The Ohio State University.

52

1. INTRODUCTION

Estimating the cost of a construction project is an important task in the
management of construction projects. Quality of the construction management depends on
the accurate estimation of the construction cost. This task is currently performed by
“experienced” construction cost estimators in a highly subjective manner. Such a
subjective analysis is subject to human errors and varying results depending on who the
construction cost estimator is and possible litigation consequences.

Automating the process of construction cost estimation based on objective data is
highly desirable not only for improving the efficiency but also for removing the subjective
questionable human factors as much as possible. The problem is not amenable to
traditional problem solving approaches. The costs of construction materials, equipment,
and labor depend on numerous factors with no explicit mathematical model or rule for
price prediction. Recently, neural networks have been used for learning and prediction
problems with no explicit model such as securities price prediction (Hutchinson et al.,
1994), system identification (Narendra and Parthasarathy, 1990), engineering design
(Hung and Adeli, 1991), and image recognition (Adeli and Hung, 1995).

Several authors have discussed potential applications of neural networks in
construction in recent years. Moselhi et al. (1991) point out the potential applications of
neural networks in the general area of construction. Moselhi et al. (1993) used the

backpropagation neural networks (Hegazy et al., 1994) and the genetic algorithm (Adeli

53

and Hung, 1995) to develop a decision-support system to aid the contractors in preparing
bids. Backpropagation algorithm has also been used for estimating construction
productivity (Chao and Skibniewski, 1994), evaluation of new construction technology
acceptability (Chao and Skibniewski, 1995), and for condition rating of roadway pavement
sections (Eldin and Senouci, 1995). Kartam (1996) uses neural networks to determine
optimal equipment combinations for earthmoving operations. Pompe and Feelders (1997)
use neural networks to predict corporate bankruptcy.

Learning from previous data or examples, neural networks can make very
reasonable estimations without using specific experts and rules. As an example the price of
a concrete pavement is influenced by a number of factors including the quantity, the
dimension (thickness of the pavement), the local economic factors, and the year of the
construction. The problem to be investigated is whether using the values for these factors
obtained from the past construction projects a neural network model can estimate the
price of a future construction project accurately.

In this article, first the concepts ofl,estimation, learning, and noisy curve fitting are
described and formulated mathematically. Next, a special case of radial-based function
neural networks, called regularization neural network, is formulated for estimating the

cost of construction projects. Then, the model is applied to reinforced concrete pavement

cost estimation as an example.

2. ESTIMATION, LEARNING, AND NOISY CURVE FITTING

54

The most fundamental problem that neural networks have been used to solve is
learning.lBut, it is very difficult, if not impossible, to present a precise definition of
learning. In order to model learning computationally, however, it has to be defined in a
pragmatic manner rather than as an abstract concept. Learning can be defined as a self-
organizing process, a mapping process, an optimization process, or a decision making
process. The last definition is based on the observation that given a set of examples and a
stimulus one makes a decision about the response to the stimulus.

Consider the special case of supervised learning where the system is first trained by
a set of input-output examples. Then, given a new input the learner decides the output.
This is an ill-posed problem because the answer can be any multitude of values. The
selected answer depends on the generalization criteria or constraints chosen for the
decision process. The advantage of viewing the learning process as a decision making
process is its explicit representation of the generalization criteria.

An estimation problem can be formulated as a supervised learning problem.
Consider a one-input-one-output noisy system with input x and output y. The system can

be expressed mathematically as
y=fD+e (D

where f(x) is a function of the input variable x and e is an independent noise function with
zero mean. A set of input-output examples x; and yi (i = 1, 2, ..., N) is given. The
estimation problem is for any given input x find the best estimate of the output y. The best
estimate can be defined as the estimate that minimizes the average error between the real
and estimated outputs. Thus, such a supervised learning problem becomes equivalent to a

mapping or curve fitting problem in a multi-dimensional hyperspace. It must be pointed

55

out that the traditional statistical approaches to curve fitting such as the regression analysis
fail to rei:)resent problems with no explicit mathematical model ;"zccurately in a multi-
dimensional space of variables. The neural network approach, on the other hand, can solve
such problems more effectively.

Figure 1 shows a very simple example of curve fitting and learning. The dots
represent the example data points that include noise. The dashed line represents the
properly learned curve. The solid line represents the over-fitted learned curve. For this
curve, the training error is very small (because the learned curve passes through all the
training data points), but the estimation or generalization error is large. This is due to the
fact that the influence of the noise has not been taken into account at all. This problem is
referred to as overfitting which leads to less than satisfactory learning. Avoiding the
overfitting problem is very important for accurate estimation and learning.

A mathematical definition of learning is now formulated as a mapping
(generalization of curve-fitting) problem in a multi-dimensional hyperspace. A neural

network is designed to perform a nonlinear mapping function s from a p-dimensional input

space R® to a one-dimensional output space R'.

sSR” — R (2)
The set of N available input-output data can be described as
Input signal: X, €R?, i=1,2,...N
Example output signal: d eR', i=1,2,..N
5

‘ | wn
[oa)
I EE
Il I I N - S A T EE D BE D B B B e

i

Where x, = (xl‘,x;,---,xp

) is the ith example with p input attributes, (x. is the nth
attribute of the ith example.) and d, is the corresponding example output. The

approximation mapping function is denoted by F(x).
What is the best fir? This is an important question. Because of the existence of the

noise in the data examples, a perfect fit, that is when F(xi)z d;, usually is not the best

Jit. In this case, the approximation function is often very curvy with numerous steep peaks
and valleys which leads to poor generalization. This is the overfitting problem mentioned
earlier. Two other fitting situations can also be recognized: underfitting with over-smooth
surfaces resulting in poor generalization and proper fitting. Only the last type of fitting can
lead to accurate generalization and estimation and this is the research challenge. A method
to achieve proper fitting will be discussed in the following sections.

Highway construction costs are affected by many factors, but only a few main
factors are usually recorded and can be considered in the mathematical modeling of the
cost estimation problem. As such, the highway construction data are very noisy and the
noise is the result of many unpredictable factors such as human judgmental factors,
random market fluctuations, and weather conditions. Consequently, finding a properly-
fitted approximation is extremely important. Otherwise, the predicted cost will have a
substantial error.

One approach to solve this problem is the multilayer feedforward backpropagation
neural network (Haykin, 1994). The problem with this approach is that the generalization
properties (underfitted, overfitted, or properly fitted) depend on many factors including

the architecture (number of hidden layers and number of nodes in the hidden layers), initial

57

weights of the links connecting the nodes, and number of iterations for training the system.

The perférmance of the algorithm depends highly on the selection of these parameters.
The problem of arbitrary trial-and-error selection of the learning and momentum ratios
encountered in the momentum backpropagation learning algorithm can be circumvented
by the adaptive conjugate gradient learning algorithm developed by Adeli and Hung
(1994). But, that algorithm does not address the issue of noise in the data. In the highway
construction estimation problem, the data has substantial noise and the neural network
algorithm must be able to address the issue of noise in the data properly. In this article we
employ a neural network architecture called regularization network to obtain properly

fitted approximation function and solve the construction estimation problem accurately.

3. REGULARIZATION NETWORKS

According to the regularizationvtheory (Tikhonov and Arsenin, 1977; Haykin,
1994), the approximation mapping function F is determined by minimizing an error
function, E(F), consisting of two terms in the following form:

E(F)=E (F)+E(F) (3)
The first term is the standard error term measuring the error between the sample example

response d¢; and the corresponding computed response o, and is defined as follows:

N N
E,(F) =%Z(d; o,)2 =%Z[di *F(Xi)]?' (4

As discussed above, the perfect fit may not be the best answer due to the noise in the data.

In order to overcome the overfitting problem a regularization term is added to the

58

standard error term whose function is to smoothen the approximation function. This term

is defined as:
1 2
£.(F)=Ler S
where the symbol [g]| denotes the norm of function g(x)defined as:

Il = [s(0)T dvdx, dx, ©)

and P is a linear differential operator defined as (Poggio and Girosi, 1990; Al-Gwaiz,

1992):
HﬁW=§hMWMW ™

In Eq. (7), K is a positive integer, b,'s (k=0,1,...,K) are positive real numbers, and the

norm of the differential operator D* is defined as

|p*F| =l§ [Pr@fdodegae, . B ®)

The multi-index o = (Otl,ocz,---,oc p) is a sequence of non-negative integers whose order

P
is defined as |a|=) a,. In Eq. (8), the partial differential term inside the bracket is

i=]

deﬁned as

0" F(x)
3% F(x) = 9
= S ®

Therefore, the regulation term is:

EC(F)=%2K: [b FT dxdxy o, (10)

k=0 |a|=k

39

This function is simply the summation of the integrations of the partial derivatives of the
approximation function squared. As such, the regularization term is small when the

function is smooth because the derivatives tend to be small and vice versa.

2k

= kB'Z ¢ and K approaching infinity, where B is a positive real number, it

For b,

can be proven that by minimizing the error function, Eq. (3), with respect to the
approximation function, the solution of the problem can be written in the following form

(Poggio and Girosi, 1990):

N N
F(x) =z exp(BZ”‘(x|’)sziexp(—o”x-xi”Z) (11)
i=]
where © =—2%2— and w;'s are real numbers. Eq. (11) is a linear superposition of

multivariate Gaussian functions with centers x;'s located at the data points.

The architecture of the regularization network is shown schematically in Figure 2.
It consists of an input layer, a hidden layer, and an output layer. The number of nodes in
the input layer is equal to p, the number of input attributes. The number of nodes in the

hidden layer is equal to N, the number of training examples. The output node gives the

estimated construction cost.

The network shown in Figure 2 is a feedforward network. The nodes in the hidden

layer represent the nonlinear multivariate Gaussian activation functions

G.(x)= exp[—o”x -X ‘.”2] In other words, the output of the ith node in the hidden layer is

G, (x)= exp[—o”x -Xx [“2 } The input and hidden layers are fully connected. That means

every node in the hidden layer receives inputs from all the nodes in the input layer. The

60

links connecting the hidden layer to the output layer represent the weights w,'s in the
approximation function, Eq. (11).

The leaming process of the regularization network consists of two steps. In the
first step, the value of the parameter o in Eq. (11) is found by a cross-validation procedure
to be described in Section 5. The smoothness of the approximation function is primarily
controlled by this parameter. The smaller the value of o, the smoother the approximation

function will be. We will call © the smoothing parameter. In the second step, w;,'s are

found using the method described in next section.

4. DETERMINATION OF WEIGHTS OF THE REGULARIZATION NETWORK

The smoothing parameter ¢ and the weights w,'s depend on each other in a

complicated way and consequently must be calculated iteratively. In this section, a method

is presented for finding the weights w,'s. Defining the following matrices

d=[d,d,....d, | (12)

-

G(x;3%,) G(x3%;) ... G(x;5%y)
G(x13%,) G(X53%,) ... G(xy3xy)

G=) (13)

|G(xniX,) G(xXy3%,) - G(xy3xy)]

w=[w g | | (14)

10

61

where G(x,;xj)= exp[—c;“xi -X

jz], it can be shown that the solution of the

regularization problem, i.e.. the weightsw,'s, satisfies the following equation (Haykin,

1994):
(G+Dw=d (15)
where L is the Nx¥V identity matrix. If the matrix (G +1) is not ill-conditioned, the solution

of the linear equations represented by Eq. (15) can be solved by linear equation solvers
such as the Gauss-Jordan elimination or LU decomposition method. The NXN matrix

(G +1), however, is large and usually suffers from numerical ill-conditioning. This leads

to zero pivot in the Gauss-Jordan elimination method resulting in large errors in the

solution. The aforementioned approach was in fact employed in this research but without

any success. The elements of the optimum vector w were found to be very large due to

numerical instability.

To overcome the numerical ill-conditioning problem, a singular value
decomposition method is used to find the weights w;’s (Press et al., 1988). In this

approach, the matrix (G + I) is first decomposed as

G+I=UCVT | (16)
where U and V are N>V orthonormal matrices (i.e., UU=I and VV'=I) and C is an NxN
diagonal matrix with diagonal entries ¢,'s, called singular values, where

lcll 2]02[2---2]6N,.

Having found the matrices, U, V, and C, the weights vector can be found from

11

62

LU, -d
w = E[LJ-V@) (17
i=] C,‘
where U, i =1, ..., N, denotes the ith column of U and Vi, i=1, ..., N, denotes the

ith coluran of V. In Eq. (17), the summation is performed over J terms and not the entire
N terms in order to avoid numerical ill-conditioning due to division by very small numbers

and the truncation error. The terms c,'s in the denominator of Eq. (17) can not take very
small values. All of the singular values used in the Eq. (17) are greater than € = Ne ||,
where €, is the machine precision, and ¢, is the largest singular value. By selecting a
predetermined value for €, the small values of ¢,'s are excluded from the summation in
Eq. (17), and the summation is done over J terms such that [cil >¢g forany i<J and

;| <€ forany i>J.

5. PROPER GENERALIZATION AND ESTIMATION BY CROSS-VALIDATION

For proper solution of the problem and accurate estimation, a trade-off is
necessary between mininﬁzing the standard error term, Eq. (4), and smoothness of the
approximation function. As méntioned earlier, the smoothness of the approximation
function and the generalization properties of the network are influenced by the parameter
0. In order to obtain a proper value for ¢ a method used in statisﬁical pattern recognition
called cross-validation is employed in this research (Fukunaga, 1990).

In the cross-validation method, the available set of examples is divided randomly

into two sets, a training set (xf’,d,"), n=1,2,.. N and a validation set (x'v',df), n=1,

12

63

2, ..., N,, where subscripts t and v refer to training and validation sets, respectively, and N,

‘and N, are the numbers of training and validation examples, respectively. The network is

trained with the training set <xf’,d,"), n=1,2,.., N, using different values of o within a

given range. This range is problem-dependent and is determined by experience and

numerical experimentation.
For each value of o, the weights w;'s are found using Egs. (16) and (17) and an

average training error is calculated in the following form:

E, =\/§[d{' —F(x:‘)]z/N, . (18)

n=|

Next, using the validation set (x;’,d‘f), n=1,2, .., N, an average validation error is

calculated in the following form:

E, = \/i [ar - F(x?)]2 /NV . (18)

n=]

Typical trend relationships between the average training and validation errors and
the smoothing factor o are shown conceptually in Figure 3. The average training error
always decreases with an increase in the magnitude of ¢ for a numerically-stable
algorithm. In contrast, the average validation error curve does not have a continuously
decreasing trend. Rather, one can identify a minimum on this curve. As mentioned earlier
in the article, broadly-speaking a large o indicates overfitting and a small o indicates
underfitting. The & corresponding to the global minimum point on the validation curve

represents the properly-fitted estimation curve. The average validation error gives an

estimate of the estimation/prediction error.

13

04

6. IN PU'f AND OUTPUT NORMALIZATION

Because the regularization network uses spherically symmetric multivariate
Gaussian activation functions, to improve the performance, the input variables are
normalized so that they span similar ranges in the input space. The purpose of the
normalization is to ensure that all examples in the training set have similar influence in the
learned approximation function. In other words, it is statistically desirable to have
variables with zero mean and the same unit standard deviation. This can be achieved by

using the following change of variables and normalization procedure (Fukunaga, 1990):
gFr=2i N : (19)
where X, n =1, 2, ..., N, are the normalized input data, and

N
Zx,." fori=1,...,p (20)

2 1 = n —=\2 .
g, =—A—/'?1—2(xi —-xi> for z=],...,p (21)

n=1
are the means and standard deviations of the original set of variables.
The Gaussian activation function is maximum at its center (data point) and
approaches zero at large distances from the center. In other words, statistically speaking,
the use of the Gaussian activation function amounts to large output near the center (data

point) and zero output at large distances from the center where there is no data point. But,

14

65

the lack of data point does not necessarily mean the output is zero at large distances from
the available sample data points.

One may argue that it is not possible to make an accurate estimate at large
distances from the example data points. This is the well-known extrapolation problem.
While the regularization theory solves thé interpolation problem accurately it is not
concerned with the extrapolation problem. But, a practical estimation system should not
fail at the boundaries of the available data domain abruptly. Consequently, to improve the
estimation accuracy at large distances fjrom the available data points, first a linear trend
(hyperplane) is found through the example d;ta points by performing a linear regression
analysis. Next, the output data are normalized with respect to this hyperplane (the outputs
are measured from this plane instead of a zero base hyperplane). Finally, regularization

network is applied using the normalized data output. This process will bring the estimates

at large distances from the available data points close to the linear trend hyperplane.

N P 2
Mathematically, the function Z(d[’ - 2 aXx - aoj is minimized with respect to
n=|

i=]
linear parameters a;'s (i = 0,4,..., p) in order to find the linear trend hyperplane. This

hyperplane is represented by

14
y=Y a% +a, (22)
i=|

Then, the normalized output data are defined as

~ P
d"=d' -3 a% -a, forn=1,2,..,N. (23)
i=l

15

66

7. APPLICATION

Tﬁe computational models presented in this article have been implemented in the
programming language MATLAB (MathWorks, 1992) and applied to the problem of
estimating the cost of concrete pavements. The reason for selection of MATLAB is the
availability of a large number of built-in numeﬁcal analysis functions such as singular value
decomposition.

The data set was collected from the files of previous projects at the Ohio
Department of Transportation. It includes 242 examples of construction costs for
reinforced concrete pavements. The cost factors used in the examples are the quantity and

the dimension (thickness) of the pavement.

Example 1

In this example only the quantity information is used. The variation of the unit cost
versus the quantity is presented in Figure 4. Because the reinforced concrete pavement
quantity has a large variation the quantity scale in Figure 4 is a logarithmic scale. Figure 4
shows clearly that the highway construction cost data are very noisy.

The training set of 121 examples and the validation set of 121 examples are
selected randomly from the available 242 data examples. Variations of the average training
and validation errors with respect to the smoothing parameter o are shown in Figure 5.
The trend for both curves is similar to trends discussed in Section 5 and Figure 3. The
minimum point on the average validation error curve corresponds to ¢ = 0.8 which

represents the value needed for the proper generalization. The corresponding average

16

67

.. N . 3
training and validation errors for the unit cost of the concrete pavement are $6.45/m” and

$7.22/m’, respectively. For comparison, the average unit cost of the concrete pavement

for the 242 example data is $39.2/m>. Figures 6 shows the learned curve along with the

training and validation data sets.

Example 2

In this example, the quantity and the dimension (thickness of the pavement) are
used as input attributes. The unit cost versus the concrete pavement thickness for the 242
example data are shown in Figure 7. Similar to example 1, the data set is divided into 121
training and 121 validation examples. Variations of the average training and validation
errors with respect to the smoothing parameter ¢ are shown in Figure 8. The smoothing
parameter corresponding to the minimum point on the average validation error curve is
found to be 0=0.05. The corresponding average training and validation errors for the unit
cost of the concrete pavement are $6.3/m’> and 36.7/m’, respectively. The leamed
approximation function is a surface in a three-dimensional space. The average validation
error for this example is less than that of example 1. As the number of attributes is

increased the average validation error decreases which means the construction cost is

estimated more accurately.

8. CONCLUSION

In this article, a regularization neural network was presented for estimating the

cost of construction projects. The problem is formulated in terms of an error function

17

consisting of a standard error term and a regularization term. The purpose of the latter
term is té compensate for the overfitting problem and to improve the cost estimation
outside of the available data points.

The traditional regression analysis methods can fit the data only in certain types of
functions such as polynomial functions. Further, a major assumption is made that the data
must fit one of these functions. In the regularization neural networks approach presented
in this article, on the other hand, no assumption is made about the shape of the
approximation function to be learned. The only assumptions made are the continuity and
the general smoothness of the function.

The neural networks model presented in this article has the following major
advantages over other neural networks algorithms such as the backpropagation (BP)
neural networks:
¢ The regularization neural networks is based on a solid mathematical foundation. This

makes the cost estimation model consistently reliable and predictable.

* The result of estimation from the regularization neural network depends only on the

training examples. It does not depend on the architecture of the neural network (such
as the number of nodes in the hidden layer), the leaming parameters (such as the
learning and momentum ratios in the BP algorithm), and the number of iterations
required for training the system. As such, it can be said the regularization neural

network presented in this article is an objective cost estimator.

e The problem of noise in the data which is important in the highway construction cost

data is taken into account in a rational manner.

18

69

The generalization error of the regularization networks can be attributed to
insufficient data examples which can be improved by increasing the database of examples
from previous construction projects and intrinsic noise due to nonquantifiable and

unpredictable factors which is impossible to avoid.

ACKNOWLEDGMENT

This article is based on the research sponsored by Ohio Department of

Transportation and Federal Highway Administration.

19

70

71

APPENDIX I. REFERENCES

Adeli, H. and Hung, S.L. (1994), "An Adaptive Conjugate Gradient Learning Algorithm

for Efficient Training of Neural Networks", Applied Mathematics, Vol. 62, No. 1, pp. 81-

102.

Adeli, H. and Hung, S.L. (1995), Machine Learning — Neural Networks, Genetic

Algorithms, and Fuzzy Systems, John Wiley and Sons, New York, New York.
Al-Gwaiz, M.A. (1992), Theory of Distributions, Marcel Dekker, New York.

Bishop, Christopher M. (1995), "Neural Networks for Pattern Recognition", Clarendon

Press, Oxford, UK.

Chao, L.C. and Skibniewski, M.J. (1994), "Estimating Construction Productivity: Neural-

Network-Based Approach", Journal of Computing in Civil Engineering, Vol. 8, No. 2,

pp. 234-251.

Chao, L.C. and Skibniewski, M.J. (1995), "Neural Networks of Estimating Construction

Technology Acceptability", Journal of Construction Engineering and Management, Vol.

121, No. 1, pp. 130-142.

20

Eldin, N.N. and Senouci, A.B. (1995), “A Pavement Condition Rating Model using

Backpropagation Neural Networks”, Microcomputers in Civil Engineering, Vol. 10, No.

6, pp. 433-441.

Fukunaga, K. (1990), /ntroduction to Statistical Pattern Recognition, 2nd ed., Academic

Press, Boston, Massachusetts.

Haykin, S. (1994), Neural Nerworks: A Comprehensive Founa'atz'on; Macmillan College

Publishing Company, Inc., New York.

Hegazy, T., Fazio, P., and Moselhi, O. (1994), “Developing Practical Neural Network

Applications using Backpropagation”, Microcomputers in Civil Engineering, Vol. 9, No.

2, pp. 145-159.

Hung, S.L. and Adelj, H. (1991), "A Model of Perception Learning with a Hidden Layer

for Engineering Design", Neurocomputing, Vol. 3, No. 1, pp. 3-14.

Hutchinson, J.M., Lo, A. and Poggio, T., (1994), "A Nonparametric Approach to Pricing

and Hedging Derivative Securities Via Leaming Networks", MIT A.l. Memo No. 1471,

Cambridge, Massachusetts.

21

72

Kartam, N. (1996), “Neural Network - Spreadsheet Integration for Earthmoving

Operations, Microcomputers in Civil Engineering, Vol. 11, No. 4, pp. 283-288.

MathWorks, Inc. (1992), MATLAB, high-performance numeric computation and

visualization software : user's guide : for UNIX workstations, MathWorks, Inc., Natick,
g

Massachusetts.

Moselhi, O., Hegazy, T. and Fazio, P. (1991), "Neural Networks as Tools in

Construction", Journal of Construction Engineering and Management, Vol. 117, No. 4,

pp. 606-623.

Moselhi, O., Hegazy, T. and Fazio, P. (1993), "DBID: Analogy-Based DSS for bidding in
Construction", Journal of Construction Engineering and Management, Vol. 119, No. 3,

pp. +00-579.

Narendra, K.S. and Parthasarathy, K. (1990), "Identification and Control of Dynamical

System Using Neural Networks", IEEE Transactions on Neural Networks 1, 4-27.

Poggio, T. and Girosi, F. (1990), "Network for Approximation and Learning"

’

Proceedings of the IEEE, Vol. 78, No. 9, pp. 1481-1497.

22

73

74

Pompe, P.P.M. and Feelders, A.J. (1997) “Usmg machine learning and statistics to predict

corporate bankruptcy Microcomputers in Civil Engineering, Vol. 12, No. 4.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1988), Numerical

Recipes in C : The Art of Scientific Computing, Cambridge University Press, New York.

Tikhonov, A.N. and Arsenin, V.Y. (1977), Solution of Ill-posed Problems, W.H.

Winston, Washington, D.C..

23

APPENDIX II. NOTATIONS
a; : parameters obtained from the linear least-squares regression algorithm for output

normalization.

2
b, = P p
k!2

C : diagonal matrix in singular value decomposition.

¢; : singular values.
¢, : the largest singular value.
d : example output vector.

d; : example output corresponding to input examplex; = (xf X ,---,x;)

2,." : normalized output data.

e : independent noise function with zero mean.
E(F) : error function.

E_(F) : standard error term.

E_(F) : regularization term.

E, : average validation error.

E, : average training error.
F(x) : approximation mapping function.

g(x): nonlinear mapping function mapping a p-dimensional input space RP to a one-
dimensional output space R'.

G : Gaussian matrix.

24

75

G, (x)= éxp[—ollx - xl.Hz]
G(x,;xj)= exp[—c”x, = xjnz]

I': identity matrix.
N : number of data examples.
N,: number of training examples.

N, : number of validation examples.

0, : computing response corresponding to x, = (xf,x;,---,x")

P
P : linear differential operator in the regularization term.
p : dimension o f the input space (number of input attributes).

U : orthonormal matrixes in singular value decomposition.

U, : ith column of U.

V : orthonormal matrices in singular value decomposition.

V,, : ith columns of V.
s
w : weight vector.
i i i :
X, = (xl,xz,---,xp): input data.
x, : nth attribute of ith example input data.
X : normalized input data.

x; : mean for the ith input attribute.
o= (a Ppy,ee,d p) - a sequence of non-negative integers.

€= Nem,cll : threshold value for c;'s.

25

76

€, : machine precision.

m

O : smoothing parameter.

0, : standard deviation for the ith input attribute.

26

77

CAPTIONS OF FIGURES

Figure 1 :
Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:
Figure 7:

Figure 8:

Comparison of properly learned and over-fitted learned curve.

Architecture of regularization network for construction cost estimation.
Typical trend relationships between the average training and validation
errors and the smoothing factor o.

Unit cost versus quantity for the example data set.

The average training and validation errors for different values of & using
only quantity information.

Proper generalized learned curve and the training/validation data set.

Unit cost versus dimension for the example data set.
The average training and validation errors for different values of o using

quantity and dimension information.

1 ainbi4

79 .

sjuiod ejeq e
BAIND pauJIes| paplj-JonQ
®AINd paules| Apadold - —- -

(o]
[ew]

(Buiuiply Jo)) (UooWIYss o))
oid INAINO 1SOD) UOUONLSUOD

: i‘

UOWOZIIOULION {NdINO

uoyozpulousd INdinO

8 b. 4
LL P
L g
-+ 5
_ o
D]
s /-
3 3] 3 2 |
© O c
< g7 9
@) O " @ S & %
\‘/
N % 8 °
/)0\\
5 5 ! ><E xag_

UOWOZIIOULION {ndy|

T

elie’qRigle V]

Figure 2
Il B b b BN BN B O BE BN B D D B EBE B B B B Ee

¢ anby4

81

oug

10113 uonepije abelony ——
Jo113 Bujures| sbesony - - -

Il Bl bl I N B BN B S BN BE BN B TR B BB B e
p aunbiy

N
o0

(1818w 21qn2) Anuenp

000001} 00001} 0001 001 0] 3

T T T T O

1 01
| -
P 0¢ W..
O
° o P o %0, ooo PN @ww o} 1 og %
o %00 %50 0 B0° oo g 8o =
o 0° &8 2F oo%wwu@ o o q o =)
o %%o% oooan%o oooﬁu% oo o
o o oo0w® W%ow% %m oUmoo o oo 1ov &
090, & ®owdod ®BRo o =
o ®o a® o avo oo o & o -
o ° o o o o ° O
° oo ° o 105 &

000 o

cCw®o o 3
0,0 ooo o
° | o 100 3§

sjulod ejed ojdwex3 o 1 os

08

G ainbi4

83

O
007001} 000t 00°tL 010 100
_ _ _ 00'g
N 1 05°G
AN
~
N
// V
~
S. 1009 §
—— — . - - - m
~—— «Q
S~ —— ®
T T T e e e { 059 m
S
=
, {1002 &
80 . mul.“.
T o
{05z &
=2
3
§ o
JUIOd JOLIT UOHEPIEA WNWIUIN o 1008 g
lou3 buurel) ebelony — - -
10113 uonepirep abeloay 1 058
00'6

I IR N I B e N BN IS I BN R BN BN EE R AN e =
9 aunbiy
(1819w 21gN2) AMuenp

000000} 00000} 00001 000} 00! 0t I
T I 1 1 I O

!
o
laV}

!
o
(4p]

o
<
(4930w 21qn3LtR|IOP) 3509 JIUN

X < 0 1 0§
*a _unvm_ 8]
oD x
X , o X
g X X X 1 09
Sjulod ejeq 19g bujuies| o X
SJulod EjeQ 19S uoiepliep x
9AIND uoljewixoiddy pauiee| — 104

08

80

e o o o
et
£
(@}
0_ Cc O
O
iy
(4]
QO
e o 0O @ 00 oo
3
(48]
U><J 0o o0 owo o
o

00000 0 WOODTIOATEIID DO o

00® o @o
0 0 O 000OCOTOCOOEIIIICEID
o o o

| ! 1 1 { 1
o o o o o o
~ @ T} < %) N

(4338w 21qnoyre|iop) 1500 NUN

350

300

250

200

150

100

50

Thickness (mm)

85

Figure 7

Il I N I SN EE BN BN BE D B B D IBE O IEE B B Ea
g amnbi4

\O
e o]

000700} 0000t 00071 00to 0100 t00°0
T L} L ¥ oo-.v

«. N 1 05
S 100G

AN 1 05

~._ 1 009

TES S M ¢ e & e v e mee w wee w v

S0°0 1 069

1 00°L

1 0§62

JUlod J0M13 uolepljleA WNjWIUIN
10113 Bujutes] abelony - - - — 1 00'8
loug uoinepije abeiony ——

(1338w 21qna/ejjOp) J011T BbeIaAY

1 06'8

006

OBJECT-ORIENTED INFORMATION MODEL FOR CONSTRUCTION
PROJECT MANAGEMENT

Asim Karim' and Hojjat Adeli?, Fellow, ASCE

ABSTRACT: Recently, the authors developed a general and powerful mathematical
model for scheduling of the construction projects. An optimization formulation was
presented with the goal of minimizing the direct construction cost. The nonlinear
optimization problem was solved by the recently patented neural dynamics model of
Adeli and Park. In this article an object-oriented (OO) information model is presented for
construction scheduling, cost optimization, and change order management based on the
new construction scheduling model. The goal is to lay the foundation for a new
generation of flexible, powerful, maintainable, and reusable software system for the
solution of construction scheduling problem. The model is presented as a domain-specific
development framework using the Microéoft Foundation Class (MFC) library and
utilizing the software reuse feature of the framework. The framework reuse architecture
is more flexible and powerful than other reuse techniques such as components and
partterns. An accompanying article presents the implementation of the OO information

model in a prototype software system for management of construction projects, called

CONSCOM.

! Graduate Research Associate, Department of Civil and Environmental Engineering and Geodetic Science,
The Ohio State University.

? Professor, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State
University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, USA.

87

INTRODUCTION

Cha-mge in construction projects after bid are a common occurrence. Change orders
often lead to disputes between the owner and the contractor. These disputes are usually on
the issue of compensation for change. The lack of a consistent method of change order
management can result in long delays and costly legal battles.

Broadly, change in a construction project after bid may be required because of the
following reasons (Saunders, 1996):

* An error or inconsistency in the original specification or desi gn

* A change in the functional requirements of the project after bid

* An unforeseen or unknown condition requiring a change in the original construction
method and/or design.

Computer support for change order management, as reported in the literature, is
minimal. Leymeister et al. (1993) describe the use of databases to analyze and process
contractors’ direct cost payment requests. Their goal is to reduce the possibility of errors,
omissions, and duplication of claims made by the contractor. No support is provided for
determining the validity of the claims and/or their impact on the project. De Leon and
Knoke (1995) present a probabilistic procedure based on the critical path method (CPM) to
determine the extension needed for contract time as a result of changes. Impact of changes
on cost is not considered. Other recent publications on construction change order
management includes a survey of construction cost markups paid on direct cost as a result
of changes (Saunders, 1996) and a study of changes and their impact based on the survey of

private sector projects (Ibbs, 1997). These papers show the lack of a consistent and

(18]

88

sufficiently formal procedure for handling change orders in construction. In most cases the
change orders are handled somewhat arbitrarily.

The project schedule is the most important piece of information through which
progress can be monitored, change order effects studied, and owner/contractor conflicts
resolved. The contractor submits a schedule periodically to the owner as a statement of the
state of the work. A schedule is also submitted when a contractor claims a change order.
The owner has to check these schedules for correctness and approve them. A powerful
scheduling tool that does not restrict schedule-modeling options is desirable for this
process.

Recently, Adeli and Karim (1997) developed a general and powerful mathematical
model for scheduling of the construction projects. The model can handle various conditions
such as repetitive and non-repetitive tasks, work continuity considerations, multiple-crew
strategies, and the effects of varying job conditions on the performance of a crew. They
presented an optimization formulation for the construction project scheduling problem with
the goal of minimizing the direct construction cost. The nonlinear optimization problem is
then solved by the recently patented neural dynamics model of Adeli and Park (Adeli and
Park, 1996; Park and Adeli, 1997a,b). For any given construction duration, the model
yields the optimum construction schedule for minimum construction cost automatically. By
varying the construction duration, one can solve the cost-duration trade-off problem and
obtain the global optimum schedule and the corresponding minimum cons&uction cost.

In this paper an object-oriented information model is presented for construction
scheduling, cost optimization, and change order management based on the new

construction scheduling model of Adeli and Karim (1997). The model can be used by the

89

owner/client who has to approve any change order requests made by the contractor as well

as by the contractor. The model provides support for schedule generation and review, cost

estimation, and cost-time trade-off analysis. The model implemented in a software system

can be used as an intelligent decision support system to resolve change order conflicts.

OWNER ‘S ROLE IN CONSTRUCTION PROJECT MANAGEMENT

The majority of major construction projects are awarded by government agencies
such as state Departments of Transportation (DOT). These agencies are involved
throughout the life-cycle of a project from the conception of the project to its
maintenance and operation. The owner’s role from project conception to final award of
the contract and the phases involved are shown schematically in Figure 1. The only
significant change that has to be handled in this stage is that of scope change after work
has started on the detailed design and planning phases. Such changes can be handled
relatively easily and without significant additional costs.

After the contract is awarded, the owner is responsible for progress monitoring,
schedule reviews, change order management, and conflict management. Any change
occurring during this stage of the project life-cycle is bound to have a profound impact on
the project cost and duration. Furthermore, any such change has a potential to create a
conflict between the contractor and the owner on issues such as the compensation for
change. The major phases in change order management from the owner’s perspective are
presented in Figure 2.

The owner-contractor interaction during the change order involves a lot of

information exchange. The owner has to analyze this information carefully and make

90

intelligent decisions in a timely manner. An owner, such as a state DOT, has to protect its
interests while at the same time be fair to the contractor. A flexible computer support
system for change order can provide efficiency, consistency, reliability, and credibility to

the decision making process.

OBJECT ORIENTED METHODOLOGY AND CONSTRUCTION
ENGINEERING

Use of the object technology has gained increasing popularity in development of
flexible, maintainable, and reusable software systems (Yu and Adeli, 1991, 1993; Adeli
and Yu, 1993a,b; Adeli and Kao, 1996; Kao and Adeli, 1997). The basic concept of
object-orientation is the object that abstracts a real-world entity by encapsulating its
characteristics (data and functionality). An object provides an interface for
communication with other objects. Constructs such as inheritance and polymorphism
allow easy extension and reusability of previously developed objects. The object-oriented
methodology provides an information processing paradigm for efficient development and
management of complicated software systems.

Construction scheduling techniques have evolved slowly over the past decades.

- The critical path method (CPM), developed in the late 50’s, is still used despite its

shortcomings (Adeli and Karim, 1997). CPM is an easy technique but is based on many
simplifying assumptions in modeling construction projects. With the recent advances in
computer and information technology, however, more advanced énd powerful techniques
can be used to provide more accurate and realistic results efficiently. The newly-

developed scheduling/cost optimization model of Adeli and’ Karim (1997) is both more

91

general and flexible and provides the mathematical foundations for development of a new
generation» of construction scheduling software systems. The computational model is
compatible with CPM but provides additional features like multiple-crew support,
separate constructs for repetitive and non-repetitive tasks, time and space buffer
constraints, and the capability to model distance/locations of tasks in scheduling. Further,
it provides a robust cost optimization capability that can handle both linear and nonlinear
cost-duration relationships. Cost optimization of construction projects reported in the
literature is limited to CPM or CPM-like models of the project (Liu et al., 1995, Feng et
al., 1997). Such models can not model various construction projects such as highway
construction accurately.

Use of the object-oriented methodology in computer-integrated construction
(CIC) has been reported in the recent literature. However, most of this research is on

developing standard project information models to support concurrent engineering in the

architecture, engineering, and construction (AEC) industry (Fischer and Froese, 1996; -

Froese, 1996; Stumpf et al., 1996). A common characteristic of these models is their
emphasis on domain modeling with little discussion on computaticnal modeling. Froese
and Paulson (1994) present an object model-based project information system as a
standard information model for the AEC industry. System integration is achieved by a
shared object database. A construction scheduling application module is tested as an
example. Fischer and Aalami (1996) advocate the use of construction method knowledge
in the generation of construction schedules. They describe object models of the

construction methods that can dynamically link construction design and scheduling

information.

92

The object-oriented information model developed in this research for construction
scheduling; cost optimization, and change order management is implemented as an
application development framework in Visual C++, called CONSCOM. The use of
framework allows software design to be encoded in a reusable format for rapid
development of compatible software systems. As an example, an intelligent decision
making tool is developed that can be used by the owner in its dealings with a contractor.

Such a model can also be an important part of a concurrent engineering model! for the

AEC industry.

AN OBJECT-BASED INFORMATION MODEL FOR CONSTRUCTION
SCHEDULING, COST OPTIMIZATION AND CHANGE MANAGEMENT
How do we arrange objects to solve a particular problem keeping in mind the

goals of effective reusability, maintainability, and extensibility for complex software
systems? A number of different software designs and architectures have been proposed
for this fundamental software engineering problem. Broadly speaking, software design
involves developing architectures, techniques, and strategies for data handling and
manipulation, user-interface design, and program control. The software design decision
may be a major one like whether to use a relational or an OO database management
system, or it may be minor like what data type to use for a particular kind of data. A
software design approach with attractive aforementioned characteristics is the
Jframework-based design.

A framework is a collection of interacting and cooperating software components for

solving a generic category of tasks such as database management or user interface design

93

and/or a domain-specific task such as construction scheduling. In an OOP environment,
the compoﬁents can be connected through various constructs such as object references or
pointers. Software design decisions such as the construct to use to allow cooperation
between two components are captured by a framework in a reusable format. In addition
to the advantages gained by software reuse in general such as reduction in development
time and cost and increase in software reliability, encapsulating an OO model in a
framework leads to the following benefits:

* The OO model does not have to be reinterpreted and coded whenever a new software

application in the domain is developed.
 The use of frameworks leads to compatible software systems because each shares the
same underlying software design.
Software Reuse Techniques: Components, Design Patterns, and Frameworks
Reuse is a major concern in creating significant software systems. Effective reuse
techniques can reduce development and maintenance costs substantially. Reuse in
software engineering is not limited to code only. But rather, reuse encompasses
information and knowledge that has been gained over time including software
development methods and designs that have been tested and proven efficient (Jacobson et
al., 1992). Object-oriented technology provides a reusable software environment that can
take advantage of both design and code reuse. This is a primary advantage of the OO
technology.
The most common form of reuse is through the use of components. Components

can be regarded as software building blocks. As such, they raise the level of abstraction

for the developer who no longer has to worry about the low level implementation details.

94

Examples of components are subroutines in FORTRAN and classes in C++. Software
developmént using components involves coding the application architecture and control
and plugging in components whenever an appropriate one is available (Figure 3a). This
approach to software reuse has a number of limitations including: (1) Components only
reuse code; (2) components are not very flexible, that is, they are good at performing one
particular task only and can not be customized; and (3) components require a detailed and
problem-specific archiving plan. Even though components can be developed in an OOP
language their use requires a bottom-up approach, which is not desirable for object-
oriented software development. The concept of component reuse is shown in Figure 3a.
A major amount of programming is still required for application development including
lower level details; components just fill in for specialized tasks.

A pattern is a reusable software design (Gamma et al., 1995). Patterns abstract
commonly used tried and tested approaches in a descriptive format. The description
includes the problem statement, the motivation for and the intent of the solution, the
solution, the context in which the solution works, cost/benefit information, and important
implementation details and tips. The solution is usually presented in a graphical manner
that shows the static and dynamic relationships between the classes involved. A pattern

usually provides descriptive information. Whenever a pattern is used it has to be coded in

a programming language (Figure 3b). But this, in turn, makes patterns platform

independent and widely applicable. Few collections of patterns are available in the
current literature. Gamma et al. (1995) catalog general-purpose commonly recurring
software design patterns in software systems. More recently, Fowler (1997) surveys

software design patterns in the business, finance, and health care industry software

95

systems. Wﬁen widely recognized and adopted design patterns can improve software
reliability énd facilitate design communication and understanding.

Framework, an important concept in object-oriented reuse technology (Johnson,

1997; Demeyer et al., 1997; Rogers, 1997), consists of a set of inter-related abstract and
concrete classes that form the skeleton of an application in a particular domain. A
framework reuses software designs because it abstracts patterns and other software
design decisions. But unlike patterns, frameworks are expressed in code. They are
therefore simple or partially complete applications with common functionality and built-
in control. Software development using frameworks involves customizing the
frameworks for the particular application. One way to do this is by providing
implementations for the abstract classes (Figure 3c). A software application may make
use of more than one framework. The use of multiple frameworké may be required when,
for example, one framework depends on another for its working. Dependencies are
usually specified in the overall application architecture.

The framework approach to reuse in software engineering is more flexible and
extensible and hence more powerful than reuse through components. It also requires
lesser amount of coding because the common lower level details are already implemented
in the framework. Further, the use of frameworks results in compatible, manageable, and
extensible software systems. A significant distinction between application development
with components and that with frameworks is inversion of control (Gamma et al., 1995).
In a framework-based software system, the developer writes code that is called by the
framework. On the other hand, the developer”ivs responsible for calls to components in a

component-based approach. On the downside, practical framework design is iterative and

10

96

time consuming. Its use also requires good documentation and experience on the part of
the develoi)er (Schmidt and Fayad, 1997). However, these limitations are not unique to
frameworks but apply to all OO reuse techniques. Fichman and Kemerer (1997) present
case studies of OO reuse problems and lessons learned. Typical examples of frameworks
for generic tasks are the C++ Standard Template Library (STL) and the Microsoft
Foundation Class (MFC) library (Stepanov and Lee, 1995; Microsoft, 1997).

No research has been reported in the literature on the development and use of
domain-specific software frameworks in civil engineering.
Development Environment

A construction management application development framework is presented
using Microsoft Foundation Class (MFC) library (Microsoft, 1997). For object-oriented
programming in the Windows environment MFC is fast becoming the standard for
software development. MFC is a general-purpose application development framework.
The set of classes it provides abstracts the design and functionality of a simple Windows
application. An actual application is built by reusing and adding to MFC. MFC provides
basic application software design and control support, user-interface support, and limited

file storage/retrieval support. Further, MFC provides general support classes for data

handling and manipulation, and foundation classes for database management. A

simplified class diagram of the MFC library is shown in Figure 4. Note that in the MFC
convention, class names start with a capital C. The notation in this and figure is based on
the new standard Unified Modeling Language (UML) (Fowler and Scott, 1997). Classes

identified in Figure 4 are defined in Appendix L

11

97

The MFC library supports the single document, multiple view concept of
applicatior; design and control. The basic idea in this OO concept is the separation of the
application data (the document) from its visual presentation (the view). A document
object handles data processing, manipulation, storage, and integrity while data
presentation and user feedback control are managed by the view objects. This is
implemented by objects of classes derived from CDocTemplate, CDocument, and CView
(Figure 4). These are abstract classes and cannot be instantiated. Application program
control is provided by means of message maps which route Windows and user-generated
messages to the appropriate handling functions. For a class to be able to receive messages
it must be derived from CCmdTarger (Figure 4). This is also an abstract or virtual class. It
defines the interface for message processing. Each application must have a single global
instance of the class CWinApp (Figure 4). This class encapsulates the execution of an
application.

The user interface support classes abstract most of the common window elements
and their functionality. Classes in this category include those for frame windows, views,
dialog boxes, and control bars displayed on the viewing screen. The root of all the
window classes is CWnd (Figure 4). This class gives the common functionality to all
windows like dragging and resizing characteristics. To draw graphics on an output device
like a monitor screen MFC provides a device context abstraction in the class CDC and its
derivatives (Figure 4). These classes provide a common interface for output that is

independent of the type of device. By writing to the interface the output can be directed

to either a monitor or a printer, for example.

12

98

Other classes in the MFC library include those for file services like CFile and
CArchive,vexception handling like CException, simple data values like CString and
CPoint, data collections like CArray and CList, and database support like CDatabase and
CDaoDatabase (Figure 4).

A majority of classes in the MFC library are derived directly or indirectly form
class CObject. This virtual class provides support for a number of capabilities for its
derived classes including debugging and file input/output. Generally, application
software classes are also derived from the class CObject either directly or indirectly.

The MFC library is an abstraction of the Windows application development
interface (API). The Windows API is basically a non-OOP C-language interface that
provides nearly one thousand functions, messages, data structures, and data types needed
to program in the Windows environme_ﬁt. MFC encapsulates the most common
functionality of the API into an object-oriented interface and gives a more logical and
conceptual view to the API. However, it still retains the power and flexibility of the
underlying Windows API and makes it ava@lable to the software engineer. Development
of a complex software system using MFC iibrary requires some effort. This is because:
(1) MFC is a framework of classes that interact with one another. Understanding this
interaction is very important as an application program has to "hook" into the framework,

(2) MFC is rather large with about 200 classes, and (3) MFC provides an object-oriented
encapsulation only for the most simple cases. In more complex situations, the software

engineer has to develop an extension using the Windows API (Shepherd and Wingo,

1996).

13

99

FINAL COMMENTS
The OO information model and ideas presented in this article have been
implemented in a prototype software system for management of construction projects,

called CONSCOM, which is described in an accompanying article (Karim and Adeli,
1998).

ACKNOWLEDGMENT

This manuscript is based on a research project sponsored by the Ohio Department

of Transportation and Federal Highway Administration.

14

101

APPENDIX I. BRIEF DESCRIPTION OF CLASSES IN FIGURE 4
CArchive: -Provides data streamiﬁg support for input and output of objects from a
permanent storage.
CArray: Template-based array data structure.
CCmdTarget: Provides user- and system-generated message handling support.
CDatabase: Provides basjc database support.
CDC: Abstracts a device-context such as an output screen or a printer.
CDialog: Abstracts a dialog box display in the Windows environment.
CDocTemplate: Mariages document and screen views in an application.
CFrameWnd: Abstracts a frame window display in the Windows environment.
CGdiObject. Base class for graphic output objects such as brushes and pens.
CList. Template-based list data structure (a collection in which each element maintains a
pointer to its previous and next element).
CMap: Template-based map data structure (a collection in which each element is -
identified by a unique identification stﬁng).
CMenu: Abstracts a menu display in the Windows environment.
CObject: Provides support for debugging, diagnostics, dynamic object identification, and
serialization (object storage and retrieval).
CPen: Abstracts a pen object (for drawing) for output purposes.
CRecr: Encapsulates the coordinates of a rectangle
CString: Provides support for managing strings (collection of characters).
CView: Manages the display of the data on the viewing screen.

CWinApp: Encapsulates the execution of a single-threaded Windows application.

15

CWinThread: Encapsulates a single program thread (process in the operating system) in

the Windows environment.

CWhnd: The base class for all window elements (Provides common display functionality).

16

102

APPENDIX II. REFERENCES

Adeli, H. ‘;md Kao, W.-M. (1996), “Object-Oriented Blackboard Models for Integrated
Design of Steel Structures”, Computers and Structures, Vol. 61, No. 3, pp. 545-561.

Adeli, H and Kan'rn;A. (1997), "chheduling/Cosf Optimization and Neural Dynamics
Model for Construction," Journal of Construction Engineering and Management, ASCE,
Vol. 123, No. 4, pp. 450-458.

Adeli, H. and Park, H.S. (1996), “Hybrid CPN-Neural Dynamics Model for Discrete
Optimization of Steel Structures”, Microcomputers in Civil Engineering, Vol. 11, No. 3,
pp. 355-366.

Adeli, H. and Yu, G. (1993a), “An Object-Oriented Data Management Model for
Numerical Analysis in Computer-Aided Engineering”, Microcomputers in Civil
Engineering, Vol. 8, No. 3, pp. 199-209.

Adeli, H. and Yu, G. (1993b), “A Concurrent OOP Model for Computer-Aided
Engineering using Blackboard Architecture”, Jowrnal of Parallel Algorithms and
Applications, Vol. 1, No. 2, pp. 315-337.

Baumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D. and Zullighoven, H. (1997),
"Framework Development for Large Systems," Communications of the ACM, Vol. 40, No.
10, pp. 52-59.

De Leon, G. P. and Knoke, J. R. (1995), '"Probabilistic Analysis of Claims for Extensions
in the Contract Time," Computing in Civil Engineering, ASCE, New York, NY. Vol. 2, pp.
1513-1520.

Demeyer, S., Meijler, T. D., Nierstrasz, O. and Steyaert, P. (1997), “Design Guidelines for

‘Tailorable' Frameworks,” Communications of the ACM, Vol. 40, No. 10, pp. 60-64.

17

103

Feng, C. -W., Liu, L. and Burns, S. A. (1997), "Genetic Algorithms to Solve Construction
Time-Cost- Trade-Off Problems, " Journal of Computing in Civil Engineering, Vol. 11, No.
3, pp. 184-189.

Fischer, M. A. and Aalami, F. (1996), "Scheduling with Computer-Interpretable
Construction Method Models," Journal of Construction Engineering and Management,
ASCE, Vol. 122, No. 4, pp-337-347.

Fischer, M. and Froese, T. (1996), "Examples and Characteristics of Shared Project
Models," Journal of Computing in Civil Engineering, Vol. 10, No. 3, pp. 174-182.
Fichman, R. G. and Kemerer, C. F. (1997), Object Technology and Reuse: Lessons
Learned from Early Adopters," Computer, IEEE, Oct. 1997, pp. 47-59.

Fowler, M. (1997), Analysis Patterns: Reusable Object Models, Addison-Wesley
Longman, Inc., Reading, MA.

Fowler, M. and Scott, K. (1997), UML Distilled: Applying the Standard Object Modeling
Language, Addison-Wesley Longman, Inc., Reading, MA.

Froese, T. M. (1996), "Models of anstruction Process Information," Journal of
Construction Engineering and Management, Vol. 10, No. 3, pp. 183-193.

Froese, T. M. and Paulson, B. C., Jr. (1994), “OPIS: An Object Model-Based Project
Information System”, Microcomputers in Civil Engineering, Vol. 9, No. 1, pp. 13-28.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Publishing Company, Reading, MA
Ibbs, C. W. (1997), “Quantitative Impacts of Project Change: Size Issues,” Journal of

Construction Engineering and Management, ASCE, Vol. 23, No. 3, pp- 308-311.

18

Jacobson, [, Christerson, M., Jonsson, P. and Overgaard, G. (1992), Object-Oriented
Software E;zgineering: A Use Case Driven Approach, Addison-Wesley, New York, NY.
Johnson, R. E. (1997), “Frameworks = (Components + Patterns),” Communication of the
ACM, Vol. 40, No. 10, pp. 39-42.

Kao, W.-M. and Adeli, H. (1997), “Distributed Object-Oriented Blackboard Model for
Integrated Design of Steel Structures”, Microcomputers in Civil Engineering, Vol. 12, No.
2, pp. 141-155.

Karim, A. and Adeli, H. (1998), "CONSCOM: An OO Construction Scheduling and
Change Management System," Jou);nal of Construction Engineering and Management,
submitted.

Leymeister, D. J. Shah, D. and Jain, S. K. (1993), "Computer Application in Analyzing
Change Order Work," Proceedings of the Fifth International Conference on Computing in
Civil and Building Engineering, Anaheim, CA, June 7-9, ASCE, New York, NY, Vol. 1,
pp. 137-144.

Liu, L., Bumns, S. A. and Feng, C. -W. (1995), "Construction Time-Cost Trade-Off
Analysis Using LP/IP Hybrid Method," Journal of Construction Engineering and
Management, ASCE, Vol. 121, No. 4, pp. 446-454.

Microsoft (1997), Microsoft Visual C++ MFC Library Reference, Parts 1 and 2, Microsoft
Press, Redmond, WA.

Park, H.S. and Adeli, H. (1997a), “Data Parallel Neural Dynamics Model for Integrated
Design of Large Steel Structures”, Microcomputers in Civil Engineering, Vol. 12, No. 5,

pp. 311-326.

19

105

Park, H.S. and Adeli, H. (1997b), “Distributed Neural Dynamics Algorithms for

Optimization of Large Steel Structures”, Journal of Structural Engineering, ASCE, Vol.

123, No. 7, pp. 880-888.

Rogers, G. F. (1997), Framework-Based Software Development in C++, Prentice-Hall,

Inc., Upper Saddle River, NJ.

Saunders, H. (1996), "Survey of Change Order Markups," Practice Periodical on
Structural Design and Construction, ASCE, Vol. 1, No. 1, pp. 15-19.

Schmidt, D. C. and Fayad, M. E. (1997), Lessons Learned Building Reusable OO
Frameworks for Distributed Software," Communications of the ACM, Vol. 40, No. 10, pp.
85-87.

Shepherd, G. and Wingo, S. (1996), MFC Internals--Inside the Microsoft Foundation
Class Architecture, Addison-Wesley Developers Press, Reading, MA.

Stepanov, A. and Lee, M. (1995), The Standard Template Library, Hewlett-Packard
Laboritories.

Stumpf, A. L., Ganeshan, R., Chin, S. and Liu, L. Y. (1996), ""Object-Oriented Model for
Integrating Construction Product and Process Information," Journal of Computing in Civil
Engineering, Vol. 10, No. 3, pp. 204-212.

Yu, G. and Adeli, H. (1991), “Computer-Aided Design using Object-Oriented
Programming Paradigm and Blackboard Architecture”, Microcomputers in Civil
Engineering, Vol. 6, No. 3, pp. 177-189.

Yu, G. and Adeli, H. (1993), “Object-Oriented Finite Element Analysis using an EER

Model”, Journal of Structural Engineering, ASCE, Vol. 1 19, pp. 2763-2781.

20

LIST OF CAPTIONS FOR FIGURES

. Owner's role from project conception to final project award
. Project change order management (Owner's perspective)

. Software reuse techniques. (a) Using components, (b) Using patterns, (¢) Using

frameworks

. A simplified class diagram of the MFC library

107

Conception

Feasibility study

A

End

Preliminary planning
and design

Contract terms
and conditions

y

Bid evaluation

|

Contract
award

Figure 1

108

Project change order management

Time management | -

Cost management

Change identification and notification

[« Need for change realized
| » Change order request prepared
| = Request submitted for approval

Request analysis and decision making

Analysis

| o Time-cost analysis

| | o Cost-benefit analysis
| Decision making

| « Expert opinion

| o Formal procedure based on analyses and previous case histories

Records updating

Project information (type, location, total cost, etc)

Causes of change

Decision made
Effects of the change

109

Application software

appropriate
components

Application software

N
A
y
w
A
y
(o)

Use pattern(s)
implementatio

Component repository

(@)

Application software

Select
coded
pattern(s)

> D
> P

4 «>» 5 > 6
Use
framework
1 2 (> 3

Application framework

(©)

Pattern catalog

(b)

x Class x

& Pattern x
Selection/coding
ﬁ by the software

¢ Interaction

engineer

110

CObject
CCmdTarget -1 CDC
% . % * L J ®
— CWinThread " CWnd
ZE Z} - CGdiObject
CWindpp — CFrameWnd
T T
L 4 ® * L J []
[} [] L]
— CDocTemplate — CDialog
ZE ZE — CMenu
® L] [} * [] []
— | CDatabase
— CDocument — CView P
% — CArray - ']'
[J [J L J [} [J -
T
— CList - "
* [J] [] ® [} -——
| e
Application architecture and CMap]
user-interface design
- [] [J [}
CString CRect Graphics, file, database,
collections, etc
CArchive e o o
Miscellaneous Superclass
(Not derived from CObject) P
Legend . Z#
T,
Class Name Class Name Class Name ‘,‘ e o o Subclass
Concrete class ~ Abstractclass ~ Template class Several classes Generalization

Figure 4

111

CONSCOM: AN 0O CONSTRUCTION SCHEDULING AND CHANGE
MANAGEMENT SYSTEM

Asim Karim' and Hojjat Adeli’, Fellow, ASCE
1]

ABSTRACT: In an accompanying article, an object-oriented (OO) information model
was presented for construction scheduling, cost optimization, and change order
management based on creation of a domain-specific development framework. The
framework architecture is developed using generic software design elements, called
patterns, which provide effective low-level solutions for creating, organizing, and
maintaining objects. The OO model has been implemented in a prototype software
system for management of construction projects, called CONSCOM, using the Microsoft
- Foundation Class (MFC) library in Visual C++. CONSCOM is particularly suitable for
highway construction change order management. It can be used by the owner as an
intelligent decision support system in schedule reviews, progress monitoring, and cost-
time trade-off analysis for change order approval. The OO information model for
construction scheduling and cost management can be integrated into a concurrent

engineering model for the Architecture, Engineering, and Construction (AEC) industry.

INTRODUCTION

In an accompanying article, Karim and Adeli (1998) presented an object-oriented

(OO) information model for construction scheduling, cost optimization, and change order

! Graduate Research Associate, Department of Civil and Environmental Engineering and Geodetic Science,
The Ohio State University.

? Professor, Department of Civil and Environmental Engineering and Geodetic Science, The Ohio State
University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, USA.

112

management. In this article we present its implementation in a prototype software system

called CONSCQM (CONstruction Scheduling, Cost Optimization, and Change Order

Management.

CONSCOM APPLICATION ARCHITECTURE

Application development often requires the use of multiple specialized
frameworks. In the design of complex software systems, it is essential that the role of
each framework be defined accurately. Further, their dependencies must be clearly
outlined to avoid any conflicts. In this work, a layered approach is used (Baumer, et al.,
1997). This approach is based on high-level object decomposition and generalization of
the application domain. This results in self-contained modules that can be implemented
by one or more frameworks. Further, the apriori separation clearly outlines the scope of
the frameworks and avoids duplication of functionality in their development. Note that a
framework is a collection of cooperating classes relevant to a specific domain. Therefore,
a related subset of a framework's classes may also be called a framework. For example,
the MFC library is a framework but it can also be thought of as the collection of general-
purpose application architecture, user-interface, and data management frameworks.

The high-level application architecture for the construction management domain
is shown schematically in Figure 1. Three levels of abstraction are modeled. The
outermost layer is the shell layer. All other layers depend on and use the services of this
layer. Typically it provides commonly used data structures, mathematical functions,
client/server middleware (low-level transaction management software), and request

brokers (software that manages cooperation and communication among heterogeneous

software components) for distributed computing. The shell layer is closely linked to the
operating gystem, and its implementation in the form of frameworks is usually available
for most application development environments.

Depending on the shell layer is the productivity layer which is subdivided into
database and user-interface layers. The database layer provides an interface to the
applications for data management, storage, and retrieval. The frameworks in this layer
may support OO or relational database management under either a centralized or
distributed environment. The frameworks in the user-interface layer aid in the design of
user-friendly application/user interactions. Depending on both the shell and productivity
layers is the application domain layer which contains domain specific details. Generally,
this layer contains algorithms and models for the solution of problems in the domain. It is
often subdivided to further categorize and generalize the application domain
requirements. »One or more frameworks may be used to implement this layer.

Figure 2 shows a detailed view of the architecture in the form of a package
diagram. The notation used in this and all the subsequent figures is based on the new
standard Unified Modeling Languagé (UML) (Fowler and Scott, 1997). This diagram
shows the breakdown of the application into packages and their dependencies. A package
is a collection of related software elements. These elements may be classes, components,
or frameworks. In Figure 2, the packages represent collection of classes. The dashed-line
arrows indicate dependency of a package on another. A software dependency exists if aﬂy
change in a package requires a change in the dependent package. Note that software

dependencies are not transitive. That is, if package A depends on package B and package

114

B depends on package C, package A may not necessarily depend on package C in terms
of code im.plementation.

The application domain layer of the high-level architecture view is divided into
two packages: a Domain package and an Application package (Figure 2). This is done
because all application areas in construction scheduling, cost optimization, and
management share common domain information. A framework-based implementation of
this layer is presented in this article.

The Domain package provides a common information base for software
development in construction engineering. It contains organizational, construction
schedule, and construction cost software building blocks that encapsulate domain specific
knowledge and dependency logic in a reusable format. This layer depends on the "File
and database support” package and the "Miscellaneous support classes" package of the
MFC library.

The Application package ©..5 t+0 nested nackages: ['sev-intefoce and Modz! Ths
package Model is a collection of various computational models and methods in the
domain. This package depends on the Domain package and provides program logic and
control for the solution of specific problems in the domain. The package User interface
provides a unified user interface for the applications. This package depends strongly on
the general-purpose User interface and Graphics packages provided by the MFC library.

The MFC library is used for all general-purpose functionality required for the
development of CONSCOM. Software dependencies also exist between packages in the
MFC library. However, these are not shown in Figure 2 for simplicity. By factoring out

common concepts it is easier to maintain uniformity and consistency among applications

115

in an area. The software design détails of the domain-specific framework for construction

scheduliné, cost optimization and change order management (CONSCOM) is presented

in the following section.

THE CONSCOM FRAMEWORK

The CONSCOM framework is a white box-black box framework. A framework is
called a white box if it provides abstract cvlasses only and no concrete classes. Use of such
a framework requires the development and implementation of concrete classes that are
derived from the framework classes. This in turn requires an understanding of the
framework design. Hence, the name white-box. On the other hand, black box frameworks
provide default implementations that can be used directly with little or no change. The
CONSCOM framework has elements of both. It defines an interface that can be
implemented as desired. It also provides default implementations of the new problem
solving techniques in scheduling, cost optimization and, cost estimation (Adeli and
Karim, 1997; Adeli and Wu, 1998).

The CONSCOM framework is .b>ui1t using software patterns. This makes the
software design robust. Software patterns will also serve as documentation for the
framework (Odenthal and Quibeldey-Cirkel, 1997). However, most of the software
design patterns discovered and presented in the literature deal with generic situations as
opposed to domain-specific situations. Generic software patterns are usually low-level
software design ideas for creating, organizing, and maintaining objects. Domain-specific
patterns, on the other hand, are usually more elaborate and provide domain modeling

ideas. In the development of CONSCOM generic patterns are used when applicable. The

116

OO design principles are also exploited for cases where the documented patterns do not
provide a»solution. The software design concepts presented in this work for modeling
construction management problems can be generalized into domain-specific software
design patterns for construction management. In the following discussion software design
pattern names are identified in small caps.

Figures 3 and 4 show the classes in CONSCOM, their characteristics (abstract or
concrete), and their inheritance hierarchy. The classes in these figures correspond to the
Domain and Application packages, respectively. Brief description of classes in Figures 3
and 4 are given in Appendix . Most of the classes have the MFC class CObject as the
root to take advantage of the services it provides such as object storage and retrieval.
Note that most of the higher level classes are abstract. This is a fundamental design
concept in frameworks that allows customization through subclassing. The basic
framework (consisting of the abstract classes only) just provides an interface. Derived
classes bind the interface to a specific implementation. As will be described shortly, an
abstract class controls which implementation class is instantiated. Classes starting with
the prefix 'CI' are implementation classes for construction scheduling, cost optimization,
and cost estimation (Adeli and Karim, i997; Adeli and Wu, 1993).

The focal point in construction engineering and management is the construction
project. A project (construction or otherwise) is defined for every collection of related
activities that needs to be completed under certain constraints and hence needs to be
managed. Some key elements of a construction project are the proposed and implemented
plan of work, the cost and time reference, the cost estimate, and the descriptive progress

report. Effective management requires that a track record of all these information

117

elements be maintained. Figure 5 shows a class diagram of how this is modeled in
CONSCOM. Attributes and operations shown in Figure 5 to 11 are defined in Appendix
I1. The classes CProject, CPlan, CCostEstimate, and CProgressReport abstract their real-
world equivalents. Objects of each one of these classes are associated with a CVersion
object. Class CVersion maintains the current version number, the time of creation and last
update, and a pointer to the person or organization that made the last change. The class
CActor abstracts a role or job function. A project has several job functions associated
with it such as manager, contractor, and owner.

The class CProject plays the role of an abstract factory as described in the
software patten ABSTRACT FACTORY (Gamma et al., 1995). This software pattern
describes how to solve the problem of creating several related objects without explicitly
specifying their concrete classes. For example, class CProject only defines the interface
(NewPlan()) for creating a new plan (Figure 5). The subtype of CPlan object created will
depend on which concrete class of CProject is used. In Figure 5, CIProject creates
objects of class CIPlan. Therefore, the set of objects created will depend on which
'factory' is used. The method cr operation NewPlan() (and other new operations) in class
CProject represents a factory method as defined in the pattern FACTORY METHOD. This
pattern describes a technique to delegate the creation of an object to its concrete
subclasses. This technique uses the dynamic binding construct in OOP languages in order
to make it transparent to the user. The classes CProject, CPlan, CTask, CConstraint,
CCostEstimate, CProgressReport, and COptimizationProblem all providé a factory
method to isolate the object creation process from the user. The type of the object created

will depend on the class to which the pointer points. These classes are also the kot spots

118

of the CONSCOM framework. A hot spot represents a point of variability which can be
used to cuétomize the framework (Schmid, 1996, 1997).

Many individuals and organizations become associated with a construction
project throughout its life-span. However, in several situations no difference is made
between whether the associated party is an individual or an organization. For example,
the role of the project's owner may be played by either an individual or an organization.
Figure 6 shows how this concept is modeled in CONSCOM. This software design is
based on the PARTY pattern (Fowler, 1997). The class CParty abstracts characteristics
common to persons and organizations such as contact address and job function or role.

Effective representation of measurements is essential in any software system. The
construction engineering domain has a wide range of measurement types such as
distance, time, and volume. Further, a wide range of measurement units are used such as
hectares or squared meters for measuring areas. To maintain the integrity of the
measurement and the calculations based on them both the value and the unit of tha
measurement must be encapsulated in a single object. The class CQuantity (Figure 7a)
provides this functionality. It also allows conversion of a value from one unit to another.
This conversion is done transparently whenever any arithmetic or logical operators are
used on objects of CQuantity. In the CONSCOM framework all measurements are of
type CQuantity. Ratios for converting a value from one unit to another are maintained by

an object of class CConversionRatio (Figure 7b). Only one instance of CConversionRatio
is required. Multiple instances are not only unnecessary but they also create the problem

of data consistency maintenance among all the instances. To prevent multiple instances

119

of class CConversionRatio, it is designed as a singleton as defined in the software pattern
SINGLETOILI (Gamma et al. 1995).

The plan is the most significant element in the management of a construction
project. Traditionally, a plan is defined as the timetable of the tasks that needs to be
carried out. In other words, a plan tells us when each task will be executed in the future.
In this research a broader view of the construction plan is adopted. The construction plan
is considered to represent the current state _of the project. This includes the tasks that have
been completed, those that are in progréss, and those proposed to be carried out in the
future. Similarly a construction task may be a proposed task, a completed task, or an in-
progress task. Using these broader conceptual views it is possible to capture the state of
work at any given point in time. This is very important in change order management and
conflict resolution because comparisons can be made much more easily. Note that unless
a plan has been executed it can be scheduled and optimized no matter which state it is in.

Figure 8 shows how the construction plan and task are modeled in CONSCOM.
The classes CPlan and CTask are defined as generalization (subtypes) of the class
CAction. The class CAction abstracts the common characteristics in classes CPlan and
CTask and gives them similar interfaces. For exémple, both construction plans and tasks
have a time reference and both of them can be scheduled. To model this in software a
supertype is created which abstracts the common characteristics. A status variable
identifies which state a plan or task is in. The states relevant to construction management
are: Proposed, started, completed on-time, delayed, abandoned, and suspended. Each

object of class CAction is associated with a previous version of itself. This generates a

120

hierarchy that captures the history of changes that have occurred over time. Each object
of class CAction ensures that the previous version object pointed to is valid.
Construction task and plan have some similarities of behavior as described above.

A construction plan, however, is a collection of construction tasks. In a computer model
this structural difference must be hidden from the user when executing a common
behavior operation. Figure 8 shows how this is modeled in CONSCOM. The class CPlan
composes objects of class CActionReferen'_ce that holds a reference to a single object of
class CAcrion. The class CAction provides an interface for managing collection of
objects. These operations are only implemented in the composite class (CPlan) and not in
the child class (CTask). This design is based on the COMPOSITE pattern (Gamma et al.,
1995). The composition relationship between CPlan and CActionReference means that an
object of class CPlan owns objects of class CActionReference. In other words, the
creation and destruction of CActionReference objects depend on the CPlan object.

Creation of a CActionReference object by an object of CPlan (in Add(CAction a)) will

occur only when the CAction object a being added is not already present. This prevents a

CPlan object from having multiple references to the same CAction object. Note that with
the present software design it is also possible to model a plan that contains a combination
of both tasks and plans.

Scheduling constraints between CAction objects (tasks and/or plans) are modeled
by the CActionReference and CConstraint classes (Figure 8). The class CConstraint
encapsulates a single scheduling constraint between two objects of class CAction. It
provides an interface for calculating constraint violation and determining constraint

satisfaction. In CONSCOM, two concrete classes are provided which implement these

10

121

operations. The class CITimeConstraint models the precedence relation constraint, while
the classr CIBufferConstraint models time and distance buffer constraints. These
implementations are developed based on the general scheduling model of Adeli and
Karim (1997).

In construction scheduling accurate modeling of the construction task is essential.
A task may be repetitive or non-repetitive and, if it is repetitive, it may be executed by a
single crew or multiple crews, and/or it may require distance modeling. This latter
concept is essential in linear construction projects, such as highway construction. Also,
effective cost control requires that the resources required and used by a construction task
are accurately modeled. A mathematical model of these concepts is presented by Adeli
and Karim (1997). Its representation in CONSCOM is shown in Figure 9. The class
CCrew represents a construction crew. A segment or location of work for a crew is
encapsulated by the class CSegment. An object of class CSegment also encapsulates the
job conditions and quantity of work for that segment. Each CCrew object owns one or
more CSegment objects. However, two CSegment objects cannot have overlapping
locations. This constraint is enforced by the CCrew object that is creating the CSegment
object. The class CResource abstracts a construction resource such as construction
equipment and labor. Depénding on the productivity data for the resource a cost duration
relationship can be developed. This information is encapsulated by the class
CCostDurationRIn. The class CCost provides an interface for managing the construction
cost.

Decisions involving change order management and conflict resolution often

require cost comparisons among different versions and states of the construction project.

11

122

The scheduling/cost optimization model (Adeli and Karim, 1997) provides a
mathematical formulation to solve the construction project direct cost optimization
problem. The optimization model used is the patented neural dynamics model of Adeli
and Park (1996). This provides the basis for consistently reliable evaluation of the cost of
a project at any point in time. Figure 10 shows how the general neural dynamics model is
used to solve the problem of construction cost minimization. The class CNeuralDynamics
encapsulates the neural dynamics optimization algorithm. The class
COptimizationProblem defines the interface required for an optimization problem in
order to be solved by the neural dynamics model. In‘CONSCOM, the construction direct
cost optimization problem is defined by an object of type CPlan. The goal is to map this
problem (defined by an object of type CPlan) to another object that has an interface of
class COptimizationProblem. In this design two software patterns are used. The ADAPTER
(Gamma et al. 1995) pattern solves the problem of how to adapt one interface to another
and the TEMPLATE METHOD pattern solves the problem of how to choose and create the
correct adapter object. The Optimize() operation in CPlan is the template method. The
type of COptimizationProblem created depends on the implementation of the
CreateOptProb() operation. In the present case, the CIPlan object creates an object of
CIOptimizationProblem.

Figure 11 shows an example of how an MFC application document is associated
with the corresponding domain information. For example, class CProjectDoc
encapsulates an application document that contains construction project information. The

FACTORY METHOD pattern is again used to control which concrete subtype of CProject is

created.

12

123

A major concern of the construction project owner is the effective management of
change orders. A change order can be initiated by the contractor, the owner, the designer,

or any other stakeholder in the project. As a result of a change the contractor may claim
an extension in the project duration in addition to compensation for any additional work
required. To support its claim an updated schedule is submitted to the owner for review.
The owner's change order management process can be divided into two steps. First, a
qualitative review of the schedule is carried out to identify any omissions, errors,
inaccuracies, and non-compliance wifh the contract documents. Second, a quantitative
analysis is done to determine the impact of the change and its comparison with what is
being claimed by the contractor. Contractors often modify the schedule to exaggerate
their claims. Therefore, these steps must be executed with care and accuracy. Further,
consistency and reliability of the owner's decision is essential for it to be acceptable to the
contractor. The CONSCOM framework prdvides all these capabilities to automate and
expedite the decision of the project owner when faced with a change order.
The use case diagram for construction change order management is shown in
Figure 12. A use case diagram captures the users and their uses of a software system. A
Use case represents a requirement of a software system that must be satisfied. When faced
with a change order the owner's primary use of the system is decision support. This is
represented by the Change order management use case (Figure 12). The qualitative and
the quantitative steps of the change order management process are represented by the use
cases Review plan and Analyze Scenarios, respectively. The Review plan use case
involves a compliance check with the contract documents and a comparison with a

previous version of the plan. If any error or non-compliance is identified the contractor is

13

124

asked to send an updated plan. The Analyze scenarios use case involves the generation of
several coﬁstruction plan scenarios and carrying out time-cost trade-off analyses on them.
Typical scenarios include trying different project durations or following an alternate logic
for the construction tasks. These analyses are based on scheduling and cost optimization
of the generated scenarios. Therefore, the results are consistent across all scenarios. From
these analyses the owner is able to make a decision on the reasonableness of the claims
made by the contractor. Note that the owner can also analyze different construction plan
scenarios to determine the feasibility of a change that it (or he) wants in the project.
Figure 13 shows an object interaction diagram in CONSCOM to solve the
problem of change order management. The sequence of operations executed by each
object is identified from top to bottom along the dashed line. The latest plan is analyzed
under multiple scenarios to determine the exact impact of the change. The process

terminates with updating of the CProject object and recording of the decision taken in the

project progress report.

FINAL COMMENTS

CONSCOM is a reusable and extendible software system for scheduling and
management of construction projects with cost optimization capability. It is particularly
suitable for construction change order management. Change in construction projects after
contract award is a common occurrence. It consumes a lot of resources in its
implementation and in the resolution of any conflicts that often arise among the
stakeholders. CONSCOM takes the owner’s view of the problem. It aids the owner in

schedule reviews, progress monitoring, and cost-time analyses for change order approval.

14

125

126

ACKNOWLEDGMENT

This manuscript is based on a research project sponsored by the Ohio Department

of Transportation and Federal Highway Administration.

APPENDIX LBRIEF DESCRIPTION OF CLASSES IN THE CONSCOM
FRAMEWORK (FIGURES 3 AND 4)

CAction: Provides an interface for managing actions (tasks and plans).

CActionReference: Encapsulates a reference to a CAction object.

CActor: Encapsulates a role played by a person or organization.

CAddress: Encapsulates a street address.
 CConstrainr. Encapsulates a construction scheduling constraint.

CContinuousCDR: Encapsulates a continuous cost duration relation.

CContractor: Abstracts a contractor of a construction project.

CConversionRatio: Encapsulates ratios for the conversion of values from one unit to

another.
CCost: Provides an interface for managing construction costs.
CCostDurRin: Encapsulates a cost duration relation.
CCostEstimate: Provides an interface for managing construction cost estimates.
CCrew: Abstracts a construction crew.
CDirectCost: Provides support for construction direct cost management.
CDiscrerteCDR: Encapsulates a discrete cost duration relation.

CEquipment: Abstracts a construction equipment.

15

127

CI: Class names starting with 'CI' are implementation classes for the corresponding class
na.mes~ starting with 'C' in CONSCOM. |

CIBufferConstraint: Provides support for distance or buffer constraints.

ClndirectCost: Provides support for construction indirect cost management.

CITimeConstraint: Provides support for time constraints

CLabor: Abstracts information of construction labor.

CNeuralDynamics: Abstracts the neural dynamics model for the solution of optimization
problems.

COptimizationProblem: Provides an interface for the solution of optimization problems
using the neural dynamics model.

COwner: Abstracts an owner of a construction project.

CParty: Base class of CContractor, COwner, and CPerson (encapsulates their common

features).

CPerson: Abstracts a person.

CPlan: Provides an interface for managing construction plans.
CPlanDoc: Provides an interface for a construction plan application document.
CPlanView: Provides an interface for a construction plan application view.
CProgressReport: Provides support for managing progress reports.
CProject: Provides an interface for managing construction projects.
CProjectDoc: Provides an interface for a construction project application document.
CProjectView: Provides an interface for a construction project application view.

CQuantity: Encapsulates a measurement value and its unit.

16

128

CRegularizationNetwork: Abstracts the regularization neural network model for cost

esﬁmaﬁon.
CReportDoc: Provides an interface for a construction progress report application
document.
CReportView: Provides an interface for a construction progress report application view.
CResource: Abstracts a construction resource.
CSegment: Abstracts a segment of construction work.
CTask: Provides an interface for managing construction tasks.

CVersion: Provides support for version control.

APPENDIX II. BRIEF bESCMPTION OF THE ATTRIBUTES AND

OPERATIONS SHOWN IN FIGURES 5 TO 11

Attributes

Description: Description of the object.

DirectCost: Direct cost.

Duration: Time that indicates the duration of an activity.
Email: Email address.

ID: Identification

IndirectCost. Indirect cost.

Instance: Instance of an object.

JobCondFactor: Job condition factor.

Location: Address information.

Name: Name of the object.

17

PercentComplete: Percentage of a work that is complete.

QtyOfWorI;: Quantity of work required.
Quantity: Quantity.
Ratios: Conversion rations between units..
Responsibilities: List of responsibilities.
StartDist: Starting distance of a segment of work.
StartTime: Starting time of an activity.
Status: Status information.
StopDist: Stopping distance of a segment of work.
StopTime: End time of an activity.
Telephone: Telephone number.
Type: Type information.
Unit. Measurement unit.
Value: Numeric value.
X: vector of variables.
Operations:
Add(): Adds an object into a collection.
AddRatio(). Adds a ratio to a collection.

Create(): Creates an object

CreateOptProb(): Creates an object of type COptimizationProblem.

Delete(): Deletes an object

EqualityConstraint(): Evaluates the equality constraints of an optimization problem.

Estimate(). Estimates the cost of a project.

18

129

130
GetEstimate(): Returns a pointer to an object of type CCostEstimate.
GetInstanc;e(): Returns an instance of an object.
GerPlan(): Returns a pointer to an object of type CPlan.
GetRatio(): Returns a ratio from a collection.
GetReport(): Returns a pointer to an object of type CProjectReport.
InequalityConstfaint(): Evaluates the inequality constraints of an optimization problem.
New(): Creates a new object.
NewEstimate(): Creates a new object of type CCostEstimate.
NewPlan(). Creates a new object of type CPlan.
NewReport(): Create a new object of type CProgressReport.
ObjectFunction(): Returns a value of the objective function of the optimization problem.
OperatorX(): Implements arithmetic and logical operators of type CQuantity.
ConvertTo(). Converts a measurement from one unit to another.
Optimize(): Minimizes the cost of a construction plan.
RemoveRatio(): Removes a ratio from a collection.
Satisfy(). Satisfies a scheduling constraint.
Schedule(): Schedules a construction plan or task.
SetOptProb(): Sets up a reference to an optimization problem.
Update(): Updates the state of an object.

Violation(): Returns the amount of violation of a scheduling constraint.

19

131
APPENDIX III. REFERENCES

Adeli, H. .and Karim, A. (1997), "Scheduling/Cost Optimization and Neural Dynamics
Model for Construction," Journal of Construction Engineering and Management, ASCE,
Vol. 123, No. 4, pp. 450-458.

Adeli, H. and Park, H.S. (1996), “Hybrid CPN-Neural Dynamics Model for Discrete
Optimization of Steel Structures”, Microcomputers in Civil Engineering, Vol. 11, No. S,
pp. 355-366.

Adeli, H. and Wu, M, (1998), “Regularization Neural Network Model for Highway
Construction Cost Estimation”, Journal of Construction Engineering and Management,
ASCE, Vol. 124, No. 1.

Baumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D. and Zullighoven, H. (1997),
"Framework Development for Large Systems," Communications of the ACM, Vol. 40, No.
10, pp. 52-59.

Fowler, M. (1997), Analysis Patterns: Reusable Object Models, Addison-Wesley
Longman, Inc., Reading, MA

Fowler, M. and Scott, K. (1997), UML Distilled: Applying the Standard Object Modeling
Language, Addison-Wesley Longman, Inc., Reading, MA.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995), Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Publishing Company, Reading, MA
Karim, A. and Adeli, H. (1998), "Object-Oriented Information Model for Construction

Project Management," Journal of Construction Engineering and Management, ASCE,

submitted.

20

Odenthal, G. and Quibeldey-Cirkel, K. (1997), "Using Patterns for Design and
Documcntétion,” Proceedings of the 11™ European Conference on Object-Oriented
Programming (ECOOP '97), Jyvaskyla, Finland, June 1997, pp- 511-529.

Schmid, H. A. (1996), "Creating Applications from Components: A Manufacturing

Framework Design," JEEE Software, Vol. 13, No.11, Nov. 1996, pp.67-75.

Schmid, H. A. (1997), "Systematic Framework Design By Generalization,"

Communications of the ACM, Vol. 40, No. 10, pp. 48-51.

21

132

10.

11.

12.

13.

133

LIST OF CAPTIONS FOR FIGURES

Schematic high level view of the application architecture in the construction
management domain

Package diagram of the construction scheduling, cost optimization, and management
(CONSCOM) application architecture

Class diagram of the Domain package in CONSCOM

Class diagram of the Application package in CONSCOM

Construction project model in CONSCOM (Class CProject)

Organization model in CONSCOM (Class CParty)

Measurement model in CONSCOM. (a) Class CQuantity, (b) Class
CConversionRatio

Model of construction plan, task, and scheduling constraint in CONSCOM
Model of the construction task in CONSCOM

Construction cost optimization model in CONSCOM

Model of an application document in CONSCOM
Use case diagram of construction change order management

Object interaction diagram showing use of CONSCOM for construction change order

management

Neural dynamics
based scheduling and
cost optimization

Neural network
based cost estimation

Qomain model >

Report
generator

Transaction
processor

UI elements
Database engine

Simple | : Mathematical
value types Collection types functions Request broker

Legend

“User interface

Shell layer

Productivity layer

Application domain layer

Figure 1

134

Application MFC
1
I N App!ication
User interface architecture
NS~ -
~ ~
I ~ ~
I ~ < ~ - - |]
Model | N User interface
Y
1 1 REN
. 1
Time Cost Cost o N
optimization optimization estimation Graphics
application application application
I 1
| . File and
| \ 4 database
\
Domain : \ 7 support
v \/
A
1] A
Organization Schedule Cost v _ _ IyMiscellaneous
upport classe%
CObject
{global}
Legend
7]
x Or Package x
el 71 ,
s Package x depends
on package y
{global} Element has global dependency

Figure 2

135

CObject

:' — CProject

H CIProject

g CParty

CAction

CPlan

| CIPlan

CCost

’: CDirectCost

i ClndirectCost |

CContractor

ClITask

CPerson

CContraint

CCostDurRIn

- CITimeConstraint

CResource

CDiscreteCDR |

CCostEstimate

4 CICostEst

+ CEquipment |

CLabor

o CProgressReport

CSegment

CVersion

CNeuralDynamics

COptimizationProblem

CIOptimizationProblem :E

| CRegularizationNetwork j

CConversionRatio

CAddress

Legend

Class Name Class Name

SuperClass

<H

SubClass

Concrete class Abstract class

Generalization

Figure 3

130

CDocument

CProjectDoc

CProjectView

7N

CIProjectDoc

1 CIProjectView

CPlanDoc

CPlanView

| CReportDoc

CIReportDoc

CReportView

CIReportView

Legend

Class Name || Class Name e o o SuperClass KH SubClass

Concrete class Abstract class Many classes Generalization
Figure 4

137

CTProject —> CProject
I\Dlame' . Calculated using B
escription -1 the most recent plan
ggt(gflp(CVersion) Location: CAddress) version P
) PercentComplete o
GetReport(CVersion)
GetEstimate(CVersion) Update() CPlan* plan - B
CreatePlan() ? GetPlan(CVersion) . CreatePlan();
CreateReport() GetReport(CVersion) | ..- ’
CreateEstimate() : GetEstimate(CVersion)
: NewPlan() -)
NewReport() Constraint:
NewEstimate() Combination of
CProject and CVersion
return new CIPlan();

CActor CCostEstimate CProgressReport CPlan
Name Cost Description StartTime: CQuantity
Responsibilities - - StopTime: CQuantity
StartTime: CQuantity | - | £stimate() Modify(—
StopTime: CQuantity Update() Update() Optimize()
Schedule()
Update()

Modified by
. CParty CVersion
0.1 *
Number
Created: CQuantity
LastModified: CQuantity
Legend
x Role One instance of class x is associated
7 Y with exactly z instances of class y
Attribute: Type which plays the role Role.
Operation (Other multiplicities:
* =0 to many

{Constraint}

a..b = a to b inclusive)

Implementation notes such as code

sample or constraint note

Specifies software design constraint

Figure 5

138

CAddress CActor

0.1 *

1.*

CParty
Name
Telephone
Email
Create()
Delete()

COwner CContractor CPerson
Create() Create() Create()
Delete() Delete() Delete()

Figure 6

139

CQuantity

Value
Unit

operatorX() o
ConvertTo(unit) o.

CConversionRatio

Instance ~ o------"
Ratios

AddRatio()
RemoveRatio()
GetRatio()
GetInstance() o-.-.

All logical and ll-
arithmetic operators:
< ><=, o= == I=
+,o- ¥, =

CConversionRation* pCVR =
CConversionRation::GetInstance();

Value = Value*pCVR->GetRatio(Unit, unit);

Unit = unit;

return *this;

AN

(@

static CConversionRatio* Instance = 0; B

AN

if (Instance == 0)
Instance = new CConversionRatio;
return Instance;

Figure 7

CAction

Previous version

Name

Description v
Location: CAddress
StartTime: CQuantity
StopTime: CQuantity
DirectCost: CQuantity
IndirectCost: CQuantity

0.1

Proposed, Started, B

Completed on-time,

_________________________ Delayed,
Status o~ Abandoned
Create()
Update()
Close() Constraint: AN
Delete() Combination of
Schedule() CAction and CPlan
Add(CAction a) 1is unique
Remove(CAction)
GetChild(int)
1
* ’
CActionReference d"‘**‘—’ CPlan Clask
Copstraining 1 1| Constrained
action action Create() Create()
Undate() Update()
. % Close() ClolseOO
. Delete() Delete
CConstraint bSchedule() Schedule()
| Optimize()
; | Add(CAction a) o,
Satisfy() Remove(CAction)
Violation() GetChild(int)
for all a in collection B if a exists K
and (a.Status = Proposed return
or a.Status = Started) else
a.Schedule() create CActionReference for a
Legend
z An object of class x owns z objects of class y
* Y (object composition)
Figure 8

141

CActor CVersion
1% 1 | Constraint: AN
* | Start and stop distances
do not overlap
* *
CAction f CSegment
R W
* {c} ID
StartTime: CQuantity
| StopTime: CQuantity
: StartDist: CQuantity
CCrew o> StopDist: CQuantity
D QtyOfWork: CQuantity
StartTime: CQuantity JobCondFactor
StopTime: CQuantity Update()

Create()
Delete()

CResource

Type

Quantity: CQuantity

* *
0..A 0.1

CCostDurRIn

CCost

Figure 9

for all segments s AN

s.Update()

142

CNeuralDynamics

Vector of B
design variables

SetOptProb()
Optimize() @

o

Neural dynamics k
optimization model

0.1

CPlan

Schedule()
Optimize() Q.

CreateOptProb()

o

CIPlan

Schedule()
Optimize()
CreateOptProb() «....

0..1

C 0ptirr.z:izationPr0blem

X 9

ObjectiveFunction()
InequalityConstraints()

EqualityConstraints()

1

CIOptimizationProblem

ObjectiveFunction()
InequalityConstraints()
EqualityConstraints()

COptimizationProblem* OptProb =
CreateOptProb();

CNeuralDynamics NDyn;

NDyn.SetOptProb(OptProb);

NDyn.Optimize();

delete OptProb;

new CIOptimizationProblem; B

Figure 10

143

CProjectDoc

CProject

New()
Update()
Close()
Delete()

CIProject

JAN

CIProjectDoc

New() o
Update()

Close()

Delete()

Figure 11

new CIProject;

144

145

Schedule
A

Time-cost
trade-off
analysis

Analyze
scenarios
\J

Change order
management

Compare
ith previou
K/
Review
plan
v

Owner

Legend

% Actor or role played by a user
@ . @ Use case 1 uses use case 2

Figure 12

Object x of class y

T
essage
M Message sent from x

Message() !
ﬂ-——gii_ Return message to x

Figure 13

:CProject :CPI
) lLGetLatestPlan();:
'é : IReview()
= | |
I)
5| {IsCompliant() = false}
g F 1
= I |
SV | |
g | ¥ Create() . CPI
« | Update() | ascenar]xo. an
| : i Schedule()
! !
[e— |]
'End) ! Optimize()
|
I I
|
L__ L Result() .I(
: || AnalyzeScenarios()
! l
| |
: Update()
| I
| |
II
~ —
|_Update()
I
pa—
| End()
[
!
K—
Legend

146

.

A NEW GENERATION SOFTWARE FOR CONSTRUCITON SCHEDULING
AND MANAGEMENT

Asim Karim® and Hojjat Adeli?

ABSTRACT

The authors were motivated to overcome some of the limitations and
shortcomings of the existing software systems for management of construction projects.
The result is a new generation software system for CONSstruction Scheduling, Cost
Optimization, and Change Order Management, called CONSCOM. CONSCOM uses the
recently patented Neural Dynamics model of Adeli and Park?® as its computational engine
for construction cost optimization and advanced software engineering and object-oriented
programming techniques such as framework and pattern. This article presents some of its
recent and innovative capabilities and features. CONSCOM includes an integrated
management environment (IME) as its user interface for effective control and
management of construction projects. An example of a highway construction project is
presented to demonstrate the unique modeling capabilities of CONSCOM that cannot be

modeled by CPM or CPM-like networks.

! Graduate Research Associate, Dept. of Civil and Environmental Engineering and Geodetic Science, The
Ohio State University.

? Professor, Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State
University, 2070 Neil Ave., Columbus, OH 43210, USA.

3U.S. Patent 5,815,394 issued on September 29, 1998.

147

INTRODUCTION

The construction schedule is an important document in thé construction industry.
The construction project participants, such as the contractor and the owner, use the
construction schedule to plan, monitor, and control project work. The goal is the
completion of the project within budget and time. Further, in recent years the
construction schedule has increasingly been used as a legal document in resolving
disputes and verifying claims among the project participants. Therefore, the value of the
construction schedule cannot be overstated. For its effectiveness, every construction
schedule must have two essential characteristics. First, it must be based on an accurate
model of the construction project. Second, it must provide features necessary for project
control and management. In recent years, the use of construction scheduling software has
made the use of schedules in the construction industry widespread. However, the
underlying modeling technology used and the process of control and management hasrnot
progressed over the years. For example, the critical path method (CPM) is still used
despite its documented shortcomings, particularly for projects involving repeating tasks
(Adeli and Karim, 1997).

A construction schedule is traditionally defined as the timetable of the execution
of tasks in a project. Resources are assigned to the tasks before the project is scheduled.
Thus, resources are handléd separately and independently of the time. This results in a
cost model that is disconnected from the time model thus making cost and time control
difficult and imprecise. Further, the scheduled times of the tasks in the project are not

updateable in a structured manner to reflect changes that have occurred since the project

148

started. This makes project monitoring, control, and change order management
cumbersome and difficult.

To address these shortcomings we have developed an advanced general
construction scheduling model and a prototype software system that fulfils the need for
accuracy in modeling and effectiveness in project control and management. It is called
CONSCOM (CONstruction Scheduling, Cost Optimization, and Management). This
article describes novel features of CONSCOM and its user-interface with particular

emphasis on the integration of the modeling, control, and management features.

INTEGRATED CONSTRUCTION SCHEDULING AND COST MANAGEMENT
MODEL

Over the years, a number of scheduling techniques have been presented. The
motivation for developing new techniques is to overcome some of the shortcomings of
the techniques currently in use. The limitations and shortcomings of the existing software
systems used in practice are also recognized by the construction industry. For example, a
majority of the members of the Associated General Contractors of America are
dissatisfied with the critical path method (CPM) (Mattila and Abraham, 1998). Despite
these concerns and shortcomings, the CPM is still widely used and none of the new
methods presented over the years have gained widespread acceptance. Three reasons can
be cited for this lack of acceptance of newer techniques. First, there is the compatibility
problem. To ease migration to the new technique it must provide all the modeling
capabilities of the existing technique (CPM). If the new technique is a superset of CPM

then the initial training and learning cost is minimized as the user can learn the new

149

capabilities gradually with time. Second, the techniques presented over the last two
decades do not provide substantial improvements or advantages to justify their

widespread use by the construction industry. Third, there is the issue of ease of use and

software méinteﬁénce.

To overcome the first two problems, Adeli and Karim (1997) developed a new
integrated construction scheduling and cost management model. This model was initially
motivated by the need to handle repetitive task projects such as highway construction.
However, the model is general in applicability providing a complete set of features,
including the four precedence constraint relationships that are considered standard in the
CPM. In addition, the new model includes location modeling of tasks with time and
distance buffer constraints, resource allocation features such as multiple crew assignment
and management, resource allocation that can vary either linearly or noniinearly with the
duration of work, and construction progress tracking, control, and management. The
mathematical model incorporates a robust cost minimization algorithm based on the
recently patented neural dynamics model of Adeli and Park (1998). This latter feature
provides an essential tool to the user for time-cost trade-off analysis and change order
management. Although CONSCOM is based on a mathematically rigorous foundation,
the scheduling concepts and structures used in this model are generalizations of those in
CPM. Therefore, the users of CPM-based software systems can adapt to the new system
without significant investment in learning new concepts. However, the solid

mathematical foundation makes the implementation unambiguous and serves as a

baseline for extension and further development.

150

OBJECT-ORIENTED MODEL

Software development is often a major cost in the total cost of development and
distribution of a new technology. Further, the development of software is incremental and
evolutionary in nature with new requirements and features requested by users
incorporated into it over time. This in turn requires that the software model be based on a
reusable and extensible architecture that can be evolved over time.

A hierarchical software architecture is adopted for the new integrated construction
scheduling and cost management model (Karim and Adeli, 1999a). This layered approach
separates the key functionality of the system and allows for ease of development and
maintenance especially since software components in a higher layer are independent of
lower layer components. An object-oriented pattern-based framework is developed to
implement the functionality in the layers. These software engineering techniques are
fundamental in the development of reusable and extensible software systems.

The prototype software system CONSCOM 1s oased on the object-oriented
software architecture using Visual C++ and the Microsoft Foundation Class (MFC)
library (Karim and Adeli, 1999b). CONSCOM is designed to run under all 32-bit
Windows environments such as Windows 95/98 and Windows NT 4.0. The software
presently has over 19,000 lines of code with over 100 classes. Figures 1 and 2 show a
subset of classes in CONSCOM, their characteristics (abstract or concrete), and their
inheritance hierarchy. Note that the notations in these figures are based on the new
standard Unified Modeling language (UML) (Fowler and Scott, 1997). Brief description
of classes in Figures 1 and 2 are given in Appendix I These classes correspond to the

Domain and Application packages, respectively, described in Karim and Adeli (1999a).

151

The Domain package (collection of classes) encapsulates the construction scheduling and
cost knowledge. This package is the computational engine of the software system. The
Application package provides support for application-specific domain knowledge and the
application’s user interface. Note that Figures 1 and 2 do not show all the classes that
support the user interface of CONSCOM.

Most of the classes have the MFC class CObject as the root to take advantage of
the services it provides fqr object storage and retrieval. Note that most of the higher level
classes are abstract. 'fhis is a fundamental design concept in frameworks that allows
customization through suclassing. The basic framework (consisting of the abstract classes
only) just provides an interface. Derived classes bind the interface to a specific
implementation. An abstract class controls which implementation class is instantiated.
Classes starting with the prefix ‘CI' are implementation classes -for construction

scheduling, cost optimization, and cost estimation.

FEATURES OF CONSCOM

CONSCOM is an advanced new generation software system for construction
scheduling and management that includes a powerful scheduling model, has robust
optimization capabilities, and provides strong change management features, all integrated
into a compact Integrated Management Environment (IME). Some of the key features of
CONSCOM are delineated in the following paragraphs:
e CONSCOM features an advanced construction scheduling model. This model is a

superset of all currently available models such as CPM plus new features such as:

¢ Integrated construction scheduling and minimum cost model.

152

e Support for a hierarchical work breakdown structure with tasks, crews, and

segments of work.

o Capability to handle multiple-crew strategies.

 Support for location (distance) modeling of work breakdown structures (very
useful for modeling linear projects such as highway construction).

¢ A mechanism to handle varying job conditions.

* Nonlinear and piecewise linear cost modeling capability for work crews.

» Capability to handle time and distance buffer constraints in addition to all the

standard precedence relationships.

Ability to provide construction plan milestone tracking.

¢ CONSCOM'’s computational engine is based on the recently patented robust and
powerful Neural Dynamics optimization model of Adeli and Park. The Neural
Dynamics model of Adeli and Park provides reliable cost minimization of the
construction plan, time-cost trade-off analyses, and change order management.

¢ CONSCOM p-rovides an integrated user-interface with all the tools, capabilities, and
information necessary for effective control of construction projects.

e CONSCOM provides a context-sensitive help facility readily available at any point of

execution of the software.

INTEGRATED MANAGEMENT ENVIRONMENT (IME)
CONSCOM provides an integrated user interface for effective construction
management and control. The interface is an integrated management environment (IME)

providing ready access to all the tools and information needed to plan, monitor, analyze,

153

and control construction projects. Figure 3 shows a screen shot of CONSCOM’s main
window. Three types of output display windows are used to provide information to the
user. The primary output display is the Plan View window (the two windows on the top-
right in Figure 3). Each of these windows displays the details for a specific plan. All the
tasks are listed together with their start time, stop time, duration, and cost. The two-part
icon in front of each row indicates the status or state of the task. Two different colors are
used for the two parts of the icon to provide visual information as to whether the task is a
proposed task or an implemented task (a task currently in progress).

Multiple plans may be opened in CONSCOM at a single time. All the plans that
are open plus all the plans that were previously open in the current CONSCOM session
are listed in the output display called the Project Workspace window (left window in
Figure 3). This output display lists all the plans in the workspace with their current cost
and duration f/alues. The Project Workspace window is the project management and
control interface. The information available from this window facilitates the owner or the
contractor to keep track of all the plans in the project. Further, if CONSCOM is used for
change order management then this window allows one step access to all the versions of
the plan enabling quick and effective decision making. Similar to the Plan View windows
the two-part icon in front of each plan in the Project Workspace window indicates the
status or state of the plan.

The third output display is the Task Details window (the bottom window in
Figure 3). This window shows the detailed information for each work breakdown
structure of the selected task. The information in this window is especially useful for

multiple-crew and multiple-segment tasks. The information displayed includes the start

154

time, stop time, duration, and cost for the work of each crew and each segment of the
work of each crew. In addition, for each segment of the work, the start and stop locations,
the quantity of work, and the job condition factor are also displayed. Further information
about each task that is less frequently required is provided in dialog boxes (an
input/output window that is usually not resizable). Figure 4 shows the Modify Task
property dialog that allows modification and display access to all the information about a
selected task. Certain information such as the constraints, cost-duration relationship, and

descriptions of crews is available from this property dialog only.

USER INTERFACE CHARACTERISTICS

A highway construction project is used to demonstrate the modeling capabilities
of CONSCOM (Adeli and Karim, 1997). It uses some of the new scheduling features
provided by the model. This plan cannot be modeled by CPM or CPM-like networks
currently available in commercial packages. In this section, we describe the handling of
these features by CONSCOM s user interface.

The work for the construction of the 2-lane 5-km long highway is divided into 7
repetitive and 7 non-repetitive tasks. This project requires the following modeling
features: multiple crews, multiple segments of work per crew, location modeling of work,
distance and time buffer constraints, work continuity constraints, and job condition
factors. Both linear and nonlinear relationships are used to describe the direct cost-
duration relationship of crews. A minimum-duration plan generated by CONSCOM is

shown in Figure 5. Note that in CONSCOM no distinction is made between a repetitive

155

and a non-repetitive task. The differentiation is only for user convenience.
Computationally, both types of tasks are handled similarly by CONSCOM.

To illustrate the data input process and show some of the modeling capabilities of
CONSCOM consider adding a new task 10 to the plan. In CONSCOM, entry and
modification of data for a task is handled by four dialog boxes. When adding a new task
these dialog boxes are presented in a logical sequence. When the user is modifying a
selected task all the dialog boxes are presented simultaneously. The four dialog boxes
showing the input data required for task 10 are shown in Figures 6a-6d. General
information of the task is entered in the General dialog box (Figure 6a). In this figure, ID
is an alphanumeric string that uniquely identifies the task in the plan. The description and
comments are optional fields. In this example, the task is a proposed task.

However, if progress of work is being monitored or change order scenarios are
studied a corresponding implemented task can be added by selecting the appropriate
button. An implemented task may or may not have a corresponding proposed task. For
example, the contractor may add and start working on a new task because of an
unexpected working condition on the field which was not anticipated in the original
proposed plan. This will require a new implemented task that has no corresponding task
in the proposed plan. For further classification of the state of an implemented task the

task can be set as either one that is in progress or one that is finished. When a task has the
implemented status its start time and cost are fixed and it will not take part in scheduling
and cost optimization.

The work crew information for the task is entered in the Crews dialog box (Figure

6b). Each task can have multiple crews that are uniquely identified by a numeric value.

10

156

Associated with each crew is a direct cost-duration relationship. The default relationship
is a two-point linear relationship corresponding to the minimum cost (maximum
duration) and maximum cost (minimum duration) data points. If a piecewise linear or a
nonlinear relationship is desired then it can be specified in the Cost-duration relationship
dialog box (Figure 7). The piecewise linear relationship is defined by a finite number of
cost-duration data points which are then connected by straight lines.

The nonlinear relationship is modeled in the following form:

f(d)
Cd)=+=2
@ g(d)

where C(d) is the cost of completing work in duration d, and f{.), g(.) are the numerator
and the denominator fourth order polynomial expressions, respectively. In the present
example, task 10 has two crews and both of them have the identical nonlinear

relationship C(d) = (1600 + d)/d where C(d) yields the cost for completing work in

- duration d. The cost-duration relationship is bounded by the minimum and maximum

duration values that have to be specified.

The third input dialog box, called Segments dialog box (Figure 6¢c), gathers
information for the segments of work for each crew. Each segment is uniquely identified
for each crew by a numeric value. The breakdown of work into segments is necessary to
capture the changed conditions at each stage of the crew’s work. These variations may
include the difference in location, change in quantity of work, or a better or worse work
condition than originally expected. In CONSCOM, locations are modeled using
distances. This is useful in linear projects such as highway construction where it is
necessary to track tﬁe location of work not only for progress monitoring purposes but also

to ensure that sufficient distances are maintained between tasks. Distance buffers are

11

157

required when, for example, sufficient space is required for equipment and labor to
perform optimally and safely. When distance modeling is not needed the location fields
should be set to zero. This does not mean that location is not considered in modeling but

’

locations of work are not defined by linear distance.

Task 10 has 2 crews and 2 segments of work per crew (Figures 6b and c). Crew 1
works over the distance 1000 to 3500 m while crew 2 works over the distance 3500 to
6000 m. The work of crew 1 is broken down into two segments from 1000 to 3000 m and
from 3000 to 3500m (Figure 6c). This breakdown is done to model the more difficult job
conditions in the 3000-3500 m section. This segment is assigned a job condition factor of
1.15 that reflects a 15% increase in time needed to move a unit quantity of earth as
compared to that required in the first segment of work. Another reason to breakdown the
work of a crew is when the quantity of work required per unit length of the highway is
not constant. Segments of work are selected so that the quantity of work per unit length in
each segment remains roughly constant.

The last input dialog box, called the Relative Constraint dialog box (Figure 6d), is
used to specify constraints on the task. CONSCOM supports all the standard precedence
constraints. In addition, it also supports time and distance buffer constraints. A constraint
can be specified on é.ny segment of the task, on any crew of the task, or on the whole
task. Similarly, the constraining element can be any segment, crew, or task. This
flexibility in specifying constraints allows multiple-crew strategies, work continuity, and
other resource-based constraints to be modeled effectively. Each constraint can also have

a time or distance lag value. The two crews of task 10 have a start-to-start relationship.

With this constraint both crews will start work at the same time. Also, note that this

12

158

constraint is specified as a binding constraint. This means the constraint is an equality
constraint. On the other hand, a non-binding constraint is an inequality constraint that is
satisfied as long as its value is less than or equal to zero. For example, the 150 m distance
buffer constraint between task 10 and task 9 is non-binding. This ensures a minimum
distance of 150 m (not exactly 150 m) is maintained between the work crews of task 10
and task 9. The two segments of work of each crew have a work continuity constraint to
ensure continuity of work. -

Data in CONSCOM can be entered in any appropriate unit. The user can define a
default set of units for each plan or project. These are the units in which all output is
displayed. However, at all the data entry points a set of appropriate units is available to
the user to choose from (see Figures 6b-d). CONSCOM will convert the entered data
from the specified unit to the default unit automatically.

In CONSCOM a plan can be scheduled in three ways. First, the plan may be
scheduled so that all tasks are completed with minimum duration. Second, the plan may
be scheduled so that all tasks are completed with minimum cost. Third, the plan may be
scheduled for given fixed durations of tasks. The example schedule shown in Figure 5 is

for minimum duration.

CONCLUDING REMARKS
CONSCOM is based on an advanced integrated construction scheduling and cost
model. Furthermore, it is developed using the latest software engineering techniques.

Future developments of the system will focus on adding resource-leveling capability,

13

159

160

improvement of the user and inter-program interface, and refinement of the underlying

software framework so that it can be customized easily for other applications.

ACKNOWLEDGMENT

This manuscript is based on a research project sponsored by the Ohio Department

of Transportation and Federal Highway Administration.

APPENDIX I. BRIEF DESCRIPTION OF CLASSES IN THE CONSCOM
FRAMEWORK (FIGURES 1 AND 2)

CAction: Provides an interface for managing actions (tasks and plans).

CActionReference: Encapsulates a reference to a CAction object.

CActor: Encapsulates a role played by a person or organization.

CAddress: Encapsulates a street address.

CConstraint: Encapsulates a construction scheduling constraint.

CContinuousCDR: Encapsulates a continuous cost duration relation.

CContractor: Abstracts a contractor of a construction project.

CConversionRatio: Encapsulates rations for the conversion of values from one unit to

another.

CCosr: Provides an interface for managing construction costs.
CCostDurRIn: Encapsulates a cost duration relation.

CCostEstimate: Provides an interface for managing construction cost estimates.

CCrew: Abstracts a construction crew.

CDirectCost: Provides support for construction direct cost management.

14

CDiscreteCDR: Encapsulates a discrete cost duration relation.
CEquipment: Abstracts a construction equipment.
CI: Class names starting with ‘CI’ are implementation classes for the corresponding class
name starting with ‘C’ in CONSCOM.
CIBufferConstraint: Provides support for distance or buffer constraints.
ClndirectCosr: Provides support for construction indirect cost management.
CITimeConstraint: Provides suﬁport for t_imc constraints.
CLabor: Abstracts information of construction iabor.
CNeuralDynamics: Abstracts the neural dynamics model for the solution of optimization
problems.
COptimizationProblem: Provides an interface for the solution of optimization problems
using the neural dynamics model.
COwner: Abstracts an owner of a construction project.
CParty: Base class of CContractor, COwner, and CPerson (encapsulates their common
features).
CPerson: Abstracts a person.
CPlan: Provides an interface for managing construction plans.
CPlanDoc: Provides an interface for a construction application document.
CPlanView: Provides an interface for a construction plan application view.
CProgressReport: Provides support for managing Progress reports.
CProjecr. Provides an interface for managing construction projects.
CProjectDoc: Provides an interface for a construction project application document.

CProjectView: Provides an interface for a construction project application view.

15

162
CQuantity: Encapsulates a measurement value and its unit.
CRegularizationNetwork: Abstracts the regularization neural network model for cost

estimation.

CReportDoc: Provides an interface for a construction progress report application.

document.
CReportView: Provides an interface for a construction progress report application view.
CResource: Abstracts a construction resource.
CSegment. Abstracts a segment of construction work.
CTask: Provides an interface for managing construction tasks.

CVersion: provides support for version control.

APPENDIX II. REFERENCES

Adeli, H. and Karim, A. (1997), "Scheduling/Cost Optimization and Neural Dynamics
Model for Construction," Journal of Construction Engineering and Management, ASCE,

Vol. 123, No. 4, pp. 450-458,

Adeli, H. and Park, H. S. (1998), Neurocomputing for Design Automation, CRC Press,
Boca Raton, FL.

Fowler, M. and Scott, K (1997), UML Distilled: Applying the Standard Object Modeling
Language, Addison-Wesley Longman, Inc., Reading, MA.

Karim, A. and Adeli, H. (1999a), “Object-Oriented Information Model for Construction

Project Management,” Journal of Construction Engineering and Management, ASCE,

Vol. 125, Accepted for publication.

16

163
Karim, A. and Adeli, H. (1999b), “CONSCOM: An OO Construction Scheduling and

Change Management System,” Journal of Construction Engineering and Management,

ASCE, Vol. 125, Accepted for publication.

Mattila, K. G. and Abraham, D. M. (1998), "Linear Scheduling: Past Research Efforts

and Future Directions," Engineering Construction and Architectural Management, Vol.

5, No. 3, pp. 294-303.

17

LIST OF CAPTIONS FOR FIGURES

. Class diagram of the Domain package in CONSCOM

. Class diagram of the Application package in CONSCOM
. CONSCOM’s main window

. Task information access and modification dialog box

- A minimum duration schedule created by CONSCOM for the two-lane 5-km long

highway construction project

. Data input process for task 10

(a) General information dialog box
(b) Work crew dialog box

(c) Segments dialog box

(d) Relative Constraint dialog box

. Cost-duration relationship dialog box

164

CProject : CAction

CDirectCost

ClIndirectCost

CCostDurRin

CConstraint

CContinuousCDR

CDiscreteCDR

ClITimeConstraint

CResource

CIBufferConstrain

CEquipment

CLabor

CVersion

1 CConversionRatio t

| COptimizationProblem
CIOptimizationProble
I CAddress , CActionReference
CRegularizationNetwork
Legend
Class Name Class Name Superclass <}-——- Subclass
Concrete class ~ Abstract class Generalization

Figure 1

165

CDocument

CProjectDoc

CIProjectDoc

]

CPlanDoc

CReportDoc

CIReportDoc

Legend

CProjectView

CIProjectView

CPlanView

1 CINetworkView

ClITableView

CIChartView

CReportView

CIReportView

Class Name Class Name

Superclass K- Subclass

Concrete class Abstract class Several classes

Figure 2

Generalization

166

¥ CONSCOM - Phase?
Eile Edit Yiew Plan Project * Window Help

D=l & [5ial o ¢

<

: Plan!D [Duration | Cost 2 Phaset — MI=lE3|
i[#*Phassl 347 85567.48 Start Tima | Stop Tims { Duration| Cost | #ofCraws | #of 4|
il w*Phase2 8.0 4700.00 Clasr and grub sita 0.00 3.00 3.00 2250.00 1
: 2 Grada site for remgor... 3.00 450 150 2460.00 1

**3 Erecttemporary officas 6.50 7.75 1.25 1000.00 1

**4 Constructtemporary ... 5.00 6.50 150 135000 1

5 Mova in 7.75 8.75 1.00 400.00 1

°6 Grade asphalt cancre... 10.92 11.67 0.75 1230.00 1

o7 Errect asphalt concrat.. 1.67 16.67 5.00 370000 1

L Je & Construct culverts 4.86 10 86 600 2400.00 1

#*3 Clear and grub right-of... 3.00 17.67 14.67 10132. 1

**10 Earthwork 7.42 24.26 16.84 31900... 2

e
kD | Description

op Ti...

Duration

Cost

Tas Start Time | St

o 300 2.00 200 40000 i 1

o2 2,00 350 150 50000 1 1

*°3 2.00 400 2.00 2100.00 2 3
L J 20 el a.00 8.00 400 1600.00 1 1

8 1 1 486
8 1 2 6.86
9 1 3 . 8.86 10.86

Duration

800.00
800.00

300.
2750.00
5500.00

Start Distan.

3

.00

2755.00 1.00

5505.00 i 1.00

v

} » Datails l

For Halp:press.F1

Figure 3

167

Madify Task =]l
. General s orews i Sagments
RB'G“VG Constramts : l - . Absoluta Constraints or Timepoints

,1cf>:xf]il_ : Z—] :

':'Desérip_ti'oh' l

mT)I/‘pe
_f' FS . 8S CFF CSF I™ Binding
("TlmeBuffer(TB)

€ Distance Buffar (0B) ~ Leg [0 -~ Unit {day (Dsfaut =]
- TaskID ’:ﬁ Crew# - Segment #
Constram |12 ’ [U __] IO ;]

:Wlth |1 | _] o N ;]v]0

T s m|

7 FS 000 Yes 1
118 FS 000 Yes 2
9 fE .. 000 Yes 2

:Constrai...]Type fLag iBind iCrew# {Segme]PrvTasK H
2

2

Figure 4

168

¥ CONSCOM - Examplet

Fila Edit Yiew Plan Project Window Heip

Dic|d] &[%/®| &| 2N

Plan ID | Duration | Cost & Examplel l

p*Examplel 349 114567.50] {| TaskID | Dascriptian Cost 2]
L Claar and grub 0.00 3.00 3.00 2250.00
2 Grade site for remporary offices 3.00 450 1.50 2460.00
3 Eracttamporary offices 5.50 7.75 1.85 1000.00
"4 Constructtemporary roads 5.00 6.50 1.50 1350.00
45 Move in 7.75 8.75 1.00 400.00
5 Grade asphait concrete plant 10.34 11.68 0.75 1230.00
"7 Erract asphait cancreta plant 11.69 16.69 5.00 3700.00
3 Construct cutverts 12.27 18.27 6.00 2400.00
*"9 Clear and grub right-ofway 3.00 17.70 14.70 10132.50
0 Eothwork 743 2433 1h0 6090000
**11 Lay sub base 12.08 28.35 1626 14875.00
**12 laybase 26.35 30.35 4.00 8320.00 __

4 S RINE Pave 30.42 32.35 192 3750.00

] e*14 Finish shoulders 28.86 34.86 6.00 1800.00 X
23 Plans |] r iy

10 2 2 15.83 20.83

3000.00
350000

21000.00
50000
o0
16800.00 3500.00 5000.00 8.00 1.05
10500.00 5000.00 6000.00 5.00 1.00

1000.00
o

15.83

#® Details ‘

For Help, prass F1

Figure 5

169

170 I
e SRR
D 110 Descrigtion v]Enrthwork

~Status :
@ Proposed Froposed Task) ¢ Stared

 Implemsnted ’Nc:ne vl ¢ Finishad

I” Firsttask in the plan

Comments

Figure 6a

o 12 3: - Desqiﬁtion |
" ~CostDuration ﬁeldﬁohéﬁfp""" '
Duration required for a unit quantity of wark . . .

Min |1 -Max,lz Units Iday (Defaul"]

Cost of performing a unit quantity of wark ' Foradvanced settings

Min]300 Max {1100 select crew from li;t
B and prass Advanced

Adyencad | Add] Qer]'

Crew#‘i Min:Duration I'M'ax Duration] Min Cast f Max Cost IReIations:.i-
1 1.00 2.00 - - CONT
1.00 2.00 - - CONT

e Cancel o}

Figure 6b

171

’>‘ Start{5000 'Ehi'sh‘"]suon O Unit]m (Defauly v[
Quentity of Wark [5 ~ Job Conditon Factor [i

~ Cew [z [[asd]] e
Crew# | Segment# | Stant Location | Stop Location { aty of Wo... | Jobﬂ‘
1 1 1000.00 3000.00 10.00 1.00__J
1 2 3000.00 3500.08 6.00 118 .
2' 1 3500.00 5000.00 ; 8.00 105>}

Figure 6¢

172

Relative Cnstraints *

p; I4 . 3: DevsAcri‘g_tion]

~Type

CFS €SS CFF CSF I Binding
€ Tims Buffer (TB).

@ Distance Buffer (DB) * Lag]150 Unit]m (Defaul) +]
T TeskD | Crew# ‘Segment#
Constr;ih ’10 s ']U EI]U :J '
wih fo <] fo = o -] add| Dal I
Constraint #] Type i'Lag !'Bindi... i Crew...i Segm...]'PNTask..'Prvfj

i FS 000 VYes 1 2 10 1
FS 000 VYes 2 2 10 2

2
SN
¢ sl

58 000 Yes 2 ? 10 1.‘.:1

Figure 6d

173

-"G-_[Conxinuous:(Linéarornonlinéar)]f
*Numerator S .

174

