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EXECUTIVE SUMMARY

Incidences of large-amplitude vibrations of stay cables of cable-stayed bridges have been reported worldwide when
certain combinations of rain and moderate winds exist. This aerodynamic phenomenon, known as ‘rain-wind induced
vibration’ is a widespread problem and is a source of great concern for the long-term health of these monumental bridges.
An effective way of addressing various types of cable vibration problems would be to increase cable damping. Stay
cables are generally comprised of a bundle of steel strands (or wires) encased in a polyethylene or steel pipe. In U.S.
practice, cement grout filler has generally been injected into the cables (within the encasing pipe) for corrosion
protection.

The original concept proposed and explored in this study involved the adaptation of damping traits of various filler
materials (in lieu of conventional cement grout) for improvements in damping and suppression of cable vibrations. A
vibrating cable subjects the cable (and the filler material) to axial and bending strains. The intent was to maximize
energy dissipation by the filler within cost and practical constraints, and thereby achieve increased cable damping. Other
concepts for increasing cable damping were developed and evaluated during the course of this study. Two innovative
damper concepts for stay cables were introduced and tested. These two new damper concepts addressed the primary
deficiency of conventional viscous cable dampers in that the damper is restricted to the area near the ends of cables. The
new dampers can be attached at any point along the length of cable thus significantly improving its damping capabilities.

These two dampers can be described as “tuned mass damper” (TMD) and “tuned liquid damper” (TLD). In the tuned
mass damper concept, a mass is attached to the cable through a viscoelastic (spring/dashpot) system. Figure 1 shows a
conceptual drawing of the TMD. The damper can be “tuned” to the desired frequency of each cable and can be placed at
any point along the length of cable. The TLD would consist of a container placed around the cable and partially filled
with a liquid. The space within the container must be such that the movement of liquid is regulated to damp cable
vibrations at the desired cable frequencies. Another method of improving cable damping involving wrapping
commercially available viscoelastic damping tapes around the cable was tested in this study.

TMD
TMD
Cable
\ Cable

FIGURE 1 Schematic drawings of a tuned mass damper

Viscoelastic Element

An experimental program involving comparative damping measurements on 1/7th-scale models of a tensioned cable
was performed in the laboratory. Cable damping ratios using various methods and devices were determined to assess the
effectiveness. The following is a summary of various tasks performed:

o Five different grout mixes using MasterBuilders Masterflow 816 cable grout and Acryl-Set liquid polymer
(latex) were prepared.

*  Various physical property tests were performed on samples made with different grout mixes.

e Two cable models were made; one with “conventional” grout and the other with latex grout.



e The three new concepts proposed during the course of the study (a tuned mass damper, a liquid damper, and
wrapping cable with damping tape) were tested on the two cable models. In addition, a concept involving filling
the cable guide pipe with a polyurethane material was tested. Also, the effects of conventional neoprene
washers were studied through the use of scaled neoprene rings.

¢  The “tuned mass damper” concept proved to be the most effective method. The research team believes that
the “tuned mass damper” has the highest potential for an effective, relatively low cost damper that can be
applied anywhere along the length of cable. It can be applied as a temporary measure or as a long-term
solution to the problem of the rain-wind vibration. Figure 2 shows a comparison between cable vibrations
measured with and without a tuned mass damper.
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FIGURE 2 Comparison of cable responses with and without tuned mass damper

The cable with latex grout improved cable damping by 60 percent when compared to conventionally grouted cable.
However, since the conventionally grouted cable had very low damping to begin with, the higher damping afforded by
the latex grout was not sufficient for control of rain-wind vibrations based on the available criteria. In light of the
development of the tuned mass damper concept and the fact that cables without any fillers have been used worldwide and
are gaining acceptance in the U.S., the use of grout fillers for the purpose of cable damping will not be necessary.

The conventionally utilized neoprene rings also improved cable damping significantly, but the resulting cable damping
was still below the threshold of rain-wind vulnerability for a large percentage of existing cables. The “tuned liquid
damper” tested was not effective in raising cable damping. However, the research team believes that this concept has
significant merit, but a properly designed tuned liquid damper would require substantial research effort not available
within the constraints of this project.

The application of damping tape on the outside surface of the cable did not improve the damping ratio of the cable
substantially. This method also poses practical challenges and durability issues, and therefore is not recommended.

In summary, the research team strongly urges that the “tuned mass damper” concept be further developed to
the level of a prototype for use on an actual structure. This method is believed to offer many practical and cost
advantages over the use of mechanical viscous dampers or the utilization of cross-ties. It is recommended that at least
one prototype TMD be installed on a stay cable experiencing vibration problems in an actual cable-stayed bridge.
Vibration amplitudes before and after installation of dampers should be monitored and compared.



IDEA PRODUCT

This NCHRP-IDEA research program has demonstrated the effectiveness of tuned mass dampers as simple and effective
devices for raising the effective damping ratios of cables, thus controlling cable vibrations including the rain-wind and
galloping vibrations. Unlike conventional viscous dampers, these dampers can be installed at any location along the
length of cable and can provide significant damping levels. These devices can be used on new and existing cables.

This project also investigated the use of cable filler (other than conventional cement grouts) as a means of enhancing
cable damping. Although the new filler substantially increased cable damping when compared with cables
conventionally filled with cement grout, the level of damping achieved was not sufficient for control of rain-wind
vibrations.

CONCEPT AND INNOVATION

BACKGROUND/STATEMENT OF PROBLEM

Incidences of large-amplitude vibrations of stay cables (on the order of 1 to 2 meters) have been reported worldwide
when certain combinations of light rain and moderate winds (10 to 15 m/s) exist.”” This aerodynamic phenomenon,
known as the “rain-wind induced vibration” is a widespread problem. Formation of water rivulets on the cable is believed
to be the cause of this aerodynamic instability.”’ Incidences of rain-wind vibrations have been reported throughout the
world.” ¥ Vibrations of cables of the newly constructed Erasmus Bridge in the Netherlands were reported in the Bridge
Design and Engineering magazine (November 1996). Incidences of rain-wind vibrations have been reported on a number
of U.S. bridges including the Burlington, Clark, East Huntington, Weirton-Steubenville, and Cochrane bridges.” This
1ssue is a source of great concern for the bridge engineering community and a source of deep anxiety for the observing
public.

As primary members of cable-stayed bridges, stay cables are arguably the most important and crucial elements of the
entire structure. Therefore, such vibrations can be highly detrimental to the long-term health of cables and the bridge.
Large-amplitude vibrations can adversely affect fatigue endurance of cables, particularly at anchorages. In general. stay
cables consist of a bundle of 15.2-mm-diameter, seven-wire strands with a nominal strength of 1860 MPa. The strand
bundle is typically encased in a polyethylene (or sometimes steel) pipe. Strands could be uncoated, epoxy-coated, or
individually greased and coated with polyethylene sheathing. In U.S. practice, cement grout is commonly injected into
the pipe to provide additional protection for the strands.

AVAILABLE VIBRATION CONTROL CRITERIA

Based on a series of wind tunnel tests performed in Japan,” Dr. Peter Irwin recommended the following criterion for

control of rain-wind vibrations:'¥

Sc=mé&/p D2 >10

In this equation, m is the cable mass per unit length, & is the damping ratio (relative to critical damping), p is the
density of air, and D is cable outer diameter. The term on the left side of the above equation is the dimensionless mass-
damping parameter or Scruton number (Sc).

A draft Post-Tensioning Institute (PTI) document on stay cables reports a wide range for measured damping ratios (£'s)
of cables from 0.05% to 0.5%.” As part of a research project on measurement of stay cable forces using the vibration
method sponsored by the Federal Highway Administration (FHWA), Tabatabai et al. generated a database of stay cables
from 15 cable-stayed bridges around the world.”’ This database revealed that the mean and standard deviation of £



values required to achieve a Scruton number greater than 10 were 0.454% and 0.107%, respectively. Considering that
typical measured range of & values for stay cables are between 0.05% and 0.5%, it becomes clear that a very large
proportion of stay cables around the world would not meet the above requirements, and may therefore be susceptible to
rain-wind induced vibrations. Figure 3 shows a histogram of the cable damping ratios needed to meet the requirement of
the above equation. A damping ratio of 0.7% of critical damping would be sufficient to meet the above criterion for over
90% of the cables in the database.
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FIGURE 3 Histogram of required damping ratio for rain-wind induced vibration

Irwin also recommends the following equation for the contro! of the inclined cable galloping vibrations:™®
U = 35/D+/Se

In the above equation, U is the critical wind speed, and f is the frequency of cable. As cable damping increases, Sc and
U also increase.

AVAILABLE VIBRATION CONTROL MEASURES

In general, a number of different types of cable vibration control measures have been utilized in cable-stayed bridges. In
the most common method, neoprene washers (rings) are placed in the annular space between the outside diameter of the
cable and a steel guide pipe (attached to the bridge deck or tower) near the two cable anchorages. These neoprene devices
serve two primary functions. First, to reduce flexural stresses at the anchorage by providing partial support for the cable
at a relatively short distance away from the anchorages; and second, to provide some level of damping to the cable. The
level of cable damping achieved by neoprene rings is highly dependent on the tightness of fit, the level of pre-
compression, and any confinement for the neoprene. Therefore, the damping contributions from the neoprene rings may
be highly variable and not easily predictable.

In another method, cross cables (or cross ties) that transversely connect different cables together are utilized. In such
cases, special attention is required in the design of the cable-cross tie connection, the level of prestress in the cross cable,
and fatigue considerations for the cable, cross cable, and the connection. Cross cables may also negatively impact the
aesthetics of a cable-stayed bridge. The level of damping contributed by cross cables is not currently clear. Based on a
set of small-scale laboratory tests, Yamaguchi concludes that there is “more or less a damping-increase function” in
crossing main structural cables with secondary cables.” Additional damping from other cables, as well as energy
dissipation in the cross cables themselves can cause the damping increment.”” Yamaguchi suggests that the damping
contribution of the cross cables would be increased if more flexible and more energy-dissipative ties were used.”” Failure
of cross cables has been noted on at least one prominent cable-stayed bridge.”?



The third common method for vibration control of stay cables involves the use of mechanical viscous dampers attached
to the cables and supported by the bridge deck. Such devices are generally attached to the cable at a distance of 2 to 6%
(of cable length) from the deck level anchorage. As attachment point for the damper is moved further into the mid-region
of the cable, its efficiency and potential damping contributions increase. However, as the distance of the attachment
point from the cable end increases, a number of practical problems arise due to the fact that the damper force needs to be
reacted against the deck. '

Viscous dampers have been used on a number of bridges worldwide for suppression of cable vibrations. Tabatabai and
Mehrabi present procedures for design of mechanical viscous dampers used on stay cables.”” It should be noted that the
level of damping achievable by viscous dampers located near the end of cable is considered modest. As a rule of thumb,
the maximum damping ratio that can possibly be contributed by a damper located at X% of cable length from one end
(when X<6) is X/2 percent. For example, the maximum damping achievable when dampers are attached at 2, 4, or 6% of
cable length are 1, 2, and 3% of critical damping, respectively. These damping levels may be sufficient for control of
rain-wind vibrations but may be inadequate for control of galloping vibrations when design wind speeds are significant.
Japanese and French researchers *'¥ have proposed utilizing polyethylene sheathing that includes protrusions, dimples
or spiral strakes on the surface to disorganize or break the movement of the upper water rivulet. However, this process
requires special manufacturing process for the sheathing, and the effects of such modifications on drag coefficients need
particular attention.

OBJECTIVES

Originally, the objective of this research was to explore the effectiveness of utilizing specific filler materials inside stay
cables that would increase cable damping ratios to levels beyond the threshold of vulnerability to rain-wind induced
vibrations. Other objectives were added during the course of the study to address new and innovative means of
increasing cable damping.

INVESTIGATION

EXPERIMENTAL APPROACH

General

In this section of the report, the basic approaches for enhancing cable damping as developed and examined in this study
are addressed. It should be noted that the concept of adaptation of fillers for cable damping enhancement was originally
(as stated in the proposal) the only method to be studied. However, during the course of the research effort, a number of
other promising approaches including tuned cable dampers were proposed by the investigators and included in the
research plan. In the following paragraphs, various aspects of the experimental work are described.

As a first step in the study, a review of literature was performed in the areas of cable damping, damping materials,
tuned mass dampers (TMD), tuned liquid dampers (TLD), and related areas. A large number of titles and abstracts were
reviewed. Of those, over 40 papers, three books and two theses were obtained for further review.

Scaled Modeling

The effectiveness of various damping treatments and methods was comparatively assessed using 1/7th scale stay cable
models. The extent and variety of testing necessary to adequately compare various damping treatments would have not
been possible or practical if prototype cable testing were contemplated. An “average” stay cable is approximately
320 feet long and contains 53 strands.”? Properly scaled cable models (based on the laws of similitude) offer significant



experimental flexibility and provide a simple, yet reliable, vehicle for comparative assessment of various damping
treatments. Basic properties of the scaled cable models used in this research are shown in Figure 4. In this model,
relationships between model and prototype parameters are shown in Table 1.”7%
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FIGURE 4 Reaction frame for laboratory tests

Since materials used for the model and prototype (such as grouts, polyethylene pipe, prestressing strand, etc.) are the
same (or very similar), then material property requirements listed in Table 1 are satisfied. These include parameters such
as modulus of elasticity, density, Poisson's ratio, strength, etc. Note that in Table 1, the damping ratios of the mode] and
prototype are the same for a “true” model.

Achieving an ideal or “true” model is not entirely possible in great majority of cases. Some degree of distortion is
generally present. The potential impact of such distortions must be considered and evaluated in the design of such
models. For example, Table 1 shows that acceleration in the model should be n (n = length scale)times the acceleration
in the prototype. Theoretically, this same requirement should apply to the acceleration of gravity. However, the model
tests are conducted at 1g (the same as prototype). This introduces a distortion in the model. A true model (in this set of
relationships) must be subjected to an acceleration of gravity of ng (as in a centrifuge). The effect of this distortion in the
mode] would be an incorrect modeling of the effects of gravity such as cable sag and the sag to span ratio. However,
since the important parameter of interest in this case is the damping ratio, and the sag effects do not generally affect this
parameter, the gravity stresses would not introduce a significant distortion. A different set of scaling relationships
(different from Table 1) can be utilized to achieve proper modeling of the sag effects. This involves attachment of
lumped masses to the cable. Although theoretically feasible, this method is believed to introduce numerous other
practical complications (such as distorting the damping effects by introducing damping at connection points of lumped
masses). Therefore, the scaling relationships shown in Table 1 were utilized in these tests.

Another source of distortion in this case would be from the component of damping due to friction. Friction effects may
not be properly modeled in a scaled model such as that utilized here. Also, overall damping can be affected in some
extent by higher frequencies in the scaled model. However, since none of the damping treatments are based on friction,
and a comparative (not absolute) damping assessment is made, these effects are not expected to influence the results.



TABLE 1 Dynamic Scaling Relationships(m

Parameter Symbol Scaling Relationship
Stress c Sm = Op
Displacement d dm = dpmn
Acceleration a am = nap
Velocity v Vvm = Vp
Spring Constant K Km = Kpmn
Energy En Enm = Enp/n3
Dimension D Dm = Dpmn
Density p Pm = Pp
Material Modulus E Em = Ep
Material Strength F Fm = Fp
Area A Am = Apmn?
Volume A" Vp = Vp/n3
Mass M My = Mp/n3
Strain € Em = §p
Dynamic Time t tm = tp/m
Signal Frequency f fm = nfp
Damping Ratio £ Em &p
Poisson's Ratio I Hm = Hp
Force Fr Ffm = Fﬁ,/n2

m = model, p = prototype,
n = length scale

Adaptation of Fillers

The originally proposed concept for this study explored the adaptation of damping traits of filler materials for suppressing
stay cable vibrations. The current predominant design of cables in the U.S. (and many other countries) consists of parallel
seven-wire strands encased in polyethylene sheathing and injected with cement grout. The stated objective of the cement
grout filler is to provide protection for the strands by providing an alkali environment and to introduce a physical barrier
to the outside elements. A vibrating cable subjects the cable (and filler materials) to axial and bending strains. These
strains could potentially be used to dissipate vibration energy in the filler, and thereby increase damping. Identifying a
cost-effective filler material that would increase cable damping while maintaining or improving the level of corrosion
protection was therefore desired. Such a filler material could improve and simplify design, improve fatigue endurance (by
controlling vibration), and enhance aesthetics of bridge by eliminating the need for external vibration control devices.

Other countries in Europe and Japan have used cables without fillers, or with fillers other than cement grout. Post-
Tensioning Institute (PTT) Recommendations for Stay Cable Design, Testing and Installation provides a list of alternative
corrosion protection materials used for stay cables in Japan.”” These include polymer concrete, polybutadiene
polyurethane, and grease. Other applications in Europe have included flexible grout and wax fillers.

An evaluation of potential filler materials was performed in this study. The decision to select the appropriate product or
combination of products was based on four important considerations:

e  Physical properties and corrosion protection
e Relative cost

o Field application (injection) with conventional grouting equipment



e  Cooperation from industry

Research by Yamaguchi indicates that the most efficient ways of increasing energy dissipation during vibration cycles
are to increase the loss factor of the material, and to increase the modulus of elasticity of material (to improve loss due to
axial strains).”” Loss factor is the ratio of dissipated energy to the stored elastic energy in each cycle. A number of
possible filler products such as wax and grease were not considered because of their low moduli of elasticity. Another
important parameter is that the level of corrosion protection provided by the proposed material should be at least equal
(ideally better) than conventional cement grout.

Considering the fact that the volume of filler inside typical stay cables is generally 2 to 3 times larger than the volume
of the primary steel elements, the cost factor becomes very crucial. Therefore, any filler material selected had to have
reasonable cost. For example, polyurethanes or various other polymers can be designed to achieve the necessary
properties, but the costs of those materials would be much higher than the conventional cement grouts. The ability to
utilize conventional equipment for injection of fillers and the level of cooperation from industry were the other two
important parameters.

Serious considerations were given to the use of “Sika Icosit 320", which is a polyurethane-based material that is mixed
with cement. This product was designed for cable applications and includes corrosion inhibiting admixtures. However,
the manufacturer (Sika Chemie, Germany) informed the research team that they planned to discontinue the production of
this material because of environmental issues involving the use of some admixtures. Therefore, this option was not
pursued further.

Based on an evaluation of various materials, the latex modified cementituous grout was selected for further evaluation
and testing. This type of grout offered a potential solution with reasonable cost, ability to inject with conventional
grouting equipment, good energy absorption potential, and cooperation from the industry. Test materials utilized
consisted of a mixture of two commercial products: “Masterflow 816 Cable Grout” and “Acryl-Set Liquid Polymer.”
Both these products are produced commercially by Master Builders, Inc. Masterflow 816 is a Portland cement-based
grout designed for post-tensioning applications. It is advertised that this grout pumps easily, is without bleeding and
settlement shrinkage, and meets the compressive strength and non-shrinkage requirements of CRD-C-621 and ASTM
C-1107 at a fluid consistency. With the recommended water quantity of 2.17 gallons per 55-Ib bag of grout, the flow
cone test method (ASTM C-939) reportedly resuits in a 20 to 30 second flow time.

The Acryl-Set liquid polymer is designed to replace all or part of the mixing water in portland cement-based mixes. It
is generally used for repair of concrete (including thin repairs), leveling concrete, bond slurries, highway and bridge
paving, spraycoat applications, etc. Since this material was not originally designed for the purpose of mixing with the
816 Cable Grout, a limited number of trial mixes and property tests were performed to optimize the properties of the
combined product as they relate to cable damping.

Five different latex grout mixes were prepared and tested to determine basic physical properties and find the most
appropriate mix. Table 2 shows ingredients for the various grout mixes (A through E).

TABLE 2 Grout Trial Mixes

Grout Mix
Ingredients A B C D E
Masterflow 816 Cable Grout (Ibs) | 36.7 36.7 36.7 38.5 0
Acryl-Set Liquid Polymer (1bs) 6.4 0 12.3 12.9 12.9
Masterflow 816 with Sand (Ibs) 0 0 0 0 38.5
Water (lbs) 5.8 12.1 0 3.1 3.1

The five mixes were tested to determine compressive strength (ASTM C39), modulus of elasticity (ASTM C469),
modulus of rupture, hysteresis (first cycle), and hysteresis after 10,000 cycles of loading. At least three cylinders (3-in. x
6 in.) and three cubes (2-in.) were used per each mix to determine modulus of elasticity and compressive strength. Three
prisms (3 in. x 3 in. x 11 in.) were used to determine energy loss per cycle for each of the grout mixes. These prisms



were simply supported with a span of 9 in. A strain gage was attached to the bottom of each prism at mid-span. One-
third point loading was applied in increments until a strain of 100 millionths was reached. The load was then returned to
zero. Then, 10,000 cycles of strain (from zero to 100 millionths and then to zero strain on the bottom fiber at mid-span)
was applied. The area under the load-strain curves for the first, and the 10,000th cycles were determined. This was done
to evaluate the energy dissipated per cycle in the material and the degradation of this energy dissipation capability with
time (repetitive stresses). Other prisms (1 in. x 1 in. x 11 in.) were used to determine modulus of rupture of the various
grouts. Based on the results of these tests, grout mix D was selected.

Two stay cable scaled models were prepared for testing. The only parameter that was varied between the two cables
was the type of grout used. Each cable consisted of a single 0.6-in. diameter strand stressed to 23,400 Ibs or 40% of
nominal capacity (after losses). This stress level in the cable is typical under dead load conditions in stay cables. The
strand was encased in a continuous high-density polyethylene pipe with an outside diameter of 1.315 in. and a minimum
wall thickness of 0.12 in. (SDR ratio of 11). Grouting operations was performed when cables were placed at an
inclination angle of approximately 15 degrees as shown in Figure 4.

The cable fillers used were:

1. Conventional cement grout filler (a combination of cement, water and admixtures). The mix consisted of
85.6 Ibs of Masterflow 816 Cable Grout and 28.2 1bs of water. The measured flow time based on the flow cone
test method (ASTM C-939) was 13 seconds.

2. Latex modified cement grout. The mix consisted of 85.6 Ibs of Masterflow 816 cable grout, 28.7 Ibs of Acryl-
Set liquid polymer, and 19.1 lbs of water. The amount of water used was higher than the proportions used in the
trial mix (Mix D) selected due to pumping difficulties with the desired trial mix. The flow cone test was not
performed due to the thixotropic nature of the grout.

Tuned Dampers

Tuned mass dampers and tuned liquid dampers have been used in many Civil Engineering structures including high-rise
buildings and bridges. A tuned mass damper is in the form of a mass on a spring with damping or a mass on a viscoelastic
element. A TMD should ideally be located at a point of high displacement response such as an antinode.”” Tuned mass
dampers can be effective over a range of frequencies depending on the design of damper. If the spring does not have a
damping or viscoelastic component, the system is called an “undamped dynamic vibration absorber.””” Dynamic
absorbers function as discrete tuned resonant energy devices.”” A properly tuned absorber changes the original system
resonant frequency into two other frequencies and reduces (or eliminates) the response at the original frequency.
However, since there is no damping component associated with the spring of an absorber, the response is limited to the
target frequency.

A very early application of TMD concept to the transmission (electric) lines was in the form of a “Stockbridge
damper.” A Stockbridge damper consisted of a piece of steel cable clamped to the line at the middle and two weights
attached to the ends of the cable.””

A properly designed TMD can be applied anywhere along the length of a cable. Existing hydraulic or viscoelastic
dampers must, by design, be located near cable ends where they are least effective. The Tuned Mass Damper concept is
based on the movement of a mass attached with a viscoelastic element (spring and dashpot) to the cable. The system
(mass and the spring constant) can be tuned to the cable frequency of interest.

Tuned Liquid Dampers have been used on tall buildings and tower structures.”***?” Existing TLD's for buildings and
towers rely on the motion of shallow liquid in a rigid container placed on top of the structure for control of vibrations due
to wind. There are considered to be low cost and low maintenance devices. The Tuned Liquid damper concept for cables
as proposed here is based on attachment of an annular cylindrical container (partially filled with liquid). The inside of the
cylinder could be hollow or contain tubular or other types of paths to regulate the movement of liquid (tuning).

Both TMD and TLD dampers have been used (or proposed for use) in buildings and bridges, but not for stay cables.
These dampers are believed to be aesthetically unobtrusive, i.e., they are not expected to negatively impact the



streamlined look of a cable-stayed bridge. Cross-ties (cross cables) and hydraulic dampers have sometimes been
criticized for affecting the beauty of such bridges.

The test program performed on the two stay cable models were designed to address the feasibility and effectiveness of
TMD and TLD applications on stay cables. Figure 5 shows the scaled “TMD” and “TLD” devices tested on cables. The
“ITMD” consisted of a metal bucket hung from the cable by a spring at different locations along the cable. Figure 6
shows a schematic of TMD and TLD system attached to cable model. In TMD model, the bucket contained various
amounts of lead shot (to allow easy variations of system mass). Five different types of springs (different spring
constants) were used for TMD model. The types of spring and spring constants (nominal) used are listed in Table 3.

T™D TLD

FIGURE 5 Scaled model representations of TMD and TLD
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FIGURE 6 Schematics of TMD and TLD
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TABLE 3 Spring Types and Constants

) Nominal Spring Equivalent
Spring . Constant Prototype Spring
No. Spring Type (Ibs/in.) Constant* (Ibs/in.)
1 Extension 2.5* 17.5*
2 Compression 3.0 21.0
3 Compression 8.0 56.0
4 Compression 16.0 112.0
5 Compression 30.0 210.0

* This spring was non-linear at low loads with higher stiffness
at lower loads.

It should be noted that Spring No.1 was tested under two different conditions: uncoated (plain spring) and coated
(spring brushed with a polyurethane compound to add damping element). Since Spring No. 1 was an extension spring, it
exhibited non-linear behavior (load vs. Displacement) at lower loads when the mass attached was not sufficient to fully
engage the entire spring. A large number of tests were performed with the mass-spring systems attached at different
locations along the lengths of both cable models. Different springs were tested with different amounts of lead shot
(mass).

The TLD model used consisted of a 12-in.-long, 3-in.-diameter (nominal) PVC pipe that was cut lengthwise in half.
The two pieces of the pipe were then placed on the cable as shown in Figure 5. The two ends of the pipe were sealed.
Various amounts of liquid (water or motor oil, up to complete filling) were added through an opening at the top of the
pipe prior to each damping test. The center of the pipe was located at 20% of cable length in one test (cable 1), and at
42.5% in another test (Cable 2). In addition to the above, some tests were performed using lead shots in lieu of water or
oil.

Damping Tapes

During the course of the review of literature, the project researchers came across a recommendation by Yamaguchi
regarding a potential means to enhance cable damping.”” Yamaguchi's suggestion was based on application of layers of
damping tapes spirally around the wire strands so that “even in axial deformation of the cable, there is large energy loss
due to the shear deformation in the damping tape.”” Inducing shear strains (as opposed to axial or bending strains) in
viscoelastic materials is most effective for damping enhancement. Yamaguchi did not provide experimental verification
of his suggestion. It was therefore decided to experimentally assess the effectiveness of wrapping the stay cable with
layers of damping tapes in this research program. The 3M Corporation (St. Paul, Minnesota) produces viscoelastic
damping tapes for vibration control in panels and other structures. Several rolls of 2-in. wide damping foils (3M model
2552) were obtained for testing. These adhesive foils consisted of a viscoelastic polymer on dead soft aluminum foil.
The total thickness of the tape is 15 mils (0.381 mm), and multiple layers of these tapes can be applied spirally on
selected locations of the cable to increase damping. The polymers can be selected to be effective within the design
temperature range of the cables (e.g. -20° to 120°F).

In this test program, the conventionally grouted cable model was first spirally wrapped with one layer of 2552 damping
tape over the middle 20% of the cable length with zero overlap. Tests on damping tapes were performed only on the first
cable (conventionally grouted) after all other tests on that cable had been completed. In this test, the cable was free from
other treatments (i.e., no neoprene rings, etc.). Another test was performed after a second layer of damping tape was
applied over the middle 40% of the cable length. Figure 7 shows the cable model with damping tape applied.
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FIGURE 7 Damping tape applied on cable

Neoprene Rings

To assess the impact on cable damping of conventional neoprene rings commonly used in stay cable design, a set of tests
were performed on scaled durometer 50 neoprene rings. The rings would fit snuggly inside a scaled “guide pipe” and
attached to the reaction frame of the stay cable model as shown in Figure 8. The guide pipe consisted of a 12-in. long,
2.25 in. outside diameter pipe with a wall thickness of 0.065 in. The support points for the pipe were selected to
represent actual (scaled) support conditions of a guide pipe from the Cochrane Bridge in Alabama. The first and second
support points for the guide pipe were located at 7.25 in. and 10.25 in. from the free end of the pipe, respectively. The
free end of the pipe was located 21 in. from the anchorage bearing plate. The neoprene ring was cut from a 1-in.-thick
sheet of Durometer 50 neoprene to fit the inside of the pipe at a distance of 0.5 in. from the free end. This ring model
would be equivalent to a 7-in.-thick neoprene ring located 3.5 in. from the free end of the guide pipe in the prototype
structure. Damping measurements were made without neoprene ring, with neoprene ring on one side, and with neoprene
ring on both sides.

FIGURE 8 Neoprene ring models placed inside guide pipe

Polyurethane Rings

A concept involving partial or complete filling of the guide pipe with a polyurethane material was suggested by a
manufacturer (Polycoat Products) and tested. In one test, the existing neoprene ring was pushed back to a distance of
4 in. from the free end of the guide pipe and the entire guide pipe was filled with a two-component, low-viscosity liquid
polyurethane rubber. Only one guide pipe (at one end of cable) was filled. The other end was free (i.e., no neoprene
rings used). Originally, it was intended that the front 4 in. of the guide pipe be filled, but due to a leakage the entire pipe
was filled. The polyurethane was allowed to cure for a minimum of three days before testing. In another test, the
neoprene ring on one side was removed, and the entire pipe on that side was filled with the polyurethane material. The
other end contained the conventional neoprene ring.
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Damping Measurement Procedures

Measurement of damping was performed using the free vibration decay method. In this method, an accelerometer was
attached to the cable at mid-length. The cable was deflected at mid-span using a weight (steel cylinder) hung from the
cable by a string at mid-length (Figure 9). The string was then suddenly cut with a sharp knife to excite the first mode
vibration of the cable. The subsequent cable vibrations (measured by the accelerometer) were recorded using a high-
speed data acquisition system (Figure 9).

FIGURE 9 Weight hung from the middle of cable and data acquisition system
The damping ratio for the first mode can then be determined using the following equation:

E=86n/2nm

where 8y, is the logarithmic decrement over m cycles. The logarithmic decrement is defined as:

8n = Ln (Vo/Vnim) = L (V) - Ln (Voem)

where v, is the peak vibration amplitude at the n-th cycle, and v,.p, is the corresponding peak at the (n+m)-th cycle.
However:

m={f{t,m-t,)

where f is the first mode frequency of cable (in Hertz), and (t,.m - t,) is the difference in time between the peak at (n+m)
cycles and the peak at n cycles. Therefore:

£=(Ln (vn) - Ln (Vpem)) / (2 7 £ (tyem - ta))

The procedures used’ to determine the damping ratio in these tests were as follows: (1) Plot the natural log of positive
peaks of the acceleration-time history versus time. (2) Consider only the peak data greater than 10% of the highest
(initial) peak (i.e., ignore the smaller peaks). (3) Draw a best-fit straight line through the data and find the slope of the
line. (4) Divide the slope of the line by - 2nf to determine the damping ratio.

In many cases where mass-spring systems were attached to the cable models, the plot of the natural log of the data

versus time was not linear. In such cases, two straight lines were fit to the data. All damping measurement tests were
performed when the cable model was in a horizontal alignment.
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TEST RESULTS

Grout Test Results
Table 4 shows the results of tests performed on various grout mixes evaluated.

TABLE 4 Test Results - Grout Mixes

Compressive Modulus of | Modulus of | First Cycle Last Cycle
Grout | Strength (Age-Days) Elasticity rupture Hysteresis Hysteresis
Mix (psi) (ksi) (psi) (Ib-in./in.)* | (Ib-in./in.)*
A 7167 (14) 2620 NA** 551 484
B 7142 (14) 4680 314 NA** NA**
C 6050 (14) 1380 1215 1957 1010
D 4792 (28) 1640 422 2044 778
E 3250 (28) 1840 614 3923 352

* 10,000 cycles of zero to 100 microstrains (at the bottom fiber at mid-span) were applied
to the test specimen. The energy loss by the material in the first and last cycles was
measured.

** Not tested due to cracking of specimens.

Based on the above results, it is clear that cyclic straining of the material for 10,000 cycles degrades the energy
absorption capability of the latex grout substantially. Mix D was selected for grouting of the second cable model due to
its relatively high energy-absorption capacity after 10,000 cycles, and because of its relatively high modulus of elasticity.
However, during grouting of the second cable, it became clear that the grout was not injectable with the grout pump
available due to its thixotropic nature. Some water was added to be able to inject grout.

Damping Test Results

Results of all damping tests are summarized in a table included in Appendix A. The measured damping ratios in some
cases are given as two numbers. This is due to the fact that two straight lines instead of one could best represent the
logarithmic data. In such cases, the associated amplitude (in percent of the initial or maximum amplitude) accompanies
the first damping ratio. For example, in test T1-10, the measured damping ratio is given as “3.06 to 19%, then 0.11.”
This means that the damping ratio for all data except those with amplitudes below 19% was 3.06% of critical damping.
For amplitudes between 19% and 10% (which was the lowest amplitude considered), the measured damping ratio was
0.11%.

Fillers

The time-domain response of the conventionally grouted cable (reference cable or Cable 1) is shown in Figure 10. The
measured first mode frequency of the cable was 8.55 Hz. The measured damping in this case was very low (0.05%). It
should be noted that in this test, there were no neoprene rings attached. The corresponding test of the latex grout cable
(Cable 2) indicated a damping ratio of 0.08%. Although, there was a substantial increase in damping from a percentage
standpoint (60%), the achieved damping ratio was well below the minimum damping required for control of rain-wind
vibrations in most stay cables.
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FIGURE 10 Acceleration response at mid-length of Cable 1 without damper

Neoprene Rings

When neoprene rings were installed inside guide pipes at both ends of the reference cable (cable 1), the measured
damping ratio reached as high as 0.61% (or over 10 times higher than the same cable without neoprene rings). Figure 11
shows the time-domain response of Cable 1 with neoprene rings. It should however be noted that the performance of the
neoprene rings is highly dependent on the tightness of fit inside the guide pipe and the level of pre-compression (or
confinement) in the neoprene material. It is expected that pre-compressing the rings to fit would be helpful up to a point
that such pre-compression would result in a more-or-less rigid support and result in reduced damping for the cable.
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FIGURE 11 Time domain response for Cable 1 with neoprene rings
As an indication of the high degree of variability of the neoprene damping contribution, it is noted that Cable 2 with
neoprene rings on both sides achieved a damping ratio of up to 0.34%. When neoprene ring was used on one side only.
the resulting damping ratio was 0.26%.
Polyurethane Rings
The polyurethane material placed between the guide pipe and the cable did not improve cable damping substantially

when compared to the conventional neoprene rings. In Cable 1, when polyurethane was used in combination with a
displaced neoprene rings (on one side only), the damping ratio achieved was 0.34%. When a conventional neoprene ring
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was also placed on the other side, the damping ratio increased to 0.41%. In Cable 2, when polyurethane was used in one
guide pipe (without any neoprene rings), the damping ratio achieved was only 0.14%. When a neoprene ring was added
to the other guide pipe (opposite end of cable), the measured damping ratio increased to 0.38%. It should be noted that
the polyurethane material used had a low modulus (Shore A Durometer Hardness of 25). It is anticipated that the
damping contribution might increase if a polyurethane material with higher modulus were to be used.

Damping Tapes

Damping tapes were applied to Cable 1 only. In the case where damping tapes covered the middle 20% of the cable, the
damping ratio of the cable was 0.05% or unchanged from the untreated cable. An additional layer of tape covering the
middle 40% of cable length increased cable damping to 0.08%. Considering the potential practical complications in
applying these tapes in the field and the poor damping results obtained, this method is not recommended for further
study.

Tuned Liquid Damper

In Cable 1, the PVC container was attached at 20% of the cable length from one end. Addition of different quantities of
water or lead shot did not improve damping in a substantial way. The maximum cable damping achieved was 0.08%.
Similar results were obtained in tests on Cable 2 where the PVC container was placed at 42.5% of cable length from one
end. In no case (with water or oil) did the damping level increase beyond 0.20%. However, it should be noted that the
theoretical design of a TLD system for cables involves extensive investigations beyond the scope of this project. It is
anticipated that an effective and proper combination of damper design incorporating internal paths or tubes to regulate
and tune the process of movement of liquid can be found. Additional research is required to address these issues. Such a
damper system could be a low-cost, low-maintenance alternative to currently available methods.

Tuned Mass Damper

Figure 12 shows the time-domain response of the reference cable (Cable 1) with a mass-spring system located at 20% of
cable length. In this case, the uncoated spring No. 1 was used with a mass of 1020 grams or approximately 3% of the
total cable mass (equivalent to 350 kg in the prototype structure). The damping ratio achieved in this case was 2.35%.
Comparison between Figure 12 and Figure 10 (response without damper) shows significant improvement achieved by
TMD.
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FIGURE 12 Aceleration in Cable 1 with TMD
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Figure 13 shows the damping contributions by spring No. 2 at various locations along the length of Cable 2. In the
tests illustrated in this figure, the mass of damper was 190 grams or 0.6% of total cable mass (Mc). Similar graphs for
spring No. 3 with a damper mass of 415 g (1.3% of Mc), spring No. 4 with a damper mass of 665 g (2.2% of Mc). spring
No. 4 with a damper mass of 415 g (1.3% of Mc), and spring No. 5 with a mass of 1665 g (5.4% of Mc) are shown in
Figures 14 through 18. It is clear that very high effective damping levels (exceeding the required levels for suppression
of rain-wind and galloping vibrations) can achieved through the use of the TMD system. It is also clear that the damping
level achieved is highly dependent on the spring mass for each spring as well as the location of the TMD along the cable.
Figure 18 shows variations of damping contributions with the mass of the damper when spring No. 5 was attached at 30%
of cable length. Other similar graphs for Springs 3 and 4 are shown in Figures 19 and 20, respectively.
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Figure 16 Damping ratios of Cable 2 with respect to damper location for Spring 4, mass of 415 gm
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Figure 18 Variation of damping with mass for Spring 5 at 30% of cable length
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The TMD concept proved very successful in raising the effective damping ratio of cable beyond the threshold of
vulnerability to rain-wind and galloping vibrations. It is also expected to be a low-cost, low maintenance vibration
control option that can be applied to both existing and new stay cables. The advantages of TMD compared to
conventional viscous dampers or other alternatives can be described as follows:

e Relatively high effective cable damping ratios achievable.

e Reasonable expected cost (estimated on the order 1/4 to 1/3 the cost of viscous dampers).
* Not limited to the ends of cable (can be attached anywhere along the length).

o Relatively small size and mass.

¢ Expected to be low maintenance.

e  Aesthetically more pleasing. In fact the positioning of dampers in different cables can be used to highlight a
specific pattern.

CONCLUSIONS
Based on the results of this investigation, the following conclusions can be made:

e  The “Tuned Mass Damper” concept was by far the most effective method tested. It has the highest potential for
an effective, relatively low cost damper that can be attached anywhere along the length of cable.

¢ The model cable containing latex grout improved cable damping by approximately 60% when compared to the
conventionally grouted cable. However, the total effective damping achieved was not sufficient for control of
rain-wind vibrations.

¢  The “Tuned Liquid Damper” tested was not effective in this case. However, it is believed that the concept has
significant merit and requires further design and development work.

*  Application of damping tapes did not improve cable damping substantially. These tapes also pose practical and
durability challenges and therefore are not recommended.

» Filling of guide pipes with low durometer polyurethane improved cable damping somewhat, but not to the extent
of a properly installed neoprene ring. A higher stiffness polyurethane filling is believed to be more effective in
such applications.

PLANS FOR IMPLEMENTATION

The research team strongly believes that the tuned mass damper concept should be developed further to a marketable
product. To achieve that goal, a number of steps must be taken. These include detailed design and fabrication of a
prototype TMD, testing and evaluation of the TMD in the field, and securing collaborative agreements with potential
users of the product. In the following paragraphs, various aspects of the research team's plans for implementation of this
concept are addressed.

TMD CONCEPT AND DESIGN CONSIDERATIONS

As stated earlier, the tuned mass damper concept should contain a damping element in combination with the spring to
extend the effective frequency range of the damper. The required spring constant for the proposed stay cable TMD will
be relatively small and fatigue considerations for the spring is an important consideration. To address these issues, it is
envisioned that the TMD “spring” would consist of a viscoelastic “structure” contained between an outer cylinder (mass)
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and an inner cylinder (the cable). The viscoelastic element would also provide for the damping component. Conceptual
drawings are presented in Figure 1. The viscoelastic element can be formed in various shapes (such as an arch) to
achieve the desired spring constants.

It should be noted that viscoelastic material properties are highly dependent on temperature. The elastomeric materials
for tuned dampers should, within the expected temperature range, be in a “rubbery” region where small changes in
temperature do not have a large effect on properties such as stiffness. '® The cylindrical shape of the “spring” in this
case allows control of cable movements in all directions. The conceptual system will consist of two half cylinders bolted
together on the cable with watertight connections provided at the seams and the ends. The cylinder (most likely steel)
can be coated with several layers of protection against corrosion. The system should also allow for field tuning
(adjustment of mass or stiffness in the field).

FURTHER WORK AND FIELD VERIFICATION

It is proposed that additional work be performed to field verify the effectiveness of the prototype TMD in controlling
vibrations of one or more stay cables currently exhibiting rain-wind vibrations. The research team has been involved in
an evaluation of stay cable vibrations on the Cochrane Bridge in Mobile, Alabama. This bridge will be retrofitted with a
large number of mechanical viscous dampers for stay cables in the year 2000. This bridge or the Charles River Bridge in
Boston (under construction) could potentially be used to test this device. It is proposed that cable vibration
measurements be taken for a period of at least 2-3 months before and after installation of damper. Such monitoring is
currently planned for the new conventional damper installations on the Cochrane Bridge.

It is also proposed that additional analytical work be also performed to prepare optimum design charts for selection of
damper size and locations. Durability testing on the prototype damper would also be another area deserving
consideration.

COLLABORATIONS WITH POTENTIAL USERS

At this point, at least one stay cable manufacturers has expressed strong interest in commercial development of these
dampers. It is expected that, if and when contacted, other such users would also express interest. Cable suppliers can
furnish these dampers as an integral part of their cable systems or provide them as retrofit measures on existing cables.

INVESTIGATOR PROFILE

The Principal Investigator, Dr. Habib Tabatabai, P.E., S.E., has been prominently involved in various aspects of stay
cable testing and evaluations in the last decade. Design of stay cable test fixtures, qualification testing of stay cables,
development of laser-based stay cable force measurements, damage detection in cable-stayed bridges, development of
procedures for design of viscous dampers for stay cables, and non-destructive testing of stay cables in the field are among
his accomplishments.

The co-investigator, Dr. Armin Mehrabi, P.E., has been involved in analytical and experimental assessment and non-
destructive testing of structures. He has participated in development of laser-based stay cable force measurements,
damage detection in cable-stayed bridges, development of procedures for design of viscous dampers for stay cables. For
his achievements in non-destructive testing of cable-stayed bridges, he was selected as one of the Top 25 Newsmakers of
the Year 1997 by ENR.
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