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Executive Summary

A full-scale impact test was performed November 16, 1999, at the Federal
Railroad Administration’s Transportation Technology Center, Pueblo, Colorado,
by Transportation Technology Center, Inc., a subsidiary of the Association of
American Railroads. The test was performed on a Budd Company Pioneer-type
commuter passenger car. The purpose of the test was to measure strains,
accelerations, and displacements during the impact so that computational and

kinematic models of the vehicle impacting a rigid barrier can be validated.

Other test objectives were to determine the crash-force pulse shape throughout
the vehicle and to provide a greater understanding of occupant kinematics in

crash situations.

The measurements taken before, during and after impact indicate that:

o The speed of the test car at impact with the barrier was 35.1 mph. This
was within 0.3 percent of the target speed of 35 mph.

e The amount of crush was about 4.5 feet as measured from the
reduction in length of the vehicle after the test. The film analysis
showed the maximum displacement in the longitudinal direction of 5.5
feet. The accelerometer data, double integrated, shows a maximum
displacement of about 5.5 feet. (Both the film analysis and the
integrated accelerometer data include elastic deformation of the car
body.) The test requirement was for at least 3 feet of crush.

e The data acquisition system comprised 12 Data Bricks each collecting 8
channels of data. One of the Data Bricks did not trigger, and the 8
strain gage channels feeding signals into this Data Brick were lost. All
these strain gages were on the left hand side of the center sill. All other
strain gages provided information.

o All the accelerometers provided some information. Two of the lateral
and two of the vertical accelerometers saturated. The accelerometer at
the front of the vehicle, Center Sill — Position 1, recorded a maximum
longitudinal acceleration of 70 g, filtered to SAE CFC 60, before its
cable failed at 0.1 s.



e A maximum vertical deflection of 3.5 inches was recorded on the A~
end, right-hand side string potentiometer.

e All video and film cameras successfully recorded the impact of the test
car from both sides, overhead, underneath, on board and a general
view. The film was analyzed frame-by-frame, and the displacement
and velocity calculated throughout the impact.

The test car was structurally complete, although the original seats were removed
together with other under-floor auxiliary equipment. The interior of the car was
modified with a number of prototype seats fitted in different configurations.
Approximately 10,000 pounds of ballast was added to the car body. The coupler

was left installed at the impact end.

The impact test was performed by pushing the test car with a locomotive,
releasing it at a pre-determined point, and then letting it run down the inclined
track and into the barrier. The release distance and the speed of the locomotive at
release were calculated from a series of speed calibration tests carried out before

the actual impact test.
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1.0 INTRODUCTION AND OBJECTIVE

A full-scale impact test was performed using a Budd Company Pioneer-type
commuter passenger car November 16, 1999, at the Federal Railroad
Administration’s Transportation Technology Center, Pueblo, Colorado. The
impact test was conducted to measure strains, accelerations, and displacements
during the impact to validate computational and kinematic models of the vehicle

impacting a rigid barrier.

Additional objectives were to determine crash-force pulse shape throughout the

vehicle and to gain greater understanding of occupant kinematics in crash

situations.

This report describes the test procedure, the instrumentation used in the test, and

a complete set of results.

2.0 DESCRIPTION OF TEST CAR
A Budd Company Pioneer-type commuter passenger car (Figure 1), donated by
Southeastern Pennsylvania Transportation Authority (SEPTA), was used in the

impact. The car body was structurally complete.

The original seats were removed together with

other underfloor and auxilary equipment. The
interior of the car was modified with a number of

prototype seats fitted in different configurations.

To compensate for the weight removed,

approximately 10,000 pounds of concrete was

added to the car body, mostly under the floor in
the center of the car. Both couplers were left

installed.

The trucks fitted to the test car were not equipped

Figure 1. Test Car

with motors. The secondary air suspension was

pumped up to its normal inflated height before impact.



The brakes were primed to release if the brake pipe was cut on impact. A cutter
device was fitted to the front of the car to ensure that the brake pipe was cut on
impact. An orifice was installed in the pipe to delay brake action. This was done

so that the car would hit the barrier, roll back, and stop, and not roll forward into

the barrier again.

3.0 TEST METHODOLOGY

The test was performed by Transportation Technology Center, Inc. to procedures
outlined in the “Test Implementation Plan (TIP) for Single Car Dynamic Crush
Test,” November 16, 1999, which is included as Appendix A.

The inclined tangent track ading to the impact barrier has a constant
gradient of 0.86 percent and is parallel to the Precision Test Track (PTT), which
has exactly the same gradient. The barrier itself is constructed of re-inforced
concrete and steel and has an estimated weight of 1,350 tons. It is capable of
withstanding an impact force of 3,000,000 pounds (13.4M N). The front face of
the barrier is 2-feet thick reinforced concrete faced with a 3-inch thick steel plate .
A schematic of the impact barrier is shown in Figure 2a and a front view of the

barrier is shown in Figure 2b.

BLV_VIEW
Cr

Figure 2a. Schematic of Impact Barrier at the TTC



Figu 2b. Impact barrier at the

The impact test was performed by pushing the test car with a locomotive,

releasing it at a pre-determined point, and then letting it run down the inclined

track and into the barrier. The release distance, and the speed of the locomotive

at release, was calculated from a series of speed calibration tests carried out on

the PTT track and on the track leading to the barrier. The target for the impact

speed at the wall was 35 mph.

4.0 RESULTS
4.1 MEASUREMENTS TAKEN BEFORE TEST
4.1.1 Longitudinal and Vertical Distances (A-end = Impact End)

Length of car from buffer beam to buffer beam = 84 .5 ft
Longitudinal distance from buff stop to body bolster , A-end = 6.76 ft
Longitudinal distance from buff stop to body bolster , B-end = 6.72 ft
Longitudinal distance between body bolsters = 57.17 ft

Vertical distance between mid point of car (center sill) and a line
extending between body bolsters = 10.34 in.

Vertical distance between buffer beam and a line extending between
body bolsters, A-end = 17.63 in.

Vertical distance between buffer beam and a line extending between
body bolsters, B-end = 15.44 in.

Appendix B contains the complete longitudinal and vertical distances measured

before and after the impact test.



4.1.2 Weight of Test Car

The test car was weighed just prior to the impact test using the TTC
computerized scale. The test car was uncoupled from the locomotive for these
measurements and each truck in turn moved onto the weigh bridge. Total weight
included the weight of the car body, trucks, added weight, anthropomorphic

dummies, seats, and all instrumentation.

Weight of A-end  =33,585Ib
Weight of B-end  =40,7041b
Total weight = 74,289 1b

(The accuracy of the weigh bridge is + or — 50 Ib; therefore, the accuracy of
the vehicle weight is + or — 100 Ib)

4.1.3 Height of Center of Gravity of Car Body
A characterization test was carried out on the loaded car to provide an estimate
of the height of the center of gravity of the car body (see Appendix C for a full

description of techniques used for this test).

From these results, the height of the center of gravity of the car body is estimated

to be between 69.7 and 76.7 inches from the top of the rail.

4.1.4 Weather Conditions
Weather conditions at test time:
e Temperature 76°F
e Wind speed 5 mph from the SE

4.2 MEASUREMENTS TAKEN DURING TEST
4.2.1 Speed
From a complete stop, the car was accelerated by a locomotive and released at a
point 1,550 feet from the barrier. Measured by the laser-based speed trap, the
speed of the test car just before impact was:

Laser 1 51.52 ft/s

Laser 2 51.42 ft/s

Average: 5147 ft/s = 35.1 mph



The amount of energy (E) absorbed by the vehicle on impact with the rigid
barrier can be calculated from the speed of the car just before impact, V, = 51.47

ft/s, and the mass of the test car, m = 74,289 1b, according to the formula:
E = %.m. V¢

E = 3.06 x 10°ft.Ib (4.15 MJ)

4.2.2 Strains
The Test Implementation Plan in Appendix A contains the positions of the strain

gages. Figures 3 through 42 (Figures 3 through 188 are placed at the end of this
document) show the strain time histories over the range -0.1 s to 0.6 s. In these

figures positive values represent compression.

The Society of Automobile Engineers (SAE) frequency class indicating the filter
frequency used for processing the recorded data is shown on each figure. SAE
frequency classes are defined in SAE J211/1 (R) “Instrumentation for Impact
Testing,” Part 1 Electronic Instrumentation, March 1995. For the strain results,

SAE CFC 1000 is equivalent to the raw data.

The data acquisition system for both strains and accelerations comprised 12 Data
Bricks each collecting 8 channels of data. When the system was triggered on
impact with the wall each Data Brick stored 0.1 s of information before the
impact and 1.4 s of information after the impact. The strain time histories over
the complete range recorded by the Data Bricks (-0.1 s to 1.4 s) are shown in

Appendix D.

One of the Data Bricks did not trigger properly and none of its 8 channels
recorded data. These channels were set up to record the following strain

channels:

CS-L-1-U CS-L-2-U CS-L-3-U CS-L-4-U
CS-L-5-U  CS-1-6-U  CS-L-7-U  CS-L-1-L



4.2.3 Accelerations

The positions of the accelerometers are shown in the Test Implementation Plan,
Appendix A. Figures 43 through 83 show the acceleration time histories over the
range -0.1 s to 0.6 s. These results are recorded acceleration time histories filtered
according to SAE CFC 1000 specifications. As for strain, SAE CFC 1000 is
equivalent to the raw data. Figures 84 through 124 show the filtered accelerations
for SAE CFC 60. The algorithm defining SAE CFC 60 is given in Appendix C of
SAE J211/1 (R). Essentially SAE CFC 60 is a Low-pass filter with a cut-off
frequency of 100 Hz.

Low-pass filtered acceleration time histories with a cutoff frequency of 25 Hz

(Fc = 25 Hz) are shown in Figures 125 to 165.

The acceleration time histories over the complete range recorded by the Data

Bricks (-0.1 s to 1.4 s) are presented in Appendix E.

Note that some of the high accelerations shown in the SAE CFC 1000 results
(Figures 43-83) represent high frequency, short duration peaks, and do not
represent the acceleration that would be experienced by an occupant sitting in

the car at impact.

4.2.4 Displacements

The vertical displacement across the secondary suspension was measured using
string potentiometers between the car body and the truck. The unfiltered results
are plotted in Figures 166 through 169. It may be noted that the maximum

displacement of approximately 3.5 inches occurred at the A-end.

The string potentiometer on the right hand side at the B-end failed to record
data.



4.2.5 Longitudinal Velocity and Displacement
The X-axis acceleration time histories of the center sill accelerometers have been

integrated to give velocity and plotted against time in Figures 170 through 174.

These same acceleration time histories have been double integrated to give crush

displacement and plotted against time in Figures 175 through 179.

4.2.6 High-Speed and Video Photography

The impact test was recorded using an array of high-speed and video cameras.
Camera coverage was selected to provide views of both left and right sides of the
vehicle, overhead views, an underside view, an onboard view, and an overall
view of the impact. (Camera coverage is depicted in Figure 6-3-1 of the Test
Implementation Plan in Appendix A). The side views and overhead view had
redundant coverage to obtain photo-documentation in the event of an individual

camera failure.

All the cameras worked successfully and the film analysis described in the next

section was conducted after the film had been processed.

4.2.7 Film Analysis
The film analysis was conducted on film from high-speed fixed cameras located

on the west and east sides of the barrier.

For the analysis, the film was projected frame-by-frame onto a digitizer pad. The
location of three vehicle-mounted and three ground-based targets was selected
with the crosshairs of a cursor, and corresponding x and y coordinates were
stored in a computer. The analysis was started before impact and continued
throughout maximum crush to the vehicle rebound. The average position of the

onboard targets relative to the ground-based targets was computed by

S+ S, +8; =85, — 55~ 5
3

d




where d is the relative position, and s, through s, are the locations of the three
onboard and three ground-based targets, respectively. The distance reference
was the distance between the two extreme ground-based targets, which was 88

inches.

Vehicle speed was computed by

v, = di -d i+
At
where the subscripts represent the film frame number, and At is the time

duration between frames.

Film speed was obtained directly from the 100-Hz timing marks on the film. The

nominal speed of the fixed cameras was 500 fps.

Car-body displacement was set to zero at impact. The displacement data is
relatively smooth in its raw, as collected, form. Figures 152 and 153 show the
car-body displacements in the longitudinal and vertical directions computed
from the west-side stationary camera and the east-side stationary cameras,
respectively. These show a maximum displacement in the longitudinal direction

of about 5 feet 6 inches. Figure 154 is a compilation of these two plots.

Figures 155 to 158 show car body velocities in the longitudinal and vertical
directions, computed from each of the two high-speed stationary camera films.
The raw velocity data was computed as indicated above. Smoothed data was
low-pass filtered with a phaseless 4™-order Butterworth filter having a cutoff
frequency of approximately 23 Hz. Phaseless filtering introduces no time lags
into the filtered data, so the time relationship with other events and
measurements in the crash test is maintained. Before smoothing, the velocity at
impact was set to 51.5 ft/s, the average velocity obtained from the laser speed

traps.



Figures 159 and 160 compare smoothed car-body velocities from the two

stationary cameras in the longitudinal and vertical directions, respectively.

4.3 MEASUREMENTS TAKEN AFTER TEST
4.3.1 Longitudinal and Vertical Distances (A-end = Impact End)

¢ Length of car from buffer beam to buffer beam = 79.89 ft
(Difference = 4.61 ft)

e Longitudinal distance from buff stop to body bolster, A-end = 2.25 ft
(Difference = 4.51 ft)

e Longitudinal distance from buff stop to body bolster, B-end = 6.72 ft
(Difference = 0.0 ft)

e Longitudinal distance between body bolsters = 57.17 ft
(Difference = 0.0 ft)

o Vertical distance between mid point of car (center sill) and a line
extending between body bolsters = 10.50 in.
(Difference = 0.16 in.)

e Vertical distance between buffer beam and a line extending between
body bolsters, A-end = 15.5 in.
(Difference = 2.13 in.)

e Vertical distance between buffer beam and a line extending between
body bolsters, B-end = 15.44 in.
(Difference = 0.0 in.)

Appendix B contains the complete longitudinal and vertical distances measured

before and after the impact test.

5.0 CONCLUSIONS

¢ The speed of the test car at impact was 35.1 mph. This was within 0.3%
of the desired speed of 35 mph.

e The crush measured about 4.5 feet from the reduction in length of the
vehicle after the test. The film analysis showed the maximum
displacement in the longitudinal direction of 5.5 feet. The
accelerometer data, double integrated, shows a maximum
displacement of about 5.5 feet. Both the film analysis and the
integrated accelerometer data include elastic deformation of the car
body. The test requirement was for at least 3 feet of crush.



One of the Data Bricks (out of 12) did not trigger, and the 8 strain-gage
channels feeding signals into this Data Brick were lost. All these strain
gages were on the left hand side of the center sill. Apart from this, all
the strain gages provided information.

The accelerometer at the front of the vehicle, center sill at position 1,
recorded a maximum longitudinal acceleration of 180 g before its cable
failed at 0.1 s. When this signal was filtered to SAE CFC 60 (Low-pass
filter with a cut-off frequency of 100 Hz), the peak acceleration was
reduced to 70 g.

The maximum longitudinal acceleration recorded on the center sill was
434 g at position 2. When filtered to SAE CFC 60, the peak acceleration
reduced to 70 g.

The maximum longitudinal acceleration of 734 g was recorded on the
right-side sill at position 1. When filtered to SAE CFC 60, the peak
acceleration reduced to 50 g.

The 100-g accelerometers at both the left sill, position 1 (lateral), and
right sill at position 1 (lateral) saturated.

The maximum vertical acceleration recorded on the center sill was
180 g at position 2. When filtered to SAE CFC 60, the acceleration
reduced to 51 g.

The 200-g accelerometer at the right sill, position 1 (vertical), saturated
and the 50-g accelerometer at the right sill, position 2 (vertical), also
saturated.

The string potentiometer at the B-end, right-hand side, failed. The
other three potentiometers measured vertical displacement across the
airbags. A maximum deflection of 3.5 inches was recorded on the A-
end, right hand side transducer.

All the video and film cameras successfully recorded the impact of the
test car from both sides, overhead, underneath, on board, and a
general view.

The film was analyzed frame-by-frame, and the displacement and
velocity of the vehicle through the impact calculated. This provided an
independent check of the velocity and displacement during impact.

The amount of energy absorbed by the vehicle on impact with the wall
was 3.06 x 10°ft.Ib. (4.15 M)

10



Figures 3 through 188
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Right Side Sill, Position 2, Upper; Zoom View
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Right Side Sill, Position 3, Upper; Zoom View
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Cant Rail, Left Side, Position 1, Upper; Zoom View
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Figure 31.
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Cant Rail, Left Side, Position 2, Upper; Zoom View
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Cant Rail, Left Side, Position 3, Upper; Zoom View
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Figure 35.

Cant Rail, Left Side, Position 3, Lower; Zoom View
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Cant Rail, Right Side, Position 2, Upper; Zoom View
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Cant Rail, Right Side, Position 3, Upper; Zoom View
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Center Sill, Position 3
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Left Sill, Position 4
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Right Sill, Position1
X-Axis Accelerometer
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Right Sill, Position 4
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/39

400

300

100

|SAE CFC 1000 |

M b . asa

-100

Acceleration {g)
o

-200

-300

400 =Her-HHA

-0.1

1502_053

0.0

e e g

0.1 0.2 0.3
Time (sec)

Figure 53.

Right Sill, Position 5
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99

PR RPN TS ST TS BT U U W
Lan B 20 20 ¢ L e

04

WS W
-t

0.6

400

SAE CFC 1000

=

o

B0 W -

K

[1]

8 100 + S e —
<

1592_054

0.1 0.2 0.3
Time (sec)

Figure 54.

37

04

0.6



Acceleration (g)

+200 4+

-300

~400 -

1592_055

Acceleration (g)

1592_056

~100

Left Sill, Position 1
Y-Axis Accelerometer
FRA Single Car Crash Test 11/16/99

1 ISAE_CFC 1000 |
Channel Saturated At +/- 125 g T
Filtered Data Will Be Corrupted
R st

-0.1

0.2 0.3
Time (sec)

Figure 55.

Left Sill, Position 2
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99

400

100

[sAE cFc 1000 ]

-100 4--

I 3 RN PPN EPEPEP T + PN WP

~400 -1+
0.1

0.0 0.1 0.2 03
Time (sec)

Figure 56.

38

0.6



Left Sill, Position 3
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Left Sill, Position 5
Y-Axis Accelerometer
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Center Sill, Position 2
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Left Sill, Position 2
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Right Sill, Position1
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Right Sill, Position 5
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure 155.

Right Sill, Position 2
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Right Sill, Position 3
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure 157.

Right Sill, Position 4
Z-Axis Accelerometer

50 FRA Single Car Crash Test, 11/16/99
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Figure 158.
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Right Sill, Position 5
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure 159.
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End B Bogie
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure 161.

End A Bogie
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure 162.
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End B Bogie
Y-Axis Accelerometer

FRA Single Car Crash Test, 11/16/99
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Figure 163.
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Z-Axis Accelerometer
50 FRA Single Car Crash Test, 11/16/99
o H
Fc= l

30 [ VR

1: \

Acceleration (g)

40 e

1592_164

1
5 et PP ST : 3
} LIS B e o o o i 2 o o e L bt

0.0

0.1 0.2 0.3 0.4
Time (sec)

Figure 164.
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End B Bogie
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure 165.

End A, Right Side
Secondary Suspension String-Pot
FRA Single Car Crash Test, 11/16/99
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End A, Left Side
Secondary Suspension String-Pot
FRA Single Car Crash Test, 11/16/99
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Figure 167.
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End B, Right Side
Secondary Suspension String-Pot
FRA Single Car Crash Test, 11/16/99
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End B, Left Side
Secondary Suspension String-Pot
FRA Single Car Crash Test, 11/16/99
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Center Sill, Position 1
X-Axis Accelerometer
55 FRA Single Car Crash Test, 11/16/99
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Figure 170.
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Center Sill, Position 2
X-Axis Accelerometer

55 FRA Single Car Crash Test, 1,”1 6/99
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Figure 171.
Center Sill, Position 3
X-Axis Accelerometer
55 FRA Single Car Crash Test, 11/16/99
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Center Sill, Position 4
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure 173.

Center Sill, Positions 1 to 4
X-Axis Accelerometers

14

FRA Single Car Crash Test, 11/16/99

m[lntegrated From SAE CFC 1000 Data|

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (sec)

Figure 174.
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Center Sill, Position 2
X-Axis Accelerometer
15 FRA Single Car Crash Test, 11/16/99
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Displacement (ft)
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Center Sill, Position 3
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Center Sill, Position 4
X-Axis Accelerometer
15 FRA Single Car Crash Test, 11/16/99
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Center Sill, Positions 1 to 4
X-Axis Accelerometers

15 FRA Single Car Crash Test, 11/16/99
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Figure 179.
Carbody Displacement
6 FRA Single Car Crash Test, 11/16/99
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Figure 180.
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Carbody Displacement
FRA Single Car Crash Test, 11/16/99
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Figure 181.
Carbody Displacement
6 FRA Single Car Crash Test, 11/16/98
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Figure 182,
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Carbody Longitudinal Velocity
FRA Single Car Crash Test, 11/16/99
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Figure 183.
Carbody Vertical Velocity
80 FRA Single Car Crash Test, 11/16/99
B0 Forveeevehoeree oo e, — Fineredat2sHz |
b —— Raw Data :
40.:-_ ...........................................................................................................
R S . e
g 1
B 20 e b b f b g
£ ]
2 ot b : |
3 . 1 (1 O OOt YT Y 0 N 1Y I | e
: ML [
E 1] hw‘w e xll., ln* i1
0 ‘“I'v"“['[ ‘ !”‘ ” ’ r ’ ” ’ ll'lllt h
a0 F ........................................ b ; .......
20 H t -4 -+ ' + }
0.0 041 0.2 0.3 04
Time (sec)
1502_184

Figure 184.
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Carbody Longitudinal Velocity
FRA Single Car Crash Test, 11/16/99
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Figure 185.

Carbody Vertical Velocity
FRA Single Car Crash Test, 11/16/99
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Figure 186.
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Carbody Longitudinal Velocity
FRA Single Car Crash Test, 11/16/99
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Figure 187.
Carbody Vertical Velocity
60 FRA Single Car Crash Test, 11/418/99
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APPENDIX A

Test Implementation Plan for Single Car Dynamic Crush Test — 11/16/99

1.0  Purpose
To indirectly measure the force necessary to crush the main structure of the

passenger car at least a distance of three feet under dynamic crush conditions,
and measure material strains, structural accelerations and structural
displacements throughout the vehicle in sufficient quantity to allow correlation
with analytical predictions.

2.0 Requirements
To impact a single passenger car into a rigid barrier at a speed of 35 mph

(+ or -2 mph).

3.0 Test Car
The test will be conducted on a Pioneer type commuter passenger car to be

provided by SEPTA.

The test car will be modified internally so that it is fitted with the following seats:

3-place M-style (back row)

3-place M-style (front row)

2-place intercity seat without RS (back row)

2-place intercity seat with lap and shoulder belts (front row)
3-place rear-facing M-style

SN~

The following Anthropomorphic Test Devices (ATD) will be provided by Simula
and placed in the seats as indicated:

1. 3-place M-style (back row)
Hybrid III 50" - percentile in window seat
Hybrid IT 50" - percentile in middle seat
Hybrid IT 50"- percentile in aisle seat

2. 2-place intercity seat without RS (back row)
Hybrid III 95" ~ percentile in window seat
Hybrid ITI 95" ~ percentile in aisle seat

3. 2-place intercity seat with lap and shoulder belts (front row)
Hybrid III 5" - percentile in aisle seat
Hybrid III 95" ~ percentile in window seat



4. 3-place rear-facing M-style
Hybrid III 95" - percentile in window seat
Hybrid III 95 ~ percentile in middle seat
Hybrid IIT 95" - percentile in aisle seat

Weights will be added to the test car so that it is brought up to AWO condition
with the center of gravity in approximately the correct position.

4.0 Test Method

The test will be performed at TTC by impacting the test car into a rigid barrier at
a speed of 35 mph. This will be carried out by pushing the test car with a
locomotive and then releasing it and allowing it to roll down a constant gradient
slope into the rigid barrier. The release distance and the speed of the locomotive
at the release point will be determined from a series of calibration runs carried
out on a parallel track to the impact track. Both tracks have the same slope.

An on-board radar speed measuring system will be used for speed calibration of
the test car. The ambient temperature and wind speed will be measured during
the calibration tests and during the actual test. A laser speed trap will be used to
measure the speed of the test car just before impact.

On-board instrumentation will record accelerations, displacements and strains at
various points on the test car during the impact. High speed film cameras will be
used to record the impact.

5.0 Measured Items
The following items will be measured before the test:
1. Car length, measured from buffer-beam to buffer-beam.
2. Longitudinal distance from buff stop to body bolster, at both ends
of car.
3. Longitudinal distance between body bolsters.
4. Vertical distance between mid-point of car and a line extending
between body bolsters.
5. Vertical distance between buffer beam and a line extending
between body bolsters.
6. The weight of the test car.
7. The height of the center of gravity of the test car.

Strains and accelerations will be measured during the test using a battery
powered on-board data acquisition system which will provide excitation to the
strain gages and accelerometers, analog anti-aliasing filtering of the signals,
analog-to-digital conversion and recording. Data acquisition will be in
accordance with SAE J211/1,Instrumentation for Impact Tests (revised March
1995). Data from each channel will be recorded at a sample rate of 12,800 Hz. All



data will be synchronized with a time reference applied to all systems
simultaneously at the time of impact. The time reference will come from a
closure of a tape switch on the front of the test vehicle. The following items will

be measured during the test:

1. The speed of the car just before impact using a laser based speed
trap.

2. Longitudinal strains at draft sill, center sill, side sills and cant
rails (48 strain gages).

3. Acceleration of left and right side sills, draft sill and at the mid

point of each body bolster (35 accelerometers).

Acceleration of each truck (6 accelerometers)

5. Displacement across each secondary suspension (4 string
potentiometers)

o

This amounts to a total of 48 + 35 + 6 + 4 = 93 channels

High speed cameras will be used to record the impact. A reference signal will be
placed on the film so that analysis of the film after the event will give the velocity
of the vehicle during impact.

The following items will be measured after the test:

1. Car length, measured from buffer-beam to buffer-beam.

2. Longitudinal distance from buff stop to body bolster, at both
ends of car.

3. Longitudinal distance between body bolsters.

4. Vertical distance between mid-point of car and a line extending
between body bolsters.

5. Vertical distance between buffer beam and a line extending
between body bolsters.

6.0  Instrumentation
6.1 Strain measurements
Substantial crush of the car is expected to occur in the end of the car nearest the

rigid wall. Figure 6.1.1 schematically illustrates the areas of plastic deformation
that may potentially occur during the test. The side sills and cant rails are also
expected to have plastic deformations in corresponding areas.
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Figure 6.1.1 Potential areas of plastic deformation, draft sill and center sill.

Figure 6.1.2 shows the general arrangement of high-elongation (up to 20% strain)
strain gages intended to capture the plastic deformation of the end of the car
nearest the wall during the test. The strain gages are to be located on the draft
sill and center sill, the side sills, and the cant rails.

Underframe
o-O—0
o-0—1I
I3 Areas for High Elongation Strain Gage Locations
Roof Structure
Plan View

Figure 6.1.2 General Arrangement of High Elongation Strain Gages.

Figure 6.1.3 shows the detailed arrangement of the high elongation strain gages
on the left side draft sill and center sill. The strain gages shown along the lower
part of the sill are actually located on the bottom surface of the sill. Table 6.1.1.
lists the locations and strain gage types for all the strain gages on the draft sill
and center sill. A total of twenty one high elongation strain gages are to be used
on the draft sill and center sill.
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Figure 6.1.3 Detailed arrangement of high elongation strain gages on the left side
of the draft sill and center sill.

Table 6.1.1 Strain gage location and type, Draft Sill and Center Sill
Location Strain Gage Channel
Center Sill Right - | High Elongation 1
1-Upper (200,000 maximum
CS-R-1-U strain)
CS-R-2-U High Elongation 2
CS-R-3-U High Elongation 3
CS-R-4-U High Elongation 4
CS-R-5-U High Elongation 5
CS5-R-6-U High Elongation 6
CS-R-7-U High Elongation 7
CS-L-1-U High Elongation 8
CS-L-2-U High Elongation 9
CS-L-3-U High Elongation 10
CS-L-4-U High Elongation 11
CS-L-5-U High Elongation 12
CS-L-6-U High Elongation 13
CS-L-7-U High Elongation 14
CS-L-1-L High Elongation 15
CS-L-2-L High Elongation 16
CS5-R-1-L High Elongation 17
C5-R-2-L High Elongation | 18
CS-C-3-B High Elongation 19
CS-C-4-B High Elongation 20
CS-C-5-B High Elongation 21
CS-C-6-B High Elongation 22
CS-L-7-B High Elongation 23
CS-R-7-B High Elongation 24
Total Number of Channels 24 -




Figure 6.1.4. shows the detailed arrangement of the high elongation strain gages
on the left side sill. Table 6.1.2. lists the locations and strain gage types for all the
strain gages on the side sills. A total of twelve high elongation strain gages are to
be used on both side sills.

Trap Door
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Figure 6.1.4 Detailed arrangement of high elongation strain gages on
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(%] 4]

*] o S
SS-L-1-L SS-L-2-L SS-L-3-L

o High-Elongation Strain Gages

Side Sill
(left shown)

the left side sill.

Table 6.1.2  Strain gage location and type, Side Sills
Location Strain Gage Channel
Side Sill Left -1- High Elongation 1
Upper (200,000 maximum
SS-L-1-U strain)

SS-L-2-U High Elongation 2
SS-L-3-U High Elongation 3
SS-L-1-L High Elongation 4
SS-L-2-L. High Elongation 5
SS-L-3-L High Elongation 6
SS5-R-1-U High Elongation 7
SS-R-2-U High Elongation 8
SS-R-3-U High Elongation 9
SS-R-1-L High Elongation 10
SS-R-2-L High Elongation 11
SS-R-3-L High Elongation 12
Total Number of Channels 12

Figure 6.1.5 shows the detailed arrangement of the high elongation strain gages
on the left cant rail. Table 6.1.3 lists the locations and strain gage types for all the
strain gages on the cant rails. A total of twelve high elongation strain gages are
to be used on both cant rails.
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Figure 6.1.5 Detailed arrangement of high elongation strain gages on
the left cant rail.

Table 6.1.3 Strain gage location and type, Cant rails

Location Strain Gage Channel
Cant Rail Left -1- High Elongation 1
Upper (200,000 maximum
CR-L-1-U strain )

CR-L-2-U High Elongation 2
CR-L-3-U High Elongation 3
CR-L-1-L High Elongation 4
CR-L-2-L High Elongation 5
CR-L-3-L High Elongation 6
CR-R-1-U High Elongation 7
CR-R-2-U High Elongation 8
CR-R-3-U High Elongation 9
CR-R-1-L High Elongation 10
CR-R-2-L High Elongation 11
CR-R-3-L High Elongation 12
Total Number of Channels 12

Table 6.1.4 lists a summary of the structural members and the total number of
strain gages.

Table 6.1.4 Structural Members and Numbers of Strain Gages

Structural Member Number of Strain
Gages

Draft and Center Sills 24

Side Sills 12

Cant Rails 12

Total Number of Strain 48

Gages




6.2 Acceleration measurements

The car-body gross and flexible motions will be measured using accelerometers.
The gross motions of the car body are the longitudinal, lateral, and vertical
translational displacements, as well as the pitch, yaw and roll angular
displacements. The gross motions of the car shall be measured in or near the
operator’s control stand, and in the passenger volume. The flexible modes of
concern include vertical and lateral bending as well as torsional displacement
about axis of the car. Measurements of these motions are required to fully
characterize the secondary collision environment.

Figure 6.2.1 shows the location of the accelerometers schematically. Table 6.2.1
lists the accelerometer locations, accelerometer types, and data channels.

. Three-axis Accelerometer Locations

® Two-axis Accelerometer Locations

@ Single-axis (longitudinal) Underframe Plan View

A puge?

Figure 6.2.1 Schematic Diagram of Accelerometer Locations.




Table 6.2.1 Accelerometer measurements

Location Accelerometer Measurement Channel
C-1 Single axis Longitudinal ~ 400g 1
C-2 Two axis Vertical 200g 2
Longitudinal ~ 400g 3
C-3 Two axis Vertical 200g 4
Longitudinal  400g 5
C-4 Two axis Vertical 200g 6
Longitudinal  400g 7
R-1 Three axis Vertical 200g 8
Lateral 100g 9
Longitudinal 1000g 10
R-2 Three axis Vertical 50g 11
Lateral 50g 12
Longitudinal  400g 13
R-3 Two axis Vertical 200g 14
Lateral 100g 15
R-4 Three axis Vertical 100g 16
Lateral 50¢g 17
Longitudinal  100g 18
R-5 Three axis Vertical 200g 19
Lateral 100g 20
Longitudinal  400g 21
L-1 Three axis Vertical 200g 22
Lateral 100g 23
Longitudinal 1000g 24
L-2 Three axis Vertical 50g 25
Lateral 50g 26
Longitudinal  400g 27
L-3 Two axis Vertical 200g 28
Lateral 100g 29
L-4 Three axis Vertical 100g 30
Lateral 50g 31
Longitudinal  100g 32
L-5 Three axis Vertical 200g 33
Lateral 100g 34
Longitudinal  400g 35
B-1 Three axis Vertical 400g 36
Lateral 400g 37
Longitudinal  400g 38
B-2 Three axis Vertical 400g 39
Lateral 400¢g 40
Longitudinal  400g 41

All the accelerometers are critically damped. The accelerometers will be
calibrated prior to installation. The accelerometers posses natural frequencies
sufficiently high to meet the requirements of SAE J211/1, Instrumentation for



Impact Test (Revised MAR95), class 1000, which requires that the frequency
response is essentially flat to 1000 Hz.

6.3 String Potentiometers

Four string potentiometers will be fixed across each secondary suspension
between body bolster and bogie bolster to measure the relative vertical
displacement.

6.4 High-speed and real-time photography

Eight high-speed film cameras and three real-time video cameras will document
the impact test. Locations of the cameras appear in Fig. 6-3-1. Coverage and
frame rates appear in Table 6-3-1. Cameras 1,3,6 and 7 will view from just below
the top of the rail to just above the car-body. Thus the height of the view at the
side of the car-body will be approximately 12 ft, and the width of the view will
be approximately 18 ft. The cameras will be located approximately 25 ft away
from the side of the car-body that they are viewing, and about 5 ft from the front
of the barrier. The cameras are equipped with sights that allow the photographer
to view the expected image. Thus the final siting will be done at the time of
camera setup to achieve the views described above. Adjustments will be made, if
necessary, to the above distances to achieve the desired views.

A 100 Hz reference signal will be placed on the film so that accurate frame speed
can be determined for film analysis. An electronic signal generator provides the
calibrated 100-Hz pulse train to light emitting diodes (LEDs) in the high-speed
cameras. Illumination of the LEDs exposes a small red dot on the edge of the
film, outside the normal field of view. During film analysis, the precise film
speed is determined from the number of frames and fractions thereof that pass
between two adjacent LED marks. Battery powered on-board lights will
illuminate the on-board camera view. Battery packs use 30-v NiCad batteries.

One high-speed camera (No. 9) to be provided in the recess between rails to look
up at the end sill deformation during crash. Supplemental lighting will be
necessary to obtain good exposure.

Color negative film for the ground-based cameras will be Kodak 16-mm 7246,
ISO 250, for daylight on 100-ft spools. Film speed will be pushed in processing if
necessary to compensate for light conditions at test time. Film for the on-board
camera will be Kodak 16-mm 7249, ISO 500, for tungsten on 100-ft spools.

Four-in. diameter targets will be placed on the vehicle and the ground to
facilitate post-test film analysis to determine speed and displacement during the
test. The targets are divided into four quadrants with adjacent colors contrasting
to provide good visibility. Yellow and black are sometimes used, as are red and
white. The color scheme has not yet been finalized. At least three targets will be
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placed on each side of the vehicle and the ground. During film analysis, the
longitudinal and vertical coordinates of the targets are determined from
projections on a film analyzer or ground glass plate on a frame-by-frame basis.
The distances between the targets, which are known from pre-test
measurements, provide distance reference information for the film analysis. The
differences in locations between vehicle-mounted targets and ground-based
targets quantify the motion of the vehicle during the test. By taking the position
differences between vehicle-mounted and ground-based targets, the effects of
film registration jitter in the high-speed cameras are minimized. The 100-Hz
LED reference marks provide an accurate time base for the film analysis. Test
vehicle position is determined directly as indicated above, and vehicle speed is
determined by dividing the displacement between adjacent frames by the time
difference between the adjacent frames. If necessary, smoothing is applied to the
displacement and speed data to compensate for digitization and other
uncertainties.
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Fig. 6 -3-1 Camera placement

The on-board high-speed camera will be started automatically by a trip wire
attached to the test vehicle. On-board lights will be turned on before the vehicle
motion begins. When the trip wire engages a trip stake placed to start the
camera 102 ft before barrier contact, a relay will close energizing the camera. The
ground-based cameras will be started simultaneously from a central relay box
triggered manually when the front of the car body passes a mark 102 feet from
the barrier. This will allow about 2 seconds for the cameras to get up to speed
and to start filming the event. The cameras running at a nominal speed of 1000
frames per second will run for about four seconds before the100-ft film is entirely
exposed.
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Table 6-3-1 Camera information

No. Type Manufacturer Speed Coverage Location  Lens
Model

1 Video | (S-VHS) Real Time Panning Ground

3 Film Hycam 500fps Close Ground  25mm
41-0064

4 Video | Digital Real Time Close Barrier 4.2-50.4 mm zoom

5 Film Hycam 500 fps Close Barrier 10 mm
41-0064

6 Video | HIS8 Real Time Close Ground

7 Hlm Hycam 500 fps Close Ground  25mm
41-0064

9 Film Locam -mirror 500 fps Close Under 8 mm

10 Film Milliken DBM55 500 fps Close On- 10 mm

Board

6.5 Data Acquisition

Twelve 8 channel battery-powered on-board data acquisition systems will
provide excitation to the strain gages and accelerometers, analog anti-aliasing
filtering of the signals, analog-to-digital conversion, and recording. Data
acquisition will be in compliance with SAE J211. Data from each channel will be
recorded at 12,800 Hz. Parallel redundant systems will be used for all
accelerometer channels. Data recorded on the four systems will be synchronized
with a time reference applied to all systems simultaneously at the time of impact.
The time reference will come from closure of the tape switches on the front of the
test vehicle. The data acquisition systems are GMH Engineering Data Brick
Model II. Each Data Brick is ruggedized for shock loading up to at least 100 g.
On-board battery power will be provided by GMH Engineering 1.7 A-HR 14.4
volt NiCad Packs. Tape Switches, Inc., model 1201-131-A tape switches will
provide event markers.

Software in the Data Brick will be used to determine zero levels and calibration
factors rather than relying on set gains and expecting no zero drift.

6.6 Tape Switches

Tape Switches will be installed on the front of the vehicle in the leading contact
position. Closure of these switches at impact will indicate contact between the
test vehicle and the barrier. The switch closures will trigger each Data Brick. At
least 50 ms of pre-trigger data will be recorded. Separate Tape Switches will also
be attached at the front of the vehicle and at a corresponding location on the
barrier to fire flash bulbs and to synchronize film cameras. The tape switches will
be manufactured by Tapeswitch Corporation, model 1201-131-A. )
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6.7 Speed Trap

A dual channel speed trap will accurately measure impact speed of the test
vehicle within 0.5 meter of the barrier. The speed trap is a GMH Engineering
Model 400, 4 Interval Precision Speed Trap with an accuracy of 0.1%. Passage of
a rod affixed to the vehicle will interrupt laser beams a fixed and known distance
apart. The first interruption starts a precision counter, and the second
interruption stops the counter. Speed is calculated from distance and time.
Tentatively, the rod will be attached at the aft end of the vehicle. Final rod
location will be determined prior to installation.

7.0  Test Procedure

(1)  The car body will be modified internally with the appropriate seating
arrangement.

(2)  Strain gages will be attached on the side sills and draft sills of the car
body.

(3)  The car length will be measured from buffer beam to buffer beam. The
longitudinal distance from buff stop to body bolster will be measured at
both ends of the car. The longitudinal distance body bolsters will be
measured. The vertical distance between the mid-point of the car and a
line extending between body bolsters will be measured. The vertical
distance between buffer beam and a line extending between the body
bolsters will be measured.

(4)  The mass of the car will be calculated by measuring the weight of each
end of the car on a weigh bridge (Elevation of the TTC = 5,013 ft., g = 32.14
ft/sec’) .

(6)  The vertical height of the center of gravity will be estimated using the
technique described in Appendix A.

(6)  Speed calibration runs will be carried out using the test car. These will be
carried out on the PTT track, which is parallel to the track leading to the
barrier. This track has the same gradient as the track leading to the barrier
and both are tangent. The test car will pushed by a locomotive and then
released at points of varying distance from the crash barrier and allowed
to run freely down the slope. The speed of the test car will be measured as
it passes the crash barrier using a laser speed trap. These runs will be
carried out at different ambient temperatures and wind speeds. Having
passed the barrier, the test car will be stopped by a locomotive catching it
up, catching the coupler, and then slowing down and bringing it back to
the start point. A calibration chart of speed versus distance for different
ambient temperatures and wind speeds will be produced from these tests.

(7)  Calibration runs will be carried out with the test car on the track leading
to the crash barrier in a similar manner to those described above except
that the vehicle will not be allowed to travel as far as the crash barrier. A
calibration chart of speed versus distance will be produced.
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(8 The test equipment including the accelerometers and data acquisition
system will be mounted on the test vehicle. The strain gages will be
connected to the data acquisition system and tested.

(9)  The cameras will be set up.

(10) The weight of the test car will be measured.

(11) A check on the calibration speed will be run on the PTT track.

(12) Al instruments will be calibrated and a zero reading carried out.

(13) A trial low speed soft impact (less than 1 mph) of the test car will be
carried out into the barrier to confirm all the instruments work properly.

(14) The instruments will be re-calibrated, the Tape switches replaced and the
test car pulled back.

(15)  The test car will be released at the appropriate distance from the barrier,
triggering the cameras and the instrumentation just before impact.

(16)  After the test the longitudinal and vertical distances mentioned in
paragraph (3) will be re-measured.

(17)  Visual inspection of the car body structure will be carried out.
Photographs will be taken of the car body.

8.0 Data Analysis

8.1  Data Post Processing

Each data channel will be offset adjusted in post processing. The procedure is to
average the data collected just prior to the test vehicle’s impact with the barrier
and subtract the offset from the entire data set for each channel. It is expected
that between 0.05 and 0.50 s of pre-impact data will be averaged to determine the
offsets. The precise duration of the averaging period cannot be determined with
certainty until the data are reviewed. The offset adjustment procedure assures
that the data plotted and analyzed contains impact-related accelerations and
strains but not electronic offsets or steady biases in the data. The post-test offset
adjustment is independent of, and in addition to, the pre-test offset adjustment
made by the data acquisition system.

Plots of all data channels recorded and combinations of data channels will be
produced as described below. Post-test filtering of the data will be accomplished
with a two-pass phaseless four-pole digital filter algorithm consistent with the
requirements of SAE J211. In the filtering process, data are first filtered in the
forward direction with a two-pole filter. The first pass of the filtering process
introduces a phase lag in the data. In the next pass, the data are filtered in the
reverse direction with the same filter. Because the data are filtered in the reverse
direction, a phase lead is introduced into the data. The phase lead of the reverse-
direction filtering cancels the phase lag from the forward-direction filtering. The
net effect is to filter the data without a change in phase with a four-pole filter.
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8.2 Data Output

Every channel as recorded (raw data) will be plotted against time

The acceleration records during the impacts will be plotted against time

The longitudinal acceleration will be integrated and the derived velocity plotted
against time.

The longitudinal velocity will be integrated to give the crush displacement
against time.

The longitudinal accelerations at the center of gravity of the car body will be
averaged and multiplied by the mass of the car body to give the force against
time during the impact.

The strain gage time histories will be presented

All data recorded by the Data Bricks, and the derived values mentioned above,
will be presented to the client in digital form on a Zip disc as well as on paper.
The film from each side camera will be analyzed frame by frame and the velocity
during the impact calculated. A 100 Hz reference signal will be placed on the
film so that accurate frame speed can be determined for film analysis. An
electronic signal generator provides the calibrated 100-Hz pulse train to light
emitting diodes (LEDs) in the high-speed cameras. Illumination of the LEDs
exposes a small red dot on the edge of the film, outside the normal field of view.
During film analysis, the precise film speed is determined from the number of
frames and fractions thereof that pass between two adjacent LED marks.

The amount of energy absorbed by the vehicle on impact with the rigid barrier
(E) will be calculated from the speed of the car just before impact (V,) and the
mass of the test car (m), according to the formula:

E=%mV/

The longitudinal and vertical distances measured before and after the test will be
presented in tabular form.

All the data output described in this section will be presented in a report and
submitted to the FRA. The report will also contain general information about the
crash test and describe how it was conducted.

9.0 Safety

All Transportation Technology Center, Inc. (TTCI) safety rules will be observed
during the preparation and performance of the crash tests. All personnel
participating in the tests will be required to comply with these rules when
visiting the TTC, including wearing appropriate personal protective equipment.
A safety briefing for all test personnel and visitors will be held prior to testing.
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APPENDIX A (of Appendix A)

To Obtain Vertical Height of Center of Gravity of Car Body

1. Remove secondary suspension dampers between bolster and car body.

2. Mount tri-axial accelerometers at the top and bottom of each end of the

car body.

3. Carry out a car-body resonance test to excite each of the rigid body
modes, shown below, in turn. (Shake and Bake Test). Record the

frequency of each mode.

4. Calculate the vertical center of gravity height

UPPER CENTER ROLL

LOWER CENTER ROLL

YAW

PITCH

BOUNCE

[T
B

(OX @) (GX®)

END VIEW

END VIEW

TOP VIEW

SIDE VIEW

SIDE VIEW
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APPENDIX B
PRE- AND POST-TEST LONGITUDINAL AND

VERTICAL MEASUREMENTS
(A-End = Impact End)
A-end B-end
Buffer] Buff o Buff |Buffer
Eeam Stop Bgljtrer Center Sill Line l1o 11/32" (10 1/2") Bolster  Stop }Beam
Bolster to Bolster Line
17 5/8" ! ‘44’7%" S'T
(15 1/27) «—114"—>g
+«—— 138" —»§
|« 70' 10" (70° 10")
-« 73 13/4" (73' 1 3/4")
- 79’ 10 7/8" (75' 4 3/4") >
|« 84' 6 (79' 10 5/8") >
< 85'6 1/4" (80' 2 5/8") >
Measurements Pre-Test (Measurements Post-Test)
Wheel Base
A-End Left 8.51 ft (8.51 ft) B-End Left 8.48 ft (8.48 ft)
A-End Right 8.5 ft (8.5 ft) B-End Right 8.48 ft (8.48 ft)

Truck Spacing (Pre-test)

Left 59.40 ft Right 59.42 ft

Height of Air spring Center to Rail (Pre-test)

A-End Left 38.13 inches B-End Left 37.0 inches
A-End Right 37.25 inches B-End Right 37.5 inches
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APPENDIX C
To Obtain Vertical Height of Center of Gravity of Car Body

On Saturday November 14™, a characterization test was performed on the SEPTA
car that was subsequently used for the impact test. The objective of the characterization
test was to provide an estimate of the center of gravity height of the vehicle.

Two different methods were used for performing the characterization test. Initially, a
standard “Shake and Bake” test method was used, which involved hand excitation of the
vehicle. This provided a measure of all of the car on secondary suspension modal
frequencies other than upper center roll, which we were unable to excite.

Subsequently, the vehicle was excited using a forklift truck as the means of excitation.
Tests were done with excitation in the vertical and lateral directions at one end of the car.
The method of excitation involved an initial displacement of the vehicle on its secondary
suspension using the forklift truck followed by a rapid release. The ensuing oscillation of
the car was measured using six carefully located accelerometers. For both test methods,
the rotary lateral dampers were removed from the vehicle.

The accelerometer time histories were combined to provide outputs in each of the
principal car body degrees of freedom. Car body modal frequencies were determined
through an FFT analysis of the degree of freedom time histories. The modal frequencies
that were obtained by this method were in close agreement with those produced by the
traditional “Shake and Bake” method. However, the upper center roll mode and the
longitudinal mode were also excited using the forklift truck, whereas, they could not be
excited by hand excitation. The reason for the difficulty with the upper center roll mode
is the close proximity of the frequencies of the pitch, yaw and upper center roll modes.

The measured frequencies are shown in Table A.1.

Table A.1. Measured Car Body Modal Frequencies

Mode Frequency(Hz)
Longitudinal 2.50
Bounce 1.19
Pitch 1.28
Yaw 1.25
Upper Center Roll 1.30
Lower Center Roll 0.57

The total car weight determined by weighing was 74,289 Ib. The weight of each truck
was initially estimated to be 12,700 Ib. This gave a car body weight of 48,889 Ib.

A number of different cases were considered to estimate the car body CG height. For
Case 1, because the hand brake was applied on one truck, it was assumed that the
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longitudinal frequency was due to the car body mass on a longitudinal stiffness provided
by the traction rods and shear of the air springs on one truck.

Using these assumptions, the car body mass and inertia properties and secondary
suspension characteristics that were derived from the measured frequencies are as
follows:

Case 1:

Car Body weight = 126.63 Ib-sec”2/in

Car Body Roll Inertia = 556,300 Ib-in-sec”2

Car Body Pitch & Yaw Inertia = 13,910,000 1b-in-sec”2
Secondary Vertical Stiffness = 1,770 Ib/in per spring
Secondary Lateral Stiffness = 1,375 1b/in per spring
Traction Rod Longitudinal Stiffness = 13,000 Ib/in

This gave a car body CG height of 39.2 in above the secondary suspension roll center
height. The secondary suspension roll center height was determined by measurement to
be approximately 37.5 in above rail. Therefore, the car body CG is estimated to be 76.7
in above rail.

For Case 2, the longitudinal frequency is assumed to be due to the longitudinal stiffness
provided by the traction rods and shear of the air springs on both trucks, the following
mass and stiffness characteristics were derived:

Case 2:

Car Body weight = 126.63 lb-sec2/in

Car Body Roll Inertia = 663,000 Ib-in-sec”2

Car Body Pitch & Yaw Inertia = 13,910,000 1b-in-sec"2
Secondary Vertical Stiffness = 1,770 1b/in per spring
Secondary Lateral Stiffness = 1,560 1b/in per spring
Traction Rod Longitudinal Stiffness = 4,700 1b/in

This gave a car body CG height above rail of 72.7 in.

For Case 3, the traction rod longitudinal stiffness is neglected in the analysis, then the
following mass and stiffness characteristics were derived:

Case 3:

Car Body weight = 126.63 1b-sec”2/in

Car Body Roll Inertia = 716,000 Ib-in-sec”2

Car Body Pitch & Yaw Inertia = 13,910,000 Ib-in-sec”2
Secondary Vertical Stiffhess = 1,770 1b/in per spring
Secondary Lateral Stiffness = 1,665 Ib/in per spring
Traction Rod Longitudinal Stiffness = 0 Ib/in

This gave a car body CG height above rail of 69.7 in.
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The sensitivity of the car body CG height estimate to car body weight was also
investigated. This was necessary because the car body weight that was used was based
on an estimated truck weight. It proved to be too difficult to remove one of the trucks
from the vehicle to obtain an accurate truck weight. To determine the sensitivity of car
body CG height to car body weight, the car body weight was varied up by 10% for Case
4 and down by 10% for Case5. The traction rod stiffness was neglected.

The following mass and stiffness properties were derived for these cases:

Case 4:

Car Body weight = 139.29 lb-sec"2/in

Car Body Roll Inertia = 728,000 1b-in-sec"2

Car Body Pitch & Yaw Inertia = 15,300,000 1b-in-sec"2
Secondary Vertical Stiffness = 1,950 1b/in per spring
Secondary Lateral Stiffness = 1,830 Ib/in per spring
Traction Rod Longitudinal Stiffness = 0 1b/in

This gave a car body CG height above rail of 69.7 in.

Case 5:

Car Body weight = 113.97 lb-sec”2/in

Car Body Roll Inertia = 596,000 1b-in-sec”2

Car Body Pitch & Yaw Inertia = 12,5200,000 1b-in-sec”2
Secondary Vertical Stiffness = 1,590 1b/in per spring
Secondary Lateral Stiffness = 1,500 Ib/in per spring
Traction Rod Longitudinal Stiffness = 0 1b/in

This gave a car body CG height above rail of 69.7 in.

The results from Cases 4 and 5 indicate that the car body CG height estimate is not
sensitive to car body weight within a reasonable range of uncertainty.

A summary of the above results is given in Table A.2

Table A.2. Car Body CG Height Estimates.

Case Car Body CG Height above Rail (in)
1 76.7
2 72.7
3 69.7
4 69.7
5 69.7

One other uncertainty in the analysis is associated with the air spring arrangement on the
Budd Pioneer trucks used on this vehicle. The two air springs on each truck have
separate reservoir volumes and a common leveling valve. There is an air passage
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between each air spring and its own reservoir and the reservoir associated with the
adjacent air spring. The rate of air flow along each of these passageways is controlled by
orifices. As a result of this arrangement, there will be air flowing between adjacent
airsprings when the vehicle is rolling. The flow rate will tend to be higher at lower
frequencies and will probably be most significant at the lower center roll frequency,
which is only 0.57 Hz.

This air spring arrangement could not be properly modeled because neither the air spring
and reservoir volumes nor the orifice sizes were known. These parameters could only
have been determined by disassembling a truck, which was considered to be too difficult.
Accordingly, the vehicle model used to make the estimates of car body CG height
discussed previously, assumed that the air springs were not interconnected. This situation
is likely to have caused the CG height estimate to be somewhat higher than is actually the

case.
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APPENDIX D
Strain Gage Results for the Complete
Range Recorded
-0.1s TO 1.4 s SAE CFC1000 Hz
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Center Sill, Bottom Surface, Position 6, Center
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FRA Single Car Crash Test, 11/16/99
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Left Side Sill, Position 2, Upper

FRA Single Car Crash Test, 11/16/99
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Left Side Sill, Position 3, Upper
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Right Side Sill, Position 1, Upper
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Right Side Sill, Position 3, Upper

Strain Gage

FRA Single Car Crash Test, 11/16/93
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Cant Rail, Left Side, Position 1, Upper
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Figure D.29.

Cant Rail, Left Side, Position 1, Lower
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Cant Rail, Left Side, Position 2, Upper
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Figure D.31.

Cant Rail, Left Side, Position 2, Lower
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Cant Rail, Left Side, Position 3, Upper
Strain Gage

FRA Single Car Crash Test, 11/16/99
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Cant Rail, Left Side, Position 3, Lower
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Strain (microstrains)
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Strain Gage
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Figure D.35.

Cant Rail, Right Side, Position 1, Lower
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Cant Rail, Right Side, Position 2, Lower
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FRA Single Car Crash Test, 11/16/99
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Cant Rail, Right Side, Position 3, Upper
Strain Gage
FRA Single Car Crash Test, 11/16/99
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Figure D.39.

Cant Rail, Right Side, Position 3, Lower
Strain Gage
FRA Single Car Crash Test, 11/16/99
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APPENDIX E
Accelerations for the Complete
Range Recorded
-0.1s TO1.4s
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Acceleration (g)
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Left Sill, Position 1
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Left Sill, Position 2
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Acceleration (g)
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X-Axis Accelerometer
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Acceleration (g)
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Right Sill, Position 4
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Right Sill, Position 5
X-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Left Sill, Position 1
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure E.13.
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Left Sill, Position 3
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure E.15.

Left Sill, Position 4
Y-Axis Accelerometer
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Acceleration (g)
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Left Sill, Position 5
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Acceleration (g)
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Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Acceleration (g)
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Right Sill, Position 4
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Acceleration (g)
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Acceleration (g)
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Center Sill, Position 2
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Center Sill, Position 4
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Left Sill, Position 2
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Figure E.27.
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Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Acceleration (g)
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Left Sill, Position 4
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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Right Sill, Position 3
Z-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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FRA Single Car Crash Test, 11/16/99
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End B Bogie
Y-Axis Accelerometer
FRA Single Car Crash Test, 11/16/99
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End A, Right Side
Secondary Suspension String-Pot
FRA Single Car Crash Test, 11/16/99
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