e 2000-27

QNNESO,. '
o . PB2001-106278
§ 2 AR e
3 3
%, 3
7o Tar
AL;A“““‘AA““A
b . g
> > ' ‘ ‘
>
>
>
»
»
»>
»
>
»
>

Algorithms For
\ehicle Classn‘lca tion

REPRODUCED BY:

nt o
Natio ITthIfrml n Service
Sp ingfield, Virgini 22161

Minnesota Local
Road Research
Board

FUNDING ACKNOWLEDGEMENT

This project was conducted with funding provided by the Minnesota Local Road Research Board (LRRB). The LRRB’s purpose is
to develop and manage a program of research for county and municipal state aid road improvements. Funding for LRRB research
projects comes from a designated fund equivalent to 12 of one percent of the annual state aid for county and city roads.

Technical Report Documentation Page

1. Report No. 2.

MN/RC - 2000-27

3. Recipients Accession No.

4. Title and Subtitle

ALGORITHMS FOR VEHICLE CLASSIFICATION

S. Report Date
July 2000

6.

7. Author(s)

Surendra Gupte
Nikos Papanikolopoulos

8. Performing Organization Report No.

9. Performing Organization Name and Address

University of Minnesota

Dept. of Computer Science and Engineering

Artificial Intelligence, Robotics and Vision Laboratory
Minneapolis, MN 55455

10. Project/Task/Work Unit No.

11. Contract (C) or Grant (G) No.

c) 74708 wo) 88

12. Sponsoring Organization Name and Address

Minnesota Department of Transportation

13. Type of Report and Period Covered
Final Report 1999 - 2000

395 John Ireland Boulevard Mail Stop 330
St. Paul, Minnesota 55155

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract (Limit: 200 words)

This report presents algorithms for vision-based detection and classification of vehicles in monocular
image sequences of traffic scenes recorded by a stationary camera.

Processing occurs at three levels: raw images, blob level, and vehicle level. Vehicles are modeled at
rectangular patches with certain dynamic behavior. The proposed method is based on the establishment of
correspondences among blobs and vehicles, as the vehicles move through the image sequence. The system
can classify vehicles into two categories, trucks and non-trucks, based on the dimensions of the vehicles.
In addition to the category of each vehicle, the system calculates the velocities of the vehicles and
generates counts of vehicles in each lane over a user-specified time interval, the total count of each type of
vehicle, and the average velocity of each lane during this interval.

17. Document Analysis/Descriptors 18. Availability Statement

vehicle classification No restrictions. Document available from:
National Technical Information Services,

Springfield, Virginia 22161

vehicle tracking
vision-based traffic detection

20. Security Class (this page) 21. No. of Pages 22. Price
Unclassified 107

19. Security Class (this report)
Unclassified

Algorithms for Vehicle Classification

Final Report

Prepared by:
Surendra Gupte
Nikolaos P. Papanikolopoulos

Artificial Intelligence, Robotics and Vision Laboratory
Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455

July 2000

/Published by:
Minnesota Department of Transportation
Office of Research Services
First Floor
395 John Ireland Boulevard, MS 330
St Paul, MN 55155

The contents of this report reflect the views of the authors who are responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the views or policies
of the Minnesota Department of Transportation at the time of publication. This report does not
constitute a standard, specification, or regulation.

The authors and the Minnesota Department of Transportation do not endorse products or
manufacturers. Trade or manufacturers’ names appear herein solely because they are considered
essential to this report.

Executive Summary
This report presents algorithms for vision-based detection and classification of vehicles in
monocular image sequences of traffic scenes recorded by a stationary camera. Processing is done
at three levels: raw images, blob level and vehicle level. Vehicles are modeled as rectangular
patches with certain dynamic behavior. The proposed method is based on the establishment of

correspondences among blobs and vehicles, as the vehicles move through the image sequence.

The system can classify vehicles into two categories, trucks and non-trucks, based on the
dimensions of the vehicles. In addition to the category of each vehicle, the system calculates the
velocities of the vehicles, generates counts of vehicles in each lane over a user-specified time
interval, the total count of each type of vehicle and the average velocity of each lane during this
interval. The system requires no initialization, setup or manual supervision. All the important

parameters of the software can be easily specified by the user.

The system was implemented on a dual Pentium PC with a Matrox C80 vision processing board.
The software runs in real-time at a video frame rate of 15 frames/second. The detection accuracy
of the system is close to 90% and the classification accuracy is around 70%. Experimental results

from highway scenes are provided which demonstrate the effectiveness of the method.

In addition to the proposed system, we also evaluated other non-vision based sensors for
classifying vehicles. The AUTOSENSE II sensor which is a laser range-finder was tested by us.
This report provides a description of the sensor, the results, and a discussion of the advantages

and limitations of the AUTOSENSE I1.

TABLE OF CONTENTS

INTRODUCTION 1
OVERVIEW Lottt sttt et ettt s e os e s h s ma s sat e st e sr e s as b e s sb e s en e sne e 1
RELATED WORK ...ttt st st st s e r e e nn e aras 2

VEHICLE DETECTION 5
OVERVIEW Lottt sttt s b s b oo s s et st ee s s e 5
MOTION SEGMENTATION ...ttt sttt s st s s sn s e s st sa e 6
BLOB TRACKING.......ccoiiiiiiitnce ettt e see st sss st nan s s r s b e r st eneersasenebesesbonnenena 6
RECOVERY OF VEHICLE PARAMETERScooiii i 7
VEHRICLE IDENTIFICATIONoomiitiiiieiteirie ettt ettt et s sre s s sn b e s 8
VEHICLE TRACKING ...ttt st e er e sa e enes s st ansen e et ee e vt s saesc e eneenatssaeas 9
CLASSIFICATION ...ttt ettt et ettt s et s e ecae e eems 10

RESULTS 13

LIMITATIONS 19

ALTERNATIVE SENSORS 21
INTRODUCTION ...ttt sttt ettt e s e rea e et st e e e s e se e st e se e b e st et st et e saeseraenarenans 21
EXPERIMENTAL SETUP ...ttt et s e e s 23
COMPARISON WITH GROUND TRUTH ..ot 26
ADVANTAGES OF THE AUTOSENSE II SENSORcccoiiiiiiiiiiiii e 26
LIMITATIONS OF THE AUTOSENSE I SENSORcccooiiiiiiiiiiiiiiiiiic st 27

CONCLUSIONS AND FUTURE WORK 29

REFERENCES 31

APPENDIX A - INSTRUCTIONS FOR USING THE SOFTWARE A-1

APPENDIX B - RESULTS FROM THE AUTOSENSE II SENSOR B-1

APPENDIX C - SOFTWARE LISTINGS C-1

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

- Figure 8

Figure 9

~ Figure 10

Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

LIST OF FIGURES

Computation. of the vehicle distance from the camera
Calculation of the vehicle length

Frame 0 of image sequence

Frame 2 of image sequence

Frame O edge detected

Frame 2 edge detected

XORing of the two images

After performing 3 dilations

Identification and classification of the vehicle

Detection of vehicles

Correct classification of a truck

More classification examples

Blobs 5 and 10 merge to form blob 14

However they are still tracked as one vehicle

Blob 83 splits into two blobs — blobs 83 and 87

These two blobs are clustered together to form one vehicle 15
Blob 1 splits into blobs 3 and 4

This is detected while tracking vehicle 0

The AUTOSENSE II sensor

Schematic diagram of the operation of the AUTOSENSE II
A view of Pleasant St

The sensor mounted on an overhead bridge above Pleasant St
A view of the AUTOSENSE II sensor as a bus passes underneath it
A view of Washington Ave

The AUTOSENSE II sensor mounted above Washington Ave
Image of traffic as seen by the AUTOSENSE II sensor

PROTECTED UNDER INTERNATIONAL

ﬁll-\%' Igﬁi:lTS RESERVED COPYRIGHT
L TECHNICAL INFORMATION SERV

U.S. DEPARTMENT OF COMMERCE RVICE

Reproduced from
best available copy.

11
12
14
14
14
14
15
15
15
16
16
17
17
17
18
18
18
18
21
22
23
24
24
25
25
26

CHAPTER 1
INTRODUCTION

OVERVIEW

Traffic managemeﬁt and information systems rely on a suite of sensors for estimating traffic
parameters. Currently, magnetic loop detectors are often used to count vehicles passing over
them. Vision-based video monitoring systems offer a number of advantages. In addition to
vehicle counts, a much larger set of traffic parameters such as vehicle classifications, lane
changes, etc. can be measured. Besides, cameras are much less disruptive to install than loop

detectors.

Vehicle classification is important in the computation of the percentages of vehicle classes that
use state-aid streets and highways. The current situation is described by outdated data and often,
human operators manually count vehicles at a specific street. The use of an automated system can
lead to accurate design of pavements (e.g., the decision about thickness) with obvious results in
cost and quality. Even in metro areas, there is a need for data about vehicle classes that use a
particular street. A classification system like the one proposed here can provide important data for

a particular design scenario.

Our system uses a single camera mounted on a pole or other tall structure, looking down on the
traffic scene. It can be used for detecting and classifying vehicles in multiple lanes. Besides the
camera parameters (focal length, height, pan angle and tilt angle) and direction of traffic, it

requires no other initialization.

The report starts by describing an overview of related work, then a description of our approach

is included, experimental results are presented, and finally conclusions are drawn.

RELATED WORK

Tracking moving vehicles in video streams has Been an active area of research in corhputer
vision. In [1] a real time system for measuring traffic parameters is described. It uses a feature-
based method along with occlusion reasoning for tracking vehicles in congested traffic scenes. In
order to handle occlusions, instead of tracking entire vehicles, vehicle sub-features are tracked.
This approach however is very computationally expensive. In [4] a moving object recognition
method is described that uses an adaptive background subtraction technique to separate vehicles
from the background. The background is modeled as a slow time-varying image sequence, which
allows it to adapt to changes in lighting and weather conditions. In a related work described in [8]
pedestrians are tracked and counted using a single camera. The images from the input image
sequence are segmented using background subtraction. The resulting connected regions (blobs)
are then grouped together into pedestrians and tracked. Merging and splitting of blobs is treated
as a graph optimization problem. In [9] a system for detecting lane changes of vehicles in a traffic
scene is introduced. The approach is similar to the one described in [8] with the addition that

trajectories of the vehicles are determined to detect lane changes.

Despite the large amount of literature on vehicle detection and tracking, there has been very little
work done in the field of vehicle classification. This is because vehicle classification is an
inherently hard problem. Moreover, detection and tracking are simply preliminary steps in the
task of vehicle classification. Given the wide variety of shapes and sizes of vehicles within a
single category alone, it is difficult to categorize vehicles using simple parameters. This task is
made even more difficult when multiple categories are desired. In real-world traffic scenes,
occlusions, shadows, camera noise, changes in lighting and weather conditions, etc. are a fact of
life. In addition, stereo cameras are rarely used for traffic monitoring. This makes the recovery of

vehicle parameters — such as length, width, height etc, even more difficult given a single camera

view. The iﬁherent complexity of sterec algorithms and the need to solve the correspondence
problem makes them unfeasible for real-time applications. In [7] a vehicle tracking and
classification system is described that can categorize moving objects as vehicles or humans.
However, it does not further classify the vehicles into various classes. In [5] a object
classification approach that uses parameterized 3D-models is described. The system uses a 3D
polyhedral model to classify vehicles in a traffic sequence. The system uses a generic vehicle
model based on the shape of a typical sedan. The underlying assumption being that in typical
traffic scenes, cars are more common than trucks or other types of vehicles. To be useful, any
classification system should categorize vehicles into a sufficiently large number of classes,
however as the number of categories increases, the processing time needed also rises. Therefore,
a hierarchical classification method is needed which can quickly categorize vehicles at a coarse
granularity. Then depending on the application, further classification at the desired level of

granularity should be done.

CHAPTER 2

VEHICLE DETECTION

OVERVIEW

The system proposed here consists of six stages:

L.

Motion Segmentation: In this stage, regions of motion are identified and extracted using a

temporal differencing approach.

Blob Tracking: The result of the motion segmentation step is a collection of connected
regions (blobs). The blob tracking stage tracks blobs over a sequence of images using a
spatial matching method.

Recovery of Vehicle Parameters: Te enable accurate classification of the vehicles, the vehicle

parameters such as length, width, and height need to be recovered from the 2D projections of
the vehicles. This stage uses information about the camera’s location and makes use of the
fact that in a traffic scene, all motion is along the ground plane.

Vehicle Identification: Our system assumes that a vehicle may be made up of multiple blobs.

This stage groups the tracked blobs from the previous stage into vehicles. At this stage, the
vehicles formed are just hypotheses. The hypotheses can be refined later using information
from the other stages.

Vehicle Tracking: For robust and accurate detection of vehicles, our system does tracking at
two levels — blob level, and the vehicle level. At the vehicle level, tracking is done using
Kalman filtering.

Vehicle Classification: After vehicles have been detected and tracked, they are classified into

various categories.

Preceding Page Blank

The following sections describe each of these stages in more detail.

MOTION SEGMENTATION

The first step in detecting objects is segmenting the image to separate the vehicles from the
background. There are various approaches to this, with varying degrees of effectiveness. To be
useful, the segmentation method needs to accurately separate vehicles from the background, be
fast enough to operate in real time, be insensitive to lighting and weather conditions, and require a
minimal amount of supplementary information. In {4], a segmentation approach using adaptive
background subtraction is described. Though this method has the advantage that it adapts to
changes in lighting and weather conditions, it needs to be initialized with an image of the
background without any vehicles present. Another approach is time differencing, (used in [7])
which consists of subtracting consequent frames (or frames a fixed number apart). This method
too is insensitive to lighting conditions and has the further advantage of not requiring
initialization with a background image. However, this method produces many small blobs that are

difficult to separate from noise.

Our approach is similar to the time-differencing approach. However instead of simply subtracting
consequent frames, it performs an edge detection on two consecutive frames. The two edge-
detected images are then combined using a logical XOR operation. This produces a clear outline
of only the vehicle; and the background (since it is static) is removed (Figures 3 — 7). After
applying a size filter to remove noise and performing a couple of dilation steps, blobs are

produced (Figure 8).

BLOB TRACKING
The blob tracking stage relates blobs in frame i to blobs in frame i+1. This is done using a spatial

locality constraint matching. A blob in frame i +1 will be spatially close to its location in frame i.

To relate a blob in the current frame to one in the previous frame, its location is compared to the
locations of blobs in the previous frame. For each blob in the current frame, a blob with the
minimum distance (below a threshold) and whose‘size is similar is searched for, in the previous
frame. A new blob is initialized when no blob in the previous frame matches a blob in the current
frame. To handle momentary disappearance of blobs, blobs are tracked even if they are not
present in the current frame. Each time a blob in the previous frame is not matched to a blob in
the current frame, its “age” is incremented. Blobs whose “age” increases above a threshold are
removed. To remove noise that was not filtered by the size filter, blobs that do not show
significant motion are removed. Blobs can split or merge with other blobs. Instead of explicitly
handling splitting and merging at the biob level, this burden is passed onto the vehicle level to

handle.

RECOVERY OF VEHICLE PARAMETERS

To be able to detect and classify vehicles, the location, length, width and velocity of the blobs
(which are vehicle fragments) needs to be recovered from the image. To enable this recovery, the
input image is transformed using translations and affine rotations so that motion of the vehicles is
only along one axis. This is a reasonable restriction, since in a traffic sequence, motion occurs
only along the ground plane. In the test data we used, the image is rotated so that all motion is
along the x-axis only. Using this knowledge and information about the camera parameters, we can

extract the distance of the blobs from the camera. The distance is calculated as shown in Figure 1.

The perspective equation (from Figure 1) gives us:
Y
== (1
y=r=)

y’= f.tand 2)

From Figure 1, it can be seen that
S=y- 3)

and

-1

¥ =tan 4)

B
ZW

therefore,

y'= f.tar{(tan"l —Zh—]—a} (5)

From the Equation (5), the distance to the vehicle (Z,) can be calculated. To calculate the length
of the vehicle, we do the following steps (refer to Figure 2). x;” and x,’ are the image coordinates

of X;and X, respectively. The length of the vehicle is | x - X3 | From Figure 2,

Z

z = cosw ©
xXi= f.—)ZSr‘— (7)

= f.;—;cosﬂ (8)
X, =fi;i)‘zfﬁ ©)

where Z, is as calculated from Equation (5) above.

VEHICLE IDENTIFICATION
A vehicle is made up of blobs. A vehicle in the image may appear as multiple blobs. The vehicle
identification stage groups blobs together to form vehicles. New blobs that do not belong to any

vehicle are called orphan blobs. A vehicle is modeled as a rectangular patch whose dimensions

depend on the dimensions of its constituent blobs. Thresholds are set for the minimum and
maximum sizes of vehicles based on typical dimensions of vehicles. A new vehicle is created
when an orphan blob is created which is of sufficient size, or a sufficient number of orphan blobs
that have similar characteristics (spatial proximity and velocity) can be clustered together to form

a vehicle.

VEHICLE TRACKING

Our vehicle model is based on the assumption that the scene has a flat ground. A vehicle is
modeled as a rectangular patch whose dimensions depend on its location in the image. The
dimensions are equal to the projection of the vehicle at the corresponding location in the scene.

The patch is assumed to move with a constant velocity in the scene coordinate system.

The following describes one tracking cycle. More details and the system equations can be found
in [8].

1. Relating vehicles to blobs

The relationship between blobs and vehicles is determined as explained above in the Vehicle
Identification section.

2. Prediction
Kalman filtering is used to predict the position of the vehicle in the subsequent frame. The
velocity of the vehicle is calculated from ithe velocity of its blobs. Using the vehicle velocity,
the position of the vehicle in the current frame, and the time elapsed since the last frame, the
position of the vehicle in the current frame is predicted.

3. Calculating vehicle positions.

We use a heuristic in which each vehicle patch is moved around its current location to cover
as much as possible of the blobs related to this vehicle. This is taken to be the actual location

of the vehicle.

4. Estimation

A measurement is a location in the image coordinate system as computed in the previous

subsection. The prediction parameters are updated to reduce the error between the predicted

and measured positions of the vehicle.
Since splitting and merging of blobs is not handléd at the biob level, it has to be taken into
account at the vehicle level. During each frame, when a vehicle is updated, its new dimensions
(length and height) are compared with its dimensions in the previous frame. If the new
dimensions differ by more than a fixed amount (50% in our experiments), it implies that some of
the constituent blobs of this vehicle have either split or merged with other blobs. A decrease in
length implies splitting of blobs, whereas an increase indicates merging of blobs. A split implies
that a new blob has been created in the current frame that has not been assigned to any vehicle,
i.e. an orphan blob. When a decrease in length of a vehicle is detected, the system searches within
the set of orphan blobs for blobs that can be clustered with the blobs of this vehicle. The criteria
used for clustering is spatial proximity, similar velocity and the sum of the lengths (and heights)
of the orphan blobs and existing blobs should not exceed the maximum length (height) threshold.
Merging does not need to be explicitly handled. The blobs that have merged are simply replaced

with the merged blob. The earlier blobs will be removed for old age during blob tracking.

CLASSIFICATION

The final goal of our system is to be able to do a vehicle classification at multiple levels of
granularity. Currently we are classifying vehicles into two categories (based on the needs of the
funding agency):

1. Trucks

2. Other vehicles
‘This classification is made based on the dimensions of the vehicles. Since we calculate the actual

length and height of the vehicles, the category of a vehicle can be determined based on its length

10

and height. Based on typical values, vehicles having length greater than 550 cm. and height

greater than 400 cm are considered trucks, while all other vehicles are classified as non-trucks.

Figure 1 :Computation of the vehicle distance from the camera (o is the camera tilt angle, A
is the height of the camera, and Z, is the distance of the object from the camera, f is the
focal length of the camera, y’ is the y-coordinate of the point, and Z is the distance to the
point along the optical axis).

11

Figure 2 : Calculation of the vehicle length. B is the pan angle of the camera, Zw is the
vertical distance to the vehicle, and Zr is the distance to the vehicle from the camera (along
the optical axis).

12

CHAPTER 3
RESULTS

The system was implemented on a dual Pentium 400 MHz PC equipped with a C80 Matrox
Genesis vision board. We tested the system on image sequences of highway scenes. The system is
able to track and classify most vehicles successfully. We were able to achieve a correct
classification rate of 70%, and a frame rate of 15 fps. Figures 9 — 18 show the results of our
system. With more optimized algorithms, the processing time per frame can be reduced

significantly.

There have been cases where the system is unable to do the classification correctly. When
multiple vehicles move together, with approximately the same velocity, they tend to get grouped
together as one vehicle. Also, the presence of shadows can cause the system to classify vehicles

incorrectly. We are currently considering several remedies to handle these situations.

13

Figure 5 : Frame 0 edge detected.

14

Figure 6 : Frame 2 edge detected.

s s s

i ~ h v NI
- . ¢ - - “or L
ek SNSSURN y 1} r
. T ea Ll d K
e e .
T~
. -l
~ Wyt .
b Pom -

A

Figure 7 : XORing images from Figs. 5 and 6.

Figure 9 : Identification and classification of the vehicle.

15

Figure 8 ¢ After performing 3 dilations.

Figure 10 : Detection of vehicles.

Figure 11 : Correct classification of a truck.

16

N .-

Figure 13 : Blobs 5 and 10 merge to form blob 14.

17

Figure 14 : However, they are still tracked as
one vehicle.

83

Figure 15 : Blob 83 splits into two blobs —
blobs 83 and 87.

Figure 17 : Blob 1 splits into blobs 3 and 4.

18

Figure 16 : These two blobs are clustered

together to form one vehicle — vehicle 15.

Figure 18 : This is detected while tracking
vehicle 0, and these two blobs are clustered and
form vehicle 0

CHAPTER 4

LIMITATIONS

These are the limitations of the vehicle detection and classification algorithms that we have

described so far:

s The program can only detect and classify vehicles moving in a single direction. This is a
limitation of the software. The algorithms will have to be modified to analyze multi-
directional traffic.

e The algorithms assume that there is significant motion in the scene between successive
frames of the video sequence. If this assumption is not valid for a particular traffic scene, then
the accuracy of the results produced will be affected.

o The program cannot reliably analyze scenes that have strong shadows present in them.

o The software cannot work correctly in very low-light conditions. |

o In scenes where the density of traffic is very high, causing many vehicles to occlude each
other, the algorithms could detect multiple vehicles as a single vehicle, thus affecting the

count and also causing a misclassification.

19

20

CHAPTER 5
ALTERNATIVE SENSORS

INTRODUCTION

We looked at other methods of doing vehicle classification using sensors other than CCD
cameras. Specifically, we looked at the Autosense II sensor from Schwarz Electro-Optics Inc.
This is a invisible-beam laser range-finder that does overhead imaging of vehicles to provide size

and classification measurements.

Figure 19 : The AUTOSENSE II sensor.

The AUTOSENSE 11 is mounted above the road at a height of at least 23 feet. Two laser beams
scan the roadway by taking 30 range measurements across the width of the road at two locations
beneath the sensor. Each set of 30 range measurements forms a line across the road with a 10
degree separation between lines. At a mounting height of 23 feet, a 10 degree separation equals 4
feet between lines. When a vehicle enters the beam, the measured distance decreases and the
corresponding vehicle height is calculated using simple geometry and time of flight
measurements. As the vehicle progresses. the,second beam is also broken in the same manner.
The AUTOSENSE II calculates the time it takes a vehicle to break both beams, using the beam
separation distance, the speed of the vehicle is also calculated. Consecutive range samples are
analyzed to generate a profile of the vehicle in view. This vehicle profile is then processed by the

sensor to classify the vehicle into 13 different categories.

Preceding Page Blank 21

The AUTOSENSE II transmits 5 messages for each vehicle that is detected within its field of

Figure 20 : Schematic diagram of the operation of the AUTOSENSE II.

view. The messages and the order in which it is transmitted are listed:

#1 First Beam Vehicle Detection Message

#2 Second Beam Vehicle Detection Message
#3 First Beam End of Vehicle Message
#4 Second Beam End of Vehicle Message

#5 Vehicle Classification Message

The first four messages uniquely identify each vehicle and its position in the lane. The

classification message includes vehicle classification, classification confidence percentage,

height, length, width and speed.

The AUTOSENSE II can classify vehicles into the following five categories:

1.

2
3
4.
5

Car
Pickup/Van/SUV
Bus

Tractor

Motorcycle

22

-

Besides these five basic categories, the AUTOSENSE II can also detect the presence or absence

of atrailer and hence can provide eight additional sub-categories.

EXPERIMENTAL SETUP

We tested the AUTOSENSE 11 for 3 lane-hours in various weather and lighting conditions. The
sensor was tested at two different locations - Washington Ave. and Pleasant St. Washington Ave.
is a three lane street, with vehicles usually by at speeds of around 50-60 mph. Pleasant St. is a
single lane road and traffic on it merges with Washington Ave. The average speed of vehicles on

Pleasant St. is approximately 20-30 mph.

Figure 21 : A view of Pleasant Street.

23

Figure 23: A view of the AUTOSENSE II sensor as a bus passes underneath it

(the sensor is shown highlighted with a white box around it).

24

L

Figure 24 : A view of Washington Avenue.

Figure 25 : The AUTOSENSE II sensor mounted above Washington Ave.

(sensor is highlighted with a black box around it).

25

Figure 26 : Image of traffic as seen by the AUTOSENSE Il sensor as

a car passes underneath it.

RESULTS
The results from the AUTOSENSE II sensor are given in Appendix B. These results have been

post-processed using Microsoft Excel. The sensor does not provide results in the format shown.

COMPARISON WITH GROUND TRUTH

The results of the AUTOSENSE 1II sensor were compared to manually collected data. These
comparisons indicate that the detection accuracy of the AUTOSENSE II sensor is approximately
99%. The only cases it failed to detect a vehicle correctly were when the vehicle was not entirely
within the lane that the sensor was centered on. This would sometimes lead the sensor to not
detect the vehicle or misclassify it. The classification accuracy, too was around 99%. The cases
where it failed to classify a vehicle correctly were usually cases where the vehicle was a SUV
whose length was smaller than that of average SUVs (for e.g. a Honda CR-V). In most other

cases, the sensor did classify the vehicles correctly.

ADVANTAGES OF THE AUTOSENSE II SENSOR
After testing the sensor for a significant amount of time in various and adverse conditions we
have discovered that these are the advantages of the AUTOSENSE II sensor.

e Very high detection and classification accuracy

26

Not affected by lighting and/or weather conditions. The sensor can be used even under zero-

light conditions.

LIMITATIONS OF THE AUTOSENSE II SENSOR
Though the AUTOSENSE II sensor has very high detection and classification accuracy, in our

opinion, it has some limitations as detailed below.

The AUTOSENSE II sensor can only detect and classify vehicles in a single lane. However,
this limitation can be overcome by using the newly introduced AUTOSENSE III sensor,
which can analyse data in multiple lanes.

The sensor has very rigid mounting requirements which could make it unsuitable for general
purpose use in any situation. Specifically, it requires overhead mounting, at a height of at
least 23 feet. The sensor has to be mounted vertically, and the angle it makes with the vertical
can be at most 5 degrees. Any obstructions in the path of the beam will cause the sensor to
provide erroneous results. The sensor is more suited for a permanent installation, and is not
amenable to temporary collection of data at some site.

The sensor requires line voltage (110V AC) and has to be connected to a computer via a
serial cable. Due to limitations of the serial protocol, there are limits on the length of the
cable that can be used (a maximum of 40 feet) and hence on the distance that the computer
can be away from the sensor.

The sensor has to be connected to an on-site computer. It is not possible to simply collect the
data from the sensor and then process it offline (as for example can be done with cameras and
video tape). Hence, there is the additional cost of installing a computer on-site.

Since the data collection, analysis and classification is done by proprietary software provided
by the manufacturer, it is not possible to do a finer or coarser classification or change the
categorization of vehicles as provided by the sensor.

The sensor cannot analyze data from multi-directional traffic. To analyze such data would
require the use of multiple sensors, one for each Iane.

The sensor can only analyze data from scenes where the traffic is moving perpendicular to the
direction of the laser beams. The sensor cannot be used in a scene, where say the vehicles are

turning.

27

e Though the sensor provides accurate data for the count of vehicles, speed and classification, it
cannot be used to provide other data, which a video camera can provide, for example,

tracking information.

28

A EE R IS S I e =B .

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We have presented a model-based vehicle tracking and classification system capable of working
robustly under most circumstances. The system is general enough to be capable of detecting,
tracking and classifying vehicles without requiring any scene-specific knowledge or manual
initialization. In addition to the vehicle category, the system provides location and velocity
information for each vehicle as long as it is visible. Initial experimental results from highway
scenes were presented.

To enable classification into a larger number of categories, we intend to use a non-rigid model-
based approach to classify vehicles. Parameterized 3D models of exemplars of each category will
be used. Given the camera location, tilt and pan angles, a 2D projection of the model will be
formed from this viewpoint. This projection will be compared with the vehicles in the image to

determine the class of the vehicle.

26

30

REFERENCES

1.

Preceding Page Blank

D. Beymer, P. McLauchlan, B. Coifman and J. Malik, “A Real-Time Computer Vision
System for Measuring Traffic Parameters,” [EEE Conf. Computer Vision and Pattern
Recognition, June 1997, Puerto Rico.

M. Burden and M. Bell, “Vehicle classification using stereo vision,” in Proc. of the Sixth
International Conference on Image Processing and its Applications, 1997.

A. De La Escalera, L.E. Moreno, M.A. Salichs, and J.M. Armingol, “Road traffic sign
detection and classification,” IEEE Transactions on Industrial Electronics, December 1997.
Klaus-Peter Karmann and Achim von Brandt, “Moving Object Recognition Using an
Adaptive Background Memory,” in Time-Varying Image Processing and Moving Object
Recognition, 2 — edited by V. Capellini, 1990.

D. Koller, “Moving Object Recognition and Classification based on Recursive Shape
Parameter Estimation,” 12th Israel Conference on Artificial Intelligence, Computer Vision,
December 27-28, 1993.

D. Koller, J. Weber, T. Huang, G. Osawara, B. Rao and S. Russel, “Towards Robust
Automatic Traffic Scene Analysis in Real-Time,” in Proc. of the 12th Int’l Conference on
Pattern Recognition 1994,

Alan J. Lipton, Hironobu Fujiyoshi and Raju S. Patil, “Moving Target Classification and
Tracking from Real-Time Video,” in Proc. of the Image Understanding Workshop, 1998.
Osama Masoud and Nikolaos Papanikolopoulos, “Robust Pedestrian Tracking Using a
Model-Based Approach,” in Proc. IEEE Conference on Intelligent Transportation Systems,
pp. 338-343, November 1997.

Osama Masoud and Nikolaos Papanikolopoulos, “Vision Based Monitoring of Weaving

Sections,” in Proc. IEEE Conference on Intelligent Transportation Systems, October 1999.

31

10. S. Meller, N. Zabaronik, I. Ghoreishian, J. Allison, V. Arya, M. de Vries, and R. Claus,
“Performance of fiber optic vehicle sensors for highway axle detection,” in Proc. of SPIE
(Int. Soc. Opt. Eng.), Vol. 2902, 1997.

11. W. Schwartz and R. Olson, “Wide-area traffic-surveillance (WATS) system,” in Proc. of
SPIE (Int. Soc. Opt. Eng.), Vol. 2902, 1997.

12. H. Tien, B. Lau, and Y. Park, “Vehicle detection and classification in shadowy traffic images

using wavelets and neural networks,” in Proc. of SPIE (Int. Soc. Opt. Eng.), Vol. 2902, 1997.

Preceding Page Blank 32

APPENDIX A

INSTRUCTIONS FOR USING THE SOFTWARE

The software is completely self-running requiring ne user-interaction. However, it has enough
flexibility to allow user-configurability. All configuration by the user is done by means of a
parameter file. This is a plain-text file which can be edited by the user. A very basic structure is
imposed on the format of this file. This format has been kept simple enough for most users to be
able to change the parameters easily. Each line of the file corresponds to one parameter. Each line

consists of a name — value pair. The name and value are separated by a space and colon (:)

APPENDIX A

INSTRUCTIONS FOR USING THE SOFTWARE

character. Thus each line in the parameter file looks like:

Name : Value

With at least one space between the name and the colon, and the colon and the value. Names can

consist of any character (except space and tab). The following parameters are configurable by the

user through this file:
1. Camera_Height

2. Camera_Distance
3. Focal_Length

4. Tilt_Angle

;Llf

Pan_Angle

6. Resolution

7. Image_Width

8. Image_Height
9. Number_Lanes
10. Interval

11. Output_File

These parameters can be specified in any order, but they must be spelt exactly as shown here. In

addition, comment lines can be inserted in the file by entering the # character as the first character

The height of the camera from the ground (in centimeters).
Horizontal distance of the camera from the nearest lane to it (in cm).
The focal length of the camera (in cm).

The tilt angle of the camera in degrees, measured counterclockwise
around the horizontal axis.

The pan angle of the camera in degrees measured counterclockwise
around the vertical axis.

The resolution of the camera in pixels/cm.

The width of the image in pixels.

The height of the image in pixels.

The number of lanes in the scene to be analyzed.

Time interval at which to generate the records (in seconds).

The name of the file in which the output is to be recorded.

on a line. Everything on that line will be considered a comment and ignored by the program.

In addition, all the parameters also have default values. Parameters that are not specified in the

parameter file are assigned the default values. The default values for the parameters are:

1. Camera_Height 977.35
2. Camera_Distance 686

3. Focal_Length 0.689
4. Tilt_Angle -39.54
5. Pan_Angle -15.0
6. Resolution 1000
7. Image_Width 320

8. Image_Height 240

9. Number_Lanes 4

10. Interval 120
11. Qutput_File The screen

These values are based on the ones we calculated from the tapes we have been using.

The image width and image height are determined automatically. In most circumstances, these

should not be specified via the parameter file.

By default the program looks for a file called “params.ini” in the current working directory.
A different file can be specified by giving the file name as the first command line argument to the
program. If the program cannot find the file, or there is an error in the syntax of a parameter
specification, or the parameter has not been specified in the file, then in any of these

circumstances, the program uses the default values for the parameter.

APPENDIX B

RESULTS FROM THE AUTOSENSE 1 SENSOR

APPENDIX B

RESULTS FROM THE AUTOSENSE I1 SENSOR

Results for Washington Ave. 11/27/99

15:35:02

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

~NOOOO OO ~0O

w

15:40:00

Motorcycie

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Traiier
Car w/Trailer

Bus w/Trailer

Average Speed

. N
OO OOVMO = OMN

(]
~I

15:45:09

Motorcycle
Car 2
Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

O OO0 —+0

N
o

15:55:00

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

4 N
OO OO0 -—=-U10

N
n

16:00:01

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

: N
OO O0OO~NOOWOo

H
-t

16:05:01

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

N -
©COOOMNO-—~+~0OO0

n
—

16:10:02

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

—

BN
-t

wWoooOoOhrRONO

16:15:19

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

-t

E-S
w

rPoOOoOOoOUOO®©®O

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer :

Bus w/Trailer

Average Speed

. N
OO0 =+ =N =

A
[\V]

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

. —
- OO0 -+2NMNO O O,Oo

S
—t

3

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

B3

- -
-~ QOO OO0~

D
—

Results for Pleasant St. 10/23/99

14:15:51

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

—h
=N

Lo o0c0c00o0oNO

14:20:43

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Traiter

Bus w/Trailer

Average Speed

-y
[¢2]

MoooNMNOONO

14:30:31

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

. Bus w/Trailer

Average Speed

-t

e
[o)]

M2 2 OOON 2O

14:35:09

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

&)
-

WoOoOoOoOOoO A1 O

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

—t

—
0]

DPOOOW= Ul - O

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

—
w

NoOoO—_2omnmMNNwwo

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

-t

—_
()]

NooocoomMmN O

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

h _
OO O OONW~—=

-t
o

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

—
~d

vCoocoumoMNnAO

Results for Washington Ave. 11/27/99

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

H
N

OO~ 00 WO

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

w
o

tToocoocoo®moO

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

H
o

Noooooooo

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

-t

N
™

oo OoOPrPOOOO

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

. —
WOOOMNOO MO

N
W

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

. —t
WO OONMNOOOO

N
[\

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Traller

Bus w/Trailer

Average Speed

DoOOoOOoOwWOONO

S
w

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

QOO+ 00U O

N
(@)

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

DO O0OON~AODO®O

N
N

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

-t

1S

WO OO OONO

Motorcycle

Car

Tractor

Bus

Pickup/Van/Sport Utility
Pickup/Van/Sport Utility w/Trailer
Car w/Trailer

Bus w/Trailer

Average Speed

w
[¢)]

nmoocoocoo U~

APPENDIX C

SOFTWARE LISTINGS

APPENDIX C
SOFTWARE LISTINGS

This is the list of files used by the system. The files are appended in the same order as they are

listed here.

Header Files
BlobClusterer.h
Cluster.h
Clusterer.h
Blob.h
BlobCluster.h
BlobData.h
BlobManager.h
BoundingBox.h

A - R S R

Camera.h
. Ini_file_reader.h

. Parameters.h

e e T Y
N o= O

. Reporter.h

. Vector2d.h

. Vehicle.h

. VechicleClassifier.h

e e T e
N n b~ W

. VisionProcessor.h

Source Files

1. BlobClusterer.cpp
Cluster.cpp
Clusterer.cpp
Blob.cpp
BlobCluster.cpp
BlobData.cpp
BlobManager.cpp
BoundingBox.cpp

e A S

10.
1.
S 12,
13.
14.
15.
16.

Camera.cpp
Ini_file_reader.cpp
Parameters.cpp
Reporter.cpp
Vector2d.cpp
Vehicle.cpp
VechicleClassifier.cpp

VisionProcessor.cpp

// BlobClusterer.h: interface for the BlobClusterer class.

//
LI7T00E000 0000700700000 0 0007000000000 00000 i it iiernirirriiirrrsd

#if !defined(AFX_BLOBCLUSTERER_H__DI1D64F31_458E_11D3_9159_0040053461F8__ INCLUDED_)
#define AFX_BLOBCLUSTERER_H__D1D64F31_458E_11D3_9159_0040053461F8__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "vehicleMgr.h*
#include “clusterer.h*
#include "blobCluster.h”

#include <list>
#include <math.h>

struct _C {
BlobCluster* clusteree;
list<BlobCluster*> &clusters;
_C(BlobCluster* b, list<BlobCluster*> &bl) : clusteree(b), clusters(bl) {}

~_C():

struct _Cl_interval {
int start, end;
list<BlobCluster*> owners;
_Cl_interval(int s, int e, BlobCluster* cl);
~_Cl_interval ();
void merge (_Cl_interval const &c);
bool inside(float p);
bool operator>(const _Cl_interval &ci) (
return start > ci.start;
}
}s

/* The BlobManager hands tracked blobs to the BlobClusterer. The BlobClusterer
- clusters blobs according to their vehicle. Blobs that have not been assigned to
a vehicle are clustered using nearest-neighbor clustering, and a new vehicle is
formed from them. These clustered blobs are handed over to the VehicleMgr for
performing tracking at the Vehicle level.

*/

class BlobClusterer

{

public:
BlobClusterer (VehicleMgr &vMgr);
virtual ~BlobClusterer();

void clusterOrphans () ;

void isolateOrphans(list<Blob*> &blobs);

void findMatchingBlobs (BlobCluster &cluster);

void findMatchingBlobs (list<BlobCluster*> &cluster);

private:
VehicleMgr &_vehicleMgr;
Clusterer _clusterer;
//list<Cluster*> _orphanBlobs;
list<BlobCluster*> _orphanBlobs;
static float const _MinSeperation, _MinDistance;

void _mergeIntervals(list<_Cl_interval*> &intervals);

void _clusterOrphans();

void _sortY(list<BlobCluster*> &lst);

void expandClusters(list<BlobCluster*>& clusters, list<BlobCluster*>&clusterees);

#endif // !'defined(AFX_BLOBCLUSTERER_H__DI1D64F31_458E_11D3_9159_0040053461F8__INCLUDED_)

// cluster.h: interface for the Cluster class.
// -
J1077071077777777777070777777707777777770777777777770777777777777777777777

#if !'defined(AFX_CLUSTER_H _ B3ACFCC1_6885_11D3_9175_0040053461F8__INCLUDED_)
#define AFX_CLUSTER_H__ B3ACFCC1_6885_11D3_9175_0040053461F8__INCLUDED__

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <vector>

#ifdef CLUSTER
#include <iostream>
using std::ostream;
#endif

using std::vector;

class Cluster
{
public:
Cluster () ;
virtual ~Cluster() ;

protected:
float _length;
float _width;

virtual bool _merge(Cluster &cluster) = 0;
virtual double _similarity(Cluster &cluster) =
virtual double _distance(Cluster &cluster) = 0;
virtual bool _canBeMerged(Cluster &cluster) = 0;
virtual float getLength() = 0;

virtual float getWidth() = 0;

0;

// friend ostream& operator<<(ostream &ostr, Cluster &cluster);
// virtual float center() = 0;

friend class Clusterer;

};

#endif // !defined (AFX_CLUSTER_H__B3ACFCC1l_6885_11D3_9175_0040053461F8__ INCLUDED_)

// Clusterer.h: interface for the Clusterer class.

//
LIPTTIIEL VL0070 0770070000707 0 7000770777770 7777777777777

#if !defined (AFX_CLUSTERER_H___B34C9282_681C_11D3_9175_0040053461F8__INCLUDED_)
#define AFX CLUSTERER_H_ B34C9282_681C_11D3_9175_0040053461F8__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <list>
#include <iostream>
#include "cluster.h"

using std: :ostream;

class Clusterer
{
public:
Clusterer () ;
virtual ~Clusterer();

bool expandCluster (Cluster &cluster, std::list<Cluster*> &clusters);

bool expandCluster (Cluster &cluster, std::list<Cluster*> &clusters,
std::list<Cluster*>::iterator start);

void expandClusters(std::list<Cluster*> &cluster, std::list<Cluster*> &clusterees);

//private:
class Cl ¢
public:
std::list<Cluster*>::iterator cluster;
std::list<Cluster*>::iterator clusteree;
float similarity;

Cl() { similarity = 0; }
Cl(float sim, std::list<Cluster*>::iterator iter, std::list<Cluster*>::iterator iter2)
ilarity(sim), cluster(iter), clusteree(iter2) {}
bool operator> (const Cl& cl) const {
return similarity > cl.similarity:;
}
}i
friend ostream& operator<<(ostream&, Cl&);
};

#endif // !defined(AFX_CLUSTERER_H_ B34C9282_681C_11D3_9175_0040053461F8__INCLUDED_)

sim

// Blob.h: interface for the Blob class.
//)
JIIIIT17 00000700070 7707007007700070771070772777707777077700707070717777777

#if 1defined(AFX_BLOB_H__FBA75CC2_31B2_11D3_9198_0040053461F8__INCLUDED_)
#define AFX_BLOB_H__FBA75CC2_31B2_11D3_9198_0040053461F8 INCLUDED_

#if _MSC_VER > 1000
#pragma once
¢endif // _MSC_VER > 1000

#include <list>

#include "blobbata.h"
#include "boundingBox.h"
#include "vector2d.h"

using std::list;

class VisionProcessor;
class Vehicle;-

class Blob
{
public:

Blob(blobbata &bdata);

void update(long x, long y, long minX, long minY, long maxX, long max¥, long area);
void update (blobData &bd);

void show() ;

//all the get methods

Vector2d& getVelocity() {return _velocity; }

long* getPosition() {return _blobData.centerGravity; }

BoundingBox& getBoundingBox() {return _boundingBox; }

long getArea() { return _blobData.area; }

int getName() { return _name; }

float distance(Blob* const blob) { return BBox::distance(_boundingBox, blob->getBoundingBox());

float seperation(Blob* const blob) { return BBox: : seperation(_boundingBox, blob->getBoundingBox
))Y:) : :

void setVehicle(Vehicle *veh) { _vehicle = veh; }
Vehicle* getVehicle() { return _vehicle; }
int distance(long cgl2});

private:
blobData _blobData;
virtual ~Blob(};
BoundingBox _boundingBox;

static VisionProcessor *_visProc;
static int _count;

int _name;

Vehicle* _vehicle;

Vector2d _velocity;

friend class BlobManager;
friend class BlobClusterer;

/* These factors determine how guickly their respective parameters change
Maybe they shouldn’‘t be constants, but should change depending on certain
factors. But for now they are statically decided

const float _PositionUpdateFactor ;
const float _VelocityUpdateFactor;
const float _AreaUpdateFactor; ‘
const float _MinVelocity;
>/

}i

g$endif // !'defined(AFX_BLOB_H__FBA75CC2_31B2_11D3_9198_0040053461F8__INCLUDED_)}

// BlobCluster.h: interface for the BlobCluster class.

/!

LEIITI7700 0770070007077 70700070000 0000707207717070770700777777717777070707777

#if !defined(AFX BLOBCLUSTER_H__ B3ACFCC2_6885_11D3_9175_0040053461F8___INCLUDED_)
#define AFX_BLOBCLUSTER_H__B3ACFCC2_6885_11D3_9175_0040053461F8__INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include
#include
#include
#include
#include

*cluster.h"
"blob.h"
"“Vector2d.h"
<list>
<iostream>

using std: :ostream;

class BlobCluster : public Cluster

{
public:

BlobCluster () ;
BlobCluster (Blob *blob) ;
virtual ~BlobCluster();

void update();

void removeBlob(Blob *blob);

.void replaceBlobs (BlobCluster *blobs);

float getLength() { return _box.length(); }

float getWidth() { return _box.width(); }

Vector2d getCG() { double cgl[2]; _box.center(cg); Vector2d v(cg); return v;)
double getDesiredwidth() { return 75; }

double getDesiredLength() { return 200; }

int getNumBlobs() { return _blobs.size(); }
list<Blob*>& getBlobs() { return _blobs; }
BoundingBox& getBoundingBox () { return _box; }

void assignVehicle(Vehicle *veh);
Vector2d getVelocity () { return _imgVelocity; }

friend ostream& operator<<(ostream& ostr, BlobCluster &cluster);

private:

void _updateDimensions{();

bool _canBeMerged(Cluster &cluster);
bool _merge(Cluster &cluster);

double _similarity(Cluster &cluster);
double _distance(Cluster &cluster);

bool _replacing;

static BlobManager& _blobMgr;
list<Blob*> _blobs;
BoundingBox _box;

int _frames; // no. of frames this cluster has existed
Vector2d _imgVelocity;

static const float _MaxClusterLength, _MaxClusterWidth, _MaxBlobClusterDist,
_VelocityUpdateFactor;

// H

A C K

friend class BlobClusterer;

Y
#endif //

!defined (AFX_BLOBCLUSTER_H__B3ACFCC2_6885_11D3_9175_0040053461F8__INCLUDED_)

// blobData.h: interface for the blobData class.
//
J117770777707777777777770777777777707777707777770777777777040707777777777

#if !'defined (AFX_BLOBDATA H_ 3568FFE4_4386_11D3_9159_0040053461F8__ INCLUDED_)
#define AFX_BLOBDATA_H__3568FFE4_4386_11D3_9159_0040053461F8__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <vector>
#include <iostream>

using std::vector;

typedef struct blobData (
long label;
long boundingBox([4];
long area;
long centerGravityl[2];

blobData (long lab, long minx, long miny, long maxx, long maxy,
long ar, long cgx, long cgy) {

label = lab;

boundingBox{0] = minx; boundingBox([1] = miny;
boundingBox[2] = maxx; boundingBox([3] = maxy;
area = ar;

centerGravity{0] = cgx; centerGravity([l] = cgy;

}
} blobData;

#endif // !defined(AFX_BLOBDATA_H_ 3568FFE4_4386_11D3_9159_0040053461F8__ INCLUDED_)

// BlobManager.h: interface for the BlobManager class.

//

LITETTTTI P00 777777700700 00 077707707000 070077070777007077777777077777777

#if !defined(AFX_BLOBMANAGER_H__CA4842B2_42CF_11D3_919A_OO4OOS3461F8_;INCLUDED_)

#define AFX _BLOBMANAGER_H__CA4842B2_ 42CF_11D3_919A_0040053461F8__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include "VisionProcessor.h"
#include "Blob.h"

#include <list>

using std::list;

class BlobManager

{
public:

virtual ~BlobManager();

static BlobManager& getInstance();
void addBlobs (list<blobData*> &lst);
void removeBlob (Blob* blob);

void removeBlobs{list<Blob*>& blobs);
void showBlobs () ;

void showMatchedBlobs () ;

list<Blob*>&

private:

getBlobs() { return _blobs; }

BlobManager () ;

list<Blob*> _blobs;
static BlobManager *_instance;

static const
static const
static const
static const
static const

Y

#endif // !defined(AFX_BLOBMANAGER_H_ﬁCA484252_42CF_11D3_919A_OO40053461F8__INCLUDED_)

unsigned int _MinBlobDistance;
unsigned int _MinBlobDisplacement;
unsigned int _MaxAge;

unsigned int _MaxStaticCount;
float _OverlapThreshold;

// BoundingBox.h: interface for the BoundingBox class.
/7 .
[17077070077777770777777007700707077707077777707707077707077777777777077777777777

#if !defined(AFX BOUNDINGBOX_H__1BABC580_66E4_11D3_9175_0040053461F8__INCLUDED_)
#define AFX BOUNDINGBOX_H__ 1BABC580_66E4_11D3_9175_0040053461F8__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class BoundingBox;

namespace BBox

{
double seperation(BoundingBox &boxl, BoundingBox &box2);
double distance (BoundingBox &boxl, BoundingBox &box2);
double overlap (BoundingBox &boxl, BoundingBox &box2) ;

};

class BoundingBox
{
public:
BoundingBox () {}
BoundingBox (double left, double bottom, double right, double top);
BoundingBox (float box[41]);
BoundingBox {(double box{4]);
BoundingBox {(long box[4]);
virtual ~BoundingBox();

void setCoordinates(float left, float bottom, float right, float top)
{
_box[0] = left; _box[l] = bottom;
- _box[2] = right; _box[3] = top;
}
void setCoordinates(float box{4])

{

_box[0] = box[0]; _box[1l] = box[1];
_box[2] = box[2]; _box[3] = box[3];
}
void setCoordinates(long box([4])
{
_box[0] = box[0}; _box[l]) = box[1l};
_box{2] = box[2]; _box[3] = box(3];
}
double* coordinates() { return _box; };

void center(double cgil);

double left() { return _box([0]; }

double right() { return _box{2]; }

double bottom() { return _box[1l]; }

double top() { return _box({3]; }

double length() { return (_box[2] - -box[0]); }
double width() { return (_box[3] - _box[1]); }
double seperation(BoundingBox &boxl);

double overlap (BoundingBox &boxl) ;

double symOverlap (BoundingBox &boxl);

double distance (BoundingBox &box);

void operator+=(BoundingBox &box) ;

void operator-=(double x) { _box{2] -= x; }
double operator[](int i) { if(i >= 0 && i < 4) return _box[i]; return 0;)

private:
double _box([4];

friend double BBox::seperation(BoundingBox &boxl, BoundingBox &box2);
friend double BBox::distance(BoundingBox &boxl, BoundingBox &box2);
friend double BBox::overlap (BoundingBox &boxl, BoundingBox &box2) ;

}:

#endif // !'defined(AFX_BOUNDINGBOX_ H__1BABC580_66E4_11D3_9175_0040053461F8__INCLUDED_)

// Camera.h: interface for the Camera class.

//

JI707007707700717770700077000077777777707070070770007007007007777077177777

#if !'defined (AFX_CAMERA H_ FBA75CC5_31B2_11D3_9198_0040053461F8__INCLUDED_)
#define AFX _CAMERA_H_ FBA75CCS5_31B2_11D3_9198_0040053461F8___INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

class Camera

{
public:

virtual ~Cameral();

/*

float getImageHeight() { return _ImageHeight;)}

float getPixelToCmRation() { return _PixelToCmRatio; }
float getCameraDistance() { return _CameraDistance; }

float getCameraFocallength() { return _CameraFocall.ength; }

*/

void getSceneCoords(long imCoord[2], float sceneCoord{2]);
long getReverseCoord(float z); :

static

Camera& getlInstance();

float convertToCm(float pels) { return 2*pels/_Resolution; }

void setResolution(double resolution) { _Resolution = resolution; }
void setDistance(double distance) { _Distance = distance; }

void setfLength(double flen) { _Focallength = flen; }

void setTilt (double tiltAngle) { _TiltAngle = tiltAngle; }

void setPan(double pan) { _PanAngle = pan; }

void setHeight (double height) { _Height = height;)}

void setImgHeight (double imgHeight) { _ImageHeight = imgHeight; }
void setImgWidth{double imgWidth) { _ImageWidth = imgWidth; } °

private:
static
double
double
double
double
double
double
double

Camera* _instance;

_ImageHeight, _ImageWidth; //S8ize of frame in pixels;
_Resolution; // Conversion factor for pixels to centimeters
_Distance; // Distance of camera from lane 4

_FocalLength; // Camera focal length (cm).

_TiltAngle; // Angle of camera to the horizontal (degrees)
_PanAngle; //Rotation around Y-axis of camera

_Height; // Height of camera above ground (cm);

const double PI;

Camera

}i
#endif //

(double Resolution = 1000, double Distance = 686,
double Focallength = 0.689, double TiltAngle = ~-39.54,
double PanAngle = -15.0, double Height = 977.35);

ldefined (AFX_CAMERA_H_FBA75CC5_31B2_11D3_9198_0040053461F8__ INCLUDED_)

#ifndef _INI_FILE_READER_H_
#define _INI_FILE_READER_H_

#include <map>
#include <string>
#include <stdio.h>

using std: :map;
using std::string;

class IniFileReader (

public:
IniFileReader (const char *delim = ":*,
void readFile(const char *fname);
char* getParam(char *name);

private:

FILE *fp;

map<string, string> _nameVval;
string _delimiter;

char _comment;

}:
#endif

const char comment

s

. .. -

#ifndef
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#endif

_PARAMETER_H__
_PARAMETER_H_

MIN_CAR_LENGTH 150
MIN_CAR_WIDTH 130

MAX CAR_LENGTH 300
MAX_CAR_WIDTH 250
MIN_TRUCK_LENGTH 400
MIN_TRUCK_WIDTH 300

MAX TRUCK_LENGTH 500
MAX_TRUCK_WIDTH 800
MIN_BLOB_CLUSTER_LENGTH 0
MIN_BLOB_CLUSTER_WIDTH 0
MAX_BLOB_CLUSTER_LENGTH 500
MAX_BLOB_CLUSTER_WIDTH 200
MIN_BLOB_CLUSTER_DISTANCE 0
MAX_ BLOB_CLUSTER_DISTANCE 50

// Reporter.h: interface for the Reporter class.
//
JILLIITIIT L I07 07077007000 0000007770777007707777077707701770771770170077777

#if !defined(AFX_REPORTER_H__ 1E500D80_F395_11D3_91D2_0040053461F8___INCLUDED_)
#define AFX_REPORTER_H__1ES500D80_F395_11D3_91D2_0040053461F8__ INCLUDED_

$#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <vector>
#include <stdio.h>
#include <time.h>

class Vehicle;

class Reporter

{

public:
Reporter (int nlanes, FILE *fp = stdout);
virtual ~Reporter();

void start();
void reportVehicle(Vehicle &veh);
void report();

private:
int _getLane(Vehicle &v);
int _numLanes; // number of lanes in the scene
// vector <int> _count; // the count of vehicles in each lane

// vector <float*> _lanes; // the extents of the lanes (scene coords)
int _count(4];
int _truckCount[4];
float _avgVelocityl[4];
float _lanesi4])I[2}];
float _velocity{4];
tm _startTime;
FILE *_fp;

Y

#endif // !defined(AFX_REPORTER_H__1E500D80_F395_11D3_91D2_0040053461F8__ INCLUDED_)

o S .

& TN TS = .

// Vector2d.h: interface for the Vector2d class.
7/ .
L1777777077707077777777777707707777777777777770777777777707777770777077777

#if !defined (AFX_VECTOR2D_H__ _E78C93AA_S55F9_11D3_916C_0040053BC61A_ INCLUDED_)
#define AFX_VECTOR2D_H___E78C93AA_55FS_11D3_916C_0040053BC61A__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <math.h>

class Vector2d

{

public:
Vector2d();
Vector2d(float x, float v) { _x =x; ¥y =y }
Vector2d(float vec[2]) { _x = vecl[0]; _y = vecll1l]; }
Vector2d(double vec[2]) { _x = vec[0]); _yv = vec[l]; }
Vector2d(const Vector2d &vec) { _x = vec.getX(); _y = vec.get¥Y(); }
virtual ~Vector2d();
double getX() const { return _x; };
double getY () const { return _y; }

void setX(double x) { _x = x; }
void setY(double v) { _y = y; }
double length() const { return sqgrt(dotProduct(*this, *this)); }

double angle{Vector2d &vec) const

{ // angle between two vectors (in radians)
double theta = dotProduct(vec, *this)/{length()*vec.length());
return acos{theta);

Vector2d& operator=(const Vector2d& vec)
{ :

_X = vec._X;

_Y = vec._Yy;
return *this;

void operator+= (const Vector2d &vec)
{

_X += vec.getX();

_Y += vec.getY();
}

void operator-=(const Vector2d &vec) {
_X -= vec.getX{();
Yy -= vec.getY();

}

void operator*= (float scale)

{ _X *= scale; _y *= scale;

}

void operator/= (float div)

{ X /= div; _y /= div:

}

bool operator== (const Vector2d &vec)

; return(_x == vec.getX() && _y == vec.get¥());
bool operator!= (const Vector2d &vec)

{ return(! (*this == vec));

}
double _x, _y;

friend double dotProduct (const Vector2d &vecl, const Vector2d &vec2) ;
friend double crossProduct(const Vector2d &vecl, const Vector2d &vec2); // vecl X vec?2

C-15

}:

inline double dotProduct (const Vector2d &vecl, const Vector2d &vec2)

{

return vecl._x * vec2._X + vecl._y * vec2._y;
A%

}

inline double crossProduct(const Vector2d &vecl, const Vector2d &vec2)

{

return vecl._x * vec2._y - vecl._y * vec2._X;

}

Vector2d normalize(const Vector2ds
Vector2d operator+(const Vector2d&
Vector2d operator- (const Vector2d&
Vector2d operator/ (const Vector2di
Vector2d operator* (const Vector2d&

#endif // !defined(AFX_VECTOR2D_H__E78C93AA_55F9_11D3_916C_0040053BC61A_ INCLUDED_)

vec)

vecl,
vecl,
vecl,
vecl,

'

const Vector2d& vecl);
const Vector2d& vec2);
const float div);
const float mul);

// vecl X vec2

Gl WA i N == ==

// Vehicle.h: interface for the Vehicle class.

//
L1117 700777707777 7077 7000770 00077770707070707700777777777077707777777777

#if 1defined (AFX_VEHICLE_H__FBA75CC1_31B2_11D3_9198_0040053461F8__INCLUDED_)
#define AFX_VEHICLE_H__FBA75CC1_31B2_11D3_9198_0040053461F8__INCLUDED_

#if _MSC_VER > 1000
#pragma once
$endif // _MSC_VER > 1000

#include <list>

#include "blob.h"]
#include "boundingBox.h"
#include "vector2d.h"
#include "blobCluster.h"
#include "Camera.h"
#include "reporter.h®

class VehicleMgr;

enum VehicleType { Car, Truck, Van, Pickup, SUV };

class Vehicle

{

public:

Vehicle(Blob *blob, int name);
Vehicle(list<Blob *> &blobs, int name);
Vehicle(BlobCluster *_blobCluster, int name);
virtual ~Vehicle();

static void setManager (VehicleMgr* mgr) { _manager = mgr;)}

float getSceneLength() { return _sceneBBox.length{); }
float getSceneWidth() { return _sceneBBox.width(); }

float getImgLength() { return _blobCluster->getLength{(); }
float getImgWidth() { return _blobCluster->getWidth(); }

static bool isvalidvehicle(Blob *blob);

bool canMerge (BlobCluster& bclust);

enum VehicleType getType() { return _type; }

Vector2d getPosition() { double cg[2]; _sceneBBox.center (cg);
BoundingBox& getCoords() { return _sceneBBox; }

Vector2d getVelocity() { return _sceneVelocity; }

float getSpeed();

void show();

void update () ;

void removeBlob(Blob *blob);

protected:

void _replaceBlobs (BlobCluster *blobs);

void _setType (enum VehicleType type) { _type = type; }
void _createVehicle(int name);

static BoundingBox _calcSceneCoords (BoundingBox &box) ;

Vector2d _sceneVelocity;
BoundingBox _sceneBBox;
enum VehicleType _type;

int _name;

BlobCluster *_blobCluster;
static VehicleMgr* _manager;
bool _zombie;

int _zombieAge;

int _age;

static Camera &_camera;

static float const _MinvehicleLength, _MaxVehicleLength,
_MinVehicleWidth, _MaxVehicleWidth,
_InitialvelocityX, _InitialVelocityY;

static int const _AverageAge;

static VisionProcessor* _visProc;

friend class VehicleMgr;

private:

}:

bool _reported;

return Vector2d(cg);

}

#endif // 'defined(AFX_VEHICLE_H__FBA75CC1_31B2_11D3_9198_0040053461F8__INCLUDED_)

// VehicleClassifier.h: interface for the VehicleClassifier class.

/7 _ _
JI1I1101T 10100010077 70001000100070070777770770770777007071071101170717

#if !defined(AFX_VEHICLECLASSIFIER H__ 6E63EEC2_45DE_11D3_9159_0040053461F8__ INCLUDED_)
#define AFX_VEHICLECLASSIFIER H__6E63EEC2_45DE_11D3_9159_0040053461F8__INCLUDED_

#1f _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "vehicle.h"
class VehicleClassifier
{ .
public:

VehicleClassifierxr();

virtual ~VehicleClassifier();

enum VehicleType classify(Vehicle &veh);
const int _CarwWidth;

Y
#endif // !defined (AFX_VEHICLECLASSIFIER_H__6E63EEC2_A45DE_11D3_9159_0040053461F8__ INCLUDED_)

Preceding Page Blank

// VehicleMgr.h: interface for the VehicleMgr class.
//
L1717 070700 007077700000 770000770007007070070707070777777007777077777777777

#if idefined(AFX_VEHICLEMGR_H_ 6E63EEC1_45DE_11D3_9159_0040053461F8___INCLUDED_)
#define AFX_VEHICLEMGR_H__6E63EEC1_45DE_11D3_9159_0040053461F8__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include "blob.h"

#include "Vehicle.h" :
#include “"VehicleClassifier.h"
#include <list>

class VehicleMgr
{
public:
VehicleMgr () ;
virtual ~VehicleMgr();

void setClusterer (BlobClusterer *clusterer) { _clusterer = clusterer; }

void createVehicle (BlobCluster const *blobCluster); // should be a list of blobs
void showVehicles();

void update();

void findMissingBlobs (Vehicle *veh);

bool canCreateVehicle(Blob* blob);

private:
Vehicle* _isNewVehicle (Vehicle *vh) ;
bool _isUniqueVehicle(Vehicle *vh);
void _createUniqueVehicle(Blob *blob);
list<Vehicle*> _vehicles;

list<Vehicle*> _incompleteClusters; // blobClusters from vehicles that have reguested blobs

list<Vehicle*> _expandX; // blobClusters from vehicles that need to expanded in X dire
ction .

list<Vehicle*> _expandy; // blobClusters from vehicles that need to expanded in Y dire
ction

VehicleClassifier _vehicleClassifier;
BlobClusterer *_clusterer;
static int _count;

}i

#endif // !'defined(AFX_VEHICLEMGR_H__ 6E63EEC1_45DE_11D3_9159_0040053461F8 __ INCLUDED_)

// VisionProcessor.h: interface for the VisionProcessor class.

//
LITTTETET L7700 000777700077 00700700 0777070777777 777777700777770077777777

#if !defined(AFX_VISIONPROCESSOR_H__CA4842B1_42CF_11D3_919A_0040053461F8__INCLUDED_)

#define AFX_VISIONPROCESSOR_H__CA4842B1_42CF_11D3_919A_0040053461F8__ INCLUDED_

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#include <vector>
#include <list>

#include "imapi.h"
#include "blobData.h"
#include "Blob.h"

class VisionProcessor
{ .
#define MAX_BLOBS 100

public:
static VisionProcessor* getInstance();
virtual ~VisionProcessor();

int getImageWidth() { return _sizeX; }
int getImageHeight() { return _sizeY; }

int grabFrame () ;

int loadFrame (char fnamel[});
void initGrab();

void initLoad(char fname(]);
void save();

void segmentImage{(int frame_no);

void calculateBlobs () ;

void getBlobs(std::list<blobData*> &lst);
int getBlobCount () { return _count; }

void clusterBlobs (std::list<Blob*> &blobs);

void showBlob({const blobData &bdata, int name);
void showVehicle (long *bBox, enum VehicleType type, int name);
void showVehicles(list<Vehicle*> const &v);

void startClock() { _start = imSysClock(_thread, 0); }
double stopClock() { return imSysClock{(_thread, _start); }
double getTimeDiff () ;

int getNumFrames () { return _frames;)}

private:
const int _NumBuffers; // Number of buffers in buffer pool
char Error [IM_ERR_SIZE}; // String to hold error message
VisionProcessor();

// int _next(int 1) { return (i++)$%_NumBuffers; }

// int _prev(int i) { return (i+_NumBuffers-1)%_NumBuffers; }

int _next(int i) { return (i+1)%3; }
int _prev{(int i) { return (i+2)%3; }

static VisionProcessor* _instance;

long _dispBuff[2], _resBuff, _blobBuff; // Display buffers
long _grabPBuff[3]; // Buffer pool

long _dispPBuff{2};

long _grabOSB[3]; // OSB for the grab buffers

long _copyOSB;

long _edgePBuff, _procPBuff, _imPBuff([2], _ePBuff; // processing buffers
long _warpPBuff; // buffer for warping

long _idpBBuff, _edgePBBuff([2], _procPBBuff; // processing binary buffers
long _digControl; // Control buffer for camera

long _coeffBuff; // Control buffer for Warp function

long _count; // Number of blobs ’

long _thread; // For now just one thread, should support multiple threads
long _camera; // handle to the camera

long _device; // handle to the Genesis device

long _initFeature, _feature;

C-21

long

long
long
long
long
long

_result;

_morphControl; !
_graControl;
_textControl;
_warpControl;

_procBuff, _idBBuff, _blobBBuff; // Processing buffers, the B are binary buffers

//arrays for getting results of blob calculation

long _minX[MAX_BLOBS], _minY[MAX BLOBS], _maxX[MAX_BLOBS], _maxY[MAX_ BLOBS];
long _area[MAX_BLOBS];

long _cgX[MAX_BLOBS], _cg¥Y[MAX BLOBS];

long _label[MAX BLOBS];

double _start; // Start of clock

//Constants for the size filter
const int _InitMinLength, _InitMaxLength,

BlobMinLength, _BlobMaxLength;

int _sizeX, _sizeY;
int _warpSizeX, _warpSizeY; // Size of warped image
int _frames, _grabIndex, _proclIndex, _dispIndex;

float _rotationAngle;

// Subtraction is done these many frames apart
int _frameDiff;

// Difference in seconds between the two frames that are differenced

doubl

e _timeDiff, _startTime, _overhead;

//flag to indicate 1f results have been transferred to host (lazy transfer)

bool
}:

#endif //

_resultTx;

!defined (AFX_VISIONPROCESSOR_H__CA4842Bl1_42CF_11D3_919A_0040053461F8___INCLUDED_)

// BlobCluster.cpp: implementation of the BlobCluster class.
//
L1700 707777077007777777707070777070077777777770778707777777707071077707707707777

#include "BlobCluster.h"
#include "BlobManager.h"
#include "Vehicle.h*
#include <math.h>
#include <stdexcept>
#include <iostream>

using std::list;
using std::cout;
using std::ostream;
using std::endl;

const float BlobCluster::_MaxClusterLength = 500; // Should be same as Vehicle::MaxLength

const float BlobCluster::_MaxClusterWidth = 200;

const float BlobCluster::_VelocityUpdateFactor = 0.5;

const float BlobCluster::_MaxBlobClusterDist = 50;

BlobManager& BlobCluster::_blobMgr = BlobManager::getInstance();

J11777777077777777707777770707700770770777777007777070707770770777777777777777
// Construction/Destruction
J77770707777077777770700777070777770777707772710777777707777007727470707777777777

BlobCluster: :BlobCluster() : _box(0,0,0,0), _frames(0)

{

}

BlobCluster: :BlobCluster (Blob *blob) : _box{blob->getBoundingBox()), _frames(-1)

{
_blobs.push_back(blob) ;
_length = _box.length{();
_width = _box.width():

_imgVelocity._x = -8;
_imgVelocity._vy = 0; //= blob->getVelocity();
_replacing = false;

}
BlobCluster: :~BlobCluster ()

_blobMgr .removeBlobs (_blobs) ;
_blobs.erase(_blobs.begin(), _blobs.end()):;

}
void BlobCluster: :replaceBlobs (BlobCluster* blobs)

//dirty little hack

_replacing = true;

// painfully inefficient, but it’'s just for now (yeah, right!!)
for(std::list<Blob*>::iterator iter = _blobs.begin(); iter != _blobs.end(); iter++)

{
#ifdef BLOBCLUSTER
cout << “"Removing blob " << (*iter)->getName() << endl;
#endif
_blobMgr.removeBlob(*iter) ;

}

_blobs.erase(_blobs.begin(), _blobs.end());

_blobs.insert (_blobs.begin(), blobs->_blobs.begin{(), blobs->_blobs.end());
_updateDimensions() ; .
_replacing = false;

}

void BlobCluster::assignVehicle(Vehicle *veh)

{
for(std::list<Blob*>::iterator iter = _blobs.begin(); iter != _blobs.end(); iter++)
{
(*iter)->setVehicle(veh) ;
) .
}
void BlobCluster::update() {
_frames++;
_updateDimensions () ;
}

void BlobCluster::_updateDimensions ()

{
Blob *blob;
std::list<Blob*>::const_iterator citor = _blobs.begin();
blob = *citor;
if(!_blobs.size())
{
// simply translate bounding box by imgVelocity and return
// damp the imgVelocity. we have more faith in the velocity measure of clusters
// that have been around for a long time
// float weight = 1 - 1.0/ (_frames+l)};
float weight = 1;
float 1 = _box[0l+weight*_imgVelocity.getX(), r = _box[2]+ weight*_imgVelocity.getX(}), b = _
box{1]+ weight*_imgVelocity.getY(),
t = _box[3]+ weight*_imgVelocity.getY{();
_box.setCoordinates(l, b, r, t);
return;
}
Vector2d vel (blob->getVelocity());
_box = (*citor)->getBoundingBox() ;
for(citor++; citor != _blobs.end(); citor++)
blob = *citor;
_box += blob->getBoundingBox() ;
vel += blob->getVelocity();
}

// Velocity of BlobCluster is average velocity of it's component Blobs

// Image velocity is a weighted average of new and previous velocity. The weight is age of the ¢
luster

vel = vel/_blobs.size();

// _imgVelocity = (vel + _imgVelocity* _frames)/(_frames+l);
_imgVelocity = vel*.5 + _imgVelocity*.5;
_box -= -_imgVelocity._x;

void BlobCluster: :removeBlob(Blob *blob)

{
if (_replacing)
return;
for(std::list<Blob*>::iterator iter = _blobs.begin(); iter != _blobs.end(); iter++)
{
if (*iter == blob)
{
_blobs.erase(iter);
break;
}
_updateDimensions() ;
}

bool BlobCluster::_merge(Cluster &cluster)
{
if (!_canBeMerged(cluster))
return false;

vVehicle *veh = (*(_blobs.begin()))->getVehicle()};
try {
BlobCluster &bClust= dynamic_cast<BlobCluster&>(cluster);
#ifdef BLORBCLUSTER
cout << "BlobCluster (" << *this << ") merged with (" << bClust << ")\n";
#endif i
bClust.assignvehicle (veh);
_blobs.insert(_blobs.end ()}, bClust._blobs.begin(), bClust._blobs.end{());
_box += bClust._box;
int sl = _blobs.size(), s2 = bClust._blobs.size();
_imgVelocity = (_imgVelocity*sl + bClust._imgVelocity*s2)/(sl+s2);

}

catch(std::bad_cast &b) {
cout << "Object not of type BlobCluster&\n";
exit(-1);

}

return true;

}

// A measure of similarity betwegn two blob clusters. A higher value indicates greater similarity

// Calculates a rough approximation to the length of the line joining the centers of the two cluster
s that

// lies outside the two clusters

double BlobCluster::_similarity(Cluster &cluster) {
try {
BlobCluster &bClust = dynamic_cast<BlobCluster&> (cluster) ;
BoundingBox& b = bClust.getBoundingBox(};
double dist, cglf2], cg2(2]; :
_box.center(cgl);
b.center (cg2);
dist = _box.distance (bClust.getBoundingBox());
if({cg2(1] > _box.top()) |} (cg2{1l] < _box.bottom()))
// use width/2
dist -= (_box.width() + b.width())/2;
else
// use length/2
dist -= (_box.length() + b.length())/2;
return fabs(l/dist);

}

catch(std: :bad_cast &b) { :
cout << "Object not of type BlobCluster&\n'";
exit(~1);

}

double BlobCluster::_distance(Cluster &cluster) {
try {
BlobCluster &bClust = dynamic_cast<BlobCluster&>(cluster);
return _box.distance (bClust.getBoundingBox());

}

catch(std: :bad_cast &b) {
cout << "Object not of type BlobCluster&\n";
exit(-1);

}
bool BlobCluster: :_canBeMerged(Cluster &cluster) {

try |
BlobCluster &bClust = dynamic_cast<BlobCluster&> (cluster);

' //two BlobClusters can be merged if i) the differences in their velocities
// is not too great, ii) The combined length of the two, does not exceed the
// maximum vehicle length and width.
BoundingBox bbox = bClust.getBoundingBox() ;
float dist = _box.distance(bbox) - (bbox.width() + _box.width())/2;
if(dist > _MaxBlobClusterDist)
return false;
// - double speedDiff = fabs(_imgVelocity.length() - bClust._imgVelocity.length());
// double theta = _imgVelocity.angle(bClust._imgVelocity);
/1 if (speedDiff >= 0.5*_imgVelocity.length() || (theta >= 0.5))
/1 return false;
bool res = (*_blobs.begin())->getVehicle()->canMerge (bClust) ;
if(res) { -
#ifdef BLOBCLUSTER
std::cout << "Combined length : * << length << " : " << width << endl;
#endif
return true;
3
' return false;

}

catch(std: :bad_cast b) {
cout << "Object not of type BlobCluster&\n";
exit(-1);

}

ostream& operator << (ostream &ostr, BlobCluster& cluster)

{

for(std::list<Blob*>::const_iterator iter = cluster._blobs.begin(); iter != cluster._blobs.end()
; iter++))

(
}

return ostr;

ostr << (*iter)->getName() << " ";

}

ostream& operator << (ostream &ostr, Cluster& cluster)
(;
try {
BlobCluster &bClust = dynamic_cast<BlobCluster&> (cluster);
return ostr<< bClust;

catch(std: :bad_cast b) {
cout << "Object not of type BlobCluster&\n";
exit(-1);

>

// BlobClusterer.cpp: implementation of the BlobClusterer class.

//

FITIIETIIIIIII17 171100100007 107077070770700177007777077070117770117117

#include "BlobClusterer.h"
#include "BoundingBox.h"
#include "VisionProcessor.h"
#include <iostream>

#include <conio.h>

using std::cout;
using std::endl;
using namespace std;

L1777 007 0070770777777 77770777777777777707777/7077777777777777777777777777
// Construction/Destruction
J01777777077770770707777777777777777707777770777077777777777707770777777777777

BlobClusterer: :BlobClusterer (VehicleMgr &vMgr) : _vehicleMgr (vMgr)

{
}

BlobClusterer::~BlobClusterer ()

{
}

void BlobClusterer::isolateOrphans(list <Blob*>& blobs)

{

}
void BlobClusterer::_clusterOrphans()
{
#if O
// All the orphans that could be clustered with some existing blob cluster have been removed
// now the remaining orphans should be clustered among themselves
int left_step_size = 10, right_step_size = 10, up_step_size = 10, down_step_size = 10;
BlobCluster *left_neighbor, *right_neighbor, *up_neighbor, *dn_neighbor,
*left_ vy, *right_y, *up_x, *dn_x;
list<BlobCluster*> y_blobs(_orphanBlobs); // y_blobs is the BlobClusters sorted by y coord
// sort the blobs, so doing an interval search is efficient
_orphanBlobs.sort () ;
_sortY¥(y_blobs);
// for each orxrphan blob
for(std::list<BlobCluster*>::iterator iter = _orphanBlobs.begin(); iter != _orphanBlobs.end();
ter++) {
BoundingBox &box = (*iter)->getBoundingBox();

// Just treat each blob as one vehicle

Blob *Dblob;
_orphanBlobs.erase (_orphanBlobs.begin(), _orphanBlobs.end());
for(std::list<Blob*>::const_iterator itor = blobs.begin(); itor != blobs.end(); itor++)

{
blob = *itor;
//isVehicle creates a new vehicle if isVehicle is true
if (! {blob->_vehicle || _vehicleMgr.canCreateVehicle(blob)}))
//_orphanBlobs.push_back((Cluster*) new BlobCluster(blob)});
_orphanBlobs.push_back(new BlobCluster (blob));

// Since Clusterer expects a list<Cluster*>, therefore typecast
//BlobCluster* to Cluster*, we retrieve the type using RTTI
// in BlobCluster

// locate the blob in the y_blobs list

// get the blobCluster‘s left and right neighbors
if(iter !'= _orphanBlobs.begin())
left_neighbor = *(iter-1);

if((itexr+1) !'= _orphanBlobs.end())
right_neighbor = *(iter+1);

// get the BlobCluster’s up and down neighbors
if(y_iter != y_blobs.begin())

up_neighbor = *(y_iter-1);
if{(y_iter+1l) != y_blobs.end())

Preceding Page Blank

i

dn_neighbor = *(y_iter+l);

// check if any of these can be merged
// if they can, replace the two blobs with this merged blob, in both _orphanBlobs and y_blob

if (canBeMerged (*iter, left_neighbor)) {
_merge(*iter, left_neighbor);
_orphanBlobs.erase(iter-1};
// locate the left neighbor in y_blobs
left_y = search(y_blobs, *(iter-1));
y_blobs.erase(left_y);

}

if (canBeMerged (*iter, right_neighbor)) {
_merge(*iter, right_neighbor);
_orphanBlobs.erase(iter+1l);
// locate the right neighbor in y_blobs
right_y = search(y_blobs, *(iter+l));
y_blobs.erase(right_y):

if (canBeMerged (*iter, up_neighbor)) {
_merge(*iter, up_neighbor);
y_blobs.erase(y_iter-1);
//locate the up_neighbor in _orphanBlobs
up_x = search(_orphanBlobs, *(y_iter-1));
_orphanBlobs.erase (up_x) ;

)

if (canBeMerged (*iter, dn_neighbor)) {
_merge(*iter, dn_neighbor);
y_blobs.erase(y_iter+l);
// locate the down_neighbor in _orphanBlobs
dn_x = search(_orphanBlobs, *(y_iter+l));
_orphanBlobs.erase(dn_x) ;

}
//after clustering, hand them over to the vehicle manager to create vehicles out of them

// if still some orphans remain that cannot be formed into vehicles, increment its age as an orp
han

// if a blob remains an orphan for too long, it is probably noise and can be removed

#endif
}

void BlobClusterer::_sortY(list<BlobCluster*> &lst) {
// merge sort

// pick random element
// partition
}

list<BlobCluster*>::iterator search(list<BlobCluster*> &lst, BlobCluster* elem) {

for(std::list<BlobCluster*>::iterator iter = lst.begin(); iter != lst.end(); iter++) ({
if(*iter == elem)
break;
}
return iter; // either the element or lst.end()

}

void BlobClusterer::findMatchingBlobs (BlobCluster& bCluster)
//_clusterer.expandCluster (bCluster, _orphanBlobs);
}

void BlobClusterer::findMatchingBlobs (list<BlobCluster*>& bCluster) {

/*
list<Cluster*> clusters;
for(std::list<BlobCluster*>::iterator iter = bCluster.begin(); iter != bCluster.end(); iter++)
clusters.push_back((Cluster*)*iter);
*/
#ifdef BLOBCLUSTERER
cout << "No. of orphan blobs before clustering : " << _orphanBlobs.size() << endl;
#endif

expandClusters (bCluster, _orphanBlobs);
#ifdef BLOBCLUSTERER

cout << "No. of orphan blobs after clustering : " << _orphanBlobs.size() << endl;
#endif
_clusterOrphans() ;

_orphanBlobs.erase(_orphanBlobs.begin(), _orphanBlobs.end());

C-28

}

void BlobClusterer::expandClusters(list<BlobCluster*>& clusters,

list<_Cl_interval*> x_intervals, y_intervals;

float int_start_x, int_start_y, int_end_x, int_end_y;
list<BlobCluster*> pot_clusterees; // potential clusterees
std::list<BlobCluster*>::iterator c_iter;

std: :1list<_Cl_interval*>::iterator iter;

int w, 1;

// for each cluster
for(c_iter = clusters.begin(); c_iter != clusters.end(); c_iter++) {
// expand cluster range

#ifdef BLOBCLUSTERER

{)

/*

*/

cout << "“Clusters to be expanded " << " (" << (**c_iter) << ") : " <<

<< ", " << (*c_iter)->getCG().getY() <<endl;
#endif

*/

1 (*c_iter)->getDesiredLength();

w (*c_iter)->getDesiredWidth() ;

BoundingBox &box = (*c_iter)->getBoundingBox{();
int_start_x = box.left() - 1/2;

int_start_y = box.bottom() - w/2;

int_end_x = int_start_x + 1;

int_end_y = int_start_y + w;

// project cluster range on X axis

(*c_iter)->getCG() .getX

x_intervals.push_back(new _Cl_interval(int_start_x, int_end_x, *c_iter));

// project cluster range on Y axis

y_intervals.push back(new _Cl_interval (int_start_y, int_end_y, *c_iter));

}

cout << "The unsorted x intervals are : " << endl;

for(iter = x_intervals.begin(); iter != x_intervals.end(); iter++) {
cout << (*iter)->start << " : * << (*iter)->end << " ";

}

cout << endl;

cout << "The unsorted y intervals are : " << endl;
for(iter = y_intervals.begin(); iter != y_intervals.end(); iter++) {
cout << (*iter)->start << " : " << {(*iter)->end << " *;

}

cout << endl;

// sort the x and y intervals
x_intervals.sort();
y_intervals.sort();

// merge overlapping ranges
_mergelIntervals(x_intervals) ;
_mergelntervals(y_intervals);

/*
cout << "The merged x intervals are :" << endl;
for(iter = x_intervals.begin(); iter != x_intervals.end(); iter++) {
cout << (*iter)->start << " - * << (*iter)->end << "owned by " ;
for(c_iter=(*iter)->owners.begin(); c_iter != (*iter)->owners.end(); c_iter++)
cout << *(*c_iter) << " ";
} .
cout << endl;
}
cout << "The merged y intervals are :" << endl;
for(iter = y_intervals.begin(); iter != y_ intervals.end(); iter++) ¢{
cout << (*iter)->start << " - " << (*iter)->end << "owned by " ;
for(c_iter=(*iter)->owners.begin(); c_iter != (*iter)->owners.end{); c_iter++)
cout << *{(*c_iter) << " *;
}
cout << endl;
}
// select those clusterees that fall in one of the intervals on the X axis
for(c_iter = clusterees.begin(); c_iter != clusterees.end(); c_iter++) {
BoundingBox &box = (*c_iter)->getBoundingBox();
for(iter = x_intervals.begin{(); iter != x_intervals.end(); iter++) ({
if((*iter)->inside(box.left())) {

pot_clusterees.push_back(*c_iter);
c_iter = clusterees.erase(c_iter);

c-29

list<BlobCluster*>&clusterees) {

{

c_iter--; // since c_iter will be incremented during the next iteration

. break;
}
}
}
/*
cout << "Clusters eliminated for not falling in any X-interval : " << endl;
for(c_iter = clusterees.begin(); c_iter != clusterees.end(); c_iter++)
cout << **c_iter << " (" << (*c_iter)->getBoundingBox({).left() << ") ";
cout << endl;
cout << "Orphan clusters that will be considered : " ;
x/

list<_C*> cls;
// from the clusterees selected above, select those that fall in one of the intervals on the Y a
Xis

for (c_iter = pot_clusterees.begin(); c_iter != pot_clusterees.end(); c_iter++) {

BoundingBox &box = (*c_iter)->getBoundingBox();

for(iter = y_intervals.begin(}; iter != y_intervals.end(); iter++) {

// cout << "Checking if cluster " << **c_iter << " " << (*c_iter)->getCG{().getX(} << ", “ <
< (*c_iter)->getCG().getY() << " lies in the interval " << (*iter)-»>start << * : " << (*iter)->end <
< endl; ,

if((*iter)->inside((*c_iter)->getCG().get¥())) {
cls.push_back(new _C((*c_iter), (*iter)->owners)):
c_iter = pot_clusterees.erase(c_iter):
c_iter--;
// cout << (**c_iter) << " " ;
break;
}
}
}

#ifdef BLOBCLUSTERER
cout << "Orphan clusters that will be considered ;
for(std::list<_C*>::const_iterator ci = cls.begin(); ci != cls.end(); ci++)
cout << *(*ci)->clusteree << endl;
cout << endl;
#endif

// The potential clusterees that did not get selected remain orphan blobs
clusterees. insert(clusterees.end(), pot_clusterees.begin(), pot_clusterees.end());

float max_sim, sim;

BlobCluster *match;

// for each selected clusteree

for(std::list<_C*>::const_iterator cls_iter = cls.begin(); cls_iter != cls.end(); cls_iter++) ({
// compute similarity with the potential clusters
max_sim = 0;

// cout << "Computing similarity of * << *(*cls_iter)->clusteree << endl;

for(std::list<BlobCluster*>::const_iterator it=(*cls_iter)->clusters.begin(); it i= (*cls_it
er)->clusters.end(); ’
it++) {
sim = (*cls_iter)->clusteree~->_similarity(**it);
// cout << "Similarity of " << *(*cls_iter)->clusteree << " with " << **it << " = " << sim
<< endl;
if (sim > max_sim) {
max_sim = sim;
match = *it;
}
}
#ifdef BLOBCLUSTERER
cout << "Most similar cluster = " << *match << endl;
#endif

// check if they can be merged
if (match->_canBeMerged (* (*cls_iter)-~>clusteree)) {
// if yes, merge them
#ifdef BLOBCLUSTERER
cout << “"Clusters * << *(*cls_iter)->clusteree << " and " << *match << " can be merged"
<< endl;
#endif
match->_merge(* (*cls_iter)->clusteree);

}
#ifdef BLOBCLUSTERER

else

cout << "Clusters " << *(*cls_iter)->clusteree << " and " << *match << " cannot be merge

a" << endl;
#endif

// else check with next most similar cluster

}

c-30

/* Clean up operations */

for(iter = x_intervals.begin{(); iter != x_intervals.end(); iter++)
delete *iter;
for(iter = y_intervals.begin(); iter != y_intervals.end(); iter++)
delete *iter;
for(std::list<_C*>::iterator cls_it = cls.begin(); cls_it != cls.end(); cls_it++)

delete *cls_it;

}

void BlobClusterer::_mergelntervals(list<_Cl_interval*> &intervals) {
std::list<_Cl_interval*>::iterator iter, niter;

for(iter = intervals.begin(), niter = iter; niter != intervals.end(); iter++) {
niter = iter;
niter++;
if (niter == intervals.end())
break;
// cout << "Can intervals [" << (*iter)-»>start << " " << (*iter)-»end << "] and [" << (*niter)-
>start << " " << (*niter)->end << "] be merged?' << endl;
while((niter != intervals.end()) && ((*niter)->start <= (*iter)->end)) {
// cout << "Yes, [" << (*iter)~->start << " " << {(*iter)->end << "] can be merged with [" <<
(*niter)->start << " " << (*niter)->end << "]" << endl;
(*iter)->merge(**niter);
niter = intervals.erase(niter);
}
}
// cout << "No. of intervals : " << intervals.size() << endl;
}
void _Cl_interval::merge(_Cl_interval const &m) {
// cout << "Merging intervals " << gtart << " : " << end << " and " << m.start << " : " << m.end
<< endl;

if(end < m.end)
end = m.end;
// cout << "Owned by *";

// for(std::list<BlobCluster*>::const_iterator it = owners.begin(); it != owners.end(); it++)

// cout << *{*it) << * *;

// cout << " and ";

// for(std::list<BlobCluster*>::const_iterator it2 = m.owners.begin(); it2 != m.owners.end(); it2++
)

// cout << *(*it2) << " ";

// cout << endl;
owners.insert (owners.end(), m.owners.begin(), m.owners.end());

}

_Cl_interval::_Cl_interval(int s, int e, BlobCluster* bc) {
start = s;
end = e;
owners .push_back (bc) ;

}

bool _Cl_interval::inside(float p) {
if((p > end) || (p < start))
return false;
return true;

}

_Cl_interval::~_Cl_interval() {

// cout << "Interval destroyed" << endl;
}

C::~_C() {

7/ cout << * _C destroyed" << endl;
}

// Clusterer.cpp: implementation of the Clusterer class.
7/
JIJI 000710007700 707770707777070770777777707000770770077777777277711070717777777

#include “"Clusterer.h*
#include <vector>
#include <iostream>

using namespace std;
template<class T> void showList(std::list<T> &li);

J1777777777777777777777770707777770777777777077777777777077777770777707777777
// Construction/Destruction
JI170700077077077770707007707077777707777700070707007777707770777077707777777

Clusterer::Clusterer()

{
}

Clusterer::~Clusterer()

{
)

bool Clusterer::expandCluster (Cluster &cluster, list<Cluster*> &clusters)
{

return expandCluster (cluster, clusters, clusters.begin());
) .

bool Clusterer::expandCluster (Cluster &cluster, list<Cluster*> &clusters,
std::list<Cluster*>::iterator start)
{
float similarity, maxSimilarity = 0;
std::list<Cluster*>::iterator mostSimilarCluster = clusters.end();

for(std::list<Cluster*>::iterator iter = start; iter != clusters.end(); iter++)
{
similarity = cluster._similarity(**iter);
if(similarity > maxSimilarity && cluster._canBeMerged(**iter})
{
maxSimilarity = similarity:
mostSimilarCluster = iter;

if (mostSimilarCluster != clusters.end())
{ .
cluster._merge(**mostSimilarCluster);
delete *mostSimilarCluster;
clusters.erase (mostSimilarCluster);
return true;

}

return false;

}

void Clusterer::expandClusters(list<Cluster*>& clusters, list<Cluster*>&clusterees)

{

float sim, max_sim = 0;

int i = 0, 3 = 0;

// sim_vector is an array of lists. There is one entry in the array for each cluster

// This entry is a list of clusterees that could potentially be clustered with this cluster
vector<list<Cl> > sim_vector(clusters.size());

for(std::list<Cluster*>::iterator clusteree:iter = clusterees.begin();

clusteree_iter != clusterees.end(); clusteree_iter++)
{

max_sim = 0;

i = 0;

for(std::list<Cluster*>::iterator cliter = clusters.begin{();
cliter '= clusters.end(); cliter++, i++)

{
sim = (*cliter)->_similarity(**clusteree_iter);
if(sim > max_sim)
{

max_sim = sim;

J o= i;
}
}
sim_vector[j] .push_back(Cl (max_sim,
}
int size = clusters.size();
i=0;

std: :greater<Cl> c;

for(std::list<Cluster*>::iterator iter =
i < size; i++, iter++)

{
#ifdef CLUSTER
std::cout << "Trying to merge cl

#endif .

std::list<Cl>::const_iterator citer
sim vector[i].sort(c);

int sz = (sim_vector[i]) .size();
for(citer = sim_vector([i] .begin();
citer != (sim_vector[i])..end();

// Cluster.merge() returns false
std::list<«Cluster*>::iterator it
#ifdef CLUSTER

std::cout << *\t with " << **it
#endif
if((*iter)->_merge{**it))
//delete *citer;
clusterees.erase(it);
}
#ifdef CLUSTER
else
{
std::cout << "\tCould not merge
}
#endif
}
}

cliter, clusteree_iter));

clusters.begin();

uster" << **iter <<endl;

= sim_vector{i].begin();

citer++) { .

if it cannot be merged with the given cluster

= (*citer).clusteree;

clusters\n";

// Blob.cpp: implementation of the Blob class.
/

/
JILI1T0 7000707007770 0770700777077007777770700077070777077070000777777770777

#include "Blob.h"

#include "vehicle.h"
#include "VisionProcessor.h"
#include <iostream>

#include <math.h>

#include "imapi.h"

VisionProcessor* Blob::_visProc = 0;
int Blob::_count = 0;

JI171777777777077077077077077707007770777707707077770707777777000777707777777777177
// Construction/Destruction
JIIIEI10T0700070070 77000070000 000770777007007777770777077770107077107777177

Blob: :~Blob()

{
#ifdef BLOBRB

std: :cout << "Blob " << _name << " erased " << std::endl;
#endif //BLOB

if (_vehicle)
_vehicle->removeBlob(this) ;

Blob: :Blob(blobData &bdata) :_blobData(bdata), _boundingBox(bdata.boundingBox), _velocity(0,0) {
1f(!_wvisProc)
_visProc = VisionProcessor::getInstance();
_name = _count++;
_vehicle = 0;
#ifdef BLOBB
std: :cout << "Blob " << _name << " created \n";
#endif
}

int Blob::distance(long cgi2]) {
int distX = _blobData.centerGravity([0] - cg[0];
int distY = _blobData.centerGravity([1l] - cgll];
return (sqgrt{distX*distX + distY*distY));

void Blob: :update (blobData &bd) {
//velocity in pixels/frame
_velocity.setX(.5* (bd.centerGravity[0] - _blobData.centerGravity{0]} + .5*_velocity._x);
_velocity.setY(.5* (bd.centerGravity[l] - ._blobData.centerGravity[1l]) + .5*_velocity._y};
_blobbData = bd; .
_boundingBox.setCoordinates (bd.boundingBox) ;

3

void Blob::show() {
_visProc->showBlob(_blobData, _name);
}

// BlobManager.cpp: implementation of the BlobManager class.
/7
JITITLT 0707707707777 77007 7070700770000 7707000777770770701777777777777777

#include "BlobManager.h"
#include "visionProcessor.h"
#include <iostream>

using std: :cout;
using std::endl;
using std::list; s
const unsigned int BlobManager::_MinBlobDistance = 50;
const unsigned int BlobManager::_MinBlobDisplacement = 2;
const unsigned int BlobManager::_MaxStaticCount = 2;

‘const unsigned int BlobManager::_MaxAge = 2;

const float BlobManager::_OverlapThreshold = 0.5;
BlobManager* BlobManager::_instance;

JITI710 7071770777770 077007770707 700777700770777777777777007777777777777
// Construction/Destruction
//(///////

BlobManager: : BlobManager ()
{

}

BlobManager: : ~BlobManager ()}

{
}
BlobManager& BlobManager::getInstance ()
{
if (!_instance)
_instance = new BlobManager () ;
return *_instance;
}
#if O

void BlobManager: :addBlobs (list<blobData*> &blobList) ({
int dist,minDist;
float sizeDiff;
std::list<blobData*>::iterator match;

//Simplistic matching of blobs, just using a list O({sgr(n))

for(std::list<Blob*>::iterator iter = _blobs.begin(); iter != _blobs.end(); iter++)
minDist = _MinBlobDistance;
match = blobList.end();
#ifdef BLOB_MGR
cout << "Matching blob " << (*iter)->_name << endl;
#endif

//remove old blobs
if((*iter)->_age > _MaxAge) {
#ifdef BLOB_MGR

cout << (*iter)->_name << " too old\n";
#endif
delete *iter;
iter = _blobs.erase(iter);
}
else {

//remove blobs that haven’t moved for a long time;
if((*iter)->_staticCount > _MaxStaticCount) ({

#ifdef BLOB_MGR
cout << (*iter)->_name << " immobile\n*;

#endif
) delete *iter;
iter = _blobs.erase{iter);
)
}
if(iter == _blobs.end())
break;
//Compare this blob with each blob from the new list of blobData
for(std::list<blobData*>::iterator bdItor = blobList.begin(); bdItor != blobList.end{();
or++) {
C-35

{

bdIt

//instead of considering distance, to search for a matching blob,

- //consider overlap

/* if there is significant overlap (say 90%), check for 3 cases

1. The size of the blob(t-1) (blob in previous frame) and blob(t)

(blob in current frame) is approximately equal
Match, no splitting or merging has occured
2. blob(t-1) smaller than blob(t)
blob(t-1) merged with other blobs to form blob(t)
3. blob(t-1) larger than blob(t) i
blob(t-1) split into blob(t) and some other blob
*/

dist = (*iter)->distance((*bdItor)->centerGravity); //distance to this blob

if {dist <= minDist) ({
minDist = dist;
match = bdItor;

}

//to be considered a match, the size of the new blob should not differ

//by more than 50% of previous blob
if (match = blobList.end()) {

sizeDiff = abs((*iter)->getArea() - (*match)->area); // Difference in size

if(sizeDiff <= 0.5 * (*iter)->getArea()) ({

// Yes, finally we have a match
#ifdef BLOB_MGR

cout << (*iter)->_name << * matched\n";
#endif

(*iter)->update (**match) ;

delete *match;

bloblList.erase(match);

//blob matched, but did not show "significant" movement
if (minDist < _MinBlobDisplacement)
(*iter)->_staticCount++;
}
else {
#ifdef BLOB_MGR
cout << (*iter)->_name << " not matched" << endl;
#endif
(*iter)->incAge();
}
}
// This blob didn’'t match any of the blobs in the current frame
else {
//increment age for all the blobs that haven't been matched;
(*iter)->incAge () ;
#ifdef BLOB_MGR
cout << (*iter)->_name << " not matched" << endl;
// cout << "Best match : " << minDist << * * << gizeDiff/ << endl;
$endif .

}

for(std::list<blobData*>::iterator bdItor = bloblList.begin(); bdItor != blobList

) {
Blob* bl = new Blob(**bdItor);
_blobs.insert(_blobs.begin(), bl);
bl->show() ;

}

#endif

/* The BlobManager is a given a list of blobData’'s. Matches the blobs in the current frame

.end();

bdItor++

** to those in the previous frame. In this version of addBlobs, the BlobManager simply removes

** blobs that are not matched
* / ’

void BlobManager::addBlobs(list<blobData*> &blobList) (
float overlap, max_overlap;
float sizeDiff;
std::list<blobbata*>::iterator match;
std::list<Blob*>::iterator last = _blobs.end();

//Simplistic matching of blobs, just using a list O(sqgr(n))

for{std::list<Blob*>::iterator iter = _blobs.begin(); iter != _blobs.end{);

max_overlap = 0;
match = blobList.end();

iter++)

{

//Compare this blob with each blob from the list of new BlobData

for(std::list<blobData*>::iterator bdItor = blobList.begin(); bdlItor != blobList.end(); bdIt
or++) {
// symOverlap gives the maximum of the overlap of the blob with blobData and overlap
// of blobData with blob
// overlap = (*iter)->_boundingBox.symOverlap (BoundingBox ((*bdItor)->boundingBox)};

overlap = (*iter)->_boundingBox.overlap (BoundingBox{(*bdItor)->boundingBox));
if (overlap > max_overlap) {

max_overlap = overlap;

match = bdItor;
}

if (max_overlap > _OverlapThreshold) (
// Yes, finally we have a match
(*iter)->update(**match);
delete *match;
blobList.erase (match);
#ifdef BLOB_MGR
cout << (*iter)->_name << " matched\n";
#endif

}
// This blob didn’t match any of the blobs in the current frame
else ({

#ifdef BLOB_MGR
cout << (*iter)->_name << " not matched" << endl;

#endif
delete *iter;
iter = _blobs.erase(iter);
itexr--;

}

//create new blobs for all the unmatched blobData’s
for(std::list<blobData*>::iterator bdItor = blobList.begin(); bdlItor != blobList.end{); bdItor++

) {
_blobs.push_back(new Blob(**bdItor));

void BlobManager::showBlobs () {
for(std::list<Blob*>::const_iterator iter = _blobs.begin{(); iter != _blobs.end(); iter++) ({
(*iter)->show() ;
}
}

void BilobManager: :showMatchedBlobs () {
for(std::list<Blob*>::const_iterator iter = _blobs.begin(); iter != _blobs.end(); iter++) {
(*iter)->show() ;

}
}
void BlobManager: :removeBlob (Blob* blob)
¢ for(std::list<Blob*>::iterator iter = _blobs.begin(); iter != _blobs.end(); iter++)
if(blob->_name == (*iter)->_name)

delete *iter;
iter = _blobs.erase(iter);
iter--;

}

void BlobManager::removeBlobs (list<Blob*>& blobs)
{

}

// BoundingBox.cpp: implementation of the BoundingBox class.
/7
JIIILTT 07007007007 0070 0010700777007 077077777077770070070070700777777707777777

#include "BoundingBox.h'
#include <math.h>
#include <iostream>

using std::cout;
using std::endl;

inline double sgr(double x) { return (x) * (x); }
inline double max(double x1, double x2) { return ((x1) > (x2) ? (x1) : (x2));
inline double min(double x1, double x2) { return ((x1) < (x2) ? (x1) : (x2));

[11077000000007770707007007070700007070707770007177770070770770777711717777
// Construction/Destruction,
JIETITLTETLE 77 ERI P00 T L0 I 178 i it ii i iiiiiiririiririell

BoundingBox: :BoundingBox (double left, double bottom, double right, double top)
{
_box([0]
_box[2]
}

left; _box[l] = bottom;
right; _box[3] = top;

BoundingBox: : BoundingBox (double box([4])
{
_box[0]
_box[2]

box({01; _box[1]
box(2]; _box{3]

box[1];
box([3];

}
BoundingBox: : BoundingBox (long box(4])

_box[0] box[0]; _box[1l]

= boxI[1];
_box[2] = box[2]; _box([3]

box[3];

}

BoundingBox: : ~BoundingBox ()
{

}
void BoundingBox: :operator+= (BoundingBox &bBox)

double *box = bBox.coordinates();
if(box[0) < _box[0])
_box([0] = box[0];
if (box[1] < _box[1})
_box{l] = box[1};
if(box[2] > _box[2])
_box[2] = box{2];
if(box[3] > _box[3])
_box(3] = box([3];
}

void BoundingBox: :center (double cgl])
{
cg (0]
cg (1]

_box{0] + length()/2;
_box(1] + width{)/2;

}

double BoundingBox::symOverlap (BoundingBox &boxl) {
double ovrl = overlap(boxl);
double ovr2 = boxl.overlap(*this);
return ovrl > ovr2 ? ovrl : ovrl;

}

double BoundingBox::overlap (BoundingBox &boxl) {
//first check if the boxes overlap in x-direction
double xoverlap = 0, yoverlap = 0;
double 1lt, rt, tp, bt;
if((_box[0] <= boxl._box[0]) && (_box[2] >= boxl._box[0]))
{ .
1t = boxl._box[0]);
rt = min(_box([2]. boxl._box[2]);
} "
else
if((boxl._box[0] <= _box[0]) && (boxl._box{[2] >= _box[0]))
{
it = _box[0];

}
}

rt = min(_box[2], boxl._box[2]};

}
xoverlap = rt - 1lt;
#ifdef BOX
cout << "Left : " << lt << " Right : " << rt << endl;
cout << "Xoverlap : " << xoverlap << endl;

#endif
//check for overlap in y-direction
if((_box[1l] <= boxl._box[1l]) && (_box[3] >= boxl._box[1]))
{

bt = boxl._box[1];
tp = min(_box{[3], boxl._box[3]);
}
else .
if ((boxl._box[1l] <= _box[l]) && (boxl._box([3] >= _box(1l]))
{
bt = _box[1];
tp = min(_box[3], boxl._box[3]);
}
voverlap = tp - bt;
#ifdef BOX
cout << "Top : " << tp << * Bottom : " << bt << endl;
cout << "Yoverlap : ' << yoverlap << endl;
#endif

return (xoverlap * yoverlap)/(length()*width());
}

double BoundingBox::distance (BoundingBox &box1)
{
double cgl[2}, cg2l[2];
center {cgl);
boxl.center(cgl);
double dist = sgrt(sqr(cgl(0] - cg2(0]) + sgr(cgl(l] - cg2([1l]));
return dist;

)

double BBox: :distance (BoundingBox &boxl, BoundingBox &box2)

{
double cgl(2], cg2[2];
boxl.center(cgl);
box2.center (cg2) ;
double dist = sqgrti(sgr{cgl{0] - cg2[0}) + sqgr{cglll] - cg2f{1]));
return dist;
}

double BoundingBox: :seperation(BoundingBox& boxl)
{
double midpointl[2], midpoint2[2];
midpoint1[0] _box([21;
midpoint1(1] _box[1] + width()/2;
nidpoint2{0] boxl._box[0];
midpoint2[1] boxl._box{1l] + boxl.width()/2;
return sqgrt(sqgr (midpointl{0] - midpoint2([0]) + sqgr(midpointl{l] - midpoint2[1]));

mnHnun

double BBox::seperation(BoundingBox& boxl, BoundingBox &box2)

{

double midpointlf{2], midpoint2(2];

midpointl[0] = boxl._box[2];

midpointl[1] = boxl._box[1] + boxl.width()/2;

midpoint2[0] = box2._box[0];

midpoint2[1] = box2._box[1l] + box2.width()/2;

return sqgrt (sqgr (midpointl[0] - midpoint2[0]) + sqgr(midpointl([1l] - midpoint2{1])});
}

double BBox::overlap (BoundingBox &boxl, BoundingBox &box2)
y :
//first check if the boxes overlap in x-direction
double xoverlap = 0, yoverlap = 0;
double 1lt, rt, tp, bt;
if ({boxl._box[0] <= box2._box[0]) && (boxl._box([2] >= box2._box{01))
{

1t = box2._box[0];
rt = min(boxl._box{2]), box2._box[2]);
}
else
if ((box2._box[0] <= boxl._box{0]) && (box2._box[2} >= boxl._box[0]))
{

C-39

1t = boxl._box[0];
rt = min(boxl._box[2], box2._box{2]);
}
xoverlap