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Empty Container Management for Container-on-Barge (COB) Transportation:
Planning Horizon Effects on Empty Container Management

in a Multi-Modal Transportation Network

Abstract

We present a computational analysis of the planning horizon effects on empty container
management for multimodal transportation networks. A distinctive aspect of our analysis is that
we consider three different modes explicitly, namely truck, rail and river barge. The barge mode
makes the network structure and underlying operational problem interesting, since it is the
slowest and cheapest of the three modes. To analyze how the planning horizon affects the empty
container flows in such a multimodal network, we develop an integer programming model. We
discuss the sensitivities of initial inventory at each container pool, number of container pools in
the system, and transport mode usage to the length of planning horizon. We conduct controlled
experiments using the actual Mississippi River basin network. Our results show that the
application of long planning horizon (used on a rolling basis) can give a better empty container
distribution for the earlier periods. The longer horizon allows better management of container
outsourcing and also encourages use of cheaper but slower transportation modes, such as barge.
However, the advantages of using a rolling horizon might be small for a system that has a
sufficient number of container pools since such a system has small end-of-horizon effects. We
finally discuss related issues that one needs to consider when determining the length of planning

horizon.

Keywords: Transportation, Logistics, Integer Programming,



1. Introduction and Background

This paper addresses the planning horizon problem related to the tactical management of
empty containers for intermodal container-on-barge transportation networks. A key advantage of
containerization is that it will enable fuller use of existing river resources and reduce traffic
pressure on highways and railroads. Figure 1 shows a potential network based in the Mississippi
River basin. In order for such a network to become a reality, the problems of empty container

management must be solved.

Fig. 1. Mississippi River Network

The availability of barge transport adds interesting possibilities for addressing the well-

known empty container management problem. Within barge capacity limits, empty containers



can be "piggy-backed" onto existing barge tows of loaded containers at very low cost. Thus, the
cost of moving empty containers can be negligible in a network with barge links. The chief
trade-off is the relatively slow speed of barge transport. The slow speed necessitates careful
consideration of the planning horizon length.

While there is a much literature about planning horizon effects in production planning
and control, comparatively little has been written on this subject in relation to empty container
management. The following summarizes recent relevant papers.

Florez (1986) presents a profit optimization model for the problem of empty container
repositioning and leasing for ocean-going ships. The author discusses the sensitivity of the model
to the length of planning horizon, and finds that the solution of the case study is not affected
much by the changes in the length of planning horizon. The author also notes that the conclusion
cannot be generalized to other cases because the determination of an adequate planning horizon
basically depends on the concentration of activities in the network under consideration.

Dejax, et al. (1992) present a general framework for a combined container routing —
vehicle itinerary building model. They suggest that the planning horizon should be long enough
to include the next set of arrivals and departures, and to allow the consistent, and system wide
building of vehicle itineraries. On the other hand, labor contracts, safety regulations, and other
practical considerations limit the actual length of vehicle itineraries and thus of the planning
horizon. The authors give an example of an appropriate length limitation and discretization, i.e.,
7 to 10 days long with 1 or 0.5 day periods, without any experimental results.

Crainic, et al. (1993) propose models for empty container allocation and distribution
between a land transportation system and international maritime shipping network. The authors

state that, to get valid solutions, the length of planning horizon and the end-of-horizon conditions



should be determined carefully. In real-life application of the models, it is suggested to limit the
length of planning horizon to between 10 and 20 periods since the number of decision variables
in any period will be fairly large. The information available on the future supply and demand of
empty containers should also be considered when selecting the proper length of the planning
horizon. For specifying the end-of-horizon conditions, they suggest forcing reasonable values for
the empty container stocks in each depot at the end of planning horizon or including a salvage
value term in the holding cost functions for the last period to account for containers at each
depot. Furthermore, they advise to exclude the demands in split delivery windows (i.e., delivery
windows that fall partly within the planning horizon and partly outside of it) and to slightly
adjust the lower bounds of the empty container stocks at the depots from which these demands
should be satisfied later on. The authors do not present any experimental results.

Cheung and Chen (1998) compare a two-stage stochastic model with a two-stage
deterministic model for the dynamic empty container allocation problem. The authors perform
some experiments with rolling horizons and conclude that a longer planning horizon is not
necessarily better than a shorter one. When the planning horizon is lengthened, solutions in some
of the test cases improve; however, solutions in other test cases worsen. The authors do not
discuss the factors (difference in the number of ports, the number of voyages, the transportation
times between ports, etc.) that might explain the observations.

In the general transportation area, Holmberg, et al. (1998) evaluate the impacts of
planning horizon length on a model for empty freight car distribution at Swedish State Railways.
The authors propose a multicommodity network flow model with integer requirements. The
model aims to minimize total cost, consisting of transportation cost and shortage cost, while

satisfying customer demands. In the experiments, a rolling horizon is used to simulate empty



freight car distribution for 10 consecutive days. The results show that the outcome of the
proposed model depends on the length of the planning horizon. The authors suggest that the
planning period should be longer than the longest transportation time in the system in order to
achieve a low car shortage level.

The length of planning horizon, especially when used in a rolling horizon environment, is
an important issue not only for transportation operations, but also in production planning. For
instance, significant literature on production planning discusses the impact of planning horizon
on the lot-sizing decisions and selection of the lot-sizing methods. Bregman (1991) evaluates the
performance of seven ordering procedures when the planning horizons are of a shorter, more
realistic duration. The author demonstrates that the length of planning horizon can significantly
affect the choice among alternative discount ordering procedures.

De Matta and Guignard (1995) study lot-sizing and changeover decisions in production
schedules that are used on a rolling horizon basis. The authors examine the effects of the length
of planning horizon, the starting inventory, and the demand fluctuation on the schedules. The
experimental results show that the changeover cost decreases while the holding cost increases
when the planning horizon is extended. The authors also show that beyond a certain length of
planning horizon, the savings in the annual production cost is minimal; at that point it no longer
pays to obtain additional information about the future demand.

Russell and Urban (1993) investigate the effects of forecast length and accuracy in
extending the planning period beyond the frozen horizon of rolling production schedules. They
compare the performances of the Wagner-Whitin algorithm and the Silver-Meal heuristic for

different length and accuracy of horizon extensions. The experimental results show that horizon



extension is worthwhile for relatively large forecast errors and that Wagner-Whitin improves in
more cases than previously thought.

Section 2 presents a model for managing empty containers in a single commodity (single
container type), multimodal transportation network over a given planning horizon. Section 3
explains the computational setup and the factors considered in the experiments. Section 4
discusses the experimental results. Section 5 presents summary conclusions and potential future

research.

2. Empty Container Management Model
2.1. Problem Statement and Assumptions

Efficient management of empty containers is an important part of a successful
implementation of containerized shipping. Typically, logistics managers want to minimize costs
related to empty containers since their main concern is the transportation of loaded containers.
Ideally, logisticians would prefer to ignore empty containers completely, but this is not possible
since real-world container networks usually require empties to account for imbalances in loaded
flows.

The goal of the math model is to minimize the total cost of managing empty containers
while satisfying customer demand for timely availability of empty containers. The basic structure
of the model is adapted from the deterministic single commodity model described by Crainic, et
al. (1993). Crainic’s model is modified to include multiple modes, storage capacity, and
transportation mode capacity. The new model, however, does not include delivery windows.
Containers are assumed to be delivered to the customer site in the time period in which they are

needed. Crainic, et al. (1989) select the transportation mode prior solving their static, multimode



and multicommodity model. Since they assume linear cost and unlimited capacity for each
transportation link, the mode or combination of modes can be selected based on the lowest unit
transportation cost. The same technique cannot be applied to the model in this research since the
least expensive mode (barge) is capacitated.

In this research, leased containers (short-term or long-term) are modeled in the same way
as company-owned containers. No cost is incurred on a leased container until it actually enters
the transportation network. The model does not consider returning leased containers to the lessor.
It is assumed that a lease term does not expire in the planning horizon. This is the case if the
lease term is much longer than the planning horizon, which is usually less than a month. This
assumption should not cause a significant effect on the optimum solution value because the
savings on storage cost when containers are returned to the lessor are relatively small compared
to other cost components in the network. We also make the following assumptions, all of which
are standard in majority of models in the literature:

1. The number of loaded containers that arrive at a location in a certain time period is
known (i.e., the number of empty containers available is known).

2. The number of loaded containers that depart from a location in a certain time period is
known (i.e., the number of empty containers required is known).

3. As soon as a shipment arrives at a customer site, the commodity is unloaded immediately,
and the empty container becomes available.

4. To simplify the modeling, empty containers are not allowed to be stored at the supply
customer sites. After unloading the commodity, containers are hauled away immediately
to demand customers and/or container pools. To represent the situation where a supply

customer wants to keep the empty containers for later use, a dummy container pool can
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be located adjacent to that supply customer site. A dummy container pool has zero
transportation cost, zero transit time (from its associated supply customer site), a certain
amount of holding cost, and a maximum number of containers that can be stored.
Empty containers will not be shipped early to demand customers to meet the demand of
future periods. Demand customers will not store extra empty containers for later time
periods.

Only one type of container is used, i.e., this is a single commodity model.

No backorders are allowed.

The number of empty containers left from the previous planning horizon at a container
pool is known. The stock is considered as the initial inventory of the container pool at the
beginning of the current planning horizon. The initial inventory may include both
company-owned and leased containers.

Containers can be rented, purchased, or borrowed at any container pool in any time
period.

Three types of transportation modes are considered: truck, rail, and barge.
Transportation mode can be changed only at a container pool location.

All transit times are independent of their starting and arriving periods. In reality, the
transit times could be dependent on the periods because of the water level (for barge) and
traffic (for truck) at a certain period or season.

All costs are independent of time periods. This assumption can be relaxed if necessary
without sacrificing from model simplicity and computational burden.

Storage capacity of container pools is independent of time periods. This assumption can

also be adjusted if necessary.



15. Containers are ready to be used, and no repairs or discards of containers occur.

2.2. Mathematical Model

We model the empty container management problem as an integer program, using the
notation in the appendix. The decision variables in the model denote the empty container flows
between the nodes of the underlying space-time network. There are four main types of decision

variables that define where the flows originate and how the empty containers are used.

(1) Vector u denotes flows that originate from a supply customer. 3, denotes the
number of empty containers to be moved from supply customer s to demand customer i for
arrival in period t via transportation mode m. Similarly, ugjm denotes the flow from s to container
pool j.

(2) Vector v denotes the flows that originate from a container pool. ', denotes the
number of empty containers to be moved from container pool j to demand customer i for arrival
in period t via transportation mode m. Similarly, 1/, denotes the flow from j to container pool k

where k #j.

(3) v'; denotes the number of empty containers available at container pool j at the end of

period t.

(4) w'; denotes the number of empty containers to be brought in from outside the system

(leased, borrowed, or newly purchased) to container pool j for arrival in period t.

The remainder of this section introduces the model and details the objective function and

constraints

10
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The objective of the model is to minimize the total cost of empty container management
over a given planning horizon. The total cost (1) includes cost of moving empty containers
between locations, cost of holding empty containers at container pools, and cost of bringing in
containers from outside the system (leasing, buying, or borrowing containers). At container
pools, holding cost is incurred only on non-moving empty containers that remain at the end of a
period. To prevent containers from being moved just to avoid staying at the container pool over

the period and being charged a holding cost, the model could be modified to add holding cost to

the moving cost for the moving containers.
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Constraint set (2) states that all demands must be met by empty containers from supply
customers and/or container pools. Container pools have the option of getting more containers by
leasing, buying, or borrowing from sources outside the system.

Constraint set (3) indicates that all containers must be moved from supply customer sites
to demand customers and/or container pools.

Constraint set (4) shows the stock of empty containers available at container pools at the
end of each period. The empty container stock at a container pool is derived from the previous
period stock (or initial inventory for the first period) plus inflow of containers from supply
customers and other container pools plus the number of containers that are brought in from
outside the system minus outflow of containers to demand customers and other container pools.

Constraint set (5) ensures that the stock of empty containers at a container pool at the end
of a period cannot exceed the storage limit of the container pool. The storage capacity of a
container pool is often large, however.

Constraint set (6) states that the total number of empty containers transported by barge
during a time period may not exceed a limit set by the barge company. Since a barge is best
utilized when carrying loaded containers, it is more profitable to carry as many loaded containers
as possible. If there are free spaces on the barge, they may be used for moving empty containers
at very low marginal cost. Since loaded flows are assumed known, the barge limit for carrying
empty containers can easily be determined by taking the difference between the barge capacity
and the number of loaded containers to be transported for that time period. The capacity for
taking empty container may be different for each period depending on the loaded flow for that

period.
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Constraint set (7) indicates that all decision variables can only take nonnegative integer

values. This ensures that fractional containers will not be considered in the optimum solution.

3. Experimental Factors

This section details a case based on potential container-on-barge activities in the
Mississippi River basin. The number and locations of customers are as shown in Figure 1. The
experiments consider a number of factors. The first factor is the number and the locations of the
container pools. We consider three “levels” of this factor: 3, 5, and 7 container pools. Table 1
lists the customer locations and these container pools that are used in the experiments. The
twelve customer locations are port cities that are located in the Mississippi River basin. Note that
the container pools are located adjacent to the corresponding customer locations. These pool
locations are chosen because of their seemingly strategic locations on the network and their
overall traffic as customer locations. One can use another optimization model (e.g., a location-
allocation model) to locate the pools on the network. This is a subject for future research.

The distances between locations via each transportation mode, and average speed and
costs for each transportation mode are obtained from Trusty and Malstrom (1998) (see Table 2).
Future data sets should probably consider the asymmetry in the transportation times for the barge
modes due to speed difference depending on which direction the move occurs (upriver versus

downriver).
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Table 1

Customer Locations and Container Pools for the Experiments

Number of Container Pools

Customer Location 3 5 7
St. Paul (STP) - - -
Omaha (OMH) - - -
Chicago (CHG) - - CHG_P
Pittsburgh (PTB) - - -
Cincinnati (CIN) - CIN P CIN P
St. Louis (STL) STL_P STL_P STL_P
Memphis (MEM) MEM_P MEM_P MEM_P
Little Rock (LR) - LR_P LR_P
Mobile (MBL) - - -
New Orleans (NO) NO_P NO_P NO_P
Houston (HTN) - - HTN P
Brownsville (BRW) - - .-
Table 2

Average Speeds and Costs

Transportation Speed Cost
Mode (Miles per hour) ($ per mile)
Truck 42 0.90

Rail 37 0.351
Barge 6 01234

Additional factors include barge limit and initial empty container inventories at the pools.
We consider three levels of the barge limit (BL): 5%, 10%, and 20% of total loaded containers
per day. The initial inventory at each container pool is set to 0.5 (InvH), 1 (Inv1), or 2 (Inv2)
times of average total daily empty flow (ATDEF). Along with these factors, we did preliminary
experiments to see if the pool storage capacity, holding costs, and the outsourcing cost affect the
planning horizon’s impact on the solutions. Seeing that they were not significant, we set each

pool’s storage capacity to 5 times the average total daily empty flow. We keep holding cost
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constant at $5 per container per day, and outsourcing cost at $1,000 per container per planning
horizon.

Our main factor of interest is the planning horizon. Due to observations we have from the
literature review, we investigate two levels of the planning horizon: 15 days and 30 days. Our
main expectation is that the longer planning horizon should lead to higher utilization of slower
modes of transportation.

The net supply/demand of empty containers at each customer location can be easily
derived from the loaded container flows. To have a relatively unbalanced network that would
necessitate empty container management, we generated loaded flows in a controlled manner:
30% of the loaded container flow data are zero flows, and the remaining 70% ére uniformly
distributed between 20 and 80. Since most of the origin/destination pairs require long transit time
via barge, an extra 30 days of departure data are added before day one of the assumed planning
horizon. This denotes loaded container transactions that occur prior to the beginning of the
planning horizon but that may arrive some time during the planning horizon.

At the beginning and end of the planning horizon, however, the net values for some of the
customer locations may need to be modified in order to have a feasible solution. The constraints
of the mathematical model require that all demands be met and that all empty containers be
moved from supply customer sites. At the very beginning or end of the time horizon, there may
be some customer locations that are “unreachable”. For example, suppose there is a customer
location that does not have a container pool at its location, and it cannot be reached from any
other customer location or a container pool within a day. On day one of the planning horizon, if
the location has a demand of empty containers, the demand cannot be satisfied from any

available sources, and thus the model is infeasible. On the other hand, if the location has a supply

15



of empty containers on the last day of the planning horizon, the containers cannot be moved to
other locations within a day, and thus a feasible solution cannot be found. Although there might
be other strategies to handle the infeasibilities (such as adding a dummy supply node, etc.), we
chose to change net value for the “unreachable” location to zero, i.e., the location will not request
or provide empty containers. Fortunately, only a very small portion of the data required
adjustment. For example, in the experiments, 10 out of 180 net demand data (for the 15-day
planning horizon model) and 13 out of 360 net data (for the 30-day planning horizon model) are
changed to zeros. Hence, we do not expect this modification of the data would cause a significant

effect on the optimum solution value or the model’s behavior.

4. Experimental Results
We used the AMPL modeling language (Fourer, et al., 1993) and the CPLEX solver to
solve the problem instances associated with each combination of factors.

To evaluate the sensitivity of the model to the length of planning horizon, we compare a 15
day horizon to a 30 day horizon. The net demand/supply data for the first 15 days of the 30-day
model are the same as those in the 15-day model, while the remaining data are generated as
discussed in Section 3. Although the numbers of variables and constraints for the 30-day
planning horizon model (e.g., 30,549 variables and 587 constraints) are almost double of those
for the 15-day planning horizon model, each problem is solved within six seconds on a 600 MHz
Pentium III computer.

Comparing the results of the first 15 days of the 30-day model indicates that the length of

planning horizon has an effect on the empty container allocation planning for the first 15 days.
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For the 3-container pool cases, Figures 1 to 4 show the comparison of total cost and its
cost elements between (1) the 15-day model and (2) the first 15 days of the 30-day model. (A

barge limit of 5% is used in the following discussion.)
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Fig. 2. Total cost comparison — 3 container pools
Figure 2 shows the total cost of the first 15 days of the 30-day model (Total Cost 2) is higher
than that of the 15-day model (Total Cost 1) except when Inv2 is used. The higher total cost

(Total Cost 2) is solely caused by high outsourcing cost (Out Cost 2, Figure 3).
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Fig. 3. Outsourcing cost comparison — 3 container pools
The solution of the 30-day model shows that most of the outsourced containers are
obtained during the first 15 days. These empty containers are brought in not only to satisfy the

demands in the first 15 days, but also to meet the demands in the second 15 days. Since
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outsourcing cost is incurred only once for each empty container brought into the system, an
outsourced container can be used to meet a demand at an early period and then be kept in the
system for future use until the lease term expires. Another reason for bringing in outsourced
containers early is that the outsourced containers can then be moved via a cheaper, slower mode
(barge) to meet the demands in the later periods. When barge limit increases, the model brings in
all outsourced containers that are needed for the entire 30-day planning horizon during the first
15 days. Bringing in containers during the earlier periods to utilize the barge mode can reduce
the total cost for the second 15 days in the 30-day model.

The length of planning horizon affects the travel mode usage in the first 15 days. Table 3
shows an example of travel mode usage in the first 15 days for the test case with 3 container
pools, barge limit 5%, and low initial inventory level.

Table 3.

Travel Mode Usage Comparison — 3 Container Pools

BL 5%, InvH Truck Usage (%) Rail Usage (%) Barge Usage (%)
15-day model 5.950 74.7794 19.256
1st 15 days of 30-day model 0.027 68.643 31.330

The truck usage is very low during the first 15 days of the 30-model. One of the reasons is that,
for the 30-day model, empty containers (which are not needed for meeting the demands) from a
supply customer location can be transported via a slower travel mode (barge) and reach a
container pool after day 15. For the 15-day model, a faster travel mode (truck) has to be used in
order to reach the container pool within 15 days. Since the truck usage is lower and the barge

usage is higher for the first 15 days of the 30-day model than for the 15-day model, the total
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moving cost of the first 15 days of the 30-day model (Moving Cost 2) is lower than that of the

15-day model (Moving Cost 1) (see Figure 4).
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Fig. 4. Moving cost comparison — 3 container pools
In addition to changes in travel mode usage, the lower moving cost (Moving Cost 2) is also
caused by the initial inventory. The number of empty containers at an initial inventory level in
the 30-day model is slightly higher than that in the 15-day model because the 30-day model has a
higher average total daily empty flow (ATDEF), which is included in the calculation of initial
inventory. Table 4 shows the initial inventory of each model.
Table 4

Initial Inventory of 15-day and 30-day Models

ATDEF InvH Invl Inv2
15-day model 1127.2 563 1127 2254
30-day model 1188.8 594 1188 2377

With a higher initial inventory at the container pools, the demands may be satisfied from a nearer
container pool in the 30-day case, thus resulting in lower total moving cost.

Figure 5 shdws that the holding cost for the first 15 days of the 30-day model (Holding
Cost 2) is lower than that of the 15-day model (Holding Cost 1). Fewer containers are stored at a

container pool during the first 15 days because the available empty containers are distributed to
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other container pools or customer locations to meet the demands in the second 15 days of the 30-

day model.
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Fig. 5. Holding cost comparison — 3 container pools
Figure 6 shows cost comparisons for the 5-container pool cases. During the first 15 days
of the 30-day model, the number of outsourced containers becomes zero at Inv1, which is a
lower inventory level than that in the 3-container pool cases (Inv2). Therefore, a lower total cost
for the first 15 days can be seen at a lower initial inventory level (Figure 6) compared to the 3-

container pool case (Figure 2).
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Fig. 6. Total cost comparison — 5 container pools
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Fig. 7. Total cost comparison — 7 container pools

Figure 7 shows that, for the 7-container pool cases, the difference in total cost between
the first 15 days of the 30-day model (Total Cost 2) and the 15-day model (Total Cost 1) is not as
large as that in the 5-container pool cases (Figure 5). Since a 12-customer location system with 7
container pools gives a shorter travel distance between locations, the end-of-horizon effect is not
as significant as in the 3- or 5-container pool cases. In the 7-container pool cases, empty
containers from a supply customer location are able to reach a container pool before the end of
15-day planning horizon even by the slower travel modes (rail and barge). Thus, an extension in
the planning horizon does not have much effect on the travel mode usage for the first 15 days
(compare Table 5 to Table 3).

Table 5.

Travel Mode Usage Comparison — 7 Container Pools

SL 5%, InvH Truck Usage (%) Rail Usage (%) Barge Usage (%)
15-day model 0.000 59.592 40.408
Ist 15 days of 30-day model 0.018 52.881 47.101
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Due to the small changes in travel mode usage when the planning horizon is extended to 30 days,
the savings in moving cost (and thus total cost) for the first 15 days in the 7-container pool cases
are not as large as in the 5-container pool cases.

Although the solution of the first 15 days changes when the length of planning horizon
changes, the 30-day planning horizon seems to give a better plan for the first 15 days. This can
be seen from the fact that, for the first 15 days, the total moving cost and holding cost are lower
than in the 15-day model. For cases with the absence of outsourced containers in the system, the
total cost for the first 15 days of the 30-day model will likely be lower than that of the 15-day
model. For the cases considered, since the supply and demand data are deterministic, a rolling
horizon of 30 days can be used, in which the model is solved for the 30-day planning horizon but
only the solution for the first 15 days is implemented. The model can then be re-solved with the
third 15-day data to obtain the solution for the second 15 days, and so on. For systems with
sufficient number of container pools, however, the advantages of using a rolling horizon might

be small since such systems have small end-of-horizon effects.

5. Conclusions and Future Research

This paper discusses the planning horizon effects on empty container management for
multimodal transportation networks. Although the appropriate length of planning horizon
depends on the network under consideration, a longer planning horizon (used on a rolling basis)
can give better empty container distribution plans for the earlier periods. The longer horizon
allows better management of container outsourcing and encourages use of slower cheaper

transportation modes. However, the advantages of using a rolling horizon might be small for a
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system that has a sufficient number of container pools since such a system has small end-of-
horizon effects.

When the information for future periods is not available, a shorter planning horizon is
preferred. If the information for the future periods is known but only imperfectly, a rolling
horizon can be used, where only the solution for the earlier periods are implemented. The
problem should be re-solved when more accurate information is obtained for the later periods.

For a network with a barge transportation mode, the planning horizon should be long
enough for the model to have a chance to consider using the slower cheaper barge mode. One
rule of thumb is to consider use the most frequently used barge transit time to help determine the
planning horizon. In the test cases, there are two barge transit times that are equally used most
frequently: 12 and 19 days. So, the lengths of planning horizon considered (15 days and 30 days)
are most likely appropriate for the test cases.

The impact of choosing a planning horizon that is too short depends on three conditions.

1. Concentration of the activities in the network:

If the periods immediately following the short planning horizon are very active (i.e.,
customers have high supplies and demands), a longer planning horizon might give a better
solution. Extending the planning horizon might enable the model to utilize slower, cheaper
transportation modes.

2. Transit time of the container movements: A system that has long transit times may
need a longer planning horizon to allow that model to select slow, cheap modes that work well in
the real-world’s infinite horizon.

3. End-of-horizon effects: A small end-of-horizon effect may reduce the significance of

lengthening the planning horizon. The test cases indicate that the end-of-horizon effect is smaller
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when the average travel distance in the system is short or the initial inventory at each container
pool is high.

There are several possibilities for future research. One can integrate the loaded and empty
container flow decisions in a single model. Since the location and number of container pools has
significant impact on the solutions, it might be worthwhile to look at location-allocation models
along with the planning horizon considerations. Another future research endeavor could be to

consider uncertain nature of the demand and/or supply in the container management problem.

Acknowledgements

This research was spénsored by the U.S. Department of Transportation via the Mack-Blackwell

National Rural Transportation Study Center.

24



References

Bregman, R. L., “Selecting among MRP Lot-Sizing Methods for Purchased Components when
the Planning Horizon Is Limited,” Production and Inventory Management Journal, Second
Quarter, 32-38 (1991).

Cheung, R. K. and C. Chen, “A Two-Stage Stochastic Network Model and Solution Methods for
the Dynamic Empty Container Allocation Problem,” Transportation Science, 32, 2, 142-162
(1998).

Crainic, T. G., P. Dejax, and L. Delorme, “Models for Multimode Multicommodity Location
Problems with Interdepot Balancing Requirements,” Annals of Operations Research, 18, 279-
302 (1989).

Crainic, T. G., M. Gendreau, and P. Dejax, “Dynamic and Stochastic Models for the Allocation
of Empty Containers,” Operations Research, 41, 1, 102-126 (1993).

Dejax, P., F. Benamar, T. G. Crainic, and M. Gendreau, “Short Term Container Fleet
Management: Issues, Models and Tools,” In Proceedings of the 6" World Conference on
Transport Research, Lyon, France, June 29 - July 3 (1992).

De Matta, R. and M. Guignard, “The Performance of Rolling Production Schedules in a Process
Industry,” IIE Transactions, 27, 564-573 (1995).

Florez, H., “Empty Container Repositioning and Leasing: An Optimization Model,” Ph.D.
Dissertation, Polytechnic Institute of New York, 1986.

Fourer, R., D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Boyd & Fraser, Massachusetts, 1993.

Holmberg, K., M. Joborn, and J. T. Lundgren, “Improved Empty Freight Car Distribution”,
Transportation Science, 32, 2, 163-173 (1998).

Trusty, K. and M. Malstrom, “A Feasibility Assessment of Truck-Barge Intermodal Freight
Transportation,” MBTC FR-1079, Mack-Blackwell Transportation Center, University of
Arkansas, Fayetteville, Arkansas, 1998.

Russell R. A. and T. L. Urban, “Horizon Extension for Rolling Production Schedules: Length
and Accuracy Requirements,” International Journal of Production Economics, 29, 111-122
(1993).

25



Appendix: Notation

This appendix describes the sets and parameters of the model. The decision variables are

described in the main text. All of the notation described here is based on Crainic, et al. (1993).

Sets and Indices

I - Demand customers, indexed by i =1,2...1

I, K - Container pools, indexed by j=1,2...J, k=12...J

S - Supply customers, indexed by s =1,2...S

T - Length of planning horizon, indexed by t = 1,2...T

M - Transportation modes, indexedbym=1, 2, 3 (’f ruck, Rail, Barge)

Subsets

These subsets ensure that no empty containers are shipped before the first time period or after the

last time period in the planning horizon. The length of the planning horizon and the transit time
between two locations (1) determine these subsets.
I, - The set of all demand customers i which may be satisfied from supply customers by a

movement of empty containers, via transportation mode m, that starts in period t and

arrives in period t + T, . Similarly I, denotes demand customers that can be satisfied
from container pool j with transit time T ;.

J! - The set of all container pools j which may be satisfied from supply customer s by a
movement of empty containers, via transportation mode m, that starts in period t and

arrives in period t + 7, . Similarly, K', is the set of container pools that can be satisfied

from container pool j with transportation time T ;,, .
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!
S im

- The set of all supply customers s from which demand customer i may receive empty
containers (this as an “inverse” set of I} ). The movement of empty containers, via
transportation mode m, arrives in period t and starts in period t - T, . Similarly J;, is the

set of container pools that can satisfy customer I using transit time t ;.

S ’jm - The set of all supply customers s from which container pool j may receive empty

containers. The movement of empty containers, via trahsportation mode m, arrives in

. . . =t . .
period t and starts in period t - T, . Also, K n is the set of container pools that can send
empty container to container pool j using the transit time T, .

Parameters

1. Known demands and supplies

X! -Demand at customer i in period t.
Y% - Supply at customer s in period t.
2. Initial inventory

v - Initial inventory at container pool j at the beginning of planning horizon.

3. Costs

C.. - Cost (dollars per container) to move an empty container from supply customer s to
demand customer i via transportation mode m. Similarly costs are Cy;, (cost of unit flow
between supply customer s to container pool j), C i, (cost of unit flow between container pool |

and demand customer i), and (4, (cost of unit flow between container pools j and k). The latter

is zero for j = k.

H ;- Holding cost (dollars per container per period) at container pool j.
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R; - Cost (dollars per container) of bringing in an empty container from outside the system

(leasing, purchasing new container, or borrowing from partner companies) at container pool j.

4. Transit time, 7., includes the loading time at origin and unloading time at destination, plus

o ?
the travel time between the two points. The origin 1 and the destination p may represent
supply customers, demand customers, or container pools. The transportation mode m is truck
(1), rail (2), or barge (3). If there is no existing route between two locations, the transit cost is
set to a large number that represents the cost of building the route, and the transit time is set
to a reasonable number. This expensive transit cost will prevent the model from selecting the
arc between those two locations as the optimum solution unless absolutely necessary.

5. Capacity

SL; - Maximum number of empty containers that can be stored at container pool j.
BI' - Maximum number of empty containers that can be moved by barge per period (barge

limit)
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