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The performance of asphalt concrete pavements is in part affected by the seasonal
variations of the resilient modulus of the AC layer and of the subgrade soil. To determine the
variation of these parameters throughout Ohio, nine moisture-temperature-rainfall recording
stations, previously installed during two Ohio Department of Transportation-funded projects,
were monitored for an additional period of three years. These stations, located to include various
climatic zones and the four most common soil types within the state, recorded air, asphalt
concrete and subgrade soil temperature, rainfall and moisture content (or degree of saturation) of
the subgrade soil on a two-hour basis.

Recorded data led to the development of polynomial equations to calculate the average
asphalt concrete pavement temperature from the air temperature and to the division of the state
into three temperature zones: Northern, Central and Southern. Monthly and seasonal average
values of the resilient modulus of the asphalt concrete for each station, the three climatic zones
and for all of the state were also calculated.

Recorded depths of frost penetration indicated average depths of 45 to 61 cm. within the
southern zone and of 70 to 82 cm. within the northern zone. Similarly, the northern and the
southern zones experience an average of 7 to 12 and 4 to 5 freeze-thaw cycles, respectively.

The degree of saturation calculated from moisture and temperature sensor readings varied
form about 90% to 100% throughout the monitoring period. The late spring to early summer
consistently led to a higher degree of saturation at all depths.

Finally, a method to back calculate the resilient modulus of subgrade soils at the break
point from measured FWD deflections was developed. Seasonal averages of this modulus were
obtained at each of six station locations where FWD testing was conducted. Seasons were ranked
in terms of expected higher resilient modulus. The designated “fall” testing period (early fall)
showed the highest followed by “summer”, “winter” and “spring” in decreasing order.
Determined monthly and seasonal variation of material properties will find immediate
application as inputs in mechanistic-empirical pavement design procedures.
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EXTENDED MONITORING AND ANALYSIS OF MOISTURE-
TEMPERATURE DATA

Abstract

The seascnal variations in the resilient modulus of asphalt concrete (AC) pavements and
the corresponding resilient modulus variations of the subgrade soil are major factors in
determining the performance of new AC pavements and overlays. Unfortunately, current design
procedures do not directly consider these factors. It is expected however, that with the
implementation of mechanistic pavement design procedures these variations will be included,
leading to a more realistic design

Moisture-temperature-rainfall data was collected for a period of three years from
monitoring stations previously installed during the ODOT-funded project “Characterization of
Ohio Subgrade Types” and monitored for an additional period of 2-1/2 years during the project
“Monitoring and Analysis of Data Obtained from Moisture-Temperature Recording Stations.”
These stations record hourly, daily and seasonal variations in air temperature, rainfall,
temperature within the asphalt concrete layer and moisture content (or degree of saturation) and
temperature within the subgrade soil. Typically, temperature variations within the subgrade soil
are minimal on a daily basis. Only the uppermost subgrade soil thermistor shows daily
temperature variations although within a narrower range, following those of the bottom asphalt
concrete thermistor.

The thermistors within the asphalt concrete layer exhibit large daily temperature
fluctuations. Typically the AC layer exhibits a uniform temperature (no temperature gradient)
twice a day, normally occurring between 8:00 and 10:00 AM and around 8:00 PM. Similarly, the
maximum daytime temperature gradient within the pavement is observed between 2:00 and 4:00

PM at all seasons and the maximum overnight temperature gradient occurs around 6:00 AM. It is



iii

to be noted that the temperature gradient is greater in the afternoon than in the early morning and
that AC layer temperature variations closely follow air temperature changes.

The average AC pavement temperature was calculated in the middle of the layer at each
location, and then monthly and seasonal averages were tabulated. The average pavement
temperature difference between summer and winter is of the order of 30 to 35 deg. C at all
sites. This range also indicates the wide variation in the elastic properties of the AC. As expected
the northern sites exhibit slightly lower averages than the southern sites. Observations in
temperature changes within the pavement and subgrade profiles indicate that the daytime and the
nighttime averages for any sensors located at depths in excess of 30.48 c¢cm. (1.0 ft.) from the
surface (i.e. the subgrade soil sensors) are very similar. In addition, the asphalt concrete sensors
show warmer temperatures than the soil sensors (on the average) during the spring and summer.
However, this trend reverses during the fall and winter.

Polynomial equations were derived relating the average asphalt concrete pavement
temperature to the air temperature for eight (excluding the Columbiana Co.) of the nine
monitored stations. The coefficients included in these equations indicate that asphalt concrete
temperature is higher in the southern part than in the northern part of the state. The regression
coefficients also point to the fact that the state of Ohio may be subdivided into three general
temperature zones: North, (from the North Shore to Mansfield — Mount Vernon) Central (from
Mansfield — Mount Vernon to Lancaster) and South (from Lancaster to the southern state line).

As a result of temperature differences during the four seasons the resilient modulus of the
asphalt concrete also changes in an inverse form to the temperature variation. It was determined
that for a typical mid-season day the resilient modulus averages:

3791.7 MPa (550 ksi) in the spring (+/- 1034.1 MPa or +/- 150 ksi)

1723.5 MPa (250 ksi) in the summer (+/- 1034.1 MPa or +/- 150 ksi)

8272.8 MPa (1200 ksi) in the fall (+/- 1378.8 MPa or +/- 200 ksi)

15511.5 MPa (2250 ksi) in the winter (+/- 1551.1 MPa or +/- 225 ksi)



Recorded depths of frost penetration show, as expected, that they are greater in the
northern than in the southern stations. On a normal season the average depth of frost penetration
is about 45.7 to 61.0 cm. (1.5 to 2.0 ft) at the southern stations and from 70.1 to 82.3 cm. (2.3 to
2.7 ft) at the northern locations. It was also observed that when the frost penetration is high at the
northern sites the number of freeze-thaw cycles is lower. This normally occurs during severe
winters. The number of cycles appears to increase during milder winters. Normally, the northern
sites experience an average 7 to 12 cycles as compared to between 4 and 5 in the southern sites.

A calibration equation previously developed was used to obtain monthly and seasonal
averages of the degree of saturation from moisture and temperature sensor readings at each of
four moisture sensor locations. The degree of saturation typically varied between about 90% and
100% throughout the monitoring period. The late spring to early summer period seems to
consistently lead to slightly higher (nearing 100%) degree of saturation at all depths.

Finally a method to back calculate the resilient modulus of subgrade soils at the break
point from measured FWD deflections was developed. Overall seasonal averages of the modulus
were obtained at each of six station locations where FWD testing was conducted. Seasons were
ranked in terms of expected higher resilient modulus. The designated “fall” testing period (early
fall) showed the highest followed by “summer”, “winter” and “spring” in decreasing order. This
ranking is expected since the fall testing period follows the generally drier summer season and
the spring testing period happens at the spring thaw and normally wetter early spring. Generally,
for the most part a higher back calculated resilient modulus followed lower amounts of rainfall.
Similarly lower resilient modulus back calculations were generally preceded by higher rainfall.
Attempts to correlate the amount of rainfall accumulated over either one month, two or three
months preceding the date of FWD testing with the back calculated resilient modulus were

unsuccessful.
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Chapter 1

INTRODUCTION

Stiffness properties of materials included in a flexible pavement profile directly affect the
response of these pavements when subjected to traffic loadings. It is thus important to consider
the seasonal variations of the resilient modulus of the asphalt concrete and the corresponding
variations in the resilient modulus of the subgrade when designing new asphalt concrete
pavements or overlays.

The resilient modulus of the asphalt concrete is affected by factors such as type of asphalt
mix (including aggregates and admixtures), degree of compaction, and temperature. However,
out of all these factors only temperature varies with time.

Similarly, among the factors affecting the resilient modulus of fine-grained soils such as
soil type (i.e. A-4, A-6, A-7, etc.), dry unit weight and moisture content (or degree of saturation),
only the moisture content varies with time.

Environmental factors including temperature within the asphalt concrete and moisture
within the subgrade soil are now easily monitored with field data acquisition systems developed
over the past few years. A total of nine moisture-temperature-monitoring stations were installed
during the ODOT-funded project "Characterization of Ohio Subgrade Types”. Subsequently,
monitoring of these stations continued until 1997 during the ODOT-funded project “Monitoring
and Analysis of Data Obtained from Moisture-Temperature Recording Stations." Some of these
stations have been collecting data since 1991 at a 2-hour interval, providing a wealth of
information as to the variation of environmental factors in typical climatic zones within the State
of Ohio.

Similarly, the Ohio Department of Transportation has been collecting FWD readings
periodically, on 152.4 m. (500’)-long sections adjacent to some of the environmental monitoring

stations. This information coupled with the environmental data obtained from the stations



permits the back calculation of the resilient modulus of the subgrade soil, to obtain trends on the
variation of this parameter throughout the years.

The eventual implementation of mechanistic flexible pavement design procedures in the
State of Ohio requires the determination of changes in material properties for an accurate
evaluation of pavement life and proper determination of required layer thicknesses.

This report includes the results of the research project "Extended Monitoring and
Analysis of Moisture-Temperature Data," funded by the Ohio Department of Transportation
(ODOT). In essence, this project is an extension of the two previously ODOT-funded projects
"Characterization of Ohio Subgrade Types” and “Monitoring and Analysis of Data Obtained
from Moisture-Temperature Recording Stations." since data has been collected for a substantially
longer period of time.

The project under consideration in this report consisted of three major efforts:

The first part included the extension of the monitoring and analysis period for data
obtained from the originally installed stations located throughout Ohio. At most of these stations,
the temperature (to obtain the depth of frost penetration) and the degree of saturation of the
subgrade soil, the temperature of the asphalt concrete surface layer, the air temperature and the
amount of rainfall have been almost continuously monitored and recorded.

The second part consisted of the analysis of seasonal FWD deflection data obtained by
ODOT, which coupled with the moisture and temperature readings would yield a more extensive
measure of the variability in the resilient properties of both asphalt concrete surface layer and
subgrade soil.

It is expected that with the analysis of data obtained in parts 1 and 2, more representative
seasonal average resilient properties of both surface and subgrade layers in flexible pavements,
as well as of climate-related parameters could be obtained.

The third part involved the development of guidelines regarding the use of these resilient
properties in the eventual implementation of a mechanistic flexible pavement design procedure.

Following, a summary of the contents of subsequent chapters is presented.



Chapter two includes the review of pertinent background information including
previously developed methods linking changes in the stiffness properties of pavement materials
to also varying environmental factors. In addition, the criteria used for selecting the location of
each of the monitoring stations as well as the pavement section characteristics and sensor
location existing at each site are presented.

Chapter three analyzes the seasonal data collected and discusses the effects of these
environment-related factors on properties of influence in the mechanistic design of asphalt
concrete pavements, such as the modulus of the asphalt concrete. The influence of temperature,
rainfall and frost is discussed in detail. Finally, graphs and charts showing the variation of the
degree of saturation at the monitored test sites are presented.

Chapter four discusses results of back calculating the resilient modulus of subgrade soil
from measured FWD deflections and the possible link of changing resilient modulus as a result
of previous rainfall regimes.

Chapter five includes a summary of the overall findings and implementation
recommendations, along with any conclusions drawn as a result of this research. All supporting

information in the form of tables and graphs is included in the appendixes.
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Chapter 2

REVIEW OF PERTINENT BACKGROUND INFORMATION

The first section of this chapter summarizes pertinent information concerning the criteria
used for site selection, pavement section characteristics and periods of available data. The second
section reviews material property determination procedures used in the previous two projects and
summarizes the procedure to backcalculate the resilient modulus of subgrade soils, based on
measured subgrade deflections, also developed during the same projects. Both of these methods
will be used in subsequent chapters to analyze the additional data obtained, as well as to develop

guidelines of eventual application in flexible pavement mechanistic design procedures.

2.1 Site Selection

A total of nine moisture-temperature-monitoring stations were installed during the
ODOT-funded project “Characterization of Ohio Subgrade Types,” between 1991 and 1994. At
the end of the winter 2000-2001, five of these stations were in operation at the locations listed in
Table 2.1a. The location selection criteria included the coverage of climatic zones within the
state of Ohio: northwestern, northeastern, southwestern, southeastern and central; soil type A-3,
A-4, A-6 and A-7; and a flexible pavement structure. Other factors considered in the selection
criteria included a four-lane flexible pavement to facilitate the closure of one lane during
installation as well as non-destructive testing; pavements in good condition, sites with good
drainage and away from power lines to eliminate electrical noise. Other special considerations
included the proximity to a Weight In Motion (WIM) station, such as the Licking Co. site. A
summary of the soil classification parameters such as grain size distribution and Atterberg Limits

is contained in Table 2.1b.



Table 2.1a Monitoring Station Locations

COUNTY CLIMATE | ROAD MILE |LANE| SOIL
ZONE POST TYPE
ADAMS SW SR-32 44 WB | A-4a(8)
ATHENS SE US-50 59 WB | A-6a(10)
COLUMBIANA * NE SR-11 18.2 NB | A-6a(l)
CRAWFORD Central | US-30 5.1 EB | A-6a8)
KNOX Central | SR-13 16.3 NB | A-6a(10)
LICKING * Central 70 | 1I7@WIM | WB_| A-4a(5)
LUCAS * NW 1475 10.9 NB A-3a
WOOD 2.85 ** NW SR-795 285 WB | A-7-6(15)
WOOD 8.1 NW SR-795 8.1 WB | A-7-6(13)

Note: Numbers in parenthesis ( ) in SOIL TYPE column represent the Group Index
* Not operating at present
** Dismantled

Table 2.1b Monitoring Station Soil Classification Parameters

SITE % PASSING SIEVE # LL PL GROUP
200 40 10 3

ADAMS 886 | 969 | 992 | 997 | 322 | 23.1 | A-4a(§)
"ATHENS 79.3 96.1 968 | 985 | 342 | 200 | A6a(i0)
COLUMBIANA | 42.0 576 | 682 | 1763 30.0 110 | A-6a(l)
CRAWFORD 656 | 900 | 975 | 99.0 | 332 183 | A6ad)
KNOX 90.1 989 | 996 | 99.7 | 360 | 219 | A-6a(i0)
LICKING 0.2 77.5 878 | 927 | 25. 7.7 | A-4a(5)
LUCAS 15.5 96.1 | 100.0 | 100.0 | -— A-3a
WOOD (2.85) 90.1 977 | 993 | 999 | 46.1 228 | A-7-6(15)
WOOD (3.1) 92.5 984 | 998 | 1000 | 442 | 22.6 | A-7-6(13)

The WOOD 2.85 Co. station was dismantled in the summer of 1995 because of new
urban development at the site and the lack of Non-Destructive (FWD) testing data. The
COLUMBIANA Co. station was extensively damaged by a vehicle crash, shortly after its
installation, even though it was located at least 9.2 m (30 ft.) from the road shoulder.
Replacement of the logger unit indicated that only a small number of sensors remained in
operation. The scant usable data collected at this station was considered to be statistically

insignificant to be able to develop meaningful relationships. The LUCAS and the LICKING Co.



stations were damaged by lightning discharges in their vicinity. Information about soil types
existing at each site is given in Table 2.1a. More detail regarding the geological characteristics of
these soils can be found in the report by Figueroa et al. (1994).

Table 2.2a is a summary of the pavement profile geometric characteristics along with the
subgrade soil type existing at each monitoring site. Similarly Table 2.2b lists wire denomination
numbers and sensor types (moisture and temperature) at each of the monitoring stations, along
with the depth of every sensor measured from the pavement surface. Damaged sensors within the
working stations are also identified. A rain gage (tipping bucket type) is also installed next to the

data logger at each site.

Table 2.2a Pavement Profile and Subgrade Type Existing at Each Location

Site Thickness (cm)
AC Layer Gravel Layer Subgrade Type
Adams 39.6 (15.6”) 12.7 (5.0”) A-4a(8)
Athens 29.2 (11.5”) 15.2 (6.0”) A-6a(10)
Columbiana 29.5(11.6”) 15.0 (5.9”) A-6a(l)
Crawford 29.5(11.67) 24.1 (9.57) A-6a(8)
Knox 33.3 (13.17) 20.3 (8.0”) A-6a(10)
Licking 34.8 (13.7”) 10.2 (4.07)* A-4a(5)
Lucas 28.7 (11.37) 55.9 (22.0”) A-3a
Wood (2.85) 26.7 (10.5”) 15.2 (6.0”) A-7-6(15)
Wood (8.1) 30.5(12.0”) 15.2 (6.0”) A-7-6(13)

* Plus 45.7 cm (18") of lime stabilized soil

Available asphalt concrete pavement, soil temperature and weather-related data to be
analyzed in this report include data from the monitoring stations for the periods listed in Table

2.3.



2.2 Material Property Determination Procedures

Following is a summary of relationships and procedures developed during the project

“Characterization of Ohio Subgrade Types” of fundamental importance in determining the

variation of flexible pavement material properties throughout the year.

Table 2.2b Sensor Depth and Nomenclature

Adams Athens Columbiana

Wire# | Depth (cm) Type | Wire# | Depth (cm) Type | Wire# | Depth (cm) Type
15 AIR T 15 AIR T 15 AIR T

14 6.4 (0-2.5" | T* 14 5.1(0'-2") T™*X | 14 5.1 (0'-2") T*X
13 12.7 (0'-5") T*X {13 10.2 (0'-4") T* 13 10.2 (0'-4") T*X
12 19.0 (0'-7.5") | T* 12 15.2 (0'-6") T*X | 12 15.2 (0'-6") T*X
11 254 (0-10") | T*X |11 20.3 (0'-8") T™*X {11 20.3 (0'-8") T*X
10 31.7 (1'-0.5") [ T* 10 25.4 (0'-10") T* i0 25.4 (0'-10") T*X
4 45.7 (1'-6") MX | 4 45.7 (1'-6") MX | 4 45.7 (1'-6") M

9 60.9 (2'-0") X 9 60.9 (2'-0") TX 9 60.9 (2'-0") X
3 76.2 (2'-6") M 3 76.2 (2'-6" MX || 3 76.2 (2'-6") M

8 91.4 (3'-0™ T 8 91.4 (3'-0" T 8 91.4 (3'-0" X
2 106.7 (3'-6") | MX | 2 106.7 (3'-6") (M 2 106.7(3-6") | M

7 121.9 (4'-0") | TX 7 1219 (4-0") | TX 7 121.9(4-0") | T

1 1371 46" | M 1 137.1(4-6") | MX |1 1371 (4-6") | M

6 152.4 (5" T 6 152.4 (59 TX 6 152.4 (5" T

Crawford Knox Licking

Wire# | Depth (cm) Type | Wire# | Depth (cm) Type || Wire# | Depth (cm) Type
15 AIR T 14 AIR T 14 AIR T

14 5.1 (0'-2") T*X |13 5.1 (0'-2") T* 13 5.1 (0'-2") T*X
13 10.2 (04" T* 12 10.2 (0'-4™) T* 12 10.2 (0'-4") T*
12 15.2 (0'-6") T*X | 11 20.3 (0'-8") X | 11 20.3 (0'-8") T*X
11 20.3 (0'-8") T* 10 29.2 (0'-11.5") | T*X | 10 25.4 (0-10") | T*
10 254(0-10") | T*X |1 9 45.7 (1'-6") TX 9 3051’07 | TX
4 45.7 (1'-6") MX | 4 60.9 (2'-0") MX | 4 45.7 (1'-6") MX
9 60.9 2'-0™) T 8 76.2 (2'-6") X 8 60.9 (2'-0") X
3 76.2 (2'-6") MX | 3 91.4 (3'-0" MX |I' 3 76.2 (2'-6") MX
8 91.4 (3'-0"M X 7 106.7 (3'-6") | TX 7 91.4 (3'-0M T

2 106.7 (3'-6") | MX | 2 121.9(4-0") [MX | 2 106.7 (3'-6") | MX
7 121.9(4-0") | T 6 137.1(4-6") | T 6 121.9 (4-0" | TX

1 137.1 (4'-6") | MX | 1 152.4 (59 MX |1 137.1 (4'-6") | MX
6 152.4 (5") T 152.4 (5"




Table 2.2b Sensor Depth and Nomenclature (cont.)

Lucas Wood(2.85) Wood(8.1)

Wire# | Depth (cm) Type | Wire# | Depth (cm) Type | Wire# | Depth (cm) Type
15 AIR T 14 AIR T 15 AIR T
14 5.1 (0'-2") T*X |13 5.1 (0'-2") T* 14 5.1 (0-2") T™*X
13 10.2 (0'-4") T* 12 10.2 (0'-4™ T* 13 10.2 (0'-4™) T*
12 15.2 (0'-6") T*X |11 15.2 (0'-6") T* 12 15.2 (0-6") T*X
11 20.3 (0'-8") T*X | 10 20.3 (0'-8") T*X |11 20.3 (0'-8") T*X
10 254 (0-10M [ T* 4 45.7 (1'-6") M 10 254 (0'-10") | T*

4 45.7 (1'-6") MX |19 60.9 (2'-0") T 4 45.7 (1'-6") M

9 60.9 (2'-0") T 3 76.2 (2'-6") M 9 60.9 (2'-0") T

3 76.2 (2'-6") MX 18 91.4 (3'-0" T 3 76.2 (2'-6") M

8 91.4 (3'-0") X 12 106.7 (3'-6") | M 8 91.4 (3'-0") X
2 106.7 (3'-6") | MX |7 121.9(4'-0") | T 2 106.7 (3'-6") | M

7 121.94-0M [T 1 137.1 (4-6") | M 7 121.9(4-0") | T

1 137.1 (4-6") [MX |6 152.4 (5 T 1 137.1 (4-6") | M

6 152.4 (5" TX 6 152.4 (5") T

Sensor Types
= Temperature Probe
"*" = Sensor in Asphalt Concrete
"M" = Moisture Sensor

llTll

"X"

= Damaged Sensor (disconnected) — April 2001
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2.2.1 Relationships Between Resilient Modulus of the Asphalt Concrete and
Temperature

The resilient modulus of the asphalt concrete is one of the parameters required in the
determination of the resilient modulus of subgrade soils by the backcalculation procedure
explained in the following section. The asphalt concrete modulus is known to be independent of
the applied stresses (as opposed to that of subgrade soils) but dependent upon the asphalt
concrete temperature. Figueroa et al., 1994 conducted a complete testing program to develop a
relationship between the resilient modulus of the asphalt concrete and its temperature. The
Indirect Tension for Resilient Modulus for Bituminous Mixtures test method (ASTM D 4123-82)
was followed in testing 4" diameter asphalt concrete cores, obtained from the center of the truck
lane during the installation of each monitoring station listed in Tables 2.1 and 2.2. A parabolic
equation yields the best fit to the test data for typical Ohio mixtures. Equation 2.1 defines the
curves of best fit with the coefficients listed in Table 2.4 (in both SI and English units) for each
type of asphalt concrete (ODOT items 404 and 402) found at the monitored sections, in
conjunction with the curve-fit coefficient of determination, R’. Figure 2.1 is a graphical

representation of the regression equation trend lines for both types of mixes.

E, =a, +a,P+a,pP’ (2.1)

where:

E; = Resilient modulus MPa in SI units or (psi x 106in English units)
a,, a,, &, = Regression constants listed in Table 2.4:
Columns 2 & 3 for SI units
Columns 4 & 5 for English units
P = Asphalt concrete temperature: Deg. C in SI units or (Deg F in English units)
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Table 2.4 Equation 2.1 Regression Coefficients

1 2 3 4 5
SI  Units English Units
Coefficient AC Type AC Type
404 402 404 402
a 12659 12118 3.5405 3.1164
a, -562.10 -473.59 -0.0611 -0.0487
a 5.8344 3.9292 2.57x104 1.73x10-4
R? 0.8548 0.6403 0.8547 0.6403

The test is conducted using a repeated indirect tensile test set-up under controlled

temperature and controlled loading conditions with a typical load application time of 0.1 seconds

and a rest period of 1.9 seconds, with an applied load nearing 444.8 N (100 lbs). The load is

applied to the 4” disks along the diameter through a narrow curved loading strip, while the load,

the vertical and horizontal deformations are recorded to calculate the Poisson's ratio and the

resilient modulus by the following equations.

3.59AH
vV ——
AV
E - P(v+0.27)
' t AH
Where:

E, = Resilient modulus of elasticity (psi)

P = Applied repeated load (1b)

v = Resilient Poisson's ratio

t = Specimen thickness (in)

AH = Total recoverable horizontal deformation (in)
AV = Recoverable vertical deformation (in)

(2.2)

(2.3)
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Figure 2.1 AC Modulus vs. Temperature

To consider the influence of temperature on the resilient modulus, each asphalt concrete
disk was tested at temperatures of: 4.5, 15.5 and 26.5 degrees Celsius (40, 60, and 80 degrees
Fahrenheit). A few additional tests were conducted at temperatures of -1.1 and 17.8° C (30 and
64° F). The samples, as well as the testing machine, were kept in a controlled-temperature room
and brought to the specified test temperature. The temperature was maintained constant until all
of the specimens reached the necessary equilibrium temperature and the tests were completed.

In turn, the average asphalt concrete temperature can be related to the air temperature by
developing relationships of the form given in Equation 2.4, from data obtained at each
monitoring location, as will be shown in the following chapters. Thus, it is feasible to assess the
resilient modulus of the AC from air temperature data, which is normally obtained during FWD

testing.
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P=Cl+C2 A+C3 A? (2.4)
where
Cl,C2,and C3 = Regression constants updated in the following chapters for each
station location.
P= Average AC temperature (Deg C).
A= Air temperature (Deg C).

2.2.2 Backcalculation of the Resilient Modulus of Subgrade Soils Based on

Measured FWD Deflections

It is well known that pavement performance is affected among other factors by the
characteristics of the subgrade. The seasonal variation of the resilient modulus of the subgrade
soil is one of the major factors in determining design parameters for new asphalt concrete
pavements and overlays. The flexible pavement analysis program (ILLIPAVE) was validated
during the “Characterization of Ohio Subgrade Types” project (Figueroa et al., 1994) as an
effective tool to calculate deflections. This program was also used to develop nomographs to
back calculate the resilient modulus of the subgrade based on measured Falling Weight
Deflectometer (FWD) deflections for a given soil type. Figure 2.2 depicts the fundamentals of
this developed method and can be explained as follows:

The air temperature is measured during FWD tests. This temperature is entered into
Equation 2.4 and the corresponding average asphalt concrete pavement temperature is obtained.
The AC pavement temperature is then entered into Equation 2.1 (with coefficients defined in
Table 2.4) or Figure 2.1 in order to obtain the AC modulus. The AC modulus is entered into a
nomograph (developed for a given soil type) along with the AC thickness, the gravel base
thickness, and the maximum FWD deflection to obtain the resilient modulus of the subgrade soil
at the break point E;. The slopes of the lines before and after the break point on a plot
representing the variation of the resilient modulus vs. the deviator stress were found to be

approximately constant and independent of the degree of saturation by Figueroa et al., 1994
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Figure 2.2 Back Calculation Procedure to Obtain E

Alternatively, regression equations (presented below) were developed relating all of the
previously mentioned parameters to measured maximum FWD pavement surface deflections.
The basis of the nomographs as well as the regression equations can be explained as follows:
Typical flexible pavement structures are composed of a top asphalt concrete layer, a
granular base course and a bottom subgrade layer. The development of nomographs to back

calculate the resilient modulus of the subgrade for a given soil type, included the consideration of
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the influence of the applied load, the asphalt concrete thickness, the thickness of the gravel base
course, the asphalt concrete resilient modulus and the resilient modulus of the subgrade soil.

Observing the deflections measured by FWD testing, the applied loads are typically
around 40.03, 53.38 and 66.72 kN (9000, 12000 and 15000 Ibs). Thus, these magnitudes were
selected to calculate the contact pressure for a given type of soil. Thickness values of 10.2, 20.3
and 30.5 cm. (4, 8, and 12 in.) were chosen for both the asphalt concrete layer and the gravel
base course, representing typical layer thickness ranges found in Ohio pavements. Data recorded
by the moisture-temperature-rainfall monitoring stations shows that the seasonal air temperature
usually varies between —1.11 and 26.7°C (30 and 80°F). Thus, temperatures of —1.11, 10.0 and
26.7°C (30, 50 and 80°F) were adopted as representative of average temperatures in the winter,
spring/fall, and summer respectively. These values are then entered into Equation 2.4 to obtain
the corresponding asphalt concrete pavement temperature. Finally, the calculated pavement
temperature is used as input to Equation 2.1 or Figure 2.1 to obtain the average asphalt concrete
resilient modulus during the corresponding season.

Generalized relationships were obtained by conducting a regression analysis between the
deflection as the dependent variable and the thickness of the asphalt concrete, the gravel base
thickness, the resilient modulus of the asphalt concrete and the resilient modulus of the subgrade
soil. Based on the higher Coefficient of Determination R2, the logarithmic relationship provides

the best fit, expressed by:

log(d) = ag +aj tac +a2 thase +a3 Eac +a4 Eri (2.5)

Considering units in the SI or English systems of measurement, these variables are:

d = Deflection at the center of load application (cm or in)

tac = Thickness of the asphalt concrete (cm or in)

thase = Gravel base thickness (¢cm or in)

Esc = Resilient modulus of the asphalt concrete (MPa or ksi)

E;i = Resilient modulus of the subgrade soil at the break point (MPa or ksi)

a(, a1, ap, a3, a4 = Regression constants



Thus the resilient modulus of the subgrade soil is back calculated by:

E,; = [log(d) - ag - a] tac - a2 thase - 83 Eacl/ a4 (2.6)

Tables 2.5a and 2.5b summarize the coefficients (in SI and English units, respectively) for the
three types of s0il A-4, A-6 and A-7, along with the corresponding Coefficient of Determination
R2, to be used in conjunction with Equation 2.6 to back calculate the resilient modulus of the
subgrade soil at the break point.

In summary, knowing both the thickness of the asphalt concrete layer and the gravel base
course, the resilient modulus of the asphalt concrete from air temperature records in combination
with Equations 2.4 and 2.1 and maximum measured surface deflections by the Falling Weight
Deflectometer, the resilient modulus of the subgrade soil can be backcalculated following the
procedure shown in Figure 2.2.

At a certain location, the thicknesses of both the asphalt concrete layer and the gravel

base course are known from construction records. Thus, the total deflection is dependent upon

the variations of the resilient modulus of the subgrade soil Ej; and the asphalt concrete modulus
Eac. Comparing the influence of E,. with respect to Ej in affecting the total deflection, it is
found that the total deflection is very sensitive to the variation of E;. This influence is evident in
the relative values of the coefficients a, and a,, whereby a, is approximately two orders of
magnitude higher than a,, although E4c and E;i do not differ by as much as two orders of
magnitude at a given time during the year. As a result of this observation, it can be concluded
that the subgrade soil significantly contributes to the total deflection of typical flexible

pavements.
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Table 2.5a. Coefficients used in Equation 2.6 (SI units)

Soil Type (11;) ag aq ay a3 a4 R2
40032 | -0.67328 | _0.01775 | -3.99543E-04 | -4.62929E-05 | -2.90883E-03 | 0.92032
A-4 53376 | -0.55789 | -0.01746 | -4.97508E-04 | -4.58201E-05 | -2.92112E-03 | 0.91975
66720 | -0.46776 | -0.01726 | -5.77815E-04 | -4.54227E-05 | -2.92710E-03 | 0.91896
40032 | -0.67834 | -0.01761 | -5.62748E-04 | -4.55944E-05 | -3.23827E-03 | 0.91943
A-6 53376 | -0.56192 | -0.01731 | -6.61429E-04 | -4.50786E-05 | -3.28619E-03 | 0.91859
66720 | -0.47122 | -0.01711 | -7.38004E-04 | -4.47405E-05 | -3.29810E-03 | 0.91778
40032 | -0.61095 | -0.01719 | .9.14484E-04 | -4.39790E-05 | -4.48548E-03 | 0.92234
A-7 53376 | -0.49853 | -0.01674 | -1.15048E-03 | -4.38220E-05 | -4.40564E-03 | 0.92347
66720 | -0.40663 | 0.01670 | -1.08492E-03 | -4.30709E-05 | -4.48473E-03 | 0.92195
log(d)=ag +a]tac +atbase +a3Eac +a4Er
t,c and tyaqe = given in cm.
E,c and E; = given in MPa R2 = Coefficient of Determination
Table 2.5b. Coefficients used in Equation 2.6 (English units)
Soil Type (11;) ag ay ap a3 ag R2
9000 |-1.07811 | -0.04509 | -1.01484 E-3 | -3.19143 E-4 | -2.00535 E-2 | 0.92032
A-4 12000 | -0.96273 | -0.04434 | -1.26367 E-3 | -3.15884 E-4 | -2.01382 E-2 | 0.91975
15000 | -0.87260 | -0.04384 | -1.46765E-3 | -3.13144 E-4 | -2.01794E-2 | 0.91896
9000 |-1.08317 | -0.04474 | -1.42938 E-3 | -3.14328 E-4 | -2.23246 E-2 | 0.91943
A-6 12000 | -0.96675 | -0.04396 | -1.68003 E-3 | -3.10772 E-4 | -2.26550 E-2 | 0.91859
15000 | -0.87606 | -0.04346 | -1.87453 E-3 | -3.08441 E-4 | -2.27371 E-2 | 0.91778
9000 | -1.01578 | -0.04365 | -2.32279 E-3 | -3.03191 E-4 | -3.09229 E-2 | 0.92234
A-7 12000 | -0.90336 | -0.04251 | -2.92221 E-3 | -3.02109 E-4 | -3.03725 E-2 | 0.92347
15000 |-0.81146 | -0.04242 | -2.75569 E-3 | -2.96931 E-4 | -3.09177 E-2 | 0.92195

tac and thase

log(d)=ag +ajtac +22thase +23Eac +a4Er
= given in inches

E,c and E;{ = given in ksi

R2 = Coefficient of Determination




Chapter 3
SEASONAL FACTORS AFFECTING ASPHALT CONCRETE PAVEMENTS

This chapter presents the updated seasonal data collected at the moisture-temperature
monitoring stations with emphasis on the effects of seasonal factors on the engineering properties
of materials included in a flexible pavement profile. Of particular interest is the discussion of
temperature variations (daily, monthly and seasonal) within the asphalt concrete and the
development of relationships linking the average AC temperature (and consequently the
modulus) to the measured air temperature. Summary tables and graphs are included in this
chapter showing the amount of rainfall, depth of frost penetration, number of freeze-thaw cycles

and the variation of the degree of saturation with depth at the different monitoring stations.

3.1 Temperature Data

Temperature is one of the most important parameters affecting the performance of asphalt
concrete pavements and in particular during the warmer months. As previously shown in Figure
2.1, the modulus of the asphalt concrete decreases with an increase in temperature. However it is
only when the AC temperature rises beyond 10-15.6°C (50-60°F) that there is a substantial
decrease in the surface layer stiffness. Any applied traffic loads during this period will
significantly affect the stress on the subgrade soil, increasing the likelihood of distress
development.

Asphalt concrete pavement, soil and air temperature data to be analyzed in the following
sections includes data from eight of the nine monitoring stations for the periods listed in Table
2.3. As previously indicated, scant data was only collected at the Columbiana Co. station since

initially this unit was damaged by lightning and soon after it was repaired, a vehicle crash
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damaged it beyond repair. Thus, development of meaningful relationships was not possible at

this site.

3.1.1. Daily Asphalt Concrete Pavement and Subgrade Temperature

Variations

Typically, temperature variations within the subgrade soil are minimal on a daily basis.
Only the uppermost subgrade soil thermistor shows daily temperature variations, although within
a narrower range, following those of the lowest asphalt concrete thermistor.

The thermistors within the asphalt concrete layer do exhibit large daily temperature
fluctuations. Figures 3.1 to 3.4 show typical surface layer temperature variations for a typical
three-day period at mid-spring, mid-summer, mid-fall and mid-winter. Wood Co. 2.85 station
surface layer thermistor and air temperature readings obtained in 1993-1994 are shown in these
figures. Sensors W13, W12, W11 and W10 are located at 5.08, 10.16, 15.24 and 20.32 cm. (2, 4,
6 and 8 in.) below the surface of the 26.7 cm. (10.5 in)-thick AC surface layer.



TEMPERATURE (Deg C)

TEMPERATURE (Deg C

21

Figure 3.1 WOOD 2.85 Sta. SPRING 1993 AC TEMPERATURE REVERSAL
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Figure 3.3 WOOD 2.85 Sta. FALL 1993 AC TEMPERATURE REVERSAL
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Normally and depending on the air temperature variations and weather fronts, as seen in
these figures the AC layer experiences a uniform temperature (no temperature gradient) twice a
day, primarily during the days that solar radiation influences the asphalt concrete temperature.
These points occur between 8:00 and 10:00 AM and around 8:00 PM. After the morning period
of no temperature gradient, thermistors closer to the surface show faster warming as compared to
those near the bottom of the surface layer. An opposite trend occurs after the evening period of
no temperature gradient. This information is important in selecting the optimal times for FWD
testing (between 8:00-10:00 AM) since the surface layer exhibits a uniform stiffness throughout
its thickness. Similarly, the maximum daytime temperature gradient within the pavement is
observed between 2:00 and 4:00 PM at all seasons and the maximum overnight temperature
gradient occurs around 6:00 AM. It is to be noted that the temperature gradient is greater in the
afternoon than in the early morning and that AC layer temperature variations closely follow air

temperature changes.

3.1.2. Monthly and Seasonal Asphalt Concrete Pavement Temperature Variations

The daytime and nighttime seasonal temperature averages were computed from the
temperature sensor readings. This information is presented in two different formats.

Temperature data from the Logger data files was separated into daytime and nighttime
values. All data points lying between 7:00 AM and 7:00 PM were defined as daytime
temperatures. The remaining points were considered nighttime temperatures. For each of the
station locations the average AC pavement temperature was calculated in the middle of the layer
and both the monthly and seasonal averages of these temperatures were calculated. Tables 3.1
and 3.2 contain the daytime, nighttime and combined (total: day and night) monthly and seasonal
AC pavement temperatures.

Graphs of the monthly and seasonal average AC pavement temperatures are shown in
Figures 3.5 and 3.6. It is to be noted that the average pavement temperature difference between

summer and winter is on the order of 30 to 35 deg. C at all sites. This temperature range
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obviously indicate the wide variation in the elastic properties of the AC as it will be shown later
in this chapter. As expected the northern sites exhibit slightly lower averages than the southern
sites. These average temperatures are later used to calculate the corresponding AC modulus
average values.

Seasonal and monthly averages of the AC temperature are tabulated in Appendix A
including all collected data, at all sections. The seasonal averages are contained in Tables Al to
A9, whereas the monthly averages are listed in Tables A10 to A18. All data points collected have
been examined for accuracy, deleting values from damaged sensors to obtain these averages.
Figueroa et al. (1994) indicated from observations in temperature changes within the pavement
and subgrade profiles that the daytime and the nighttime averages for any sensors located at
depths in excess of 30.5 cm. (1.0 ft.) (i.e. the soil sensors) are virtually identical. In addition, the

asphalt concrete sensors are warmer than the soil sensors (on the average) during the spring and

suminér seasons. Furthermore, in the fall and winter seasons the soil sensors are warmer tharithe ™

asphalt concrete sensors.
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Table 3.2 AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE

(deg C)
LOCATION SPRING | SUMMER FALL WINTER
day 22.68 31.72 14.16 4.80
ADAMS night 21.52 30.60 13.50 445
total 22.10 31.16 13.83 4.62
day 22.08 31.76 12.82 3.65
ATHENS night 20.40 30.12 11.93 3.13
total 21.24 30.94 12.50 3.39
day 19.68 28.86 11.05 1.28
CRAWFORD | night 18.17 27.58 10.42 0.97
total 18.92 28.23 10.74 1.13
day 18.03 28.97 10.46 1.73
KNOX night 16.98 27.99 9.90 1.46
total 17.25 28.48 10.18 1.59
day 18.45 27.74 11.85 3.25
LICKING night 17.65 27.14 11.64 3.14
total 18.05 27.44 11.75 3.20
day 17.43 27.12 10.66 0.63
LUCAS night 17.07 26.46 10.49 0.41
total 17.24 26.79 10.57 0.52
day 18.69 28.42 10.93 0.20
WOOD 2 night 17.49 27.88 10.69 0.03
total 18.09 28.15 10.81 0.11
day 17.18 27.66 9.70 -0.16
WOOD 8 night 16.69 27.43 9.61 -0.23
Total 16.94 27.55 9.66 -0.20

3.1.3. Relationships Between Air Temperature and Average Asphalt Concrete
Pavement Temperature
Equaticns were derived relating the average asphalt concrete pavement temperature to the
air temperature for eight (excluding the Columbiana Co.) of the nine monitored stations. These
station sites were selected among other considerations, in order to show the change in asphalt

concrete temperature corresponding to a change in latitude for a given air temperature.
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Figures Al to A9 show the average AC temperature as a function of air temperature for
all stations. These figures include all of the available field data (both the daytime and the
nighttime values), up to March, 2001. Statistical regression analyses were conducted on the
combined daytime and nighttime values to develop regression equations between the average AC
temperature and the air temperature. Such equations would be useful in inferring the average AC
modulus based on air temperature readings, as it will be shown later. After viewing the graphs of
asphalt concrete temperature vs. air temperature, a polynomial relationship following the general

form of Equation 2.4, reproduced below, yielded the best fit for the field data.

P=Cl+C2 A+C3 A2 24)
where
Cl,C2,and C3 = Regression constants updated in the following chapters for each
station location.
P= Average AC temperature (Deg C).
A= Air temperature (Deg C).

The values of C1, C2, and C3 for the combined daytime and nightime data are included in Table
3.3 for the eight analyzed station locations. In addition, the coefficient of determination RZ,
indicating the highly significant relationship (R*>0.83 in all cases) between the two parameters in

every instance is included for each equation.

The monitoring station locations in order of increasing latitude are Adams, Athens,
Licking, Knox, Crawford and Wood (8.1), Lucas and Wood(2.85) Co. sites. It is instructive to
note that the coefficient C1 (intercept at zero air temperature) for the most part, tends to decrease
with increasing latitude. This indicates that asphalt concrete temperature will be higher in the
southern part than in the northern part of the state. Similarly, the coefficient C3 tends to be
higher in the southern part than in the northern part of the state. This can be related to the
declination of the sun during the colder seasons leading to more direct sunlight in the southern

than in the northern counties of the state.
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Table 3.3 Average AC Temp. vs. Air Temp. Coefficients

Site No. of C1 C2 C3 R
Adams 23732 6.0758 0.8880 0.0044 0.8325
Athens 37420 4.8031 0.9233 0.0062 0.8508
Columbiana*

Crawford 39753 4.7594 0.9110 0.0055 0.8446
Knox 41551 4.4847 0.8917 0.0067 0.8317
Licking 36986 5.2147 0.8447 0.0037 0.8616
Lucas 21408 5.1270 0.9145 0.0014 0.8776
Wood(2.85) 16502 4.0461 0.9483 0.0051 0.8793
Wood(8.1) 37504 3.5786 0.9605 0.0024 0.8554
NORTH 75414 4.1409 0.9423 0.0027 0.8640
CENTRAL 118290 4.8118 0.8860 0.0052 0.8418
SOUTH 61152 5.2834 09113 0.0055 0.8431
ALL SITES 254856 4.7055 0.9107 0.0045 0.8475

* Not enough data to develop

ALL SITES: Adams, Athens, Crawford, Knox, Licking, Lucas, Wood(2.85) and Wood(8.1)
NORTH: Lucas, Wo0d(2.85) and Wood(8.1)

CENTRAL: Crawford, Knox, Licking

SOUTH: Adams, Athens

Examination of the regression equation coefficients shown in Table 3.3 indicates that the
state of Ohio may be subdivided into three general temperature zones: North, (from the North
Shore to Mansfield — Mount Vernon) Central (from Mansfield — Mount Vernon to Lancaster) and

South (from Lancaster to the southern state line). This division will be useful in assessing the
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average AC modulus on a seasonal or monthly basis for any future implementation of
mechanistic pavement design procedures. Individual regression equations for each climatic zone
as well as for all of Ohio were also determined and are included in Table 3.3. It is worth noting

that the overall equation approaches the equation determined for the central zone of the state

3.1.4. Monthly and Seasonal Asphalt Concrete Resilient ModulusVariation

As aresult of temperature differences during the four seasons the resilient modulus of the
asphalt concrete is also expected to vary, in view of the direct dependency of the elastic modulus
of the AC on temperature. To examine the temperature susceptibility (modulus variation) of the
asphalt concrete, the same 3-day sequence used to illustrate the daily variation of temperature
during a given season was selected in this section. Referring back to Figures 3.1 to 3.4 where
typical surface layer temperature variations for a three-day period at mid-spring, mid-summer,
mid-fall and mid-winter at the Wood Co. 2.85 station, the elastic modulus was calculated from
the values of temperature measured at thermistors W12, W11 and W10, with the aid of Equation
2.1 along with the coefficients for mixture 404 contained in Table 2.4. As expected, the elastic
modulus also displays the typical sinusoidal day-night variation also observed in the temperature
changes within the pavement surface layer (when weather fronts do not come through during the
three day sequence).

Figures 3.7 to 3.10 depict the resilient modulus variation for the three-day sequence
during the spring, summer, fall and winter. The times of the day of equal stiffness are also
evident as indicated in the temperature-related discussion. These figures have been plotted with
the same vertical scale to facilitate the comparison of relative modulus values with respect to the
season. For a typical mid-season day the resilient modulus averages:

3791.7 MPa (550 ksi) in the spring (+/- 1034.1 MPa or +/- 150 ksi)
1723.5 MPa (250 ksi) in the summer (+/- 1034.1 MPa or +/- 150 ksi)
8272.8 MPa (1200 ksi) in the fall (+/- 1378.8 MPa or +/- 200 ksi)
15511.5 MPa (2250 ksi) in the winter (+/- 1551.1 MPa or +/- 225 ksi)



The larger modulus range in the colder seasons can be explained as a result of the steeper
variation of the resilient modulus at colder than at warmer temperatures as indicated in Figure
2.1. These typical modulus values also indicate that the contribution of the subgrade soil in
supporting traffic loads is more important during the warmer months because of the lower
stiffness of the surface layer during this time of the year. Unfortunately, this fact is also coupled
with the lower stiffness of the subgrade soil itself during and after the rainy spring and early
summer as is typical in Ohio. Consequently the two combined effects make the spring-summer
the critical time of the year considering environmental effects.

It should be mentioned that a desirable asphalt concrete mixture must have a narrower
modulus range such that it is not too brittle in the winter (low temperature cracking) and not too
soft in the summer (rutting). Additives to asphalt cement may minimize this range and
consequently improve the performance of the asphalt concrete.

Tables 3.4 and 3.5 include monthly and seasonal daytime, nightime and total averages of
the resilent modulus of the asphalt concrete for eight of the nine monitored stations. Once again
these averages were determined from corresponding average AC temperatures as summarized in
Tables 3.1 and 3.2, in combination with Equation 2.1. It is evident, that the three temperature
zones proposed in the previous section are reaffirmed in regards to the relative values of the

modulus of the AC. Specifically, the southern zone is represented by the Adams and Athens Co.

stations; the central zone by the Licking, Knox and Crawford Co. stations and the northern zone
by the Lucas and two Wood Co. stations. Expected ranges of the resilient modulus are easily
selected from this table. A graphical representation of the monthly and seasonal averages of the

resilient modulus of the asphalt concrete is included in Figures 3.11 and 3.12 respectively.



32

Figure 3.7 HOURLY VARIATION OF AC MODULUS - WOOD 2.85 STATION (SPRING)
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Figure 3.8 HOURLY VARIATION OF AC MODULUS - WOOD 2.85 STATION (SUMMER)
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Figure 3.9 HOURLY VARIATION OF AC MODULUS - WOOD 2.85 STATION (FALL)
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Figure 3.10 HOURLY VARIATION OF AC MODULUS - WOOD 2.85 STATION (WINTER) __
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Table 3.5 AVERAGE SEASONAL ASPHALT CONCRETE ELASTIC MODULUS

(MPa)
LOCATION SPRING SUMMER FALL WINTER
day 31299 944.5 6046.0 10216.9
ADAMS night 3481.5 1165.1 6308.0 10396.2
total 3302.2 1047.9 6177.0 10306.5
day 3309.1 937.6 6583.8 10796.0
ATHENS night 3826.2 1282.3 6949.2 11064.9
total 3564.2 1096.1 6714.8 10933.9
day 4060.6 1530.5 7321.4 12043.8
CRAWFORD night 4570.7 1826.9 7590.3 12209.3
total 4315.6 1675.2 7459.3 12126.5
day 4619.0 1509.8 7576.5 11802.5
KNOX night 4991.3 1730.4 7817.8 11947.3
total 4894.7 1620.1 7700.6 11878.4
day 4474.2 1792.4 6983.6 11002.8
LICKING night 4750.0 1930.3 7066.4 11058.0
total 4612.1 1861.4 7025.0 11030.4
day 4825.8 1937.2 7486.9 12402.3
LUCAS night 4956.8 2102.7 7562.7 12512.6
total 4894.7 2019.9 7528.2 12457.5
day 4391.5 1633.9 7376.6 12636.7
WOOD 2 Night 4812.0 1758.0 7480.0 12726.3
total 4598.3 1695.9 74248 13367.5
day 4915.4 1806.2 7907.4 12829.7
WOOD 8 Inight 5094.7 1861.4 7948.8 12871.1
Total 5005.0 1833.8 7928.1 12850.4
day 4215.7 1511.5 7160.3 11716.4
ALL night 4560.4 1707.1 7340.4 11848.2
Total 4398.4 1606.3 7244.7 11868.9
day 4710.9 1792.4 7590.3 12622.9
NORTH night 4954.5 1907.3 7663.8 12703.3
Total 4832.7 1849.9 7627.1 12891.8
day 4384.6 1610.9 7293.9 11616.4
CENTRAL night 4770.6 1829.2 7491.5 11738.2
Total 4607.5 1718.9 7395.0 11678.4
day 32195 941.0 6314.9 10506.5
SOUTH night 3653.8 1223.7 6628.6 10730.5
Total 3433.2 1072.0 6445.9 10620.2
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3.1.5 Seasonal Subgrade Temperature Variations

The most important information obtained from the seasonal variation of subgrade
temperature refers to the depth of frost penetration. This information is helpful when
determining roadside drainage ditch depths as well as granular base thickness for asphalt
concrete pavements when the subgrade soil is frost susceptible.

Two computer programs were written to scan the collected data files containing the
temperature at a given time of the day measured by the active temperature sensors to determine
the maximum depth of frost penetration and the number of freeze-thaw cycles. In the first
program, for a given reporting time, the temperature values are examined in order of decreasing
sensor depth. Once the first sub-freezing temperature value is found, the depth of frost
penetration is obtained by linearly interpolating between the depth of this temperature sensor, its
corresponding temperature, the depth of the temperature sensor immediately below the first
frozen temperature sensor, and its temperature. This program then generates a file containing the
time of the year in decimals of months and the depth of frost penetration in feet. The second
program takes the data file generated by the first scanning program and determines the number of
freeze-thaw cycles and the depth of frost penetration. A frost cycle is defined as a period when
the frost line drops below the bottom of the asphalt concrete pavement and then recedes back into
the pavement surface layer. Figure 3.13 depicts the maximum depth of frost penetration, while
Figure 3.14 shows the number of freeze-thaw cycles. A combined presentation of the number of
freeze-thaw cycles and depth of frost penetration (in English units) for the winters between 1991-
1992 to 2000-2001 is included in Figure 3.15 for the available data at eight of the nine
monitoring stations. It is to be noted from this figure that when the frost penetration is high at the
northern sites the number of freeze-thaw cycles is lower. This normally occurs during harsh
winters. The number of cycles appears to increase during milder winters. Normally, the northern

sites experience an average 7 to 12 cycles as compared to between 4 and 5 in the southern sites.
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Figure 3.13 MAX. DEPTH OF FROST PENETRATION
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As expected the depth of frost penetration is greater in the northern than in the southern
stations. The maximum depth of frost penetration measured to date approached 121.9 cm. (4.0°)
at the Wood 2 station during the 1993-1994 winter, which happened to be a severe winter. On a
normal season the average depth of frost penetration is about 45.7 to 61.0 cm. (1.5 to 2.0°) at the
southern stations and from 70.1 to 82.3 cm. (2.3 to 2.7") at the northern locations.

Summary tables and average values are included in Appendix B (Tables Bl to BS)
showing the depth of frost penetration and the number of freeze-thaw cycles during each
monitored winter for each of the seven monitoring stations. This data is complete including the

monitoring periods listed in Table 2.3.

Figure 3.15 No. OF F-T CYCLES & FROST DEPTH
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The most critical condition occurs when frost penetrates the entire surface layer and
enters the gravel base and the subgrade soil. It is to be indicated that the definition of a frost

cycle, previously given, does not take into consideration its "severity". For example, the long,
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deep cycle beginning in the middle of February at the Wood(8.1) Co. site should cause more
damage than the short, shallow cycle occurring near the end of December at the Licking Co. site.
It is well known that both repeated freeze-thaw cycles and a severe frost cycle are damaging to

frost susceptible soils.

3.2 Rainfall Data

Precipitation summaries are included in Appendix C for all nine sites when data is
available. Figure 3.16 and Tables C1 to C9 include the seasonal precipitation measured during
the monitoring period. Similarly, Tables C10 to C18 contain detailed monthly precipitation
recorded at each location. Rainfall data will be used later to determine if a correlation exists
between the arnount of precipitation and the value of the back-calculated resilient modulus from
Falling Weight Deflectometer-measured deflections. Data for the "cold" months (i.e. Jan., Feb.,
Mar., etc.) may be somewhat misleading because the snow must melt by itself in order to trigger

the tipping switch within the rain gage, in view of the absence of automatic heaters in the gage.

Figure 3.16 SEASONAL RAINFALL
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3.3 Degree of Saturation

In order to determine the degree of saturation from the voltage readings generated by the
gypsum block-type moisture sensors the calibration developed by Figueroa et al .(1994) during
the project “Characterization of Ohio Subgrade Types” was adopted as explained below.

3.3.1 Moisture Sensor Calibration Factors

Typically the gypsum block sensors provide a voltage output of approximately 0.0 volts
when completely dry and of 4.0 volts when saturated (submerged). Incidentally, output voltages
in excess of 4.0 have been observed (up to about 4.3 V) in the data retrieved at one of the Logger
sites. It is possible that the moisture sensors are picking up localized spurious electrical currents.
Another explanation involves the temperature sensors. Each moisture sensor has a temperature
probe located six inches above it and six inches below. These temperature probes operate on a
SVDC current. The moisture sensors, on the other hand, use a 4VAC power source. In
extremely wet soil there might be some current leakage ("cross talk") from the temperature
probes to the moisture sensors.

Since the output voltages of the moisture sensors are being recorded at all sites, the
calibration equation suggested by Armstrong, et al. (1985) had to be modified (see Figueroa et al.
1994, for more details). The sensor resistance contained in this equation was replaced by sensor
output voltage and soil moisture tension was replaced by the degree of soil saturation. In
addition, the degree of saturation is approximately inversely proportional to the soil moisture

tension, as shown by Walsh et al. (1993) The developed combined equation are presented next.

Using the nomenclature

C,D,E, F, G, and H = Regression constants
V = Sensor output voltage (V)

T = Sensor temperature (Deg C)

Sr = Degree of saturation of the soil (%)
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During the sensor calibration, it was observed that for a given degree of saturation, its
output voltage varied linearly with temperature. Thus the equation:

V=A+BT G.1)
Could be followed to link voltage output to temperature. The slope and vertical intercept of the
straight line represented by this equation was found to be a function of the degree of saturation of
the soil. Coefficients A and B best related to the degree of saturation using a second order
polynomial fit as shown below.

A =C +DSr+ ESr? (3.2)

B =F + GSr + HSr2 (3.3)

Since the sensor output voltage and the sensor temperature are known, Equation 3.1
needed to be solved in conjunction with Equations. 3.2 and 3.3 for the degree of saturation (S).

As a result, Equation 3.4 was obtained.

(E+HT)Sr? + (D+GT)Sr + (C+FT-V) =0 (3.4)

The positive root of this simple quadratic equation is then solved for S, leading to Equation

3.5

_(D+GT)+(D+GTP —4(E + HTXC + FT V)

Sr= 2(E + HT) 3-5)

with regression constants:

C= 2.14103
D =-0.04139
E= 5.973315x10%

=_0.03814
G= 2.312154x10-3
H=-1.92560 x10-3

and Coefficient of Determination R2=.94
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This equation is valid for fine-grained soils with temperatures between 0 and 30 degrees
Celsius and corresponding moisture sensor output voltages between 1.5 and 4.0 volts. In
practice, the temperature at the moisture sensor depth is determined by interpolation of the
temperature measured by the thermistors located above and below the moisture sensor, since the

thermistors and moisture sensors are normally offset every six inches.

3.3.2 Degree of Saturation Results

Whenever possible, the degree of saturation was determined at each location at four sensor
depths designated by sensors W1, W2, W3 and W4, which measure voltages corresponding to Sr.
The location of each sensor is specified in Table 2.2b with W1 being the deepest and in
sequential order W2, W3 and finally W4 being the closest to the surface. The degree of

saturation corresponding to these sensors has been labeled Sr1, Sr2, Sr3 and Sr4 respectively.

Monthly averages of the degree of saturation are included in Figures 3.17 to 3.24 for
eight of the nine stations, with the numerical detail contained in Tables C19 to C26. Each figure
and table shows the values for each of the working moisture sensors identified above. Seasonal
values have been included in Figures 3.25 to 3.32 and in Tables C27 to C34, where the “*”
following the specific season indicates incomplete data.

Examination of these figures and tables indicates that the degree of saturation varies
between about 90% and 100% throughout the monitoring period. It is also observed that the
degree of saturation “appears” to consistently decrease in the winter months. This may not
actually be an actual decrease in Sr but a peculiarity of the sensor, in particular when the frost
line reaches the sensor depth. Minor variations in Sr (between 96 and 100%) are observed
throughout the year, which may be associated to previous rainfall regime affecting this zone. The
late spring to early summer period seems to consistently lead to slightly higher (nearing 100%)
degree of saturation at all depths. The delay in the increase with respect to the higher rainfall may
be attributed to the low permeability of the subgrade soil and the time it takes for moisture to

migrate from the shoulder to the center of the lane. In late summer and fall the flow will be



reversed from the center of the lane to the shoulder, also leading to somewhat lower degree of
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saturation prior to the beginning of the winter.

Degree of Saturation Sr(%)

Figure 3.17 Variation of Degree of Saturation ADAMS Co.
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Figure 3.18 Variation of Degree of Saturation ATHENS Co.
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Figure 3.19 Variation of Degree of Saturation COLUMBIANA Co.
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Figure 3.20 Variation of Degree of Saturation CRAWFORD Co.
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Figure 3.21 Variation of Degree of Saturation KNOX Co.
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Figure 3.22 Variation of Degree of Saturation LICKING Co.
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Figure 3.23 Variation of Degree of Saturation WOOD2 Co.

102.00

S

S
\‘{b

100.00

98.00

96.00

94.00

9200 |- oo

90.00 f-—o v o e

88.00 B

86.00

84.00

82.00 - - - -

8000 {-- R

78.00 .

76.00

v v
$ 3

'—+—Sr1

--&--Sr2
—4&— Sr3
————Sr4

f—e—sn

—&—Sr2

i— 4 — Sr3

--%--Srd4



Degree of Saturation {%)

Degree of Saturation Sr(%)

Figure 3.24 Variation of Degree of Saturation WOOD8 Co.
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Figure 3.25 Seasonal Degree of Saturation-ADAMS Co.
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Figure 3.26 Seasonal Degree of Saturation-ATHENS Co.
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Figure 3.28 Seasonal Degree of Saturation-Cawford Co.
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Figure 3.29 Seasonal Degree of Saturation-KNOX Co.
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Figure 3.30 Seasonal Degree of Saturation-LICKING Co.
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Figure 3.32 Seasonal Degree of Saturation-WwOODS8 Co.
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Chapter 4
BACK CALCULATION OF RESILIENT MODULUS OF SUBGRADE SOILS
FROM FALLING WEIGHT DEFLECTOMETER TEST RESULTS

An alternate procedure to evaluate the influence of seasonal factors on the material
properties of flexible pavements is with the use of non-destructive testing techniques. Proper
characterization of the response of a flexible pavement subjected to repeated, dynamic loads and
its seasonal variations are essential in the development of mechanistic-based pavement design
procedures. Findings from a previous study by Thompson et al. (1976) indicated that the
seasonal resilient behavior of the asphalt concrete and the fine-grained soil significantly
influence the performance of a flexible pavement.

Recently the Falling Weight Deflectometer (FWD) has gained popularity in the
evaluation of pavement layer mechanical properties. As part of this research project, the Ohio
Department of Transportation has been conducting FWD testing at six of the station locations,
with a frequency of 3 to 4 times per year, in an effort to evaluate material property variation on a
seasonal basis. Details of the method developed in this project to back calculate the resilient
modulus of subgrade soils at the break point from measured FWD deflections were introduced in

Section 2.2.2 of this report and will be expanded next, followed by actual computations.

4.1 Analysis Method

Falling Weight Deflectometer (FWD) tests at three different load levels were performed

three to four times a year (once every season, when possible) at six of the station locations. FWD
testing was conducted along a 152.4 m. (500 ft.) long section at a spacing of 15.2 m. (50 ft.) A
reference point at mid-length within the test section was selected to coincide with the seasonal
instrumentation installed in the middle of the travel lane.

FWD Loads are applied to the asphalt concrete surface via a rubber coated steel loading

plate, with a radius of 15 cm. (5.9 in.) and the corresponding pavement deflections are measured
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and recorded at seven radial distances including ).0.0, 20.3, 30.5, 45.7, 61.0, 91.4 and 152.4 cm.

(0.0, 8.0, 12.0, 18.0, 24.0, 36.0 and 60.0 in.) from the center of the loading plate.

As previously indicated, the flexible pavement analysis program (ILLIPAVE) was used

to develop nomographs to back calculate the resilient modulus at the break point of the subgrade

based on measured maximum Falling Weight Deflectometer (FWD) deflections for a given soil

type, during the “Characterization of Ohio Subgrade Types” project (Figueroa et al., 1994). The

resilient modulus at the break point was selected as the representative parameter.to define both

the bilinear stress-dependent model introduced by Thompson et al. (1976), as well as the stiffness

characteristics of fine-grained soils.

The back calculation procedure has been previously shown in Figure 2.2. A FORTRAN

computer program to follow this procedure was written for each of the six test sites, with the

following detail:

Since FWD testing is conducted at three load levels between approximately 40.03 and
53.38 kN (9000 and 12000 Ibs), linear interpolation is used to calculate the deflection at
exactly 53.38 kN (12000 1bs) of load. This load was selected, since nomographs were
developed previously to determine the maximum FWD deflection according to Equation
2.5, with the coefficients contained in Table 2.5, for this selected magnitude of load.
These coefficients indicate the relative influence of Eg4; with respect to E;j in affecting
the total deflection, leading to the conclusion that the total deflection is very sensitive to
the variation of E. This influence is evident in the values of the coefficients a, and a,,
whereby a, is approximately two orders of magnitude higher than a,, although E,. and

E;; do not differ by as much as two orders of magnitude at a given time during the year.

The air temperature is in most instances measured during FWD tests. Alternatively, when
the FWD does not provide the air temperature, it is interpolated from logger air
temperature readings obtained at the same time the FWD testing was conducted.

The air temperature is entered into Equation 2.4 using the coefficients for the specific

site and the corresponding average asphalt concrete pavement temperature is obtained.
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e The AC pavement temperature is then entered into Equation 2.1 (with coefficients
defined in Table 2.4) to obtain the AC modulus at the time of FWD testing.

e The AC modulus is entered into Equation 2.6 with the coefficients corresponding to the
soil type existing at the site, along with pavement section characteristics such as the AC
thickness, the gravel base thickness, and the maximum FWD deflection (interpolated at
53.38 kN (12000 lbs) of FWD load) to obtain the resilient modulus of the subgrade soil at
the break point E;.

e The process is repeated for each of the eleven locations along the test section and the
program calculates an average resilient modulus for the complete section, as well as for
the reference point (where the logger instrumentation is located)

Data to back calculate the resilient modulus at the break point, including date, time and
temperature of seasonal FWD testing is included in Tables D1 to D6 for each of the six tested
and analyzed locations. These tables also specify whether the air temperature was measured by
the FWD or by the data logger. Testing periods have been designated by the four seasons.

However, these designations for the most part correspond to the following times of the year:

SPRING: Late winter — early spring
SUMMER: Early summer

FALL Late Summer - early fall
WINTER Late fall

4.2 Back Calculated Resilient Modulus

Summaries of back-calculated resilient modulus by the procedure outlined above are
included in Tables D7 to D12 for the testing detail contained in Tables D1 to D6. Tables D7 to
D12 include the average value along the section, corresponding to eleven FWD test locations as
well as E, at the reference point where the seasonal instrumentation is located. Overall seasonal

averages of both moduli were also calculated and are included in Table 4.1. This table also
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Table 4.1 Average Seasonal Resilient Modulus Back Calculated from FWD Deflections

(MPa)

STATION Res. Mod. Eri SPRING | SUMMER FALL | WINTER
Av. Along Sect. 33.9 19.1 421 19.0

ADAMS % From Max. 80.70 45.46 100.00 45.16
@ Ref. Pt. 50.6 40.1 53.7 56.6

Av. Along Sect. 144.8 153.2 155.5 143.0

ATHENS % From Max. 93.15 98.50 100.00 91.93
@ Ref. Pt. 162.8 162.0 163.7 157.9

Av. Along Sect. 316 36.0 281 445

CRAWFORD | % From Max. 70.95 80.84 63.17 100.00
@ Ref. Pt. 316 423 33.6 54.0

Av. Along Sect. 41.9 76.7 76.6 82.0

KNOX % From Max. 51.11 93.49 93.32 100.00
@ Ref. Pt. 30.3 49.7 51.7 65.8

Av. Along Sect. 220.7 242.5 2525 233.3

LICKING % From Max. 87.40 96.03 100.00 92.40
@ Ref. Pt. 164.3 186.8 196.5 188.1

Av. Along Sect. 63.7 67.9 82.2 56.2

WOODS8 % From Max. 87.40 82.58 100.00 68.34
@ Ref. Pt. 67.9 67.1 88.7 60.9

contains the percentage of the average seasonal modulus along the section with respect to the
maximum value observed at any given season during the year. For example, considering the

Adams county section, the maximum average modulus of 42.1 MPa (6.10 ksi) is observed in the
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designated fall testing period, whereas the spring testing period yields E; = 33.9 MPa, (4.92 ksi)
which is 80.70% of 42.1 MPa (6.1 ksi). These percentages are useful in ranking the seasons of
higher to lower modulus. By assigning a ranking of 4 to the season with the highest modulus and
of 1 to the season with the lowest modulus (obviously ranks of 3 and 2 to the intermediate
seasons) at each station location, a total point ranking is obtained by adding the points for
individual seasons. In order of higher point ranking and consequently of expected higher resilient

Y <«

modulus the designated “fall” testing period is the highest followed by “summer”, “winter” and
“spring” in decreasing order. This ranking is expected since the fall testing period follows the
generally drier summer season and the spring testing period happens at the spring thaw and
normally wetter early spring. The high resilient modulus averages obtained at the Licking Co.

station can be explained by the presence of the 45.7 cm (18 in) — thick lime stabilized layer

existing beneath the gravel base.

The back calculated average resilient modulus (at the break point) along the test section
and at the reference point have been included in dual axis plots with the amount of seasonal
rainfall in Figures 4.1 to 4.6, for individual instrumented test sections, in an effort to determine if
any relationship exists between amount of rainfall and subgrade modulus. More detailed similar

plots containing the monthly rainfall and the average resilient modulus along the section were

-also drawn for each test section and are included in Figures 4.7 to 4.12.

The observation of the two sets of figures indicates that for the most part a higher back
calculated resilient modulus follows generally lower amounts of rainfall. Similarly lower
resilient modulus back calculations are generally preceded by higher rainfall. However, no
correlation between the amount of rainfall accumulated during either one, two or three months

preceding the date of FWD testing with the back calculated resilient modulus was found.
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Figure 4.1 Resilient Modulus Variation (Adams)
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Figure 4.2 Resilient Modulus Variation (Athens)
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Figure 4.3 Resilient Modulus Variation (Crawford)
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Figure 4.4 Resilient Modulus Variation (Knox)

i

e
v E
s
W@Pn,
'S5 §
< oy
10+
(wo) |jejuiey
g ? g a 3 & R e 2 0 o
eapkss————
«M\. _
- | ot —
W
—
AVAH
P
‘\\u\\\ A
f =
h B
4
e —
! ~ -
-l E
4
g & 3 8 3 ? < e
3 & =

(edW) sninpow Jualiisay

10dS

004

00dS

664

66dS

864

86dS

164

16dS

963

96dS

G664

$6dS

¥64

. $6dS

£64

€6dS

o
o
u.

26dS

L 163



62

Figure 4.5 Resilient Modulus Variation (Licking)
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Figure 4.6 Resilient Modulus Variation (Wood8)
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Figure 4.7 Resilient Modulus vs. Monthly Rainfall (Adams Co.)
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Figure 4.8 Resilient Modulus vs. Monthly Rainfall (Athens Co.)

-

30.00

- 25.00

N4

1]
5
1<
i
[
i

(wo) yejurey
(=]
=]
v

—o— Rainfalt

- 10.00

I 20.00

5.00

0.00

250.00

200.00

150.00 1
00

{(edi) snInpoj uelisdY

0.00

Lo-ei
00-AON
0o-inp
00~
66-AON
e6-nr
66-18
86-AON
861

F 86-Je

L6AON
L671r
1677
96-AON
96-inr

| 96-tey
F G6-AON

se-inr

| G6-1epy
- $6-AON

¥6-Inr
v6-JeN
€6-A0N

 e6inr

€6-JeN
C6-AON
c6Int

Z6-leN
$6-AON



64

Figure 4.9 Resilient Modulus vs. Monthly Rainfall (Crawford Co.)
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Figure 4.10 Resilient Modulus vs. Rainfall (Knox Co.)
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Figure 4.11 Resilient Modulus vs. Monthly Rainfall (Licking Co.)
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Figure 4.12 Resilient Modulus vs. Rainfall (Wcod 8)
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Chapter S

SUMMARY AND CONCLUSIONS

Nine moisture-temperature-rainfall recording stations previously installed during the
project “Characterization of Ohio Subgrade Types” (Figueroa et al. 1994) and monitored for an
additional time period of 2-1/2 years during the project “Monitoring and Analysis of Data
Obtained from Moisture-Temperature Recording Stations," were monitored during this project
for an additional period of three years. These stations were located in Adams, Athens,
Columbiana, Crawford, Licking, Lucas and Wood (two stations) county. The station locations
were selected to include the variation in climate within the state of Ohio and the four most
commonly occurring soil types (A-3, A-4, A-6, and A-7). The Columbiana Co. station was
destroyed by a vehicle crash and one of the Wood Co. stations had to be dismantled because of
new urban development in its vicinity. These stations recorded hourly, daily and seasonal
variations in air temperature, rainfall, temperature within the asphalt concrete layer and moisture
content (or degree of saturation) and temperature within the subgrade soil.

The temperature sensors recorded air, asphalt concrete pavement and subgrade soil
temperatures. Typically, temperature variations within the subgrade soil are minimal on a daily
basis. Only the uppermost subgrade soil thermistor shows daily temperature variations, although
within a narrower range, following those of the lowest asphalt concrete thermistor.

The thermistors within the asphalt concrete layer exhibit large daily temperature
fluctuations. Typically the AC layer exhibits a uniform temperature (no temperature gradient)
twice a day, normally occurring between 8:00 and 10:00 AM and around 8:00 PM. After
the morning period of no temperature gradient, thermistors closer to the surface show faster
warming as compared to those near the bottom of the surface layer. An opposite trend occurs
after the evenirng period of no temperature gradient. This information is important in selecting the
optimal times for FWD testing (between 8:00-10:00 AM) since the surface layer exhibits a

uniform stiffness throughout its thickness. Similarly, the maximum daytime temperature gradient
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within the pavement is observed between 2:00 and 4:00 PM at all seasons and the maximum
overnight temperature gradient occurs around 6:00 AM. It is to be noted that the temperature
gradient is greater in the afternoon than in the early morning and that AC layer temperature
variations closely follow air temperature changes.

The average AC pavement temperature was calculated in the middle of the layer at each
location, then monthly and seasonal averages were tabulated. The average pavement temperature
difference between summer and winter is of the order of 30 to 35 deg. C at all sites. This
range also indicates the wide variation in the elastic properties of the AC. As expected the
northern sites exhibit slightly lower averages than the southern sites. The average monthly and
seasonal asphalt concrete temperatures are summarized in Tables 3.1 and 3.2 respectively for
each tested site.

Figueroa et al. (1994) indicated from observations in temperature changes within the
pavement and subgrade profiles that the daytime and the nighttime averages for any sensors
located at depths in excess of 30.48 cm. (1.0 ft.) (i.e. the subgrade soil sensors) are very similar.
In addition, the asphalt concrete sensors show warmer temperatures than the subgrade soil
sensors (on the average) during the spring and summer. However, this trend reverses during the
fall and winter.

Polynomial equations were derived relating the average asphalt concrete pavement
temperature to the air temperature for eight (excluding the Columbiana Co.) of the nine
monitored stations. The coefficients included in these equations indicate that asphalt concrete
temperature is higher in the southern part than in the northern part of the state. The regression
coefficients also point to the fact that the state of Ohio may be subdivided into three general
temperature zones: North, (from the North Shore to Mansfield ~ Mount Vernon) Central (from
Mansfield — Mount Vernon to Lancaster) and South (from Lancaster to the southern state line).
This division is useful in assessing the average AC modulus on a seasonal or monthly basis for
any future implementation of mechanistic pavement design procedures. Separate regression

coefficients have been provided for each of the three zones as well as for all of them together.
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Table 3.3 includes the coefficients applicable to the polynomial equation of the form of Equation
2.4 for the eight specific sites, all sites grouped together as well as the northern, central and
southern zones of the state. It is then possible to determine the average asphalt concrete
temperature from measured air temperature which is normally obtained during FWD testing.

As a result of temperature differences during the four seasons the resilient modulus of the
asphalt concrete also changes in an inverse form to the temperature variation. It was determined
that for a typical mid-season day the resilient modulus averages:

3791.7 MPa (550 ksi) in the spring (+/- 1034.1 MPa or +/- 150 ksi)

1723.5 MPa (250 ksi) in the summer (+/- 1034.1 MPa or +/- 150 ksi)

8272.8 MPa (1200 ksi) in the fall (+/- 1378.8 MPa or +/- 200 ksi)

15511.5 MPa (2250 ksi) in the winter (+/- 1551.1 MPa or +/- 225 ksi)
These typical modulus values also indicate that the contribution of the subgrade soil in
supporting traffic loads is more important during the warmer months because of the lower
stiffness of the surface layer during this time of the year. Unfortunately, this fact is also coupled
with the lower stiffness of the subgrade soil itself during and after the rainy spring and early
summer as is typical in Ohio. Consequently the two combined effects make the spring-summer
the critical time of the year considering environmental effects. Typical monthly and seasonal
average values of the resilient modulus of the asphalt concrete for each station, for the three

suggested climatic zones and for all of the state have been calculated from the collected data.
Average monthly and seasonal asphalt concrete modulus values are listed in Tables 3.4 and 3.5
respectively. These tables contain specific values for each location, all combined stations. the
northern, central and southern zones of the state, of direct application as inputs to a mechanistic
pavement design procedures.

Recorded depths of frost penetration show, as expected, that they are greater in the
northern than in the southern stations. The maximum depth of frost penetration measured to date
approached 121.9 cm. (4.0 ft.) at the Wood 2 station during the 1993-1994 winter, which

happened to be a severe winter. On a normal season the average depth of frost penetration 1s
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about 45 to 61 cm. (1.5 to 2.0 ft) at the southern stations and from 70 to 82 cm. (2.3 to 2.7 f1) at
the northern locations. It was also observed that when the frost penetration is high at the northern
sites the number of freeze-thaw cycles is lower. This normally occurs during a severe winter. The
number of cycles appears to increase during milder winters. Normally. the northern sites
experience an average 7 to 12 cycles as compared to between 4 and 5 in the southern sites.
Detailed curves of depth of frost penetration and number of freeze-thaw cycles are included in
section 3.1.5 and in Appendix B

Collected precipitation was summarized on a monthly and seasonal basis to determine if a
correlation existed between the amount of precipitation and the degree of saturation of the
subgrade soil, as well as the value of the back calculated resilient modulus from Falling Weight
Deflectometer-measured deflections.

A calibration equation previously developed was used to obtain monthly and seasonal
averages of the degree of saturation from moisture and temperature sensor readings at each of
four moisture sensor locations. The degree of saturation typically varied between about 90% and
100% throughout the monitoring period. It was also observed that the degree of saturation
“appears” to consistently decrease in the winter months. This may not actually be an actual
decrease in Sr but a peculiarity of the sensor, in particular when the frost line reaches the sensor
depth. Minor variations in Sr (between 96 and 100%) are observed throughout the year which
may be associated to previous rainfall regime affecting this zone. The late spring to early summer
period seems to consistently lead to slightly higher (nearing 100%) degree of saturation at all
depths. The delay in the increase with respect to the higher rainfall may be attributed to the low
permeability of the subgrade soil and the time it takes for moisture to migrate from the shoulder
to the center of the lane. In late summer and fall the flow will be reversed from the center of the
lane to the shoulder, also leading to somewhat lower degree of saturation prior to the beginning
of the winter.

Finally a method to back calculate the resilient modulus of subgrade soils (Eri) at the

break point from measured FWD deflections was developed. The method, explained in Section
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2.2.2. requires the input of the maximum FWD deflection. the resilient modulus of the asphalt
concrete (alternatively determined from air temperature readings in combination with Equations
2.4 and 2.1) and the thickness of the asphalt concrete and the base layers. Eri is back calculated
through equation 2.6 using the coefficients listed in Tables 2.5a and 2.5b depending on the soil
type (A-4. A-6 or A-7) and the applied FWD load. If the exact FWD load is not found in these
tables. interpolation is required.

Overall seasonal averages of Eri were obtained at each of six station locations where
FWD testing was conducted. Seasons were ranked in terms of expected higher resilient modulus.
The designated “fall” testing period (early fall) showed the highest followed by “summer”,
“winter” and “spring” in decreasing order. This ranking is expected since the fall testing period
follows the generally drier summer season and the spring testing period happens at the spring
thaw and normally wetter early spring, also reflected in a higher degree of saturation, as
described above.

Generally, for the most part a higher back-calculated resilient modulus followed lower
amounts of rainfall. Similarly lower resilient modulus back calculations were generally preceded
by higher rainfall.

Attempts to correlate the amount of rainfall accumulated over either one month, two or
three months preceding the date of FWD testing with the back calculated resilient modulus were

unsuccessful.
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Appendix A

AVERAGE AC TEMPERATURE AND RELATIONSHIPS BETWEEN
AIR TEMPERATURE AND AVERAGE ASPHALT CONCRETE
PAVEMENT TEMPERATURE
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Table Al. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Adams Co.)

(deg C)
YEAR SPRING SUMMER FALL WINTER
day
1991 night
total
day
1992 night
total
day -*
1993 night -*
total -*
day 22.37 -* - -
1994 night 21.37 -* - -
total 21.87 -k - -
day ¥ 32.78 12.53 2.90
1995 night ¥ 31.93 11.97 2.64
total X 32.35 12.25 2.77
day -* - -* 5.40
1996 night -* - ¥ 4.98
total -* - ¥ 5.19
day 19.90 31.24 13.63 6.80
1997 night 18.68 30.03 12.93 6.48
total 19.29 30.64 13.28 6.64

* Incomplete Data
- Data not available
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Table Al. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Adams Co.)
Cont. (deg C)

-

YEAR SPRING SUMMER FALL WINTER
day 2245 32.52 15.65 5.12
1998 night 21.36 31.32 14.94 4.74
total 21.90 31.92 15.30 4.93
day 23.91 32.87 16.46 -
1999 night 22.52 31.47 15.66 -
total 23.21 32.17 16.06 -
day 24.77 29.17 12.53 3.76
2000 night 23.65 28.23 11.98 3.39
total 24.21 28.70 12.25 3.57

* Incomplete Data
- Data not available




78

Table A2. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Athens Co.)

(deg €)
YEAR SPRING SUMMER FALL WINTER
day 5.72
1991 night 4.32
total 5.02
day 21.59 30.28 13.10 4.14
1992 night 18.73 28.91 12.27 3.66
total 20.16 29.59 12.69 3.90
day 22.22 33.46 12.86 *
1993 night 20.13 31.23 11.77 *
total 21.18 32.34 12.32 *
day * 31.43 14.77 4.58
1994 night * 29.05 13.39 3.70
total * 30.24 14.98 4.14
day 22.34 33.92 12.24 1.97
1995 night 20.27 31.98 11.25 1.72
total 21.30 32.95 11.75 1.84
day 20.08 -* - ¥
1996 night 18.58 - - -*
total 19.33 -k - -k
day ¥ 30.14* 12.78 6.23
1997 night ¥ 28.45% 11.86 5.89
total ¥ 29.29% 12.32 6.06

* Incomplete Data
- Data not available
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Table A2. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Athens Co.)
Cont. (deg C)

YEAR SPRING SUMMER FALL WINTER
day 23.19 32.92 14.74 3.79
1998 night 21.66 31.39 14.10 3.73
total 22.43 32.16 14.42 3.76
day 22.76 34.26* - -
1999 night 21.84 33.02* - -
total 22.30 33.64* - -
day 22.37 27.65 9.27 -0.85
2000 night 21.56 26.90 8.84 -1.13
total 21.96 27.27 9.05 -0.99

* Incomplete Data
- Data not available

Table A3. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE

(Columbiana Co.) (deg C)
YEAR SPRING SUMMER FALL WINTER
day
1993 night
total
day 6.48* 0.42
1994 night 4.22% -2.03
total 5.34* -0.80
day 13.85 23.62* 6.92 -3.47*
1995 night 9.45 19.12%* 4.74 -4.40%*
total 11.69 21.37* 5.83 -3.94%

* Incomplete Data
- Data not available
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Table A4. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Crawford Co.)

(deg C)
YEAR SPRING SUMMER FALL WINTER
day
1991 night
total
day * 26.81 10.22 1.95
1992 night * 26.78 10.14 2.06
total * 26.80 10.18 2.01
day 18.68 30.75 10.61 -0.81
1993 night 17.61 28.85 9.81 -1.45
total 18.15 29.80 10.21 -1.13
day 20.01 29.33 13.32 2.55
1994 night 17.88 27.37 12.27 1.78
total 18.95 28.35 12.80 2.17
day 18.42 30.29 9.47 -1.40
1995 night 16.62 28.54 8.70 -1.60
total 17.52 2941 9.08 -1.50
day 15.92 ¥ -* 5.46
1996 night 14.41 -* -* 4.97
total 15.16 ¥ ¥ 522
day 20.90 30.52 12.69 6.97
1997 night 18.98 29.17 12.04 6.59
total 19.94 29.84 12.36 6.78

* Incomplete Data
- Data not available
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Table A4. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Crawford Co.)
Cont. (deg C)

YEAR SPRING SUMMER FALL WINTER
day 23.40 30.48 12.72 -0.08
1998 night 21.81 29.19 12.01 -0.29
total 22.61 29.84 12.36 -0.19
day 20.47 28.80 11.18 -
1999 night 19.23 27.84 10.59 -
total 19.85 28.32 10.89 -
day 19.64 23.90 8.20 -4.42
2000 night 18.86 22.92 7.82 -4.30
total 19.25 23.45 8.01 -4.36

* Incomplete Data
- Data not available
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Table A5. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Knox Co.)

(deg C)
YEAR SPRING SUMMER FALL WINTER
day ¥ 3.50
1991 night X 2.84
total ¥ 3.17
day 18.49 27.62 10.91 2.47
1992 night 16.66 27.69 10.80 2.35
total 17.58 27.65 10.85 241
day 19.04 30.59 11.37 -0.02
1993 night 18.60 30.24 11.16 -0.05
total 18.82 30.42 11.27 -0.05
day 19.54 28.67 13.30 2.70
1994 night 18.93 28.23 12.97 2.70
total 19.24 28.45 13.14 2.70
day 18.11 -* - -
1995 night 17.60 -* - -
total 17.85 -k - -
day 18.31 32.12 12.04 2.96
1996 night 17.97 31.83 11.82 2.97
total 18.14 31.97 11.93 2.96
day 15.60 28.64 8.86 4.12
1997 night 15.08 28.39 8.63 4.01
total 15.34 28.51 8.74 4.06

* Incomplete Data
- Data not available
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Table AS. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Knox Co.)
Cont. (deg C)

YEAR SPRING SUMMER FALL WINTER
day 18.56 30.35 11.01 0.08
1998 night 18.09 28.03 9.79 -0.67
total 18.33 29.19 10.40 -0.29
day 17.21 28.35 9.12 -
1999 night 14.65 25.99 7.76 -
total 15.63 27.17 8.44 -
day 17.43 25.39 7.04 -1.94
2000 night 15.28 23.55 6.28 -2.47
total 16.35 24.47 6.66 -2.21

* Incomplete Data
- Data not available




84

Table A6. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Licking Co.)

(deg C)
YEAR SPRING | SUMMER FALL WINTER
day * 4.42
1991 night * 421
total -* 432
day 18.03 25.73 11.18 2.92
1992 night 17.33 26.26 11.40 3.05
total 17.68 25.99 11.29 2.98
day 18.74 29.01 11.73 0.57
1993 night 17.85 28.15 11.42 0.35
total 18.30 28.58 11.58 0.46
day 19.35 27.30 13.81 3.70
1994 night 18.46 26.35 13.37 3.50
total 18.91 26.82 13.59 3.60
day 18.63 28.89 10.80 1.46
1995 night 17.85 28.27 10.63 1.48
total 18.24 28.58 10.71 1.47
day 17.60 28.27 10.99 3.78
1996 night 16.91 27.60 10.76 3.63
total 17.26 27.94 10.87 3.71
day 16.66 26.17 11.48 5.34
1997 night 15.88 25.48 11.18 5.24
total 16.27 25.83 11.33 5.29

* Incomplete Data
- Data not available
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Table A6. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Licking Co.)
Cont. (deg C)

-

YEAR SPRING SUMMER FALL WINTER
day 20.16 28.80* 12.99 3.80
1998 night 19.29 27.84* 12.75 3.69
total 19.72 28.32* 12.87 3.74
day ¥
1999 night ¥
total -*

Table A7. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Lucas Co.)

(deg ©)
YEAR SPRING SUMMER FALL WINTER
day 25.70 -* 1.45
1992 night 24.85 ¥ 1.16
total 25.28 -* 1.31
day 17.33 27.70 10.42 -1.06
1993 night 17.07 27.35 10.24 -1.36
total 17.20 27.52 10.33 -1.21
day 18.79 26.77 12.32 2.29
1994 night 18.71 26.64 12.27 2.04
total 18.75 26.70 12.29 2.16
day 16.70 28.44 9.54 -0.18
1995 night 16.63 27.97 9.28 -0.18
total 16.66 28.20 9.41 -0.18
day 16.90 27.01 10.37 -
1996 night 15.89 25.49 10.17 -
total 16.39 26.25 10.27 -

* Incomplete Data
- Data not available
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Table A8. AVERAGE SEASONAL ASPHALT CONCRETE TEMPLERATURLE (Wood 2 Co.)

(deg C)
YEAR SPRING SUMMER FALL WINTER
day
1991 night
total
day =¥ 26.15 9.90 0.91
1992 night ¥ 26.03 9.78 0.70
total -* 26.09 9.84 0.81
day 18.68 29.78 9.69 -2.40
1993 night 16.81 27.88 8.89 -2.91
total - 17.74 28.83 9.29 -2.66
day 20.06 29.33 13.19 2.08
1994 night 18.11 29.72 13.39 2.29
total 19.08 29.53 13.29 2.19
day 17.34
1995 night 17.54
total 17.44

* Incomplete Data
- Data not available
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Table A9. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Wood 8 Co.)

(deg C)
YEAR SPRING SUMMER FALL WINTER
day
1991 night
total
day -* 25.60 -* 0.05
1992 night -* 25.92 -* -0.03
total -* 25.76 -* 0.01
day 17.20 28.99 10.18 -*
1993 night 16.00 27.84 10.04 ¥
total 16.60 28.41 10.11 -*
day -* 29.09 13.01 1.89
1994 night ¥ 28.71 12.79 1.72
total -* 28.90 12.90 1.81
day 17.94 30.53 9.50 -0.88
1995 night 17.39 30.32 9.41 -0.88
total 17.66 30.42 9.46 -0.88
day 16.00 28.81 8.92 -0.23
1996 night 15.60 28.53 8.79 -0.33
total 15.80 28.67 8.86 -0.28
day 15.20 26.58 8.76 1.84
1997 night 14.73 26.54 8.75 1.84
total 14.97 26.56 8.76 1.84

* Incomplete Data
- Data riot available
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Table A9. AVERAGE SEASONAL ASPHALT CONCRETE TEMPERATURE (Wood 8 Co.)
Cont. (deg C)

YEAR SPRING SUMMER FALL WINTER
day 18.67 28.09 11.23 -0.76
1998 night 18.43 28.01 11.20 -0.82
total 18.55 28.05 11.22 -0.79
day 18.01 27.25 9.40 -
1999 night 17.55 27.02 9.28 -
total 17.78 27.14 9.34 -
day 17.36 24.03 6.63 -3.03
2000 night 17.10 24.00 6.60 -3.12
total 17.23 24.01 6.61 -3.08

* Incomplete Data
- Data not available
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AV. AC TEMPERATURE (Deg. C)
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Figure A1 AIR TEMPERATURE vs. AVERAGE ASPHALT CONCRETE TEMPERATURE (Adams Co.)
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AV. AC TEMPERATURE (Deg. C)
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AV. AC TEMPERATURE (Deg. C)
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Appendix B

DEPTH OF FROST PENETRATION AND NUMBER OF FREEZE-THAW
CYCLES SUMMARY
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Table B1. Frost Cycles and Frost Depth (Adams Co.)

?126(;1; MAX. FROST
SEASON | 508 | DEPTH(em)
1991-1992
1992-1993
1993-1994 e *
1994-1995 * *
1995-1996 4 -67.06 (-2.207)
1996-1997 3 -61.26 (:2.01%)
1997-1998 0 In AC
1998-1999 3 445 (-1.46")
1999-2000 i i
2000-2001 9 L48.46 (-1.59")
AVERAGE 4 -50.29 (-1.657)

* Incomplete Data
- Data not available
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Table B2. Frost Cycles and Frost Depth (Athens Co.)

FNI;)CZII:“ MAX. FROST
SEASON CYOLES DEPTH(cm)
1991-1992 5 -40.54 (-1.33)
1992-1993 2 -33.22 (-1.09°)
1993-1994 6* -46.33* (-1.52°)
1994-1995 8 -55.17 (-1.81°)
1995-1996 4 -66.75 (-2.19°)
1996-1997 * In AC
1997-1998 0 In AC
1998-1999 5 -61.87 (-2.03°)
1999-2000 ; ]
2000-2001 * *
AVERAGE 4 -45.41 (-1.49")

* Incomplete Data
- Data not available
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Table B3. Frost Cycles and Frost Depth (Crawford Co.)

Fngbg? MAX. FROST
SEASON CVOLES DEPTH(cm)
1991-1992
1992-1993 9 -46.33 (-1.52°)
1993-1994 4 -95.71 (-3.14°)
1994-1995 15 -73.76 (-2.42°)
1995-1996 14 -85.04 (-2.79)
1996-1997 5 -70.41 (-2.31°)
1997-1998 0 0
1998-1999 10 -100.28 (-3.29%)
1999-2000 ; ]
2000-2001 7 -92.96 (-3.05%)
AVERAGE 6 -70.71 (-2.32")

* Incomplete Data
- Data not available
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Table B4. Frost Cycles and Frost Depth (Knox Co.)

Eﬁb(;? MAX. FROST
SEASON CYCLES DEPTH(cm)
1991-1992 3 -58.83 (-1.93")
1992-1993 7 -43.59 (-1.43")
1993-1994 11 -103.94 (-3.41°)
1994-1995 3 -96.01 (-3.15")
1995-1996 * *
1996-1997 2 -98.15 (-3.22°)
1997-1998 0 In AC
1998-1999 13 -105.77 (-3.47")
1999-2000 . ]
2000-2001 17 -56.39 (-1.85")
AVERAGE 7 -74.07 (-2.43%)

* Incomplete Data
- Data not available
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Table B5. Frost Cycles and Frost Depth (Licking Co.)

?12'021; MAX. FROST
SEASON CYOLES DEPTH(cm)
1991-1992 5 -58.52 (-1.92")
1992-1993 5 -58.83 (-1.93")
1993-1994 9 -84.43 (-2.77")
1994-1995 5 -71.63 (-2.35")
1995-1996 13 -77.42 (-2.54°)
1996-1997 5 -71.93 (-2.36")
1997-1998 0 In AC
1998-1999 6 -71.02 (-2.33%)
1999-2000 ] ]
2000-2001 - -
AVERAGE 6 -65.53 (-2.15”)

* Incomplete Data
- Data not available
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Table B6. Frost Cycles and Frost Depth (Lucas Co.)

Eﬁbgi MAX. FROST
SEASON CYCLES DEPTH(cm)
1991-1992
1992-1993 17 -57.61 (-1.89°)
1993-1994 2 -113.08 (-3.71°)
1994-1995 15 -65.23 (-2.14°)
1995-1996 14 -89.00 (-2.92")
1996-1997 ; ]
1997-1998
1998-1999
1999-2000
2000-2001
AVERAGE 12 -81.08 (-2.66")

* Incomplete Data

- Data not available
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Table B7. Frost Cycles and Frost Depth (Wood 2 Co.)

E}gbg; MAX. FROST

SEASON CYCLES DEPTH(cm)
1991-1992

1992-1993 34 -54.86 (-1.80%)

1993-1994 7 120.09 (-3.94%)

1994-1995 13 -52.12 (-1.71")
1995-1996
1996-1997

AVERAGE 18 -75.59 (-2.48")

* Incomplete Data
- Data not available



121

Table B8. Frost Cycles and Frost Depth (Wood 8 Co.)

;‘IRO'O?; MAX. FROST
SEASON CVOLES DEPTH(cm)
1991-1992
1992-1993 18 -66.14 (-2.17")
1993-1994 2 -74.37% (-2.44°)
1994-1995 7 -92.35 (-3.03")
1995-1996 5 -79.86 (-2.62°)
1996-1997 3 -75.29 (-2.47’)
1997-1998 1 -39.93 (-1.31°)
1998-1999 5 -76.50 (-2.51°)
1999-2000 ; ]
2000-2001 * *
AVERAGE 6 -71.93 (-2.36")

* Incomplete Data
- Data not available




122

THIS PAGE LEFT INTENTIONALLY BLANK



123

Appendix C

MONTHLY AND SEASONAL RAINFALL AND DEGREE OF SATURATION
SUMMARIES
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Table C1 SEASONAL RAINFALL (Adams Co.)

(cm)
YEAR || SPRING | SUMMER FALL WINTER
1991
1992
1993
1994 29.08 4.88* - -
1995 1.35% 15.75 16.56 25.91
1996 43.66 13.06 18.72 34.54
1997 17.60 16.84 14.07 17.09
1998 33.43 4.47 17.32 22.05
1999 10.74 15.27 0.81* -
2000 3.10* 3.96* 16.31 22.86
2001

* Incomplete Data
- Data not available
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Table C2 SEASONAL RAINFALL (Athens Co.)

(cm)

YEAR | SPRING | SUMMER FALL WINTER
1991 18.26
1992 30.81 29.08 21.29 23.06
1993 24.87 16.59 25.60 5.92*
1994 7.29* 38.13 17.91 23.39
1995 31.32 32.21 24.92 29.18
1996 46.56 - - 35.76
1997 25.65 26.59 12.57 27.23
1998 33.68 7.26 17.55 29.85
1999 14.73 22.68* - -
2000 17.45% 16.89 19.76 15.24
2001

* Incomplete Data
- Data not available
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Table C3 SEASONAL RAINFALL (Columbiana Co.)

(cm)

YEAR

SPRING

SUMMER

FALL

WINTER

1991

1992

1993

1994

14.48*

11.51

1995

29.92

3.00*

1996

1997

* Incomplete Data
- Data not available
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Table C4 SEASONAL RAINFALL (Crawford Co.)

(cm)
YEAR | SPRING | SUMMER FALL WINTER

1991

1992 8.51* 41.17 25.22 22.45
1993 26.37 11.73 34.16 10.29
1994 23.55 20.14 20.19 19.23
1995 25.81 31.01 2443 19.05
1996 40.49 17.22* 25.32%* 5.36
1997 31.24 30.99 11.25 21.89
1998 31.95 38.07 10.95 17.35
1999 21.34 17.65 17.22 *
2000 32.54* 28.58 21.13 11.13
2001

* Incomplete Data
- Data not available
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Table C5 SEASONAL RAINFALL (Knox Co.)

(cm)
YEAR | SPRING | SUMMER FALL WINTER
1991 15.21
1992 21.28* 45.80 23.90 20.12
1993 24.54 23.67 21.67 14.00
1994 26.75 25.96 17.27 14.83
1995 32.28 26.03* - -
1996 42.62 19.46 20.09 22.23
1997 32.77 15.75 13.03 19.30
1998 30.63 2.57 15.95 21.29
1999 19.05 8.94 16.05 *
2000 30.91* 15.85 23.93 7.47
2001

* Incomplete Data
- Data not available
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Table C6 SEASONAL RAINFALL (Licking Co.)

(cm)

YEAR | SPRING | SUMMER FALL WINTER
1991 2.31% 16.10
1992 14.66 -* 17.93 22.61
1993 28.58 11.51 17.93 10.59
1994 20.70 23.67 12.04 18.97
1995 27.66 18.69 22.02 27.46
1996 50.55 25.27 - 10.16
1997 22.58* 37.26* 14.71 18.69
1998 35.94 18.64* 14.81* *
1999 *

2000
2001

* Incomplete Data
- Data not available
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Table C7 SEASONAL RAINFALL (Lucas Co.)

(cm)
YEAR | SPRING | SUMMER FALL WINTER
1991
1992 3.99* 28.80* 13.34* 19.30
1993 20.98 18.11 7.85 9.17
1994 4.72 17.75 16.71 10.77
1995 22.50 19.53 14.05 -
1996 - - 28.80 -
1997 15.95 24.49 -
1998
1999
2000
2001

* Incomplete Data
- Data not available
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Table C8 SEASONAL RAINFALL (Wood 2 Co.)

(cm)

YEAR | SPRING | SUMMER FALL WINTER
1991
1992 4.27* 36.50 24.08 21.82
1993 26.37 12.09 17.19* -
1994 - - 15.62 11.30
1995 19.51
1996
1997

* Incomplete Data

- Data not available
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Table C9 SEASONAL RAINFALL (Wood 8 Co.)

(cm)
YEAR | SPRING | SUMMER FALL WINTER
1991
1992 3.53* 38.15 3.91* 18.57
1993 23.72 16.46 531* -
1994 1.83* 20.19 15.54 11.99
1995 22.63 22.58 12.22 7.87
1996 * * 23.90 22.58
1997 25.12 1.85* - -
1998 2.79* 19.00 6.96 15.80
1999 13.94 6.20* 14.94 *
2000 27.81* 26.01 15.37 9.91
2001

* Incomplete Data
- Data not available
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Table C19 Monthly Degree of Saturation-Adams Co.

Month Srl Sr2] Sr3 Srd||{f Month Sri Sr2] Sr3] Sr4]
Jun-95 99.97 98.90{ 100.00)j)f May-98] 100.00 97.14
Jul-95 99.77 97.08] 100.00 Jun-98] 100.00 96.21
Aug-95 98.30 95.78 99.55 Jul-98]  100.00 96.71
Sep-95 98.41 97.51] 100.00)1|f Aug-98 99.95 96.34
Oct-95 98.47 98.64 99.94 Sep-98 99.55 95.43
Nov-95 99.46 98.88 100.00 Oct-98 99.80 97.00
Dec-95 98.82 98.85 99.36f| Nov-98 99.97 99.57
Jan-96 98.87 98.89 99.60[[| Dec-98 100.00 100.00
Feb-96 98.28 98.15 98.67 Jan-99 99.56 99.43
Mar-96 98.13 98.17 98.80 Feb-99 99.72 99.99
Apr-96 99.38 99.76 99.86[i1f Mar-99 99.20 99.85
May-96 98.81 99.50 99.98 Apr-99 99.45 99.95
Jun-96 May-99 99.79 100.00
Jul-96 Jun-99 99.94 99.80
Aug-96 Jul-99 99.84 99.45
Sep-96 Aug-99 99.87 99.83
Oct-96 99.78 99.41 97.32 Sep-99 99.91
Nov-96 99.37 98.83 97.05 Oct-99 99.96
Dec-96 99.28 98.51 96.92|[f Nov-99 99.99
Jan-97 98.79 97.78 94.46 Dec-99 99.89
Feb-97 97.99 97.60 96.27 Jan-00
Mar-97 98.42 97.61 95.89 Feb-00
Apr-97 99.51 98.25 96.70 Mar-00
May-97 99.00 97.53 92.06 Apr-00 98.94
Jun-97 98.57 97.37 May-00 99.12
Jul-97 99.79 97.08 77.08 Jun-00 99.00
Aug-97 99.80 96.62 81.22 Jul-00 97.62
Sep-97|  100.00 97.97 87.38|[| Aug-00 98.60
Oct-97;  100.00 98.36 89.76) Sep-00 98.16
Nov-971  100.00 97.80 91.52 Oct-00 98.53
Dec-97| 100.00 96.35 92.25]if Nov-00 99.76
Jan-98 99.99 96.01 91.88|f|| Dec-00 99.32
Feb-98| 100.00 95.99 92.09 Jan-01 97.88
Mar-98| 100.00 96.85 91.89 Feb-01 97.45
Apr-98|  100.00 96.83 Mar-01 96.61
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Table C20 Monthly Degree of Saturation-Athens Co.

Month Srl Sr2 Sr3 Sr4 Month Srl Sr2 Sr3 Sr4
Dec-91 97.79 98.55 98.84 98.95 Aug-96
Jan-92 98.58 99.00 99.44 99.50 Sep-96
Feb-92 98.56 99.00 99.39 99.58 Oct-96
Mar-92 98.42 98.83 99.11 99 .40 Nov-96
Apr-92 98.61 98.98 99.25 99 .48 Dec-96 99.07 99.71 98.63
May-92 98.76 99.19 99.63 99.69 Jan-97 96.54 99.80 95.73
Jun-92 99.31 99.19 98.81 98.19 Feb-97 94.98 99.85 95.18
Jul-92 99.45 99.16 98.75 96.97 Mar-97
Aug-92 99.75 99.60 99.91 99.25 Apr-97
Sep-92 98.33 97.75 100.00 99.52 May-97
Oct-92 98.80 98.39 100.00 99.99 Jun-97
Nov-92 99.71 99.38 100.00 99.96 Jul-97 96.45
Dec-92 99.10 98.78 100.00 99.22 Aug-97 97.34
Jan-93 98.72 98.35 99.81 98.56 Sep-97 97.56
Feb-93 98.88 98.51 99.94 98.41 Oct-97 97.99
Mar-93 99.53 99.14 100.00 99.11 Nov-97 97.92
Apr-93 99.36 98.85 100.00 99 .45 Dec-97 97.43
May-93 98.58 97.85 100.00 99.99 Jan-98 98.82
Jun-93 97.26 96.27 99.80 99.61 Feb-98 98.83
Jul-93 96.54 95.49 99.84 99.50 Mar-98 98.63
Aug-93 96.23 95.17 99.99 99.80 Apr-98 97.86
Sep-93 96.96 96.19 100.00 100.00 May-98 97.66
Oct-93 97.89 97.46 100.00 99.99 Jun-98 98.31
Nov-93 98.42 98.17 100.00 99.95 Jul-98 97.76
Dec-93 98.74 98.54 99.93 99.46 Aug-98 97.62
Jan-94 99.07 98.97 99.73 99.26 Sep-98 97.90
Feb-94 0ct-98 99.01
Mar-94 Nov-98 97.72
Apr-94 Dec-98 97.89
May-94 97.76 97.25 98.69 Jan-99 96.58
Jun-94 97.69 97.12 98.99 Feb-99 98.28
Jul-94 97.93 97.09 99.56 Mar-99 98.13
Aug-94 98.00 97.12 99.96 Apr-99 93.83
Sep-94 98.06 97.31 99.99 May-99 92.30
Oct-94 99.13 98.46 100.00 Jun-99 92.09
Nov-94 100.00 99.94 100.00 Jul-99 93.31
Dec-94 99.82 99.67 100.00 Aug-99 92.79
Jan-95 99.99 99.97 99.99 Sep-99
Feb-95 99.98 99.95 99.40 Oct-99
Mar-95 99.94 99.97 100.00 Nov-99
Apr-95 99.35 99.88 100.00 Dec-99
May-95 98.52 99.94 100.00 Jan-00
Jun-95 98.34 99.99 100.00 Feb-00
Jut-95 98.33 99.99 100.00 Mar-00
Aug-95 99.62 99.58 100.00 Apr-00 93.47
Sep-95] 9921 98.83] 100.00 May-00 96.48
Oct-95 100.00 99.92 100.00 Jun-00 97.67
Nov-95 100.00 100.00 100.00 Jul-00 96.30
Dec-95 99.74 99.25 98.29 Aug-00 96.57
Jan-96 98.98 99.30 94.63 Sep-00 96.62
Feb-96 99 42 99.32 96.06 Oct-00 98.31
Mar-96 98.99 99.34 96.94 Nov-00 98.28
Apr-96 100.00 99.99 99.69 Dec-00 96.37
May-96 100.00 99.92 100.00 Jan-01 95.34
Jun-96 100.00 100.00 100.00 Feb-01 98.90
Jul-96 100.00 100.00 100.00 Mar-01 99.58
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Table C21 Monthly Degree of Saturation-Columbiana Co.

Month Srl Sr2 Sr3 Sr4
Nov-94| 100.00 99.98 99.10 98.93

Dec-94 99.28 99.18 97.65 97.36

Jan-95 97.59 96.27 96.83 96.85

Feb-95 96.43 95.96 94.83 91.10

Mar-95 98.50 98.37 99.18 99.26

Apr-95 99.92 99.84 99.93 99.97

May-95 99.87 99.40 99.83 99.95

Jun-95 99.96 98.90 99.97} 100.00

Jul-95]  100.00 99.03 99.85] 100.00

Aug-95|] 100.00 99.30 99.86] 100.00

Sep-95 99.97 99.29 99.64 99.99

Oct-95 99.94 99.46 99.76 99.99

Nov-95 99.61 99.00 97.60 98.32

Dec-95 97.97 96.84 94.79 95.96

Jan-96 95.17 95.25 91.08 94.15

Feb-96 93.58 93.24 90.78 93.03




Table C22 Monthly Degree of Saturation-Crawford Co.
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Month Srl Sr2 Sr3 Sr4 Month Sri Sr2 Sr3 Sr4
Jun-92 98.21 97.47 99.76 94.72 Jul-96] 100.00] 100.00f 100.00] 100.00
Jul-92 98.49 98.24 99.90 95.09ll Aug-96] 100.00] 100.00{ 100.00] 100.00
Aug-92 98.84 98.49 99.79 95.91 Sep-96
Sep-92 99.17 98.84 99.86 97.29 Oct-96 99.98] 100.00] 100.00 99.99
Oct-92 99.30 98.99 99.99 98.71Jl1 Nov-96 99.87 99.94 99.73 99.91
Nov-92 99.38 99.05 99.99 99.21 Dec-96 99.25 99.59 99.19 99.60
Dec-92 99.45 99.21 99.99 99.35 Jan-97 99.17 99.51 98.82 96.50
Jan-93 98.75 98.51 99.38 98.82 Feb-97 97.93 99.19 97.62 98.48
Feb-93 99.04 98.66 99.65 98.43 Mar-97 98.73 99.87 99.54 99.74
Mar-93 97.89 97.24 98.36 97.70 Apr-97 99.50 99.991 100.00] 100.00
Apr-93 98.78 98.18 99.43 99.06{lf May-97 99.90 99.97 99.99|1 100.00
May-93 99.36 99.00 99.77 98.34 Jun-97 99.97 99.99 99.99| 100.00
Jun-93 99.35 99.33 99.75 97.57 Jul-97 99.99] -100.00] 100.00f 100.00
Jul-93 99.36 99.73 99.85 97.09llf Aug-97{ 100.00[ 100.00| 100.00] 100.00
Aug-93 99.29 99.72 99.80 96.26 Sep-97| 100.00] 100.00] 100.00] 100.00
Sep-93 99.17 99.46 99.71 96.06 Oct-97] 100.00] 100.00f 100.00] 100.00
Oct-93 98.72 99.27 99.64 96.76[i[| Nov-97 99.85 99.89 99.93 99.92
Nov-93 98.55 99.19 99.66 97.66 Dec-97 99.69 99.90 99.57 99.92
Dec-93 98.19 98.85 99.35 97.34 Jan-98 99.00 99.62 98.99 99.60
Jan-94 98.52 98.68 92.75 88.98 Feb-98 99.40 99.76 99.72 99.93
Feb-94 96.25 96.22 84.45 89.14|[|f Mar-98 99.73 99.90 99.98 99.99
Mar-94 97.35 98.09 98.45 96.88 Apr-98 100.00 100.00 100.00 100.00
Apr-94 97.64 98.47 98.85 97.26|||f May-98| 100.00f 100.00] 100.00] 100.00
May-94 97.89 98.83 98.85 96.99 Jun-98 99.97| 100.00] 100.00 100.00"
Jun-94 98.51 99.47 97.81 97.33 Jul-98 99.80| 100.00] 100.00] 100.00]
Jul-94 99.37 99.98 97.62 97.94/l1i Aug-98 99.82| 100.00] 100.001 100.00
Aug-94 99.99| 100.00 99.07 99.55 Sep-98 99.81| 100.00] 100.00f 100.00
Sep-94| 100.00] 100.00 99.60 99.78 Oct-98 99.841 100.00] 100.00{ 100.00
Oct-94 99.98( 100.00 99.82 99.82/| Nov-98 99.80 99.99| 100.00{ 100.00
Nov-94 99.93 99.99 99.93 99.93 Dec-98 99.86 99.95| 100.00{ 100.00
Dec-94 99.70 99.97 99.68 99.60 Jan-99 99.28 99.22 98.13 95.05
Jan-95 99.19 99.81 99.06 98.58 Feb-99 98.73 99.95 99.97 99.97
Feb-95 98.53 99.42 97.83 92.99 Mar-99 98.21 99.54 99.31 99.57
Mar-95 99.04 99.88 98.95 98.76 Apr-99 98.18 99.99] 100.00| 100.00
Apr-95 99.73 99.94 99.64 99.24)|| May-99 98.82] 100.00] 100.001 100.00
May-95 99.98| 100.00 99.95 99.85 Jun-99 99.22f 100.00{ 100.00( 100.00
Jun-95( 100.00] 100.00( 100.00 99.99 Jul-99 99.44 99.87| 100.00| 100.00
Jul-95| 100.00( 100.00| 100.00 99.96[||| Aug-99 99.48 99.70f 100.00 99.99
Aug-95| 100.00( 100.00] 100.00 99.80 Sep-99 99.45 99.82| 100.00| 100.00
Sep-95] 100.00] 100.00| 100.00 99.82 0Oct-99 99.64 99.88{ 100.00| 100.00
Oct-95 99.97| 100.00 99.99 99.90[| Nov-99 99.92 99.85] 100.00( 100.00
Nov-95 99.90{ 100.00{ 100.00 99.97, Dec-99 99.93 99.74| 100.00 99.97
Dec-95 98.75 99.32 98.60 97.77 Jan-00
Jan-96 97.45 98.93 94.98 95.03 Feb-00
Feb-96 96.53 99.02 93.85 95.88||l| Mar-00
Mar-96 97.90 99.73 95.96 97.79 Apr-00 98.26 99.95 99.96 99.96
Apr-96 99.82| 100.00 98.64 99.77|||| May-00 98.25 99.92] 100.00| 100.00
May-96 99.95| 100.00 99.87 99.99 Jun-00 98.52 99.66| 100.00[ 100.00
Jun-96] 100.00] 100.00| 100.00| 100.00 Jul-00 98.35 99.52| 100.00| 100.00
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Table C23 Monthly Degree of Saturation-Knox Co.

Month Sri Sr2 Sr3 Sr4 Month Srl Sr2 Sr3 Sr4
Dec-91] 100.00] 100.00] 100.00] 100.00)|[{ Jun-94[ 98.37[ 99.10] 100.00| 99.88
Jjan-92| 100.00] 100.00] 100.00] 100.00f| Jul-94[ 97.54| 99.88] 100.00| 99.91
Feb-92| 100.00] 100.00] 100.00] 100.00f|I Aug-94] 98.78] 100.00| 100.00] 99.93
Mar-92| 100.00] 100.00] 100.00] 100.00|f|l Sep-94|  99.32] 100.00] 100.00| 100.00
Apr-92] 100.00] 100.00] 100.00] "100.00f| Oct-94] 99.44] 99.87| 100.00] 100.00
May-92] 100.00] 100.00]  98.93] 100.00[|| Nov-94j 98.92| 99.74] 100.00| 100.00
Jun-92] 100.00] 100.00] 100.00] 100.00]||| Dec-94] 99.05] 99.74] 100.00] 100.00
Jul-92| 99.35] 9939  99.83]  99.80||{l Jan-95| 99.40] 99.37| 99.77] 99.59
Aug92] 9937 9934 99.87] 99.80f|l Feb-95| 98.99] 99.27] 99.51] 95.00
Sep-92]  99.99] 99.98] 100.00] 99.89( Mar-95] 9821  99.10] 100.00] 100.00|
0ct-92| 100.00] 100.00] 100.00]  99.83|||[ Apr-95]  97.77]  98.93] 100.00] 100.00
Nov-92| 100.00] 100.00] 100.00]  99.77|[}l May-95| 97.85] 98.90| 100.00[ 100.00
Dec92] 100.00[ 100.00] 100.00] 99.84fll Jun-95] 97.30] 98.23| 98.59] 99.71
Jan-93]  99.99] 99.99] 100.00] 99.87\| Jul-95| 98.88] 99.19] 99.11{ 99.82
Feb-93| 9998  99.98] 100.00] 99.82[|| Aug-95] 99.33] 99.92] 99.78] 99.96
Mar-93]  99.95]  99.91]  99.98[  99.82|f|| Sep-95

Apr-93 100.00 99.98 100.00 100.00 Oct-95

May-93] 100.00{ 100.00] 100.00] 100.00fil Nov-95

Jun-93] 100.00] 100.00{ 100.00] 99.85|lf Dec-95

Jul-93]  100.00] 99971  99.77]  99.28|lll Jan-96

Aug-93] 100.00] 100.00]  99.94]  99.57}| Feb-96

Sep-93| 100.00] 99.93] 99.95]  99.99|||| Mar-96] 97.68] 98.09| 100.00|  99.32
0ct-93] 100.00]  99.59  99.96] 100.00[ Apr-96] 97.71]  98.59| 100.00] 99.39
Nov-93] 100.00]  99.97] 100.00] 100.00[[ May-96{ 97.73]  98.64] 100.00{  98.58
Dec-93] 9999 9997  99.98] 99.89||| Jun-96| 98.19] 98.59| 100.00[ 97.92
Jan-94|  99.76] 99.44] 9861 91.64|l Jul-96] 99.43]  99.87] 100.00|  99.52
Feb-94] 98.74] 98501 99.55] 97.88|f| Aug-96] 99.88] 99.99[ 100.00] 99.12
Mar-94]  98.41] 98.11] 99.91]  99.89[ Sep-96] 99.95| 100.00{ 100.00|  99.31
Apr-94]  99.60]  99.56] 100.00] 100.00f|[ Oct-96] 99.95| 99.99] 100.00|  98.75
May-94] 99.68] 99.99] 100.00] 99.98Ji Nov-96]  99.68]  99.96] - 100.00]  98.71




Table C24 Monthly Degree of Saturation-Licking Co.
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Month Sri Sr2 Sr3 Sr4 Month Srl Sr2 Sr3 Sr4
Dec-91] 98.58] 100.00] 100.00] 100.00fil Sep-94| 100.00] 100.00{ 100.00[ 100.00
Jan-92]  99.61] 100.00{ 100.00] 99.33|| Oct-94| 100.00] 100.00{ 100.00[ 100.00
Feb-92] 100.00] 100.00] 100.00] 100.00f| Nov-94| 100.00] 100.00{ 100.00[ 100.00
Mar-92]  99.99] 100.00] 100.00] 100.00]|| Dec-94| 99.97[ 100.00{ 100.00]  99.96
Apr-92] 100.00] 100.00] 100.00] 100.00}|l Jan-95]  99.11] 99.76] 99.25] 98.73
May-92| 100.00] 100.00] 100.00[ 100.00}| Feb-95[ 99.27] 99.82] 98.46]  96.49
Jun-92] 100.00]  99.99] 100.00] 100.00}f[[ Mar-95] 99.95[ 99.98] 99.57| 95.86
Jul-92]  100.00]  99.98] 100.00] 100.00}f{f Apr-95]  99.99] 100.00] 99.87]  95.87
Aug-92] 100.00] 100.00] 100.00] 100.00| May-95] 99.98] 100.00] 98.86] 94.44
Sep-92]  100.00] 100.00] 100.00] 100.00Ifl Jun-95]  99.99] 100.00] 99.49] 97.82
Oct-92] 100.00] 100.00] 100.00] 100.00)[ Jul-95[  99.95] - 100.00[ 100.00[ 100.00
Nov-92] 100.00] 100.00] 100.00] 100.00][|[ Aug-95]  99.97] 100.00[ - 100.00] 100.00]
Dec-92]  99.97]  99.97]  99.97]  99.97||[ Sep-95]  99.99] 100.00] 100.00] 100.00f
Jan-93]  99.99] 100.00] 100.00]  99.99fI Oct-95]  99.98] 100.00] 100.00] 100.00||
Feb-93] 98.96] 99.16]  99.00]  98.58fl| Nov-95[  99.99] 100.00] 100.00[  97.40f
Mar-93|  99.03[  99.18]  99.31]  99.14/[| Dec-95] 99.47] 99.66] 99.22]  96.20
Apr-93[  99.92[  99.97]  99.98]  99.97|Il Jan-96]  99.70]  99.80] 99.50|  96.76
May-93]  100.00] 100.00] 100.00{ 100.00flf Feb-96]  99.47|  99.67]  99.32]  96.75
Jun-93|  100.00] 100.00] 100.00] 100.00ll[ Mar-96]  99.95|  99.98]  99.94]  96.65
Jul-93]  100.00]  99.99| 100.00] 100.00f| Apr-96] 99.97[  99.99]  99.97]  95.17
Aug-93] 100.00] 100.00] 100.00] 100.00}f[ May-96] 100.00[ 100.00] 100.00] 93.96
Sep-93]  99.98]  99.90] 100.00] 100.00f|fl Jun-96] 100.00] 100.00] 100.00[  93.24
Oct-93]  99.94]  99.95] 100.00] 100.00}|[i Jul-96[ 100.00[ 100.00{ 100.00[  92.53
Nov-93] ~ 99.99] 100.00] 100.00] 100.00](|[ Aug-96] 100.00[ 100.00] 100.00] 94.90
Dec-93]  99.59]  99.72]  99.90] 99.66|l Sep-96] 100.00] 100.00] 100.00] 98.24
Jan-94]  98.30[ 98.61] 97.93] 97.4s||| Oct-96] 100.00] 100.00] 100.00]  96.73
Feb-94|  98.72] 98.97] 98.04]  96.32|f] Nov-96] 100.00[ 100.00] 100.00]  97.11
Mar-94|  99.97[  99.97[ 99.83]  98.01J{| Dec-96] 99.98[  99.96] 99.94]  97.80
Apr-94]  99.99[  99.99]  99.97[  98.16[ Jan-97| 99.94] 99.94] 99.13[  97.13
May-94] 100.00] 100.00] 100.00] 100.00|||l Feb-97] 99.79] - -99.80] - 98.60]  96.56
Jun-94| 100.00] 100.00] 100.00] 100.00[{lf Mar-97]  99.74] 9975  99.01] = 96.94
Jul-94] 100.00] 100.00] 100.00] 100.00fif Apr-97] 99.98] 99.98] 99.33|  97.27
Aug-94] 100.00] 100.00] 100.00] 100.00{|f May-97]  99.99]  99.99]  99.96]  99.46
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Table C25 Monthly Degree of Saturation-Wood2 Co.
Month Srl Sr2 Sr3 Sr4
Jun-92 99.54 99.35 99.72 99.51

Jul-92 99.54 99.38 99.48 99.12

Aug-92 100.00] 100.00] 100.00{ 100.00|

Sep-92]  100.00] 100.00[  100.00] 100.00]|

Oct-92]  100.00] 100.00] 100.00]  100.00]|

Nov-92( 100.00] 100.00] 100.00] 100.00

Dec-92| 100.00( 100.00 99.66 99.67

Jan-93 100.00] 100.00 98.39 98.64

Feb-93 99.87 99.88 97.48 98.23

Mar-93 99.37 99.07 98.84 98.09

Apr-93 99.47 99.24 99.75{ 100.00

May-93| 100.00 99.99 99.70| 100.00

Jun-93| 100.00{ 100.00 99.91( 100.00

Jul-93| 100.00 99.96 99.66| 100.00

Aug-93| 100.00 99.79 97.88] 100.00

Sep-93 99.74 99.51 99.56 99.53

Oct-93 99.88 99.73 99.98 99.96

Nov-93 99.89 99.77 99.99 99.91

Dec-93 99.98 99.88 99.96 99.88

Jan-94 99.77 98.60 94.92 81.43

Feb-94 99.52 95.72 91.56 83.32

Mar-94 99.80 99.53 94.32 98.77

Apr-94 99.69 99.14 97.51] 100.00

May-94 99.77 99.33 98.47| 100.00

Jun-94] 99.570  99.28]  96.77] 100.00f

Jul-94 99.28 98.92 96.74] 100.00

Aug-94 99.49 99.38 99.08] 100.00

Sep-94 99.58 99.45| 100.00|] 100.00

Oct-94 99.85 99.73 99.96( 100.00

Nov-94 99.99 99.93 99.99] 100.00

Dec-94 99.90 99.801 - 100.00| 100.00

Jan-95 99.85 99.81] 100.00 99.85

Feb-95 99.86 99.91 99.92 99.15

Mar-95 99.44 99.48| 100.00f 100.00

Apr-95 98.71 98.09 99.96] 100.00

May-935 97.17 96.90 99.85 98.22
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Table C26 Monthly Degree of Saturation-Wood8 Co.

Month Srl Sr2 Sr3 Sr4 Month Sril Sr2 Sr3 Sr4
Jun-92 92.77 93.81 86.69 92.24 Nov-96] 100.00( 100.00| 100.00 100.00
Jul-92 91.34 92.42 88.42 91.48 Dec-96 100.00 100.00 100.00 100.00
Aug-92 88.49 90.46 87.18 89.97 Jan-97 99.38 99.32 99.62 95.26
Sep-92 92.52 94.37 91.45 93.60 Feb-97 98.62 98.58 99.59 97.75
0Oct-92 93.88 96.20 93.57 95.25 Mar-97 99 .85 99.92 100.00 99.97
Nov-92 Apr-97 99.99 99.99 100.00 99.99
Dec-92 98.91 100.00] 100.00| 100.00}i| May-97 99.93 100.00f 100.00 100.00
Jan-93 98.81 99.78 99.93 99.85 Jun-97 99.75 99.91 100.00 99.92
Feb-93 99.72 99.95 99.61 95.59 Jul-97 100.00 99.99 100.00 100.00
Mar-93 99.82 99.97 99.64 97.85 Aug-97 100.00 99.99 100.00 100.00
Apr-93 99.60 100.00 99.99 100.00 Sep-97 100.00 99.99 100.00 100.00
May-93 98.85 99.99]1 100.00{ 100.00 Oct-97 100.00 99.99 100.00 100.00
Jun-93 96.83 99.83 100.00 100.00 Nov-97 100.00 100.00 99.99 100.00
Jul-93 97.03 99.71 100.00 100.00 Dec-97 100.00 100.00 99.90 100.00
Aug-93 97.82 99.72 100.00{ 100.00 Jan-98| 100.00} 100.00 99.96 100.00
Sep-93 98.86 99.99 100.00 100.00 Feb-98 100.00{ 100.00 99.97 100.00
Oct-93 99.19 100.00 100.00] 100.00 Mar-98 100.00] 100.00 99.99 100.00
Nov-93 99.64 99.99 100.00 100.00 Apr-98 100.00 100.00 100.00 100.00
Dec-93 99.95 99.99 99.99 99.40[l|l May-98] 100.00( 100.00] 100.00 100.00
Jan-94 99.30 99.48 99.76 86.82 Jun-98 100.00 100.00 100.00 100.00
Feb-94 Jul-98 100.00 99.62 100.00 99.80
Mar-94 Aug-98 100.00 99.13 100.00 99.55
Apr-94 Sep-98 100.00 99.72 100.00 99.90
May-94 97.27 99.60f 100.00] 100.00 Oct-98 100.00 100.00 100.00 100.00
Jun-94 98.86 99.86 100.00 100.00 Nov-98 100.00 100.00 100.00 100.00
Jul-94 99.73 98.88 100.00 99.84 Dec-98 100.00( 100.00 99.97 100.00
Aug-94| 100.00 98.23 100.00 99.23 Jan-99 98.26 97.63 99.09 92.70
Sep-94 100.00 98.25 100.00 99.01 Feb-99 99.43 99.52 100.00 99.59
Oct-94 100.00 98.77 100.00 99.30 Mar-99 99.86 99.88 100.00 99.90
Nov-94 100.00 99.91 100.00 99.99 Apr-99 100.00 100.00 100.00 100.00
Dec-94] 100.00 100.00] - 100.00] 100.00}[| May-99]f 100.00( 100.00 100.00] 100.00
Jan-95 99.83 99.69] 100.00 98.19 Jun-99 99.98 99.61 100.00 99.68
Feb-95| 99.90] 99.79] 99.81 94.87 Jul-99]  99.93| 98.30] 100.00]  98.42
Mar-95 100.00 100.001 100.00f 100.00 Aug-99 99.96 98.34 100.00 98.36
Apr-95| - 100.00] 100.00] 100.00] 100.00}|[ Sep-99] 99.96] 99.32] 100.00] 99.27
May-95 100.00 100.00 100.00 100.00 Oct-99 100.00 99.97 100.00 99.96
Jun-95 100.00 98.99 100.00 99.54 Nov-99 100.00 100.00 100.00 100.00
Jul-95 100.00 98.18 100.00 98.23 Dec-99| 100.00 100.00 100.00 100.00
Aug-95 100.00 98.04 100.00 97.69 Jan-00
Sep-95 100.00 99.55 99.96 99.58 Feb-00
Oct-95 100.00 100.00 99.96 100.00 Mar-00
Nov-95 100.00 100.00 99.90 100.00 Apr-00 100.00 100.00 99.99 100.00
Dec-95 99.82 99.76 99.90 98.35 May-00 99.68 99.67 99.99 99.79
Jan-96 99 .85 99 .80 98.73 92.17 Jun-00 99.97 99 .42 100.00 99.77
Feb-96 100.00 99.99 96.41 91.37 Jul-00 99.97 99.26 100.00 99.41
Mar-96 99.99 99.98 99.92 99.94 Aug-00 99.98 99.17 100.00 99.11
Apr-96| 100.00 100.00 100.00 100.00 Sep-00 100.00 99.45 100.00 99.35
May-96 99.85 100.00 100.00] 100.00 Oct-00 99.98 99.93 100.00 99.92
Jun-96 99.96 99.69 100.00] 100.00 Nov-00 100.00 100.00 100.00 100.00
Jul-96] 100.00 98.95 100.00 99.99 Dec-00 99.68 99.49 99.99 95.95
Aug-96 100.00 99.05 100.00 99.99 Jan-01 99.34 99.03 97.33 92.47
Sep-96 100.00 99.69 100.00 99.97 Feb-01 99.59 99.56 99.96 99.07
Oct-96 100.00 100.00 100.00f 100.00 Mar-01 99.72 99.81 99.99 99.75
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Table C27 Seasonal Degree of Saturation ADAMS Co.

Season Sr1 Sr2 Sr3 Sr4|
SP95* 99.92 99.08 100.00
SU95 99.04 96.86 99.85
F95 98.79 98.66 99.79
W95 98.49 98.46 99.08
SP96* 99.17 99.50 99.75
SuUge*

F96* 99.52 98.95 97.16
W06 98.40 97.69 95.53
SP97 98.99 97.71 92.28
SuU97 99.79 97.22

F97 100.00 97.74

W97 100.00 96.23

SP98 100.00 96.73

SU98 99.93 96.64

F98 99.83 97.97

W98 99.63 99.77

SP99 99.60 99.93

SU99 99.88 96.65

F99 99.97

W99* 99.68

SP00* 99.08

SU00 98.18

FOO 99.13

W00 97.61

* Incomplete Data
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Table C28 Seasonal Degree of Saturation ATHENS Co.

Season Sr1 Sr2 Sr3 Sr4
W91 98.43 98.91 99.25 99.43
SP92 98.78 99.09 99.32 99.37
SU92 99.35 99.03 99.39 98.31
F92 99.09 98.72 100.00 99.81
W92 98.91 98.54 99.90 98.64
SP93 98.70 98.03 99.97 99.65
Su93 96.52 95.50 99.91 99.72
F93 98.19 97.84 99.99 99.89
Wo3* 98.95 98.81 99.81 99.24
SP94* 97.58 97.06 98.74

SuU94 97.99 97.18 99.77

Fo4 99.50 99.14 100.00

W94 99.94 99.89 99.81

SP95 98.92 99.93 100.00

SU95 98.87 99.53 100.00

F95 99.97 99.79 99.96

W95 99.19 99.23 95.72

SP96 99.89 99.93 99.51

SU96* 100.00 100.00 100.00

F96

Wo6* 96.44 99.80 96.04

SP97

SuUg7* 97.29

F97 97.81

W97 98.65

SP98 97.93

SuU98 97.81

Fo8 98.24

W98 97.69

SP99 93.25

SUg9* 93.08

F99

W99

SPQOO* 95.77

SuU00 96.52

F00 97.70

W00 97.62

* Incomplete Data




Table C29 Seasonal Degree of Saturation COLUMBIANA Co.
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Season Sr1 Sr2 Sr3 Sr4
Fo4* 99.94 99.84 98.54 98.19
W94 97.34 96.73 96.72 95.59
SP95 99.90 99.47 99.89 99.98
su9s* 99.99 99.22 99.79 100.00
F95 99.62 99.08 98.09 98.72
Wo5* 94.59 94.09 91.77 94.07

* Incomplete Data




Table C30 Seasonal Degree of Saturation CRAWFORD Co.
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Season Sr1 Sr2 Sr3 Sr4
SP92* 97.77 96.91 99.64 94.43
SU92 98.80 98.47 99.85 95.80
F92 99.34 99.05 99.98 98.91
W92 98.83 98.51 99.42 98.64
SP93 98.96 98.55 99.46 98.35
SU93 99.32 99.65 99.81 96.60
F93 98.60 99.18 99.61 97.21
W93 97.45 97.74 92.17 91.75
SP94 97.88 98.76 98.68 97.18
SU94 99.65 99.96 98.48 98.79
F94 99.93]  100.00 99.84 99.84
W94 98.95 99.71 98.66 96.92
SP95 99.83 99.97 99.77 99.58
SU95 100.00|  100.00{  100.00 99.87
F95 99.77 99.91 99.84 99.67
W95 97.19 99.10 95.02 95.89
SP96 99.79 99.98 99.13 99.78
SU96* 100.00] 100.00] 100.00|  100.00
F96* 99.70 99.85 99.63 99.79(
W96 98.67 99.51 98.62 98.23]
SP97 99.68 99.97 99.99]  100.00}
SuU97 100.00]  100.00]  100.00{  100.00
F97 99.89 99.94 99.89 99.95
W97 99.34 99.75 99.50 99.83
SP98 99.99[ 100.00{ 100.00] 100.00
SU98 99.82]  100.00] 100.00]  100.00j
F98 99.82 99.99] 100.00|  100.00
W98 98.94 99.55 99.11 98.14
SP99 98.62{ 100.00] 100.00] 100.00
SU99 99.43 99.81] 100.00]  100.00}f
F99 99.79 99.83]  100.00]  100.00
W99~ 99.90 99.82]  100.00 99.96
SP00* 98.33 99.87 99.99 99.99

* Incomplete Data
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Table C31 Seasonal Degree of Saturation KNOX Co.

Season Sr1 Sr2 Sr3 Sr4
Fo1* 100.00 100.00 100.00 100.00
W91 100.00 100.00 100.00 100.00||
SP92* 96.90 96.90 96.36 96.90
SuU92 99.57 99.57 99.90 99.86
F92 100.00 100.00 100.00 99.79
W92 99.98 99.98 99.99 99.85
SP93 100.00 99.98 100.00 99.99
SU93 100.00 99.98 99.90 99.57
Fo3 100.00 99.83 99.97 100.00
W33 99.04 98.77 99.35 96.44
SP94 99.41 99.61 100.00 99.99
SU94 98.37 99.81 100.00 99.92
Fo4 99.17 99.82 100.00 100.00
W94 99.00 99.32 99.77 98.29
SP95 97.79 08.88 100.00 100.00
SuU9s* 98.58 99.04 98.69 99.73
F95

W95

SP96 97.76 98.47 100.00 98.71
SU96 99.61 99.88 100.00 99.27
F96 99.54 99.85 99.49 97.90

* Incomplete Data
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Table C32 Seasonal Degree of Saturation LICKING Co.

Season Sr1 Sr2 Sr3 Sr4
Fo1* 98.41] 100.00] 100.00]  100.00
W91 99.72]  100.00{  100.00 99.78
SP92 100.00]  100.00]  100.00]  100.00|
SU92 100.00 99.99]  100.00{  100.00j
F92 99.99 99.99 99.99 99.99f
W92 99.55 99.62 99.60 99.45|
SP93 99.91 99.95 99.96 99.96|
SU93 100.00 99.98]  100.00]  100.00}
F93 99.96 99.96] 100.00[  100.00f
W93 98.89 99.10 98.60 97.42||
SP94 100.00]  100.00 99.99 99.16}|
SU94 100.00] 100.00]  100.00]  100.00}|
F94 100.00]  100.00f  100.00f  100.00}
W94 99.45 99.86 99.14 97.52
SP95 99.98 99.99 99.38 95.57
SU95 99.97{ 100.00] 100.00]  100.00
F95 99.98 99.99 99.96 98.45
W95 99.54 99.70 99.36 96.52
SP96 99.99]  100.00 99.99 94.63
SU96 100.00]  100.00]  100.00 94.49
F96 100.00 99.99 99.99 97.34
W96 99.82 99.83 98.99 96.94
SP97* 99.97 99.97 99.64 98.47

* Incomplete Data

Table C33 Seasonal Degree of Saturation WOOD2 Co.

Season Sr1 Sr2 Sr3 Sr4
SP92* 99.28 98.99 99.56 99.24
SuU92 99.85 99.79 99.83 99.70
F92 100.00]  100.00 99.97 99.99
W92 99.88 99.85 98.18 98.36
SP93 99.73 99.60 99.80]  100.00
SU93 99.97 99.83 99.07 99.95
F93 99.86 99.73 99.94 99.85
W93 99.72 98.08 94.01 88.02
SP94* 99.71 99.29 97.62] 100.00
SuU94 99.43 99.20 98.23]  100.00]|
F94 99.89 99.79 99.98]  100.00]
W94 99.78 99.79 99.97 99.68||
SP95 97.87 97.63 99.93 98.82)|

* Incomplete Data



156

Table C34 Seasonal Degree of Saturation WOOD8 Co.

Season Sr1 Sr2 Sr3 Sr4
SP92* 92.99 94.48 86.38 92.74
su92* 90.71 92.16 88.47 91.39
Fo92* 93.54 95.71 93.08 94 .81
Wo2* 99.33 99.88 99.74 97.74
SP93 98.84 99.99 100.00 100.00
SU93 97.60 99.75 100.00 100.00
F93 99.47 99.99 100.00 100.00
W93* 99.64 99.76 99.87 92.95
SP94* 97.96 99.79 100.00 100.00
suU94 99.83 98.62 100.00 99.51
Fo4 100.00 99.34 100.00 99.61
W94 99.91 99.83 99.94 97.78
SP95 100.00 99.85 100.00 99.98
Sugs 100.00 98.40 100.00 98.36
F95 100.00 100.00 99.92 99.87
WO5 99.88 99.84 08.36 94.08
SP96 99.94 99.98 100.00 100.00
SUg96 100.00 99.14 100.00 99.98
F96 100.00 100.00 100.00 100.00
W96 99.31 99.30| 99.74 97.66
SP97 99.91 100.00 100.00 100.00
Sug7 99.98 99.94 100.00 99.97
Fo7 100.00 100.00 99.98 100.00
W97 100.00 100.00 99.96 100.00
SP9sg 100.00 100.00 100.00 100.00
su9s 100.00 99.49 100.00 99.75
F98 100.00 100.00 99.99 100.00
Wo8 99.18 98.99 99.68 97.32
SP99 100.00 99.97 100.00 99.97
SuU99 99.95 98.56 100.00 98.62
F99 100.00 99.98 100.00 99.97
W99* 100.00 100.00 100.00 100.00
SPOO* 99.86 99.72 99.99 99.86
Suoo 99.98 99.24 100.00 99.27
F0O0 99.99 99.96 100.00 99.95
W00 99.44 99.29 99.06 95.64

* Incomplete Data
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Appendix D

BACK CALCULATION OF RESILIENT MODULUS OF SUBGRADE SOILS
FROM FWD DEFLECTIONS
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Table D1 DATA to BACKCALCULATE RESILIENT MODULUS
AT THE BREAK POINT FROM FWD TESTING (Adams Co.)

YEAR Eri SPRING | SUMMER FALL WINTER

Time/Tem * * * *
1991 (FWD)

Air Temp

(Logger)

Time/Tem * * * *
1992 (FWD)

Air Temp

(Logger)

Time/Tem * * * 12/8/93
1993 (FWD) 9:21 31F

Air Temp FWD -0.5C

(Logger) -

Time/Tem * 6/23/94 9/20/94 11/29/94
1994 (FWD) 11:01 75F 9:22 58F 9:19 32F

Air Temp FWD 14.4C FWD 0C

(Logger) LOG 29.3C - -

Time/Tem 3/21/95 6/6/95 11/7/95 *
1995 (FWD) 9:42 SOF 9:15 67F 9:56 45F

Air Temp FWD 10.0C | FWD 19.4C *

(Logger) - - LOG 9.2C

Time/Tem 4/30/96 7/8/96 9/17/96 *
1996 (FWD) 9:54 49F 8:45 79F 9:03 64F

Air Temp FWD 26.5C | FWD 17.8C *

(Logger) LOG 5.2C - -

Time/Tem 4/1/97 7/15/97 * *
1997 (FWD) 9:24 35F 9:24 82F

Air Temp FWD 69F * *

(Logger) LOG 6.9C | LOG 26.0C

Time/Tem 3/10/98 6/23/98 * *
1998 (FWD) 10:20 31F 9:09 75F

Air Temp FWD 28F FWD 69F

(Logger) LOG -4.1C | LOG 22.2C

Time/Tem 4/20/99 9/21/99
1999 (FWD) 8:38 52F 8:45 64F

Air Temp -

(Logger) LOG 9.2C LOG 13.4C

Time/Tem 3/27/00 9/20/00
2000 (FWD) 9:31 57F 8:47 67F

Air Temp - -

(Logger) - LOG 204C

Time/Tem 4/17/01
2001 (FWD) 8:51 43F

Air Temp -

(Logger) LOG 1.2C

* No FWD Files
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Table D2 DATA to BACKCALCULATE RESILIENT MODULUS
AT THE BREAK POINT FROM FWD TESTING (Athens Co.)

SPRING

YEAR Eri SUMMER FALL WINTER

Time/Tem * * 11/14/91 *
1991 (FWD) 10:35 39F

Air Temp FWD 3.9C

(Logger)

Time/Tem 3/19/92 6/10/92 9/24/92 11/23/92
1992 (FWD) 9:01 3IF 8:44 55F 9:21 45F 9:25 43F

Air Temp

(Logger) LOG 4.2C LOG 163 LOG 9.8C LOG 9.6C

Time/Tem 3/24/93 6/30/93 9/20/93 12/6/93
1993 (FWD) 9:56 55F 9:32 70F 8:43 51F 8:45 39F

Air Temp

(Logger) LOG 13.0C | LOG 21.8C | LOG 16.3 LOG 6.5C

Time/Tem * 6/16/94 9/21/94 12/01/94
1994 (FWD) 9:28 75F 8:59 60F 9:32 24F

Air Temp

(Logger) LOG 26.5C | LOG 19.6C | LOG -1.6C

Time/Tem 3/23/95 6/8/95 11/15/95 *
1995 (FWD) 9:14 41F 10:54 75F 9:58 30F

Air Temp

(Logger) LOG 4.9C | LOG 28.1C | LOG 1.3C

Time/Tem 4/25/96 6/26/96 9/19/96 *
1996 (FWD) 9:47 62F 8:57 70F 9:31 49F

Air Temp FWD 9.4C

(Logger) LOG 18.0C | LOG 20.2C

Time/Tem 4/3/97 7/17/97 *
1997 (FWD) 8:37 44F 8:22 83F

Air Temp FWD 23.3C

(Logger) LOG 8.2C

Time/Tem 3/12/98 Bad Load 9/30/98 *
1998 (FWD) 9:16 19F Cell 10:03 80F

Air Temp FWD I5F FWD 65F

(Logger) LOG -5.5C LOG 24.8C

Time/Tem 4/22/99 10/14/99
1999 (FWD) 8:34 61F 9:02 57F

Air Temp FWD 56F -

(Logger) LOG 22.0C -

Time/Tem 3/30/00 9/21/00
2000 (FWD) 8:16 45F 8:30 61F

Air Temp - -

(Logger) - LOG 14.5C

Time/Tem 4/18/01
2001 (FWD) 8:23 42.1F

Air Temp -

(Logger) LOG 4.78C

* No FWD Files
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Table D3 DATA to BACKCALCULATE RESILIENT MODULUS
AT THE BREAK POINT FROM FWD TESTING (Crawford Co.)

YEAR Eri SPRING | SUMMER FALL WINTER

Time/Tem * * 11/7/91 *
1991 (FWD) 9:56 26F

Air Temp FWD -3.3C

(Logger)

Time/Tem 3/18/92 6/9/92 9/23/92 11/25/92
1992 (FWD) 9:44 28F 8:55 65F 9:18 43 8:52 41F

Air Temp FWD -2.2C

(Logger) LOG 17.1C | LOG 74C LOG 5.9C

Time/Tem 3/23/93 6/29/93 9/23/93 12/2/93
1993 (FWD) 8:52 42F -10:08 67F 8:53 64F 9:04 39F

Air Temp

(Logger) LOG 7.8C | LOG 209C | LOG 18.0C | . LOG 4.8C

Time/Tem Incomplete Incomplete Incomplete Incomplete
1994 (FWD) FWD File FWD File FWD File FWD File

Air Temp

(Logger)

Time/Tem 3/27/95 6/12/95 11/8/95 *
1995 (FWD) 8:32 45F 9:11 58F 9:56 35F

Air Temp

(Logger) LOG 3.2C LOG 19.8C | LOG -0.4C

Time/Tem 5/1/96 6/27/96 9/20/96 *
1996 (FWD) 9:29 47F 9:21 76F 8:53 54F

Air Temp FWD 12.2C

(Logger) LOG 8.1C | LOG 21.2C

Time/Tem 4/4/97 7/28/97 * *
1997 (FWD) 8:57 50F 9:11 85F

Air Temp FWD 74F

(Logger) LOG 16.2C | LOG 24.5C

Time/Tem 3/17/98 Bad Load 10/01/98 *
1998 (FWD) 9:22 42F Cell 9:11 57F

Air Temp FWD 41F FWD 57F

(Logger) LOG 2.5C LOG 12.1C

Time/Tem 4/26/99 9/22/99
1999 (FWD) 8:55 48F 9:02 46F

Air Temp FWD 44F -

(Logger) LOG 13.0C LOG 11.8C

Time/Tem 3/29/00 9/22/00
2000 (FWD) 9:26 44F 8:27 53F

Air Temp - -

(Logger) - LOG 12.9C

Time/Tem 4/19/01
2001 (FWD) 8:57 43F

Air Temp -

(Logger) -

* No FWD Files
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Table D4 DATA to BACKCALCULATE RESILIENT MODULUS
AT THE BREAK POINT FROM FWD TESTING (Knox Co.)

FALL

YEAR Eri SPRING | SUMMER WINTER

Time/Tem * * 11/12/91 *
1991 (FWD) 10:59 33F

Air Temp FWD 0.6C

(Logger)

Time/Tem 3/18/92 6/9/92 9/23/92 11/25/92
1992 (FWD) 12:22 34F 11:47 71F 12:59 58F 10:48 41F

Air Temp FWD 21.7C

(Logger) LOG 7.3C LOG 11.8C | LOG 7.3C

Time/Tem 3/23/93 6/30/93 9/23/93 12/2/93
1993 (FWD) 10:37 44F 2:07 74F 10:49 65F 10:54 44F

Air Temp

(Logger) LOG 84C | LOG 14.1C | LOG 18.6C | LOG 8.3C

Time/Tem * 6/17/94 9/23/94 12/02/94
1994 (FWD) 12:05 84F 1130 65F 11:45 39F

Air Temp

(Logger) LOG 30.9C | LOG 16.9C | LOG 10.5C

Time/Tem 3/27/95 6/12/95 11/8/95 *
1995 (FWD) 10:19 44F 11:07 58F 11:51 36F

Air Temp FWD 2.2C

(Logger) LOG 6.1C | LOG 18.6C

Time/Tem 5/1/96 6/27/96 9/20/96 *
1996 (FWD) 11:52 46F 10:58 81F 11:18 80F

Air Temp

(Logger) LOG 8.8C | LOG 23.4C | LOG 20.6C

Time/Tem 4/4/97 7/28/97 * *
1997 (FWD) 12:26 73 11:03 80F

Air Temp FWD 75F

(Logger) LOG 22.9C LOG 24C

Time/Tem 3/17/98 Bad Load 10/01/98 *
1998 (FWD) 11:11 42F Cell 11:07 73F

Air Temp FWD 38F FWD 59F

(Logger) LOG 2.7C LOG 14.0C

Time/Tem 4/26/99 9/22/99
1999 (FWD) 11:01 76F 10:45 65F

Air Temp FWD 61F -

(Logger) LOG 16.6C LOG 13.4C

Time/Tem 3/29/00 *
2000 (FWD) 11:10 48F

Air Temp -

(Logger) -

Time/Tem 4/19/01
2001 (FWD) 11:08 69.1F

Air Temp -

(Logger) LOG 11.7C

* No FWD Files
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Table D5 DATA to BACKCALCULATE RESILIENT MODULUS
AT THE BREAK POINT FROM FWD TESTING (Licking Co.)

YEAR Eri SPRING | SUMMER FALL WINTER
Time/Tem * * 11/13/91 *
1991 (FWD) 11:07 36F
Air Temp FWD 2.2C
(Logger)
Time/Tem 3/19/92 6/10/92 9/24/92 11/23/92
1992 (FWD) 12:57 34F 12:28 73F 12:32 59F 12:00 45F
Air Temp
(Logger) LOG 0.0C | LOG 21.9C | LOG 153C | LOG 7.8C
Time/Tem 3/24/93 6/30/93 9/20/93 12/6/93
1993 (FWD) 12:35 58F 11:35 70F 11:36 62F 12:56 38F
Air Temp
(Logger) LOG 9.7C | LOG 22.3C | LOG 17.0F | LOG 4.0C
Time/Tem * 6/16/94 9/21/94 12/01/94
1994 (FWD) 13:19 91F 11:31 71F 12:51 34F
Air Temp
(Logger) LOG 28.8C | LOG 23.2C } LOG 4.0C
Time/Tem 3/23/95 6/8/95 11/15/95
1995 (FWD) 11:39 46F 13:03 76F 12:58 33F
Air Temp
(Logger) LOG 5.0C | LOG 23.6C | LOG 1.3C
Time/Tem 4/25/96 6/26/96 9/19/96 *
1996 (FWD) 12:32 64F 12:46 98F 11:59 83F
Air Temp FWD 75F
(Logger) LOG 19.2C | LOG 24.5C | LOG 21.2C
Time/Tem 4/3/97 7/17/97 * *
1997 (FWD) 12:07 55F 11:25 106F
Air Temp FWD 29.4C
(Logger) LOG 18.1C
Time/Tem 3/12/98 * 9/30/98 *
1998 (FWD) 12:44 27F 13:18 92F
Air Temp FWD 26F FWD 78F
(Logger) LOG -4.4C LOG 24.9C
Time/Tem 4/22/99 *
1999 (FWD) 11:16 81F
Air Temp FWD 18.3C
(Logger) -
Time/Tem 3/30/00 9/21/00
2000 (FWD) 10:53 61F 11:04 73F
Air Temp
(Logger) - -
Time/Tem 4/18/01
2001 (FWD) 11:47 63.0F
Air Temp
(Logger) -

* No FWD Files
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Table D6 DATA to BACKCALCULATE RESILIENT MODULUS
AT THE BREAK POINT FROM FWD TESTING (Wood 8 Co.)

YEAR Eri SPRING | SUMMER FALL WINTER
Time/Tem * * 10/20/91 11/5/91
1991 (FWD) 9:45 60F 9:08 19F
Air Temp FWD 15.6C | FWD -7.2C
(Logger)
Time/Tem 3/14/92 6/8/92 9/28/92 11/24/92
1992 (FWD) 9:38 37F 8:44 60F 9:01 49F 8:51 40F
Air Temp FWD 2.8C FWD 4.4C
(Logger) LOG 16.5C | LOG 114C
Time/Tem 3/22/93 6/28/93 9/21/93 12/1/93
1993 (FWD) 9:14 32F 8:51 66F 9:07 50F 9:13 27F
Air Temp
(Logger) LOG 1.5C | LOG 19.5C | LOG 159C | LOG -1.7C
Time/Tem * 6/21/94 9/22/94 11/30/94
1994 (FWD) 9:24 71F 8:53 57F 9:41 29F
Air Temp
(Logger) LOG 28.6C | LOG 20.4C | LOG -0.4C
Time/Tem 3/22/95 6/7/95 11/20/95 *
1995 (FWD) 9:04 35F 8:52 63F 9:40 39F
Air Temp
(Logger) LOG 4.7C | LOG 25.2C | LOG 4.0C
Time/Tem 4/24/96 6/25/96 9/18/96 *
1996 (FWD) 8:37 40F 9:07 74F 8:36 59F
Air Temp FWD 61F
(Logger) LOG 6.2C | LOG 18.7C | LOG 16.3C
Time/Tem 4/2/97 7/16/97 * *
1997 (FWD) 9:15 35F 9:26 85F
Air Temp FWD 71F
(Logger) LOG 10.2C | LOG 26.8C
Time/Tem 3/11/98 Bad Load 9/29/98 *
1998 (FWD) 9:10 19F Cell 8:46 61F
Air Temp FWD 18F FWD 62F
(Logger) LOG -7.8C LOG 15.8C
Time/Tem 4/21/99 9/20/99
1999 (FWD) 8:50 51F 8:54 70F
Air Temp FWD 50F -
(Logger) LOG 9.5C LOG 17.4C
Time/Tem 3/28/00 9/19/00
2000 (FWD) 8:54 48F 8:46 64F
Air Temp - -
(Logger) - LOG 19.6C
Time/Tem 4/16/01
2001 (FWD) 9:09 45F
Air Temp
(Logger) LOG 6.0C
* No FWD Files
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Table D7 BACK CALCULATED RESILIENT MODULUS AT THE BREAK POINT

FROM FWD TESTING (MPa)
(Adams Co.)
YEAR Eri SPRING | SUMMER FALL WINTER
1991 Average
at Ref. Pt.
1992 Average
‘ at Ref. Pt.
1993 Average 28.13
at Ref. Pt. 67.42
1994 | Average -X -X 9.86
at Ref. Pt. 20.27 35.44 45.71
1995 Average 30.20 37.85 9431
| atRef. Pt. | 59.50 75.49 129.12
1996 Average -X -X 33.37
at Ref. Pt. 5.93 27.16 49.77
1997 Average 34.19 1.24
at Ref. Pt. 70.18 28.75
1998 Average -X 18.27
at Ref. Pt. 32.75 49.09
1999 Average 36.95 8.82
at Ref. Pt. 70.39 5.38
2000 Average 3440 31.71
| atRef Pt | 6467 48.67
2001 Average -X
at Ref. Pt. -X

X High FWD Deflections




Table D8 BACK CALCULATED RESILIENT MODULUS AT THE BREAK POINT
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FROM FWD TESTING (MPa)
(Athens Co.)
YEAR Eri SPRING | SUMMER FALL WINTER
1991 Average 129.06
at Ref. Pt. 138.29
1992 Average 143.53 141.74 138.36 157.25
at Ref. Pt. 160.70 159.04 154.29 173.25
1993 Average 177.52 163.94 192.83 155.25
at Ref. Pt. 203.79 179.18 201.72 176.14
1994 Average 148.84 167.32 116.44
| atRef. Pt. 152.01 166.63 124.37
1995 Average 136.02 187.86 185.03
at Ref. Pt. 142.64 194.76 191.17
1996 Average 167.39 138.16 115.96
at Ref. Pt. 181.86 139.19 120.99
1997 Average 133.61 138.64
at Ref. Pt. 151.39 147.95
1998 Average 104.58 175.80
at Ref. Pt. 120.30 185.79
1999 Average 200.20 157.11
at Ref. Pt. 215.99 164.77
2000 Average 120.71 138.29
at Ref. Pt. -X 149.88
2001 Average 120.30
at Ref. Pt. 126.23

X High FWD Deflections
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Table D9 BACK CALCULATED RESILIENT MODULUS AT THE BREAK POINT

FROM FWD TESTING (MPa)
(Crawford Co.)
YEAR Eri SPRING | SUMMER FALL WINTER
1991 Average 18.82
at Ref. Pt. 30.40
1992 Average -X 34.75 21.30 45.71
at Ref. Pt. 8.82 X 38.40 28.82 55.84
1993 Average 33.78 37.99 60.46 43.29
at Ref. Pt. 51.43 41.71 63.70 52.19
1994 Average
at Ref. Pt.
1995 Average 17.92 66.60 60.87
at Ref. Pt. 30.20 75.77 67.35
1996 Average 15.44 14.06 24.34
at Ref. Pt. 23.16 20.20 27.16
1997 Average 55.77 26.47
at Ref. Pt. 65.49 35.16
1998 Average -X 19.10
at Ref. Pt. 12.68 25.99
1999 Average 34.95 17.86
at Ref. Pt. 34.06 19.10
2000 Average -X 2.14
at Ref. Pt. 4.48 6.20
2001 Average -X
at Ref. Pt. -X

X High FWD Deflections
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Table D10 BACK CALCULATED RESILIENT MODULUS AT THE BREAK POINT
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FROM FWD TESTING (MPa)
(Knox Co.)
YEAR Eri SPRING | SUMMER FALL WINTER
1991 Average 70.04
at Ref. Pt. 53.50
1992 Average 67.15 84.52 66.25 79.14
at Ref. Pt. 52.53 71.42 55.70 77.49
1993 Average 54.60 54.95 121.82 89.83
at Ref. Pt. 31.57 30.06 95.48 68.39
1994 Average 85.62 74.94 77.14
at Ref. Pt. 45.64 45.36 51.71
1995 Average 48.46 96.72 85.49
at Ref. Pt. 20.13 56.60 50.74
1996 Average 20.27 72.52 79.01
at Ref. Pt. -X 58.32 49.91
1997 Average 69.28 65.84
at Ref. Pt. 4791 36.33
1998 Average 25.51 56.39
at Ref. Pt. 28.13 41.43
1999 Average 48.67 58.53
at Ref. Pt. 11.17 21.37
2000 Average 8.13
at Ref. Pt. -X
2001 Average 35.30
at Ref. Pt. 20.54

X High FWD Deflections




Table D11 BACK CALCULATED RESILIENT MODULUS AT THE BREAK POINT

168

FROM FWD TESTING (MPa)
(Licking Co.)
YEAR En SPRING | SUMMER FALL WINTER
1991 Average 219.71
at Ref. Pt. 188.83
1992 Average 203.03 242.12 255.84 245.08
at Ref. Pt. 170.28 195.17 221.57 211.99
1993 Average 250.53 268.31 281.41 23591
at Ref. Pt. 205.37 236.46 232.12 193.58
1994 Average 205.92 266.94 218.82
at Ref. Pt. 138.29 209.65 158.91
1995 Average 224.81 269.49 265.90
at Ref. Pt. 150.15 195.79 217.44
1996 Average 256.18 237.36 245.43
at Ref. Pt. 170.07 169.04 166.49
1997 Average 249.56 231.43
at Ref. Pt. 197.93 186.00
1998 Average 182.07 241.84
| atRef. Pt. | 134.02 198.06
1999 Average 235.64
at Ref. Pt. 154.84
2000 Average 238.19 242.53
at Ref. Pt. 131.61 137.60
2001 Average 145.88
at Ref. Pt. -X

X High FWD Deflections
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FROM FWD TESTING (MPa)
(Wood 8 Co.)
YEAR Eri SPRING | SUMMER FALL WINTER
1991 Average 71.28 18.89
at Ref. Pt. 78.18 24.68
1992 Average 42.74 56.94 60.39 63.22
at Ref. Pt. 44.40 56.32 64.60 64.11
1993 Average 61.77 62.67 62.39 73.15
at Ref. Pt. 62.25 67.42 75.01 78.38
1994 Average 69.15 88.93 69.56
at Ref. Pt. 67.42 87.55 76.25
1995 Average 74.52 9941 124.23
at Ref. Pt. 66.32 98.65 130.02
1996 Average 71.42 57.63 89.90
at Ref. Pt. 75.01 58.19 102.38
1997 Average 84.38 61.70
at Ref. Pt. 86.24 54.88
1998 Average 48.40 81.07
at Ref. Pt. 56.67 84.11
1999 Average 70.39 77.70
at Ref. Pt. 82.73 85.00
2000 Average 65.29 84.31
at Ref. Pt. 72.32 91.97
2001 Average 54.60
at Ref. Pt. 65.08

X High FWD Deflections
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