

 PREPARED FOR

 UNIVERSITY OF RHODE ISLAND

 TRANSPORTATION CENTER

SMART SPEED BUMPS

William J. Ohley, Marshall Feldman
Christopher Hunter and Frederic Bauhaud

University of Rhode Island

August 2002

URITC PROJECT NO. 536114

DISCLAIMER
This report, prepared in cooperation with the University of Rhode Island
Transportation Center, does not constitute a standard, specification, or regulation.
The contents of this report reflect the views of the author(s) who is (are)
responsible for the facts and the accuracy of the data presented herein. This
document is disseminated under the sponsorship of the Department of
Transportation, University Transportation Centers Program, in the interest of
information exchange. The U.S. Government assumes no liability for the contents

1. Report No 2. Government Accession No. 3. Recipient's Catalog No.

 N/A N/A

4. Title and Subtitle 5. Report Date

 August 2002

 6. Performing Organization Code
 N/A
7. Authors(s)

 8. Performing Organization Report No.

 N/A
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
 N/A
 11. Contract or Grant No.

 URI 536114
 13. Type of Report and Period Covered

 Final
12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code

 A study conducted in
 cooperation with U.S. DOT

15. Supplementary Notes
 N/A
16. Abstract

17. Key Words 18. Distribution Statement

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

 Unclassified Unclassified 86 N/A

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized (art. 5/94)

Smart Speed Bumps

William J. Ohley, Marshall Feldman, Christopher Hunter and Frederic
Bahuaud

University of Rhode Island, Dept. of Electrical and Computer Engineering,
4 East Alumni Ave., Kelley Annex, Kingston, RI 02881
(401) 874- 5813
email address: ohley@ele.uri.edu

University of Rhode Island Transportation Center
85 Briar Lane
Kingston, RI 02881

 In this project, a scale-model of a Smart Speed Bump, which can inflate or deflate on emergency
vehicle request was designed. The design was also discussed in student led focus groups.

An embedded system that commands such a speed bump was developed, based on a 68HC11
evaluation board. This board is interconnected to another board that features a Seiko iChip. The
iChip is a component that performs all the TCP/IP communication and therefore, allows easy Internet
connection for any embedded system. The connection between the embedded system and the real
inputs and outputs was not implemented in this project phase. The program that runs the Smart Speed
Bump was written in C language, with state machine architecture. It is compiled with IAR embedded
workbench. An email report engine based on the iChip was developed with Seiko Development Kit.
Then, it was integrated in the Smart Speed Bump program.

The focus groups were formed through students in the Department of Community Planning.
Several groups questioned the effectiveness of speed bumps in general, noting that they often observe
drivers slowing down to go over speed bumps and then speeding up again. A second effectiveness
concern dealt with traffic congestion. The focus groups were afraid that widely used speed bumps
would increase traffic congestion.

Thus this project demonstrates that the concept of Smart Speed Bumps is reasonable and

No restrictions. This document is available to the
Public through the URI Transportation Center,
85 Briar Lane, Kingston, RI 02881

Speed, Inflation, Speed Control, Remote,
Computer Networks, Emergency vehicles,
Focus Groups

URITC FY99-14

Table of Contents
INTRODUCTION…….. 1

1. PROJECT OVERHEAD.. 2

2. SPECIFICATION FOR A SCALE-MODEL DESIGN .. 4
 2.1 FUNCTIONALITIES OF THE SCALE-MODEL ... 4
 2.2 USE OF EXISTING MATERIALS .. 4
 2.3 INPUTS AND OUTPUTS OF THE SCALE MODEL.. 5

3. THE 68HC11 EVALUATION BOARD ... 6
 3.1 HARDWARE DESCRIPTION .. 6
 3.2 OPERATING INSTRUCTIONS... 7

4. CONNECTING THE 68HC11 TO INTERNET... 8
 4.1 INTERNET STRATEGY.. 8
 4.2 TCP/IP, SMTP AND POP3 [4] ... 9
 4.3 THE ICHIP S7600A ... 9
 4.4 THE SEIKO DEVELOPMENT KIT (SKD) ...10

5. DESIGN OF THE EMBEDDED SYSTEM ...14
 5.1 CONNECTING SDK TO EVB...14
 5.2 INPUT/OUTPUT SIGNALS OF THE S2B..16
 5.3 CONNECTORS AND CABLES ..18
 5.4 SCHEMATICS, PART LIST AND COSTING OF THE BOARD ...18
 5.5 DRIVERS FOR THE ICHIP AND THE I/O...21

6. PROGRAMMING THE 68HC11 ..23
 6.1 CHOICE OF A C CROSS COMPILER ..23
 6.2 INTRODUCTION TO IAR EMBEDDED WORKBENCH ...23
 6.3 PROGRAMMING THE S2B AS A STATE MACHINE...24

7. SUGGESTIONS FOR FURTHER DESIGN AND IMPROVEMENTS ..29

CONCLUSIONS ..31

REFERENCES ..32

ACKNOWLEDGEMENTS..33

Appendices
APPENDIX A: FOCUS GROUP FINAL REPORT ..34
APPENDIX B: FOCUS GROUP QUESTIONS, CHECKLIST, & FOCUS GROUPS................................40
APPENDIX C: M68HC11EVB EVALUATION BOARD ARCHITECTURE52
APPENDIX D: POP3 AND SMTP COMMANDS ..57
APPENDIX E: S7600A ICHIP INFORMATION [5]..59
APPENDIX F: S7600A SDK BOARD FOR ISA BUS [15] ..63
APPENDIX G: PROGRAM OF AN EMAIL REPORT ENGINE ..65
APPENDIX H: PROGRAM OF THE S2B IN C ..74
APPENDIX I. COMPARISON OF C CROSS COMPILERS ...86

List of Figures

Figure 1: Main constituents of the overall S2B project ... 2
Figure 2: Sketch of an on-site S2B.. 3
Figure 3: Block diagram of the Seiko S7600A iChip[5] ..10
Figure 4: The Seiko Development Kit with its package [7] ...11
Figure 5: Algorithm of the email report engine ..12
Figure 6: Shaping of a CE* signal from the EVB ..14
Figure 7: Two NAND gates are used to buffer RESET*..15
Figure 8: Circuitry used to simulate inputs of the S2B ...17
Figure 9: Circuitry of the output LEDs that simulate outputs of the S2B17
Figure 10: Architecture of the embedded system...18
Figure 11: Schematic of the interface board ...20
Figure 12: State diagram of the S2B ...25
Figure 13: Operation of the S2B, in case of emergency request ...26
Figure 14: Algorithm of the maintenance mode ...27
Figure 15: Algorithm to send an email, in communication state ..28
Figure 16: Architecture of the 68HC11 evaluation board (EVB) ...52
Figure 17: EVB connector location diagram..53
Figure 18: Pin assignment of connector P1 ..54
Figure 19: EVB memory map location...55
Figure 20: 68 family MPU write cycle timing ..60
Figure 21: 68 family MPU read cycle timing ...60
Figure 22: Block diagram of the Seiko Development Kit (SDK)...63
Figure 23: Pin assignment of CN1..64
Figure 24: Pin assignment of CN3..64

LIST OF TABLES

Table 1: Inputs of the embedded system of the small-scale design 5
Table 2: Outputs of the embedded system of the small-scale design 5
Table 3: Specification of the EVB [3] .. 6
Table 4: BUFFALO program commands ... 7
Table 5: I/O address mapping of the SDK..11
Table 6: List of the functions and explanation of their I/O...13
Table 7: Signals necessary for a R/W cycle. I/O are from the iChip point of view14
Table 8: Port D is configured as an input port. Each switch is assigned to one bit16
Table 9: Port B in an output port. Each bit is assigned to one LED...................................17
Table 10: Pin interconnection between EVB and SDK ..18
Table 11: Bill of materials for the interface board and costing ..21
Table 12: Declaration of the functions in main.h ...25
Table 13: Interrupt jump vector table ...56
Table 14: Pin description of the S7600A..59
Table 15: Register map of the S7600A-Part 1 ..61
Table 16: Register map of the S7600A-Part 2 ..62
Table 17: Comparison of C cross compilers ...86

GLOSSARY

68HC11A1: Motorola basic micro controller
CD-ROM: Compact Disc Read Only Memory
CPU: Central Processor Unit
EPROM: Erasable Programmable Read Only Memory
EVB: Evaluation Board for 68HC11
ISA Bus: Industry Standard Architecture Bus
kbyte: 1 kilo byte = 1 024 bytes
MCU: Micro Controller Unit
PC: Personal Computer
RAM: Random Access Memory
ROM: Read Only Memory
RS232: Serial link standard
RTI: Real Time Interrupt
S2B: Smart Speed Bump
SCI: Serial Communication Interface
SDK: Seiko Development Kit
SRAM: Static Random Access Memory

*.a07: File containing the code generated by the linker
*.c: File containing C language programs
*.r07: File containing the code generated by the compiler
API: Application Programming Interface
ASM: Assembly. Low-level computer language
C: High-level computer language
DOS: Disc Operating System
FTP: File Transfer Protocol
HTTP: Hyper Text Transfer Protocol
ISP: Internet Service Provider
POP3: Post Office Protocol 3
PPP: Point to Point Protocol
RTOS: Real-Time Operating System
SMTP: Simple Mail Transfer Protocol
TCP/IP: Transmission Control Protocol / Internet Protocol

ESPEO: Ecole Supérieure des Procédés Electroniques et Optiques
IAR: Software Company that makes C cross compilers

 URI: University of Rhode-Island

INTRODUCTION

In order to reduce car speeding on back roads, the transportation authorities install speed

bumps. But sometimes, the police or the firemen lobby against the installation of speed bumps
because they slow them down, although they have an emergency. Dr. William Ohley [1] thought
of a smart speed bump (S2B), which would slow down any vehicle but emergency vehicles. It is
an inflatable speed bump that can be commanded from emergency vehicles. The idea was
patented and funds were found to carry out the project.

Dr. Ohley hired an intern [2] in the electrical engineering department of the University of

Rhode Island (URI). The goal of this research was to define the structure of the smart speed
bump system, write the specification of a scale-model speed bump and then, design the
embedded system of the scale model. The tools required to develop the system were not all
available so I also had to consider the purchase of some software.

This report was written to both explain the smart speed bump project and present the work

that we have done.

In a first part, the overall project is explained. Then, the specification of a small-scale design is
described. The third part is a short tutorial about the evaluation board that was used for the
project. The forth part explains how to connect the speed bump to Internet in order to send
emails. The fifth part is about the hardware design of the embedded system, using two existing
boards plus one homemade board. The sixth part is about the programming of the embedded
system. It also relates how a C cross compiler was chosen to carry out the programming. Finally,
the last part proposes a list of improvements that can be done on the actual design.

Throughout this report, ‘*’ symbol is used to describe a negation (NOT). If RESET is a
signal, RESET* means that it is active low.

Paths, where different files are located, are given in this report. All these paths are valid only

for Dr. Ohley’s computer.

1. Project overhead

The main feature of the S2B is the capability to inflate or deflate. The underlying idea
is as follows: if an emergency vehicle approches a S2B, the driver can press a button in
his vehicle. This operation sends a message to the S2B, which automatically deflates.
Hence, the emergency vehicle does not have to slow down, since there is no speed
bump anymore ahead. A short while later, the S2B automatically inflates and returns into
normal operation mode. The emergency vehicle request is sent from a small radio
emitter, to a receiver installed next to the S2B.

Of course, different S2B’s can be installed in a town. They constitute a network that
can be remotely monitored and operated, from a server. Furthermore, any S2B has the
capability of sending reports to the server, in case of problem, failure, or for statistical
purposes. A S2B network management software is a user friendly interface that allows
an operator to do so. The internet network can be used in order to transmitt data. As
shown on figure 1, the S2B network is composed of 3 different portions:

• Speed bumps
• A central server
• Remote controls

Below, the goal of each constituent of the S2B system is described more accurately:

Web server:

• Command each S2B operation, independently
• Monitor S2B’s. Trigger an alarm in case of S2B failure
• Receive e-mail reports from S2B’s, in case of failure
• Collect daily statistics from S2B’s.

Figure 1: Main constituents of the overall S2B project

Web server
with management

software

S2B 1

S2B 2

S2B 3

S2B n

Internet
network

Emergency vehicle with
S2B remote control

On-site S2B:
• Receive requests from emergency vehicles
• Inflate or deflate S2B
• Monitor problems and failures (power, actuators, sensors, flashing lights…)
• Perform Internet connectivity
• Send email reports in case of S2B failure or for statistics
• Switch in server mode for remote operation or configuration
• Allow manual command of inflation/deflation, for maintenance.

Remote control:

• Send an emergency request to all speed bumps in a radius of 1mile.

The sketch of figure 2 focuses on the on-site part of the S2B system. Its main constituents

are:
• An inflatable speed bump, to slow down vehicles
• A flashing light, to warn coming vehicles
• An antenna, to receive emergency vehicle requests
• An embedded system, to control the S2B operation
• A pressure gauge, to know the pressure in the speed bump
• Actuators and air pumps, to inflate and deflate the speed bump.

As a first step in the development of a S2B, a scale-model has to be designed. The
management software will not be designed and the overall system will only feature one speed
bump. The scale-model will be used for demonstration to the police, firemen, and other people.
It will be used to work with these potential users in design process. The scope of this report is
the design of the embedded system of a scale-model of a S2B.

 In the next parts of this report, the on-site part of the S2B is the only one that is considered.
Hence, the words “Smart Speed Bump”, or “S2B”, will stand for the on-site part of the overall
project.

Figure 2: Sketch of an on-site S2B

Power

Internet

Pressurized
air pipe

Speed
bump

Embedded system:
(control system + power
interface + pneumatic

pump + battery)

Flashing
light Pressure gauge

Antenna

 2. Specification for a scale-model design

The first specification of the project is to… define a specification because there isn’t any!

Follows a description of what can be done, providing that materials that are already available
have to be used.

2.1 Functionalities of the scale-model

A scale-model design, including a single S2B has to be built. As first priority, the

development work will be concentrated on the embedded system. It must be modular and easily
upgradeable, failsafe and highly reliable. It must perform the following functions:

• Receive requests from emergency vehicles
• Inflate or deflate S2B
• Monitor problems and failures (power, actuators, sensors, flashing lights…)
• Perform Internet connectivity
• Send e-mail reports in case of S2B failure
• Allow manual command of inflation/deflation, for maintenance.

The control system of the S2B is very simple. Most of the work to be carried out concerns

the Internet connectivity. The latter must be implemented and tested to send emails that can be
read with a classic email box (Netscape messenger or Microsoft Outlook, for example).

2.2 Use of existing materials

As the scale-model design will be used for demonstration, materials that are already

available at the university should be used. Follows a list of some devices that can be used in
order to implement the first prototype:

• 68HC11 evaluation board (EVB)
• Pneumatic pump and pressure gauge of an intraaortic balloon cardiac assist system
• LED instead of the flashing lights.

The 68HC11 EVB is used each year by Dr. Ohley to teach microcontrollers. It is a classic

development board (1986) but it still works fine. It has sufficient memory and is fast enough for
our requirements. It will be used for the embedded system. A program will perform all the S2B
control system and provide Internet connection. The EVB is further described in part 3.

The intraaortic balloon cardiac assist system is a medical device that was designed by
Dr. Ohley. It features an air pump that inflates and deflates a long balloon. Inflation and deflation
can be commanded by an external source. A built-in pressure gauge yields a signal that is
accessible via an external connector. So this device can be used easily to simulate an inflatable
speed bump.

The use of the intraaortic balloon cardiac assist system was part of the initial specification.
Unfortunately, it was not available during my internship. As a consequence, the characteristics
of the inputs and outputs were not known. One way to do something anyway was to simulate
inputs with switches, and outputs with LEDs. This solution was retained, and it is still the way it
works, so far.

2.3 Inputs and outputs of the scale model

Considering the needs for the S2B, inputs and outputs of the embedded system were

defined. They are as listed in table 1 and 2.

Inputs:

Name Physical origin Utility

High pressure in
speed bump

1 switch simulating
a high pressure
signal from a
pressure gauge

Stop inflation when the required pressure is reached.
Detect punctures

Low pressure in
speed bump

Same switch as
above, but in the
other position

Stop deflation when pressure is low enough

Emergency
request

1 push button
simulating a radio
signal from an
emergency vehicle

Command the deflation of the speed bump

Inflation button 1 push button Manual command of inflation, for maintenance
Deflation button 1 push button Manual command of deflation, for maintenance
Modem incoming
stream

Modem Reception of data from Internet

Table 1: Inputs of the embedded system of the small-scale design

Outputs:

Name Physical device Utility

1 pneumatic pump 2 LEDs simulating
the pump (inf & def) Allow inflation or deflation of the speed bump

1 flashing light 1 LED simulating the
flashing light Flash when the speed bump is inflated

Modem outgoing
stream

Modem Emission of data to Internet, for email report in
case of problem or failure of the S2B

Table 2: Outputs of the embedded system of the small-scale design

Before starting the design of the scale-model, it was necessary to study the 68HC11

evaluation board. It was also required to find information on how to connect an embedded
system to the Internet. That is what is explained in the next two parts of this report.

3 The 68HC11 evaluation board

This board is used for the embedded system of the S2B. Follows a quick description of its

main characteristics and how to operate it.

3.1 Hardware description

The EVB was designed to debug and evaluate user code in a target system environment.

The EVB emulates the single-chip mode of operation, even though it operates in the expended
multiplexed mode of operation. The EVB was designed along with a monitor/debugging program
called BUFFALO. This program is contained in an EPROM, external to the microcontroller
(MCU). The user program is contained in an external RAM, after download from an external
host computer. Hence, user program is lost in case of power failure.

The EVB specification is described in table 3:

Characteristics Specifications
MCU MC68HC11A1FN
PRU MC68HC24FN
ACIA MC68B50
I/O ports:

Terminal
Host computer
MCU extension

RS232C compatible
RS232C compatible
HCMOS-TTL compatible

Temperature:
Operating
Storage

0 to 50 degrees C
-40 to +85 degrees C

Relative humidity 0 to 90% (non-condensing)
Power requirements +5 Vdc, 0.5 A maximum

+12 Vdc, 0.5 A maximum
-12 Vdc, 0.5 A maximum

Dimensions:
Width
Length

17.8 cm
11.75 cm

Table 3: Specification of the EVB [3]

A block diagram of the EVB, a component location diagram, a pin assignment of connector

P1, a memory map and an interrupt vector jump table are provided in appendix C.
The EVB is used with a RS232 terminal and a power supply coming from room 101, Kelley

building. Target boards with 6 displays connected to PORTB are also available for
experimentations.

Connector P1 is used for target system to EVB interconnection. Connector P2 is used to
connect the terminal. This terminal is used as an I/O device for user programs. Connector P3 is
used to connect the serial port COM1 of the host computer. This computer is used to download
programs in the EVB RAM.

Before intending any serial communication, make sure that jumper 5 (J5) is set to 9600
bauds.

3.2 Operating instructions
3.2.1 Downloading a program in memory

The downloading operation enables the user to transfer information from a host computer to

the EVB, using the LOAD T command. The load command moves data information in S-record
format (Motorola), from the external host computer to the EVB user RAM. The extension of S-
record format files is either .s09 or .a07. These files are generated by a C cross compiler, such
as IAR workbench for 68HC11, described in more details in chapter 6.2.

A terminal emulator, such as Hyperterminal (C:\program files\accessories\hyperTrm.exe), is
used to transfer files. It must be configured as follows:

Connect using: direct to COM1
Port settings: 9600 bauds
Data bits: 8
Parity: none
Stop bit: 1
Flow control: hardware

The default settings of other fields are OK, so they don’t need to be changed.
Save these parameters in a new profile called 68HC11evb.ht. Then, when loading this

profile, the link with the EVB is automatically opened. Turn on the EVB or reset it. The
BUFFALO welcome message should appear in the Terminal window. It is as follows:

BUFFALO 2.5 (ext) - Bit User Fast Friendly Aid to Logical Operation

Press Enter and a prompt should be displayed as follows:
>
That means that the BUFFALO operating system is now ready to receive commands and

interpret them. The first step is to download the user program in RAM. To do so, type LOAD T
and then, press Enter. Now, the program waits for the user to send a S-record file. In the menu,
choose Transfer/Send text file…. Select the file to be sent and click on the open button. The
download procedure is started. If it was successful, the following should be displayed in the
window:

done
>
If any other character appear, the file was not downloaded properly: the program should be

reconsidered because it contains errors.

3.2.2 Debugging

Table 4 lists a few commands that can be used to execute and debug a program. The whole

set of instructions is available in the M68HC11EVB user’s manual [3], p 4.4.
Command Description

g <address> Execute program. <address> is the starting address where user
program execution begins (C010 in our design).

md <address1> <address2> Memory display from <address1> to <address2>
mm <address> Memory modify.
rm Register modify (P, Y, X, A, B, C, S).
br <address> Breakpoint set

Table 4: BUFFALO program commands

4 Connecting the 68HC11 to Internet

The S2B features an Internet connection. This part explains how this can be easily

implemented by using Seiko iChip. There is also a quick description of the Seiko Development
Kit (SDK). Finally, a program of an email report engine is explained.

4.1 Internet strategy

The S2B has the capability of sending data reports to a server and being remote configured.

Telephone lines are convenient to transport data since they are available in all streets. As the
data to be transmitted needs to be highly reliable, an Internet protocol, such as TCP/IP should
be used.

Hence, an email communication engine that can be embedded inside a device has to be
designed. It dialups, connects to an Internet service provider (ISP), and sends emails over the
Internet. In this first version of the S2B, reception of emails is not implemented.

TCP/IP is a rather complicated stack of protocols that ensures reliable data transmission
between two peers. Post Office Protocol 3 (POP3) and Simple Mail Transfer Protocol (SMTP)
are used to receive and send emails between a mail server and a mail host. These protocols
are briefly explained in the next chapter.

Two different strategies were thought of in order to develop an email engine:

1. The 68hc11 is linked directly to a modem. Therefore, the appropriate program has to
manage all handshaking signals with the modem and all TCP/IP. This can be achieved
in C programming but C++ classes, like Winsocket, cannot be used, since the code
generated is far too big to be uploaded in an embedded target. All the code has to be
written. This is very complicated and time to design would be very long!

2. The 68HC11 is interfaced with a modem via an Internet connection chip, like the
S7600A, from Seiko. This chip, called iChip, manages all modem handshaking and
TCP/IP, making Internet connection of embedded systems much easier. However,
iChip is new and not many people know how to use it.

The second solution was chosen. A Seiko Development Kit (SDK) was ordered for $199,

together with a US Robotics 56k external modem, for $110.

Sending and receiving emails over the Internet requires an ISP. The computer service of

URI has an ISP service that allows dialup line connection. An account was opened on etal
server. This account will be valid one year and shall be renewed afterwards. The connection
parameters are as follows:

Phone number: 874-8900 or 4-8900 if on campus
User name: fred@etal
Password: 1176
Email address: fred@etal.uri.edu
IP address: 131.128.1.21
POP3 port: 110
SMTP port: 25
HTTP port: 80

4.2 TCP/IP, SMTP and POP3 [4]

A basic knowledge of TCP/IP is required in order to implement an email engine, using the

Seiko S7600A iChip. In our case, a mail has to be sent.
First, there is a protocol for mail. This defines a set of commands which one machine sends

to another, e.g. commands to specify who is the sender of the message, who is the recipient,
and then the text of the message. However this protocol assumes that there is a way to
communicate reliably between the two computers. SMTP and POP3 simply define a set of
commands and messages to be sent (c.f. Appendix D for a list of the commands). They are
designed to be used together with TCP and IP. TCP is responsible for making sure that the
commands get through to the other end. It keeps track of what is sent, and retransmits anything
that did not get through. If any message is too large for one datagram, e.g. the text of the mail,
TCP will split it up into several datagrams, and make sure that they all arrive correctly. Since
these functions are needed for many applications, they are put together into a separate
protocol, rather than being part of the specifications for sending mail. TCP can be thought of as
forming a library of routines that applications can use when they need reliable network
communications with another computer. Similarly, TCP calls on the services of IP. Although the
services that TCP supplies are needed by many applications, there are still some kinds of
applications that don't need them. However there are some services that every application
needs. So these services are put together into IP.

This strategy of building several levels of protocol is called "layering". SMTP, POP3, TCP,
and IP are separate "layers", each of which calls on the services of the layer below it. Generally,
TCP/IP applications use 4 layers:

• An application protocol such as SMTP, POP3, FTP or HTTP
• A protocol such as TCP that provides reliable delivery of datagrams
• IP, which provides the basic service of getting datagrams to their destination
• Point-to-Point protocol (PPP), needed to manage a specific physical medium.

The Internet Protocol address (IP address), and the Port number are the only parameters

needed in order to access another computer. The IP address looks like 131.128.1.21.
Most systems have separate programs to handle file transfers, remote terminal logins, mail,

etc… When connecting to 131.128.1.21 to send an email, SMTP must be used to establish the
connection. Having “well-known sockets” for each server does this. TCP uses port numbers to
keep track of individual conversations. User programs normally use more or less random port
numbers. However specific port numbers are assigned to the programs that sit waiting for
requests. For example, if a mail has to be sent, a program using SMTP will be started. It will
open a connection using some random number, say 1, for the port number on its end. However
it will specify port number 25 for the other end. This is the official port number for the SMTP
server.

4.3 The iChip s7600A

 The iChip contains TCP/IP Protocol stacks that act as an accelerator between a

microcontroller and Internet. It is a completely self-contained, drop-in solution for any device
requiring networking connection. It provides a high connect speed with low power consumption,
integrating full TCP/IP, PPP and UDP protocols, and 10 kbytes of on-chip SRAM that operates

as a buffer. The S7600A also supports a microcontroller interface via a register set, and
connection to the physical transport layer interface, i.e. the modem. It is represented in figure 3.

The iChip is powered with Vdd = +3.3V. Its I/O can vary between 0 and +Vdd. It can be
operated up to 5MHz. The interface with the MCU can be serial or parallel. It is only available in
surface mount packages (48 LQFP). The complete pin description is provided in Appendix E, as
well as a description of the register set, and an explanation of a R/W cycle.

Not much information is available about the iChip. However Mike's Seiko S7600 web page
[6] provide many useful documents and a forum of iChip developers.

4.4 The Seiko Development kit (SDK)

4.4.1 Hardware specification

The SDK contains everything that is needed to interface between a desktop PC and a

modem in order to perform software development and to demonstrate Internet connectivity. It
comprises an ISA bus interface and two S7600A iChips. The first iChip is interfaced to the ISA
bus for software development on a PC and routed to a DB9 connector, for the modem
connection. The second one is routed to a standard 50-pin header and mounted in a sea of
holes, providing prototyping capabilities. The kit also comes with a DB9-DB25 modem cable and
a CD-ROM containing datasheets, SDK board schematic, application programming interfaces
(APIs) in C source code, and a sample program. This is shown in figure 4.

Figure 3: Block diagram of the Seiko S7600A iChip [5].

Figure 4: The Seiko Development Kit with its package [7]

The board and its drivers are installed on Dr. Ohley’s PC. The US Robotics external modem

is connected to the board with the DB9-DB25 cable. The modem is also connected to a
telephone socket.

The S7600A SDK board is equipped with several connectors. The ISA bus connector CN1 is
provided to interface the board to an ISA bus for PC. The CN3 provides direct access to the
second S7600A signals for user’s appreciation. The pin assignment of CN3 is provided in
appendix F.

The S7600A SDK board includes the glue logic to interface between S7600A and ISA bus in
a CPLD. This logic is simple and provides registers to access the S7600A. Table 5 shows the
mapping of the I/O registers in the PC memory map.

I/O

address
Description Read/Write Notes

0x0430 Set index register address R/W
0x0431 Read/Write data at S7600A index register R/W
0x0432 Busy signal of S7600A (BUSYX) R MSB, D7

Table 5: I/O address mapping of the SDK

4.4.2 Software design

The SDK comes with a set of APIs in C source code [16]. Any software application can use

them to control the functionality of the iChip, at a high level of abstraction. They are platform,
processor, and operating system independent. Furthermore, they are designed to support
usage in highly integrated embedded systems that run in a multitasking environment [7]. The
ItaskAPI provides a small real-time operating system (RTOS) that would meet our requirements.

Unfortunately, installing the APIs, setting the environment, and then building the application
is not trivial. And there is very little information available. After many tries, and a phone call to
George Ho [8], the designer of the SDK, it was decided not to use the APIs provided. They are
designed for complicated systems, so they are not required in our case.

Instead, a C program given as an example can be used as a starting point. It can be found
in the iChip CD-Rom and is called S7600r1.c. The header file named custom.h is also needed.

The program is supposed to connect a daytime server, over the Internet, and display the
time sent by the server. A project called “s7600a server connection” was created with Microsoft

Visual C++ 6.0, in order to compile the files. The compilation worked, but not the program. The
dialup procedure worked, but not the TCP connection. Indeed, after connecting to the ISP, the
program expected the server to use PPP. But URI server uses Telnet. The program was
modified to ask the server to switch from Telnet to PPP mode. Then, it worked fine. That
confirms that the entire communication link is properly set and that any data can be received
from the Internet, using the iChip. However, sending data still had to be implemented.

The next program that was written is an email report engine. A new visual C++ project was

created and called “s7600a email report engine”. The algorithm of the program is represented
by a flowchart, in figure 5.

Function declarations are in custom.h and function definitions are in S7600A.c. Table 6 lists

all the functions that were required to write this program, and it explains their goal. A listing of
this program is available in Appendix G.

Figure 5: Algorithm of the email report engine.

Dialup ISP

Initialize HW
S7600A and modem

Open TCP link
with email server

Tell user that an
error occurred

Close TCP link

Initialize a socket
(Receive IP address from

ISP)

Logon ISP server
and ask for PPP

Close socket
End

Modem
ready New

TCP
link?

Mail
sent
OK

Send email using
SMTP

No

No
No

Yes

Yes
Yes

Function name Function description
void SendString(char* st) Send string on serial port

st: string to be sent to the modem
void DialUp(unsigned long BAUD ,
char * isp_num)

Dialup to the service provider
BAUD: modem transmission bit rate
Isp_num: phone number of the ISP

void Telnet(char* name, char*
password)

Telnet connection to remote server
name: username for ISP account
password: password for ISP account

void HwSocketInit(char * name, char *
password)

PPP connection
name: username for email account
password: password for email account

void HwSocketClose(void) PPP disconnect
void abort(void) Close PPP connection
int HwTcpOpen(void) Require TCP connection to the server as a client
int HwTcpClose(void) Force TCP to CLOSE status
int HwTcpState(int) Obtain TCP State
int HwTcpSend(char* text) Send data to socket
int HwTcpRcv(void) Display Data from Socket
int nstep(void) Return FALSE if user pressed any key
void x_write(BYTE addr, BYTE data) 1 byte data write driver for S-7600A SDK Board for ISA BUS

addr: select register of iChip
data: data to write in the iChip register

BYTE x_read(BYTE addr) 1 byte data read driver for S-7600A SDK Board for ISA BUS
addr: select register of iChip
return value of register

void timer(int sec) Timer
sec: time in seconds

int SendMail(char* from, char* to,
char* subject, char* message)

Send email report
from: email address of the sender
to: email address of the recipient
subject: subject of the email
message: email message

Table 6: List of the functions and explanation of their I/O.

This program works fine as long as everything works OK during connection. Indeed, there
are only very few tests that are performed during connection process. For example, if logon to
server fails, or if an email could not be sent properly, this is not detected so no particular action
is taken and normal execution of the program carries on.

To run the program, make sure the modem is on and properly connected to both the SDK
board and a phone line. Then, click “execute” in Visual C++. The modem dials-up to an ISP, and
send an email. Most of the parameters are initialized in custom.h (ISP phone number,
password, username, sender, recipient, message, subject) and can be easily changed. The IP
address of the email server can be changed in the function called HwTcpOpen().

5 Design of the embedded system

The core of the embedded system of the S2B is the 68HC11 EVB. In order to connect it to

Internet, it has to be interfaced with the second iChip, on the SDK board. Furthermore, inputs
and outputs of the S2B have to be connected to the EVB. This part explains how that was
implemented.

5.1 Connecting SDK to EVB

5.1.1 Signals for Read/Write cycle of the iChip in 68k mode

The iChip supports two MPU interfaces: parallel and serial. In parallel mode, iChip can
interface with x80 family MPU and 68k family MPU. In the scope of this project, the iChip must
be configured in 68k family MPU mode, using the parallel interface. This mode can be selected
by pulling the C86 and PSX input pins high. In this mode, the address and data are multiplexed
into a single 8 bits bus. The Read/Write cycle is explained in appendix E, figures 20 and 21. The
signals needed are listed in table 7:

iChip Signal name EVB signal name I/O Description

CS CE* I Chip selection input
RS A0 I Register selection input (INDEX or DATA)

WRITEX R/W* I Read/Write selection input
READX E I Enable input
SD7 to 0 D0 to D7 I/O Data bus
BUSYX PD5 O Busy indicator output

CLK I Clock input

Table 7: Signals necessary for a R/W cycle. I/O are from the iChip point of view.

CS:
On the EVB, address decoding is accomplished via a MC74HC138 device and is

segmented into 8 kbytes blocks. This device generates 5 CE* signals. One of them is used to
select an optional 8 kbytes RAM. As no extra RAM is needed for the S2B design, this CE* is
used to select the iChip. Jumper header J3 of EVB must be put to enable CE*. The CE* signal
is active low for addresses from 0x6000 to 0x7FFF. This is large enough to operate the iChip
since there are only two registers to address. The CE* signal has to be inverted because the CS
input of the iChip is active high. This is done with one NAND gate of a SN74LS00. The resulting
hardware design is as shown in figure 6:

Figure 6: Shaping of a CE* signal from the EVB.

All I/O from the EVB are 0-5 V. But the iChip is a 3 V component so all input signals must be
lowered to 3 V. This is why a simple voltage divider was added in output of the NAND gate. With
R21 = 680 O and R8 = 470 O, the maximum load current for the gate is
i = 5/(R21 + R8) = 4.3 mA. Output signals of the iChip do not need to be increased to +5 V, as

U4.1

1

2
3

CE*
(0-5 V)

R8 = 470 O

R21 = 680 O

CS
(0-3 V)

the EVB uses CMOS logic. A signal greater than 2.5 V is good enough to code a 1. So the
voltage divider can even be used for bi-directional signals. In this case, if the iChip outputs a
signal, it provides a load current of i = 3/R21 = 4.4 mA.

RS:
The Register Select signal is used to select the INDEX register or the DATA register of the

iChip. As there are only 2 registers to address, the LSB of the EVB address bus can be used for
this signal. A voltage divider is also required. Then, the memory location of these 2 registers
becomes as follows:

INDEX: 0x6000
DATA: 0x6001

WRITEX, READX, D0-7:
These signals come straight from the EVB. A voltage divider has to be added for each

signal.

BUSYX:
This output signal of the iChip is low during data write and read phases. The 68HC11 needs

to monitor it before sending or receiving new data. This signal can be applied to an input port of
the 68HC11. Pin 5 of port D was chosen. However, port D is a bi-directional I/O port [9]. It needs
to be configured as an output port. This is done by resetting DDRD register.

CLK:
The iChip does not need to be synchronized with the MCU. The higher its operating

frequency, the higher its power consumption. A frequency of 256 kHz is enough to generate a
56 k baud rate towards the modem. The maximum operating frequency is 5 MHz. The EVB
clock rate is 8 MHz. This is too high so it cannot be used for the iChip. Instead, the PDI 1051,
1 MHz built-in oscillator was chosen. This clock rate is interesting because it is also the clock
rate of the first iChip, on the SDK. This choice makes portability of programs easier. Indeed, the
values of the Clock and Baud rate registers of the iChip remain the same, whatever is the iChip
used.

The oscillator output varies between 0 and 5 V: a voltage divider is required here as well.

5.1.2 The reset signal
The RESET* signal of the EVB can be used to reset the iChip (pin RESETX). This is a 0-5 V

signal so it has to be lowered to 0-3 V. But this signal does not come from a buffer so a voltage
divider cannot be added directly to it. Instead, the RESET* is applied to a succession of 2 NAND
gates which are used as buffers. This solution was chosen because 3 NAND gates were not
used in the SN74LS00 used for inverting CE*. Then, the voltage divider can be added. The
resulting schematic is as shown in figure 7:

Figure 7: Two NAND gates are used to buffer RESET*

RESET*
U4.2

9

10
8

U4.3

12

13
11

R8 = 470 O

R21 = 680 O

RESETX
(0-3 V)

RESET*
(0-5 V)

5.1.3 RS232 drivers
The iChip cannot directly drive a modem with RS232 signals. A RS232 driver must be

added. 5 input drivers and 3 output drivers are necessary to interface all the handshaking
signals between the iChip and the modem. Furthermore, all these signals must be 0-3 V
between the iChip and the drivers. The ICL3241 is a device that meets these requirements.
Unfortunately, it only exists in surface mount packages. It was ordered anyway and a SOIC to
DIP adaptor was made. The ICL3241 also requires 4 external capacitors to generate the ±12 V
required for the RS232 link.

Finally, the signals for the modem are connected to a DB9 connector, so that any modem
can be easily installed/uninstalled.

5.1.4 Power supply

A +5 V power supply is available on the EVB. However, the iChip is a 3 V device. So a
voltage regulator is required. The iChip power requirements are as low as 3 mW when
transmitting and less than 0.5 mW when on standby. The load made by the voltage divider, on
the BUSYX signal, needs about 4 mA. The RS232 driver needs 1mA when operating. The
oscillator needs 50 mA. A LED is added after the regulator and needs 15 mA. Hence, the
voltage regulator must supply at least 70 mA. The ICL 3241 3.3V, 700 mA micropower low
dropout voltage regulator, is sufficient for our needs.

5.2 Input/Output signals of the S2B

5.2.1 Switches as inputs

The characteristics of the inputs were still not defined when this board was under
development. It was decided that all the inputs would be simulated with switches. These
switches are connected to Port D of the 68HC11. Port D must be initialized as an input by
writing DDRD to 0. Furthermore, the serial communication mode must be disenabled or pin 1 of
Port D will still be an output. This is done by resetting SCCR2. The 5 input signals are as
described in table 8:

Switch name Bit number

of Port D
Description

BTN_MAINT 0 Put system in maintenance mode. Switch.
EM_REQUEST 1 Simulates an emergency vehicle request. Push

button. Normally opened.
BTN_INF 2 Manually inflates the speed bump. Push button.

Normally opened.
BTN_DEF 3 Manually deflates the speed bump. Push button.

Normally opened.
HI_PRESSURE and
LOW_PRESSURE

4 Simulates a high pressure signal from pressure
gauge in one position, and a low pressure signal
in the other position. Push button. Bistable.

Table 8: Port D is configured as an input port. Each switch is assigned to one bit.

Inverting Schmitt triggers (CD40106) shape each signal before it is input on the EVB.
However, this is not an anti-bounce system so these switches cannot be used for all purposes,
e.g. to count events. Pull-up resistors put in input of the Schmitt triggers force its outputs to 0 at
rest. The schematic is given in figure 8:

Figure 8: Circuitry used to simulate inputs of the S2B

5.2.2 LEDs as outputs
As for the inputs, the characteristics of the outputs were still not defined when this board was

under development. It was decided that all the outputs would be simulated with LEDs. They are
connected to Port B of the 68HC11. The 8 output signals are described in table 9:

Switch name Bit number

of Port B
Description

INFLATE 0 Simulate pump that inflates the speed bump
DEFLATE 1 Simulate pump that deflates the speed bump
FLASH 2 Simulate flash lamp when speed bump is inflated
COMMU_LED 3 Turned on when system is in communication mode
MAINT_LED 4 Turned on when system in maintenance mode
TCP_LED 5 Turned on during TCP communication
MAIL_LED 6 Turned on when sending email
ERROR 7 Turned on when an error occurred

Table 9: Port B in an output port. Each bit is assigned to one LED.

The LEDs are in fact a bar graph, as shown on figure 9. A bussed resistor network drops the

output voltage of the EVB, from 5 V to 1.5 V. Each resistor is 150 O.

Figure 9: Circuitry of the output LEDs that simulate outputs of the S2B.

U7

PD0

PD1

PD2

PD3

PD4

+5V

R
3-

7

U5
1 20

B
A

R
G

R
A

PH

PB7
PB6

PB5

PB4
PB3

PB2

PB1
PB0

U6
1

R
E

S
N

E
T

W
K

10

5.3 Connectors and cables

The SDK has a connector (CN3) that provides direct access to the second iChip. It is a 50

contacts, pin connector. A similar connector (P2) is used on the interface board. An 18-inch,
gray socket connector to socket connector ribbon makes the link between the SDK and the
interface board. The pin assignment of CN3 is given in Appendix F.

The EVB has a connector (P1) that provides access to most of the signals needed. It is a 60
contact, pin connector. A similar connector (P1’) is used on the interface board. A 5-inch, gray
socket connector to socket connector ribbon makes the link between the EVB and the interface
board. The pin assignment of P1 is given in Appendix C. Pins 50 to 60 are not connected or
carry unwanted signals so the wires were cut. However, signals A0, CE* and D0-7 are only
available at the optional RAM socket. Signal R/W* is available on pin 13 of U9 (MC68B50P).
Hence, they were applied to wire 50 to 60 of the flat ribbon.

The wire assignment is as listed in Table 10:

Pin name on EVB Pin number on P1’
A0 (from optional RAM) 50
R/W* (from MC68B50P) 51
CE* (from optional RAM) 52
D7-0 (from optional RAM) 53-60

Table 10: Pin interconnection between EVB and SDK

The wires going to the optional RAM terminate in an IC socket. Connections are made much

easier that way. The red wire corresponds to pin 14 of the SDK socket.

5.4 Schematics, part list and costing of the board
5.4.1 Global architecture of the embedded system

Figure 10: Architecture of the embedded system

The block diagram of figure 10 represents the architecture of the embedded system.

Micro-
controller

Power

Clock

Memory

P
ow

er

in
te

rf
ac

e
Si

gn
al

sh

ap
in

g

Internet
protocol

stack

M
odem

Pressure
gage

Air pumps,
Flashing lights

Telephone
line

Interface, I /O board SDK

68HC11 EVB

R
S232 drv

5.4.2 Schematics of the overall board

Figure 11 represents the overall schematic of the interface board. The 4 gray blocks called

block1 represent voltage dividers. They are all the same.

Figure 11: Schematic of the interface board

P1

1

10

20

30

60

50

40

P2

1

20

30

50

40

1 9

P3

C5

C4

C3

C2

C6
1

14 15

28

U1

ICL
3241

Vcc

+5V

U3

1 3 5

C7
Vcc

R
2

E

READX

RESET*

RESETX

A0

RS

BUSYX

Vcc

SD7

SD6

SD5
SD4

SD3

SD2

SD1

SD0

WRITEX

C86

PSX

CS

D7
D6

D5

D4

D3

D2

D1

D0

R/W*

CE*

CLK

CTSX

DCD
DTRX

RTSX
TXD

DSRX
RI

RXD

L1

U4.2

9

10
8

U4.3

12

13
11

BLOCK 1

U4.1

1

2
3

BLOCK 1

BLOCK 1

Vcc

U5
1 20

B
A

R
G

R
A

PH

PB7
PB6

PB5

PB4
PB3

PB2

PB1
PB0

U6
1

R
E

S
N

E
T

W
K

10

U2

14 7 8

+5V
BLOCK 1

Vcc

R
1

+5V

PD5

Vdd

PD0

PD1

PD2

PD3

PD4

+5V

U7

R
3-

7

5.4.3 Part list
The items listed in table 11 were used to make the interface board. Prices come from Digi-

Key catalog. All items without a Digi-Key part number were not ordered because they were
already available.

Table 11: Bill of materials for the interface board and costing

The cost of components is about $82.00. But this is not the cost of the whole design: the
SDK board was ordered for $199, together with a US Robotics 56k external modem, for $110.
Hence, the overall cost of the embedded system is about $400.

5.5 Drivers for the iChip and the I/O

Three constants were declared in a file called communication.h, for easy access to the

registers INDEX and DATA, and for access to the BUSYX signal:
#define INDEX (* (unsigned char *) (0x6000)) /* INDEX register of the S7600A */
#define DATA (* (unsigned char *) (0x6001)) /* DATA register of the S7600A */
#define BUSYX (PORTD & 0x20) /* BUSYX signal from S7600A*/

These registers are used by two C functions to read and write data in the iChip:

void x_write(BYTE addr, BYTE data) 1 byte data write driver
addr: select register of iChip
data: data to write in the iChip register

BYTE x_read(BYTE addr) 1 byte data read driver
addr: select register of iChip
returns value of the register

Part No Value description Digi-key Part No QtyPrice eachTotal price
Prototype board, 4.5x6.5 inches 1 $21.81 $21.81
Socket connector to socket connector, 50 contacts, 18 inches, grey A3AAG-5018G-ND 1 $9.38 $9.38
Socket connector to socket connector, 60 contacts, 6 inches, grey A3AAG-6006G-ND 1 $10.77 $10.77

P1' Pin connector, 60 contacts APK50G-ND 1 $11.97 $11.97
P2 Dual row straight header, 72 pins S2012-36-ND 2 $1.85 $3.70
P3 Right angle, tin plated D-sub connector, 9 pins, male A2096-ND 1 $2.72 $2.72
U1 ICL3241 3.3 V powered, 3 RS232 transmitters and 5 receivers, in DIP package 1 $4.00 $4.00
U2 PDI1051 oscillator 1MHz 1 $3.00 $3.00
U3 LT1129 3.3 V, 700 mA micropower low dropout voltage regulator LT1129CT-33-ND 1 $4.00 $4.00
U4 SN74LS00N Quad 2 input NAND gate, 14 DIP 296-1626-5-ND 1 $0.48 $0.48
U5 PC mount LED array, green, 2.1 V, 25 mA 67-1008-ND 1 $2.85 $2.85
U7 5 SCHMITT triggers inverters 1 $0.48 $0.48
L1 LED, 3 mm, green, 25 mA, 2.1 V 67-1056-ND 1 $0.18 $0.18
SW1,5 switch 2 $0.50 $1.00
SW2-4 push button, normally opened 3 $0.50 $1.50
C1-8 0.1 uF Capacitor, 35 V P2053-ND 8 $0.22 $1.73
C7 3.3 uF Capacitor, solid tantalum, 10V DC P2023-ND 1 $0.29 $0.29
R1 150 Resistor 1/4 W 150QBK-ND 1 $0.06 $0.06
R2-7 100k Resistor 1/4 W 100KQBK-ND 6 $0.06 $0.34
R8-20 470 Resistor 1/4 W 470QBK-ND 13 $0.06 $0.73
R21-33 680 Resistor 1/4 W 680QBK-ND 13 $0.06 $0.73
U6 150 Resistance network, bussed, 150 Ohms, 4600 series, 9 res 4610X-1-151-ND 1 $0.39 $0.39

TOTAL BOARD: $82.10

From an external point of view, only two registers are accessible in the iChip (INDEX and
DATA). In fact, many more registers are indirectly accessible. To read a particular register, the
first step is to write the index of this register in the INDEX register. Then, the data can be
read/written in the DATA register. These functions are defined in a file called communication.h.
A listing of these two functions is available in Appendix H. A header file containing all register
declarations was written. It is called s7600_reg.h. It also contains constants that allow individual
bit access of a few registers.
The header file IO_s2b.h contains constant declarations, which are very convenient to set, reset
a LED, or monitor the state of an input. They are all listed below:

/*hardware descriptions of the outputs*/
#define S_INFLATE (PORTB |= 0x80) /*start inflation of speed bump */
#define S_DEFLATE (PORTB |= 0x40) /*start deflation of speed bump */
#define S_FLASH (PORTB |= 0x20) /*start flashing lights */
#define S_COMMU_LED (PORTB |= 0x10) /*system in communication state */
#define S_MAINT_LED (PORTB |= 0x08) /*system in maintenance state */
#define S_TCP_LED (PORTB |= 0x04) /*TCP established */
#define S_MAIL_LED (PORTB |= 0x02) /*sending email in progress */
#define S_ERROR (PORTB |= 0x01) /*error */

#define R_INFLATE (PORTB &= 0x7F) /*stop inflation of speed bump */
#define R_DEFLATE (PORTB &= 0xBF) /*stop deflation of speed bump */
#define R_FLASH (PORTB &= 0xDF) /*switch off flashing lights */
#define R_COMMU_LED (PORTB &= 0xEF) /*system in communication state */
#define R_MAINT_LED (PORTB &= 0xF7) /*system in maintenance state */
#define R_TCP_LED (PORTB &= 0xFB) /*not in ppp mode*/
#define R_MAIL_LED (PORTB &= 0xFD) /*no email being sent */
#define R_ERROR (PORTB &= 0xFE) /*no error */

/*hardware descriptions of the inputs*/
#define BTN_MAINT (PORTD & 0x01) /*maintenance state */
#define EM_REQUEST (PORTD & 0x02) /*simulate emergency vehicle request for deflation
*/
#define BTN_INF (PORTD & 0x04) /*force inflation of speed bump */
#define BTN_DEF (PORTD & 0x08) /*force deflation of speed bump */
#define HI_PRESSURE (PORTD & 0x10) /* signal from pressure gauge 1=high pressure*/
#define LO_PRESSURE (PORTD & 0x10) /* signal from pressure gauge 1=low pressure*/

These constants access port bits individually by means of masks.
In a C program, the following code is enough to set bit 4 of port B and hence, turn on the
INFLATE LED. And it does so without changing the state of the other bits.

S_INFLATE;
The following code is used to turn off the INFLATE LED:

R_INFLATE;

The code for the inputs works in the same way. Here is an example of how the constant
BTN_INF can be used:

if(BTN_INF != 0) return 1;

6 Programming the 68HC11

6.1 Choice of a C cross compiler

So far at URI, the programming of 68HC11 has always been done in assembly language.

But that is not appropriate with the complexity of the S2B design. It would be much faster and
convenient to develop in C programming.

After a research over the Internet [10], 5 major software companies were contacted. They all
offered interesting C cross compiler development tools, which main features are listed in
appendix I. IAR [11] proposed the most appropriate package. After a meeting with IAR sales
manager, seven free licenses of IAR embedded workbench were given to URI. It is an ANSI C
cross compiler for 68HC11, featuring a linker, a librarian, a debugger and a simulator. Hence, it
will be used for the S2B project, to program the 68HC11.

IAR embedded workbench software was received together with a set of 4 books and a
dongle. The dongle is an electronic lock plugged in LPT1. It is required to run the software. IAR
embedded workbench was successfully installed on Dr. Ohley’s computer.

A few projects were created to check the working of the whole compiling/linking/
uploading/running procedure. They are available at the following location:
c:/my documents/ IAR C programs

6.2 Introduction to IAR embedded workbench

6.2.1 Start a new project

Run IAR embedded Workbench from the start menu of Windows.
The files in the Embedded Workbench are organized into projects. The first step is therefore

to create a new project to specify which target processor is used, and to include a list of the files
contained in the project.

Choose New… from the File menu. Select project and choose OK. Enter the name of the
project, e.g. s2b, in the Project filename box. Set the Target CPU family to 68HC11. Choose OK
to create the new project. A directory structure is created and displayed, with separated
directories for object files, list files and executables.

The second step is to create a file and add it to the project.
Choose New… from the File menu. Select source/text and choose OK. Enter the code of the

program. It is also possible to open an existing file with the command Open… from the File
menu. If the file is saved with a .c or .h extension, Embedded Workbench provides immediate
syntax checking, by using colored text. Next, choose Project/Files and select the file to add to
the project. Click Add, then Done. The file that was just added should be displayed in the
directory tree.

The third step is to compile and link the project. Many options can be set, for the whole
target, for a group of files, or for a single source file. In our project, options are set for the entire
Debug target by selecting the Debug folder icon in the Project window. Then, choose Options…
from the Project menu. In general category, select large memory model. In xlink category, click
Output to display output options. Here, two different settings are possible, depending on
whether the output file will be used with the simulator (C-Spy), or uploaded in the EVB.

Set Format to Debug info with terminal I/O in the first case. Set it to Other in the second
case, and set output format to Motorola.

Still in xlink category, select Include and check override default box, in xcl filename group.
To choose or create the appropriate xcl file, refer to the next chapter.

To compile a file, choose Compile from the Project menu. If errors occur, edit the file and
correct the errors. Else, the project can be built. To build the project, choose Build from the
Project menu. Then, an output file is generated. It is located in the Debug/Exe folder. Depending
on the link options that were selected earlier, the output file can be either used for simulation
with C-Spy, or uploaded in the EVB, via a terminal emulator such as Hyper Terminal (c.f.
chapter 3.2.1).

6.2.2 The lnk6811.xcl file

This file describes the address map of the target. The different memory locations are

specified to suit the EVB memory map (c.f. appendix C). Follow the contents of the file
lnk6811.xcl created to suit the EVB (available at c:/my documents/ IAR C programs).

-c68hc11
-Z(CODE)INTVEC=00C0-00FF
-Z(CODE)RCODE,CODE,CDATA0,CDATA1,CONST,CSTR,CCSTR=C010-CFFF
-Z(DATA)IDATA1,UDATA1,ECSTR,TEMP,CSTACK+200=D000-DFFF
-Z(DATA)IDATA0,UDATA0=0000-0035
cl6811

The first line defines what processor is used. The second defines the location of the interrupt

vector table. The third line tells the linker where to locate program code and constants. The forth
line does the same for variables and the stack. The fifth line defines the RAM segment used for
direct addressing. The sixth line tells the linker what C library must be loaded.

The same file should be used by all the projects involving the EVB, so that improvements
are automatically carried through each project.

6.2.3 The CSTARTUP.S07 file

On processor reset, execution passes to a run-time system routine called CSTARTUP,

which normally performs the following:
• Initializes the stack pointer
• Initializes C file-level and static variables
• Calls the user program function main().

CSTARTUP is also responsible for receiving and retaining control if the user program exits,

whether through exit() or abort(). A default CSTARTUP.s07 is provided at the following location:
c:/program files/iar/ew23/6811/src/lib. If this file has to be modified, it must be reassembled. The
whole procedure is explained in the 68HC11 C compiler programming guide [12].

6.3 Programming the S2B as a state machine

6.3.1 Global architecture of the IAR Workbench project
A project called s2b v1.0 was created with IAR Workbench. In this first version, the

algorithm of the state machine is very simple, and many features are not developed yet.
However, the project was structured to be easily upgradeable and modular.

The operation of the system was divided in 5 states:

• Main: wait for events to occur
• Operation: operate the speed bump in case of emergency request
• Maintenance: manually command the speed bump
• Communication: send email reports to a mail box
• Error handling: decide what to do in case of error or failure of the S2B

The system is a state machine that will switch from one state to another, depending on the

events occurring. The transitions between states are as described in figure 12. Upper case
transitions correspond to physical events described in chapter 5.5.

Figure 12: State diagram of the S2B.

The architecture of the project matches the states of the state machine: the programming of
each state is written in a different file, except Error handling, which is with the main state. By
doing so, the programming of one state can be updated without altering the others. It is also
convenient to find functions very quickly. Each C file is associated to a header file with the same
name, where the functions are declared, as well as constants and global variables. The names
of the files are:

• main.c and main.h
• operation.c and operation.h
• maintenance.c and maintenance.h
• communication.c and communication.h

A listing of all the files is provided in appendix H.
A double click on s2b v1.0.prj, in the explorer, opens the whole project in IAR Workbench.

6.3.2 The main.c file
This file contains 3 functions that are explained in table 12:

Function declaration Description

void main(void) Monitor inputs of the S2B by polling port D. Switch to other
states if events occur.

void init_system(void) Initialize registers of the 68HC11and iChip. Inflate the speed
bump.

void problem(int problem_id) Perform an action, depending on the kind of error or failure that
was encountered.

Problem_id: identifies the kind of problem

Table 12: Declaration of the functions in main.h

Initialisation

Main Maintenance

Operation Communication

Error handling

BTN_MAINT

BTN_MAINT*

End of cycle EM_REQUEST

Action taken
Email sent Send email

Error detected

The function main() calls the external functions int maintenance() and int operation().
For further information about the working of the different functions, see appendix H. The listings
of code are well documented.

6.3.3 The operation.c file

This file contains a single function called int operation(void). The latter controls the speed
bump in

case of emergency request. It returns an error message if a problem occurred.
This function is called by the main() function. The algorithm is as shown in figure 13:

Figure 13: Operation of the S2B, in case of emergency request

The constant WAIT_EMERGENCY is defined in operation.h. It corresponds to the time while
the speed bump is deflated. It must be long enough for the emergency vehicle to run over the
speed bump and go. At the end of the operation, the system returns in the main state.

6.3.4 The maintenance.c file
This file contains a single function called int maintenance(void). This function monitors push

buttons used for maintenance. The buttons allow an operator to manually inflate of deflate the
speed bump. The function returns an error message if a problem occurred. The algorithm of the
function is as shown in figure 14:

Begin

LO_PRE
SSURE Deflate

t >=
WAIT_E
MERGE

NCY

t++

HI_PRE
SSURE Inflate

End

N

N

N

Y

Y

Y

Figure 14: Algorithm of the maintenance mode

The main() function calls maintenance() if BTN_MAINT is switched in maintenance position.
When BTN_MAINT is switched back to normal operation mode, maintenance() exits and the
program goes back in main().

6.3.5 The communication.c file
This file contains 15 functions that allow the S2B to send email reports in case of problem

with the S2B. The message sent depends on the kind of problem that was encountered. Most
functions are almost the same as the ones explained in chapter 5.4.2, apart from x_read(),
x_write and timer(). For all the other functions, only minor changes were made. For instance, all
the printf lines were removed. The function int communication(int type_of_email) replaces the
old main() function. Its algorithm is illustrated in figure 15, on next page.

This function is called when the system is in error handling state, for some kind of problems
only. Once an email is sent, the system returns in normal operation mode, i.e. in the main()
function. If an error occurs during the communication state, the system returns in the error
handling state, and the new problem is handled. Actually, the program is structured in such a
way, but no error checking is implemented yet. So the program will never return error
messages. In case of problem, the program will ignore it, or stay blocked in a loop. The error
checking will be implemented in the next version of the program.

Begin

BTN_
MAINT

BTN_
INF Inflate + turn on

flash

BTN_
DEF Deflate + turn on

flash

End N

N

N

Y

Y HI_
PRESSU

RE

LO_
PRESSU

RE

Y

N

N

Initialize S2B

Turn off flash

Y

Y

Figure 15: Algorithm to send an email, in communication state

The whole project, once compiled and linked, requires about 3 kbytes of ROM, and 700

bytes of RAM. This can be checked in the list folder of the project, in the file called s2b v1.0.lst.
The RAM requirements may vary, depending on the stack size that is chosen in lnk6811.xcl.
The stack must be large enough to store at least one email message. Email messages are
stored in the stack when the function SendMail() calls other functions.

Dialup ISP

Initialize S7600A
and modem

Open TCP link
with email server

Set error flag

Close TCP link

Initialize a socket
(Receive IP address from

ISP)

Logon ISP server
and ask for PPP

Close socket
End

Modem
still

ready

Mail
sent
OK

Send email using
SMTP

No

Yes

No

Yes

7 Suggestions for further design and improvements

Suggestions for improvements of the overall design will not be developed here, since

nothing was implemented. However, a first version of the embedded system was developed,
with simulation of inputs and outputs of a S2B in its real environment. This first version has
many hardware and software imperfections. Some can be easily solved, while others would
need more changes in the actual structure of the design. Follows a non exhaustive list of
possible improvements for the next version of the S2B embedded system:

Hardware improvements

1. The switches used for maintenance need an anti-bounce system. Indeed, they tend to
bounce a lot. This is not a serious problem as long as the output pumps are simulated by
LEDs. But it is likely to damage the pumps when they will be set up. Furthermore, the
Schmitt triggers can be removed because they are useless.

2. Switches 1 and 2 are connected to bits 0 and 1 of port D. But these pins have another
function: they can be used for RS232 link with a terminal. Hence, a serial link cannot be
implemented in the actual configuration. And using a terminal would be very useful during
the development of the program. Connecting the two switches to another input port would
be enough to solve this problem.

3. The program of the S2B is uploaded in RAM, on the EVB. Each time there is a power
failure, or when the system is first set up, the program needs to be reloaded in memory. It
would be interesting to replace this RAM by a flash memory. ROM would not do it
because both program and variables are stored at RAM location.

4. A PCB could be designed for the embedded system. It would feature a 68HC11, memory,
the iChip, a modem, a power interface for outputs and the signal shaping for inputs.

5. The power interface and the signal shaping were not developed because the
characteristics of the inputs and outputs were unknown when this report was written. This
needs to be done.

Software improvements

1. The main improvement is to add error checking everywhere in the program. In case of
error or problem, the program should return an error message that will be computed in the
error handling state. Furthermore, a software watchdog that would reset the system must
be implemented, in order to avoid the program to stay blocked in a loop.

2. The timer function performs a software timer. A hardware timer, working with real time
interrupts (RTI), would be much more accurate and reliable. It would also free the MCU so
that it could do other tasks during this time.

3. The EM_REQUEST signal, which triggers the deflation of the speed bump, should be
connected to an interrupt pin. It would allow the speed bump to go in the operation state,
although it is in the communication state. In this case, the main program must be changed.
An anti-bounce system must be added if a switch is still used to simulate an emergency
request.

4. A daytime function could be developed. It would allow the speed bump to switch from one
state to another, depending on the time. For example, the S2B could deflate automatically
by night, when the traffic is low. Also, it would be useful to report the time when a problem
has occurred.

5. Statistics can be calculated from the pressure gauge. The speed bump could count the
number of cars per day, their average speed, etc… and send a daily report to the email
server. This can be done with an interrupt function that would be called each time there is
an overpressure detected in the speed bump (count the number of vehicles running over
the speed bump).

6. The Internet link is unidirectional. It would be great to add at state to the system where the
embedded system is in server mode. In this configuration, the S2B could be remote
operated, updated, initialized…

CONCLUSIONS

The controller for an intelligent speed bump, which slows down normal vehicles but not

emergency vehicles, has been implemented. This controller will be connected to a scale-model
used for demonstration purposes.

First, the specification of a smart speed bump was developed. The hardware and software

needs were identified. Then, the entire environment was set up to carry out the Smart Speed
Bump project. The required materials were installed in Dr. Ohley’s laboratory. A computer was
connected to Internet and a phone line was set up. The diverse software used for this project
was installed and configured. The 68HC11 evaluation board was installed together with a
terminal. The Seiko Development Kit board and a modem were also installed and used to
understand the working of the iChip. The latter allows easy Internet connection of any
embedded system. Most of the work done during this internship concentrated on the design of
the Internet connection. It works well and the design is efficient.

A hardware board was then designed to input and output signals to the 68HC11 evaluation

board. This board was also required to interconnect the 68HC11 evaluation board and the
second iChip of the Seiko Development Kit.

Finally, the software architecture was developed to perform the different operations of the

Smart Speed Bump. This architecture is modular and is easily upgradeable. Additional features
still need to be developed because many aspects of the S2B are not implemented yet.

The intraaortic balloon cardiac assist system that we were supposed to use to simulate the

speed bump was not available before the end of the research project, so we did not use it at all.
We found it a little bit frustrating to design a system that only turns on and off LEDs.

REFERENCES

[1] Dr. William Ohley, professor of electrical engineering, URI, ohley@ele.uri.edu
[2] Frederic Bahuaud, electrical engineering student, ESPEO, frederic.bahuaud@fnac.net
[3] Motorola, M68HC11EVB evaluation board user's manual, revision 1, USA, 1986, 263p.
[4] Steven E. Newton , Introduction to the Internet Protocols, http://oac3.hsc.uth.tmc.edu/staff/snewton/tcp-

tutorial/sec2.html,1994.
[5] Seiko Instruments Inc., Hardware specification s -7600A, revision 1.1, USA, Seiko, 1999, 55p.
[6] Mike Johnson, Mike's Seiko S7600 Webpage, http://www.mycal.net/wsweb/s7600/, 1999.
[7] Seiko, SDK board for ISA BUS specification, revision 0.2, USA, 1999, 13p.
[8] George Ho, iChip developer, Seiko, george.ho@seiko-la.com
[9] Motorola, M68HC11 reference manual, revision 1, USA, 1990, 350p.
[10] Compiler connection, Compiler connection search by company name, http://www.compilerconnection.com/

companies/companies.htm, 1999.
[11] IAR, IAR homepage, http://www.iar.com/, 2000.
[12] IAR systems, 68HC11 C compiler programming guide, revision 8, USA, 1996, 278 p.
[13] J. Myers, Post Office Protocol - Version 3, http://www.cis.ohio-state.edu/htbin/rfc/rfc1939.html, 1996.
[14] Richard Beddingfield, Simple Mail Transfer protocol, http://www.provide.net/~bfield/polaris/topframe/top0120.htm ,

1999.
[15] Seiko Instruments Inc., SDK board for ISA BUS specification, revision 0.2, USA, Seiko, 1999, 11p.
[16] Seiko Instruments Inc., Software development kit s-7600A, revision 1.1, USA, Seiko, 1999, 47p.

ACKNOWLEDGMENTS

Authors thank very much;

Mr. Raymond Sepe, Electro Standard Lab, 36 Western Industrial Drive, Cranston, RI 02921,
401-943-1164, not only for his generous monetary contribution but for his consultation expertise.

Dr. Rachid Harba, Professor of Electrical Engineering, University D’Orleans, France for his
constant student intern support.

Mr. Matthew Caron for his help on the network and computer topics.

Ms. Phyllis Golden and Ms. Alison Svenningsen, for their administrative help, assistance and
availability.

APPENDIX A

FOCUS GROUP FINAL REPORT

Dr. Marshall Feldman
Department of Community Planning and Landscape
University of Rhode Island
94 West Alumni Ave., Suite 1
Kingston, RI 02881-0815

UNIVERSITY OF RHODE ISLAND

SMART SPEED BUMPS:

FOCUS GROUP FINAL REPORT

 Results from Focus Group Sessions
Designed to Solicit Input and to Provide
Community Outreach

Smart Speed Bumps:
Focus Group Final Report

Results from Focus Group Sessions
Designed to Solicit Input and to Provide
Community Outreach

Background

The original proposal included provisions for soliciting advice and opinions from decision-
makers and citizens. This had three purposes: preliminary design, prototype refinement and
implementation, and evaluation. Each purpose involved different groups and methods of data
collection and analysis. They therefore comprised three distinct subtasks.

The preliminary design subtask solicited input from key decision makers in order to incorporate
their ideas into the design and to address their concerns before the project went to far. The
prototype refinement subtask sought input from ordinary citizens in order to refine the design
and to develop an implementation plan. The final subtask involved evaluating the design
through continuous feedback (through advertisements, etc.) and deliberate surveys of the public.

Unfortunately, funding limitations precluded us from implementing this plan as proposed.
Instead, we conducted focus groups indirectly by having a class of URI undergraduates conduct
focus groups in November 2000. This report summarizes that process and its results.

The Focus Group Process

The students did this as an assignment for a course, CPL 210: Introduction to Planning and
Community. The course trained them in the rudiments of conducting focus groups, including
assigned reading on the topic, design of the focus group protocol by the entire class under
supervision of the instructor (Dr. Feldman), and a mock trial run of a focus group in class.

Three handouts were developed for this purpose (all three are included in the Appendix). The
first, “Focus Groups,” described the assignment and provided forms to assist in designing and
conducting the focus group sessions. A second form, “Checklist for Focus Group Introductions,”
was used in the training to evaluate and to critique the students’ performances as focus-group
leaders. The third, “Focus Group Questions,” was a list of questions and instructions developed
by the class, under the instructor’s guidance, to be used as a base for all the focus groups.

Students were instructed to conduct the focus groups either individually or in teams of two.
Many of them elected to conduct the groups with family members over the Thanksgiving
holiday. This resulted in an appropriately diverse sample of participants, although by no means
was it a random sample representative of some larger population.

Results

Demographics

In all, the students conducted eleven focus groups, nine of which had six participants and two
had five. Seven of the groups were conducted at URI and consisted primarily of college
students; two had mainly “friends and relatives” and were therefore missed in terms of age and
social status; one consisted entirely of “middle-aged adults” and one consisted of
“professionals.”

The students conducted seven focus groups at URI, two in Connecticut, and one in southern New
Jersey-Pennsylvania area. The following table summarizes these demographics.

 Size, Location, and Composition of Focus Groups

Group Size Location Composition

6 URI College Students
6 CT Middle-aged adults
6 URI College Students
6 URI College Students
6 URI College Students
5 Friends and relatives
6 CT Friends and relatives
5 URI College Students
6 NJ/PA Professionals
6 URI College Students
6 URI College Students

Findings

The findings from the focus groups fall into four categories: reactions, suggestions, issues, and
needs for further research.

Reactions

Perhaps because the bulk of the focus group participants were college students, the idea of smart
speed bumps-indeed, the idea of speed bumps altogether-was met with considerable animosity.
Several participants said they saw no use for them, and many complained about speed bumps in
general. A few questioned whether smart bumps provide much of an advantage over traditional
speed bumps. Very few, if any, participants were unconditionally enthusiastic about the idea of
smart speed bumps.

These findings should be taken with a grain of salt. In general, there was high correlation
between the age and social status of the focus group and its animosity to the idea of smart speed
bumps. Younger participants and college students were far more likely to criticize the idea and

to dismiss it than were the focus groups having a mixed composition or being made up of
middle-aged adults or professionals. Given that the participants did not constitute a
representative sample of the general population, these results may be highly biased.
Furthermore, a major concern was the cost of smart speed bumps relative to their benefits. Since
the focus groups did not have even ballpark cost estimate, they operated under considerable
uncertainty regarding what turned out to be a major issue.

Suggestions

Two suggestions involved applications and, by implication, locations for using smart speed
bumps. These included using smart speed bumps near schools and hospitals. In addition, some
suggested that police use smart speed bumps in chases to delay or stop vehicles being pursued.

Other suggestions involved functional design. One was to have multiple heights so that the
bumps would be “tunable.” Another was to be sure to have lights and warning signs by the
smart speed bumps so that drivers would be aware of them and whether they were up at a given
instant.

Issues

Perhaps the most useful results from the focus groups were several issues and concerns that the
groups identified. Even if theses are non- issues because of the design of smart speed bumps,
they nonetheless constitute concerns among the general public that ought to be addressed, either
through the design of the bumps or by better communicating design features. These issues can
be grouped under several headings: effectiveness, functionality, administration, costs, and public
receptiveness.

Effectiveness

Several groups questioned the effectiveness of speed bumps in general, noting that they often
observe drivers slowing down to go over speed bumps and then speeding up again. While one
might make the case that this lowers average speed, frequent slowing and accelerating might
increase the rate of accidents. Moreover, the average speed will surely be much greater than
the speed used to go over the speed bump, so it is almost certainly covered in the traffic
engineering literature, but findings from this literature were unavailable to the focus groups.

A second effectiveness concern dealt with traffic congestion. The focus groups were afraid
that widely used speed bumps would increase traffic congestion. Again, the traffic
engineering literature indicates that this is not necessarily the case, but the groups did not
have access to this literature. Moreover, any implementation of smart speed bumps would
have to be engineered to obtain a level of traffic throughput appropriate for the application.

Functionality

Functionality was a major concern among the focus groups. Participants expressed concern
about potential damage to vehicles and to animals possibly becoming trapped within the smart
speed bumps’ mechanism. This, and concerns about the effectiveness of speed bumps, led
some participants to suggest that smart speed bumps not be used on regular city streets.

A second area of functional concern deals with reliability. Several participants expressed
concern about possible malfunctions, electrical problems, and inclement weather. These
issues must be addressed in the design.

Administration

Administration was a relatively minor concern, although several groups brought it up. This
set of concerns deals mainly with who controls the smart speed bumps. In a positive vein,
participants asked who would control the speed bumps and how such control might be
coordinated across agencies. More negative concerns dealt with the possibility for deliberate
interference with the operation of smart speed bumps. Such interference might come from
vandals, criminals, or even terrorist intent on disrupting emergency services.

Costs

Costs were one of the most important and pervasive concerns among the groups. Without
even ballpark cost estimates, many participants could not even decide if they were in favor of
smart speed bumps or not. In addition to overall capital costs, participants raised questions
about cost/benefit ratios and maintenance/operating costs. They also pointed to costs due to
the disruption of traffic that would occur during installation and repair of smart speed bumps.
Another related concern deals with the usable life of smart speed bumps, their reliability and
the frequency of repairs.

Receptiveness

As mentioned above, several groups expressed hostility to the idea of speed bumps altogether.
If this attitude is widespread, then there may be considerable opposition to smart speed
bumps, particularly if the costs of the equipment, installation, and maintenance are high.

Needs for Further Research

These reactions and issues point directly to areas for further research. By far, the most important
deals with costs and benefits. Further engineering research should focus on making the speed
bump devices effective, efficient, and inexpensive. Further social research should aim at
measuring the direct and indirect costs and benefits of smart speed bumps and comparing cost-
benefit ratios to those of other, rival technologies.

A second area for further research concerns the design and implementation of smart speed
bumps. For example, as mentioned above, participants questioned the reliability and safety of
smart speed bumps in inclement weather, such as heavy snow. Further research should answer
questions pertaining to such issues and address them.

APPENDIX B

FOCUS GROUP QUESTIONS

CHECKLIST FOR FOCUS GROUP INTRODUCTIONS

FOCUS GROUPS

FOCUS GROUP QUESTIONS

1. What do you think of speed bumps?
 (Now hand out a the description of Smart Speed Bumps)

2. What do you thinks of the Smart Speed Bumps?

3. What questions are crucial to deciding if they are a good idea?

4. How should they be used?

5. Where should they be used?

6. What suggestions do you have for improving the design?

7. What impact would Smart Speed Bumps have on your community?

CHECKLIST FOR FOCUS GROUP INTRODUCTIONS

Name:
__

CHECKLIST FOR FOCUS GROUP INTRODUCTIONS
 RATING

CONTENT Change this No change needed COMMENTS

Extends a welcome
Introduces moderator and assistant
Introduces study – why we’re here
Describes how participants were

selected

Welcomes all points of view
Provides ground rules
We’re recording – confidentiality

assured

Invites questions
Appropriate opening question
Appropriate word choice

DELIVERY Change this No change needed COMMENTS

Relaxed and friendly

Conveys sincerity and trust

Smiles at some point

Speed appropriate for participants

Eye contact

No distractions from content

Suggestions for improvement

FOCUS GROUPS

Focus groups are a technique commonly used to involve citizens in community planning. They
are a research method in which group discussions focus on a well-defined topic. Essentially
focus groups are a way of listening to people and learning from them. In planning, focus groups
are typically used to identify problems and needs, to find the best way to achieve a set of goals,
to gain feedback on how a plan is being implemented, and to assess a plan. Conducting focus
groups involves four steps:
1. Planning the focus group session, including most importantly what one needs to hear from

participants.

2. Recruiting participants

3. Moderating the focus group as a conversation among people.

4. Analyzing and reporting what is learned from the focus group.

The Topic
For the purpose of this exercise we will conduct focus groups around a new innovation related
to transportation planning: “smart speed bumps.” Smart speed bumps are a computer-controlled
traffic-calming device. Unlike conventional speed bumps, smart speed bumps can be raised or
lowered. Typical applications might include lowering speed bumps to allow emergency vehicles
to reach a destination more quickly, selective traffic calming at different times of the day
depending on traffic patterns, interactive traffic calming reflecting the presence or absence of
school children, or interactive traffic calming in response to vehicular speeds.

Assignment
Conduct a focus group addressing the viability of smart speed bumps. Ideally, teams of 2-3
people would conduct the focus groups. However, students often find it difficult to coordinate
schedules, so you may do this assignment alone or in teams of two. If you do this in teams of
two, I will expect higher quality.
Conduct your focus group and submit a report as described under “Report,” below. Your focus
group should have at least six participants. Since we have no budget, you may have to
compromise with the ideal group composition. If so, be sure to discuss these compromises in
your report. Tape record your focus group session on an ordinary tape cassette and turn in your
tape.

Due Date
In class, November 30.

Report
Submit a report on your focus group and how you conducted it. The report should have the
following components:

Executive Summary: One paragraph summarizing what you did and what you
discovered.

Table of Contents: List the parts of your report and the corresponding page numbers.

Part I: Planning

Problem Statement: One paragraph summarizing the purpose of the focus group

Description of the Target Population: One paragraph describing who should
participate in the focus groups and why this group, rather than some other, should
participate.

Strategy for Identifying Target Population: This should consist of two paragraphs.
The first should explain how you would ideally find people belonging to the target
population. Include discussion of any screening criteria in this paragraph. The second
paragraph should discuss your actual strategy for selecting participants and if there are
any other selection problems associated with your strategy.

Part II: Recruitment

Recruitment Process: One paragraph summarizing how you actually got members of
the target population to participate and who actually did or did not wind up participating.
This is different from your actual selection strategy. The selection strategy describes
your plan for recruiting participants, the “Recruitment Process” describes what actually
happened.

Recruitment Bias: One paragraph discussing what, if any, recruiting bias is present in
your sample. Explain why you believe bias is or is not present. Make references as
needed to items in the Appendix.

Part III: Moderating

Questions: Discuss any issues that came up with the questions. You may have decided
to add questions to the ones we developed in class. If so, explain why. The questions
themselves should be in the Appendix, and this section can refer to the questions there.

Do not use this section to discuss all replies to the questions, just issues such as
ambiguities, misunderstandings, and so on. Typically this section will be one or two
paragraphs long.

Field Notes: Include your field notes in the Appendix.

Written “Oral” Summary: Include a one-paragraph oral summary of the focus group.

Part IV: Analysis and Report

Top-Line Report: Prepare a Top-Line report as described in the handout, “Written
Reports.”

APPENDIX

Telephone Screening Script: Again, this will probably be simulated in that I don’t
expect you to actually recruit participants by telephone. Nonetheless, draft a telephone
screening script similar to those on pages 58-60 in the handout.

Draft Invitation: This is a simulated exercise in that I don’t expect you to actually use
this invitation. However, draft a brief invitation that you could use if you were to send out
formal invitations to participants in the focus group.

Recruitment Log: Using the form below, keep a log of all your attempts to recruit
people to participate in the focus group. The completed form should be included in the
appendix.

Questions: This should be a list of questions you asked when you moderated the focus
group. If you decided to add any questions to the list developed in class, include them
here.

Self-critique: Using the criteria for moderating a focus group (pp. 69-70 of the handout),
rate yourself as a moderator. Use the Criteria for Rating Moderators form below.

Field Notes: Include your field notes. Use the standardized reporting form template
below.

Tape Recording: You should record your focus group on a regular cassette tape.
Include the tape with your report.

RECRUITING LOG
Your name:

Name & Address Dates/Times Contacted Status Notes

Criteria for Rating Moderators

Before the focus group
 Is familiar with the topic and goals of the sponsor

 Understands the purpose and objective of each question

 Has a sense of the amount of time needed for each question

 Anticipates the topics of discussion and potential areas of probing

 Is mentally and physically ready to moderate

 Has sufficient technical knowledge of the topic

 Welcomes participants and makes them feel comfortable before the session

During the focus group

 Delivers a smooth, comfortable introduction that is accurate and complete, including:

• a welcome
• a brief overview of the topic that defines the purpose of the group
• a description of the ground rules
• the opening question
•

 Establishes rapport with participants

 Asks the questions as intended, unless they have already been answered in another
question

 Allows sufficient time for each question

 Keeps the discussion on track

 Keeps all participants involved
 Listens carefully; synthesizes information and feeds it back, probes for clarification, gets

people to talk

 Seeks out both cognitive and affective domains; gets participants to tell both what they
think and what they feel about the topic

 Moves smoothly from one question to another

 Handles different participants adeptly and conveys a sense of relaxed informality
 Avoids sharing personal opinions

 Finishes on time

 Brings closure to the group with a summary and invites comments on any missing points

 Goes to the door and thanks each person individually for coming, just as you would

when guests leave your home

After the focus group
 Debriefs soon after the focus group with the assistant moderator

 Performs the analysis or provides insight into the analysis

 Reviews the report for accuracy

Standardized reporting form template
This is just a template. The part labelled “Information about the Focus Group” should be
included on the report. The part labelled “Q1” should be included on the report and repeated for
each question. Remember to change the question number and to include the question itself.
Information About the Focus Group

Date of Focus Group
Location of Focus Group

Number and Description of Participants

Moderator Name
Asst. Moderator Name

Responses to Questions
Q1. What do you think of speed bumps?

Brief Summary and Key Points Notable Quotes

Comments and Observations

Focus Group Evaluation
(Total points possible = 100)

Student’s Name: __

Executive Summary (5 points) points _______
Does it capture the substance of the report?
Is it clear and direct?

Table of Contents (2 points) points _______

Problem Statement (5 points) points _______
Does it summarize the problem clearly and concisely?

Description of Target Population (10 points) points _______
Is there a clearly identified target group?
Is the reason for choosing this target population clear?
Is the target population logical in the sense that choosing this target population follows logically from
the problem statement?
Does it conform to the assignment?

Strategy for Identifying Target Population (10 points) points _______
Is the description complete in the sense that the reader can reproduce the strategy from reading the
description?
Are screening criteria appropriate? Are they discussed clearly?
Are appropriate selection problems discussed? Is the discussion clear? Does it relate the problems to the
strategy?
How effective is the strategy likely to be?

Recruitment Process (5 points) points _______
Is the description clear? Could a reader replicate the process?
Do we know who actually did or did not participate? Do we know why they did so?

Recruitment Bias (5 points) points _______

Is the description of recruitment bias clear?

Does the discussion show an understanding of the concept of recruitment bias?
Is the explanation of why bias is/is not present logical?
Are appendix materials used appropriately?

Questions (5 points) points _______

Are additional questions or changes to questions warranted?
Are problems with questions described clearly?
Were appropriate remedial measures taken?

Field Notes (15 points) points ______
Are field notes complete?
Are they clear?
Are they useful?

Written “Oral” Summary (10 points) points _______
Does the author come to some conclusion regarding the research?
Do the materials presented support the conclusions?
Top-Line Report (15 points) points ______

Does the top- line report reflect the field notes and tape?
Does it take due account of any problems?

Telephone Screening Script (5 points) points _____
Is the script clear?
Is it effective?
Does it relate properly to the target group?

Draft Invitation (3 points) points ______

Is the invitation truly inviting?
Does it give a fair overview of the nature and purpose of the focus group?

Self-critique (5 points) points _____
Does it seem consistent with the findings and rest of the report?

APPENDIX C: M68HC11EVB EVALUATION BOARD
ARCHITECTURE

 Figure 16: Architecture of the 68HC11 evaluation board (EVB)

Figure 17: EVB connector location diagram

Figure 18: Pin assignment of connector P1

Figure 19: EVB memory map location

Figure 19: EVB memory map location

Table 13: Interrupt jump vector table

APPENDIX D: POP3 AND SMTP COMMANDS

POP3 Command Summary [13]

• USER <name> put your email username
• PASS <string> put your email password
• QUIT quit
• STAT tells number of messages inbox and total size
• LIST list message numbers and their size
• RETR <msg> read message
• DELE <msg> delete message
• NOOP no operation
• RSET

 POP3 Replies:

• +OK command accepted
• -ERR command refused

SMTP commands summary [14]

The Internet protocol used in the transfer of e-mail is SMTP, or Simple Mail Transfer Protocol SMTP
is usually accessed on port 25 of your Internet provider's SMTP server. If you manually telnet to port 25
of an SMTP server, an SMTP session is initialized. In such a session, the following commands can be
used:

• HELO <hostname> Introduce yourself.
• EHLO <hostname> Introduce yourself and request extended SMTP mode.
• MAIL FROM: <sender> Specifies the sender.
• RCPT TO: <recipient> Specifies the recipient. Can be used any number of times.
• DATA Following text is collected as the e-mail message. End message with

a period on a line by itself.
• RSET Resets the system. Once reset, a new sender can be specified.
• NOOP Do nothing.
• QUIT Exit sendmail (SMTP)
• HELP Gives command info. If used alone, displays commands implemented

on specific system. If used as HELP <command>, specific information
on that command is given.

• VRFY <recipient> Verify an address. To view aliases, use EXPN instead.
• EXPN <recipient> Expands an address. Same as VRFY, but includes aliases and

mailing lists.

APPENDIX E: S7600A iCHIP INFORMATION [5]

Table 14: Pin description of the S7600A

R/W cycle for 68k family MPU mode

Figure 20: 68 family MPU write cycle timing

Figure 21: 68 family MPU read cycle timing

Table 15: Register map of the S7600A – Part 1

Table 16: Register map of the S7600A – Part 2

APPENDIX F: S7600A SDK BOARD FOR ISA BUS [15]

Figure 22: Block diagram of the Seiko Development Kit (SDK)

Figure 23: Pin assignment of CN1

Figure 24: Pin assignment of CN3

APPENDIX G: PROGRAM OF AN EMAIL REPORT ENGINE

File custom.h

#define WritePCPort _outp
#define ReadPCPort _inp

#define FALSE 0
#define TRUE 1

/* I/O Address of S-7600A SDK Board setting.*/
#define HW_PORT_INDEX 0x0430
#define HW_PORT_DATA HW_PORT_INDEX + 1
#define HW_PORT_BUSYX HW_PORT_INDEX + 2

/*Set up CLK frequency of S-7600A SDK Board for ISA BUS*/
/*CLK must match the clock frequency of SDK board*/
/*Default is 1MHz.*/
#define CF 1000000L

/*Buffer size which program required temperaryly.*/
/*Usually 1K byte is enough.*/
#define BUF_SIZE 1024

/*types definitions*/
typedef unsigned char BYTE;

/*Global variables*/
unsigned long BAUDRATE = 57600; /*choose between 300,1200,2400,4800,9600,19200,38400,57600,115200*/
char ISPTel[] = "48900"; /*phone number to be dialed*/
char UserName[] = "fred@etal"; /*username*/
char Passwd[] = "1176"; /*password*/
char Sender[] = "fred@etal.uri.edu"; /*email address of the sender*/
char Recipient[] = "frederic.bahuaud@fnac.net"; /*email address of the recipient*/
char Subject[] = "Trial of Email report engine"; /*subject of the email*/
char Message[] = "This email was sent by a s7600a chip programmed by Frederic Bahuaud,URI, 2000";

/* function declarations*/
void Telnet(char* name, char* password); /*telnet connection to remote server*/
void SendString(char* st); /*Send string on serial port*/
void HwSocketInit(char * name, char * password); /*PPP connection*/
void HwSocketClose(void); /*PPP disconnect*/
int HwTcpOpen(void); /*Require TCP connection to the server as a client*/
int HwTcpClose(void); /*Force TCP from CLOSE_WAIT status to CLOSE status*/
int HwTcpState(int); /*Obtain TCP State*/
int HwTcpSend(char* text); /*Send data to socket*/
int HwTcpRcv(void); /*Display Data from Socket */
void DialUp(unsigned long BAUD , char * isp_num); /*Dial to the service provider*/
void abort(void); /*close PPP connection*/
int nstep(void); /*Get the instruction for the procedure followed */
void x_write(BYTE, BYTE); /*1 byte data write driver for S-7600A SDK Board for ISA BUS*/
BYTE x_read(BYTE); /*1 byte data read driver for S-7600A SDK Board for ISA BUS*/
void timer(int); /*Timer*/
int SendMail(char* from,char* to,char* subject,char* message); /*send email report*/

File S7600A.c

#include <stdio.h> /*printf*/
#include <string.h> /* strcat strcpy strlen*/
#include <stdlib.h> /* toupper exit*/
#include <conio.h> /*getch putch kbhit _inp _outp*/
#include <time.h> /*time*/

#include <custom.h> /*path must be added in c/c++ preprocessor settings*/

/***/
/* Main */
/***/

/*Start program*/
void main(void)
{
 int keyPressed = 0;
 BYTE stat,echo;

 printf("\nS-7600A email report engine Program Ver.1.0 with SDK Board ISA 1.0.\n");
 printf("URI, Frederic Bahuaud, July 2000.\n");
 printf("Compiled by Microsoft Visual C++ 6.0.\n");
 printf("baud %d, ISP %s, username %s, password %s\n", BAUDRATE, ISPTel, UserName, Passwd);

 printf("\nReset S-7600A.....");
 x_write(0x01, 0x01); /*Software Reset.*/
 printf("Done.\n\n");

 while((x_read(0x08) & 0x80) !=0)/* discard invalid data in RS232 buffer*/
 {
 echo=x_read(0x0b); /*read answer of modem, char by char*/
/* putch(echo); display answer of modem*/
 }

 DialUp(BAUDRATE , ISPTel); /*Dial to the service provider*/
 Telnet(UserName, Passwd); /*switch server from telnet to ppp protocol*/
 HwSocketInit(UserName, Passwd); /*PPP connection*/

 while(1)
 {
 x_write(0x08, 0x01); /*ASCTL = Hardware control Enable modem*/
 timer(1); /*Wait for the modem ready*/
 stat = x_read(0x08);
 stat = stat & 0x70; /*Confirm the modem is ready*/
 if(stat != 0) /*Modem ready is not confirmed*/
 {
 printf("Modem Hardware Error.\n");
 while(1)
 {
 if(nstep() == FALSE)
 abort();
 }
 }
 if(HwTcpOpen() == FALSE) /*Require TCP connect to server*/
 {
 continue;
 }
 printf("\n");
 if(SendMail(Sender,Recipient,Subject,Message) == FALSE) /*send email*/
 {
 printf("Error occured. Message could not be sent\n");
 continue;
 }
 HwTcpClose(); /*Change TCP from CLOSE_WAIT status to CLOSE status*/
 x_write(0x08, 0x03); /*After RTS disenabled, instruct maintains connection and*/
 /*waiting status to the modem*/
 printf("\nPress a Key !! S : Start again Any other key : Exit\n");
 keyPressed = toupper(getch());
 if (keyPressed == 'S') /*Request connection to server*/
 {
 continue;
 }
 else /*end*/

 {
 printf("Disconnect Sequence.\n");
 abort(); /*Close PPP connection*/
 }
 }
}

/**/
/* abort */
/**/
/*Close PPP connection*/
void abort(void)
{
 HwSocketClose(); /*Disconnect PPP*/
 x_write(0x08, 0x06); /*disenable modem*/
 exit(1); /*end*/
}

/**/
/* DialUp */
/**/

/*Dial to the service provider*/
void DialUp(unsigned long BAUD , char * isp_num)
{
 BYTE baudlo;
 BYTE baudhigh;
 BYTE clocklo;
 BYTE clockhigh;
 BYTE stat,echo;
 char atdt_isp[22] = "ATDT "; /*ORI ATDT = 5 , isp = 11 long ditance */

 baudlo = (BYTE)((CF/BAUD)-1);
 /*Set up baud rate and clock frequency of S-7600A SDK board for ISA BUS*/
 baudhigh = (BYTE)(((CF/BAUD)-1) >> 8);
 /*Calculate register value clocklo = (BYTE) ((CF/1000)-1)*/
 clockhigh = (BYTE) (((CF/1000)-1) >> 8);
 clocklo = (BYTE) ((CF/1000)-1);

 x_write(0x0C, baudlo); /*BAUD_Rate_Div low*/
 x_write(0x0D, baudhigh); /*BAUD_Rate_Div high*/
 x_write(0x1C, clocklo); /*Clock_Div_Low*/
 x_write(0x1D, clockhigh); /*Clock_Div_High*/

 strcat(atdt_isp , isp_num); /*concatenating ATDT with phone number*/
 SendString("AT"); /*check data terminal ready DTR*/
 timer(1); /*Waiting because Status would be changed*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for an answer*/
 {
 echo=x_read(0x0b); /*read answer of modem, char by char*/
 putch(echo); /*display answer of modem*/
 }
 SendString(atdt_isp); /*send numbers to dial*/
 timer(1); /*Waiting because Status would be changed*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for an answer*/
 {
 echo=x_read(0x0b); /*read answer of modem, char by char*/
 putch(echo); /*display answer of modem*/
 }
 while((x_read(0x08) & 0x80)==0); /*wait for reply from ISP*/
 printf("Server contacted\n");
}

/**/
/* HwSocketInit */
/**/
/*PPP connection*/
void HwSocketInit(char * name, char * password)
{
 BYTE addr;

 x_write(0x08, 0x21); /*Make serial port to hardware control when the dial line connected
 SCTL = Hardware ccontrol, HWFC = active*/

 x_write(0x62, 0x0a); /*PPP_Max_Retry = 0x0a*/
/* x_write(0x60, 0x60); //PPP_Control_Status setting : pap enabled

//Write of PAP strings Required if pap enabled
 x_write(0x64, (BYTE) strlen(name)); //username
 while(*name)
 x_write(0x64, *name++);

 timer(1);

 x_write(0x64, (BYTE) strlen(password)); //password
 while(*password)
 x_write(0x64, *password++);
 x_write(0x64, 0); //Null Termination
*/
 x_write(0x60, 0x42); /*PPP Enable ?should be 62 if pap enabled?*/
 while ((x_read(0x60) & 0x01) == 0x00)
 {
 if(kbhit() != 0)
 {
 abort(); /*If something is input before PPP\Up confirmed */
 } /*Disconnect PPP and dial line,End */
 }

 printf("Done. PPP Connection Established. \n");
 printf("ISP assigned our IP Address = ");
 for(addr = 0x13; addr >= 0x10; addr--) /*Display IP address allocated by server*/
 {
 if(addr == 0x10){
 printf("%d\n", x_read(addr));
 }
 else{
 printf("%d.", x_read(addr));
 }
 }
}

/**/
/* HwSocketClose */
/**/

/*Close PPP*/
void HwSocketClose(void)
{
 printf("PPP Disable.....");
 x_write(0x60, 0x00); /*PPP Disenable*/
 while ((x_read(0x60) & 0x01) != 0x00); /*Confirming PPP_Down*/
 printf("Done. PPP Connection Down.\n"); /*PPP_Down confirmed*/

}

/**/
/* HwTcpOpen */
/**/

/*Require TCP connection as server*/
int HwTcpOpen(void)
{
 BYTE addr;

 printf("Tcp Connect.....");
 x_write(0x20, 0x00); /*Select Socket 0*/
 x_write(0x22, 0x10); /*Reset Socket 0 */

 x_write(0x3c, 21); /*Destination IP address*/
 x_write(0x3d, 1); /*Select etal.uri.edu server*/
 x_write(0x3e, 128);
 x_write(0x3f, 131);

 x_write(0x36, 25); /*Destination port is 25*/
 x_write(0x37, 0); /*SMTP mail server*/

 x_write(0x22, 02); /*TCP Client Mode*/
 x_write(0x24, 01); /*Activate Socket 0*/

 while ((x_read(0x23) & 0x10) != 0x10) /*Confirming TCP connection*/
 {
 if(nstep() == FALSE)
 {
 return(FALSE);
 }
 }
 printf("Done. TCP Connection Established.\n\n");
 printf("Server IP address = ");

 for(addr = 0x3f; addr >= 0x3c; addr--)
 {
 if(addr == 0x3c) /*Display IP address of server*/
 {
 printf("%d\n", x_read(addr));
 }
 else
 {
 printf("%d.", x_read(addr));
 }
 }
 return(TRUE); /*TCP connection confirmed*/
}

/**/
/* HwTcpClose */
/**/

/*From CLOSE_WAIT status of TCP to CLOSE status*/
int HwTcpClose(void)
{
 printf("Tcp Close....");
 x_write(0x20, 0x00); /*Select Socket 0*/
 x_write(0x24,0x00); /*Deactivate Socket 0*/
 while (x_read(0x23) & 0x10) /*Confirming TCP No connection*/
 {
 if(nstep() == FALSE) /*If something input before TCP No connection confirmed*/
 {
 return(FALSE);
 }
 }
 x_write(0x22, 0x10); /*Reset Socket 0*/
 printf("Done. TCP No Connection Established. \n");
 return(TRUE);
}

/**/
/* HwTcpState */
/**/

/*Obtain TCP State*/
/*disp : Displayed or not*/
int HwTcpState(int disp)
{
 BYTE stat;

 stat = x_read(0x23);
 if(disp == TRUE){
 printf("TCP State is %02X ", stat);
 stat = stat & 0x0f;
 switch(stat){
 case(0x0):printf("CLOSED.\n"); break;
 case(0x1):printf("SYN_SENT.\n"); break;
 case(0x2):printf("ESTABLISHED.\n"); break;
 case(0x3):printf("CLOSE_WAIT.\n"); break;
 case(0x4):printf("LAST_ACK.\n"); break;
 case(0x5):printf("FIN_WAIT1.\n"); break;
 case(0x6):printf("FIN_WAIT2.\n"); break;
 case(0x7):printf("CLOSING.\n"); break;
 case(0x8):printf("TIME_WAIT.\n"); break;
 case(0x9):printf("LISTEN.\n"); break;
 case(0xa):printf("SYN_RECVD.\n"); break;
 default: break;
 }

 }
 return(stat & 0x0f);
}

/**/
/* nstep */
/**/

/*Get instruction for procedure followed*/
int nstep(void)
{
 if(kbhit() != 0)/*If there's no input, return immediately*/
 {
 getch();
 printf("\n");
 return(FALSE);
 }
 return(TRUE);
}

/**/
/* x_write(S7600A) */
/**/

/*Driver of 1byte data write for S-7600A SDK Board for ISA BUS*/
void x_write(BYTE addr, BYTE data)
{
 BYTE busyx;

 do
 {
 busyx = ReadPCPort(HW_PORT_BUSYX) & 0x80; /*Confirming busyx=1*/
 }while (busyx == 0); /*busyx = 1 is confirmed*/
 WritePCPort(HW_PORT_INDEX, addr); /*Set index register address*/
 WritePCPort(HW_PORT_DATA, data); /*Write data at S-7600A index register*/

}

/**/
/* x_read(S7600A) */
/**/

/*Driver of 1byte data read for S-7600A SDK Board for ISA BUS*/
BYTE x_read (BYTE addr)
{
 BYTE busyx;

 do
 {
 busyx = ReadPCPort(HW_PORT_BUSYX) & 0x80; /*Confirming busyx = 1*/
 }while (busyx == 0); /*busyx = 1 is confirmed*/
 WritePCPort(HW_PORT_INDEX, addr); /*Set index register address*/
 ReadPCPort(HW_PORT_INDEX); /*Read index register*/
 do
 {
 busyx = ReadPCPort(HW_PORT_BUSYX) & 0x80; /*Confirming busyx = 1*/
 }while (busyx == 0); /*busyx = 1 is confirmed*/
 return(ReadPCPort(HW_PORT_DATA)); /*Read data at S-7600A index register*/
}

/**/
/* timer */
/**/

void timer(int sec)
{

/*sec : Wait time. Unit is Sec. And there's +1 Sec tolerance at max*/
 long oldtime, newtime;
 int i = -1;

 time(&oldtime);
 while(1){
 time(&newtime);

 if(newtime != oldtime){
 oldtime = newtime;
 i++;
 }
 if(i >= sec){
 return;
 }
 }
}

/**/
/* telnet connection */
/**/
void Telnet(char* name, char* password)
{
 char echo;
 int cyata1=0;
 BYTE stat;

 while((stat = x_read(0x08) & 0x80) !=0) /*receive the prompt from ISP*/
 echo=x_read(0x0b);
 printf("Telnet data is being sent...Wait...");
 SendString(name); /*send name*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for reply*/
 echo=x_read(0x0b);
 SendString(password); /*send password*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for reply*/
 echo=x_read(0x0b);
 SendString("ppp"); /*ask server for ppp connection*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for ppp prompt*/
 echo=x_read(0x0b);
 printf("OK...\n");

}

/**/
/* Send string to remote server */
/**/
void SendString(char* st)
{
 BYTE stat;
 char buf[BUF_SIZE + 1];
 int len, i;

 x_write(0x08, 0); /*SCTL = MPU control*/
 timer(1); /*Waiting for safety reasons, because Status would be changed */
 stat = x_read(0x08) & 0x20; /*Confirm modem DSR*/
 if(stat != 0) /*Can not confirm DSR of the modem*/
 {
 printf("Modem Hardware Error.\n");
 exit(0);
 }
 strcpy(buf, st);
 strcat(buf, "\r"); /*Add terminator CR:0X0d:\r to command character line*/
 len = strlen(buf);
 for(i = 0; i < len; i++)
 { /*Serial Port Data Register(0x0b)*/
 x_write(0x0b, (BYTE)(buf[i])); /*Write 1 char by 1 char*/
 }
}

/**/
/* HwTcpSend */
/**/

/*Send Socket data*/
int HwTcpSend(char* text)
{
 int len,i;
 char buf[BUF_SIZE];

 strcpy(buf,text);

 strcat(buf, "\n"); /*Add terminator CR:0X0d:\r to command character line*/
 len=strlen(buf);
 for(i = 0; i < len; i++)
 {
 if((x_read(0x22) & 0x20) == 0) /*If socket not full*/
 {
 x_write(0x2e, (BYTE)(buf[i])); /*Write 1 char by 1 char*/
 printf("%c",buf[i]); /*Read 1 char from Socket data Resister*/
 continue;
 }
 else
 {
 printf("\nBuffer full.");
 return(FALSE);
 }
 }
 x_write(0x30, 0x00); /* start sending data*/
 return(TRUE);
}

/**/
/* HwTcpRcv */
/**/

/*Display Socket data*/
int HwTcpRcv(void)
{
 while((x_read(0x28) & 0x01) == 0) /*wait for data available*/
 {
 if(nstep() == FALSE)
 return(FALSE);
 }
 while(x_read(0x28) & 0x01) /*while data av ailable...*/
 {
 if(nstep() == FALSE)
 {
 return(FALSE);
 }
 putch(x_read(0x2e)); /*display it */
 }
 return(TRUE);
}

/**/
/* SendMail */
/**/

/*Send an email using smtp strings (mail from:, rcpt to:, data)*/
/*from: sender of the message*/
/*to: recipient of the message*/
/*subject: subject of the message*/
/*message: email message*/

int SendMail(char* from,char* to,char* title,char* data)
{
 char buf[BUF_SIZE];

 if(HwTcpRcv() == FALSE) /*receive prompt*/
 return(FALSE);
 printf("\n");

 strcpy(buf,"mail from:"); /*copy smtp command to specify sender*/
 strcat(buf,from);
 if(HwTcpSend(buf) == FALSE) /*send sender of the message*/
 return(FALSE);
 if(HwTcpRcv() == FALSE) /*display result of operation*/
 return(FALSE);
 printf("\n");

 strcpy(buf,"rcpt to:"); /*copy smtp command to specify the recipient*/
 strcat(buf,to);
 if(HwTcpSend(buf) == FALSE) /*send receiver of the message*/
 return(FALSE);

 if(HwTcpRcv() == FALSE) /*display result of operation*/
 return(FALSE);
 printf("\n");

 strcpy(buf,"data\n"); /*copy smtp command to start writing message*/
 strcat(buf,"Subject:");
 strcat(buf,title); /*add subject at the beginning of the message*/
 strcat(buf,"\n");
 if(HwTcpSend(buf) == FALSE) /* begin email message*/
 return(FALSE);
 if(HwTcpRcv() == FALSE) /*display result of operation*/
 return(FALSE);

 strcpy(buf,data); /*add message*/
 strcat(buf, "\n.\n"); /*Add smtp message terminator*/
 if(HwTcpSend(buf) == FALSE)
 return(FALSE);
 if(HwTcpRcv() == FALSE) /*display result of operation*/
 return(FALSE);

 return(TRUE);
}

APPENDIX H: PROGRAM OF THE S2B IN C

Main.h

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/

#pragma language=extended /*enable use of extended keywords*/

#include<IO_s2b.h>
#include<io6811.h>

void init_system(void);
void problem(int);
extern void timer(int);
extern int communication(int);
extern int maintenance(void);
extern int operation(void); /*performs an automatic routine of deflation/reinflation*/

operation.h

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/

#include<IO_s2b.h>

int WAIT_EMERGENCY=7; /*lapse time in seconds between deflation and re-inflation*/

int operation(void); /*performs an automatic routine of deflation/reinflation*/
void flashing_light_on(void);
void flashing_light_off(void);
extern void timer(int);

maintenance.h

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/

#include<io6811.h>
#include<IO_s2b.h>

int maintenance(void);
extern void init_system(void);

communication.h

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/

#include <string.h> /* strcat strcpy strlen*/
#include<io6811.h> /*include declaration of 68HC11 registers*/
#include<s7600_reg.h> /*include declaration of S7600A registers*/
#include<IO_s2b.h> /*include declaration of s2b I/O*/

#define INDEX (* (unsigned char *) (0x6000)) /* INDEX register of the S7600A */
#define DATA (* (unsigned char *) (0x6001)) /* DATA register of the S7600A */
#define BUSYX (PORTD & 0x20) /* BUSYX signal from S7600A*/
#define CF 1000000L /*Set up CLK frequency of S-7600A*/
#define BUF_SIZE 200 /*Buffer size which program required temperaryly.*/

typedef unsigned char BYTE; /*define type BYTE used to R/W iChip registers*/

/*global variables declarations*/
unsigned long BAUDRATE = 57600; /*choose between 300,1200,2400,4800,9600,19200,38400,57600,115200*/
char ISPTel[]= "48900"; /*phone number to be dialed*/
char UserName[]= "fred@etal"; /*username*/
char Passwd[]= "1176"; /*password*/
char Sender[]= "fred@etal.uri.edu"; /*email address of the sender*/
char Recipient[]= "frederic.bahuaud@fnac.net"; /*email address of the recipient*/
char MESSAGE_0[]= "Message sent from speed bump control system, for maintenance purposes.";
char SUBJECT_0[]= "S2B maintenance"; /*subject of the email*/

/*function declarations*/
int communication(int type_of_email); /*main program to send email reports*/
void x_write(BYTE addr, BYTE data); /*write a byte in a S7600A register*/
BYTE x_read (BYTE addr); /*read a byte in a S7600A register*/
void timer(int sec); /*timer*/
int SendString(char* st); /*Send string on serial port*/
int DialUp(unsigned long BAUDT , char* isp_num);/*Dial to the service provider*/
int Telnet(char* name, char* password); /*telnet connection to remote server*/
int HwSocketInit(char * name, char * password); /*PPP connection*/
void HwSocketClose(void); /*PPP disconnect*/
int HwTcpOpen(void); /*Require TCP connection to the server as a client*/
int HwTcpClose(void); /*Force TCP from CLOSE_WAIT status to CLOSE status*/
int HwTcpSend(char* text); /*Send data to socket*/
int HwTcpRcv(void); /*Display Data from Socket */
void abort(void); /*close PPP connection*/
int SendMail(char* from, char* to, char* subject, char* message);/*send email report*/

/**/
/* x_write(S7600A) */
/**/
/*data write in S-7600A registers*/
void x_write(BYTE addr, BYTE data)
{
 while (BUSYX == 0); /*wait for busyx signal*/
 INDEX=addr; /*Set index register address*/
 DATA=data; /*Write data at S-7600A index register*/

}

/**/
/* x_read(S7600A) */
/**/
/*data read in S-7600A registers*/

BYTE x_read (BYTE addr)
{
 BYTE trash;

 while (BUSYX == 0); /*wait for busyx signal*/
 INDEX=addr; /*Set index register address*/
 trash=INDEX; /*Read index register*/
 while (BUSYX == 0); /*wait for busyx signal*/
 return(DATA); /*Read data at S-7600A index register*/
}

main.c

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/
/*This is the main program that runs the speed bump */
/*it does nothing but monitoring inputs*/
/*if an event is detected, appropriate functions are called to handle the event*/

#include<main.h> /*include files, function definitions, typedef, constants defs...*/

void main (void)
{
 int id=0; /*identifies the type of problem*/
 init_system(); /*initialize system*/

 while(1)
 {
 if(BTN_MAINT != 0) /*if manual mode selected (maintenance)*/
 {
 id = maintenance(); /*go in maintenance mode*/
 if(id != 0) problem(id); /*error handling, if any*/
 } /* + problem handeling if any*/
 if(EM_REQUEST != 0) /*if request from emergency vehicle*/
 {
 id = operation(); /*go in operation mode*/
 if(id != 0) problem(id); /*error handling, if any*/
 }
 }
}

void init_system(void)
{
 SCCR2=0x0; /*disable serial communication mode (to use PORTD as input)*/
 DDRD=0x0; /*select PORT D as input*/
 PORTB=0x0; /*reset outputs*/
 S_FLASH; /*turn on flashing light*/
 while(HI_PRESSURE == 0) /*if pressure in s2b is not high enough*/
 S_INFLATE; /*inflate*/
 R_INFLATE; /*stop inflation*/
}

void problem(int problem_id)
{
 int err;
 switch (problem_id) /*take an action depending on problem*/
 {
 case 1: S_ERROR; /*fatal error, transmission impossible*/
 break;
 case 2: err = communication(problem_id); /*report problem by email*/
 if(err != 0) problem(1);
 break;
 case 3: S_ERROR; /*hardware modem error*/
 case 4: S_ERROR; /*telnet connection failed*/
 case 5: S_ERROR; /*TCP open failed*/
 default:S_ERROR;
 }
 timer(3); /*for debug purposes only*/
 R_ERROR; /*reset error led after 3 seconds*/
}

operation.c

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/
/*performs the deflation/inflation cycle, in case of emergency request*/

#include<operation.h>

int operation(void)
{
 /*deflation cycle*/
 while(LO_PRESSURE != 0) /*deflate s2b until low pressure*/
 S_DEFLATE;
 R_DEFLATE; /*stop deflating*/
 R_FLASH; /*stop flashing light*/
 timer(WAIT_EMERGENCY); /*wait for a certain time*/

 /*inflation cycle*/
 S_FLASH; /*turn on flashing light*/
 while(HI_PRESSURE == 0) /*inflate s2b until high pressure*/
 S_INFLATE;
 R_INFLATE; /*stop inflating*/
 return 2; /*for debug purposes, return an error so that email is sent*/
}

/*enable RTI for flashing light*/
/*not implemented yet*/
void flashing_light_on(void)
{}

/*disable RTI for flashing light*/
/*not implemented yet*/
void flashing_light_off(void)
{}

maintenance.c

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/
/*allows manual operation of the speed bump, for maintenance*/

#include<maintenance.h>

int maintenance(void)
{
 S_MAINT_LED; /*turn on maintenance LED*/
 while(BTN_MAINT != 0) /*while in maintenance m ode*/
 {
 while(BTN_INF != 0) /*manual inflation*/
 {
 if(HI_PRESSURE == 0) /*if pressure in s2b not too high*/
 S_INFLATE; /*inflate*/
 else
 {
 R_INFLATE; /*stop inflation*/
 S_FLASH; /*turn on flashing light*/
 }
 }
 R_INFLATE; /*stop inflation*/

 while(BTN_DEF != 0) /*manual deflation*/
 {
 if(LO_PRESSURE != 0) /*if pressure in s2b is not low enough*/
 S_DEFLATE; /*deflate*/
 else
 {
 R_DEFLATE; /*stop deflation*/
 R_FLASH; /*turns off flashing light*/
 }
 }
 R_DEFLATE; /*stop deflation*/
 }
 R_MAINT_LED; /*turn off maintenance LED*/
 init_system(); /*initialize system for normal operation*/
 return 0; /*return no error*/

}

communication.c

/*File written by Frederic BAHUAUD, URI, ESPEO, 2000*/
/*send an email report in case of s2b problem*/
/*the email body depends on the type of problem that occured*/

#include<communication.h>

/**/
/* Communication */
/**/
/*Send an email report with a message depending on type_of_email*/
int communication(int type_of_email)
{
 BYTE echo,stat;

 S_COMMU_LED; /*turn on communication LED*/
 x_write(0x01, 0x01); /*Software Reset.*/

 while((x_read(0x08) & 0x80) !=0) /* discard invalid data in RS232 buffer*/
 echo=x_read(0x0b); /*read answer of modem, char by char*/

 if(DialUp(BAUDRATE , ISPTel) != 0) return 3; /*Dial to the service provider*/
 if(Telnet(UserName, Passwd) != 0) return 4; /*switch server from telnet to ppp protocol*/
 if(HwSocketInit(UserName, Passwd) !=0) return 5; /*PPP connection*/

 x_write(0x08, 0x01); /*ASCTL = Hardware control Enable modem*/
 timer(1); /*Wait for the modem ready*/
 stat = x_read(0x08);
 stat = stat & 0x70; /*Confirm the modem is ready*/
 if(stat != 0) /*Modem ready is not confirmed*/
 return (1);
 if(HwTcpOpen() == 1) /*Require TCP connect to server*/
 return (1);
 if(SendMail(Sender, Recipient, SUBJECT_0, MESSAGE_0) == 1) /*send email*/
 return 1;
 HwTcpClose(); /*Change TCP from CLOSE_WAIT status to CLOSE status*/
 HwSocketClose(); /*close ppp connection*/
 if(SendString("ATH") != 0) return (3);
 x_write(0x08, 0x06); /*After RTS disenabled, instruct maintains connection*/

 R_COMMU_LED; /*turn off communication LED*/
 return (0); /*return no error*/
}

/**/
/* DialUp */
/**/
/*Dial to the service provider*/
int DialUp(unsigned long BAUDT, char* isp_num)
{
 BYTE baudlo;
 BYTE baudhigh;
 BYTE clocklo;
 BYTE clockhigh;
 BYTE stat,echo;
 char atdt_isp[22] = "ATDT "; /*ORI ATDT = 5 , isp = 11 long ditance */

 baudlo = (BYTE)((CF/BAUDT)-1); /*Set up baud rate and clock frequency of S-7600A*/
 baudhigh = (BYTE)(((CF/BAUDT)-1) >> 8); /*clocklo = (BYTE) ((CF/1000)-1)*/
 clockhigh = (BYTE) (((CF/1000)-1) >> 8);
 clocklo = (BYTE) ((CF/1000)-1);

 x_write(0x0C, baudlo); /*BAUD_Rate_Div low*/
 x_write(0x0D, baudhigh); /*BAUD_Rate_Div high*/
 x_write(0x1C, clocklo); /*Clock_Div_Low*/

 x_write(0x1D, clockhigh); /*Clock_Div_High*/

 strcat(atdt_isp , isp_num); /*concatenating ATDT with phone number*/
 if(SendString("AT") !=0) return (3); /*check data terminal ready DTR*/
 timer(1); /*Waiting because Status would be changed*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for an answer*/
 {
 echo=x_read(0x0b); /*read answer of modem, char by char*/
// putch(echo); /*display answer of modem*/
 }
 if(SendString(atdt_isp)!=0) return (3);/*send numbers to dial*/
 timer(1); /*Waiting because Status would be changed*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for an answer*/
 {
 echo=x_read(0x0b); /*read answer of modem, char by char*/
// putch(echo); /*display answer of modem*/
 }
 while((x_read(0x08) & 0x80)==0); /*wait for reply from ISP*/
 return (0);
}

/**/
/* Timer */
/**/
/* timer of sec seconds*/
void timer(int sec)
{
 int i,j,k;
 for (i=0;i<sec;i++) /*do nothing*/
 for (j=0;j<255;j++)
 for (k=0;k<255;k++);
}

/**/
/* abort */
/**/
/*Close PPP connection*/
void abort(void)
{
 HwSocketClose(); /*Disconnect PPP*/
 x_write(0x08, 0x06); /*disenable modem*/
}

/**/
/* HwSocketInit */
/**/
/*PPP connection*/
int HwSocketInit(char * name, char * password)
{
 BYTE addr;

 x_write(0x08, 0x21); /*Make serial port to hardware control when the dial line connected
 SCTL = Hardware ccontrol, HWFC = active*/
 x_write(0x62, 0x0a); /*PPP_Max_Retry = 0x0a*/
/* x_write(0x60, 0x60); //PPP_Control_Status setting : pap enabled

//Write of PAP strings Required if pap enabled
 x_write(0x64, (BYTE) strlen(name)); //username
 while(*name)
 x_write(0x64, *name++);
 timer(1);
 x_write(0x64, (BYTE) strlen(password)); //password
 while(*password)

 x_write(0x64, *password++);
 x_write(0x64, 0); //Null Termination
*/
 x_write(0x60, 0x42); /*PPP Enable ?should be 62 if pap enabled?*/
 while ((x_read(0x60) & 0x01) == 0x00)
 {
 }
// printf("Done. PPP Connection Established. \n");
/* printf("ISP assigned our IP Address = ");
 for(addr = 0x13; addr >= 0x10; addr--) //Display IP address allocated by server
 {
 if(addr == 0x10){
 printf("%d\n", x_read(addr));
 }
 else{
 printf("%d.", x_read(addr));
 }
 }*/
 return (0);
}

/**/
/* HwSocketClose */
/**/
/*Close PPP*/
void HwSocketClose(void)
{
// printf("PPP Disable.....");
 x_write(0x60, 0x00); /*PPP Disenable*/
 while ((x_read(0x60) & 0x01) != 0x00); /*Confirming PPP_Down*/
// printf("Done. PPP Connection Down.\n"); /*PPP_Down confirmed*/
}

/**/
/* HwTcpOpen */
/**/
/*Require TCP connection as server*/
int HwTcpOpen(void)
{
 BYTE addr;

// printf("Tcp Connect.....");
 x_write(0x20, 0x00); /*Select Socket 0*/
 x_write(0x22, 0x10); /*Reset Socket 0 */

 x_write(0x3c, 21); /*Destination IP address*/
 x_write(0x3d, 1); /*Select etal.uri.edu server*/
 x_write(0x3e, 128);
 x_write(0x3f, 131);

 x_write(0x36, 25); /*Destination port is 25*/
 x_write(0x37, 0); /*SMTP mail server*/

 x_write(0x22, 02); /*TCP Client Mode*/
 x_write(0x24, 01); /*Activate Socket 0*/

 while ((x_read(0x23) & 0x10) != 0x10) /*Confirming TCP connection*/
 {
 }
/* printf("Done. TCP Connection Established.\n\n");
 printf("Server IP address = ");

 for(addr = 0x3f; addr >= 0x3c; addr--)
 {
 if(addr == 0x3c) //Display IP address of server
 {

 printf("%d\n", x_read(addr));
 }
 else
 {
 printf("%d.", x_read(addr));
 }
 }*/
 S_TCP_LED; /*turn off TCP led*/
 return (0);
}

/**/
/* HwTcpClose */
/**/
/*From CLOSE_WAIT status of TCP to CLOSE status*/
int HwTcpClose(void)
{
// printf("Tcp Close....");
 x_write(0x20, 0x00); /*Select Socket 0*/
 x_write(0x24,0x00); /*Deactivate Socket 0*/
 while (x_read(0x23) & 0x10) /*Confirming TCP No connection*/
 {
 }
 x_write(0x22, 0x10); /*Reset Socket 0*/
// printf("Done. TCP No Connection Established. \n");
 R_TCP_LED; /*end of TCP connection*/
 return(0);
}

/**/
/* telnet connection */
/**/
/*send telnet data to switch in ppp mode*/
int Telnet(char* name, char* password)
{
 char echo;
 int cyata1=0;
 BYTE stat;

 while((stat = x_read(0x08) & 0x80) !=0) /*receive the prompt from ISP*/
 echo=x_read(0x0b);
// printf("Telnet data is being sent...Wait...");
 SendString(name); /*send name*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for reply*/
 echo=x_read(0x0b);
 SendString(password); /*send password*/
 while((stat = x_read(0x08) & 0x80) !=0) /* wait for reply*/
 echo=x_read(0x0b);
 SendString("ppp"); /*ask server for ppp connection*/
 while((s tat = x_read(0x08) & 0x80) !=0) /* wait for ppp prompt*/
 echo=x_read(0x0b);
// printf("OK...\n");
 return (0);
}

/**/
/* Send string to remote server */
/**/
int SendString(char* st)
{
 BYTE stat;
 char buf[BUF_SIZE + 1];
 int len, i;

 x_write(0x08, 0); /*SCTL = MPU control*/
 timer(1); /*Waiting for safety reasons, because Status would be changed */
 stat = x_read(0x08) & 0x20; /*Confirm modem DSR*/
 if(stat != 0) /*Can not confirm DSR of the modem*/
 {
// printf("Modem Hardware Error.\n");
 return (3);
 }
 strcpy(buf, st);
 strcat(buf, "\r"); /*Add terminator CR:0X0d:\r to command character line*/
 len = strlen(buf);
 for(i = 0; i < len; i++)
 { /*Serial Port Data Register(0x0b)*/
 x_write(0x0b, (BYTE)(buf[i])); /*Write 1 char by 1 char*/
 }
 return (0);
}

/**/
/* HwTcpSend */
/**/
/*Send Socket data*/
int HwTcpSend(char* text)
{
 int len,i;
 char buf[BUF_SIZE];

 strcpy(buf,text); /*copy string to send in a buffer*/
 strcat(buf, "\n"); /*Add terminator CR:0X0d:\r to command character line*/
 len=strlen(buf); /*get length of the string*/
 for(i = 0; i < len; i++)
 {
 if((x_read(0x22) & 0x20) == 0) /*If socket not full*/
 {
 x_write(0x2e, (BYTE)(buf[i])); /*Write 1 char by 1 char*/
// printf("%c",buf[i]); /*Read 1 char from Socket data Resister*/
 continue;
 }
 else
 {
 x_write(0x30, 0x00); /* start sending data*/
 }
 }
 x_write(0x30, 0x00); /* start sending data*/
 return (0);
}

/**/
/* HwTcpRcv */
/**/
/*Display Socket data*/
int HwTcpRcv(void)
{
 while((x_read(0x28) & 0x01) == 0) /*wait for data available*/
 { }
 while(x_read(0x28) & 0x01) /*while data available...*/
 {
 x_read(0x2e); /*store it (not implemented yet)*/
 }
 return (0);
}

/**/
/* SendMail */
/**/
/*Send an email using smtp strings (mail from:, rcpt to:, data)*/

/*from: sender of the message*/
/*to: recipient of the message*/
/*subject: subject of the message*/
/*message: email message*/
int SendMail(char* from, char* to, char* title, char* data)
{
 char buf[BUF_SIZE];

 if(HwTcpRcv() == 1) /*receive prompt*/
 return(1);
// printf("\n");
 strcpy(buf,"mail from:"); /*copy smtp command to specify sender*/
 strcat(buf,from);
 if(HwTcpSend(buf) == 1) /*send sender of the message*/
 return(1);
 if(HwTcpRcv() == 1) /*display result of operation*/
 return(1);
// printf("\n");

 strcpy(buf,"rcpt to:"); /*copy smtp command to specify the recipient*/
 strcat(buf,to);
 if(HwTcpSend(buf) == 1) /*send receiver of the message*/
 return(1);
 if(HwTcpRcv() == 1) /*display result of operation*/
 return(1);
// printf("\n");
 strcpy(buf,"data\n"); /*copy smtp command to start writing message*/
 strcat(buf,"Subject:");
 strcat(buf,title); /*add subject at the beginning of the message*/
 strcat(buf,"\n");
 if(HwTcpSend(buf) == 1) /* begin email message*/
 return(1);
 if(HwTcpRcv() == 1) /*display result of operation*/
 return(1);
 strcpy(buf,data); /*add message*/
 strcat(buf, "\n.\n"); /*Add smtp message terminator*/
 if(HwTcpSend(buf) == 1)
 return(1);
 if(HwTcpRcv() == 1) /*display result of operation*/
 return(1);
 return(0);
}

APPENDIX I: COMPARISON OF C CROSS COMPILERS

Company name
ARCHIMEDE IAR HI-TECH HIWARE COSMIC SOFT.

Contents of software
package

• ANSI C compiler
(C++ optional)

• Assembler
• Linker
• ANSI librarian
• Debugger
• SimCase simulator
• EPROM burner

• ANSI C compiler
• Macro assembler
• Linker
• ANSI librarian
• Debugger
• CSpy simulator

• ANSI C compiler
• Macro assembler
• Linker
• Librarian with

source
• Debugger + remote

debugger

• ANSI C compiler
(C++ optional)

• Macro assembler
• Linker
• Librarian
• HI-WAVE

Debugger
• HI-WAVE simulator
• Decoder
• EPROM burner

• ANSI + ISO C
compiler

• Macro assembler
• Linker
• Librarian
• ZAP remote

debugger
• ZAP simulator
• HEX file generator
• Object format

converter
Warranty 3 months 1 year 6 months 1 year
Support $ 449/year free 6 months free 1 year free

Normal unit Price $ 2,895 $ 2,395 $ 850 $ 3,880 $ 2,310

Educational purpose
prices

30% discount
+ special anniversary
price: $ 1,956.50

6 licenses: $ 0 1 license: $ 500
5 licenses: $ 850
10 licenses: $ 1,700

50% discount
$ 1,940

40% discount
1 license: $1,650
10 licenses: $ 4,125

Interface user
friendliness

Versatile but not user
friendly. Use Windows
notepad as text editor.

Integrated
environment.
GREAT!!!

DOS interface ? Versatile but not user
friendly. Use notepad
as text editor.

Integrated
environment. User
friendly.

Miscellaneous
HIWARE software!!! Advertising for IAR

on URI web site
No simulator

Table 17: Comparison of C cross compilers

	BLANK PAGE.pdf
	BLANK PAGE

	BLANK PAGE.pdf
	BLANK PAGE

	BLANK PAGE.pdf
	BLANK PAGE

	BLANK PAGE.pdf
	BLANK PAGE

	BLANK PAGE.pdf
	BLANK PAGE

