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NEURAL NETWORK APPLICATION
FOR PREDICTING THE IMPACT OF TRIP REDUCTION STRATEGIES

Background

Rising traffic congestion and air quality problems contributed to federal, state, and regional efforts to reduce
vehicle emissions by requiring large employers to develop programs to reduce vehicle trips. In areas with the
worst air pollution, the program’s goal was to reduce driving—and pollution—by increasing the average number
of employees in vehicles commuting to work (that is, average vehicle ridership or AVR). Employers were
targeted by these regulations as employer policies such as work location, work schedule, and parking policies
strongly influence transportation mode choice decisions made by employees.

In several of the major urban areas of the country (such as Los Angeles, Phoenix, Seattle), large employers with
100 or more employees were required by federal, state or local regulation to submit detailed plans for
influencing employee travel behavior in order to reduce air pollution and/or traffic congestion. Over the years,
these metropolitan areas collected a large amount of data from these companies. Information was obtained
that described different company site characteristics and the alterative modes of transportation available to the
employees. The data also included information on the types of financial and non-financial incentives employers
offered to employees. Employers provided information on work schedules and alternative work arrangements
such as telecommuting and compressed work weeks. They also collected information from employees on the
different modes of transportation selected by the employees and estimated the site’s AVR.

Though areas such as Los Angeles had thousands of employer plans submitted under these regulations, the
regulators have had limited success in developing models to predict changes in AVR. Part of the reason for this
rests with the complexity of the data. The Los Angeles area database, for example, includes 62 different
incentives that employers can select to increase AVR in their work sites. Some incentives are offered by
relatively few employers. Even when condensing the incentives into 28 categories, the plans represented about
1,500 different combinations of incentives.

At the same time, the current models (such as the FHWA TDM Model) are based on disaggregate data
collected through relatively small samples of employers but augmented by employee surveys. Specifically,
model predictions were not compared with actual results for any data that had not been used in the model

building process.

Project Objective

Under this Florida Department of Transportation (FDOT) Research Idea project, the project team of the Center
for Urban Transportation Research (CUTR) and the Department of Computer Science and Engineering at the
University of South Florida applied neural network technology to predict the impacts of various trip reduction
strategies on changes in commute behavior.

In the early 1990s, COMSIS, a transportation consulting firm, was hired by the South Coast Air Quality
Management District (SCAQMD) in the Los Angeles area to develop a linear model to predict AVR. They
attempted to use the several thousand employer trip reduction plans to build the model. However, the model
did not perform to the satisfaction of COMSIS. SCAQMD agreed to build a model using a data set developed
by ARB for the California Air Resources Board (CARB) by COMSIS. The CARB model is a logit based model
that used the results of surveys from only 45 employers. However, it also included data from nearly 2,500
employees. Disaggregate employee data was not part of the AQMD data structure.

Neural networks were selected because they can uncover the hidden relationships in the data from employers
and the resulting change in average vehicle ridership (AVR). The performance and selection of the best model
were based on comparing neural network output to actual AVR observations. The neural network training (or
leaming) process allows the neural network model to predict the correct response to combinations of input data
values not previously seen by the network. The benefits of developing such a model are to streamline
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development of trip reduction plans for employers, increase effectiveness of those plans, and provide a basis for
consistent review by the regulating agencies. It should also improve efficiency by reducing regulatory staff time
in the review of employer/developer trip reduction plans.

Project Overview

This project executive summary describes neural network models, highlights the efforts to build a model to
predict changes in AVR, summarizes the development of the application, compares the neural network model
performance with other analytical approaches, and summarizes the results of the field test. The reader should
review the four technical memoranda prepared as part of this project for more information.

Technical memorandum #1, “Regional Trip Reduction Databases,” reports on the present state of trip reduction
data management and analysis. Model inputs and outputs are identified by reviewing several trip reduction
ordinances. The technical memorandum also reviews previous attempts to develop a model including the TDM
Model developed for FHWA, the California Air Resources Board TDM Model, and the TDM Cost-Effectiveness
Model developed for Pleasanton, California.

Technical memorandum #2, “A Primer on Neural Networks in Transportation: Concepts and Applications,”
discusses neural network capabilities for data analysis, forecasting, and model building and contrasting this
approach with other methods. Various applications of artificial neural networks (ANN) in the transportation
industry are identified. The technical memorandum concludes that the strength of ANN models of learming by
comparing known inputs and resulting outputs for a large number of examples should lend itself to this
application.

Technical memorandum #3, “Neural Network Application for Predicting Impact of Trip Reduction Strategies:
Application Development,” reviews the process for compiling the data, the identification of model inputs and
outputs from the data, and the building and testing of the neural network model. This step also includes building
alternative models using regression and discriminant analysis to measure relative ANN performance. These
models are also compared with the FHWA's TDM Model. The ANN model built only with data from SCAQMD is
validated using a separate data set and evaluated based on the model's ability to classify the change in AVR
within an acceptable range. This technical memorandum concludes that it is feasible to build a model that
predicts changes in AVR based on the employer site characteristics and strategies used.

Technical memorandum #4, “Neural Network Application for Predicting Impact of Trip Reduction Strategies:
Field Testing,” summarizes the steps taken to validate the mode! using data from other sites. During this phase
of the project, CUTR selected field test sites and established a memorandum of understanding for the
development and use of existing employer trip reduction plan data from the test sites. The research team
collected and interpreted data from Phoenix and Tucson areas. The result is a model built on data from Los
Angeles and Tucson that performed well when tested with data from Phoenix, suggesting that the model is
transferable from one site to another.

Given a sufficient amount of data, locally-developed models can be expected to perform better than a model
based on data from a cross section of the country. However, the need for transferability is of particular
importance to states such as Florida where employers are not required to submit trip reduction plans. The need
for a single model also increases in the areas of the country with the worst air pollution. The Employee
Commute Options (ECO) requirement in the Clean Air Act Amendments of 1990 required large employers in
these areas to submit trip reduction plans on an annual basis. However, ECO was made voluntary in late 1995.
These plans would have been the source of data that would have allowed many large urban areas to develop
their own model or calibrate a national model.

What are Neural Networks?

Artificial neural networks (ANN), synonymous with neural networks, represent a form of computer intelligence
and operate similarly to the human brain, but on a very reduced scale. Attificial neural networks are being used
today to predict results by leaming from existing input and resulting output data in science, engineering,
medicine, banking, management, marketing, manufacturing, and sports wagering.
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To develop or “train” the model, the data set is usually divided into two groups—one group for training the
network and another group for testing how well the network has learned. A third independent data set is often
reserved for validation. Each training set of data is presented to the network. If the output of the network differs
from the correct output, the weights of individual network nodes are changed. Training a neural network
requires many cycles until the cumulative errors of all training sets are below an acceptable level, as pre-defined
by the neural network builder. The lower this number the better the network is able to duplicate the associations
between inputs and outputs in the training data. It is expected that once the network is able to duplicate the
associations between inputs and outputs in the training data, it will be able to produce correct outputs for input
data not specifically included previously as part of the training data. The training set of data uses an
independent test data set against which to test predictions on a regular basis. Training is halted when the test
performance begins to degrade. Otherwise, the model may overfit the data. Overfitting the training data occurs
when the neural network produces a nonlinear model that fits the training data perfectly, but fits the test data

very poorly.

connection
weights artificial
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Figure 1 - Typical Artificial Neuron

Training a network using back propagation (the method used in this project) consists of finding the correct
number of computational units in the network with the correct numerical values of the weights that connect
these units so that the associations between input and output in an existing data set can be duplicated by the
network. Since each neuron implements a non-linear mapping between its inputs and output neural networks
are capable of learning non-linear relationships that may exist in the data. This makes neural networks
adaptable and especially useful in environments where the relationships between inputs and outputs change

over time.

Comparison of Neural Networks to Other Modeling Techniques

Neural networks deal with a broad range of problems. Artificial neural networks are known to be good at
classification, evaluation, optimization, decision-making, pattern recognition, behavior trend prediction, image
analysis, filtering, and modeling control systems.

There are some significant differences between expert systems and neural networks. Expert systems require
that the relationships between the input data and the conclusions to be derived from that data be established
before the expert system is built. The neural network needs the data from which it can uncover the
relationships, while the expert system needs the expert who has already leammed those relationships. Another
important difference can be found in the encoding of the data. Expert systems encode their knowledge in terms
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of rules, object descriptions, and procedures. After training, neural networks encode their knowledge of
relationships in terms of weight values and in the interconnection between the neurons.

Updating the knowledge in the system is another area where neural networks and expert systems differ. If the
problem domain changes and new knowledge is required, this knowledge must be obtained from the human
expert and carefully crafted into the already-existing software knowledge structures of the expert system. A
neural network would need input that reflects the changes in the problem domain with the corresponding
conclusions that can be drawn from the data in order to retrain itself.

There are other machine leaming techniques in addition to neural networks and expert systems. Neural
networks form a category of leaming techniques called “connectionist.” This term emphasizes the dependency
of neural networks on the connectivity of a large number of computational units. Other machine leaming
techniques rely on the manipulation of symbols used to create rules similar to the “IF-THEN" rules used widely
in expert systems and are grouped under the category of “symbolic” leaming techniques. One of the main
differences between neural networks and these other symbolic leaming techniques is in the form of the
knowledge that they learn from the data presented to them.

Another important difference is in the range of problem domains that they can effectively deal with. Symbolic
leaming methods dea! mostly with classification problems. The assignment of a class label to an object or
situation based on the specific values of a set of parameters. The neural network models can learn not only to
classify data into different categories but to predict the numerical value of outputs (such as level-of-service
classification based on volume to capacity ratios or average travel speeds), learn to interpret a visual image, etc.

Probably the most important similarity between neural networks and symbolic leaming methods is that they both
require a set of representative data from the problem domain in order to leam the relationships that exist
between inputs and outputs. There is a need for explicit knowledge of these relationships as long as training
and testing data exist.

There are also differences between neural networks and linear regression modeling. Linear regression
modeling uses a strictly linear combination of independent variables. Neural networks, on the other hand,
provide weights that represent non-linear functions of the input variables. For example, the ANN models are
trained to predict deterioration based on various samples of pavement condition data (inputs) that correspond to
pavement roughness coefficients (outputs). In another example, Coy and others' showed that neural networks
outperformed linear regression models, using both linear and non-linear functions of the independent variables
in predicting returns for Initial Public Offerings.

ALTERNATIVE MODELING PROCEDURES

To provide an indication of the relative ability of the neural networks to predict changes in AVR, and to show the
reduction in data needed to conduct this analysis, three methods of altemative modeling were developed. The
first was a standard linear regression analysis. This was used to compare nonlinear capabilities of the neural
network with linear predictions of linear regression. The second method was a linear discriminant analysis,
which was used to show the relative ability of the neural network to classify observations into ranges correctly.
The SCAQMD data was converted into inputs to the FHWA TDM Model to compare the neural network with this
commonly-used analytical tool for predicting results of trip reduction strategies.

A validation data set was created to test each model's effectiveness in predicting results. Random sampling
created the validation data set from the full set of SCAQMD data. After data cleaning had been completed, 432
total observations remained for validation purposes. A total of 9,096 observations were used for training and
testing the model. For comparison to regression and discriminant models, testing using virtually any size data
set would have been possible. However, because of the extremely labor-intensive process of developing
FHWA TDM Model estimates from the SCAQMD data (see below), the size of the initial validation data set was
limited to the 432 observations.

1S. Coyetal. “Using Neural Networks to Predict the Degree of Underpricing of an Initial Public Offering,” in Proceedings of 3rd International
Conference on All Applications on Wall Street, New York City: June 6-9, 1995, 223-231.
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Regression Analysis »

An independent model was first created by means of factor analysis and stepwise regression to provide a
baseline of comparison of the ability of the neural network model to predict changes in AVR correctly. Initial
regressions suffered from multicollinearity within the data. Since many independent variables were
intercorrelated, a possibility exists that the coefficients resulting from model runs would not fully reflect the
effects of each of the independent variables. The initial approach to eliminating the effects of the
multicollinearity was to run a factor analysis.

Generally, factor analysis is used as a data reduction technique. The analytical procedure involves creating
uncorrelated (orthogonal) combinations of the initial dependent variables. In common practice, the purpose of
the analysis is to reduce a mass of variables to a reasonable number of elements (for example, 10) that the
analyst can understand and explain. The stepwise regression was set to accept variables that significantly
improved the mode! at an 85 percent confidence level. When the analysis had been completed, the factors
were then reconverted into the original component independent variables. The conversion was made by
multiplying the coefficients assigned by the regression mode! to the factors by the matrix of the factor loadings of
the original variables. The resulting equations predicted the change in AVR. Linear and factor analyses were
built using Statistical Analysis System (SAS).

An alternative approach to reducing multicollinearity is to examine intercorrelations between the variables and fo
eliminate variables until no highly intercorrelated combinations remain. Therefore, a correlation matrix of the
variables was prepared, and policy-oriented variables with correlations more than 0.20 were eliminated from
further estimations. This process also combined incentives into “incentive groups” as described earlier. Other
variables (such as site descriptors, percentages of employees using modes or in various jobs, etc.) remained in
the model.

The variable set was reduced to a total of 77 “reasonably uncorrelated” variables from the original set through
examination of the correlation matrix. These variables were then used to produce both new neural network
models and revised regression and discriminant (see below) models. Stepwise procedures were used to build
both the regression and discriminant models, and the neural net variable selection procedures were used for
creating the neural net input set.

Discriminant Analysis

Comparing the neural network model's performance against a categorical prediction modeling procedure was
logical because CUTR already determined that models would be evaluated based on their ability to classify
observations into categories. The usual choice in transportation demand problems is fo conduct a logit analysis.
However, discriminant procedures, while methodologically less rigorous, provide the same types of resuits and
are much simpler to develop. The approach to the discriminant analysis model-building was similar to the
approach to the building of the regression model and used the same version of SAS, a statistical software

package.

Typically, the evaluation of a discriminant model is done by determining the percentage of observations
correctly classified in an independent test data set In practice, the results from test data sets tend closely to
mirror the results from the data sets used to build the models. The size of the initial test data set (432
observations) was such that evaluation of classification patterns for anything but the overall sample was
impractical. Results were reported for both the test data set and for the base (or training) data set. These results
were reported because it is important to know not only overall how well the model classifies results, but also
whether there were any patterns of misclassification.

FHWA TDM Model

Testing the neural network modef's performance against an existing trip reduction analytical tool was a sensible
next step. The FHWA TDM Model was selected because it was the most commonly used tool available. The
FHWA TDM Model uses a logit pivot point procedure to estimate how changes in travel time or cost would affect
mode shares. This model handles strategies other than changes in time or cost as a system of look-up factors.
The effectiveness of employer-based strategies is function of the TDM strategies used and employer
participation in carrying out those strategies.
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The FHWA TDM Model requires that data be entered into the model that define the starting conditions, including
employer/site data on trips and modal split from site surveys. The primary inputs are either trip tables from the
regional model or the mode split of an area or employer. The next step gives the user flexibility to relate special
conditions that may not properly reflect the starting data inputs. At this point, the user specifies the TDM
strategies to be applied. The Model allows testing of any individual strategy, or as many as the user desires in
combination. The FHWA TDM Model separates TDM strategies into two groups: Area-wide Strategies or
Employer-Based Strategies. Area-wide strategies are incentives provided by the public sector (such as high
occupancy vehicle facility). Employer-based strategies are TDM strategies funded and/or carried out by
individual businesses (such as transit-pass subsidies).

The approach to evaluating the FHWA TDM Model was to use a sample randomly extracted from the SCAQMD
data set to compare models. The SCAQMD data corresponding to the descriptions for each level had to be
converted into a form acceptable for input into the TDM Model to compare the neural net model with the FHWA
TDM Model. Many of the SCAQMD data fields could be easily converted into inputs for the FHWA TDM Model.
A notable exception was how much time spent on the trip reduction program by the employee transportation
coordinator. Generally, SCAQMD data had to be aggregated for inclusion into the FHWA TDM Model. For the
Employer Support Programs input screen, data for input were extracted for the carpool program, including;
regional-based matching, employer-based matching, preferential parking for carpools, flextime for ridersharers
and guaranteed ride home. After entering the levels of effort, employer’s incentive programs were keyed in.

There are some caveats associated with this comparison of FHWA TDM Model’'s performance. The data needs
of the FHWA TDM Mode! and the models built for this project are very different. First, COMSIS did not build the
FHWA TDM Model on the type of data used to build the neural net model. Second, the data available to the
FHWA TDM Model developers was very limited at the time. The neural network model has the benefit of more
data.

MODEL - BUILDING ACTIVITIES

Overview of Neural Network Model Building

In the first phase of model-building, initial efforts were based on drawing comparisons between the results of the
models built from the SCAQMD database and the FHWA TDM Model. Because the data conversion from
SCAQMD format to TDM Model format is labor-intensive, analysis was limited to comparing results on 432
records. Phase Il involved creating a new, larger validation set that would permit more detailed comparisons
and rebuilding the models. Phase Il involved a shift from the original factor-analytic approach to regression
(and discriminant) models to one where correlated variables were removed to allow for some level of data
reduction in the linear models. This also allowed for additional confidence that multicollinearity was not affecting
the neural network models. The fourth phase varied a range of neural network settings in an attempt to best
understand how the neural networks could work with the data available.

The type of neural network selected to predict the change in AVR was a multi-ayer, fully-connected, feed
forward type. Neural network mode! builders have applied these types of networks successfully for prediction
and classification problems in a variety of fields.

The neural network development package selected for this project is named PREDICT and is sold by
NeuralWare, Inc. CUTR used Microsoft's Excel to interface with the training data and show results after training
the network. Microsoft's database program, Access, also was used to manipulate the data before training the
network. PREDICT simplifies the different aspects of the neural network training process by allowing the
network builder to select many parameters that can affect the performance of the final model.

Data Used for Model Building

The data selected for building a neural network is usually divided in three sets — the training set, test set, and
validation set. Training is a process that uses one of several learning techniques to modify the weights in an
orderly fashion. The training set of data is a list paired input and desired output patterns used in supervised
training. The training set is used to change the weights and the number of units in the network. All of the
information the network needs to learn must be in the training set. The inputs can be numbers or symbols.
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PREDICT uses 70 percent of the data as the training set and 30 percent as the test set, although the network
builder can change these values to any other proportions.

The test set is an extract of the training set used while building the model to prevent overfitting. Overfitting the
training data can occur when the neural network produces a nonlinear model that fits the training data perfectly,
but fits the test data very poorly. The goal is to fit the training and test data with about the same overall error.
Therefore, the test data set is used to analyze the mode's ability to interpolate the train/test data regularly during
training. Training is halted when the test performance starts to degrade.

The validation set is independent of the train/test set and typifies the data that will be seen by the model in the
outside world. The neural network software does not use the validation set in building the model.

The SCAQMD database includes 62 different incentives that employers can select to increase AVR in their
work sites. One neural network was built where all 62 incentives were grouped into one category. Subsequent
networks were built using more limited incentive groups. As mentioned earlier, 8,096 were used to build the
networks and 432 to validate the networks after they were built. Initially, the network parameter settings were
tested to find optimal configuration for network performance.

Criteria for Evaluating Model Performance

The SCAQMD data contained many observations (more than 500) where employers had either a very large
increase or very large decrease in AVR. Nevertheless, the vast majority (almost 90 percent) of the data falls
near -0.10 to +0.20 change in AVR. Models built on prediction error minimization criteria may force their
predictions to the middle of the range (that is, predict little or no change in AVR). This approach causes the
models to have much more accuracy in the middle ranges of AVR change than with the outliers (that is, large
changes in AVR). Preferably, a model should interpolate well over the entire range of the input values. The
neural network software manual contains an example of exactly this type of situation:

“Is the linear regression line shown in Figure [2] a good solution to this problem? The answer depends on how
the model is used. The objective of linear regression is to minimize the sum squared ervor of the difference
between the estimated and actual outputs. If that is what is required by system objectives, this mode! does that.
However, if the purpose of the model is to interpolate well over the entire range of the input space, this model
fails.” (Neuralware documentation, 1995)%.

To get a more comprehensive evaluation of the network's effectiveness, it was determined that an examination
of the network's ability to comrectly classify each prediction into a range (or a category) of AVR change would be
conducted. The ranges were developed by partitioning the data into equal sized groups based on the number
of plans that fell within each range (that is, the value of the dependent variable). (See Table 1.)

In effect, the evaluation centers on the model's ability to predict whether a given combination of site
characteristics and incentives will produce a large increase in AVR, a small increase, virtually no increase, a
small decrease, or a large decrease in AVR. Models were evaluated both through comparison of R (linear
correlation) values of predicted and actual change in AVR and by their ability to classify an observation into the
correct group or into an adjacent group. This was termed “acceptable” (as opposed to “correct”) classification.

(See Tables 2 & 3.)

1 Neuralware documentation “NeuraWorks Predict Manual” Introduction 1-8, Building a Neurat Net Model. NeuralWare, Inc., 1995
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Figure 2 — Scatter plot and linear regression line for data with a single input (x —axis) and single output
(y-axis)

Results of Alternative Modeling Procedures
After the neural network was built with only SCAQMD data, its performance was compared with the FHWA
TDM Model and the altemnative modeling procedures.

While it may appear that the alternative models are in some respects outperforming the neural networks, it
should be kept in mind that the neural network built at this stage used fewer variables. This feature would
contribute to one of the project’s primary objectives-reducing the costs of developing and implementing plans to
reduce vehicle trips by streamlining the plan development and review process. The neural network model
contains only 17 input variables, compared with the full range of data (178 variables) used by the discriminant

- and regression approaches.

For the neural network, the models were developed using the default variable selection setting and a root mean
power error evaluation function.

This analysis showed that the linear approaches clearly outperformed the FHWA TDM Model. Also, these
results provide an initial baseline against which to compare the neural network models to be developed.

Tables 4 & 5 compare the results of the models using full data and a factor-analysis approach to models using
an approach containing only uncorrelated variables in predicting into acceptable ranges.

Clearly, the factor approach and the use of potentially correlated variables had not significantly improved the
performance of the regression or discriminant models. The neural network performed consistently with
performance in the prior phase where variable selection had been applied.

The discriminant procedure could produce more accurate predictions for observations with negative changes in
AVR (classification levels 1 and 2) and for those with the largest positive increases (classification level 7). While
the discriminant analysis actually did a better job of classification, it is incapable of producing the types of results
required by the likely users of this product. Users are most likely to need an exact (even if not necessarily 100
percent reliable) estimate of trip reductions that cannot be achieved by a classification approach.

The neural network performed better in the middle ranges. Overall, classification rates within the validation set
remained close enough for their differences to be of questionable significance. However, it began to appear as
if the linear procedures were possibly outperforming the neural networks.
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Table 1

AVR Change Rarige Categories for Model Evaluation

AVR change category  Change in AVR category range

Acceptable range for model evaluation

Large decrease -0.08 or less

Moderate decrease -0.03t0-0.079

Small decrease 0t0-0.029
Neutral 0to 0.029
Small increase 0.03 10 0.059
Moderate increase 0.06 to 0.119
Large increase 0.12 or more

Cl. 1: Any change less than -0.03
Cl. 2: Any decrease

Cl. 3: Any change less than +0.03
Cl. 4:>-0.03, <0.06

Cl. 5:>0.00, <0.12

Cl. 6: Any change more than +0.03

Cl. 7: Any change more than +0.06

Table 2

Acceptable Range Classification by Model for TDM Validation Data Set (N=432)

MODEL Percent
Neural network 531
Discriminant 546
Regression 491
FHWA TDM Model 396

Table 3

Linear correlation of prediction and actual output

TDM Model Validation Set (N=432)

MODEL R
Neural network 0.441
Regression 0.541
FHWA TDM Model 0.032
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This led to Phase 1V, where it was decided to examine the impacts of changing parameters on the neural
network software, hoping to improve network performance. The fourth phase was an attempt to vary a range of
neural network settings in attempting best to understand how the neural networks could work with the data
available. Many settings (“data noise level”, the appropriate variable selection level, comprehensiveness of
network searches and tolerances) do not have clearly evident optimal settings.

The appropriateness of the settings is based on the character of the data, and to some extent can best be
evaluated only through trial and error. The fourth phase reports the results of these attempts and the conclusion
drawn on the most appropriate model built.

Final Model Building Resuits Using Only the SCAQMD Data

Having determined all of the parameters that would be used for the model, the final step was to rebuild the
model using the parameters outlined above to conduct a final test against the TDM model's performance (using
all data except the 432 observations to train the network).

The new settings were applied to the 9,096 observations that were not part of the TDM model data set, and that
model was tested against the 432 observations that were the TDM model data set. The linear regression and
discriminant models were also rerun, using the uncorrelated data set developed earlier. The results are outlined
in the tables below: :

Again, the models built were clearly superior to the alterative of using the FHWA TDM Model. As to correct
classification, the neural network was superior to the regression procedure in classifying results into the proper
ranges to regression, aithough the correlation of predicted to actual results was lower. For reasons described
earlier, the correlation values are not necessarily the most appropriate way to evaluate the model's
performance.

Table 4

Acceptable Classification by Models Using Full Data Set

Model R Overall acceptable CL.1 | ClL2 CL3 ClL4 | ClL5 | ClLe | ClL.7
classification

Neural 0.33 52% 39% | 24% | 40% | 76% | 89% | 65% | 23%

Regression 0.52 56% 63% | 50% 54% 71% | 74% | 52% | 27%

Discriminant | N/A 53% 53% | 55% | 53% | 59% | 61% | 56% | 40%

This approach had the anticipated impact of improving predictive performance among the outlying categories of
AVR change, but reduced the network's ability to classify observations in the middle of the range. Overall
performance was consistent with networks built earlier.

Given the neural network's ability to predict change at about the same level as a linear regression, and its ability
to do so more efficiently (using 18-20 variables as inputs compared with 33 for the linear regression), it was
determined that the best performing neural network should be used. This was the moderately noisy model,
which had a R-value of 0.36 and used 17 variables to make its predictions.
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Table 5

Acceptable Classification by Models Using Uncorrelated Data Set

Model Inputs R - Overall CL1 ] CL.2 | ClL.3 | ClLa| ClL5 | CL6 | CL7
acceptable
classification
Neural 19 .33 53% 4% | 31% | 46% | 78% | 86% | 60% | 23%
Regress. 33 49 55% 47% | 32% | 43% | 73% | 86% | 65% | 33%
Discrim. 21 na 56% 54% | 46% | 65% | 74% | 68% | 46% | 35%
Table 6

Acceptable Range Correct Classification by Final Models for TDM Model Validation Data Set (N=432)

MODEL Inputs Percent

Neural network 16 54.2

Discriminant 23 58.1

Regression 31 50.2

FHWA TDM Model N/A 396
Table 7

Linear Correlation of Prediction and Actual Output TDM Model Validation Data Set (N=432)

MODEL R

Neural network 0.312
Regression 0.544
FHWA TDM Model 0.032

The neural network was, therefore, deemed to be the superior model built, although admittedly it was somewhat
less able to outperform the linear procedures than initially anticipated. None of the models had a significant
change in the number of variables they used to make their predictions, although the identity of those variables
did change some from model to model. As a final step in mode! building, a neural network-based classification
approach was tested. The best result obtained was with a network with only superficial data transformation and
no hidden units. The superficial data transformation creates just one transform (for example the hyperbolic
tangent function) per input field and is used when there is a large number of input variables.

11
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FIELD TESTING ANN MODEL

Approach to Field Testing the Model

The approach to evaluating the transferability of the ANN model was to use the Los Angeles-based ANN model
to predict change in AVR using data from another city (that is, Tucson and Phoenix). However, the Los
Angeles-based ANN model did not perform as well with the data from other cities as it did with data used from
Los Angeles as a validation set (that is, Los Angeles data that wasn’t used to build the Los Angeles-based ANN
model). (See technical memorandum #3 for a description of the model building process.)

The project team hypothesized that other variables not included in the data set could explain the differences
between the urban areas. For example, Los Angeles’ population density is about 5 times higher than Phoenix
and Tucson. Higher densities can provide for transit service with lower headways thus offering more
opportunities for commuters. The project team added the MSA population density factor as an additional
variable to the data set. _

With this additional data, another round of model building began. Various combinations of the models were built
with data from two of the cities and validated with the data from the remaining city. The final data set consisted
of nearly 7,000 records with 48 fields from which to select variables. The data included 29 incentive fields. The
data contained 5,001 employer plans from Los Angeles and 1,103 employer plans from Tucson that were used
to build the new ANN model. Another 878 employer plans from Phoenix were used to validate the model.

The final ANN mode! (Los Angeles-Tucson) was actually built as three sequential ANN models. All the
variables were made available to build the first model to predict change in AVR. The second model was built to
explain the residual value (that is, actual AVR change less predicted AVR from the first model) using only the
combined incentive groups (for example, any guaranteed ride home, financial incentives, etc.). The third model
uses the individual incentives (for example, higher cost of driving alone) to explain the residual from the second
model. The final predicted value of AVR change is the sum of these three models.

The Los Angeles-Tucson based model performed the best in predicting change in AVR (see Table 8). The
results of this task show that, based on the data from these three cities, the ANN model is transferable. More
observations were acceptably classified in the validation sets than in the ANN modeling data set. Only at the
large increase in AVR range did the validation data under perform the base model. This was partlally due to the
few employer records from Phoenix in that category.

Though there were nearly 7,000 trip reduction plans used to build and validate the model, there are two points
that should be made: (1) some incentives are offered by relatively few employers (see Table 9) and (2) many
combinations of the plans illustrate the challenge in finding the “best’ plan. Only “marketing incentives” was
included by more than half of the filed plans. The plans also represent 1,163 different combinations of
incentives when marketing activities were considered to be only present or absent. If the number of marketing
activities is considered then there were about 1,500 combinations of incentives. This situation may have had a
tendency to reduce the ability of the ANN model to detect any significant change based on the presence or
absence of any given incentive.

Model Incentives

Picking the right input variables is critical to model development. A good subset of variables can substantially
improve the performance of the neural network model. The challenge is finding ways to pick good subsets of
variables to predict the change in average vehicle ridership (AVRE...

The neural network software uses a genetic algorithm that selects the variables. This algorithm is looking for
sets of inputs (for example, site characteristics and incentives) that act in a synergistic manner as good
predictors of the output (that is, change in AVR) rather predicting the impact of every potential variable. The
algorithm begins with a population of random variable sets of limited size. As the algorithm progresses, the size
of these variable sets will tend to increase if the problem requires larger data sets.

12
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The idea of discarding potentially substantial number of variables is sometimes hard to accept. However, there
are plausible reasons for their exclusion by the algorithm.

It might seem unrealistic that only five TDM incentives can impact employee choice of how to commute. Where
are the marketing programs? What about having an Employee Transportation Coordinator in place? For
several reasons, some incentives that might seem effective, or even absolutely necessary, may not appear as
options in the software.

Some incentives, particularly marketing materials and having Employee Transportation Coordinators (ETCs) in
place, were common to virtually all companies in the database. This situation made it impossible for any
modeling procedure to determine where marketing worked and where it did not, and, therefore, seemed to have
an unpredictable impact on AVR. ETCs and focused marketing materials are key elements of any TDM
program. This fact is one reason why ETCs and marketing materials were common to all of the employer plan
submissions that were analyzed. It is essential that marketing materials and ETCs be put in place to support
ongoing TDM programs, to improve awareness and understanding of any of the other incentives (from the list of
five that are included inthe model) that might be provided in an empioyer's trip reduction program.

Some incentives (such as facility improvements) may have been offered by so few companies that it was
impossible to accurately determine their impact. Rather than provide an extremely unreliable estimate of the
impact of that incentive, more data needs to collected and analyzed before providing an estimate.

The amount of financial subsidy provided is another area where the nature of the data we were using to build
our model hampered our efforts to provide an estimate. The extent of financial incentives offered by companies
was effectively constrained by the tax code (that is, employers were less likely to offer more than the nontaxable
amount allowed by the Intemal Revenue Service. At the time of the plan submittal, transit subsidies were
limited to $15 to $21 per month for all plans prior to 1993 and any vanpool subsidy was subject to tax. Hence,
the model only specifies a generic "subsidy," and gives no estimate of the impact of increasing the amount of
the incentive. It is assumed that when variable indicating a financial subsidy is offered that it is at least $15 to
$20 per month per employee using the incentive. Subsidies offered for multiple modes (for example; transit,
vanpool, etc.) could be expected to make a larger impact than the same subsidy for a single mode.

Table 8

Final Model Performance vs. Validation Data

Model Inputs Overall acceptable | CL.1 [ CL.2 | Cl.3 [ ClL.4 | ClL.5 [ CL6 | CIl.7
classification
Train and 13 49% 31% | 15% | 27% | 67% | 91% | 78% | 33%
Test Data
Set (LA —
Tucson)
Validation 13 58% 43% | 25% | 63% | 95% | 87% | 25% | 2%
Data Set
(Phoenix)

Table 9 shows the number of plans with a given incentive from the data used to build the model and validate the
model. Data from Los Angeles and Tucson were used to build the model. Data from Phoenix was used to
validate the model. Those variables included in the final model are shown in the last column as Included and
those that were available for selection but not included are shown with Excluded.

Table 10 summarizes the common data fields available from each city. The data was reformatted for the three
cities (for example, impedance categories were reduced from 10 ranges to 5 ranges to correspond to the
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categories used in Phoenix and Tucson). The last column in the table indicates which-fields were used to build
the ANN model based on the availability of the data from each city and the ability to combine data fields (for
example, guaranteed ride home programs using taxis and guaranteed ride home programs using fleet vehicles).
For a complete description of the data elements available in the LA data set, please refer to technical
memorandum #3.

TECHNOLOGY TRANSFER

Software '
Trip reduction software (CUTR AVR) was developed as the result of this project. Using the software:

= Employers and developers can reduce the costs for developing and implementing plans to reduce vehicle
trips by streamlining the plan development and review process.

= Public agencies could improve efficiency by reducing staff time in the review of employer/developer trip
reduction plans.

= Analysts in public agencies can develop consistent interpretations of trip reduction plans.

» Though the model was never intended to be an integral part of the transportation planning modeling
process (for example, TRANPLAN), it can be used to evaluate impacts of TDM on vehicle trips at the large
employer level and sub-area basis.

The delivery of TDM programs and services are typically aimed at the large employer. This ANN model is
based on the impacts of large employers (more than 100 employees).

The impact of a regional TDM program is largely a function of its success in encouraging employers to offer
incentives and promote alternatives to the single occupant vehicle. The software requires information about the
current mode split. (see Figure 11.)
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Table 9

Frequency of Incentives

No. of Plans with No. of Plans without Final Model

Incentive Incentive Incentive

Rideshare matching 3,644 3,336 included
Guaranteed ride home 3,486 3,494 Included
Alternative mode subsidies 3,227 3,744 Included
Compressed work week 1,769 5,211 Included
High parking costs for SOV 76 6,904 Included
Marketing 4,459 2,521 Excluded
Preferential parking 2,721 4,259 Excluded
Other services 2,655 4,325 Excluded
Bike racks and lockers 2,620 4,360 Excluded
Flexible work arrangements 1,914 5,066 Excluded
Showers & clothing lockers 1,654 5,426 Excluded
Telecommuting 1,058 5,922 Excluded
Cafeteria, ATMs, post office, etc. 1,019 5,961 Excluded
Other on-site services 920 6,060 Excluded
Free meals 771 6,209 Excluded
Other compressed work week 675 6,305 Excluded
Child care service 597 6,383 Excluded
Walk to work subsidies 454 6,526 Excluded
Catalog points 354 6,626 Excluded
Service (unspecified) 320 6,660 Excluded
Gift certificates 304 6,676 Excluded
Auto services 221 6,759 Excluded
Additional time off with pay 153 6,827 Excluded
Other non-financial incentives 127 6,853 Excluded
Other facility improvements 117 6,863 Excluded
Other parking strategies 116 6,864 Excluded
Company vanpools 98 6,882 Excluded
Facility improvements 33 6,947 Excluded
Prize drawings 0 6,980 Excluded
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Table 10

Common Data Eilements

Los Data Used to

DATA ELEMENT Phoenix Tucson Angeles Build ANN Model
Plan Sequence Indicator na Excluded Excluded

Drive alone percentage Excluded Excluded Excluded Included
Motorcycle percentage Excluded na Excluded Excluded
2-Person carpool pct. Excluded Excluded Excluded Excluded
3-Person carpool pct. Excluded Excluded Excluded Included
4-Person carpool pct. Excluded Excluded Excluded Excluded
5-Person carpool pct. Excluded Excluded Excluded Excluded
6+ Person carpool pct. na na Excluded Excluded
Vanpool percentage Excluded Excluded Excluded Excluded
Buspool percentage na na Excluded

Transit Excluded Excluded Excluded Included
Walk Excluded Excluded Excluded Excluded
Bicycle Excluded Excluded Excluded Included
Telecommute na na Excluded

Current AVR Excluded Excluded Excluded Included
Target AVR na na Excluded

Standard Industrial Classification (SIC) Excluded Excluded Excluded

No. of employees on site Exciuded Excluded Excluded Included
No. of employees arriving between 6 and 10 am. Excluded Excluded Excluded Excluded
Percent of administrative employees na na Excluded

Percent of professional employees na na Excluded

Percent of technical employees Excluded Excluded Excluded

Percent of clerical employees na na Excluded

Percent of skilled workers na na Excluded

Percent of service workers na na Excluded

Percent of sales employees na na Excluded

Percent of semi-skilled employees na na Excluded

Percent of job — other na na Excluded

Percent of job — other 1 na na Excluded

Percent of job — other 2 na na Excluded

Percent of job — other 3 na na Excluded

Percent of job — other 4 na na Excluded

Presence of employee transportation coordinator Excluded Excluded Excluded

Number of bus routes Excluded Excluded Excluded

Availability of bike paths na na Excluded

Pct of employees w/5 min commute na na Excluded Excluded
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Los Data Used to

DATA ELEMENT Phoenix Tucson Angeles Build ANN Model
Pct of employees w/5 to 10 min commute na na Excluded Excluded
Pct of employees w/10 to15 min. commute Excluded Excluded Excluded Excluded
Pct of employees w/15 to 20 min. commute na na Excluded Excluded
Pct of employees w/20 to 30 min. commute na na Exciuded Excluded
Pct of employees w/30 to 40 min. commute Excluded Excluded Excluded Excluded
Pct of employees w/40 to 60 min. commute na na Excluded Included
Pct of employees w/60 to 90 min. commute na na Excluded Included
Pct of employees w/90 to 120 min. commute na na Excluded Included
Pct of employees w/120+ min. commute na na Excluded Included
Facility Improvements (unknown) Excluded Excluded Excluded Excluded
Other facility improvements na na Excluded Excluded
Preferential parking na na Excluded Excluded
Bike racks & lockers na na Excluded Excluded
Showers & clothing lockers na na Excluded Excluded
Rideshare match — employer based na na Excluded

Carpool subsidies na na Excluded

Introductory transit passes or subsidies Excluded na Excluded

Other subsidies na na Excluded

Walk to work subsidies Excluded na Excluded Excluded
Auto services (Fuel, Oil, Tune-up) Excluded na Excluded Excluded
Gift certificates Excluded na Excluded Excluded
Free meals Excluded na Excluded Excluded
Other non-financial incentives na na Excluded Excluded
Catalog points Excluded Excluded Excluded Excluded
Additional time off with pay Excluded Excluded Excluded Excluded
Higher parking costs for SOV Excluded Excluded Excluded Included
Other parking strategies na Excluded Excluded Excluded
Other compressed work week Excluded Excluded Excluded Excluded
Other services Excluded Excluded Excluded Excluded
Prize drawings na Excluded Excluded Excluded
Service (unspecified) Excluded Excluded Excluded Excluded
Company owned/leased vanpools Excluded Excluded Excluded Exciuded
Child care service na Excluded Excluded Excluded
Other on-site services Excluded Excluded Exciuded Excluded
Cafeteria, ATMs, Postal, etc. Excluded Excluded Excluded Excluded
Unspecified (Other) na Excluded Excluded

Any type of Guaranteed Ride Home Excluded Excluded Excluded Included
Any type of Alternative Work Hours Program Excluded Excluded Excluded Excluded
Number of Marketing Activities Excluded Excluded Excluded Excluded
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Los : Data Used to
DATA ELEMENT Phoenix Tucson Angeles Build ANN Model
In-house or regional ridematching system Excluded Excluded Excluded Included
Any type of Telecommuting Program Excluded Excluded Excluded Excluded
Any type of Compressed Work Week program Excluded Excluded Excluded Included
Any type of Financial Incentive/Disincentive Excluded Excluded Excluded Included
Percentage of parking reserved for pools na na Excluded '

Included = included in the final model. Excluded = excluded in the final model. Impedance values are grouped
as a single variable representing the percent of employees commuting over 40 minutes one-way to work.

One of the features contained in the software is the ability to evaluate the impact of muitiple employers (currently
up to 100) and combine the results of 2 or more employer profiles. This feature will help regional agencies such
as a transportation management organization evaluate the impact of the program in a particular area or multiple
employer sites.

At the same time, the data necessary to run the model in a sut-:rea mode is not readily available. As explained
in an earlier technical memorandum, Florida employers are not required to submit trip reduction plans so the
data on number of large employers with given strategies is currently unknown. However, as part of the mobility
management process, regional commuter assistance programs could be requested to collect the data on a
larger scale.

Sample Trip Reduction Plans

in addition, sample plans based on the mode! were developed to allow employers and others to estimate
changes in AVR based on different mixes of key variables (for example, employees at site, current mode spliit,
etc.). Partially as a result of meeting with the Arizona trip reduction program staff, CUTR focused efiorts on
designing the output for sample trip reduction plans as stand-alone guidance documents for employers and
developers with these pre-selected attributes.

Though the model was developed to predict the absolute change in AVR, the Arizona TDM staff recommended
that the resuilts also be presented in other formats. As the attached sheets show, CUTR added the Vehicle-
Employee Ratio (VER) that shows the number of vehicles per 100 employees. Also at the suggestion of the
Arizona TRP staff, CUTR estimated the number of vehicles reduced for that employer. For example, a reduction
in VER of 10 vehicles per 100 employees would result in 25 fewer vehicles or parking spaces for a company
with 250 employees.

Based on several input screens, including incentives offered by the employer, the software produces the
following output. The software estimates the change in AVR and the number of vehicle trips removed per 100
employees. The user can modify the conditions or develop another “profile” of strategies to test.

Additional Research

On a more basic leve!, the ANN model uses employer plans (for example, existence of subsidies) to assess
commuter behavior (change in mode used). Subsequent research into the impacts of employer-provided
incentives on individual commute decisions and/or the use of actual revealed preference data (not aggregated
to the employer level) could strengthen the model. Another FDOT Research Idea project, Market-Based
Approach to Trip Reduction, has collected data from Miami, Tampa, and Jacksonville commuters using a
fractional fractorial experimental design to assess commuter willingness to use alternative modes (drive alone,
carpool, vanpool and transit) given the presence of various incentives. This other research project should also
provide insight into the transferability of logit models between cities.
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Table 11

Employee Commute Information

wm. Employee Commute information Page 1

For an average day indicate the number of emplovees that conunute:
(from 6 am to 10 am)

by driving alone m in a huspool g
in 2 person carpools u by transit
in 3 person carpools by hicycle

by walking

in a vanpool

i

Do not commute hecause:

telecommute or ;
compressed work week f_* _______ B

Table 13 shows that the same change in AVR can measure different impacts on vehicle travel and parking
depending on the initial AVR. For example, an increase of AVR by 0.06 from 1.10 to 1.16 would convert to a
reduction in 5 vehicles per 100 people. However, the same increase in AVR from 1.50 to 1.56 would mean only
a reduction of 3 vehicles per 100 people. Therefore, the final stand-alone document of sample trip reduction

plans should reflect changes in AVR, VER for several different starting AVR levels (for example; 1.10, 1.50 and
1.90).
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Table 12

AVR Calculations

w AVR Calculations

AVR Calculation Results
" W 1077

Table 13

Changes in AVR vs. Vehicles Per Employee Ratio

CHANGE IN AVR
AVR VER -0.08 -0.03 0 0.03 0.06
1.10 N 98 93 9 88 86
1.50 67 70 68 67 65 64

Future research projects could seek to adapt the ANN trip reduction model to transportation planning process in
a similar manner to the FHWA TDM Model. The FHWA TDM Model, a pivot point logit model, modifies trip
tables based on assumptions of individual strategies including employer participation based on size of the
employer and regulatory environment. In the short term, the ANN model could use the output of the mode split
model to estimate current AVR. Assuming a mix of employer sizes and a proportional distribution of the
reduction among zones, the model can calculate the number of vehicle trips reduced at the zonal level.
Additional research could be undertaken to evaluate the impacts of these assumptions. Assessing other means
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of gathering data to take advantage of the model's sensitivity to variables such as the current AVR, the share of
employees with long distance commutes and employer size could include combining commercial databases
and geographic information systems.

The ANN model does have limitations. One of the limitations of the ANN model is the lack of information on
impacts of small employer programs. The data used to develop the ANN model is limited to large employment
sites due to the regulatory requirements in Los Angeles, Phoenix, and Tucson only applying to large employers.
Another limitation is the use of dummy variables rather than discrete values. For example, the impact of
financial incentives was based on whether incentives were offered, not the amount of the incentive due to
inconsistent reporting of the incentive (amount, number of employees, etc.). In general, the federal taxcode
effectively limited the tax-free amount of transit subsidies to $15 to $21 per month in the late 1980’s and early
1990s. In 1992, the tax code was changed to allow employers fo provide up to $60 per month tax-free to
employees for transit and vanpool subsidies.

CONCLUSIONS

Based on this project, the ANN model has proven to predict an acceptable range of changes in AVR and has
proven to be transferable to another site.

= The final products (software and sample plans) should be applicable to Florida.

= Furthermore, the ANN model outperformed other analysis tools and is easier to use as evaluated by TDM
professionals.

= Finally, the model provides a basis for helping transportation planners assess the impacts of employer-
based TDM strategies on vehicle trips.
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