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PREFACE

This technical report, revised in the summer of 1998, introduces the concept of adjoint
from its various applications in meteorology and describes the MM5 adjoint modeling
system. It is intended to provide scientific and technical documentation of the system for
users who will use such a system as one of their research tools. Comments and suggestions
for improvements or corrections are welcome and should be sent to the authors. Users who
want to know more about the overall MM5 adjoint modeling system should obtain a copy
of A User’s Guz'dé to the MM5 Adjoint Modeling System, by Zou, Huang and Xiao (1998).
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ABSTRACT

Adjoint models are increasingly applied to many problems in meteorology and
oceanography. The adjoint model of MMS5 is a tool which effectively computes the gradient
(or a Gateau-derivative) of any MM5 forecast aspect with respect to the model’s control
variables, which consist of model initial conditions, boundary conditions, and model pa-

rameters that define the physical and numerical conditions of the integration.

Different applications of adjoint models in meteorology are briefly reviewed and their
mathematical formulae are provided which illustrate how the adjoint model and/or tan-
gent linear model are used in each application. Then we describe the mathematical and
pumerical formulation used in developing the adjoint version of MM5. The possibility of
carrying out optimal control of lateral boundary condition in addition to the initial con-
dition, the restart of minimization procedure, the proper handling of disk space for large
problems, and the choice of different basic state update frequencies are provided. Finally,
problems that might arise in the practical coding of the adjoint of a numerical model are
summarized. A number of rules for the practical coding of tangent linear and adjoint mod-
els, along with various examples, are presented. The problems raised by the development

and maintenance of adjoint codes are also discussed.
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CHAPTER 1. INTRODUCTION

An ideal assimilation process must use all the available information i.e., the observa-
tions, the physical laws governing the flow, and the known statistical properties of the flow
to produce a complete and consistent description of the flow with its associated uncertainty.
Estimation theory provides a general conceptual framework and a number of algorithms
for solving this problem. However, estimation theory has been developed primarily for
engineering problems which are in general linear and of low dimension. Atmospheric data
assimilation problems are generally nonlinear and of large dimension. Computational ap-
proximations must, therefore, be developed to efficiently implement these algorithms for
atmospheric and oceanic problems. Indeed, a large amount of the work in data assimila-
tion has been devoted to the development of some cost effective simplifications to known
algorithms of estimation theory. An assimilation process involves various aspects of atmo-

spheric science, statistics, computer science, instrumental physics, and control theory.

Control theory has permitted probably the most significant progress accomplished
over last 10 years in data assimilation research. It offers a deterministic approach of the
estimation problem posed by data assimilation. In this approach, variational methods
are used to formulate the data assimilation problem as an optimization problem, which
can then be tackled using classical numerical methods, and is much easier to handle than
the stochastic calculus of the estimation theory. The introduction of the so-called adjomt
techniques, has dramatically reduced the computational expenses and has opened new
horizons for data assimilation and other research areas in meteorology and oceanography.
The adjoint techniques are the central topic of this report and will be extensively described.
Details of the development of the adjoint models, with specific emphasis on the MM5
adjoint model, will be provided. ‘

The documentation is divided into three parts. Part I provides a general description
of the adjoint technique and its various applications, Part II presents the MMS5 adjoint

model system, and Part IIT summarizes the practical adjoint coding experiences.






CHAPTER 2: A GENERAL DESCRIPTION OF ADJOINT TECHNIQUES
2.1 A simple statistical estimation problem

We introduce some of the basic probability concepts underlying the data assimilation

problem.

Let’s consider a simple estimation problem (Talagrand, 1992). Suppose a parameter
r has been measured at the same location and same time with two different methods.
We use y; and o (y2 and 02) to represent the measured value of z and its measurement
uncertainty of the first (second) measurement. For instance, we can assume that z is the
temperature of an object, y; is the value obtained with a certain measurement device of
accuracy o1 = 0.5° C, and y3 is the value measured with a different device of accuracy
o, = 1.0° C. From these two measurements, one wants to obtain an estimate of the actual

temperature with its associated error.

A naive idea would be to retain the first measurement which comes from a more
accurate device and neglect the second which is less accurate. This is not always true since
both measurements are realizations of a random process and, in some (unlikely) extreme
situations, measurement 2 (y2) can be closer to the true value than the measurement 1
(y1) is. It is better on average to use both observations to derive an estimate of x in order

to reduce the measurement uncertainty. This is the purpose of the estimation theory.

To present this solution mathematically, some basic probability concepts must be
introduced. Measurements y; and y2 can be seen as realizations of two independent random
variables! Y; and Ya (see Jazwinsky 1970, chapter 2 ). If we assume that measurements are
unbiaéed, i.e., when measurements are infinitely repeated they produce an average value

which equals to z, we can assign a particular form to these random variables:
Yi=z+E and i=2+E; (2.1)

where E is the so-called “observational” noise. Note in (2.1) z is considered as an unknown
but deterministic quantity. Notice that we didn’t consider natural variability of z in this

simple example, and assuming that we are concerned only with the measurement error of

1 In the following, upper case letters X, Y, E... will represent random variables from

which lower case letters z, y, €... will represent some realizations.
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z (for a more general formulation, see Section 2.2). Observations Y are, however, random

variables through the observational random noise process E.

With this formalism, observations y; and yo are particular realizations of the two

random variables Y; and Ys:
nm=z+¢€ and y2=c+¢€ ' (2.2)

where €; and e are realizations of the random variables E; and E», respectively.

A common way to deal with random processes is to examine their statistical moments
after application of the statistical mean operator E{}. The statistical mean can be seen as
an average of all possible states, (Jazwinsky, 1970). Since we assume that the instruments

are unbiased, the statistical means of F; and F; are null, i.e.,
E{E;}=0 and E{E3}=0 (2.3)

The second moments, also called dispersion or variance, of the random variables E; and

E, are directly related to uncertainty. More precisely we have:
E{E}} =0? and E{E%}=0} (2.4)

Also, we suppose that the instruments are completely independent, so that there is no

correlation between the observational noises:

E{E\E;} =0 (2.5)

The estimator X* is also a random variable and is sought as a linear combination of
the two measurements: _ _
X* =a1Y1 +a2Ys (26)

where the weights a; and a, are to be determined. We first want the estimator to be
unbiased, thus E{X*} = «. Since a; and a; are deterministic and using relation (2.1) and

(2.6), we can calculate the statistical mean of this estimator:
E{X"} = z = B{a,Y + azY2}
= alE{Yl} + agE{Yé} (27)

= ai1T + Q2%

4



Hence: |
a;+a=1 (2.8)

Among all the unbiased linear estimators which satisfy (2.8), we select the estimator which
minimizes the dispersion of the estimation around the true value. This dispersion can be

seen as the estimation error and is given by the variance of the estimator:
= E{(X* - E{X"})(X" - E{X"})} (2.9)

Using equations (2.5), (2.6) and the fact that E{X*} = z we get from (2.9):

o’ = B{(X* - E{X"}(X* - B{X"})}
= E{(a1Y; + a2Y2 — z)*}
= E{(a1(Y1 — z) + az(Y2 — ) + (a1 + a2 — 1)z)%} (2.10)
= E{(a1(Y1 — 2) + a2(Y2 — 2))°}
= a?af + a%ag
Using equations (2.8), we can easily find the minimum of the function 02(ay,az2). The

corresponding coefficients are:

a; = o and a; = o (2.11)
T o2 o2 27 0% + o2 '
which gives the following estimator:
' o2 o2
X*=—2=Y + 5+ Y 2.12
o2 + o2 1+ o2+02 (2.12)

The estimate z*, which is deterministic, is a realization of the random variable X* with '
this set of coefficients:
e 2 -+ ————2 2.13
z .
2 I 02 n 2 | 0.2 Y2 ( )

where y; and y, are the actual measured values.

One can see that, if, for instance, the first observation is very poorly known or even
absent (o7 — 0o ), then the estimate is equal to the second measurement z* = y2. On the
contrary, if this observation tends to be perfect (01 — 0), then the estimate is equal to

this value z* = y.



Using equations (2.9) and (2.10), we can calculate the variance of the estimator. This

variance represents the estimation error and is given by:

2,2
o= 172 (2.14)
07 + 05
An examination of the estimation error in equation (2.14) shows that 6> < of and

o2 < o2. Thus, the uncertainty is decreased in the combination of the two measurements.

In addition, equation (2.14) can be rewritten as:
1
—=—+3 (2.15)

which has a simple interpretation: if one calls “precision” the inverse of the dispersion or
variance, then the precision of the estimate is the sum of the precisions of the observations.
Because it minimizes the estimation error, the estimator presented above is usually called
the best linear unbiased estimator (BLUE).

The same estimate z* can be found through a different approach: an acceptable
estimate of the exact value must be close to the observations, at least within the accuracy
of the latter. For any value z, the distance between z and the observations can be measured

by the following quadratic quantity:

| Ja)= ;?1)2 4@ ;.;2)2 (2.16)

Because the function J penalizes the deviation between the truth and the observations, it
is usually called cost function. In such a formulation, observations are taken into account
with weights corresponding to their precision, so that a better estimation can be expected. -
The estimate z* is the value which minimizes the cost function. At its minimum z* the

derivative of J is null, so that:

aJ, . (z* — 31 (z* — y2)
2 Y=0=92"2"F1 4 o1 74 17
o2 (z*)=0 p + p (2.17)
hence: y , _
* 03 b
— —1 2.1
o o? + o2 n o+ 02+ 02 y2 (2.18)

which is similar to (2.13).



This variational formulation of the estimation problem is conceptually very simple
and requires fewer calculations than the full probabilistic solution. However, there is no
counterpart of equation (2.14): the variational formalism does not give any indications
of the error associated with the solution. Here, the adjoint equation does not appear

explicitly because our example is monodimensional.

2.2 Data assimilation

2.2.1 Optimal statistical estimation

Section 2.1 illustrated some of the basic concepts of the linear estimation theory
through a simple example and showed how observational information can be best pro-
cessed so as to reduce uncertainty in estimates. Note that, in the previous simple example,
the variable z was assumed to be unknown but certain. A more realistic approach would be
to consider X as a random variable. This is particularly necessarily in atmospheric studies
in which X represents some physical phenomenon that could never be perfectly known
and there will always be some unpredictable fluctuations that can only be represented by
stochastic variables. In addition, in practice, atmospheric studies are generally conducted
on a geographical domain and not at a single location and several parameters at different
locations are necessary to propérly describe the state of the studied physical field over
this domain. Consequently, the quantity to estimate X is a random vector of dimension
N and components (X?,..., X N). For instance, X can be thought of as the values of the
temperature at the points of a two- or a three-dimensional grid mesh. Similarly, observa-
tions are not restrained to a single location, but they usually come from an observational
network. Thus, the observation Y is also a vector of dimension M, not necessarily equal
to N, of components (Y2, ..., YM). In addition, these observations are rarely recorded on
a regular grid, so that, generally, the grid on which the observations are availaible differs
from the grid on which the estimated field is sought. In order to get a relationship between
the estimated field and the observations equivalent to (2.1), we have to interpolate X to
the observation locations. H is the operator performing this interpolation; then in the

vectorial case the relationship corresponding to equation (2.1) case is:
Y = HX+FE (2.19)

Where X, Y and E are random vectors, i.e vectors made of random variables. The obser-

vation operator H is an MxN matrix. Note that, in the formalism (2.19) the observations

7



could be different from the field to be estimated. In such a case H would also repre-
sent some physical transformations, for instance the calculation of satellite radiance from

pressure, temperature and humidity profiles.

As before the observational noise is assumed to have zero mean, i.e., its mean is a null

vector:
E{E} = [E{EY},..,E{EM}]F = [0,...,0)T (2.20)

‘where the superscript ( )T denotes the transposition operation. To describe the sec-
ond order statistical properties of the observational noise, we now introduce the so-called

variance-covariance matrix:
O = E{(E-E{E})(E-E{E})T} = E{EET} (2.21)
which can be explicitly written as
E{E'E'} .. E{EE} .. E{E'EM}

0 E{E'EY} .. E{E‘E‘} .. E{E‘EM} (2.22)

E{EMEY} .. E{EME‘} .. E{EMEM)}/
where O is an M x M matrix whose diagonal elements are the variances of observations

while the off-diagonal elements are the spatial covariances between various observations.

It shall also include “representative” error. This matrix is assumed to be known.

Because the dimension of observation vector (M) is usually not the same as the di-
mension of the vector to estimate (IN), observations are often insufficient to completely
determine all the components, i.e., M < N. In this case (as we normally face for the
atmospheric and oceanic data assimilation problems), the estimation problem cannot be
solved in the absence of other sources of information. In numerical prediction, additional
information is usually available in the form of a forecast that results from the previous
analysis cycle. This means that an estimate z3, which does not take into account the
new observations, is also available. The estimation problem will consist of updating this
old estimate with the new observational information. Here we touch on the very impor-
tant concepts of a priori and a posteriori information. These concepts are of fundamental
importance. We will, therefore, assume that, in addition to Y and O, a realization zy

of the N dimensional random vector estimator Xp is also available with its statistics B.

8



(The letter B stands for background information). Mathematically, this adds the following

relationships (the estimator is assumed to be unbiased for simplicity):
E{Xp}=E{X} =% and B={(Xs-X)Xg-X)T} (2.23)

These statistics characterize the a priori probability distribution of the background infor-
mation. One can now easily anticipate that the key information in this estimation problem
will be the a posteriori probability, i.e the probability distribution of the random variable

X after incorporation of the observation information Y.

In summary, the quantities assumed known in this estimation problem are the ob-
servation operator H, a realization y with its uncertainty matrix O of the observations
random vector Y and a prior estimate z; (a realization of the random variable Xp) with

its uncertainty matrix B.
In order to estimate X, we now proceed‘ as in section 2.1, and find an estimator X*
which is a linear function of the available information,

X* = A Xp+ AY (2.24)

Now, A; is a N x N matrix and Az is N x M matrix. Both A; and A, are to be determined.
Again, we want the estimator to be unbiased, i.e E { X*} = z. This condition is verified
if:

7 = E{X*} = E{A1Xp+AY } = AT+ AHZ (2.25)

Hence, if:-
A = In—-AH (2.26)

where Iy is the unit matrix of order N. Equation (2.26) allows us to rewrite the estimator
(2.24) as the background variable plus a correction term:

X* = Xp + A2(Y—HXB) (2.27)

The correction term (Y —H X g) is also called the innovation vector. This vector represents
the difference between the new information brought in by the observations Y and what is

already known from the prior information Xp.
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In addition, among all the matrices satisfying (2.26), we want to choose the one which
minimizes the estimation error. This error is the vector X made of the elementary errors

associated with the estimation of each component of the vector X:

~

X =X'-X=[X X1, X}y =~ Xn ] (2.28)

To quantify this error, we can calculate the norm of the error vector after, eventually,

averaging on all the possible states:

i=N 1/2
o =|X|= (ZE{ X*X*‘}) . (2.29)

i=1

To calculate this norm, we can use the error covariance matrix P = E{ XX7T }.

associated with the estimator:
E{X'X'} .. B{X'X)} .. E{X1XN}
P = E{X‘X'} .. E{XX))} .. E{X‘XN} (2.30)
E{XNX1} .. E{XVXi)} .. E{XNXN}
As we can see, the norm of the estimation error vector is equal to the square root of the
sum of the diagonal terms or trace of P. The variance-covariance matrix contains almost
all the information necessary to solve the problem. If we remember that the trace operator
is a scalar product for the matrices, then ¢r(P) is the norm of P. We can see that the terms

of P describe the spatial structures of the error, while its norm provides a quantification

of this error.

Let us express the covariance matrix P in a function of the unknowns X and A,.

Using (2.19) and (2.26), we can develop the estimation error vector:

~

X=X-X
= A1 Xp+AY - X (2.31)
=A1(Xp—-X)+A(Y - HX) + (A1+A2H—IN)X

But according to equation (2.26) the third term in the right-hand-side of the last line is

null. Again using (2.26), we can write this error in a simpler way:
X = (Iy — AsH)(Xp — X) + Ay(Y — HX) (2.32)

10



With this expression of the estimation error, the covariance matrix P is:
P = E{ XXT}
= E{ ((In — A2H)(Xp — X) + A2(Y — HX)) ((IN — A2H)(Xp — X) + A2(Y - HX)" }

= (Iy-AHE{ (X -X)(Xs—-X)T }In — AH)T
+ (In - AH)E{ (Xp - X)(Y - HX)T A7 }
+ AE{ (Y — HX)(Xp - X)T }Y(Iv — A2H)"
+ AE{ (Y -HX)(Y -HX)TA] }

(2.33)
In addition we have:
E{(Xsg-X)Xp-X)"} =B
_ _ Ty Ty _
E{(Y -HX)(Y -HX)" } E{ EE" } (0] (2.3

E{(Xp-X)¥-HX)T} = E{ (Xp-X)ET} = 0
E{(Y-HX)Xs-X)T} = BE{EXp-X)T} =0

The last two lines simply state that the new measurements are not correlated with the

past estimation. Thus:

P = (In - A2H) B (In — A;H)T + A, O A ~ (235)

The norm of the estimation error associated with our estimator X* will be a minimum
if we can find the matrix A; and A, satisfying (2.26) and minimizing the trace of P. This
minimization can be easily done using the following theorems on trace:

trace( A+ B ) = trace( A) + trace( B)
(2.36)

o
E-A-trace ( ABAT ) = 2AB

for any symmetric matrix B (Gelb, 1980). Equation (2.36) can be easily demonstrated
using the properties of the scalar product. Since covariances matrices are symmetric, we

have:

0 _ 0 _ T 0 ' T
%tmce(P) =z Aztrace((IN AH)B(Iy - 4:H)" ) + 3 Aztrace(AgOAz)

= —2(Iy — AoH)BHT + 24,0
(2.37)

11



At the minimum, this derivative should be 0. Thus the matrix A, satisfies

0 = —2(Ix — A2H)BHT + 24,0 (2.38a)
or:

0 = —BHT + A HBHT + O] (2.38b)

Solving for A;, we obtain the optimal value:
Ay, = BHT[HBHT + 07! (2.39)
A, is called the Kalman Gain.

Substituting (2.39) into (2.27) gives an expression for the unbiased minimum variance
estimator: ‘
X* = Xgp + BHT[HBHT + 07! (Y - HXjp) (2.40)

This estimator is the so-called Kalman filter.

Similarly, the expression of the error covariance matrix associated with this estimator
can be obtained by multiplying (2.38a) by AZ, which gives:
0 = —2(In — AsH)BHTAT + 24,047
0 = (In— A;H)B(Iy — A2H)T + A,0AY — (Iy - AH)B (2.41)
0 =P - (In—AH)B
Where we have made use of (2.35). Therefore, the covariance matrix is:

P =(In- AH)B
(2.42)
=B -~ BHT[HBHT + O] 'HB
Since B and O are both symmetric positive definite, BHT[ HBHT + O ]"'HB is also
symmetric positive and therefore 3 P < B, i.e., the uncertainty has decreased during the

estimation.

Finally, the estimate is a realization of the estimator X*. This estimate is unbiased

and minimizes the estimation error. This error is given by the covariance matrix P:

* =zp+ BHY[HBHT + O|! (y— Hzy) | (2.43)

3P<B if pij<bij Vi, j
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P = B — BHT[HBHT + O|"'HB (2.44)

The statistical solution (2.43) has been the basis of most of the operational analysis
techniques and some are still in application. This analysis procedure is called Optimal
Interpolation (OI) and is most usually implemented in the following way (Talagrand 1992):
A numerical meteorological model is used to integrate the results of the previous analysis
to the time of the new analysis. This provides the background term xp; while all the
observations that are made available during the corresponding analysis time period are
collected to build the vector y. At the end of the model integration, the statistical estimate
z* is computed using the expression (2.43). This implies that the matrices O and B
are known. O is characteristic of the instrumental noise. This noise can be studied in
laboratory, so that O or, at least its diagonal, is usually known with good precision. The
B matrix is much harder to evaluate. There is a rigorous way to propagate in time the
information contained in B using the meteorological model, but the implementation of
such a solution requires computational resources that far exceed the present computer’s
capacity. B has to be approximated; it is usually modeled on the basis of a number of simple

hypotheses on the shape and spatial decay of the corresponding covariance functions.

Computer limitations are also the cause of another kind of approximation called data
selection (Talagrand, 1992). In the data selection algorlthm, the analysis grid is divided
into subsets and the computation of (2.43) is repeatedly applied to these different sub-
sets. However, for each subset, a limited number of observations, namely the observations
located in the vicinity of the subset, are used. Thus, the size of the matrices that must
be inverted is considerably reduced. This selection of observations is certainly legitimate
in the sense that observations at a large distance from a given point must have a small
influence on the value of the estimated field at that point. However experience shows that
it nevertheless introduces spatial noise in the resulting field. Equation (2.44) is usually not
fully implemented, and only the diagonal terms of the matrix P, i.e., the variances of the

analysis error, are computed.
2.9.2 Variational Approach — 3D-VAR

As in the example in Section 2.1, we ask if there is a deterministic formulation of the

multidimensional estimation problem. The answer is yes and this deterministic formulation

13



is also variational. As in the unidimensional case, the variational formulation is based on
the concept of precision instead of dispersion as with probability. Precision corresponds
to the inverse of the variance-covariance matrix. Therefore, the variational statistical
formulation of the multidimensional estimation problem can be expressed by the following

cost function:
Jvar = 1/2(zy —1)TB Y2y — ) + 1/2(y - Hz)TO (y - Hz) (2.45)

The vector ' which minimizes Jy 4 can be interpreted as the values that best fit simul-
taneously the background information zp and the observations y, given their respective

degree of confidence or precision B~ and O~

To find the minimum of Jy 4r, we can calculate its derivative:

aJ

= = - B Y@ ~z) ~ H'O(y— Hy) (2.46)

At the minimum this derivative is null, thus:
0 = - B Yzp—2') -~ HFO }(y - Hx') (2.47)
which can be solved for z':
0 = B Yzp—2') + HTO Yy — Hzy + H(zp — 2')) (2.48)
which gives:

g =z, + [B'+HTO'H | HTO Y(y — Hxy) ] (2.49)

However, a null derivative only indicates an extremum, which can be a minimum or

a maximum. Let’s check that, in addition to a null derivative, the second derivative or
Hessian matriz is positive:

0%J 0

— =— (=B Yzy—z) — HFO }(y- Hz

2% = bz \ (25— 2) v-Ha)) (2.50)

=B '+ HTO™'H

which characterizes a minimum. Since B and O are symmetric positive definite, the matrix

[B~' + HTO™'H] is also a positive definite and the extremum z’ given by (2.49) is a

minimum.
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Comparing (2.49) and (2.43), it is not readily apparent that the variational solution
and the minimal variance estimate are equivalent. This equivalence is shown in Appendix
A.

Note, that the variational solution does not provide an estimation of the error asso-
ciated with its solution. However, if we look at the expression of the Hessian matrix in -
(2.50) we can calculate its inverse using the Woodbury formula? for A = B™}, T = HT
and © = O~ H, this gives:

2 -1
( %z—f ) =[B!+ HTO'H]™!

=B - BH[I + O*HBHT |"'0"'HB

i (2.51)
=B - BH[O[I + OT'HBH" ]| HB

=B — BH[O + HBHT |"'HB

which is the expreséion (2.44) of the covariance matrix P associated with the estimation

solution.

 We have, thus, the following fundamental result:

02J \ ™ |
P = —-— 2.52
(%) (2.52)
That is, the error associated with the variational solution is given by the inverse of the
Hessian matrix. Using (2.44) and (2.51), we can now express the inverse P~ of the

covariance matrix:

-1 62J -1 TA-15
P = 5;5 = B + H'O™'H (253)

which allows an interpretation in term of precision as in the unidimensional case. The
precision or information that accompanies the minimal variance estimate is equal to the
sum of the precision on the background information and the precision on the observations

passed through the observation operator.

4

[A +TO]! = A7' — A7IT(I + AT JeA™
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Data selection mentioned in Section 2.2.1 tends to be used less and less with the
emergence of iterative techniques. Instead of attempting to invert directly the matrix
[O+HBHT), which represents the main computational burden in solving (2.43), a series of
approximate solutions are found by an iterative procedure that converges toward the exact
solution. Such implementations are referred as 3 Dimensional Variational Assimilation
(3D-VAR) system.

2.2.3 Physical space analysis system — 3D-PSAS

The success of the iterative techniques introduced by the variational formulation of
the 3D data assimilation problem has produced an interesting feedback effect on the OI
procedure. Iterative solutions, like Conjugate Gradient descent, have been used for a long
time in numerical analysis to solve matrix equations. They can, therefore, be used to invert
the matrix [O + HBHT] in (2.43). Such an approach provides a tractable implementation
of the complete OI solution. Paradoxically, in this kind of implementation the statistical
solution:
* = =, + BHT[O+ HBHT| }(y — Hzy) (2.54)

is formulated as the minimum of a new cost function: '
Jpsas =1/2 (w—wp)T[0 + HBHT|(w — wg) ~ (w—wp)T(y— Hzy) (2.55)

where w = (BHT)"'z and wp = (BHT) 'z,. As we can see, the new variable w is
the counterpart of x in the physical space of the observations. For that reason, this
implementation is called 3-Dimensional Physical Space Analysis System (3D-PSAS).

The cost function Jpss is primarily introduced for practical reasons. It simply makes
easier the implementation of the iterative algorithm used to invert the matrix [0+ H BH .
Although Jpsas seems quite different from the cost function Jy 4g, both functions are
equivalent; they express the same concept in two different spaces: the variational solution
is expressed in the phase space while the 3D PSAS uses the physical space for its operations.
One expression can be deduced from the other by the transformations performed in (A1-
A7) in Appendix A. The 3D-VAR and 3D-PSAS differ in required approximation to B. In
3D-VAR, B! is required and in 3D-PSAS B is required instead.

In summary, 3D-VAR and 3D-PSAS iterative algorithms are the two most efficient im-
plementations of the statistical solution for the data assimilation problem. In essence, both
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algorithms are equivalent and it was shown (Courtier 1997) that their overall computing

cost is similar. .
2.2.4 4-Dimensional variational data assimilation — 4D-VAR

Up to now, we have always assumed that the observations were available at the time
when the estimation is performed, and analyses are performed at exact intervals depending
on their update cycle (every 6, 12, 24 hours). With such approximation, it is not possible
to take into account the temporal variability of the observations within the analysis cycle.
- Depending on the type of observation, this can result in an important loss of information,
particularly for high frequency observations such as satellite and radar data. In reality,
observations are issued from different observational networks, each network having its own

measurement frequency.

In OI, 3D-VAR, and 3D-PSAS, a meteorological numerical model is used to propagate
the background information following an analysis cycle. This numerical model is another
source of information that is used in 4-dimensional data assimilation. This new informa-
tion is necessary to balance the increase of degrees of freedom in the estimation problem
that results from the extension to the temporal dimension. The numerical model which
usually discretizes the fluid dynamic equations can be considered as a prior information.
Its equations are a convenient medium to encapsulate all the statistical, dynamical and
physical knowledge we a priori have on the atmosphere. This model is supposed to reflect
the evolution of the vector to estimate X (the truth) with a certain degree of uncertainty

and has usually the form of a differential equation:

8X (¢)

5 = F(X@®) + W) (2.58)

where F stands for all the mathematical functions involved in the meteorological model,
and W (t) is a random variable figuring the model error. As usual, W(t) is assumed to
have a 0 mean and a covariance matrix Q(t). In addition we assume that W (¢) is a white
process, i.e E{W(t), WT(t)} =0if t' #¢.

The information available in the 4D data assimilation problem is, therefore,: i) a
background term z;, with its covariance matrix B, generally available at the beginning of

the assimilation time period; ii) the meteorological model of (2.58) and iii) the observations
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which are now distributed in time;
Y(it) = H( X)) + E(¢) (2.59)

Where H figures the conﬁgura.tion of the observational network at time ¢ and E(t) is
random variables accounting for the measurement error. As for the model, the error E(t)
is assumed to have a 0 mean and a covariance matrix O(t). E(t) is also assumed to be
white and uncorrelated with the model error W (t), i.e. E{ EWT } = 0.

From these data, two different approaches are possible:

- The filtering solution is sequential and aims to find the best estimate at the time
the observations are available. This is the approach used in OI and best illustrated
by the Kalman filter algorithm in which the optimal 3D data assimilation procedure

described in section 2.2.1 is applied each time an observation becomes available.

- The smoothing solution aims to globally estimate the state X (¢) on a complete time
period [to,tr] using all the observations available during this time period. In this
global adjustment, it makes use of the numerical model to take into account the

temporal distribution of the observations.

From a probability viewpoint, these solutions differ from the posterior information they
use: the filtering solution considers the information contained in the conditional proba-
bility function p(X(¢)/Y (), to £ 7 < t), while the smoothing solution is based on the
conditional probability function p(X(t)/Y(7), to < 7 < tr), i.e. by using all the informa-
tion available before, but also after, the estimation time. Thus, the smoothing can only
be performed at the end of the assimilation time window; but, except for the value X (tgr)
at the end of the assimilation time period, the smoothing solution processes much more
information than the filter does. Better estimates should, therefore, be expected from the

smoothing solution.

Indeed, the Kalman smoother equations which provide the optimal solution (in the sense
that it minimizes the variance) show that: i) the smoothing estimation error is lower than
the filtering estimation error and ii) both solutions are identical, same estimate and same
covariance matrix, at the end of the estimation period. In fact filtering can be viewed as a
pre-processing operation of the smoothing process. We now show the 4-D data assimilation

problem using a variational formulation. For notation purposes, we will use the continuous
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formulation which leads to more compact expressions. In reality, observations are available
at discrete times, but this does not affect the general form of the solution which can be

easily obtained from the continuous formulation using a Dirac distribution.

Now, the cost function must account for all the observations distributed within the
assimilation time window [t5, tr]. A natural extension of the 3D cost function (2.45) to
the temporal dimension could be (we note z;, = z(to), , T+ = z(t) and & = dz/dt):

J = 1/2(z, — z0)T B~ (zs, — 76) + 1/2 (e = H(ze)TO7 (g — H(zy)) dt (2.60)

to
Note that this cost function can also handle the 3D case with tg = toand O(t) = O * 6(t—
to). However, this function is not complete in the sense that it does not reflect all the in-
formation contained in the problem. Indeed, the meteorological model is the particular
information not used in this formulation. The model information is somewhat apart,
because it does not provide an observational fact, but information on the shape of the
phenomenon to estimate. Since, we know that the truth X satisfies (2.58) with a given
uncertainty W, it should be the same for the estimate; otherwise, this estimate will in-
evitably be biased. So, we are no more interested in the absolute minimum of the cost
function J, but in the model equations solution z* leading to the smallest value of J. In
this prospect, the model error W appears as an additional term which should be sought
to be minimized. Consequently, an additional term has to be added to the simple cost
- function (2.60):
tr
J=J +1/2 (&~ F(z:))TQi (& — F(z4))

to

, (2.61)
R
=J + 1/2/ wl Q; w, dt

to

and this function has to be minimized under constraint of the model equations (2.58).

" The minimization problem of 4D data assimilation slightly differs from its 3D coun-
terpart which was simply an unconstrained optimization problem. The 4D constraint
minimization can be reduced to an unconstrained optimization problem by considering
the minimization of the Augmented Lagrangian function of J, instead of J itself. The
Lagrangian function L is derived from J by the following expression:

L =J+ /tn /\?(IC— F(a:t) - wt) dt | (262)

to
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where \; is a N dimensional vector to be defined. Using the calculus of variation it can be
shown (Courant and Hilbert 1989) that J and L have the same extrema. These extrema
are solutions of the so-called Fuler Lagrange equations which express the stationarity for
L with respect to all its input variables: zi,,Zty, Zt, Tty Ttg, Ttg, We, We, A¢ and A which
should be considered as independent. The solution to the problem of minimizing J in
(2.61) or L in (2.62) can be found by introducing an adjoint model (see Section 2.3) and

a standard unconstrained minimization algorithm (Section 3.8).

2.3 Introduce an adjoint model

2.3.1 A continuous form of adjoint model

As mentioned in section 2.2.4, the cost function J in (2.61) and its Augmented La-
grangian function L in (2.62) have the same extrema. These extrema are solutions of
the so-called Euler Lagrange equations (Courant and Hilbert 1989). In order to get an

expression of the Euler-Lagrange equations, we write L explicitly:
L = 1/2 (:L‘to - :cb)TB‘l(:cto - .’L‘b)

tr . tr
+1/2 | (39— H(2:))TO7 (ye — H(ze)) + 1/2[ wEQTw (g6

to 1]

tr
+ M (& — F(zy) — wy) dt

to

An integration by parts of the last (hon quadratic) term in the right-hand side of (2.63)

gives:

tr ) tr tr
M(i—F(ze)—wp) dt = | Mladt — f AT(F(ze) +wy) dt

to to : to

t (2.64)
tr " \T tr T
= [/\ta:t ]to - , At .’Etdt - At (F(.’L‘t) + wt) dt
0 :

to
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and thus:

L = 1/2(zy — az:b)r""B‘l(xto — Tp)

+1/2 / " (ve - H(@))TO7 (ve - H(ze)) + 1/2 / " WO

to to
tr | tr : (265)
+  MpTin — ATty — Mzt — | N (F(ze) + we) dt
to to
tR'_ tr
=J 4 MpTin — ATty — M z,dt - AT(F(z1) + w;) dt
to to

With this expression of L, we can now perform the derivatives of L with respect to
all the input variables and find the expression of the Euler-Lagrange equations for the

continuous 4-D-VAR data assimilation problem:

My — B Hap, —z) = 0 | - (2.66)

Ap = 0 | (2.67)

—%’} - %g-T,{t - %’;—I.Togl(yt—H(x;)) =0 (2.68)
A — Q7w = 0 (2.69)

6;* _F(zl) - w = 0 (2.70)

This constitutes the so-called optimality system of equations that the estimate z* should
satisfy to be the optimal solution of the 4D-VAR data assimilation problem. Equation
(2.70) is precisely the model equation (2.58), this ensures that the model constraint will

be enforced for the optimal solution.

Using (2.69), we can eliminate w; in (2.70), this gives the following system of coupled

equations:
z; = Ty + Bl (2.71)
dz* . :
= F(z) + QW)X (2.72)
oy OFT OHT _, .
'_"a_t—- ’é‘; /\t + '5; Ot (yt-‘H(xt)) (2.73(1)
Ay = 0 (2.73b)
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In particular, we see that A is the solution of a partial differential equation (2.73) similar
to the model equation (2.72), except that the model physics F' has been linearized and
transposed. For this reason, (2.73) is called the adjoint model and ) is called the adjoint
state associated to state z. In the following we will refer to the meteorological model as
the direct model when confusions with its adjoint counterpart are possible.

Note an interesting relation which will be used in 4D-VAR algorithm: At the station-
ary point, 2 6z = 0, which is applied to the last expression of L in (2.65), leads to:

oJ

53;—0 - ’\‘to =0 (274)

In other words, the value of the adjoint state At, at the initial time is equal to the value
of the gradient of the cost function J with respect to the initial conditions (ICs) z4,.

Here, the adjoint model was introduced for solving a minimization problem. We note
the minus sign in front of the time derivative of the adjoint state in (2.73) which indi-
cates that this equation should be integrated backward in time from tgp to to, with the
appropriate “initial” conditions given by (2.73): A;, = 0. There is, thus, no information
initially 1ntroduced in the adjoint model, but information is only provided by the forcing
‘term ( Ot Yy,—H (z7))) which expresses the deviation of the model prediction (H(z¢))
from the corresponding observations (y). Note that, this term has a “precision” aspect
(matrix O~1). The adjoint model can, therefore, be interpreted as a computational opera-
tor which propagates backward the gain of information that results from the observations.
The total gain is contained in the vector )¢, which takes into account all the observations
available during the assimilation period [to, tg). In (2.71), this gain of information is used
to correct the outdated value z; of the background information. Similarly, the error term
QA is added in (2.71) to account for the information brought by the observations that
- was not already present in the physics of the model (operator F). The coupling in (2.72)

and (2.73) shows how observational and @ priori information is intricate.

The 4D-VAR data assimilation algorithm is obtained when the model is assumed to
be perfect. This means that E{W} = 0 and Q = E{WW7T} = 0, i.e. there is no dispersion

around the expected value 0. The model equation (2.58) becomes

8X(t)

5 = F(X() + w (2.75)
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The interest of such an assumption is that i) because Q = 0 the direct and adjoint equations
are not coupled, except at the initial time to, ii) at any time ¢ the state z; is uniquely defined
by the initial state z,. Therefore, if IV is the dimension of the vector z,, these N degrees
of freedom are enough to fully described the complete model trajectory 7, t > to and
the minimization problem has now the dimension N instead of N x K, where K is the

number of model time steps between [tg, tr), as in the Kalman smoother. In addition |
to this reduction of control variables, the direct and adjoint equations can be integrated
separately, but sequentially since the direct model trajectory defines the adjoint operator.

This is very suitable for iterative algorithms.

The optimality system corresponding to the 4D-VAR approximation is:

IL';O = Zp + BAto (276)
oz’ "o
% = F@) (2.77)
Adtp = 0 (2.78)
ax orT oHT __, '
“% - B9z At — oz Ry (y: — H(zy)) (2.79)

which can be solved iteratively using a classical descent algorithm.

2.3.2 A discretized form of adjoint model

Until now we used notations which are more consistént with that in the estimation
theory. Now we will use notations which are more accustomed to the _meteorological
community. We change the notation so that a realization of a vector and an operation
will use bold face lower and upper case letters respectively and the adjoint variable of a

variable x will be represented by % instead of A as used before.
The discretized form of the numerical model equation (2.75) can be written as
x(tr) = Qr(x)XOa (280)

and the cost function in (2.60) can be written as:

J(x0) =1/2(x0 — xp) T B~ (x — xp) +1/2 Z(Hr(x,-) ~y.)T O (H (%) — ¥r)

r=0

+ JP. C(281)
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where x¢ is the analysis vector on the analysis/forecast grid at time tg, X, is the model
forecast at time ¢, starting from IC xg, n is the total number of time levels on which
observations are available, x; is the forecast background vector, y, is a vector of observa-
tions at time ¢,, O, is the observation error covariance matrix of the rth observation time
(assuming uncorrelated observation errors in time) and is usually assumed diagonal (i.e.,
all observations are independent) since the inverse of O, O~1, is required in the definition
of J, B is the background error covariance matrix, H, is the transformation of model
variables to the observational quantities, and J? is a penalty term controlling gravity wave

oscillations.

Symbolically (2.81) can be written as a sum

n

J=J0+ I+ P =J"+ (JO), + J? (2.82)

r=0

where J? and J° are the background and the observation terms, respectively. J® measures
the misfit between the model initial state and all available information prior to the assim-
ilation period, summarized by the background field x;. J° measures the distance of the
model state from the observations at appropriate times during the assimilation window.
The term J° consists of several individual terms (J°), corresponding to various types of

observations at time ¢, within the assimilation period.

In order to obtain the optimal IC (x3) that minimizes J in (2.81), the gradient of J
with respect to the IC (xo):

VJ =VJ?+VJ° 4+ VJP (2.83)
needs to be calculated. The first term V.J® in (2.82) can be easily obtained as:
VJb = B~Y(x — x3) (2.84)

and the second term VJ° in (3.82) requires the adjoint model integration which shall be

briefly derived as follows:

Consider the change in the cost function J resulting from a small perturbation x’g in
1C (Xo):
J'° (Xo) = J° (X() + xlo) - J° (XO) (2.85)
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On one hand, J’® can be expressed as the directional derivative in the x'g direction plus

the higher-order terms and is given by
J' (x0) = (VJ° (%0))” X0 + O(lIx0l*). (2.86)

On the other hand, substituting (2.81) into (2.85) we obtain

J° (x0) = S HT (07 (H, (x,) = ¥7))" s + O(lxII*) (2.87)

r=0
where x', is the forecast difference at time ¢, between the perturbed and unperturbed
forward nonlinear model integrations resulting from the initial perturbation, x'o. Equating
(2.86) and (2.87), results in

(VJ° (x0))T %0 = in (07! (H,(xr) _ y,,))T x'r, (2.88)

r=0

. in which the higher-order terms are neglected.

The forward numerical model (2.80) can be differentiated (perturbed) to obtain a

so-called tangent linear model (TLM):
xl(tr) = Pr (X)x,(), : , (2.89)

which predicts in time the perturbation solution, accurate within the first-order approxi-

mation.

Using the symbolic expression of the linear version of the forecast model (2.89), (2.88)

becomes n
- T
(VJ° (x0)T ¥'o = 3 HT (07 (H,(x:) ~ yr)) PrX'o. (2.90)
r=0 '
In the limit of ||x'o]| = 0, (2.90) implies

R
VJ° (x0) = Y _PTHFO; ! (H, (%) — ¥r)- (2.91)

r=0
Therefore, the gradient of the cost function VJ° (xo) with respect to the IC xo can be

obtained as a summation of the following variables:

_ R
VJ° (x0) = Y %, (2.92)

r=0
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where X is the solution of the following equations:
xp = P (x)%(t;)
i(tr) = HIO:I(HT(XT) - y'l‘)’ r= O, 11 AR} R’ (293)

i.e., each X{ is obtained by the backward adjoint model integration starting from the
“initial” condition HF O (H,(x,) — yr) at each time ¢.. Eq. (2.93) is the discretized
adjoint model of (2.80).

Since both (2.92) and (2.93) are linear, the summation in (2.92) representing VJ° (x)
may be obtained by a single adjoint model integration extending from time tg to to with

zero “initial” conditions for the adjoint variables at time t,, while the weighted differences
(forcing term) = HT O (H, (x;) — y») (2.94)

are added to the adjoint variables whenever an observational time ¢,.(r = R,R—1,-:-,0) is
reached. Thus a single integration of the adjoint model over the assimilation window can
yield the value of the gradient of the cost function with respect to the ICs. The approximate
computational cost for one single integration of the adjoint model is normally equivalent to
2 or more of the original nonlinear model integrations for the same length of the integration
time, which is of course, much cheaper than the finite-difference approximation to the

gradient value.

With the availability of the MM5 (Q), and its adjoint model (PT), and the adjoint of
the observation operator H (HT), the values of both J and VJ can be calculated. One can
then employ any unconstrained minimization software to ﬁnd the minimum (see section
3.8 for details). In 4D-VAR, all observations are used at once to perform the analysis
globally. The 4D-VAR can directly assimilate many measurements as long as they can be
expressed as a function of the basic model variables. For a specific type of observation,
users of MM5 adjoint model may need to develop their own adjoint of the observation
operator for assimilating that observation. Problems that may be encountered in adjoint

coding are described in Chapter 4.
2.4 Mathematical derivation of various adjoint applications
Having described the usefulness of the adjoint model in 4D-VAR, this section provides

a brief review of other different applications of adjoint models and presents the mathemat-

ical formulae briefly illustrating how the adjoint model and/or tangent linear model are
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used in each application. The idea is to provide the theoretical background and to show the
~ wide range of applications which could be offered by the availability of the MMS adjoint

model system.

2.4.1 Parameter estimation

The application of the variational approach to optimally determine model parameters
is conceptually similar to that of determining the optimal ICs in 4D-VAR. In the following

we will present a brief illustration of the method using the Lagrange multiplier method.

- Based on criteria J() which either measures distance between the model and obser-
vations or describes some balance conditions of some meteorological fields, or both, the
parameter estimate is to minimize J (@) by adjusting model parameters a, i.e., find the

optimal parameters o* such that

J(a*) < J(a), Va. (2.95)

In order to explicitly indicate the dependence of the model prediction on model pa-

rameters, we rewrite the model equation (2.58) into

% = F(x,0). (2.96)

Due to the dynamical coupling of the state variables to the forcing parameters, the

dynamics can be enforced through the use of a Lagrange function constructed by appending

the model equations to the cost function as constraints in order to avoid the repeated

application of the chain rule when differentiating the cost function. The Lagrange function
is defined by

L(x,a,%) = J+ <X, %—};- - F(x,a)) > (2.97)

where % is a vector of Lagrange multipliers. The Lagrange multipliers are not specified

but computed in determining the best fit.

The gradient of the Lagrange function must be zero at the minimum point. This

results in the following first order conditions:

oL |
5 =0- (2.98)
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oL

55 =0 (2.99)
8L
3z =0 (2.100)

The solution of (2.98)-(2.100) is called stationary point of L.

Substituting L into the above equations we obtain:

%% = F(x,a) (nonlinear model ) (2.101)
9%  (OFx)\T. aJ, .. . | <
~ %= ( I ) x +.5—£(ad‘]omt model ) (2.102q)
X|t=tp = 0. . (2.1020)
and 87 _ [** . OF(x,0)
. X, Q _
% + <X, T >dt=0. (2103)

to

An important relation between the gradient of the cost function with respect to pa-
rameters a, 0J/0a, and the partial derivative of the Lagrange function with respect to the

parameters is

oL
Va'](a) = BE!at stationary point, (2.104)
ie., '
tR
Vod(@) =204 [T <5 02 o 4 (2.105)

Oa  Jy, Oa

Comparing (2.102) with (2.67)-(2.68) we observe that both variational data assimila-
tion and parameter estimate employs the same adjoint equation model, which is used to
efficiently compute both the gradient of the cost function with respect to the model IC or

the gradient of the cost function with respect to model parameters.
2.4.2 Adjoint sensitivity analysis

In sensitivity analysis studies, the model output of interest is usually referred to as
the system’s response, instead of calling it as a cost function as in data assimilation and

parameter estimate. Sensitivity is a measure of the effect of changes in a given input
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parameter on a selected response. In this subsection, we will consider sensitivity of a

response to both model ICs and model parameters for completeness.

Consider, for example, a functional response R(x, a) of the form
tr
R(x,a) = / r(t; %, 0)dt (2.106)
to
where r(¢;x,a) depends on model variables x, the parameters o, and the time interval

[to, tr) represents the selected time window, where (tg — fo) is the time interval of most

interest.

The most general definition of the sensitivity of a response to variations in the system

parameters is the Gateau-(G-)differential:

tr tr
VR(xg,a;X'g,0') = / i - x'dt +/ rl - o'dt, (2.107)
to to
where _
or or '
r! E{(——,...,———)} , : 2.108a
x 61:1 a.’L‘p (Xo,a) ( )
: or or

r— .

T _{(aal,..., aaN)}(xo,a) ; (2.108b)

the subscript N is the dimension of the model parameters and P is the dimension of the

model variable x.

When R(x, a) is coﬁtinuous in x and a, the total variation of R is given by
R(xo + x',a + &) — R(x0, @) = VR(x0, &; x'0, &) + O[||x'ol*] + O[ll/|I’] ~ (2.109)

i.e., VR(xq,a; X'y, ') is linear in x' and o’. If R or its derivatives are discontinuous the

G-differential still has meaning.

The simplest and perhaps the most common procedure for sensitivity analysis of a
model consists of varying selected input parameters, rerunning the code, and recording
the corresponding changes in the response calculated by (2.106). The model parameters
responsible for the largest relative changes in the response are classified to be the most
important. For complex models, though, the large amount of computing time needed by

such recalculations severely restricts the scope of this procedure.
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Examining (2.107) we observe that in order to obtain the values of sensitivity of the
response, we should know the value of x’ in the time window [to, tr], which is the perturbed
nonlinear model solution, i.e., the following TLM solution.

, .
%’—;— - g—ix’ -—f—gga’ (2.110a)

xllt=to =X’o | (2110b)

The TLM in (2.110) is different from the TLM in (2.89) in which the model parameters
are fixed.

However, when the dimension of the initial state vector and the number of parameters
is large, the computational cost of calculating the first term in (2.107) is very high (we
have to run the TLM (2.110) P times to obtain all the components of x’, where P is the
dimension of the model state variables). Therefore, we eliminate x’(t) by using the adjoint

formulation.
Equation (2.110a) can be rewritten as

oF , -
e (2.111)

Lx' =
where L = 8/9t — 0F/0x.

The adjoint operator L* of the operator L is defined through the relationship

tr tr
/ X' - (L*R)dt = / % - (L')dt — [x' - R]i7, (2.112)

to to

where X is at this stage an arbitrary column vector of dimension P.

Using the adjoint model solution satisfying the following‘equations:

L*% =r], (2.113a)
x(tgr) =0, (2.113b)
we obtain
tr tr th
/ r - X'dt = L*% - x'dt = / % - (Lx')dt + x'g - %o. (2.114)
to to to

Substituting (2.111) into (2.114) we obtain

tr 1 ! s tr . OF ' ! &
Ty - X dt = X (z=a')dt +x'g - %o. (2.115)
to . O .

[
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With the use of (2.115), (2.107) can be written as

= R OF
VR = 7‘; ca'dt + / X- (%a,)dt + X’Qio, (2116) :

to to

which is the adjoint formulation for sensitivity analysis of a response functional (2.106).

Comparing (2.107) and (2:116) we see that the main advantage of the adjoint formu-
lation is that (2.116) is independent of x'(t). Thus, (2.116) replaces the time integration of
TLM with the calculation of a quadrature (8F/8a), an operation much cheaper to perform
when the number of the model parameters is large. The adjoint variable %(t) is the solution
of the adjoint equations (2.113), which are independent of x'(t) and o'. Therefore, a single
adjoint model calculation suffices to obtain the sensitivities of one functional response to all
the model parameters’ variations. Since the forcing term, rZ, in the adjoint model (2.113)
depends on‘ the functional defining the response, for each response the adjoint equations

model must be integrated anew.

It is obvious that for models that involve a large number of parameters and com-
paratively few responses, sensitivity analysis can be performed very efficiently by using

deterministic methods based on adjoint functions.

If one doesn’t consider model parameters as control variables, the first two terms in
(2.116) disappear and the sensitivity of a functional response (2.106) is simply the product
of the initial perturbation vector and the adjoint variable vector at ¢o resulting from a

backward integration of the adjoint model (2.113).

Comparing (2.68), (2.103) and (2.113), we find that in the sensitivity study, we use the
same adjoint model as was used in variational data assimilation and parameter estimate
experiments. It is the adjoint model, as a computational tool, that makes solving the large-
dimension variational data assimilation, parameter estimate and sensitivity study possible

and effective.

2.4.3 Singular vectors

Singular vectors (SV’s) denote perturbations obtained within linear theory by max-
imizing the growth of a chosen norm over a finite time interval (¢ — ¢o). Here, ¢ is the

initial time. Such perturbations are also called “optimal perturbations.”
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The calculation of SV’s requires a prior definition of an inner product in the linear
space of the perturbations. In other words, a norm has to be chosen, in accordance with
the specific dynamical problem at hand. Different norms can yield dramatically different
structures of SV’s. Norms commonly used in the literature are the “total energy norm”,

the “kinetic energy norm”, the “enstrophy norm” and the Euclidean “L; norm.”
Three major areas of application of SV’s can be found in the literature:
1. Study of the predictability of atmospheric flows:

Lorenz (1965) suggested that the growth of forecast errors could be conveniently ex-
pressed in terms of the growth of the SV’s of the forecast error norm. As a follow-up,
for the last few years, the ECMWF has been routinely using SV’s to construct the

center’s sets of initial perturbations for Ensemble Forecasting (Molteni et al., 1996).
2. Study of the instability properties of atmospheric and oceanic flows:

SV’s provide an alternative to the more “classic” concept of normal modes (Farrell,
1982 and Farrell, 1989).

3. Adaptive observations:

The use of SV’s has been proposed to identify (dynamically-sensitive) regions where
observations are much needed in order to more accurately determine the IC for model

forecasting (Palmer et al., 1998).

We present the mathematical formulas pertinent to the calculation of SV’s (Buizza et
al., 1993). Let us denote the inner product between two arbitrary vectors x', and x/3 by
< x'1, x's >, where the subscript E stands for the chosen norm. Then, in the “E-sense”

the norm of the state vector x’(t) is given by:
| ' (t) =< x'(2), X'(t) >E . (2.117)

This is the quantity which we intend to mazimize at time t! The time interval (¢ — to) is

also referred to as the optimization time.
Substituting the TLM expression (2.89) into (2.117), we can write:
| x'(t) |2 =< Px'o, PX'o >E, (2.118)
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or
| x'(t) | =< P**Px'q, X0 >5 , (2.119)

where P*E is the adjoint of P with respect to the E-norm. We note that all our previous
derivations of adjoint model were under the Euclidean Lz norm, which is the norm we

always use unless specified otherwise.

It is not difficult to show (Buizza et al., 1.993) that the perturbation which maxi-
mizes the norm (2.117) is the eigenvector of the self-adjoint operator (P*EP) of largest

eigenvalue, i.e., we must solve the eigenvalue problem:
(P*EP) v;(to) = o} vilto) - (2.120)

Also, the eigenvector associated with the second largest eigenvalue can be shown to pro-
duce the second largest amplification of norm, and so on. Due to the self-adjointness of
(P*EP), the SV’s {1;} form a complete and orthogonal set at the initial time ¢o, and their
eigenvalues {c?} are real. The latter are also positive, which follows from the fact that
the norm is introduced through a positive definite matrix. Less obvious is the fact that
the eigenvectors form an orthogonal basis at the final time as well (e.g., Noble and Daniel
1977). The eigenvectors {v;} are known in linear algebra as the (right-hand) singular

vectors (SV’s) of the matrix P, with correspondent singular values {o:}.

In practice, it is useful to relate the inner product defined in the (gener.al) E-norm
with that defined in the Euclidean L, norm. This is because we intend to use the adjoint
of the forward linear model in order to compute the SV’s. With few exceptions, adjoint

models are coded in the Euclidean Ly norm.

For two arbitrary vectors x; and X,, one can write:
< X3 , X3 >E=<X1,EX2 >L2v, (2.121)

where E is a matrix of weights derivable from the analytic expression for the quantity
used to introduce the norm. This point will be made more clear shortly when we treat
an example. It is easy to show (Buizza et al., 1993) that the adjoint matrix P*E in the

E-norm is related to the adjoint matrix P* in the Ly norm through the expression:
P*f = E7'P*E. (2.122)
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Equation (2.120) is equivalent to seeking the eigenvectors and eigenvalues of:

K = E"'P*EP . 2 (2.123)

Example: “Approximate Energy Norm”

We use the followinig quadratic expression as an approximation for the total pertur-
bation energy £ of the nonhydrostatic dry version of the MM5 (Bannon, 1995):

ul2+vl2+wl2 1 92 0!2 ) 1 p,g 6p R
£ = /,L/y {( - ) tatag EZ?E} ('a—a) dzdydo ,  (2.124)

where the first term on the right-hand side represents the kinetic energy, the second term

the available potential energy and the last term the elastic energy. The primes denote
perturbation quantities, 6 is the perturbation potential temperature and _ﬁz and ¢, are
reference values for the Brunt-Viiséld frequency and the spveed of sound in the basic state,
respectively. Also, 7 is a reference value for the density. For convenience, we replace the

temperature with the potential temperature in the state vector.

[} L ’ 1 [ T
If we represent the state vector as x = ({u b {v}, {w}, {8}, {pr }) , where
the curly brackets represent row sub-matrices made up of all the grid point values of the
corresponding model variable, then F is given by a diagonal matrix, whereby its elements

are easily derivable from (2.124), simply by imposing that:

E=<x,Ex >, . (2.125)

The Lanczos Algorithm

For large systems, as is the case for most of the primitive equation models, finding
the solution to (2.120) by means of standard eigenanalysis routines, such as those from
EISPACK, is prohibitive. It is then common to resort to the Lanczos algorithm (e.g.,
Golub and Loan 1989) to compute the leading SV’s and singular values. The algorithm
does not access directly the elements of the matrix, which is computationélly prohibitive in
terms of memory and computing time. It involves partial tridiagonalizations of the matrix,
whereby information about the extremal eigenvalues emerges long before the tridiagonal-

ization is complete. No intermediate full sub-matrices are generated in the process. In our
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applications, the Lanczos routines are coupled to the forward and adjoint linear models,
and a series of iterations is performed to yield the leading SV’s and singular values with

the desired accuracy.

The Lanczos routine at our disposal works only for symmetric matrices. It is therefore
necessary to transform K, as given by (2.123) into, a symmetric matrix, by means of a

coordinate transformation (Buizza et al., 1993). This is achieved by writing:
v = E-125 (2.125)
A new eigenvalue problem is obtained through this transformation:
Ko = o2, (2.126)
where | |
K = EV?KE-Y? = E~1?P*EPE™'/? (2.127)
is a symmetric matrix. |

In practice, the user is required to supply a subroutine which, given an arbitrary vector,
returns the product of K with that vector. We see from (2.127) that this subroutine must

perform the following sequence of operations:
1. multiply the state vector with matrix E~/2,

2. integrate the resulting vector on the forward linear model from to to t. This

accounts for the application of the forward propagator between ¢o and ¢,
3. multiply the resulting vector with matrix E,

4. integrate the resulting vector on the adjoint model backward from t to to. This
accounts for the application of the adjoint of the forward propagator in the Euclidean L

norm, and

5. multiply the resulting vector with matrix E-1/2,

2.4.4 Normal modes and adjoint modes

The TLM (2.89) can be used to calculate the normal modes that grow on a given

basic state, as described below:
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2.4.4a. Frozen Basic States

For a resting basic state, i.e., for x(t) = xo V¢, model solutions to the TLM

ox'(t)
ot

=L)X (),  L(x() = %I;(X(t)) (2.128)

that possess an exponential time dependence of the amplitude can be obtained through
the ansatz x'(t) = e’'z, since the linear operator L becomes independent of time. This
leads to the eigenvalue problem: |

Lz = 0z, (2.129)

where z = z, + iz; is the eigenvector and ¢ = o, + i0; is the eigenvalue. The real part
of o, o, is the growth rate and the imaginary part, o;, is the frequency. The nt? normal

mode is defined as:
Z, = Re{z,e°"'} = €7t {2, cos(Onit) — Zni sin(oqit)} . (2.130)

Equation (2.129) can be solved by two distinct approaches:

1. Relatively small systems: Solving (2.129) is a straightforward task when the system
is of a “reasonably small” dimension, i.e., when the matrix L can be stored in the
computer memory and standard eigenproblem solvers (e.g. routines from NAG) can
be used. We note that L can be found vefy easily with the help of the (time-stepping)
TLM. By setting the I® element of the vector of the IC x’g to 1, zeroing all the other
elements, and making a one-time-step integration, we obtain the tendency dx/dt, |
which is the I** column of L. Repeating this process N times, where N is the dimension
of the system, we obtain the matrix L. The procedure thus consists of generating a

column of L at a time.

For frozen basic states, the normal modes {Z,} represent shape-preserving solutions.
When integrated on the TLM, the shapes of these perturbations repeat themselves

after every period 27 /op;.

2. Large systems: The use of the method outlined above becomes prohibitive when we
are interested in systems of large dimensions, as is the case in most applications of
the MM5. In such cases, however, we can still compute the leading normal modes

and corresponding eigenvalues by resorting to an algorithm which does not access
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directly the elements of the matrix. The Lanczos method, which is very successful
in computing singular vectors (see section on singular vectors), does not appear to
be very useful in dealing with asymmetric matrices. We recall that, in general, L
is an asymmetric matrix. Anderson (1991) used with success the method proposed
by Goldhirsch et al. (1987) in his calculations of the normal modes of a barotropic
model. The method can be applied to large asymmetric matrices and consists of
reducing the large N x N original problem to a smaller K x K problem (K << N).
This is accomplished iteratively with the help of the TLM, a standard eigenproblem
solver and an orthogonalization routine. The method consists of generating K << N
linearly independent vectors, which, when integrated a number of times on the TLM,
and orthogonalized, will converge to a certain sub-matrix of dimension K x K. The
eigenvectors of that submatrix are the K most unstable eigenvectors of L. For detailed
derivation of this method, please see Goldhirsch et al. (1987).

2.4.4b. Time Varying Basic States

The solution to (2.128), subject to the IC x'(tp) = x’d, can be written as (2.89),

where P(t) is called the forward propagator between times %, and £.

Following Frederiksen (1997), the finite-time normal mode eigenvectors of a time de-
pendent basic state, between times ¢, and t, + 7, can be defined as the eigenvectors of
the forward propagator for this time interval. The finite-time normal modes are defined
in a manner analogous to (2.130). If the nth eigenvalue of the forward propagator is
Anr + @ Ani, then the growth rate and phase frequency of the ntP finite-time normal mode

are conveniently defined as gnr = £In(A2,. + A2,) and opn; = Larctanai, respectively.
y 27 nr ni T Anr?

The leading finite-time normal modes and corresponding growth rates and phase fre- .

quencies can be computed using the method described in 2.4.4a.

2.4.4c. Adjoint Modes

The adjoint eigenvectors are the eigenvectors of the adjoint of the matrix of the linear
problem (for time invariant basic states) or of the adjoint of the forward propagator (for
time evolving basic states). In the latter case, the terminology finite-time adjoint eigen-
vectors is more appropriate. The adjoint modes (and finite-time adjoint modes) are de-

fined in a manner analogous to (2.130).
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The computation of adjoint eigenvectors involves the definition of a norm. This is

done by introducing a matrix of weights, E (see section 2.4.3),

For time invariant basic states and when the system is not too large, one can find L
as described in point 1 of 2.4.4a., and then calculate its adjoint in the chosen E-norm. The
adjoint eigenvectors and respective eigenvalues (which are complex conjugates to those of

L) can be found by using a standard eigenanalysis routine.

For large systems, or for time evolving basic states (irrespective of the dimension of
the problem), one can resort to the method described in point 2 of 2.4.4a, i.e., the adjoint
of the TLM can be coupled to the Goldhirsch et al. routine.

We note that the adjoint of the MM5 TLM, which is coded in the Euclidean Ly norm,
can be used to obtain the adjoint modes corresponding to any arbitrary norm by assigning
a proper weighting coefficient to the inner product which defines the norm (see section
2.4.3 on Singular Vectors for the relation between the adjoint of an operator with respect

to any E-norm and the adjoint with respect to the Euclidean Ly-norm).

Within the context of atmospheric dynamics, adjoint modes are useful in their connec-
tion to the normal modes. For perturbations normalized to have the same initial amplitude,
adjoint modes represent the best initial perturbations to excite the normal modes in the
limit of time approaching infinity (Farrel, 1982 and 1989). The concept of “time approach-
ing infinity” is problem dependent (De Pondeca et al., 1998). In blocking, for instance, it
can mean 2 to 3 days or even less. If one believes that a certain. aspect of the atmospheric
(or oceanic) dynamics simply represents the excitation of a certain normal mode, then one
way of searching for the geographical regions where perturbations most contribute to the
excitation of that normal mode is to look at its adjoint mode. For instance, people found
in several studies of the dynamics of mid-latitudes that the adjoint mode of the fastest
growing normal mode has its amplitude concentrated in the equatorial region. This makes
them suspect that those particular mid-latitude phenomena were excited by perturbations

that appeared in the tropics!

2.4.5 Inverse tangent linear model

Predictability studies suggest that improvements in the estimation of the initial state

offer the most promising path to more accurate forecasts, although there is still room for
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benefits from model improvement (Simmons , 1995). Recently, there has been considerable
interest in the investigation of the sensitivity of forecast errors to ICs. Both the adjoint
technique (Rabier et al., 1996) and the inverse-linear method (Pu et al., 1996) were used
to find the initial perturbation which reduces the 1-2 day forecast errors, defined as the
difference between the forecast and analysis verified at the same time. In this section, we

will briefly describe the inverse-linear method, how it works, and its limitations.

Given a finite initial perturbation x'q to the IC xo, the evolution of the forecast

difference between the perturbed and unperturbed ICs can be approximated as

Q:(xo0 + x'o) — Qi(x0) = P.x'o + 0(”)('0”2) (2.131)

As indicated in Zou et al. (1997), the TLM (the first term in the right-hand-side of above
equation) approximates the nonlinear difference very well for short-range prediction (up
to one day), i.e., the second-order term in (2.131) can be ignored. If we approximate the
inverse of the TLM, Py ! by integrating the TLM backward in time, we should be able to
approximately recover the initial perturbation x'g from two nonlinear model solutions at
time ¢:

x'(t) = Pyt (Qs(x0 + X'0) — Q¢(0)) = Pex'o + O(lIx'oll?) (2.132)

" If we substitute the perturbed nonlinear model forecast Q:(xp + xo) by the verifying
analysis at time ¢, x¢, we can obtain t_he “initial error estimate”. It is the solution obtained
when the short-range forecast error was traced back to the initial time. The advantage of
using the inverse-TLM is that it is cheaper, and its result does not depend on the choice
of the norm used in the definition of the error cost function as it does using the adjoint

technique.

The limitation of the inverse-TLM method is from the fact that complex numeri-
cal models are, in general, not reversible due to the existence of diabatic and dissipa-
tive processes such as heating, friction, diffusion, precipitation, and cloud formation, non
structure-preserving spatial and temporal discretization schemes used in the numerical
models. However, experiences by both Pu et al. (1996) and Wang et al. (1996) showed
that an adiabatic model with simple surface friction and vertical diffusion worked well.
The inverse-TLM is realized by running such a simplified TLM with a negative time step,

and reversing the sign of friction and diffusion terms.
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Although the “inverse” TLM is cheaper and its result does not depend on the choice
of the norm, its application to sensitivity analysis and data assimilation is still very limited
in the following sense: (i) “observations” have to be available for all model variables and
on all grid points; (ii) indirect observations can not be easily included due to the need
of the inverse of the observation operators which do not necessarily exist; (iii) physical

processes cannot be easily included in the “inverse” TLM.

2.4.6 Incremental 4{D-VAR approach

A 4D-VAR experiment requires many more computations (up to 100 times) than
3DVAR does. To achieve this number of computations within operational time constraint
would require a significantly faster computer or a substantial algorithm improvement or
both (Courtier et al. 1994). An approximation of the 4D-VAR, namely the incremental
approach, similar to the linearization underlying the extended Kalman filter equations,
seems to achieve the amount of the computational reduction in a way consistent with the

non-linear estimation theory.

The incremental approach was first introduced by Courtier et al. (1994). The in-
cremental approach considers a perturbation or an “increment” instead of the full model
state. For a small perturbation on the ICs, we can linearize the problem along a refer-
ence trajectory and use the tangent model (with a lower resolution, simpler or no physics)

instead of the model itself.

In the incremental approach, the variable is not the ICs, but rather the perturbation

with which it deviates from the background term:
Ix(to) = x(to) — X (2.134)

Assuming that the perturbation is small, the state vector x(t) can be approximated by the
the tangent model along the reference model trajectory Q;(x)xp. In other words, during
the minimization process, the model state will be given by the Taylor expansion near the

background state:

x(t) = Qe(x)x(to) = Qe(x)[xe + 0x(to)]

(2.135)
~ Qu(x)xp + Py e *0x(to)
In turn, the model observation counterpart is then given by:
Hi[x(t)] = Hi[Qe(x)x(to)] =~ Hi[ Qe(x)xs + Py *dx(to) ] (2136)

~ H;[Qi(x)xp) + Hj*Pyx6x(to)
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and the cost function (2.81) is modified into:
J = -;- ox(to)T B 16x(to) +

(Y; — H;|Qs, (x)x5) — Hi % Py, % 6x(t0))TO™? (2.137)

[ IR
.Mz

1

-
I

(Y; = Hi[Qe, (x)[xs]} — H * Py,  6x(to))

The interest of such a formulation is that, once the reference trajectory Q:xp and the pre-
dicted observation H;Q;x; are computed, they are kept constant during the minimization.
Also, in such a formulation the problem is now linear and the cost function is quadratic.
Approximating the full problem by a quadratic problem has theoretical advantages since
the solution in principle is guaranteed to be unique. From a statistical point of view, this
linearized solution corresponds to the classical extended Kalman filter when the model

error is negligible.

If the tangent model is a good approximation of the real model, the linear solution
is close to the real solution. This implies that it will be the best if the tangent linear
model is used within the time range of its validity. Several studies (Lacarra & Talagrand
1988, Errico et al. 1993) have shown that, for the model dynamics, the TLM is a quite
robust approximation to its nonlinear solution when it is used in its time limit of validity
(< 24 hours in mesoscale studies and 2-3 days for large scales). However, when physics is
incorporated into the model, nonlinearities increase and linearization is valid with much
more restriction. In this case we should modify the previous approach, so as to introduce

_some full physics model updates in the reference trajectory, or to include some simple
physics in the tangent linear model used in the incremental minimization procedure. The
new algorithm will then be made of a pair of nested loops. The inner loop is based on the
incremental approach described by equations (2.135 and 2.136), the outer loop is simply

made of full physics model integrations.

Because the full tangent model integration has a computing cost similar or slightly
higher to the direct model integration, the incremental approach, as it is presented, does
not really reduce the computing cost of 4D-VAR. However, this approach is susceptible to
further cost effective approximations. If, for instance, in the inner loop we use the tangent
and the adjoint models at a lower resolution or/and with a degraded physics, computations

can be rapidly reduced by an order of magnitude. At the European Center, the use of the
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adiabatic tangent model at truncation T106 instead of the full physics model at truncation
T213 has reduced the computing time by a factor 16 (Courtier et al. 1994). Applications
of the method to the MM5 adjoint modeling system requires beforehand a review of the

acceptable approximations with an estimation of the computing time gain.

The MM5 mesoscale model (Grell et al., 1995) is usually run in a nested domain
configuration: a large domain with a low resolution providing the boundary conditions
to the smaller high resolutibn domain under study. The implementation of the 4D-VAR
incremental approach to MM5 can take advantage of this specific configuration. It is
possible to run the full physics model on the two domains and perform the assimilation
with only the tangent model on the larger domain. The main difficulty in this kind of
experiment is the interpolation — some conservative properties might be altered when
interpolating the low-resolution perturbation onto the high resolution model initial state.
This could result in numerical instabilities in the update phase when integrating the full

non-linear model.

Different types of physical parameterizations can be selected in the MM5 model. De-
pending on the selected scheme the computing time can vary a lot. One example is the
cumulus convection parameterization schemes, which can have an order of magnitude in-
crease in computational cost. Another example is the parameterization of the planetary
boundary layer (PBL) which can also prove to be very time consuming. The different
schemes can also have an order of magnitude difference in computing cost. The third ex-
ample is the explicit microphysical schemes which can differ dramatically. It is interesting
to note that, depending on the selected parameterization, some observations, like precip-
itation, can or cannot be assimilated because of the lack of representation in the model.
Therefore, the incremental approach based on a physical approximation may not always

be possible.

2.4.7 Optimal control of model error

As mentioned in section 2.2.4, the 4D-VAR algorithm is to find the solution of the data
assimilation problem for a case when errors in the forecast model are neglected (W ~ 0
in (2.58)). Thus, in 4D-VAR numerical models are assumed to perfectly represent the

atmosphere.
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This approximation was made primarily because of the practical necessity. The com-
plete theoretical solution of the data assimilation problem is known in the estimation theory
as the Kalman smoother. However, such algorithms requires the control of the forecast
error at every time-step, and this is computationally far too expensive to be implemented
in operational application. The perfect model assumption has the consequence of reduc-
ing the optimal control vector of the 4D data assimilation problem to model IC, instead
of model IC plus its time evolution. This makes 4D data assimilation computationally
feasible. It is an assumption that has certain theoretical justifications. As pointed out by
Dee (1995), statistics on the model error are very rare. Studies on the effects of the model
error sources on the forecast error in the operational system (Dalcher and Kalnay 1987,
Tribbia and Baumhefner 1988) have not produced quantitative information in a form that
is useful for data assimilation. In the absence of such information, statistical model input
cannot be specified and no meaningful results can be expected, with whatever the amount
of computing power, if the required input is either missing or misspecified. It is, therefore,
preferable not to specify any error if it cannot be specified correctly. This way, errors in
the forecast result exclusively from errors in the initial data, and forecast accuracy is only

a function of the predictability limit.

On the other hand, there have been several studies (Boer 1984, Bloom and Schubert
1990) suggesting that model error can sometimes be significant and its effects on forecast
error must somehow be accounted for. To overcome the shortage in quantitative infor-
mation available on the model error, simplifications under the form of _assumptidns on
its shape. have been proposed by several authors. These definitions for the model error
terms vary from a systematic model bias in a strong constraint formalism (Derber 1989),
a systematic model bias in a weak constraint formalism (Wergen 1992), and a slowly time
varying stochastic process (Zupanski 1996), to a correlated time varying stochastic process
(Daley 1992). Remember that the general case is an uncorrelated time-varying stochastic
process. However, only the methods of Derber and Zupanski have been tested in realistic

situations and are potentially implementable in the MM5 adjoint modeling system.

To understand how these model error representations}diﬂ'er in terms of information
content and computational cost, it is necessary to go back to the original estimation prob-

lem of the data assimilation. In the general theory of the Kalman filtering, the model is
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represented by an equation of the form:

x(t) = Qu(z)x0 + W, (2.138)

where the model error w figures a pure random white process. The term “white” means
that the variations of w from one time step to the other are completely independent, i.e
w is completely unpredictable. This extreme situation corresponds to the minimal level
of a priori information, the computational cost is therefore maximal, since “all” has to
be estimated. In general, the more a priori information is specified, the less computation
is needed. Another level of information immediately above the white process is the so-
called colored noise. This level does not provide direct information on w itself but on its
statistical properties. This information is given under the form of a statistical correlation
between errors at different time steps, i.e E{w,wX} # 0. This is not enough information
to allow a prediction of w, from w,, but it can be incorporated in the cost function where -
it provides some additional constraints in the minimization. Constraint helps in reducing
the dimension of the minimization problem. According to Daley (1992), it is certéinly
at this information level that real meteorological problems exist. A much richer a priori
information level is found when some predictions of the w values are possible on limited
time intervals: i.e. W, = f(w;) if |r' —r| < C where C is the length of the time interval —
this is the slow-time varying representation of the model error used by Zupanski. The next
level of information corresponds to the case of a predictable model error over the whole
assimilation time period R, i.e. C' = R. This level corresponds to the method proposed by
Wergen (1992). If, in addition, we assume the model error to be deterministic we obtain
the variational continuous assimilation scheme of Derber. The ultimate level of maximum
information occurs when the model error is predictable and known (to be equal to 0), this

is the current level of information of the classical 4D-VAR data assimilation algorithm.

Let us examine the Derber and Zupanski model error representations which are, at
the present time, the only methods tractable for a complex model such as MM5. The
variational continuous assimilation scheme is a control of the model bias. The model
error representation consists of the addition of a simple deterministic term ¢ in the model
equations. This term can be viewed as a general model bias multiplied by a prescribed
time modulating function w,. Thus, the original “perfect” model equations (2.80) of the
4D-VAR problem are slightly modified into: '

x(t;) = Qr(z)x0 + wr* ¢ (2.139)
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The time modulation w, allows us to weight the contribution of the model errors with their
respective time step, since the forecast error is likely to be more influenced by the most
recent times steps. This function is specified by the user. In his original paper, Derber
(1989) investigated 3 different time weighting functions: i) parabolic: w is a parabola null
at the initial time reaching its maximum at the end of the assimilation period; ii) constant:
then w * ¢ is the global model bias; iii) delta function: w is equal to 1 at the initial time
and 0 after, with such a function the estimation reduces to the initial conditions only, this
is equivalent to the 4D-VAR data assimilation solution. In addition, the function w, is

normalized so that the sum over all time steps in the assimilation interval is equal to 1.

Since such a model error term is purely deterministic, it has no statistical effects and
its contribution in the cost function is null. Thus, the cost function (2.81) defined in the
classical 4D-VAR data assimilation problem is still valid. If IC are not controlled, the |
background information (the first term in (2.81)) should be removed. However, IC and
model error can be simultaneously estimated. In that case, the minimization of the cost
function is performed with respect to both variables IC and ¢. The gradient of J with

respect to IC is given by:
Vzd = Xo (2.140)

The gradient of J with respect to the model bias error can be derived in a similar way as

was done in section 2.4.1; which, in a discrete form, is expressed as:
R
Vol = ) weke (2.141)
r=1

Compared to the classical variational assimilation procedure, the variational continuous
assimilation scheme needs to compute an additional expression (2.141). But, as we can
see, the information needed to evaluate this expression consist of the adjoint states X
only, which are, in any case, required in the classical scheme. The computational cost
of the continuous variational method is therefore equivalent to a classical 4D-VAR data

assimilation.

In Zupanski’s representation, the model error is a random process which does not vary
for a specified time period. Thus, the model was assumed to possess some time intervals
during which the error is near constant. Suppose that the model error varies every C

time-steps during the assimilation time window consisting of R model time-steps, then the
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general model equation:
x(t,) = Qr(z)x0 + Wy, r=1,..,R (2.142)
can be reduced to:
x(ty) = Qr(z)x9 + Wi, r=1,..,R, m=1,..,R/C (2.143)
for t, € [mAt, (m + C)At], where At is the model time-step. Thus, the parameters to

estimate are the IC xq and the R/C vectors wy,.

From a statistical point view, the process w is correlated in time. This can be ex-

pressed as:

E{w,wl} = E{wnwl} = Qn, if (t,, tm) € [mAt, (m+ C)At]

(2.144)
=0, if [tr—tn]|>CAL

where Q,, is the covariance matrix assumed to be known and diagonal. This statistical
a priori information should be introduced in the cost function (2.81) which is modified

accordingly into:

r=n

J = 1/2(x¢ — xb)B"l(xo -xp) + 1/2 Z (H,(x,) —d,) 7O (H,(x,) — d,)
;==0R/C (2.145)
+ 1/2 Z wl Q- w,, |
m=0

Now, the minimization has to be performed, with respect to the IC xo and the R/C
model error terms w,,. Therefore, in addition to the computation of the gradient V., J,
there are R/C additional gradientsV,,  J corresponding to the derivation of the cost func-
tion with respect the vectors wy,. The evaluation of these gradients slightly differs from
a simple sensitivity calculation, since the additional term in the cost function should also
be derived. The method for deriving these expressions is, however, similar and based on

the adjoint model. These gradients are given by:

m+C
Vud = Y % + Q 1wy (2.146)

c=m
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Compared to a simple bias, we see that the computation of the model error gradient is very
similar, except for the additional computations for the matrix-vector product. For diagonal
covariance matrices, this represents a very small amount of additional computations. There
are, however, R/C expressions to compute. With the values used in Zupanski’s paper of
R = 12h/At and C = 3h/At; this remains of the same order as a classical 4D-VAR

assimilation.

This representation of the model error is interesting, since it is an affordable approx-
imation of a time correlated process and it is almost certain (Daley 1992) that, in reality,
the model error is serially correlated both in time and in space. However, in the absence
of reliable statistics on the model error, the time constant C, which is the key parameter

in the method, can only be empirically determined.
2.4.8 Predictability study using adjoint model

It is common knowledge that weather forecasts may fail after a certain period of
forecast duration. It has also been observed for a long time by operational centers (Toth
and Kalnay 1995) that the loss of skill in the forecast does not occur at the same lead
time everyday. One reason for the failure of weather forecasts can be attributed to the
imperfection of numerical models in representing the actual atmosphere. However, it has
been known since the pioneering work of Lorenz (1963) that this is not the only reason for

forecast failure.

As Lorenz showed, the most fundamental cause of forecast failure is that the étmo—
sphere is a chaotic system. A chaotic system can be defined as one whose evolution is
sensitive to ICs. This means that an arbitrarily small error in the analysis of the initial
state of the atmosphere can have an overwhelming effect in a finite time. The length of
atmospheric predictability for forecast failure to occur has been estimated to be between
2 and 4 weeks (Toth 1991). This predictability is inherent to the atmosphere and nothing

can be done to push this limit further.

What is possible, however, is to predict how the loss of forecast skill will occur in a
forecasting system. By studying how small perturbations, introduced around the initial
time, grow; it can be inferred how sensitive the model is and, thus, how robust are the

corresponding forecasts. For instance, if two similar initial states lead to very different
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trajectories, then forecasts will be highly sensitive to initial analysis errors and can be
erroneous. In that case, the model predictability will be said to be low. On the contrary,
if most of the model trajectories converge to the same state, then this state will constitute
a good forecast with a high degree of confidence, since probability for the true atmosphere
to be different is very low. This favorable situation corresponds to a high predictability

system.

The reason for two trajectories to diverge is that atmospheric states are unstable.
Predictability issues arise, thus, when uncertainty in initial data combines with instability.
The faster the uncertainty grows, the less predictable the system is. An assessment of
the uncertainty present in both the model and the data is therefore a pre-requisite for
predictability studies. In order to quantify this uncertainty, perturbations should be chosen
so that they can excite all the possible, and at least the unstable modes in the model. The
choice of the perturbation is therefore crucial and is still the subject of discussion within
the meteorological community. Several techniques have been proposed (see Palmer 1995

for a review), the most popular being the breeding and the singular vectors methods.

The breeding method (Toth and Kalnay 1995) performs a kind of Lyapunov vector
computation. A random initial perturbation is generated with a specified amplitude, char-
acteristics of a typical uncertainty in the initial state. Two integrations are run over a
specified cycle time (e.g. 12h). The first is an integration of the operational weather pre-
diction model from the operational initial state. The second integration is made using
the same model, but is initialized by adding the perturbation to the operétional analysis.
At the end of the integration period, the difference between the two integrations is renor-
malized using the specified amplitﬁde. The process is repeated for the next cycles, and
each time the previous renormalized perturbation is used to generate the new perturbed
initial state. In the long run, these perturbations (called breeding vectors) are taken as
the most likely error patterns in the forecasting system and they are used to generate the

perturbations for the ensemble forecasts.

Singular vectors (see Section 2.4.3), which are computed from the TLM adjoint model,
have been recently applied to such study in which singular vectors are used as various
elements in Ensemble forecast (Molteni et al., 1996). These vectors represent the most

rapidly growing modes in the early stage of the model integration. They are, therefore,
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the directions along which initial perturbations will likely expand the most during the

forecast.
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CHAPTER 3: THE MM5 ADJOINT MODEL SYSTEM

This section describes in detail the MM5 adjoint model system. The testing and the
performance of the system can be found in the papers of Zou et al. (1995), Kuo et al.
(1995), Zou (1996), Zou and Kuo (1996), Kuo et al. (1997), and Zou et al. (1997).

For the past three years, the Mesoscale Prediction Group at the NCAR/MMM divi-
sion, under the support of the National Science Foundation, the Federal Aviation Adminis-
tration, and DOE/ARM, has been developing a mesoscale data assimilation system based
on the nonhydrostatic version of MM5 and its adjoint. Since MM5 employs the fully com-
pressible system of equations, it is capable of explicitly simulating weather systems from
the synoptic scale to the mesoscale and cloud scale. With the availability of more than
one option for various physical processes, MM3, its TLM and adjoint model, and the MM5
4D-VAR system based on these models will be a unique tool for mesoscale meteorological

research.

As the first step of this effort, the MM5 TLM and adjoint model with complex physics
have been developed. In this chapter, we describe the MM5 TLM and adjoint model.
Features of the restart of the minimization procedure, the proper handling of disk space for
large problems, the infrequent basic-state update, and the minimization procedure are also
provided. We also briefly describe how to carry out 4D-VAR and sensitivity experiments
using these models and provide a description of the minimum work that the users may
need to do in order to run their own case. Principles of the adjoint code development and
various examples mostly encountered in the MM5 adjoint model development are provided

in Chapter 4.

3.1 MM5 TLM and its adjoint model

A numerical model, such as MM5, used for the study of atmospheric dynamics and
physics, is a computer code that uses initial and lateral boundary conditions and the many
parameters that define the physical and numerical conditions as independent variables
(input). The dependent variables (output) of a numerical model consist of a temporal
sequence of meteorological fields produced by the integration. The concept of input (vari-
ables) and output (variables) plays an important role in the whole procedure of adjoint

model development.
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MMS5 is a limited domain nonhydrostatic finite-difference model (Grell et al., 1994).
A time splitting scheme is applied to handle sound waves and fast moving external gravity
waves to increase efficiency. It possesses multiple options of physical parameterization. We

can write such a model (i.e., MM5) in a general form

ox v

5 F(x) (3.1a)
X|t=t, = X0 (3.10)
x(t)lr = y(¢) (3.1¢)

where xo and y(t) represent IC (a model state at the initial time ¢o), and lateral boundary
condition (LBC, a condition that the model state needs to satisfy at the boundary of the
domain: T), respectively. In MMB5, there are six or eight control variables if a microphys-
ical scheme is used. These are 3-dimensional wind u, v, and w, temperature T, relative
humidity g,, pressure perturbation p’, cloud water g. and rain water g¢.. The model uses a

terrain-following o-coordinate defined entirely from a reference state (po(z), To(2), po(2)),
Po— Dt - *
g = ’_"_,,,—_t" P =ps— Dt (32)
p
where p, and p; (p;=100 mb) are the surface and top reference pressures of the model,

respectively. MM5 uses a flux form for advection, and its variables are coupled with p*,

which is a time-independent 2D model constant.

Linearizing the forecast model (3.1) about a nonlinear model trajectory x(t) and y,

we obtain a TLM which can be written as

ox'  O0F(x) "

-é-t— = ax (330)
x'|¢=¢0 = X’Q (33b)
_X’(t)lr =y'(t) (3.3¢)

where prime represents perturbations of the corresponding variables. Integrating MM5
TLM, starting from a perturbed IC (x/q) and/or LBC (y';,i = 1,...,4i), one obtains a
perturbation solution x'(t) which is accurate to the first-order approximation O(]|x'0||*)

and O(||y’;]|?); i-e., compared to the true perturbation solution

xltrue(t) = x(t)l(xo+x’o,y+y') - x(t)l(xo,y)a (3-4)
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the TLM solution x’ satisfies the following equation:

X true(t) = x'(£) + O([[x'o]|?) + O(Ily";[I*)- (3-5)

The word “adjoint” comes from the inner product in linear space. A linear operator,

L*, is said to be the adjoint of L if, for all x and y in a linear space S,
<y,Lx >=<L'y,x> (3.6)

where < -,- > represents an inner product. In Euclidean space, L* = LT.

The adjoint model corresponding to (3.3) is (see Section 2.3.1)

” T
_ % _ (ag i")> % | (3.70)
ilt:tn =0 (37b)
%()|p = 0 | (3.70)

where tg represents the final time of interest.

Egs. (3.3) and (3.7) are the continuous forms of the TLM and adjoint model of MM5
if MM5 is symbolically written as (3.1). Unfortunately, such a procedure to derive the
adjoint model, although good for simple models, is not easy to do for a complex model
like MM5 for the following two reasons: (i) the partial integration procedure to derive
(3.7) from (3.3) following (3.6) for a primitive equation model can be very tedious. With
various physics options for which more than one expression is included, this becomes even
more difficult. (ii) The discretization of the adjoint equation may become inconsistent with
the original model and the accuracy of the gradiént will be limited to the accuracy of the

finite-difference scheme used in discretizing (3.7).

Another way of obtaining the adjoint model is to develop it directly from the dis-

cretized forward model, which will be illustrated as follows:
In discretized form, MMS5 can be written in general as
x(tr) = Qr(x)z
z=(xo,}’t1,Yt2,---,Yt,-.~)T (3.8)
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where z represents the model input vector including both the IC x¢ and boundary condi-
tions y¢,,¢ = 1,..., 4, and possibly model parameters if ariy. The discretized MM5 TLM
can be directly developed from the discretized MMS5 (3.8) and can be written as

x'(t,) = Py (x)2’
z, = (x,07 y,tl 3 y’t27 ¢t y,tﬁ )T (3’9)

where P, = 0Q,/dx. | Therefore, the MM5 TLM can be obtained by a linearization

procedure line by line.
The adjoint model is then defined as (see Section 2.3.2)

7" = PT(x)x(t,) | - (3.10a)
x(t,) = (forcing term), r=R,R-1,...,0 (3.100)

under the Euclidean norm, where the hat represents adjoint variables, forcing term(=
0J/0x) depends on the forecast aspect (represented by a cost function J) one wishes to
study (see section 2.2), and R is the total number of time levels at which forecast aspects
are investigated. Comparing (3.9) with (3.10), we find that the adjoint model of MM5
is simply a transpose of the MM5 TLM. So the development of the MM5 adjoint model
becomes a rewrite of the MM5 TLM model in a way which realizes the transpose of the
original operations in the MM5 TLM. The gradient of a cost function J with respect to
the control variable z obtained using (3.10) (see section 2.3.2 for a detailed derivation of
gradient) is accurate to the machine accuracy. The detailed procedure of calculating the

gradient of J using the MM5 adjoint model is provided later in Section 3.7.

This discretized method of building the adjoint model from a discrete forward model
not only avoids the inconsistency génerally arising from the deriyation of the adjoint equa-
tions in analytic form followed by the discrete approximation, but also simplifies the pro-
cedure of constructing and debugging the adjoint model for a complex model. It can be
further illustrated as follows: If we view the MM5 model operator as the result of the

multiplication of a number of operator matrices:

Qr = Qu1(%r,)Q2(xr,) - - QN (Xry), (3.11)

where each matrix Q;(i = 1,:--, N) represents either a subroutine or a single DO loop

and x,., is a vector of variables depending on model predictive variables, then the TLM
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operator can be written as
P.=AA;---Apn, (3.12)

where matrix A;(= 8Q;/0x;,),t = 1,---,N) represents the linearized operation of Q;.

- The adjoint model operator PT is then a product of sub-adjoint problems
PT = ATAL_,---AT. (3.13)

In this way, the discrete adjoint model can be constructed piece by piece. The discrete
operations in the forward model have unique corresponding discrete operations in the ad-
joint model. The above derivation parallels the coding of the model where the algebraic
operations are carried out by computer instructions (see Section 3.6). The correctness
check for both the TLM and the adjoint model can also be carried out piece by piece. This
is extremely handy and convenient, especially for dealing with various physical parame-
terization schemes. The tangent linear and adjoint versions for a specific scheme can be

developed and tested separately from other parts of the model.

In general, for each physics routine sub_name in MMS5, we developed three correspond-
ing routines: lsub_name — linear version, asub_-name — adjoint version, and msub.name
— basic state version. For a linear subroutine, of course, lsub.name is not needed. For
Isub.name and asub_name we use the same naming convention for the perturbation and
adjoint variables respectively as the corresponding variables in the original code sub_name.
In msub_name, only the input and output variables are changed into a different naming
convention, by appending a number 9 to its original name. The naming convention for
local variables in msub_name is not changed. msub.name does not exist if all the input
and output variables in sub_name happen to be in the argument list or there is no future
relevant nonlinear calculation following the CALL to this subroutine in the entire forward

model.
3.2 Lateral boundary condition

The LBC used in MMB5 includes values of all model variables and their time tendency
at the five outermost points of the domain every y hours (update frequency of the large-
scale boundary conditions). A relaxation method is used to “nudge” the model predicted

vi.r;ebles toward the large-scale analysis near the lateral boundaries. The method includes
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Newtonian and diffusion terms:

da _5-n 1 (@ )_S—nA32
8t 3 10A: LS T aMC 3 50A%

where As is the grid spacing, a represents any model variables except the vertical velocity

(aLs — amc)- n=2234 (3.14)

and cloud microphysics variables which is not nudged, MC denotes the model calculated

quantities and LS the large-scale boundary conditions.

In the original setup of the MM5 model, the LBC includes values of all model vari-
ables and their time tendency at the five outermost points of the domain. However, the
time tendencies of LBC are obtained from the values of model variables near the lateral
boundaries several hours apart by a linear interpolation procedure. Therefore, either the
tendencies or the model variables near the lateral boundaries should be considered as part
of the control variables besides model IC. The actual MM5 input control variables are u,
v, T, qv, Qc, gr, and p’ at all model levels, w at inner model levels (see the next section),
and the tendencies of all model variables at the five outermost points of the domain at
every boundary updating time. These are summarized as y in (3.1) to represent the model
input lateral boundary conditions. Curr.ently,' the time tendencies of model variables near

the lateral boundaries are chosen as the control variables of LBC.

3.3 Upper and lower boundary conditions

Both options of the upper boundary conditions in the nonhydrostatic MM5 model
are available in the MMS5 adjoint model: (i) the fixed upper boundary and (ii) the upper
radiative boundary condition. The vertical velocity at the surface is derived from the
surface wind field, along with terrain information. Therefore, the vertical velocity w at
the top and bottom model levels, originally included as part of the MMS5 initial condition,
should not be considered as part of the control variables. The part of the calculation for w
at the top and bottom model levels, which were carried out in the preprocessing stage of
the MMS5 system, is thus added to the beginning of the MM5 forward model subroutine.

3.4 Adjoint physics

Adjoints of physical parameterization processes are required in the 4D-VAR system
to increase the realism of the numerical model and to be able to assimilate new types of

indirect observations which have a strong relation to moist physics and surface processes.
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10.

11.

version of the MM5 adjoint model, which will be released in 1997, includes the simple

The MM5 adjoint model includes the following physical parameterizations:

. Horizontal diffusion;

Vertical diffusion.

Dry convective adjustment;

Bulk-aerodynamic surface flux parameterization;
Resolvable scale precipitation processes;

Explicit treatment of cloudwater, rainwater, snow and ice;
The Kuo cumulus parameterization scheme;

The Grell cumulus parameterization scheme;

. Surface energy equation;

Atmospheric radiation parameterization; and

Blackadar high-resolution model.

The adjoint version of each parameterization scheme is developed separately. The dry

physics (1)-(4), on top of the model dynamics.

the treatment of the “on-off” switches, the GOTO statements, the implicit redundant
calculation, the loss of accuracy, the appearance of near-zero denominator, and the complex
logical-related trace of input and output variables. In order to simplify the adjoint coding,
we always start with replacing the GOTO statement with IF statements if possible. The
“on-off” switches are retained, the physics TLM was first developed by linearizing the
nonlinear model around the basic state at every time step while keeping the “on-off”

switches the same as in the nonlinear model, and the adjoint physics is then obtained by

Most of the problems encountered in the development of the adjoint physics are:

transposing the 6perator of the physics TLM at the coding level.

3.5 TLM and adjoint code construction and model structure
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When working with a numerical model which was developed without the adjoint con-

cept, the following procedure must be followed to develop its adjoint model:

1. Identify all the independent control variables of the model;

As mentioned in section 3.1, not all the original input variables can be viewed as the
model’s independent input variables. Also, the model’s input constant array shall
be identified from model variables since the linearization depends very much on this

information.
2. Develop the TLM;

'The TLM is a linear version of the original nonlinear model and its solution repre-
sents a first-order approximation of the difference between perturbed and unperturbed
nonlinear model solutions. It is obtained by linearizing the original model around a
nonlinear model’s solution in time — basic state. A general rule and several specific
problems that shall be handled properly in the TLM development is presented in
Chapter 4.

3. Test the correctness of the TLM;

Eq. (3.15) (next page) shall be verified for all the model prognostic variables at any
model grid point or for the whole domain. If the denominator equals zero, the values

of both the numerator and denominator shall be examined separately.
4. Develop the adjoint model;

Having a correct TLM, the adjoint model is developed based on the TLM. The adjoint
model operator is simply the transpose of the TLM operator. Since we do not have
an explicit TLM operator matrix, the transpose of the TLM has to be realized at the
coding level. The MM5 adjoint model is obtained by writing the adjoint of each line
in the TLM from the bpttom to the top, while the calculation of those basic-state
dependent coefficients in the adjoint model shall be kept the same as in TLM. Various
rules of writing adjoint code and numerous examples illustrating these rules can be
found in Chapter 4.

‘Figure 3.1 shows the three flow charts of the main subroutines of the MM5 forward
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model, its TLM, and the MM5 adjoint model, with explicit interaction between MM5 and
its TLM, or MM5 and its adjoint model, as well as indications for user interaction of
gradient calculation of a specific cost function J° depending on model predictions during
the time window [to,tn]. Given an IC xo, the MM5 model is integrated forward. The
model prediction at every time step, x(t), is saved which is used as input of both the
TLM and adjoint model. The backward integration of the adjoint model starts from a -
zero condition at the ending time of the assimilation window ty: X(¢tn) = 0. The model
state x(t,) consisting of wind, temperature, specific humidity, cloudwater, rainwater, and
pressure perturbation are used to derive all the nonlinear coefficients in the TLM and
adjoint model. This renders the computational cost of the TLM more than twice as
expensive as the MM5 forward model integration itself due to the nonlinear calculation
plus the linearization. The adjoint model integration takes even more time than that of
TLM due to the repeated nonlinear calculations resulting from the fact that the adjoint
calculation (backward) and the basic state calculation (forward) go in opposite directions.
However, in this way less internal or disk memory is required than if we save more nonlinear

coefficients.

3.6 Correctness check of TLM and adjoint model

The correctness of the TLM can be checked against the forward nonlinear model

through the following formula:

B(a) = 122 Hfﬁfﬁh U _ 14 o) (3.15)

where z is a vector of all the input variables of the operator Q,. The values of ®() shall
linearly approach unit value with increasing accuracy as a becomes progressively smaller.
The initial perturbation with oh in this range is “small” enough to ignore the higher-order

terms and “large” enough to avoid machine round-off errors.

The correctness of the adjoint model can be checked by the following algebraic ex-
pression: -
(P,z)T(P,2) = zT (PT(P,z)). (3.16)
As we mentioned before, (3.15)-(3.16) can be used for checking the correctness of tan-

gent linear and adjoint correspondences for any part of the code, a single DO loop or a

subroutine or a combination of a few of these operations.
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Adjoint check procedure:
1. Generate values of the input variables z

If the code is correct, (3.16) should be verified for all input values of z. One can
give z an artificial value. However, if P, contains part of the physical processes, it’s
very difficult to produce a reasonable input value for z in order to activate those IF
statements in the original code. If the input value of z doesn’t result in a complete
route for all parts of the code, then the check is incomplete. Therefore, in order to
check the correctness of the adjoint code of a physical process, one may need to run
the full model till the call to that physical process and save the input variables z and

inputting constants for multiple checks that may follow.

2. Run the TLM code A and obtain the output vector of y = Aq. Calculate the left-
hand-side value of (3.16): wleft = yTy.

3. Use the output of the TLM code y as the input of the adjoint part AT calculation
(¥ = y) and obtain the output the adjoint calculation x = ATy. Calculate the
right-hand-side value of (3.16): wright = qTx.

4. Compare the values of wleft and wright to see whether they are>equal to the machine
accuracy. On CRAY;YMP, 13 digit accuracy is the best result to be expected. In some
rare cases, less than 13 digit accuracy can still represent a none-error adjoint code.
Our general experiences are that a minimum of 9 digit accuracy are required for a

single-precision CRAY machine.

Another thing worth mentioning for a rigorous check of the adjoint code is the bal-
ancing problem, which shall be described as follows: Say that the output of the tangent
linear operator A, y, contains two different variables: y = (y1, y2)T, and the norm of y;
is much larger than the norm of y, for a given input testing data set: x. The adjoint test
using (3.16) might still give a right test even if there is an error in the adjoint code AT
associated with the adjoint input y2, since the value of y;Ty; is much larger than the
value of y2Ty2 and the summation of y; Ty; + y2Ty2 = yTy will not reflect such errors.
" In order to avoid the existence of such a hidden error in the adjoint code, one can either
use a modified norm with proper scaling of the variables or use a more straightforward
method: Check each variable y; and y individually by repeating the check (3.16) twice
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by forcing y1 = 0 and y2 = 0 respectively before entering the adjoint operator AT,
3.7 Gradient calculation and its accuracy test

It is shown in Fig. 3.1, the gradient of a specific cost function J°, depending on model
predibtions during the time window [to,n], with respect to an IC xo can be obtained as
follows: integrate the MM5 model from xo at time ¢o. Save the model prediction at every
time step, x(t,), and save the forcing 8J°/8x(t,) at those time steps when observations
are available while the value of the cost function J° is being calculated. Values of both
saved nonlinear model trajectory x(t,) and cost function related forcing 8J°/9x(t,) are
inputs to the adjoint model backward integration, which starts from a zero condition at

the ending time of the assimilation window tx: %(ty) = 0. As mentioned before the
| nonlinear predictions x(¢,) are used to derive all the nonlinear coefﬁciénts in the adjoint
model and 8J°/8x(t,) are added to the adjoint variable X at time ¢,. The resulting value
of the adjoint variables at the beginning time of assimilation window t, contains the value

of the gradient of J° with respect to the IC Xo, i. e., Vx,J° = Xo-

The correctness of the gradient calculation can be obtained through a procedure sim-
ilar to the check of TLM (3.15):

°(xp + ah) — J°(X)

gy = 10, (3.17)

Pla) =2

i. e., the values of ¥(a) shall linearly approach unit value with increasing accuracy as the

order of the magnitude of « is decreased gradually.

When the cost function J° consists of several terms (say J° = Zfil J?), a more strict
gradient check is to apply (3.17) to J? separately, i. e., the gradients of J?, Vx,J? with
respect to the IC xg should be checked individually by setting J? (i # 1i) equal to zero.

3.8 Minimization

The objective of 4D-VAR is to find an “optimal” initial condition (model parameter)
that will result in a model solution which best fits background information (J?), summa-
rizing all the previous observational and forecast information, and various current observa-

tions distributed within a certain time and space interval (J°), with proper error statistics
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for both the model and the observations. The “optimal” initial condition (model parame-
ter) is sought based on the minimization of the objective function J = J® + J°. Both the
large-scale limited-mémory and truncated Newton minimization algorithms, mostly used
for solving such a problem, require the gradient (VJ) information. One of the major classes
of algorithms commonly used for large problems in meteorology is the limited-memory
quasi-Newton method (Navon et al., 1992, Thépaut et al., 1991). From several (m + 1)
gradient vectors g;,i = k,k — 1,...,k — m, the limited-memory quasi-Newton method
forms an approximate to the search direction di, which is defined as: dx = —Hygx, where
H, is the inverse Hessian matrix (the second derivative of the cost function with respect
to the control variables: model initial condition and/or model parameter), the subscript
k represents the number of iterations and m is an integer between 5 and 11 (Zou et al.,
1993a). The vector d; = —H. g is a descent direction along which a step size ay, is found

which satisfies:

J(x$ + apdi) = ming J(x$ + ady) (3.18)

Once the step-size aj is determined, the initial condition obtained at the kth iteration is

updated as:
xgk-H) = x((,k) + opdg (3.19)

The next iteration continues by finding the next search direction dgy; according to the

new gradient information and so on.

Various limited-memory quasi-Newton methods (Shanno and Phua, 1980; Gill and
Murray, 1979; Liu and Nocedal, 1989; and Buckley and Lenir, 1983) differ in the selection of
m for g;,i =k, k—1,..., k—m, the choice of the zeroth iteration Hessian matrix Hqy (which
is generally taken to be the identity matrix or some diagonal matrix for preconditioning
purposes), the method for computing Hyg;, and the line-search implementation which
determines the suboptimal step size o (see (3.18)). If a standard minimization software
is chosen, the only components needed from users are the values of the cost function J and

((,k). The former can be obtained by

its gradient VJ at every updated control variable x
integrating the nonlinear model forward and the latter by integrating the adjoint model

backward with proper forcing terms added to the left-hand-side of the adjoint model.

We use the L-BFGS method of Liu and Nocedal (1989), which is described in section
2.3 of Zou et al. (1993a). ‘
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Figure 3.2 shows the flow chart of the main minimization program. The main program

is separated into two parts:

(1) Read in IC and LBC, set all the ingredients in the cost function J including observa-
tions and weighting matrix, define units for the guess IC, perturbation IC, basic state,

forcings, gradients and search direction, and form a simple scaling; and

(2) Carry out minimization procedure, which consists of the calculations of (i) the values
of J (x((,k)) and V_uJ, (ii) the search direction di, and (iii) the step size ax, and

0
print out the number of iterations, the number of function calls, the values of J (x(()k)),

meJ , and o, at each iteration.
0

3.9 Restart of minimization

The minimization procedure in 4D-VAR was carried out in an iterative fashion as
already described in Section 3.8. The limited-memory quasi-Newton method of Liu and
Nocedal (1989), which is implemented in the MM5 4D-VAR experiments, calculates the

search direction as follows:

d® = — H(o)go, HO =1
d® = - HK g,
H(k) = H(k) (H(O), Bk: Bk—15-- -3y Bk—m>» xgc), x(()k_1)3 AR xgc_m)) (320)

where m = min{k,4}. Therefore, the L-BFGS method generates the search direction
(defined as the inverse Hessian matrix multiplied by the gradient) by using information
from the last m (which is set as 5 in the code) quasi-Newton iterations. It thus requires
2Nm storage locations to save the vectors of gradient and state vector at the m most

current iterations. For detailed expression of H®*), see Zou et al. (1993a).

Examining the above updating formula for the search direction in the minimization

procedure, we found that all the m most current values of the gradient and initial condi-

. k k-1 k—
tions: Bk Bk—1s+++98k—m> xg )9xg )7°",x§) ™)

the iteration number, for the restart of minimization to produce an identical result without
restart. This was done in the MM5 4D-VAR program.

need to be saved properly, along with

3.10 Handling of disk space for large problem
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The problem to be addressed in this subsection is the explosive growth in on-line
computer memory for computing the gradient of a chosen cost function by the forward
and backward integrations of the MM5 and its adjoint model, which characterize large-
scale assimilation or sensitivity studies. The storage problem imposes a severe limitation
on the size of adjoint studies, even on the largest computers. A strategy can be constructed
that enables the forward MMS5, the forward TLM, and the backward adjoint model runs
to be performed in such a way that the on-line storage requirements can be traded for

. remote storage requirements, the mass storage system supported at NCAR.

Recall that both the TLM and adjoint model of MM5 are linear models linearized
around the instantaneous nonlinear model solution. The MM5 model forecast of x(t,) =
(u(ty), v(tr), T(tr), q(tr), w(tr), P'(tr), gc(tr), g (t-))T is saved at every time step and in-
putted to the MM5 TLM and adjoint model. The intermediate basic-state dependent
coefficients needed in the TLM and adjoint model are recalculated from the saved MM5
forecast variable x(¢,). The adjoint model requires the saved nonlinear model solution to
be read in an opposite direction. In order to save the CPU time spent on reading in the
basic state for the MM5 adjoint model, a direct access format is used for the basic state
output. We then break the total assimilation period [to,%r] into several time intervals:
[to,tr,)s [tr 415 t2r )y « o and [tLr,+1,¢R]). The value of r; depends on the disk quota limit
allowed for the job. If the maximum file size for basic state saving is M gigabytes, then
the maximum total time steps of which the basic-state can be saved on-line simultaneously
isry = M/(8N), where N is the dimension of the model state x. The total number of the
times of the mass storage save, L, can then be determined as L = R/r; + 1. Therefore,
after the rith time step, the basic state during the period of [to,?,,] will be moved to the
remote storage to free up the disk space for the continuing forecast in the time window
[tr, + 1,t2r,] and so on. When we integrate the adjoint model backward, the basic state
during [tLr,+1,tr] is used for the backward adjoint model integration from tg to tz,,. It is
then removed and the basic state during [t(z_1)r,+1, tLr,] is read from the remote storage,

and the adjoint model integration continues.

This generally-applicable strategy enables data assimilation and any other studies us-
ing MM5 TLM or adjoint model to be conducted on a signiﬁcantly larger domain and/or
with much higher resolution than would otherwise be possible, given the particular hard-

ware constraints, and without compromising the outcome in any way. The computational
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time may increase depending on the speed of the data transfer process between the local

machine and the remote storage.

3.11 Infrequent basic-state update

The MM5 TLM and adjoint models can be used for many applications. Since the
TLM is a model linearized around the nonlinear model solution in time, the MM5 model
solution at every time step is usually saved and then inputted to both the TLM and the
adjoint model. This may present a storage problem for a large or even a medium-size
job on current computers. For example, for a 6-h sensitivity calculation of a case with a
grid-size of 62x79x27 and a time step of 1 min., the basic state saved from MM5 will need
6.07 GB disk space. If one wishes to extend the sensitivity study to 12 h, it can be done
only if there is a way, either to shift some of the nonlinear model output to other places
such as to the mass storage during the job execution time, or to use an infrequent update
of the basic state for TLM and the adjoint model. One way to resolve this problem is
to do an interactive shifting of the basic-state data onto some other place, as described
in Section 3.10. Another way to reduce the large disk storage requirement of the basic
state is to use an infrequent basic-state update. The former produces no approximation
to the numerical results, though the computation may last much longer due to the data
shifting processes, and the latter results in an approximation to the TLM solutidn and
the gradient calculation. A careful study on the proper length of the basic state update
frequency for the case of interest has to be conducted to ensure obtaining the convergence

of the minimization and a reasonably good sensitivity result.

For those runs without a treatment to suppress gravity wave oscillations, delaying the
infrequent update is suggested due to the presence of gravity oscillations in the basic state

at the first few hours of model prediction.

There are three options for obtaining the approximated basic state at those time steps
when basic states are not saved: a step-function approximation, a linear interpolation, and
a bi-parabolic interpolation scheme. The linear interpolation scheme seems to be the best
choice since it is much more accurate than the step-function approach, yet much cheaper
than the bi-parabolic interpolation scheme while producing a similar results as the bi-

parabolic interpolation scheme (Zou et al., 1997).
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3.12 Adjoint sensitivity calculation

Sensitivity analysis estimates the impact of different perturbations in model inputs
on the model forecast. For problems involving many input alterations (as MMS5 does) and
comparatively few model forecasted aspects (responses), the adjoint sensitivity formalism
is computationally far more economical (Hall and Cacuci, 1983; Errico, 1993; Zou et al.,
1993b) than any other methods. The sensitivity of one response to all the model parameters
and the model initial condition and lateral boundary condition can be evaluated in terms
of a single adjoint solution. In general, the gradient of the response function itself is used
to assess the sensitivity of the forecast aspect without a specific concern for a specified
perturbation to the model input variable. For instance, if the forecast aspect of interest is

an implicit function of the model prediction at some time ¢;, x(t1) (t1 > to):
J(xo) = G(H(x(t1))), (H is a forward model operator) (3.21)

then the gradient of J with respect to the IC xq, the sensitivity, can be defived as
oH \T 0G
Bx(tl) aH(Xl)
i.e., the gradient of J with respect to the IC can be obtained by integrating the adjoint

VxoJ =PI (x)( (3.22)

model from time ¢; with the “initial” condition 6G/8x, backward in time. The resulting
value of the adjoint variables at time to is the gradient of J with respect to the IC xq.
Notice that the adjoint model operator PT is a function of the nonlinear model state x

which is the MM5 forward model prediction starting from the IC xg at the initial time o.

" If the forecast aspect to be studied contains more than one time level model prediction

and two different forward model operators H; and Hj, for instance,

J(x0) = G(H1(x(t1)), Hz(x(t2))), - (3.23)
the gradient of J can be expressed as
o7 0H, )T oG - (6H2 )T 8G
Vxod = Py, (x) (6x(t1) oo TN\ axty ) ) (3:24)

Due to the linear property of the adjoint model with respect to the adjoint variables, the
gradient of J can be obtained by one single backward adjoint model integration starting

from the time t,, = max{t;,t2} with

oH, )T aG (325)

x(t) = <6x(t2) B, (x3)
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(assuming that t; > t;) as the starting value of the backward adjoint model integration
at the time t,,. When reaching the time t;, the second forcing is added to the adjoint

variables:

(3.26)

R . 8H, )T oG
x(t1) =x(t1) + .

(t1) = %(t) <6x(t1) OH, (x1)
The resulting value of the adjoint variables at the time ?; is the gradient of J consisting
of the two terms in (3.24).

The distribution of the gradient could provide an indication concerning the most

sensitive regions and the most sensitive variables.
3.13 4D-VAR experiment

In 4D-VAR, the adjoint model is used for the same purpose as in the sensitivity
study: To obtain the gradient of a forecasted scalar function (cost function) with respect to
model input vector z. The cost function J measures the distance between the background
information and initial guess, the model forecast and observation, weighted by the inverse
of the background error covariance and the observational error covariance, respecti‘vely.
Such a J should be deﬁned by users to solve their own problems. Once J is defined, the
values of J and its gradient with respect to the IC can be obtained following the procedure
described in Section 3.10. Any large-scale unconstrained minimization can then be used
to find the minimum of J, and xj, is usually called the optimal IC (see Section 3.8). A

limited-memory quasi-Newton method is provided in the MM5 4D-VAR system.

A good 4D-VAR experiment depends on a proper definition of J. Examining (2.81),
a complete 4D-VAR system has to include the following components:

(i) the estimation and specification of background term (x, and B~!) and observation

error statistics (Oy);
(ii) the forecast model and its adjoint (Q, and PT);

(iii) the forward observation operators (H,) and their corresponding adjoint operators
(HT). H, shall correctly calculate the model correspondence of the ith type of obser-

vations; and
(iv) the control of gravity wave oscillations.
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At present, a proper background term, J?, for MMS5 is not yet available. However,
a prototype 4D-VAR experiment can still be carried out by using either the NCEP (Na-
tional Center for Environmental Prediction) or ECMWF analysis as a simplest background

information.

Once the cost function J is properly defined, including the definition of the weight-
ing function, a scaling factor must be defined before the minimization procedure can be
executed. Scaling is a crucial issue in the success of unconstrained minimization problems
(Gill et al., 1981). In meteorology, the variables in the control vector have enormously dif-
ferent magnitudes varying over a range of several orders of magnitude. Scaling by variable
transformation converts the variables from units that reflect the physical nature of the
problem to units that display desirable properties for the minimization process. A simple
scaling is provided as an option in the MM5 4D-VAR system, which is similar to what was
done in the paper by Navon et al., (1992) in section 3c. '

3.14 A brief summary

A nonhydrostatic mesoscale adjoint model has been developed which is suitable for
many synoptic and mesoscale studies for a wide variety of problems requiring adjoint tech-
niques. The adjoint model has been developed and coded based on the Penn State/NCAR
mesoscale model version 5 (MMS5), and faithfully following the original MMS5 code. It
allows an easy future update of the MM5 adjoint model as MMS5 is updated and changed.
A backward in time integration of the MMS5 adjoint model can produce an accurate gra-
dient of any forecast aspect in a computationally efficient way. A proper handling of
lateral boundary conditions is provided with the option to either perturb or fix them. The
consequences of the optimal control, or of perturbing lateral boundary conditions on the

simulated flow, can be considered.

Technical details involved in carrying out 4D-VAR and sensitivity analysis were de-
scribed in this chapter. A few computational aspects of using the MMS5 adjoint model were
discussed. These include the capability of the restart of the minimization procedure, the
possibility of trading the on-line storage requirements for remote storage requirements to
eliminate the limitation of disk space for large problems without compromising the results
in any way, and the option of using an infrequent basic-state update. A number of other

applications of the MM5 TLM and adjoint model, including the treatment of model errors,
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the use of an incremental approach, the inverse TLM integration, and the singular vector
calculation with and without physics, were described in the previous chapter for a general

numerical prediction model. They expand the usefulness of the MM5 TLM and the adjoint

model.

The most difficult problems remaining are the handling of the interaction of multiple
meshes, and a proper specification of the background error and accounting for model errors

of MM5, which require further substantial theoretical study and an experimental program.

69






CHAPTER 4: PRACTICAL ADJOINT CODING IN METEOROLOGY

The progressively wide use of the adjoint models in many applications has provided
motivation for summarizing our experiences in developing various adjoint models, ranging
from spectral to finite-difference, and simple to complicated numerical models with various |

physical parameterization schemes.

While an automatic adjoint works for a “so-called” clean code, most adjoint model
developments are carried out by hand, with a “dirty” code at one’s disposal. The practical
situation of building an adjoint model from a pre-existing model (which is developed with
no knowledge of adjoint) which is usually not “clean” and might contain many computa-
tional approximations, makes the automatic adjoint coding not directly applicable to most
problems. It is the intention of this section to highlight many problems which may appear

in the practical coding of adjoint models.

Given a complex numerical model of weather phenomena, we require an adjoint model |
to calculate the gradient of some of the model outputs y = Cx(t) with respect to some or
all of the inputs xo. The adjoint model can be produced either by hand or by automatic
adjoint generator (Giering, 1996). In this appendix, we will summarize some hand-coding-

adjoint experiences, which shall be valuable for many newcomers to this field.

As mentioned in Chapter 3, the MM5 adjoint model is developed based on the MM5
TLM model. In this chapter, we will summarize some of the experiences obtained in
developing the MM5 adjoint model system with full physics. We have also included a few
examples we encountered in developing the adjoint model of the NCEP global operational

spectral model with various physical processes.
4.1 TLM coding — linearization

Following are a few items useful for the model linearization:

(i) Identify all the input and output variables for the entire model, each subroutine, and

every do loop.

(ii) Linearize nonlinear terms with respect to those variables identified in (i). Most of the

nonlinear terms in a numerical model consist of arithmetic operators (e.g., addition,
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multiplication, division) or intrinsic functions (sin, exp, ( )%, etc.) which are rather

straightforward to linearize.

(iii) Pay special attention to those terms in which a numerator in the nonlinear model
becomes a denominator in the TLM (such as with SQRT function). Add a small
number ¢, a number close to machine accuracy, to the denominator which may become

zero value.

(v) Check if there exists an implicit solver using an iterative method and treat it differ-

ently.

The easiest way to construct the tangent linear code is to write two lines in the
tangent linear version for each line in the nonlinear model, with the first line calculating the
perturbation term and the second line calculating the basic state determined coefficients.
Calculating the perturbation part before the calculation of the basic state part may become
a must in certain cases (see example 2). The basic-state calculation is not necessary if it

is not associated with the nonlinear coefficients.
Following are examples which describe each of the above items that could occur in
the practical linearization procedure

4.1.1 Inputs and Qutputs

The first and most important thing for the TLM and adjoint model development is
to correctly determine the input variables, input constants, and output variables for any

part of the code. The following example is used to illustrate this point:

Ezample 1:

A=Bx*C
=A*C+A -

Knowing that both B and C are inputs is not sufficient. One must decide whether
they are an input variable or they are a constant before writing the corresponding tangent

linear code. Those quantities which depend on mode} input control variables are variables,
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and others are constants. There are three possibilities to example 1:

(i) B is a constant, C is a variable. In this case, the tangent linear code of example 1

takes the following form:

=B*C
A9=B=*C9
D=CO*A+A9*C+A
D9=A9*C9+A9

(ii) B is a variable, C is a constant:

A=B=*C
A9=B9*C
D=A*C+A
D9=A9*C+A9

(iii) Both B and C are variables:

A=B9*C+C9*B
A9=B9*C9
D=C9*A+A9*C+A
D9=A9*C9+A9

where variables appended with number 9 represent the basic state, which shall possess the

same value as that in the nonlinear model solution without 9.
. 4.1.2 Linearization

Once the input and output variables are correctly determined, the next step is to

linearize the code. If it is a linear code, copy it. For those nonlinear terms, linearization
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must be carried out properly. For the advection terms or any terms similar to them,

linearization is rather straightforward.

Ezample 2:

A=B*EXP(0.7%C)

A=AxB

where both B and C are input variables.

The tangent linear code corresponding to this part is

A =B+EXP(0.7*C9)+B9%0.7+EXP(0.7%C9)*C
A9=B9*EXP(0.7%C9)

A=A»BO9+A9*B

A9=A0*B9

For the first line of the code in example 2, we can either place the perturbation
calculation before the basic state calculation, or vice versa. Both are correct. For the
second line of the code in the above example, we must calculate the basic state after the

perturbation line. Otherwise, the value of A9 in the third line of the TLM code is incorrect.

Another example we would like to mention here is an instance where a numerator
becomes a denominator during a linearization procedure.

Ezample 3:

o=
"

SQRT(B)

o
1]

A*+0.3

The tangent linear code is
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A = 0.5+B/SQRT(BS)
A9= SQRT(B9)
A = 0.3%A/A9**0.7
A9= A9*%0.3

It is not a problem if B=0 or A=0 in the nonlinear model. But in the TLM, B9=0
or A9=0 will make the TLM blow up. One way to avoid this is to add a small number €

close to machine accuracy to the denominators. The TLM code will take the form:

A = 0.5+B/(SQRT(B9)+€)

A9= SQRT(B9)

A = 0.3%A/(A9**0.7+€)
A9

A9**0.3

4.1.3 Dealing with iterative solver

However, there are other cases where linearization is not as straightforward as shown
above. For example, in the cumulus convection subroutine of the NCEP model, the dew-
point temperature Ty is calculated from the vapor pressure vp via an iterative method.
The tangent linear version of this calculation cannot be obtained by directly linearizing
the nonlinear code, i.e., linearizing the whole procedure of the iteration. One must obtain
the original formulation of the relation between Ty and vp, derive the analytical tangent
linear equation of the relevant equation, and write the independent linear code of this part
using the same variable notations as that used in the nonlinear model. The linear check

should be carefully done in this case to avoid any possible inconsistent usage of variables.
Ezample 4:

The dew point temperature Ty is calculated via a Newton iterative method using the

following formula:
To\* (4+B)(1- )
vp = 0.611 (—) € 4/ (4.1)
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where
Ci—Cy Lo

R, ’ R, Ty’

where ¢; is the specific heat of liquid water (which enters through the temperature depen-

A= B= To = 273.16°K

dence on L).

The value of Ty as a function of v, is obtained by finding the root of f(z) = 0, where
f(z) is defined as | '

f(z)=Alnz - (A+ B)z—[lnv, —In0.611 - (A+B)] == %. (4.2)
: d
The iteration starts from z(®) = 1.0 and ends whenever the following convergence criterion
is satisfied:
2™ — z*=1)| < 1078, (4.3)

where superscript (n) represents the n-th iteration.

Differentiating equation (A1) we have

v}, = 0.611 + [Az#~ — (A + B) 2] e(A+B)(1-2) g/

v To

IC, = ——IT‘?T‘;. : (4.4)
Therefore, the perturbation T} can be calculated if v}, is knoWn. The value of T4 and, thus
z, appearing as the coefficient in (4.4) is obtained by the original iterative method solving

(4.2).

Following is the corresponding nonlinear code:

SUBROUTINE ZDEWPT(VP,TD,N)

SAVE

REAL RA, RAPB, RB, RCH, RD, RDVP, RGS, RLOG3, RLVP, RN, RNT, RT
REAL RT3, RTEST, RVP, RVP1, RVP2, RVP3

DIMENSION TD(N),VP(N)

RT3= 2.7316E+2 1))

RVP3= 6.1078E+2 *1. E -3 (vp at Tp)

RLOG3=L0G (RVP3)
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RA

( 4.1855E+3 - 1.8460E+3 )/ 4.6150E+2 (A in eq.(4.1))
RB

2.5000E+6 /( 4.6150E+2 * 2.7316E+2 ) (B in eq.(4.1))
RAPB=RA+RB
RTEST=1.E-8 (criterion for convergence of newton iteration)
Res=1.80 (z(0))
DO 20 NN=1,N
RVP=VP (NN)
RLVP=L0G (RVP) -RLOG3-RAPB
10 RN=RA*LOG(RGS) -RAPB#RGS-RLVP  (f(z), Newton iteration loop.)
RD=(RA/RGS)-RAPB (now get its derivative)
RCH=RN/RD
IF (ABS(RCH).LT.RTEST) GO TO 15 (the desired change in the guess)
RGS=RGS-RCH (need more iterations)
G0 TO 10
15 RT=RT3/RCS (Tp/Ty)
TD(NN)=RT
20  CONTINUE
RETURN
END

The tangent linear code corresponding to the above subroutine is

SUBROUTINE LDEWPT(VP,TD,N,VP9,TD9)

SAVE

REAL RA, RAPB, RB, RCH, RD, RDVP, RGS, RLOG3, RLVP
REAL RN, RNT,RT, RT3, RTEST, RVP, RVP1, RVP2, RVP3
DIMENSION TD(N),VP(N),TD(N),VP9(N) |

RT3= 2.7316E+2  (triple point)

RVP3= 6.1078E+2 *1. E -3

RA=( 4.1855E+3 - 1.8460E+3 )/ 4.6150E+2

RB= 2.5000E+6 /( 4.6150E+2 * 2.7316E+2 )
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RAPB=RA+RB

CALL ZDEWPT(VP9,TD9,N)

DO 20 NN=1,N
X9=RT3/TD9 (NN)
COE=RVP3+ (RA*X9#* (RA-1) - (RAPB) *X9+*RA) #EXP (RAPB# (1-X9))
X=VP(NN) /COE
TD (NN)=-X*TD9 (NN) *TD9 (NN) /RT3

20  CONTINUE
RETURN
END

From the above example, we do not find much similarity between the original nonlinear

code and its linear code as compared to linearizing, for example, advection terms.

4.2 Adjoint model coding — transposition

Mathematically, the adjoint model is simply the transpose of the TLM. The imple-
mentation of the transposition of a large computer code in languages such as Fortran 77,
without the matrix of TLM being explicitly available, is not easy. The transpose of the
TLM has to be obtained by translating the TLM line by line into a sequence of computer
code which realizes the transpose operation of TLM. This becomes even more complicated
when the forward model is not clean, meaning the input-output variables for different parts
of the model are not easily identifiable and the code contains some redundant calculations,
GOTO statements, multiple usages of one variable, and cancellation of effective digits.
Although the MM5 adjoint model with physics has already been developed, incorporating
various types of observations into MM5 or conducting a sensitivity study of some indirect
forecast aspects using the MM5 adjoint model requires the adjoint of the forward observa-
tion operators. Therefore, additional adjoint coding is still needed for various applications
even if the MM5 adjoint model is made available.

Following is a list of rules for developing adjoint models:
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10.

Matrix method: A single loop, or several loops or a subroutine in the TLM can always
be expressed as an operation‘of a matrix multiplied by a vector, i.e., y = Ax, where
x is a vector of all the input variables and y a vector of the output variables. The
adjoint code corresponding to this piece of code shall always realize the operation of
%= AT§. Note that if the input x is reused after the operation y = Ax in the TLM,

x should be included in the output vector y.

Reverse rule: As indicated in (3.12) and (3.13), the adjoint version of any part of the
TLM works in a reverse order, meaning the first operation in a subroutine of the TLM
will be the last operation in its adjoint subroutine, the last will be the first, and so on.
However, the basic state which provides the coefficients to both the TLM and adjoint
model shall be calcilated in a forward mode as was done in the nonlinear model

MMS5. The coefficients depending on the nonlinear model basic state solution must

be correctly re-calculated in the adjoint models, particularly those variables which are

constantly updated.

Check whether any input variable of A is reused or not at a later stage, which requires
a global familiarity of the whole TLM.

Pay attention to the hidden reuse in a recursive loop, especially an implicit recursive

loop.
Find places where some variables are re-defined.

Find redundant calculations: For those operations in which values of some variables
are calculated but not used afterward in TLM, a cleanup must be made to remove

these operations or to zero out these variables in the adjoint model.

Special caution must be paid to variables which are sometimes used as model constants

and other times as variables.

Check whether an IF statement used variables as its decision components — treatment

of “on-off” switches.
Replace GOTO statements with IF ... THEN ... ELSE.

Be aware of the cancellation of the effective digits in the TLM.
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In the following we provide examples of the adjoint coding in order to better illustrate

these rules.

4.2.1 Matriz method

The first and foremost important rule of the adjoint coding is the matrix method.
This is the basic method of constructing an adjoint model from a TLM. One can always
view a loop, or several loops, or a subroutine, or a model as an operation matrix A acting

on a vector x (the input variables). The result is represented as an output vector y:
y = Ax (4.5)

The adjoint code development is to write the code corresponding to the following trans-

position:

%= ATy (4.6)
where AT represents the transpose operation of A.

Ezample 5: (see Navon et al., 1992)

DD 130 I=1,N-1
X(I)=a*Y(I+1)
130 CONTINUE

Obviously Y is the input variable and X is the output variable. However, Y might be
used again after this loop in the tangent linear model. If so, Y should also be considered

as an output variable of this part of the code, i.e., there are two possibilities:
1. X is the only output variable, i.e., Y is not used after this loop in the forward model;

2. Both X and Y are output variables, i.e., Y is used as input variable again for the other

part of the model after loop 130;
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The A matrix thus takes two different forms. For the first case, -

0 a 0 --- 00

0 0a --- 00
A= T ’

O 0 0 L 0 a (N—I)XN

and for the second case,

1 00 0 0

01 0 0 0

0 01 0 0

0 0O 01
A2=19 4 0 0 0

0 0 a 0 0

0 0 0 0 0

\0 0 0 e 0 a/ (2N—1)XN

Therefore, the adjoint code of loop 130 in Example 2 is either

y = A'{x when X is the only output variable

or
y = ATx when both X and Y are output variables

| depending whether or not the input variable x is reused or not.

The adjoint code corresponding to the loop 130 thus becomes:

D0 130 I=1,N-1
Y(I+1)=a*X(I) (Y is not reused after loop 130 in TLM)

130 CONTINUE

or
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DO 130 I=1,N-1
Y(I+1)=a*X(I)+Y(I+1) (Y is reused after loop 130 in TLM)
130  CONTINUE

4.2.2 Reverse rule

Since the adjoint operation is simply the transpose of the tangent linear operation, the

adjoint coding goes in the reverse order, i.e., if the TLM contains the following calculation:
x = P, P2P3Pyy,

the adjoint of the above calculation is
y = PTPIPTPTx.

Ezample 6:

For example, in the tangent linear model, we have a series of calculations:

x; = Piy:
X1 = P Y2
X Pa X1
y1 =Psx;
y2
(yl ) _ P4 X1
Y2 X5

The above calculation can be written as

1\ - p.p.p.p, [ V2
= P,P;P,P
(31) =Babspats (32)
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where

i I 0 I 00\ _ (I)gf(,’g~
Pi={ 0 I|,P,=|010|Ps=|_ 130 ,Ps=(0 P,)
P, 0 000
00 0 I

Notice that one cannot simply write the full computation (1)-(4) as

Y1 Y1
=P,P;P,P .
(yz) (P3P, l(yz)

The adjoint version of (1)-(4) is

Y1 DTHTHTHT [ Y1
=P;P;P;P ,
(3:) -#regerer (3

ie.,

4.2.3 Reused variables

In example 5 we briefly described the difference in the adjoint coding for reused or

not reused variables. Here is another example which has an implicit reuse of a variable:
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Ezample 7

Linear code:

DO 30 K=1,KK
DO 30 I=1,II
Y(1,K)=0.
DO 40 L=1,KK
Y(I,K)=Y(I,K)+X(I,L)*FLOAT(K)
40 CONTINUE
30 CONTINUE

If we assume that the input variable of the above code is X and the output variable

is Y, we mean that the variable X is not reused after loop 30.

The point we wish to emphasize here is that the input variable X(I,L) is reused
implicitly in the loop 30 for different K (K=1,...,KK).

Therefore, the adjoint code should be written as:

DO 20 K=1,KK
DO 20 I=1,I1
X(1,K)=0.
20 CONTINUE
DO 30 K=1,KK
DO 30 I=1,II
DO 30 L=1,KK
X(I,L)=Y(I,K)*FLOAT(K)+X(I,L)
30 CONTINUE

4.2.4 Recursive

For a recursive loop (for example, vertical velocity calculation), the newly calculated

value of the variables are reused in the same loop. Therefore, one recursive loop does not

84



correspond to one matrix operator. It is the multiplication of N matrix, where IV is the

total number of the recursive index.
Ezample 8:

Linear code:

X(1)=1.0
D0 10 I=2,3
X(I)=7.7%X(I-1)

10 CONTINUE

The above code is equivalent to the calculation

X1 X1
X9 = 1)21)1 X9
X3 X3

where
1 0 0 /1 0 O
P,=177 0 O , P,=|0 1 0 .
0 01 3x3 0 7.7 0 3x3

Therefore, the adjoint code should realize the calculation represented by

X3 - (xa1
x2 | = PTPT | x,
X3 X3

where

‘ 10 O 1 77 0
PIl=(0 1 77 , P;=(0 0 0
0 0 0 /4,3 0 0 1/,.,
The first operation:
X1 X1
X2 ==I)g, X2
X3 X3



is equivalent to
X(2)=7.7*X(3)+X(2)

and the second one:

X1 X1
Xa = I’gw X2
X3 X3

is equivalent to the code
X(1)=7.7*X(2)+X(1)
Therefore, the adjoint code should take the form

Adjoint code:

DO 10 I=3,2,-1
X(I-1)=7.7+X(1)+ X(I-1)
10 CONTINUE

i.e., the order of the loop on I must be reversed.

4.2.5 Redundancy

This problem arises when the forward model is not clean. For example, in MM5
SOLVE3 subroutine, we have

Ezample 9:

JBNES=2
DO 10 J=1,3J
AA(J)=B(J)+W(J)
IF (J.EQ.JBNES) THEN
QDOT(JBNES~1)=a(J)*W(J-1)
ENDIF
QDOT(I) =b (D) *W(J)
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10 CONTINUE

The calculation QDOT(J)=b(j)*W(J) for J=1 is overwritten by QDOT(JBNES-
1)=a(j)*W(J-1) when J=2, i.e., QDOT(J)=b(J)*W(J) for J=1 is a redundant calculation.
It is not wrong to be kept in the forward model or the TLM but it shall be taken care of

in the adjoint coding:

JBNEST=2
DO 10 J=1,3J
IF (J.NE.1) THEN | This is very important to add here.
W(J)=b(J)*QDOT(J)
ENDIF
IF (J.EQ.JBNES) THEN
W(J-1)=a(J)*QDOT (JBNES-1)
ENDIF
B(J)=A(J)
W(I)=A(D)
10  CONTINUE

4.2.6 Mizing used variables

Sometimes one array was used for different purposes. In the following example, for
instance, the array TGB (ground temperature) was temporarily used as a different variable

depending on pressure variable PPB. Special attention must be paid to this case.

Ezample 10: (bulk PBL)

DO 300 I=2,ILX -
TGDSA(I)=TGB(I,J) ( TGB is assumed to be a constant array)
PSi =PPB (I1,J,KL)/PSB(I,J)/1000.
PS19= PSB(I,J)+PTOP+PPB9(I,J,KL)/PSB(I,J)/1000.
TGB(I,J)=-ROVCP*TGB(I,J)‘(100./9519)**(RDVCP-i)*100.*P51/(P819*P819)
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C (TGB is being used as a tentative variable array)‘

TGB9(I,J)=TGB(I,J)*(100./PS19)**ROVCP

300 CONTINUE

The adjoint of the above loop 300 has to be written as

DC 300 I=2,ILX
TGDSA(I)=TGB(I,J) ! TGB is constant array
PS19= PSB(I,J)+PTOP+PPB9(I,J,KL)/PSB(I,J)/1000.
PS1=~ROVCP*TGDSA(I)*(100./PS19)**(ROVCP-1)*100.*TGB (I,J)/(PS19*PS19)
PPB (1,J,KL)=PS1/PSB(1,J)/1000. +PPB (I,J,KL)
300 CONTINUE

It is wrong if we write the 4th line in adjoint loop 300 as

PS1=-ROVCP*TGB(I,J)*(100./PS19)** (ROVCP-1)*100.*TGB (I,J)/(PS19%PS19)

There are also cases where one array was sometimes used as a working array and
sometimes used as a variable. For example, in SOLVE3, SCR3 was used as a working
array for subroutines (DIFFU, VADV) which calculate diffusion and vertical advection, it
is also used as a model variable representing a PBL tendency of the temperature T in the
subroutine BLKPBL. In order to avoid such confusion, SCR3 in DIFFU and VADV should

be changed into another name of working array.
4.2.7 “on-off” processes

All the “on-off” switches in MMS5 are kept in the MM5 adjoint model, and they are
turned on or off depending on the basic state of the nonlinear model solution.

Ezample 11:
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Nonlinear code:

SCA = 0.0
DO 20  K=1,KL
SCA =SCA +QVTEN(I,K)*DSIGMA(K)
20 CONTINUE
IF (SCA .LT. QDCRIT ) THEN
DO 80 K=2,KL
SCR3(I,X)=TWT(K,1)*QVA(I,J,K)+TWT(K,2)*QVA(I,J,K-1)
80 - CONTINUE
ENDIF

Linear code:

SCA = 0.0
SCA9 = 0.0
DO 20 K=1,KL
SCA =SCA +QVTEN(I,K)*DSIGMA(K)
SCA9=SCA9+QVTENS (I,K)*DSIGMA(K)
20 CONTINUE
IF (SCA9 .LT. QDCRIT ) THEN
DO 80 K=2,KL
SCR3(I,K)=TWT (K, 1)*QVA(I, J,K)+TWT(K,2)*QVA(I,J,K-1)
80 CONTINUE

ENDIF

Adjoint code:

SCAS = 0.0

DO 20 K=1,KL
SCA =SCA +QVTEN(I,K)*DSIGMA(K)
SCA9=SCA9+QVTENS (I,K) *DSIGMA (K)
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20 CONTINUE
IF (SCA9 .LT. QDCRIT ) THEN
DO 80 K=2,KL
SCR3(I,K)=TWT(K, 1) *QVA(T, J,K)+TWT(K,2)*QVA(I,J,K-1)
QVA(I,J,K)=TWT(K,1) *SCR3(I,K)+QVA(I, J,K)
QVACI,J,K-1)=TWT(K,2) *SCR3(I ,K) +QVA(I,J,K-1)
80 CONTINUE
ENDIF
DO 20 K=1,KL
QVIEN(T,K) =SCA*DSIGMA(K) +QVTEN(I,K)

20 CONTINUE

Therefore, the switch depends only on the basic state SCA9, not the perturbation
SCA.

4.2.8 Cancellation of the effective digits

In developing the adjoint of the Grell cumulus scheme, we had difficulty obtaining more
than 8 digit accuracy for the adjoint check, which was found to be due to the cancellation

of effective digits in the original nonlinear code.
Ezample 12:

Nonlinear code:

MBDT=DTIME*5.E-03

DO 175 I=ISTART,IEND
IF (AAO(I).LT.0.) GO TO 175
F= (AA1(1)-AAO(I))/DTIME
XK=(XAAO(I)-AAO(I))/MBDT
XMB(I)=-F/XK
IF (F.LE.0.OR.XK.GE.O0.) XMB(I)=0.

175 CONTINUE
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Linear code:

MBDT=DTIME#5.E-03
DO 175 I=ISTART,IEND
IF (AA09(I).GE.0.) THEN
F = (AA1(I)-AAO(I))/DTIME
F9= (AA19(I)-AA09(I))/DTIME
XK=(XAAO(I)-AA0(I))/MBDT
XK9=(XAA09(I)-AA09(I)) /MBDT
IF (F9.LE.O0..OR.XK9.GE.0.) then
XMB(I)=0.
XMB9(I)=0.
ELSE
XMB(I)=~F/XK9+(F9*XK)/ (XK9*XK9)
XMBY (I)=-F9/XK9
ENDIF
ENDIF
175  CONTINUE

Adjoint code:

DO 175 I=ISTART,IEND
IF (ARO9(I).GE.0.) THEN
Fo= (AA19(I)-AAO9(I))/DTIME
XK9=(XAAO9(I)-AR09(I)) /MBDT
IF (F9.LE.O..OR.XK9.GE.0.) then
XMB(I)=0.
F=0.
XK=0.
ELSE
F=-XMB(I)/XK9
XK=FO#XMB(I)/ (XK9*XK9)
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ENDIF
XAAO(I)=XK/MBDT
AAO(I)=-XK/MBDT
AAL(I)=F/DTIME
AAO(I)=-F+AAO(I)/DTIME
ENDIF
175  CONTINUE

Symbolically, both the tangent linear and adjoint codes are correct. But the accuracy
check gives only 8 digits. We found that it results from the fact that the difference of the
two very close numbers AA1(I) and AAO(I), XAAO(I) and AAO(I) are divided by two big
numbers DTIME and MBDT, respectively. DTIME and MBDT had a common factor of
DTIME. The results of these operations F and XK are divided afterward. If we modify
the TLM and adjoint codes into the following equivalent operations:

Modified linear code:

MBDT=DTIME*5.E-03

CMBDT = 5.E-03

DO 175 I=ISTART,IEND
IF(AA09(I).GE.0.) THEN

F=AA1(I) - AAO(I)

F9= (AA19(I)~AA09(I))/DTIME

XK=XAAO(I)-AAC(I)

XK9=(XAA09(I)-AA09(I))/MBDT

IF (F9.LE.0..OR.XK9.GE.0.) then
XMB(I)=0.

XMB9(I)=0.

ELSE
XMB(I)=CMBDT*(~F/XK9+(F9*XK)/ (XK9*XK9))
XMB9(I)=~F9/XK9

ENDIF
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ENDIF

176  CONTINUE

‘ Modified adjoint code:

DO 175 I=ISTART,IEND
IF (AA0O9(I).GE.0.) THEN
F9= (AA19(I)-AA09(I))/DTIME
XK9=(XAA09 (1)-AA09(I))/MBDT
IF (F9.LE.O..OR.XK9.GE.0.) then
XMB(I)=0.
F=0.
XK=0.
ELSE
F=CMBDT# (~XMB(I)/XK9)
XK=CMBDT*F9*XMB(I)/ (XK9*XK9)
ENDIF
XARO(I)=XK
ARO(I)=-XK
AAL(I)=F
ARO(T)=-F+AAO(I)
ENDIF

175  CONTINUE

A 13 digit accuracy is obtained.

4.2.9 Implicit redundant calculation

In some physics routines, there are cases containing implicit' redundant calculations,
which are necessary for the forward model. For example, in the NCEP parameterization

scheme which deals with the gravity wave drag, there is a loop which implements the
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following calculation:

DTFAC = ming,{DTFAC, abs(TMP(k)), k = 1, ksmm1}
where TM P(k) is a function of variables V and T.
The linear code and the adjoint code is shown below:

Ezample 14:

DO 1610 I=1,IDIMT
DTFAC (I)=0.
DTFAC9(I)=1.
1610 CONTINUE
DO 1620 K=1,KSMM1
DO 1620 I=1,IDIMT
IF (T9(I,K).NE.O.) THEN
TMP=(T9(I,K)*V(I,K)-V9(I,K)*T(I,K))/(2.*DELTIM*RCS*T9(I,K)*T9(I,K))
TMP9=V9(I,K)/(2.*DELTIM*RCS*T9(I,K))
IF (TMP9.LT.0) THEN

TMP =-TMP
TMP9=-TMP9
ENDIF

IF (DTFAC9(I).GT.TMP9) THEN
DTFAC (I)=TMP
DTFAC9(I)=TMP9

ENDIF

ENDIF

1620 CONTINUE

Adjoint code:

D0 1610 I=1,IDIMT
DTFAC9(I)=1.
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1610 CONTINUE
DD 16202 K=KSMM1,1,-1
DO 16202 I=1,IDIMT
IF (T9(I,K).NE.O0.) THEN
TMP9=V9(I,K)/(2.*DELTIM*RCS*T9(I,K))
IF (TMP9.LT.0) THEN
TMP9=-TMP9
ENDIF
IF (DTFAC9(I).GT.TMP9) THEN
TMP=DTFAC (I)
ELSE
TMP=0.
ENDIF
TMP9=V9(I,K)/(2.*DELTIM*RCS*T9(I,K))
IF (TMP9.LT.0) THEN
TMP =-TMP
ENDIF
V(I,K)=T9(I,K)*TMP/(2.*DELTIM*RCS*TQ(I,K)*TQ(I.K))
T(I,K)=-V9(I,K)*TMP/(2.*DELTIM*RCS*TQ(I,K)*TQ(I,K))+T(I,K)
ENDIF
1620 CONTINUE

On the surface, we can find nothing wrong with the adjoint code. However, in the case
when DTFACY(I) > TMP9 occurs more than once, the adjoint code will never provide a
correct answer. The reason is that in the original code, only the value of TMP at one level
on which TMP reaches its maximum is actually used for the later calculation. The TMP
calculation on other levels is needed only for finding such a level. Therefore, the correct

adjoint code of example 14 is given as below:

Modified adjoint code:

DO 16102 I=1,IDIMT
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DTFAC9(I)=1.
KDTFAC9(I)=0
16102 CONTINUE
DO 16202 K=1,KSMM1
DO 16202 I=1,IDIMT
IF (T9(I,K).NE.O.) THEN
TMP9=V9(I,K)/(2.#DELTIM*RCS*T9(I,K))
IF (TMPS.LT.0) THEN
TMP9=-TMP9
ENDIF
IF (DTFACS(I).GT.TMP9) THEN
DTFAC9(I)=TMP9
KDTFAC9(I)=K
c (Save the level on which adjoint calculation is needed)
ENDIF
ENDIF
16202 CONTINUE
DO 16104 I=1,IDIMT
DTFACS(I)=1.
16104 CONTINUE
DO 1620 I=1,IDIMT
IF (KDTFAC9(I).GT.0) THEN
K=KDTFAC9(I)
TMP9=V9(I,K)/(2.*DELTIM*RCS*T9(I,K))
IF (TMPS.LT.0) THEN
TMP9=-TMP9
ENDIF
IF (DTFAC9(I).GT.TMP9) THEN
TMP=DTFAC(I)
ELSE
TMP=0.
ENDIF
TMP9=V9(1,K)/ (2. +DELTIM*RCS*T9(I,K))
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IF (TMP9.LT.0.) THEN
TMP=-TMP
ENDIF
V(I.K)=T9(I,K)*TMP/(2.*DELTIMfRCS*TQ(I.K)*TQ(I,K))
T(I,K)=-V9(I,K)*TMP/(2.*DELTIM*RCS*TQ(I,K)*TQ(I,K))+T(I,K)
ENDIF
1620 CONTINUE

4.2.10 Adjoint of FFT

For a spectral model, adjoints of both the forward and backward fast Fourier transform
(FFT) are needed in the adjoint model. The forward and backward FFT is almost self-

adjoint, differing only by a constant factor.

Ezample 15:

The forward and backward FFTs in the NCEP model:

CALL FFSNFS( BF,WRKFFT(1,1), NFS,WRKFFT(1, NFS+1))

CALL FFANFA(B(1,1),UQF(1,1),WRKFFT, NFA2)

The adjoint of the forward FFT (subroutine FFSNFS) is

CALL FFANFA(BF(1,1),BF(1,1),WRKFFT,NFS)

DO 2040 K=1,LEVS

DO 2040 I=1,LONF2
BF(I,K)=BF(I,K)/RECIP(I)

2040 CONTINUE

and the adjoint of the backward FFT (subroutine FFANFA) is
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DO 1040 K=1,LEVS
DO 1040 I=1,LONF2
B (I,K)=BF(I,K)*RECIP(I)
1040 CONTINUE
CALL FFSNFS(B,WRKFFA(1,1),NFA,WRKFFA(1,NFA+1))

where

NFS=LEVS ! LEVS is the total vertical levels
NFA=LEVS
RECIP(1)=1. EO/LONF. (LONF is the total grid points in longitude)
RECIP(2)=RECIP(1)
DO 1009 I=3,LONF
RECIP(I)=1. EO/LONF2.
1009 CONTINUE
DO 1010 I=1,LONF
RECIP(I+LONF)=RECIP(I)

1010 CONTINUE

The double-sized array of RECIP is needed due to the fact that a éomplex number is
placed in a real array with the first component representing its real part and the second
its imaginary part of the zonal flow, the third and the fourth components for the wave

number 1, and so on.

Such adjoint coding construction of FFT works for any type of FFT except that the
value of RECIP may vary by a factor of 2.

Finally, we shall emphasize that the adjoint coding by hand is always needed even
if one wishes to use an automatic adjoint generator for the adjoint model development.
It’s true that given a clean code, an automatic adjoint generator can automatically pro-

duce an adjoint code. However, the code of a complex numerical weather prediction,
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particularly that of physical parameterization schemes, is never clean. Therefore, even if
one specifies the independent variables (defined as program input variables with respect
to which derivatives are desired), dependent variables (output variables whose derivatives
are desired), and active variables (program variables with which a derivative objective is
associated) correctly, which is required for use of an automatic adjoint generator, an auto-
matic adjoint generator does not necessarily produce a correct adjoint code. If this is the
case (as often happens), how shall the adjoint model developer be able to find out where
the error exists? Extensive adjoint coding experiences are still needed to gain knowledge
‘in making the direct code clean and in effectively debugging and correcting errors in the .

automatic-generated adjoint code.

Although the automatic adjoint generator is still in its developing stage, it holds great

promise for the future of adjoint model development.
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Appendix A

Let’s show the equivalence between the egs. (2.49) and (2.43). The variational solution

is given by (2.49). With some algebraic manipulations, we can also write:

¢ =xp + [BY+HTO'*H |7 HTO Y (y - Hzy)
—a + [B~Y(I+BHTO'H) "' HTO '(y - Hzs )
=1y + [I+BHTO'H]'BHTO™}(y—Hz)

Let note Z = BHTO™1, then (A1) becomes:

o =zp+ [I+ZH | Z[y—- Hay
= Tp + [Z‘l[I+ZH]]—1[y—-H:cb]
g+ [Z7V+ H | y—-Hzp ]
=z+ [[I+HZ)Z™! ]-l[y—H:L‘b]
=zp+ Z[I+HZ ) Y [y—Hzy ]

And thus:
¢ =zy+ BHTO™* [I+ HBHTO™ ' ]™ [y— Hzs |

— 2o+ BHT [[I+HBHTO 0] [y—Hzs]

And finally:
| ¢ = zy+ BHT[O+HBHT 7' [y - Hzxy ]

Which is the minimal variance estimate of (2.43).
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Figure 3.1: Flow chart of the MMS5 forward, TLM and adjoint models
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Figure 3.2: Flow chart of the main minimization routine.
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