UNIVERSITY OF MINNESOTA

| Moges ———

CENTER FOR _ . ﬂ II' §ﬂ 'N §]ﬂ] U;ii

_S NESNEUINE USROS
STUDIES

PB98-159726 B

PARALLEL TRAFFIC
FLOW SIMULATION OF
FREEWAY NETWORKS:
PHASE 2

Dr. Anthony Chronopoulos
Department of Computer Science

oo

Technical Report Documentation Page

1. Report No. 2.

CTS 97-02

3. Recipient’s Accession No.

4. Title and Subtitle

Parralel Traffic Flow Simulation of Freeway Networks, Phase 2

5. Report Date

July 1997

6.

7. Author(s)

Dr. Anthony Chronopoulos

8. Performing Organization Report No.

9. Performing Organization Name and Address

Department of Computer Science
University of Minnesota

4-192 EE/CS Building

200 Union St. SE

10. Project/Task/Work Unit No.

11. Contract (C) or Grant (G) No.

Minneapolis, MN 55455 ©

(&)
12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
Center for Transportation Studies Final Report

1994-1995

ITS Institute Program

200 Transportation and Safety Building
511 Washington Avenue SE
Minneapolis, MN 55455

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract (Limit: 200 words)

Explicit and implicit numerical methods for solving simple macroscopic traffic flow continuum models have been
studied and efficiently implemented in traffic simulation codes in the past. We have already studied and
implemented explicit methods for solving the high-order flow conservation traffic model. Implicit methods allow
much larger time step size than explicit methods, for the same accuracy. However, at each time step a nonlinear
system must be solved. We use the Newton method coupled with a linear iterative method (Orthomin). We
accelerate the convergence of Orthomin with parallel incomplete LU factorization preconditionings. We
implemented this implicit method on a 16 processor nCUBE2 parallel computer and obtained significant execution

time speedup.

17. Document Analysis/Descriptors

Traffic Flow Simulation
Numerical Methods

18. Availability Statement

No restrictions. Document available from:
National Technical Information Services,
Springfield, Virginia 22161

19. Security Class (this report) 20. Security Class (this page)

Unclassified Unclassified

21. No. of Pages 22. Price

Parallel Traffic Flow Simulation
of Freeway Networks

Phase 2 Report

Prepared by
Dr. Anthony Chronopoulos

Department of Computer Science
University of Minnesota

July 1997

Published by

Center for Transportation Studies
University of Minnesota
200 Transportation and Safety Building
511 Washington Avenue S.E.
Minneapolis, MN 55455-0375

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the
information presented herein. This document is disseminated under the sponsorship of the Department of
Transportation, University Research Institute Program, in the interest of information exchange. The U.S.

Government assumes no liability for the contents or use thereof.

TABLE OF CONTENTS

Page
CHAPTER 1 INtrodUCtioN.ooiiiiiieee ettt e e 2
CHAPTER 2 A Simple and High-Order Continuum Model of Traffic Flow..... 3
CHAPTER 3 Numerical Euler Implicit Method...............c.coccoovrnnnnni 5
CHAPTER 4 Orthomin Iterative Method...............cc.coocviviiiiiiniinii 8
CHAPTER 5 Volume-Density (q-k) Model Curves............ccccooemiiinininiiiiirennnnn. 9
An Empirical g-k Model Curve.........coovveiviniiniicne 10
Density Estimation Using Occupancy.........cccoeveerevrevmnievenieniinreneenes 11
CHAPTER 6 Freeway Model with Multiple Entries/Exits...............c............... 12
Freeway TeStSItes.....ccuviviiiiiiiriciiiiitereceete s 12
Entry/Exit Ramp Modeling......c.cccceveioinmnninniniicneee 13
CHAPTER 7 Parallel Implementation on nCUBE...................c.cooi, 14
Parallel Euler Implicit.......ccoconiriiiiinnencns ereeeeesersseenrersnneteasseenesnes 14
TLU Preconditioning.......c.ceeceverieenirnieenenniinicninieisenenessneeeseseesseens 18
Domain Decomposition Preconditioning............ceceeuieveiieniniennennn. 19
CHAPTER 8 ReESUILS......ooeieiee ettt e 23
q-k Model Curves Tests.......occcuereiveeiiniiniiiiniieeisieeee e 23
Comparisons with Real Data..........cccooveinininininiice 23
Parallel Implementation..........ccoceeeeerericiinniinninienieeeecees e 26
CHAPTER 9 Conclusions.................... ettt ettt et ar st se s s s s s nanansenees 27
REFERENCES.......ooeitietieteeeeteevesteese e s te b e aes e sae et sat et sbe st e e esme e et s s e et satenssnssaennte st enbeens 29
ACKNOWLEDGMENTS.......o ottt ettt seeeesee et st ssteesesses s ssssassassesnssssseneeasasnens 30

APPENDIX

LIST OF FIGURES

Figure 1 Structure of the matrix-vector of the linear system.............ccocceuee. 6
Figure 2 Density/occupancy calculation from vehicle relative positions.......8
Figure 3 Weaving flows in a freeway.........ocooovvininieinieeiece 8
Figure 4 Original structure of matrix A and vector AU.........ccocoveviiiinnninnees 12
Figure 5 Parallel execution of ILU......... OO 14
Figure 6 Partition of linear system and mapping to CPUs............ccccoeniines 22
Figure 7 1-494 Speedup for parallel ILU version on NCUBE

Figure 8 1-494 Efficiency for parallel ILU version on NCUBE

Figure 9 1-494 Speedup for domain decomposition version on NCUBE
Figure 10 1-494 Efficiency for domain decomposition version on NCUBE
Figure 11 Volume vs. Euler-Greenshield’s method

Figure 12 Density vs. Euler-Greenshield’s method

Figure 13 Speed vs. Euler-Greenshield’s method

Figure 14 Volume vs. Euler-Least Squares method

Figure 15 Density vs. Euler-Least Squares method

Figure 16 Speed vs. Euler-Least Squares method

Figure 17 Volume vs. Euler-Occupancy method

Figure 18 Density vs. Euler-Occupancy method

Figure 19 Speed vs. Euler-Occupancy method

Figure 20 Freeway Geometrics for I-35W from 46th to 86th Street (Southbound)

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

LIST OF TABLES

Computation and Communication on the nCUBE2........................ 14
Error statistics for Traffic flow (I-35W)..ooooiiiiiii 24
Error statistics for Traffic speed (I-35W)...cccooiiiiiininiiinins 24
Error statistics for Traffic flow (I-494).....ccccoovevviinnnnininn 25
Error statistics for Traffic speed (I-494)........ccccovniiininnnninnnnn 25
Error statistics for Traffic flow (I-494).......cccoevniiiinicniiniiiiinne 25
Error statistics for Traffic speed (I-494).......ccoccciviiininiiinnnnenn 26
Time in ILU version for [-494.........cocvviininninieccee 26
Time in domain decomposition version for I-494.......................... 26
Percentage in ILU version for I-494........c.cccocvivviinninnnninnnnn 26

Percentage in domain decomposition version for I-494................. 27

Parallel Traffic Flow Simulation
of Freeway Networks (Phase 2 Report)

A. Chronopoulos *

Abstract

Explicit and implicit numerical methods for solving simple macro-
scopic traffic flow continuum models have been studied and efficiently
implemented in traffic simulation codes in the past . We have already
studied and implemented explicit methods for solving the high-order
flow conservation traffic model. In this project, we studied and imple-
mented an implicit numerical method for solving the high-order flow
conservation traffic model. Implicit methods allow much larger time
step size than explicit methods, for the same accuracy. However, at
each time step a nonlinear system must be solved. We use the New-
ton method coupled with a linear iterative method (Orthomin). We
accelerate the convergence of Orthomin with parallel incomplete LU
factorization preconditionings. We implemented this implicit method
on a 16 processor nCUBE2 parallel computer and obtained significant
execution time speedup.

*Department of Computer Science, University of Minnesota. The Project was funded
through the Center of Transportation Studies. The Computer Science graduate stu-
dents Choong-Yul Rhee and Gang Wang worked on this project. Dr. Ping Yi of Mn-
Dot/GuideStar provided advice for this Project. Mr. David Berg of MnDot provided help
with the freeway traffic data.

1 Introduction

Macroscopic continuum traffic models flow based on traffic density, flow and
velocity have been proposed and analyzed in the past. Examples include
Lighthill and Whitham’s (1955) flow conservation model, Payne’s momen-
tum model conservation model and Michalopoulos’s momentum model [11],
[18], [16]. These models involve partial differential equations (PDEs) defined
on appropriate domains with suitable boundary conditions which describe
various traffic phenomena and road geometries.

The improvement of computational efficiency in the continuum traffic
models has been the focal point in the development of traffic simulation pro-
grams. It is understood that the computer execution time to solve traffic flow
problems depends not only on the size of the freeway and the complexity of
roadway geometries, but also on the model equations and numerical schemes
used in their discretization.

Explicit numerical methods (for example Lax, Upwind) have been used
by Michalopoulos and Lin and Leo and Pretty to compute the solution of
traffic flow continuum models [15], [10]. In these explicit schemes the space
and time mesh sizes are restricted both by accuracy and numerical stability
requirements. In order to reduce the computer execution time and maintain
good accuracy, the total number of computations must be reduced. This can
be achieved by using larger values of time and space mesh sizes. Implicit
numerical methods provide the same accuracy as explicit methods and allow
changes in the mesh sizes while maintaining numerical stability [8] [1].

In this work we use an implicit numerical method (Backward Euler) to
solve more efficiently the momentum conservation model on a nCUBE paral-
lel computer. Implicit methods allow much larger time step size than explicit
methods, for the same accuracy. However, at each time step a nonlinear sys-
tem must be solved. We use the Newton method coupled with a linear
iterative method (Orthomin). We accelerate the convergence of Orthomin
with parallel incomplete LU factorization preconditionings. We wrote a code
(in C) simulating a freeway multiple entry/exit traffic flow. Tests with real
data collected from the I-35W and [-494 freeways in Minneapolis were con-
ducted. Using these data we tested (for accuracy and efficiency) our code on
a Sun Sparcl workstation computer. We have also implemented efficiently
the new method on the (16 processor) nCUBE2 parallel computer located
at the Department of Computer Science. Each processor of the nCUBE2 is

2

as powerful as a SUN 3/50 workstation. On the nCUBE2, the parallel new
method, on the 16 processors, runs 4 times faster than on the one processor.

The outline of this article is as follows. In section 2, we review the mo-
mentum conservation continuum traffic model. In section 3, we review the
Euler implicit method. In section 4, we describe the Orthomin(k) iterative
method. In section 5, we describe the various theoretical and empirical curves
relating the traffic flow and density. In section 6, we describe the multiple
entry/exit freeway models. In section 7, we describe a parallel implemen-
tation of the Euler method. In section 8, we present the numerical results.
Section 9 contains concluding remarks.

2 A Simple and High-Order Continuum Model
of Traffic Flow

The following conservation equation has been proposed by Lighthill and
Whitham (1995) [11] as a simple continuum traffic model (LWM):

0k 0Oq
’a—t‘l"é';—g(x’t)’ (1)

where k(z,t) and g(z, t) are the traffic density and volume respectively at the
space-time point (z,t). The generation term g(z,t) represents the number of
cars entering or leaving the traffic flow in a freeway with entries/exits. The
traffic flow volume , density and speed are related by the equation:

q = ku, (2)

where the equilibrium speed u(z,t) = u(k) must be provided by a theoretical
or empirical u-k model. u-k model The theoretical u-k model, equation of
state, can take the general form.

te = us[l — (k/kjam)1’ 3)

where uy is the free flow speed and kj.m the jam density [7]. For instance,
for & = 1 and § = 1, one obtains the Greenshields’(1934) equation of state.

3

More information on this and other forms of the u-k relationships can be
found elsewhere (Mcshane and Roess 1990) (see [13]).

Since the simple continuum model does not consider acceleration and
inertia effects, it does not describe accurately non-equilibrium traffic flow
dynamics. Furthermore, the speed-density relationship employed in the sim-
ple continuum model is difficult to obtain in practice. Payne introduced a
high-order continuum traffic model that includes the momentum equation
in addition to the continuity equation of the simple continuum model [18],
[19]. The high-order continuum formulation takes into account acceleration
and inertia effects by replacing Equation (3) with the momentum equation.
The momentum equation in the improved high-order continuum model
(THOCM) in [16] is obtained as follows.

du 1 Ou 50k
-Ji- = T[uf(a:) - u] —_ Ga - I/k B_:IZ (4)

where % is the acceleration of an observer moving with the traffic stream and
is related to the acceleration % of the traffic stream as seen by an observer

at a fixed point of the road, i.e.

du Ou Ju
E = —a'{ + ua—x (5)

The first term on the right hand side of Eq. 4, F[us(z) — u], represents the
relaxation term, the tendency of traffic flow to adjust speeds due to changes
in us(z) along the roadway, where relaxation time T is assumed to vary with

density k according to
rk

=1t —_—
T=t(l+ Kjam —)

(6)

where t; > 0 and 0 < r < 1 are constants. The second term, G%, addresses
the traffic friction at freeway ramp junctions due to ramp flows. G is the
friction parameter. It is a function of both roadway conditions and the
ramp volume entering or leaving the freeway and is derived experimentally
as G = uk‘g, where y is a geometry parameter depending on the type of
road geometry, € is a dimensionless constant, and g is the generation term.

The third term, Vkﬂ%, represents the anticipation term which is the effect

4

of drivers reacting to downstream traffic conditions. In this term v is the
anticipation parameter. As implied in this example, if downstream density is
higher due to congestion, speed has to be decreased accordingly. Conversely,
if downstream density is lower, speed can be increased. From equations (4)
- (6) one derives a momentum model for the traffic flow described by the
following system of PDEs.

o0 | OE

% Tox - ?)

where U , E, and Z are the following vectors:

7=(s)

q

-» ku

8= (ars g
u2k+ﬂ_ﬁk+2

Z = < k I du)
Flug(z) —u] — Gk + gu
We note that the momentum conservation model does not require a ¢ —k
curve as in the case of the simple continuum model. However speed data
are not available from the the real traffic data then a ¢ — k curve is used to
generate the speed data. We chose G = 0 in our implementation.

3 Numerical Euler Implicit Method

We consider one high-order implicit method (Euler implicit) which is used in
computational fluid dynamics [8]. For each traffic model the road section (the
space dimension) is discretized using uniform mesh for all numerical meth-
ods; only the time stepsizes differ between methods. We use the following
notation:

At = time stepsize.
Az = space stepsize.

k7 = density (vehicles/mile/lane) at space node jAz and at time nAt.

5

= flow (vehicles/hour/lane) at space node jAz and at time nAt.
= speed (mile/hour) at space node jAz and at time nAt.

The high-order Euler implicit method applied to the nonlinear PDE (1)
generates a nonlinear recursion involving all space nodes at each time step.
To solve numerically this recursion Beam and Warming have suggested using
one Newton linearization steps [8]. Each Newton step constructs a linear

system of the banded matrix with unknowns AU} = (7;""1 - (7]" .

At [0E\" 87 At (0E\" | -
| = — At = L=
5 (28) a0t (22) s (%) a0
I= J+1
At
T 2Az

(G_E)n ~ 0 1
oUu ; —u? 4 pkBT 9y .

(6_2) ~ 0 0
UJ: | 2 (kjym — 2rk) + L—q —Hiem=tk

tokjam tokjam tokjam

q 07\ -
(Epyy — Ery) + AtZ7 + At (ﬁ) r
J

where

n

J
The structure of the matrix is shown in Figure 1. It is a tridiagonal block

matrix, whose blocks have size 2 and this matrix has also banded structure
with bandwidth equal to 7.

matrix vector

A P
D, B, AU,
L e e e e e = = - - — I
Cy D, Bs AU,
e e e e e e e e e e = = - I
[[
[] []
[] []
F— - — — — — - e e — - — — — — m = - — -~ — JR
Cm-—l Dm AUvm

Figure 1. Structure of the matrix-vector of the linear system

where

At n
0 2Az
B =
—_ At g
2Aa: (u? + V) Azk /
At n
0 T 2Az
C; =
At _Atg
—sag (vl +v) —& j
n
1 0

D; =

;:)_{,éét: (k]am _ 27‘]6) rAtmq 14+ At (%:T"_;'%) i

This linear system of banded matrix is solved by the Orthomin itera-
tive method with preconditioning. On a Sun workstation, we have used the
banded LU factorization method as a preconditioning to solve above linear
system by Orthomin iterative method. The solution is then advanced to
the next time step simultaneously at all space nodes by computing Uj; il =
U T+ AU]. This method is of second order accuracy with respect to At and
it is unconditionally stable. This method will be called Euler-Momentum
method.

Artificial smoothing is often added to reduce oscillatory behavior in the
numerical solution. This is achieved by adding a fourth order damping term
d; to each term (jj

w

dj = -——8— (ﬁj—2 - 41?2'_1 + 6[7_7 - 4(.j:i+l + (jj+2)

We have tested several damping coefficients with w ranging from w = 0 (no
damping) to w = 1. The choice w =1 gave the best results.

4 Orthomin iterative method

We next describe Orthomin iterative method to solve Az = rhs, where A
is nonsymmetric matrix of order N. The Orthomin applies to nonsymmetric

8

linear systems with the symmetric part of A being positive definite. Let
k, be a positive integer. We describe the orthomin iterative method with
preconditioning as follows. In this algorithm, j; = max(0, :—k,+1), P, is the
right preconditioner (P,A = I) which is obtained by the LU decomposition
of the matrix A. For more details, see [12].

Algorithm 1. Orthomin(k,)
1. Choose zg = 0.
2. Compute ro = rhs — Azo.
3. po = ro.

For i = 0 step 1 Until convergence Do

;= Ti,Api
Tt T (Api,Api)

4

5. Tip1 =i+ aip;
6. riy1 =1 — a;Ap;
7

. Compute AP,r;;1.

8. b= (APrriy1,4p;)
T (Ap;.Apj)

9. piy1 = FPrria + E;’:ji bj‘Pj

10. Apiy1 = APrip1 + E;‘:j; bj'APj
Endfor

5 Volume-Density (q-k) Model Curves

A g — k model curve is an indispensable part of the LWM. This relation
can be used to express the volume as a function of the flow density i.e.
q = q(k). This function is a nonlinear function which must satisfy some
general requirements. The equations that define the ¢ — k curve are used in
the programs to convert from density to volume and from volume to density.
The Momentum Traffic Flow Model does not require a ¢ — k curve. However,

if the speed data are not available from the (upstream/downstream) traffic
data then a ¢ — k curve is used to compute the traffic speed.

These general requirements on the ¢ — k curve can be derived from the
following observations on traffic flow modeling [13].

e For uncongested flow an increase in density corresponds to an increase
in volume, up to a critical density k., where the flow becomes congested.

e Maximum volume occurs at the critical density: ¢maz = q(k.)-

o For congested flow an increase in density corresponds to a decrease in
volume, up to the jam density kjqom, where traffic flow halts.

A ¢-k model curve must also be adapted to characteristics of the freeway
section which it represents. Theoretical ¢-k model curves can not be adapted
to the special roadway characteristics and so such a model function must be
constructed from empirical data. Greenshields’ ¢-k curve is derived from
equations (2) and (3) and appropriate choices for the free flow speed u; and
jam density kjom = ko. In our applications we chose uy =(60 miles/hour)
and ko =(180 vehicles/mile). The Greenshields’ curve has the basic features
described above but can not be tuned to local characteristics of a freeway
section. However, we used Greenshields’ g-k curve in the initial development
of the programs and as a baseline for comparisons.

5.1 An empirical g-k Model Curve

Field data for constructing the ¢-k model curve were collected in 1-35 W
in Minneapolis. With these discrete data a piecewise linear ¢-k curve was
derived [14]. Such a curve must have parameter ranges reflecting the road
characteristics of the freeway section it represents [14]. With our discrete
data the experimental ¢-k curve must have following parameter ranges:

e The critical density k. should be about 70 to 75 vehicles/mile/lane.

e The maximum volume ¢,.; should be less than 2500 to 2700 vehi-
cles/hour/lane.

e The slope of the curve at k¥ = 0, which represents the free-flow speed
uy, should be approximately 65 to 75 miles/hour.

10

We have used several curve fitting methods to construct continuous ¢-k
curves from the set of (k,q) discrete data points available. Our objective
was to find a general method that produces a curve which is based on the
discrete data, has the basic features of a g-k curve, has the parameter ranges
(described above), and also works well in the numerical methods for solving
(1). We used least squares to approximate ¢-k curves from field data.

Several least squares approximations were tried. In this method the
data points (ki,q;) are used to construct a rectangular matrix with row ¢
composed of powers of k; and a right-hand-side vector containing the ¢;.
Then the matrix is reduced using the Singular Value Decomposition
method (SVD) available in theLINPACK package or the Matlab package
[5]. The reduced matrix is then used to find the coefficients of the curve that
minimizes the total squared error between the data points and the curve.
This method will produce curves of any degree up to the number of data
points. Quadratic, cubic and quartic least-squares polynomial curves were
found using the Matlab’s (SVD). The quartic curve

g = —1.7156 x 107°k* + 7.1802 x 1073k® — 1.2514k> + 94.8463k — 69.1588

appeared to be the lowest-degree least-squares approximation to the discrete
data that satisfies the ¢-k curve criteria. This quartic polynomial must be
evaluated at each node for each time step so it is important to use a polyno-
mial of the least degree.

5.2 Density estimation using occupancy

Another method of estimating traffic' density and speed is based on occu-
pancy data [6].

@ @

Figure 2.Density/occupancy calculation from vehicle relative positions

11

Lane occupancy is defined as the time that loop detector is on divided
by the measured time and multiplied by 100. The value of lane occupancy is
avai lable from the loop detector installed under the freeway pavement. If we
assume that the speed of the vehicle is constant during measurement time
and each vehicle’s length is the same, we can derive the relationship between
density and occupancy as follows.

¢

k=528 x—
5 xLe,

) SN (Li+Ly) .
where effective length L, = &=t-—— ¢=lane occupancy, L;=vehicle
length, Ls=intervehicle distance.

6 Freeway Model with Multiple Entries/Exits

6.1 Freeway testsites

We considered two multiple entry/exit freeway sections in the Minneapolis,
Minnesota freeway network.

e A section of I-35W Northbound for the workstation computer imple-
mentation

e A section of I-494 Eastbound for the parallel computer implementation

The I-35W roadway geometry is presented in Figure 20. The upstream
and downstream boundaries were set at the location of the 86th street and
the 63th street. It has two weaving sections at the first two entry/exit zones.
There are a total of 5 entry/exit ramps in this 2.65 miles road section. The
road geometry of 1-494 is similar. The 1-494 Eastbound section extends from
the Carlson Pwy to Portland Avenue. It is 18 miles long and it has 21
entry and 18 exit ramps. The I-35W section is short but it has interestingly
complicated topology and we used it to test our discrete model accuracy on
a workstation computer. We then used the (longer) 1-494 section for the
simulation on a parallel computer.

12

6.2 Entry/Exit Ramp Modeling

We have used two schemes to add/subtract entry/exit (ramp) traffic volumes
to the mainlane traffic volume in IHOCM.

1. Point Entry/Exit Scheme: Ramp volumes are assumed to merge into
(diverge from) the freeway mainlane at a single node. This treatment
is necessary to simplify the modeling and reduce computation time at
such mainlane nodes. (2)

2. Average Entry/Exit Scheme: Ramp volumes are assumed to merge
evenly into (diverge from) the freeway mainlane at the freeway nodes
in the vicinity of the entry/exit node.

3. Weaving Entry/Exit Scheme: This is used when the ramp is directly
connected to another freeway and explained below.

Figure 3. Weaving flows in a freeway

The weaving scheme is outlined as follows. In Figure 3, volume v; repre-
sents the through traffic stream flow in from link A to link B and volume v,
represents the diverging stream from link A to link F, where g4 = v1 + v3;
v3 is the merging stream from link E to link B and volume v, is the through
stream from link E to link F, and qg = v3 + v4. It is obvious that qF = v
+ v4 and qp = v; + vs. Because there are interchang es of v; and v, traffic
friction at link B and link E in this case is greater than the case of a single

13

entrance ramp or exit ramp. Likewise, mergin g dynamics at an entrance
ramp should be employed if v, = 0.

When L is less than 600ft, merging and diverging movements must be
completed wit hin a short distance. In such a case a net value of the merging
and exiting volumes is sought for volume conservation. However, since both
q%, and q7,, require lane changing at the same limited length .of roadway at
the same time, the sum of q* and q7,, should be included in the generation
term. If g > 0, the short weaving section is treated as a single on-ramp, if
g < 0, it is treated as a single off-ramp. The generation term in IHOCM
becomes :

g= qnet/Ax = (qznn - qgut)/Axv

where ¢7 and ¢7,, are the merging and exiting volumes.

7 Parallel implementation on nCUBE

7.1 Parallel Euler Irhplicit

We have implemented the Euler-Momentum method on the nCUBE2 paral-
lel computer at the Computer Science Department of the University of Min-
nesota. The nCUBE2 has 16 processors(CPUs) connected in a hypercube
network and to a host (Sun 3/50) computer for interaction with the user.
The number of processors to be active is chosen by the user, but must be a
power of 2. The host computer allocates a number of processors arranged
in a hypercube of dimension ndim. Each processor is directly connected to
ndim other processors. In table 1 we show a summary of inter processor
communication times for neighbor processors and the basic floating point
operation times [9]. We see that communication even between neighbor pro-
cessors is several times slower than floating point operations. Programs run
most efficiently when inter processor communication is minimized and when
all communication occurs between neighbor processors.

Operation Time | Comm/Comp
8 Byte transfer | 111 u sec -

8 Byte Add 1.23 usec 90 times
8 Byte Multiply | 1.28 usec 86 times

Table 1. Computation and Communication times on the nCUBE2

14

In section 3, we derived the linear system of banded matrix by the high-
order Euler implicit method applied to the IHOCM. In the parallel imple-
mentation of Orthomin iterative method to solve the linear system, we have
three main components to be parallelized.

Assume we have p processors. For simplicity, suppose that n = 2pg + s,
where s = 2(p — 1). We distribute the matrix and rhs data to p processors
as follows. The first processor has the data of matrix from the first row up to
(2q+2)th row, also it has the data of rhs vector from the first componeent
up to the (2q+2)th component, the second processor has the data of matrix
from the (2q+3)th row up to (4q+4)th row and the data of rhs vector from
the (2q+3)th componeent up to the (4q+4)th component, and so on. The
last processor p has the matrix data from row n-2q up to row n and the rhs
vector data from component n-2q up to n.

A linear combination (steps 5, 6, 9 and 10 in Algorithm 1) is mapped
to each processor to do their corresponding part. Since elements of the same
indices in vector arrays are on the same processor, this whole operation are
done locally and no interprocessor communication are required.

A dot product (steps 4 and 8 in Algorithm 1) to compute the norms
of vectors is also mapped to each processor to do their corresponding sum.
Then a broadcast of their respective sum is done on each processor, then
they are added together. So finally each processor has the dot product.

A matrix vector multiplication (step 7 in Algorithm 1) is also mapped
to each processor to do their corresponding computation. But for the bound-
ary data between processors, each processor needs to get the three vector data
from its neighbor processors so that it can compute to get the result.

Figure 4 shows an example of matrix A and right hand side vector x for
mazj = 12(space nodes), or n = 22(dimension of matrix and right hand side
vector), where

kiom — Tk
=14 At~
o=t A am
Uf T
b= — - k'am - k ’
At[tokjam(iam — 27k) + T q]
c= 2%2;_[_“2 + V]7

15

16

Py

P,

Py

matrix

A

vector

AU

1 00¢g
by a1 ¢ dy
0 g1 00g
f2 ez by ag c; dy

0 g1 00 g

fa es bs asz c3 ds

0 g1 00 g
Ja €4 by as cq dy
0 gl 00g
fs es bs as cs5 ds
0 g1 00 g
feeebeaeceds

0 g1 00 g
fr ez b7 a7 c7 dy
0 -g1 00g
fs es bs as cs ds
0 g1 00 g
fo €9 by ag cy do

0 g1 00 g
floelobmaloclodlo

0 g1 0

f11 er1bian

Figure 4. original structure of matrix A and vector AU.

17

7.2 ILU Preconditioning

In determining a preconditioner (matrix) M, we look for a matrix that is a
close approximation to the inverse of A, so that

M=~ AT (8)

or AM has clustered eigenvalues. The preconditioner M must be easily
invertible, so that the system M~'z = b is easy to solve.

The basis for the ILU factorization method is that the matrix A is
decomposed into upper and lower triangular matrices U and L such that
A= LU+ A, where M~ = LU and A is an error matrix. Also, we assume
that if A; ;, = 0, then both U, ;, and L; ;, = 0. In other words, L and U
have the same sparsity patterns as A. This is the ILU(0) method.

Although ILU preconditioning can improve the convergence rate of the
iterative solvers considerably, the preconditioner itself may have very slow
execution rates if not implemented properly on a vector-parallel computer.
This is due to the following fact. Let L and U be the incomplete LU factors
of A. Then solution of the two triangular systems Ly = b and Uz = y
requires back-solving, which is a serial operation.

A method for parallelizing the ILU preconditioner was introduced by
Radicati di Brozolo and Robert in 1988 [4]. It was proposed to partition the
preconditioned matrix into a number (m) of overlapping submatriz regions.
Each region consists (of a continguous index sequence) of submatrix blocks of
the type [Cj-1, Dj, B; |. The loss of connection between the regions is par-
tially compensated for by introducing smaller overlapping region segments.
Each submatrix region is then executed in parallel on m processors. After
the back solution step is carried out (independently in each submatrix re-
gion) the overlapped values between the separate regions are set equal to the
average of that determined in each region. It is found ([4]) that this overlap-
ping strategy gives better performance than the nonoverlapping one. Here,
we use an overlapping of a single submatrix block of the type [C;-1, D;, B; |,
between two successive parallel regions. The parallel implementation of this
technique, on m processors (CPUs), is illustrated in Figure 5:

18

CPUO0 | Region,

CPU1 Region,

CPUm-1 Regiony,

Figure 5. Paralle] execution of ILU

If m=1, this preconditioner is exactly the same as the vectorized ILU
preconditioned method. If m > 1, this type of preconditioning is slightly less
effective at reducing the condition number because of the loss of connection
between the submatrix regions. In general, the effectiveness of the precon-
ditioner is reduced as m becomes larger, but the performance on parallel
processors improves.

7.3 Domain decomposition preconditioning

We first describe LU factorization with domain decomposition reordering
of the unknowns. The domain decomposition method [17] partitions the
unknowns AU as follows. We call D; the unknowns AUl, . AUq, we
define 7 = [AD, ..., AT,)T, D, the unknowns AUz, ..., Aﬁqu, $y =
[AT, 42, --. A(qu.u] and so on. For simplicity, we assume that n/2 = pq +
(p — 1). Then there are P sets Dy, ..., D, each containing q unknowns and

p-1 unknowns AUq+1, AU2q+2, ..., which are between the sets D;. These p-. 1
unknowns constitute the separator set S. We then order the unknowns AU

19

by numbering those unknowns in the separator set last.

Suppose we want to parallelize it on 4 processors of nCUBE2. First we
distribute the matrix and rhs vector data to 4 processors as shown in figure
4, then we reorder them as described above. Figure 6 shows the matrix and
vector after reordering and how they are mapped to 4 processors. In Figure
4 and Figure 6, only the nonzero entries are shown. The matrix and right
hand side are partitioned into blocks and assigned to CPUs (P, P, P;, Ps).
The separator block is assigned to all CPUs. In the following we will describe
how the new system is solved in parallel on nCUBE2.

Suppose Ay, ..., A, are of size 2¢ X 2¢ and A, is of size s x s, where
s = 2(p — 1) is the number of unknowns in the separator set S = US;. Then
the B; are of size 2¢ x s and the C; are of size s x 2q. We have assumed , for
simplicity, that n = 2pq + s.

The following are the parallel domain decomposition algorithms [17].

20

Algorithm (Block LU Factorization)

1.
2.
3.

on every processor, do LU decompsition 4; = L;U;,i =1, ..., p.
on every processor, solve the system A;Z;=B;,i=1. ..,p.
on every processor, form C;Z;, i =1, ..., p.

on every processor, broadcast C;Z; so that every processor has the data
CiZi,i=1,..p.

on all processors, form A=A - ¢ ,CiZ; and compute the LU de-
composition of A.

Algorithm (Block LU Backwards Substitution)

1.
2.

N oo

on every processor, solve the system A;z; = b;,1=1. ..., p.
on every processor, form C;z;, 1 = 1, ..., p.

on every processor, broadcast C:Z; so that every processor has the data
Ciz;,i=1, ..., p.

on all processors, form b= b, — Y5, CiZ;.
on all processors, solve the system Az, = b.
on every processor, form & = b; — Biz,,i =1, ..., p.

on every processor, solve the system A;z; = ¢,1=1, ..., p.

21

matrix
A
100¢g
bl ai 1 d1
0 -g1 0 0 g
f2 ez by ag cz dy
100¢g 0 -g
by a4 cq dy fa €4
0 g1 0 0 g
f5 es bs aj cs ds
100¢g 0 -g
b7 ar C7 d7 f7 €7
0 g1 0 0 g
fs es bs ag cs dg
1 00 g 0 g
b10@10C104d10 f10610
D g1 0
f11611b11a11
0 g0 g 10
faedes ds bs a3
0 g0 g 10
f6 eq c6 de be ag
0 g0 g 10
f9 eg Co dg by ag
Py Py Py
P] P1 Pl
P, P, P,
P P P
PP PP
Po P1 P2 P3 P2P3 P2P3

Figure 6. partition of linear system and mapping to CPUs.

22

vector

AU

In the Euler-Momentum method, we obtained the domain decomposition
LU and use it as a preconditioning with Orthomin. Thus, the LU factor-
ization is obtained once and the backward substitution is applied at each
iteration of Orthomin.

8 Results

To test the program, the space mesh and time step size selection was made as
follows. We set At = 10sec and Az = 200 ft. Our results are distinguished
into three units: The q-k model curves testing, the comparisons with real
data, the parallel computer implementation.

8.1 qg-k Model curves tests

We used the I-35W data and the Greenshields’, Least Squares, and Occu-
pancy methods. The 3-D graphs of volume, density and speed are shown
in Figures 11-19. The occupancy curves seem to provide the smoothest
results and probably the Greenshields’ model are the least accurate.

8.2 Comparisons with real data

The following 6 moduli are used to measure the effectiveness of the simulation
in comparison with actual data collected at checkstation nodes of the freeway
at the same time as the upstream/downstream data are being gathered.

Mazimum Absolute Error = |Observed — Simulated| (9)

|Observed — Stmulated|

Observed (10)

Mazximum Absolute Error =

N
Mean Absolute Error = —]1\—,2 |Observed — Simulated| (11)

=1

23

Mazimum Relative Error with 2—Norm = |

Standard Deviation = |

(N-1)

ved — Simulated)

i=1

i=1

where N is the number of observations.

For I-35W and 1-494 we used point entry/exit schemes. The error statis-
tics are summarized in Tables 2-7. The relative errors are about more than
10% for the volume but are lower for the speed measurements.

N 10b
Mean Relative Error = _]1_’2 |Obser

Observed

N (Observed — Simulated)?

(12)

N, Observed?

]1/2
(13)

N
> (Observed — Simulated)?]'? (14)

Point Entry/Exit scheme.
Lax dt = 10sec, Volume error (veh/5min)
Sites || Mazimum | Maxz. Rel. | 2 - Norm || Average | Average Rel. | Std. Dev.
1 29.6 0.15 0.06 12.5 0.06 14.9
2 57.1 0.35 0.11 19.7 0.10 24.5
3 43.9 0.17 0.08 15.7 0.07 19.3
4 68.6 0.23 0.10 20.3 0.08 25.1
5 64.6 0.22 0.11 21.6 0.08 26.5
Table 2. Error statistics for Traffic flow (I-35W)
Point Entry/Exit scheme.
Lax dt = 10sec, Speed error (mile/hour)
Sites || Mazimum | Maz. Rel. | 2 - Norm || Average | Average Rel. | Std. Dev.
1 2.5 0.06 0.03 1.3 0.03 14
2 5.4 0.13 0.07 3.3 0.07 3.5
3 6.2 0.15 0.08 3.4 0.08 3.7
4 7.0 0.17 0.08 3.3 0.07 3.7
5 11.9 0.32 0.13 5.6 0.12 6.0

Table 3. Error statistics for Traffic speed (I-35W)

24

Point Entry/Exit scheme, ILU version.
Volume error (veh/5min)

Lax dt = 10sec,

Sites | Mazimum | Maz. Rel. | 2 - Norm || Average | Average Rel. | Std. Dev.
1 56.2 0.24 0.12 29.0 0.12 31.0
2 59.8 0.19 0.11 32.1 0.11 35.1
3 71.4 0.18 0.11 27.8 0.09 33.1
4 41.3 0.13 0.07 16.1 0.05 21.0
5 94.6 0.24 0.13 35.2 0.11 42.8
Table 4. Error statistics for Traffic flow (1-494)
Point Entry/Exit scheme, ILU version.
Lax dt = 10sec, Speed error (mile/hour)
Sites || Mazimum | Maz. Rel. | 2 - Norm || Average | Average Rel. | Std. Dev.
1 2.5 0.06 0.03 1.3 0.03 1.4
2 5.4 0.13 0.07 3.3 0.07 3.5
3 6.2 0.15 0.08 3.4 0.08 3.7
4 7.0 0.17 0.08 3.3 0.07 3.7
5 11.9 0.32 0.13 5.6 0.13 6.0
Table 5. Error statistics for Traffic speed (I-494)
Point Entry/Exit scheme, domain decomposition version.
Lax dt = 10sec, Volume error (veh/5min) .
Sites || Mazimum | Maz. Rel. | 2 - Norm || Average | Average Rel. | Std. Dev.
1 57.2 0.25 0.12 28.9 0.12 31.4
2 93.3 0.23 0.16 42.6 0.13 51.2
3 106.5 0.27 0.16 41.6 0.13 50.4
4 99.3 0.40 0.18 44.6 0.16 52.6
5 142.6 0.34 0.22 57.1 0.17 70.0

Table 6. Error statistics for Traffic flow (I-494)

25

Point Entry/Exit scheme, domain decomposition version.
Lax dt = 10sec, Speed error (mile/hour)
Sites || Mazimum | Maz. Rel. | 2 - Norm || Average | Average Rel. | Std. Dev.
1 2.5 0.06 0.03 1.3 0.03 14
2 8.3 0.21 0.09 3.6 0.08 4.3
3 8.6 0.22 0.09 3.5 0.08 4.3
4 8.5 0.21 0.08 3.2 0.07 4.0
5 12.9 0.35 0.12 4.6 0.11 5.7

Table 7. Error statistics of for Traffic speed (I-494)

8.3 Parallel Implementation

| time in ILU version for 1-494

No. of Processors | Matriz € RHS | Solver | Dotproduct | Matvec | Lin. Com | Total Ti
2 324 112.8 91.6 74.7 165.0 483.5
16 6.3 29.9 51.1 17.6 28.2 133.8

Table 8. Time in ILU version for 1-494

| time in the domain decomposition version for 1-494

No. of Processors || Matriz & RHS | Solver | Dotproduct | Matvec | Lin. Com | Total Ti
2 33.4 202.5 81.6 67.9 147.1 538.7
16 27.7 76.3 23.5 8.4 11.5 169.9

Table 9. Time in domain decomposition version for 1-494

| Percentage in ILU version for 1-494]

No. of Processors || Matriz & RHS | Solver | Dotproduct | Matvec | Lin. Com
2 6.7 23.3 20.0 15.5 34.1
16 4.7 22.3 38.2 13.2 21.2

Table 10. Percentage in ILU version for 1-494

26

| Percentage in domain decomposition version for 1-494

|

No. of Processors | Matriz & RHS | Solver | Dotproduct | Matvec | Lin. Com

2 6.2 37.6 15.2 12.6 27.3
16 16.3 45.0 13.8 4.9 6.8

Table 11. Percentage in domain decomposition version for 1-494

Parallel execution time from the eighteen mile stretch of 1-494 case on
both 2 and 16 processors on nCUBE for ILU and domain decomposition
preconditioning are summarized in Table 8, 9, 10 and 11.

To test the program, the time stepsize selection was made as follows.
For the Euler implicit method the time stepsize was increased such that
the maximum error did not exceed that of the Lax method [2]. For the
uncongested and entry/exit flow cases a single time stepsize of dt = 10sec

was selected.
We use the following moduli to measure the parallel processor perfor-

mance.
T
Tp’
where T} is the execution time on one processor and Tp is the execution time
on P processors.

Speedup =

Speedup

—5

The speedup and efficiency on nCUBE are summarized in Figure 7, 8, 9 and
10. The efficiency of the parallel processing drops as the number of processors
increase.

Efficiency =

9 Conclusions

We studied a high-order continuum model using an implicit (Euler) method.
Implicit methods allow much larger time step size than explicit methods, for
the same accuracy. However, at each time step a nonlinear system must be
solved, we use the Newton method coupled with a linear iterative method
(Orthomin). We accelerate the convergence of Orthomin with parallel in-
complete LU factorization preconditioning. We wrote a code in C simulating
a freeway uncongested pipeline and freeway entry/exit traffic flow. Tests

27

with real data collected from the I-35W and 1-494 freeway in Minneapolis
were conducted on a Sun workstation computer. We have also implemented
efficiently Euler-Momentum method on the (16 processor) nCUBE2 parallel
computer located at the Department of Computer Science. Each processor of
the nCUBE2 is as powerful as a SUN 3/50 workstation. On the nCUBEZ, the
parallel Euler-Momentum method on the 16 processors runs 4 times faster
than on the one processor.

28

References

[1]

- [2

[3]

[4]

[5]

[7]
[8]

[9]

[10]

[11]

Chronopoulos, A. T., Michalopoulos, P. and Donohoe, J. (1992), “Ef-
ficient Traffic Flow Simulation Computations”, In: Mathematical and
Computer Modelling, Vol. 16, No. 5, pp. 107-120;

Chronopoulos, A.T., Michalopoulos, P. and Rhee, C. (1993), “Traffic
Flow Simulation Through High Order Traffic Modelling”, In: Mathe-
matical Computing Modelling, Vol. 17, No. 8, pp. 11-22

Chronopoulos, A. T., Wang, G. and Rhee, C. (1994), “Real Time Free-
way Traffic Flow Simulation Through Parallel Processing”, to be pub-
lished.

Di Brozolo, R. and Robert, Y. (1989) “Parallel Conjugate Gradient-like
Algorithms for Sparse Nonsymmmetric Systems on a Vector Multipro-

cessors”, In: Parallel Computing 11, (1989), pp. 223-239.
Dongarra, J.J. et al.(1979), “LINPACK user’s guide. ” SIAM publica-

tions.

Gerlough, D. L. and Huber, M. J. (1975), “Traffic Flow Theory”, Trans-
portation Research Board, special report 165, ppll.

Greenshields, B. D. (1934), “A study of traffic capacity ”, In: Proc.
Highway Res. Board, Vol. 14, pp. 448-477.

Hirsch, C. (1988), “Numerical Computation of Internal and External
Flows ”, Vol.2, John Wiley and Sons.

Kim, S. K. and Chronopoulos, A. T.” A Class of Lanczos-like Algo-
rithms Implemented on Parallel Computers”, Parallel Computing 17,
pp. 763-778, 1991.

Leo, C. J. and Pretty, R. L. (1990), “Some Comments and Numeri-
cal Tests on Upwind Finite Difference Schemes for Macroscopic Traffic
Modeling”, Dept. of Civil Eng., Univ. of Queensland, Australia.

Lighthill, M. H. and Witham, G. B. (1955), “On Kinematic waves: II A
theory of traffic flow on long crowded roads”, In: Proceed. R. Soc. Ser.
A 229, No. 1178, pp. 317-345.

29

[12] Ma, S. and Chronopoulos, A. T. (1990), “Implementation of Iterative
Methods for Large Sparse Nonsymmetric Systems on Parallel Vector
Computers”, In: Int. J. on Supercomputing, 4, (1990), pp. 9-24.

[13] McShane, W. and Roess, R. (1990), “Traffic Engineering ”, Prentice
Hall.

[14] Michalopoulos, P. G., Kwon, E. and Kang, J. G. (1991), “Enhancements
and Field Testing of a Dynamic Freeway Simulation Program “ Transp.
Res. Rec. 1320, pp. 203-215.

[15] Michalopoulos, P. G. and Lin, J. (1985), “ A freeway simulation program
for microcomputers ”, In: Proceed., 1st National Conf. on Microcomput-

ers in Urban Transp., ASCE, California, pp. 330-341.

[16] Michalopoulos, P. G., Yi, Ping, Beskos, D.E. and Lyrintzis, A. S. (1991),
“ Continuum Modeling of Traffic Dynamics ”, In: Proc. of the 2nd Int.
Conf. on Appl. of Advanced Tech. in Transportation Eng., Aug. 18-21,
Minneapolis, Minnesota, pp. 36-40

[17] Ortega, J. M. (1988), “Introduction to Parallel and Vector Solution of
Linear Systems”, Plenum Press, pp. 120-124.

[18] Payne, H. J. (1971), “Models of freeway traffic and control”, In: Proceed.
Math. of Publ. Syst. published by Simul. Council, Vol. 1, No. 1, pp. 51-
61.

[19] Payne, H. J. (1979), “FREEFLO: A macroscopic simulation model of
freeway traffic* TRR, 772, pp. 68-75

ACKNOWLEDGMENTS

This project was funded through the Center for Transportation Studies,
ITS Institute Program.

30

Appendix A

speedup

Figure 7.

I-494

speedup for parallel ILU version on NCUBE

1]] | 1
Speedup/Processor ——

6 8 10 12 14 16
no. of processors

efficiency

Figure 8.

I-494 efficiency for parallel ILU version on NCUBE

Efficiency/Processor ——

6 8 10 12 14 16
no. of processors

speedup

Figure 9.

I-494 speedup for domain decomposition version on NCUBE

1 | 1 1 I 1
Speedup/Processor —<—

| | 1 1 | I

4 6 8 10 12 14
no. of processors

16

efficiency

Figure 10.

I-494 efficiency for domain decomposition version on NCUBE

| 1 I I I 1
Efficiency/Processor ——

4 6 8 10 12 14
no. of processors

16

7

<
n
2
<

Z
%,
2,
27,

7
%
1%

%
%
I,I

7
oK, ///'I
//,,/"’//

\\\ X :
0.5 \}\\ \\\\\\\\\\\ x

Fig. 11. Volume (g: cars/5min/lane) vs. (t: hr,x:
Euler-Greenshield’s method (I-35W)

5 t.h ‘. ‘Qim
*‘

\

\\\\\\\\ .\\\ \
'\\\\‘\\\\\\\\ W N \\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\
¢ \\\\\\\\\\‘\\\\\\\\ NN
m\M&

\.
\\.'V
\\

X \
\\
\}t‘_‘ NS

k \\\\\\\\ \\ \ S
30 AR \\\»‘\‘ \\\éx\\\\\\ S
25 /W WY N \\\\ \\\ \“\\\\5\\\\\\.\'\\\\\5

I’ \\\ “\\\\\
\‘\ § \\\
\\\ \\\:“\\\ _—:\\ \\

\@N&§§@

\\‘ \\\\ \\\\\\\
\ \\\\\ <

Fig. 12. Density (k: cars/Mi) vs. (t: hr,x: Mi)
Euler-Greenshield’s method (I-35W)

i

e
e
%M

kd 'a? '?'\a‘
\\ ui.b Qm‘ A 725>
4 /i
\\i _:-i\\\ \\\\\\\\\\\\{ \ \\:\\\\\\\\\\\\\\\\\\\\ \\\ o é\\g‘ \ »Q’d
N s~>‘\\\ o \\\\\\\\\\\\\\ \\\\,;
-\\\ A \\\\\ \\\\\\\\\“
\ “;\
‘\\

Fig. 13. Speed (u: Mi/hr) vs. (t: hr,x: Mi)
EFuler-Greenshield’s method (I-35W)

00 Qi NN Q§%\

? \\\\\\\\ \\\“\\\\\\\\\‘ O *\\‘\\\\\\: 2.5
250 \\, 3 \\\\‘\é\“: \\\\“\ /
200 P\ \\ _\}\;' \ \\ .

\\\\:

\
\\\\\\‘
\

Fig. 14. Volume (g: cars/5min/lane) vs. (t: hr,x:
FEuler-Least Squares method (I-35W)

\ \
S

{ ~§§
X \ 1Ry
\\\\\\ \\\\\\\\\ \\\ "~ Q“.‘
\\\\\ \\\\ \\- "V

W .

N ®. \ RN,

o « ~>>z\\\\\\i - \\“
\\\\\\\\ :\.\ \\\ \\\\\\\\\\\\\\\\\\\\\\\\\ -

k 25 \\\ s\\\ \\\\\\\ \ \ = \\\\\

S
“‘\\\\\\\\\\\ -
1 //\ “‘\‘\\\\“\\\\\\\\:\\\\\\\

§

\\\\\\\/\\\\\\\\\\\\{\\\\\ A

\\\\-\\\\\\\\\\\\

/l"‘\‘7

Fig. 15. Density (k: cars/Mi) vs. (t: hr,x: Mi)

Euler-Least Squares method (I-35W)

\ \\\x\ \\\\\\~\\ W\

%\?'§\ \ D &

\\‘\\\\\\\:\\\\\\\\\\\\\\\\\\\
\

B

Fig. 16. Speed (u: Mi/hr) vs. (t: hr,x:
Euler-Least Squares method (I-35W)

\ R

NS \\‘ N ‘\\
250 \\}}}%\//,Q\\ \\\\\\\\\\\\\\‘\\\\\\ ;\\\\\\\\\\\\\ & \\\\\\\\\
200 \\\\/ﬂ*\\\ \\\\\\\‘\ R > ~\\\\

\\\ \\\\\’\\‘\T\

\
W \\\\\\\\\\\\\\

\\\"\\
Y \

AR
O

Fig. 17. Volume (g: cars/5min/lane) vs. (t: hr,x: Mi)
Euler-Occupancy method (I-35W)

Fig. 18. Density (k: cars/Mi) vs. (t: hr,x: Mi)
Euler-Occupancy method (I-35W)

RN

SN
R R
D T

RN 2 S
W)

N\
D

Fig. 19. Speed (u: Mi/hr) vs. (t: hr,x: Mi)

Euler-Occupancy method (I-35W)

Downstream

1-494

Figure 20. Freeway Geometries for I-35W from 46th to 86th Street (Southbound)

