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1. INTRODUCTION

Application of the importance sampling method to structural system reliability
problems has recently attracted attention. Various approaches have been
presented in the literature [e.g., Melchers 1984, 1987, 1990a, 1990b; Fu and
Moses 1986, 1987a, 1987b, 1988; Schuéller and Stix 1987; Bjerager 1988], and a
comparison of some methods has been initiated by Engelund and Rackwitz [1992].
Accuracy and efficiency of these methods can only be evaluated on a case-by-case
basis and after the simulation. This paper presents an importance sampling
method for the first-order problems to be defined here. Major advantages of this
method are its abilities of locating all samples in the failure region and
evaluating its accuracy and efficiency before the simulation, as an advance to
the method suggested by Fu and Moses [1987a, 1988].

2. FORMULATION AND DEFINITIONS

A structural system reliability problem can be formulated as assessment for
system failure probability Pg:

Pe = [X G(x)f(x) dx - (1)

where f(x) is assumed to be the normal probability density function of random
variable vector X with mean vector X and symmetric covariance matrix C; xsRT is
realization of X, with n being the dimension; and G(x) is an indicator for the
structure's failure state:

[0 xeS S = {x: structural survival}
G(x) =1 ‘ (2)
| xeF T = {x: structural failure}

It is understood that C is positive definite. X can be orthogonally transformed
to independent normal variables X' with zero mean vector 0 and diagonal
covariance matrix C':

X=X+ Bt X' (3)

where B is the orthogonal transformation matrix having the eigenvectors of C as
its columns; C' has the eigenvalues of C as its diagonal terms; and superscript
t denotes transpose. The assumption of normal variables X imposes no restriction
on generality of the problem, since random variables can always be transformed
to normal variables [Hohenbichler and Rackwitz 1981].
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Let gm(x) be the failure state indicator of mode m:

(0 xeS'p; S8'y = {x: zp(x)>0} = [x: Failure mode m does not occur}
gp(x) =1 (4)
1 xeF'ps Elm = {x: zp(x)<0} {x: Failure mode m occurs}

where zm(x) is the corresponding limit state function. A series structural
system can be expressed as

G(x) = Min {gp(x)} (m=1,2,...,M) or F= £L1QEL2U...UELM_1U£LM (5)

and a parallel system can be modeled by
G(x) = Max {gj(x)} (j=1,2,...,J) or F= gllngizn...nglJ_lnglJ (6)

Note that a parallel system is treated here as a special case of series system
with M=1 (with one design point). A more general problem is considered here as
a series of parallel systems defined in Eq. 5, with_ELm being intersection of Vy
subfailure sets:

Elm = Elm’lnglm’zn...nELm’Vm_lnELm’Vm (m=1,2,...,M) (7)

P¢ in Eq. 1 can be analytically calculated for only limited cases, mainly because
of the irregular failure domain F in a space of multiple dimensions. The Monte
Carlo simulation method is thus often used, although its variance of estimator
can only be reduced by increasing the sample size. To reduce the variance, the
importance sampling method [Kahn 1956, Kleijnen 1974] employs a new sampling
distribution function p(x):

G(x)f(x) .
Ix — p(x)dx (8)
p(x)

Pf =

The mean and variance of its estimator Pf' are, respectively [e.g., Fu 1988]
E[Pf'] = Pf (98)

1, G2(x)f2(x)
Var[P¢'] = —{Ix —_——— p(x)dx - sz} (9b)
N p2(x)

showing that if p(x) is properly selected, the variance may decrease or vanish
without increasing sample size N.

This report presents an importance sampling method for the first-order problems
defined as those with linear or linearized failure surfaces:

[0 xeSpy; Sy = {x: amt(x - xm*)>0}
gn(x) = { . (n=1,2,...,M) (10a)
| 1 xeFp; Fp = {x: amt(x - x, )<0}
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where xm* is the maximum likelihood point (or design point) [Hasofer and Lind
1974, §hinozuka 1983] for mode m, and a, is the gradient vector of z,(x) at

X = X !
a, = Ve (o) x = x* (10b)
Problems with linear failure surfaces are often of practical interest. Further-

more, a problem with nonlinear failure surface(s) can be always approximated by
a series of piecewise linear ones, becoming a first-order problem defined here.

3. TRUNCATED MULTIMODAL IMPORTANCE SAMPLING
A multimodal simulation scheme is suggested for the first-order problems:

p(x) = E,ﬂ:l,M Wy Pp(X) (11)

where pp(x) is the normal probability density function with mean vector xm* and
. . t e
covariance matrix C, and truncated by the hyperplane a, (x - x, )=0:

2
([ —————— exp{-0.5(x - xm*)tC'l(x - xm*)} xeFp,
| Cmn/2i el 12
Pp(x) =1 (12)
o XeSp
where |1Cl is the determinant of C. The weight coefficients wy, are to be

determined by solving:

f(xl*) P(xl*)
= = . (m=2,3,...,M)
f(x, )  plxy ) (13)

Zm=1,M wp = 1; wp 2 0 (m=1,2,...,M)

Computation of Eq. 1 using this sampling scheme is done in M groups of
simulation. Each group generates correlated normal samples Xy p (k_m=1,2,...,Np;
m=1,2,...,M) from py(x), i.e. -

G(x)f(x)
Pg = Z:m=1,M Ym {]x ———— Pp(x)dx] (14)
p(x)
Y“m G(xk_m)f("-k_m) .
® Zm‘:l,M - {Ek_m=1,Nm } = Py
Nm }"(Xk_m)

where Pf' denotes the estimator for Pg. The computation in parentheses is one
of the M groups of simulation, corresponding to mode m with samples xy p
(k_m=1,2,...,Ny) from subdensity ppy(x). To reflect relative importance of
respective failure modes, the sample size for mode m, Ny, is determined by
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Figure 1. Sampling distribution for the first-order system reliability problems.

p(x)
A

p H‘[‘ ~p(x) = w,p,(x)
sz*

p(x) = wlpl(x) + wzpz(x)

Failure

Ll P

Safe
Ny ® wy N (n=1,2,...,M) and Ly—q y Np ¥ N (15)

with N, (m=1,2,...,M) being integers. This proposed distribution p(x) for a
series system of two modes (M=2) with two variables (n=2) is shown in Fig. 1.

Note that the effort of solving the M simultaneous linear equations in Eq. 13 is
insignificant, as M is usually small when only significant failure modes are
included. Further note that solution to Eq. 13 may not exist, when some of the
maximum likelihood points are too close to one another in the space of x (for
example, wy may be found to be negative). These close points (and corresponding
failure modes) should then be covered by a single subdensity. In that case, the
problem is treated as if it had correspondingly fewer failure modes in order to
determine the weights for the respective modes.

Random variable samples xy [ from the halfspaces defined by Eq. 12 can be
generated by rejection-and-transformation. This method requires evaluation of
gp(x). It generates a typical sample in the complete space, accepts it as a
valid sample from pp(x) if xy peFy (8p(x)<0) or transforms it into Fp if xp péFp
(gp(x)<0). When the evaluations of gy(x) are excessively costly, they may be
avoided using a direct method given in Appendix A.

4. VARIANCE REDUCTION

4.1 Upper Bound for Variance

The variance of estimator by the importance sampling method in Eq. 9b is bounded
by [Fu 1988] '
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f(x)

Var[P'] € Var[Pg'Imax = — (Pel——ImaxP¢’} (16)

1
N p(x)

This upper bound for the present method is found to be

1 f(x*)
Var[P¢'Jpax = —1Pf — “P¢%] (17)
N p(x")
using
f(x) f(x*)
[ lmax = N (18)
p(x) p(x")

where x  stands for any one of the design points xm* (m=1,2,...,M). Eq. 18 is
proved by inspecting the gradient of likelihood ratio Vf(x)/p(x) as follows.
Consider each domain Fg where f(x)/p(x) is continuous and M' failure modes are
active (x & F, = F{NFoN.. .NEy' .{NEy'; M'<M):

f(x)

VE(x)/p(x) = Lot i WPn(OC 1Xxy) = Toei ' dn(Xan  (198)

ixeF,  p2(%) |xeF, ixeF 4
Appendix B proves that

dp(x) >0, (m=1,2,...,M") (19b)
xeF,

and Appendix C further proves that VE(x)/p(xX) never becomes zero within the
individual domains. It follows that the extreme values of f(x)/p(x) do not ocenr
within these domains but on their boundaries.

Therefore, the global maximum of £(x)/p(x) can be found by comparing its values
on the boundaries. For any two adjacent domains F, = glngzn...ngmv_lngnv and Fy,
= FqNE,N...NEM'-1 where f(x)/p(x) is respectively continuous, their common
boundary is aM't(x - xy' )=0. For x in a vicinity arbitrarily close to this
boundary respectively from both sides (ant(x-va*)<0 and ant(x - va*)>0), one
has

f(x) f(x)
lim < lim
Cay E(x-xyyT)=0 p(x) IxeFy ay' E(x-xy'¥)-0 p(x) |xeFy,

(20a)

simply because the denominator on the left side is larger:
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11m p(x) |xeF Z;,l 4 W Pm(X)

ay' T (x-xy' )0 1E(x-xyr )0

' ©(x-xy ay' * (x-xy

> 11m p(x) | xeFy, = Z%_ M!-1 ¥ Pp(X) (20b)

ay t(x-xy' ™) -0 ay' H(x-xy" ) -0

Generality of Eq. 20 is not restricted, since ordering of the failure mode
subscripts in the definitions of F, and F, is arbitrary. By deduction, the
global maximum value of f(x)/p(x) must occur on the boundaries of domains where
only one failure mode, say m, is active and p(x) = WpPp(X). In this case,

Vi(x)/p(x) has the same direction as ag (Fq 19), and it follows that the maximum
point is on a, t(x- xm ") = 0, namely x—xm This proves Eq. 18.

4.2 Variance Reduction Compared to the Monte Carlo Method

To evaluate the variance reduction by the importance sampling method, the ratio
of estimator variances of the two methods is used as a variance change factor
(VCF):
1 [ G2(x)£(x)
~—Jx f(x)dx - Pf
Var[Pf' ]IS Pf p(x)
VCF = = 21
Var[Pf' ]MC l‘Pf

where subscripts IS and MC indicate the respective methods. The estimator
variance by the conventional Monte Carlo method is readily obtained by setting
p(x) = f(x) in Eq. 9b. VCF provides a means of evaluating the importance
sampling method with respect to variance reduction. This single factor also
represents changes of several governing factors of simulation discussed later.

Using the central limit theorem, three important factors in simulation (confid-
ence index k, error £', and sample size N) are related as follows [ Shooman 1968,
Melchers 1984, Fu 1988]:

'
€

Prob[— < k]=P (22a)
Ccov

where
Pf'

e'=l— -1! (22b)
Pg

cov = —m—— (22c)
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and P is the confidence level in probability and k is the associated confidence
index according to the standard normal cumulative function $():

k = -#"1[0.5(1-P)] | (22d)

An acceptasble error & (associated with the confidence level given by k) is
defined by

e =k COV (23)

The changes in efficiency, confidence, and accuracy associated with N, k, and ¢
can be given in terms of VCF in simple manners, respectively:

e10/eMc=VOF1/2;  kyg/kyg=VCF"1/2;  Nyg/Nyc=VCF (24)
where subscripts IS and MC indicate the importance sampling and the conventional
Monte Carlo methods, respectively. Each of these relationships can be readily
derived by separately keeping the other two factors unchanged in the two
simulation methods.

4.3 Variance Reduction of the Proposed Method

For the present method, substitute Eq. 18 into Eg. 21, and one has

f(x*)
- P
£

p(x™)

VO = ————— (25)
1-Pg

Similarly,

1 £(x™)
COVpay = {=[— -1131Y/2 and  egay = k COVpay (26)

N p(x")P¢g

The ratios of error level, confidence index, and sample size by the importance
sampling and the conventional Monte Carlo methods are accordingly bounded by:

£15/eMcSVCFmax M/ 23 k1s/kuc2VCFpax /25 Nis/NMcSVCFmax (27)
These relations can be used to determine the sample size for given requirements

of confidence level and associated error. This can be done even before the
simulation if the range of Pg¢ is estimated in Eqs. 25 to 27.

5. APPLICATION EXAMPLES

Simulation approaches generally use pseudo-random number generators to produce
random samples, whose quality is critically important. It has been found that
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Application Examples

some congruential generators produce random numbers on certain hyperplanes
[Marsaglia 1968]. Thus they are not suitable for multidimensional integrations.
The Generalized Feedback Shift Register generator was developed to avoid this
problem [Ripley 1987]. A generator of this kind [Fushimi and Tezuka 1983] is
suggested for high dimensional problems, and it has been implemented on an IBM
PS/2 Model 80 for computation of such cases as those now presented.

5.1 Example 1

This example is given by Engelund and Rackwitz [1992] in their comparison of
importance sampling methods. The limit state function 7z is defined as

zl(x) = Bnl/z-zi=1,n Xi (28)

where X; are independent standard normal variables (¥=0, C=I), and n and B are
constants. This problem can be used to test the random number generator's
quality, especially in higher dimensional cases. It is also a relatively simple
problem with a single failure mode (M=1), as a first step of illustration.

Fig. 2 shows the results by the present method for #=1,2,...,10 and n=1,5,10,...,
30, respectively, using N=4,000 samples. Fig. 2a provides an overview comparing
the estimates and exact values. Fig. 2b exhibits the involved errors in more
detail, contrasted with e,y by Eq. 26 and associated with a confidence level of
95% (k=1.96). The actual errors do not exceed this maximum level in all but a
few cases. The actual error increases insignificantly with 8 (or equivalently,
with decrease of Pg). Fig. 2c shows similar comparison for COV vs. COVpax- The
solid line is obtained by Eq. 26. Estimated COVs by Eq. 22c are marked points
and they are bounded by COVy .- This also indicates the satisfactory quality of
the pseudo-random number generator employed. Fig. 2d shows decrease of VCFpay
with B over a range of practical applications, which indicates that simulation
efficiency and accuracy do not decrease with P to be estimated. As a matter of
fact, Fig. 2c shows a small variation range of COV (0 to 6%) over a wide range
of 8 (1 to 10), using the same practically affordable sample size. These cases
also show that the upper bounds for error and COV are fairly close to those
estimated by simulation. Thus these bounds can be used for sample size
determination without significant overestimation. This will be further demon-
strated by the rest of the examples.

5.2 Example 2

Consider a series system problem with zl(x) = X1-Xp and zz(x) = 61-1.44x1-%X9
(M=2) and independent variables Xy = N(25,2.5) and X, = N(10,3.0). The modal
failure probabilities and weights are respectively found tg be Pg 1 = 0.00006126,
Pf*% = 0.0006850, wy = 0.0953, and wy = 0.9047, using xl‘t = (18.85,18.85) and
Xy - = (31.15,16.15). The exact Pg is computed by Pg = Pg 4 + Pf,z - Pf,l * Pg 2
="0.0007462, since the two modes are independent of one another.
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Figure 3. Example 3: failure domain of a series system of parallel systems.

R,

S // Safe

%;/A//
/
S

The simulation is performed using N = 4,000, and a confidence level of 95% (k =

1.96) is used to obtain epgay = 5.7% by Eq. 26, with COVax = 2.9%. Pf' is equal

to 0.0007522 with an error £' = 0.8% and COV = 1.9%. Compared with the

conventional Monte Carlo method, sample size is at least reduced by a factor .
VCFpax = 0.002536, without sacrifice in accuracy (¢') or confidence (k). In

other words, almost 400 times more samples (about 1.7 million) would have to be

used if the conventional Monte Carlo method were employed.

5.3 Example 3

This is a problem with combination of series and parallel systems. It is treated
as a series of parallel systems as defined earlier. The structural system
consists of a deterministic load S8 and two parallel bars made of a brittle
material, which results in the failure region shown in Fig. 3 [Moses 1982]. The
two nondifferentiable failure surfaces represent two symmetrical sequences of
component failures that lead to system failure. They are equally important and
thus equally weighted: wy = wy = 0.5. Axial strengths of bars R; and R, are
assumed normally distributed with a correlation coefficient p and equal
coefficients of variation of 20%. Their mean values are given by a safety factor
SF: Ry = Ry = S*SF/2.

For SF=1.7, 2.2, and 2.7, the results by the present method using N = 4,000 are
plotted in Fig. 4. Exact P¢ for comparison is ohtained using an integration
table [National Bureau of Standards 1959]. A good agreement between the two
methods is observed in Fig. 4a. Error ¢' of these cases is shown in Fig. &b,
most being within the range of 2.5% with a maximum of 5.4%. €£p,4 is based on Eq.
26 and a confidence level of 95% (k = 1.96). TFig. 4c shows COV within 3.7%.
Note that they are not significantly dependent on SF (or equivalently Pg¢) as the
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conventional Monte Carlo method would be, using the same sample size for all the
cases. This indicates that the standard deviation of the estimates is reduced
almost proportionally to Pg. VCFpax in Fig. 4d demonstrates again its decrease
with Pf .

At p=1, the subdensities of simulation Egcome jdentical due to full modal
correlation. This fact causes drop of f(x")/p(x*) and, in turn, drop of gpay,
COVpaxs and VCFp . in Figs. 4b, 4c, and 4d.

5.4 Example &4

This example shows an application to a nonlinear problem with linearized failure
surfaces. The original failure function is z(x) = 6 + xq - 0.622 x22 = 0 with
Xt = (XI’XZ) and independent X; = Xy = N(0,1). Linearized failure functions are
formed according to Eq. 10, using x;*t = (-0.804,2.890) and x*t = (-0.804,-
2.890) and a;% = (1,-3.596) and a,® = (1,3.596). The symmetric failure modes
give w1 = wp = 0.5. Exact Pg = 0.002816 is obtained by a one-dimensional
integration using the Gamma distribution [Schuéller and Stix 1987].

Simulation results using N = 4,000 are: VCFp,¢ = 0.008316, Pf' = 0.002761, ¢' =
2.0% vs. Epax = 5.3%, and COV = 1.7% vs. COVpay = 2.7%. Apparently the
linearization represents a good approximation. Pg by the present method based
on the linearization is reasonably close to the exact Pg. The estimated COV and
¢' are bounded by the analytically derived upper bounds, respectively. Maximum
error gpax is based on a confidence level of 95% (k = 1.96).

5.5 Example 5

This example exhibits applications to series systems of higher dimensions. A
system of M components in series is considered, with the components designed to
be equally reliable with a component reliability index B = 5 (equivalently a
component failure probability of 0.287x10°6) and equal weights w, = 1/M
(m=1,2,...,M). For a deterministic load S and normally distributed component
strengths Ry (m=1,2,...,M) with an equal correlation coefficient p among them,
Pf' is plotted in Fig. 5, using N = 4,000 for M = 2, 10, and 50. Exact Pg is
calculated for comparison by a one-dimensional integration [Grigoriu and Turkstra
1979] and shown in Fig. 5a. Error ¢' is displayed in Fig. 5b, most being within
the range of 5% with a maximum of 6.4%. COV of the estimates is shown in Fig.
5c, being around 2.5% and again almost independent of Pg. VCFp,y in Fig. 5d has
similar behavior to that in Fig. 5d for FExample 3, within the range of 6.1%. The
drop of epaxs COVpyax: and VCFp,, at p=1 in Figs. 5b, 5c, and 5d is due to the

same cause discussed in Example 3.

6. CONCLUSIONS

A general importance sampling method has been introduced. Its sampling
distribution is proportional to the ideally optimal one at the maximum likelihood
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points and can locate all samples in the failure domain. This method can be
employed in integrals for extremely small probability when assessing system
reliability, expected damage, etc. Upper bhounds for variance, error, and CNV of
estimator are derived analytically, which have been used to evaluate the present
method and can be used in general applications to determine required sample size
for an acceptable maximum error associated with a confidence level. Example
applications show the assured improvement on efficiency and accuracy for general
cases, compared to the conventional Monte Carlo method. These include problems
of both series and parallel systems and of higher dimensional space. They also
show that the required sample size is not highly dependent on the failure
probability Pg to be estimated. )
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Appendix A. A Direct Method for Generating Random Samples in a Halfspace

1. Find a lower triangular matrix A such that aAt = ¢, say, by Cholesky
decomposition. (A always exists since C is symmetric and positive definite.)

2. Assemble an orthogonal transformation matrix Ay, so that Atam is in the plane
spanned by the first two axes of the new coordinate system:

AmAtam =a'y = (a'm’l,a'm’z,O,O,...,O)t

3. Generate a sample yy  of standard independent normal vector in a halfspace
with its first element in only half of its complete space, i.e., Yy p =

(Yk_m’ 1SYk_m,2, PR ,yk_m’n)t and Yk_m’ 12(-00,0]
4. Transform yj , into the new coordinate system defined by Ay, ¥y o = An¥k m

5. TForm y, ," by rotating the projection of yi ' on the plane defined by the
k_m k_m

first two axes, by the angle o between a'y and the first axis: yk_m" =
Dmyk_m'

6. Transform yy , back to the original space: yy o = Am'lyk m - Note that
Vi @ is a sample within the halfspace now (antAyy p'"'<0)

7. Transform yj @"' to*porrelated Xy @ using mean xm* and covariance matrix C:

X m = Ayk_ﬁ“ + x

8. Go to Step 3 until k_m = N
9. Go to Step 2 until m = M

Steps 3 to 7 are shown in Fig. 6 in the plane defined by the first two axes of
the variable vector (Step 2). Note that Step 5 involves only the first two
elements of yj m', since others are orthogonal to this plane.

A numerical example is given below for illustration. For simplicity, M =1, n
=3,C=1, x;° =0, and aj = (0.267,0.535,0.802)t. Steps 8 and 9 are omitted
below because they simply indicate recurrence steps for more samples.

1
1. Triangular matrix A = |0 1
0 0 1
1 0 0 1 0 0
2. Orthogonal transformation matrix A = |0 cosy siny| = |0 0.555 0.832
0 -siny cosy 0 -0.832 0.555

where tany = 0.535/0.267 = 1.5 and y = 0.982. Note: AlAtal = 8'1 = (0.267,
0.964,0)t

3. yp = (-1.135,2.014,0.031)¢

17
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Yo' = Ajyp = (-1.135,1.145,-1.657)¢

cosa -sina 0 0.267 -0.964 O
In-plane rotating matrix Dy = |sina cosa 0| =10.964 0.267 O

0 0 1 0 0o 1

where cosa = 0.267 and @ = 1.300. yg" = Dyyy' = (-1.406,-0.788,-1.657)t
vo"' = Ay lyp" = (-1.406,0.942,-1.575). Note: a;tAyy"' = -1.135<0

xg = Ayp"' + x;° = yg"' = (-1.406,0.942,-1.575)¢
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Appendix B. Proof of dg(x)>0 (j=1,2,...,m)
where Lm=1,M' dp(x)ap = £(x)/p2(x) =1 ' WpPp(x)6 1 (X-xy")

For the optimization problem defined as
Max f(x); Sub amt(x-xm*) =0 (B1)

and for xm* to be the maximmm likelihood point (or design point), the necessary

condition is

VE(x) + A V[ a,t(x-x,")] = 0 at x=x;" (B2)
Eq. B2 leads to

£(x,*)C"L(X - x,) + Apay = O (B3)
where Ap (m=1,2,...,M') are the Lagrange multipliers:

8yt (X-x, ) £(xp ")
g = - (B4)
8 "Cay,

Substitute Eq. B3 into the definition

f(x)

Lom1 M P (0C 1 (E-x™) = Ly v dp(m0ay (B5)
pZ(X)

and use Eq. B4 subsequently, one has

f(x) WpPp(x)

p2(x) f(xg")
f(x) wypPn(x)

dp(x)

‘m

a,t(X-x,") (m=1,2,...,M") (B6)
pZ(x) aytCay

Since amt(g-xm*)>0 (by assuming XeS because Pg<l), atham>O (because C is
symmetric and positive definite), and the rest of terms in Eq. B6 are all
positive by definition, d,(x) are positive scalar functions of x. This completes

the proof.

Preceding page blank 2:
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Appendix C. Proof of VE(x)/p(x) = Ly=y y' dp(x)ay + 0,
with dm(x)>0 (m=1,2,...,M"') proved in Appendix B.

For M'=1, since d(x)>0 and a0, then dj(x)a;+0.
For M'>1, use contradiction. Assume Em=1,M' dp(x)a,=0. For a point xgeF NE-N. ..

NFy' .1NFmt and another arbitrary point x eR", we have
IM -1""2M 1

Em=1,M' dp(X)aytxg = 2:m=1,1~1' dp(x) aytxy = 0 (c1)

Add a common term -z%=1’M' dm(x)amtxm* to both sides of Fq. Cl

Fom1 ' dn(0 8t (xo-%") = Yoyt dp(m)ant(xy-x,™) < 0 (C2)

since dm(x)amt(xo-xm*)<0 according to the definition of xg. This also indicates
that xjeF, since it belongs to at least one of the subfailure region Fp
(m=1,2,...,M"). It follows that the entire space belongs to the failure domain,
i.e. RP=F and P¢=1, which contradicts with the basic assumption that Pg<l. The

proof is completed.
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