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ABSTRACT

This report presents results of a study using a Maximum Entropy Spectral Analysis
(MESA) approach to evaluate driver behavior as related to driving speed taking
into consideration heavy and light traffic conditions, rainy and dry weather
conditions, impacts of traffic entering from ramps, ramp impacts, and operating
characteristics of various drivers. Three test sites were chosen in the Albany
area. Testing vehicle speed between two fixed points was recorded and
transferred to spectral density functions. Impacts of traffic conditions,
weather conditions, vehicles entering from ramps , and driver behavior can be
identified from these spectral density characteristics. Basic concepts of
maximum entropy spectral analysis and results of the field experiments are
discussed and presented in the Appendix.
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Figure 1. Point and section detection of traffic flow.
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I. INTRODUCTION

Currently, from the perspective of traffic control and traffic flow analysis,
local or section speed is the main traffic flow characteristic to be monitored
and fed back to a control system. Conceptually, local or section speed detection
may be considered a "point-detection"™ technique -- i.e., calculated data
statistically represent traffic characteristics at a specific highway location
or within a relatively short section, without considering the dynamic process of
a moving vehicle on a relatively long highway section. Basic concepts for point
and section detection are shown in Figure 1.

The dynamic process of a moving vehicle on a highway section, say 10-miles long,
is affected by traffic conditions, environmental conditions, geometric
conditions, driver behavior, etc., within that section. Detection of a dynamic
process can be considered "line-detection," and can provide sufficient and more
accurate information for traffic control than "point detection." Figure 2 shows
the concept of line detection. The data actually resulting from line detection
represent the relation of speed history vs. time or distance of the testing
vehicle. This speed history reflects speed-control characteristics of individual
drivers, which thus are microscopic rather than macroscopic. However, dynamic
speed processes controlled by different drivers or impacted by different outside
conditions may not be clearly identified in the time or space domains. The
research scope for microscopic characteristics of traffic flow is sometimes
limited because of lack of methodology or limitations of those domains.

The Engineering Research and Development Bureau recently completed a research
study to evaluate traffic flow along a line in the frequency domain, rather than
the time or space domains. The spectral analysis method was used, which
correspondingly provides a new analysis scope for traffic flow evaluation.

Spectral analysis techniques have been used in transportation engineering for
many years, in such areas as pavement surface roughness (1), traffic flow
prediction (2), and spacing of transverse pavement cracks (3). The study
reported here evaluated driver behavior related to driving speed as affected by
heavy and light traffic, rainy and dry weather, and entering traffic from ramps,
using a Maximum Entropy Spectral Analysis (MESA) approach. The basic idea of
MESA is to transfer individual vehicle speed recorded in the time domain to
spectral density in the frequency domain by the maximum entropy spectral estimate
method (MESE) (4). Impacts of traffic conditions, weather conditions, vehicles
entering from ramps, and driver behavior can be identified from spectral density
characteristics. Because the impact of traffic lights was not a study variable,
interstates I-87, I-90, and I-787 in Albany were chosen as test sites.

It should be emphasized here that this study’s purpose was to provide a new
method for traffic flow analysis or highway operations. Application of MESA was



2 Spectral Density

this study’s main objective. Theoretical derivation and discussion will not be

emphasized. The study reported reflects only initial research results showing
how the models work.



II. THE MESA CONCEPT

A. Discrete Spectral Transformation

Vehicle speed data sampled at time interval T can be abstracted as a discrete
sequence, called the "discrete speed sequence” or

(v, ) =lv,, v,, ..., %! (1)

where V; = i*® vehicle speed data sampled at time interval T (sec). Figure 3
shows a typical discrete speed sequence collected from I-87 during a non-rush-
hour period. Consider the inverse discrete Fourier transformation of the
discrete speed sequence defined by Oppenheim (3):

1 N-1
Vi = — T Hedlkzn/¥ (i=1,2, ..., N) (2)
N K=0

where N = length of the sequence (number of data points in the sequence)

Figure 3. Speed sequence collected from Site 1 (light traffic, dry, all lanes).
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4 Spectral Density

V; = i* vehicle speed data
Hy = weights (k =0, 1, 2, ..., N - 1), and
j o= (-1)%

Equation 2 states that V; can be considered a weighted summation of sine
functions ed*#/¥  If 3 new variable w, is defined by

w, = K2#/N (K=0,1, ..., N-1)
then
1 N-1
K K=0
and

e% = sin wi + jeosw i

Usually, the variable w, is called frequency and is within the range of 0, 2x(N-
1)/N. From Equation 2, it is known that the larger the H,, the more sine function
components with frequency w, are contained in the discrete speed sequence { V,; |,
Mathematically, it can be proved that

H, = H(w,) = ; Vie™% (0 = 0, 2x/N, 4n/N, ..., 2n(N-1)/N)
im-e (4)

In other words, H(wy) is the discrete Fourier transformation of {Vi } and the
unction of frequency w,. Equation &4 implies that the discrete speed sequence
’fV,_ ir\ the space domain can be transferred Tnto the frequency domain sequence
H(w) |, and characteristics of sequence [Vi can be analyzed in the freguency
domain -- i.e., knowing H(wy), one can analyze the characteristics of Vinl
Since H(wy) is an imaginary sequence, a real function is defined by

S(w) = IH(w)!? (5)

where S(wy) is called the spectral density function of sequence [Vi } To
calculate H(w;) from Equation 4, the summation should be from -« to +w. In
practical engineering cases, sequence length N is finite because one cannot

collect infinite numbers o ta. The spectral density function S(w,) thus
should be estimated from [V, by some estimation model, instead of using
Equation 4.

In the area of spectral function estimation, several mathematical methods are
available, such as fast Fourier transformation (FFT) (8), maximum-likelihood
spectral estimation (4), and maximum-entropy spectral estimation (4). FFT is one
of the most popular spectral estimation models, but it is often difficult to
analyze signals by FFT because of their discrete and random characteristics. On
the other hand, the "window" requested by FFT calculation usually results in
significant spectral estimation error. The maximum entropy spectral estimation
(MESE) method is a non-linear and parametric estimation model that does not have
"window" and "discrete" problems.



The MESA Concept

B. MESA of Vehicle Speed Characteristics

From this discussion it can be understood that the spectral density function
S(wy) represents the frequency density distribution characteristics of the
discrete rpﬁed sequence | V; r The basic idea is that if the discrete speed
sequence |V;l changes smoothly, or the driver drives his vehicle in a steady
manner, then S(w,) contains relatively numerous low-frequency components. This
means that the magnitude of S(wy) in the high-frequency region is fairly low.
On the other hand, if the discrete speed sequence changes randomly, or the driver
changes his speed abruptly, then S(wy) contains relatively numerous high-
frequency components, and the magnitude of S(wy) in the high-frequency region
thus is relatively higher.

Conceptually, the spectral density function in the 1low-frequency region
represents contour characteristics or macroscopic characteristics of a speed
curve in a long period, but the spectral density function in the high-frequency
region represents detail changes or microscopic characteristics of the speed
curve in a short period. Since frequency of speed change is limited, spectral
density characteristics should be band-limited. Figure 4 shows the spectral
density function of the speed curve presented in Figure 3. From this graph, it
is known that the spectral density function is band-limited, and low-frequency
components dominate the whole spectral density function. In fact, the spectral
density function shown in Figure 4 is a typical model of speed spectral density
characteristics.

Figure 4. Spectral density function of speed sequence (Site 1, light traffic,
dry, all lanes).
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Figure 5. Data sampling equipment and testing vehicle.
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III. CONSIDERATIONS IN THE FIELD EXPERIMENTS

Field experiments were conducted to check if maximum entropy spectral density
characteristics can identify dynamic speed characteristics under various
conditions. The following conditions were considered in the field experiments:

1. Heavy and Light Traffic

"Heavy" or "light" traffic conditions refer to rush-hours or non-rush-
hours, respectively. In the Albany area, morning rush-hour usually
happens between 7 and 8 a.m. In this study, heavy traffic speed data
were collected at the morning rush-hour and light traffic speed data
were collected between 10 and 11 a.m.

2. VWeather Condition

In this study, weather conditions are described as rainy or dry, and
results are based on non-rush-hour or light traffic flow. Generally,
for the rainy condition, pavement should be wet enough so that pavement
skid resistance is significantly different from the dry condition.

3. Ramp Impact

Traffic entering from a ramp affects moving traffic in a freeway.
Compared with the left lane, the right lane should be more affected by
entering traffic. This study used two cases to evaluate ramp impact.
In the first, the testing vehicle was required to move only in right
lane, undergoing more ramp impact; in the second, it was allowed to move
in any lane. Ramp impact can be found from these two cases. Tests were
based on the non-rush-hour traffic condition.

4. Driver Behavior Comparison

Speed characteristics controlled by different drivers are one of the
concerns in this study. Two drivers were selected to run the testing
vehicle in heavy and light traffic conditions, and their speed spectral
characteristics were computed to identify their differences in driving
behavior.

Speed data were collected by a speed transducer measuring transmission angle
speed and an instrument called the Fluke Meter. The speed transducer was well
calibrated to a radar detector. Figure 5 shows the Fluke Meter and testing
vehicle. The process of sampling field data is relatively simple: the testing
vehicle was driven from Site A to Site B and its speed was sampled at 3-sec
intervals by the Fluke Meter. Then recorded data including speed, traffic
condition, test site identification, weather condition, lane change, driver’'s

7



Figure 6. Aibany field experimental locations.

Figure 7. Factorial for field experiments.
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Considerations

name, date, and other information were sent to lab for data reduction and
analysis.

Basic field test requirements were as follows:
1. Test Site Length

This should be long enough so the basic dynamic process of changing
speed can be recorded. 1In this study, test site length was about 10
miles.

2. Traffic Flow Condition

To find the difference of spectral density characteristics under heavy
and light traffic-flow conditions, test sites should have heavy flow
during rush-hour periods and light flow during non-rush-hour periods.

3. Freeway Exits

A few ramps should be included because ramp impacts were to be
considered.

Combining these requirements, three test sites in the Albany area were chosen at
the locations are shown in Figure 6:

1. 1I-87 between Exits 2 and 9 (southbound)
2. 1-90 between Exits 5 and 10 (eastbound)
3. 1-787 between Route 9W and Tibbets Ave. (southbound).

During testing, driver behavior should be as objective as possible -- i.e., his
speed control characteristics should change according to traffic conditioms,
ignoring the fact that he is in a test situation. Figure 7 shows the field test
factorial in which "Right Lane" means the testing vehicle always stays to the
right (to compare ramp impacts), and "All Lane"” means the driver can change lane
depending on traffic conditions. In an "All lane" case, impact of the ramp is
less than in "Right Lane." It should be noted that this so-called "factorial"
does not mean the factorial design in statistical analysis, but refers to the
field experiments evaluating the variables listed in Figure 7.






IV. FIELD EXPERIMENTS

A. Spectral Characteristics Of Driver Behavior Under Varied Traffic Conditions

Heavy and light traffic conditions are two extremely different cases, in which
a driver may control his vehicle speed differently. Generally, when traffic is
light, vehicle speed is relatively stable as compared with heavy traffic
conditions. However, this difference may not be easy to identify in the time or
space domains. Figures 8, 9, and 10 show speed data collected from Sites 1, 2,
and 3, respectively, representing light traffic during non-rush-hour periods, and
also heavy traffic during rush-hours. Spectral density characteristics of these
speed data are presented in Figures 11, 12, and 13 (vertical scale: 20log S(wkﬂ
was used), from which it can be seen that these characteristics differ
significantly under heavy and light traffic volumes, although these differences
cannot be easily identified from Figures 8, 9, and 10. Magnitude of the spectral
density function under heavy traffic is much greater than under light traffic,
which means (as stated earlier) that the driver may change his speed abruptly
because of heavy traffic ahead of his vehicle. Statistically, magnitude of the
spectral density function resulting from heavy traffic is higher than that from
light traffic. Figure 14 shows speed curves collected from Site 1 under very
heavy traffic. Figure 15 shows spectral density functions resulting from speed
data shown in Figure 3 representing light traffic, from Figure 8 representing
heavy traffic, and from Figure 14 representing very heavy traffic. It is known
that the heavier the traffic, the higher is the magnitude of the spectral density
function.

B. Weather Condition Impact on Vehicle Speed

In this study, weather condition is described as rainy or dry, and results are

based on non-rush-hour traffic flow. Since no heavy rain occurred during
testing, it cannot be discussed here. A major concern was whether rain has
significant impact on individual vehicle speed by spectral analysis. The

literature indicates that a wet pavement surface has less skid resistance, which
affects driving safety characteristies. But it should be known whether a wet
pavement surface significantly affects driver behavior in terms of speed. In
this study, a few tests were conducted at the three sites to study rainy weather
impact. It would be expected that during rain, a driver might keep cautiously
adjusting his speed to find a desired level that he considers safe. The driver
might not accelerate or decelerate if rain is not heavy. Thus, the shape of
spectral density characteristics could be used in analyzing rainy weather impact.
A suitable way to identify curve shape is use of normalized spectral density
curves. Figures 16, 17, and 18 show normalized spectral density characteristics
under rainy and dry conditions, with speed data collected from Sites 1, 2, and
3. From these graphs, it is apparent that spectral density characteristics of
vehicle speed under rainy and dry weather do not differ significantly -- i.e.,

Preceding page blank 1,



Figure 8. Site 1 speed sequence (dry, all lanes).
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Figure 9. Site 2 speed sequence (dry, all lanes).
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Figure 10. Site 3 speed sequence (dry, all lanes).
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Figure 11. Site 1 spectral density functions of
speed sequence under light and heavy
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Figure 14.
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Figure 16. Site 1 normalized spectral density func-
tions in two weather conditions (light
traffic, all lanes).
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Figure 17. Site 2 normalized spectral density func-—
tions in two weather conditions (light
traffic, all lanes).
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Figure 18. Site 3 normalized spectral density func-
tions in two weather conditions (light
traffic, all lanes).
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Figure 19. Site 1 normalized spectral density func-
tions in right-lane and all-lane condi-
tions (light traffic, dry).
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Figure 20. Site 2 normalized spectral density func-
tions in right-lane and all-lane condi-
tions (light traffic, dry).
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Figure 21. Site 3 normalized spectral density func-—
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Experiments 17

driver behavior in terms of speed is not significantly affected by wet pavements.
However, during field testing, no heavy rain occurred, and the results may not
be applicable to such conditions.

C. Ramp Impact on Vehicle Speed

Vehicles entering from a ramp significantly affect speed characteristics of
vehicles already in a freeway. In recent years, research has been done on
macroscopic characteristics of ramp impact in time or space domains. One
objective of this study was to evaluate vehicle-speed spectral density
characteristics affected by vehicles entering from a ramp during a heavy-traffic
condition. It was assumed here that vehicles staying in the right lane were more
affected by entering vehicles than those that could change lanes when approaching
ramps. Two cases were considered. First, the test vehicle was directed to stay
in the right lane no matter how bad traffic was. Second, the testing vehicle was
allowed to change lanes to avoid ramp impact. When vehicle speed approached zero
the test was considered "fail." Tests were conducted at Sites 1, 2, and 3, and
corresponding normalized spectral density functions are shown in Figures 19, 20,
and 21, from which differences of "right lane" and "all lane" can be identified.

D. Identification of Driver Behavior

The tests discussed so far were based on speed characteristics controlled by a
specified driver called "Driver A." However, drivers behave differently -- i.e.
some control vehicles in an aggressive or unstable manner and others defensively
or stably. In the frequency domain, difference of driving behavior can be
spotted. Conceptually, an aggressive driver adjusts his speed more often and
more quickly under various traffic conditions than a defensive driver does,
resulting in higher spectral density magnitude in the whole frequency range. In
this study, field tests were conducted at Site 1 to examine this assumption. Two
drivers (designated A and B) were selected from the research staff, and traffic
condition (heavy or light) was considered. Figures 22 and 23 show differences
of Drivers A and B spectral density characteristics under heavy and light traffic
conditions. From these graphs, Driver A had a higher spectral magnitude than
Driver B, meaning that he controlled his vehicle more aggressively, but this
difference was relatively less when traffic was light than when traffic was

heavy.
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Figure 22. Light traffic spectral density functions
of speed sequences for two drivers (Site
1, dry, all lanes).
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Figure 23. Heavy traffic spectral density functions
of speed sequences for two drivers (Site
1, dry, all lanes).
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V. DISCUSSION

The spectral analysis technique has been accepted in many engineering areas,
but not widely applied nor evaluated in transportation engineering. 1In
fact, in addition to time and space domains, spectral analysis provides
another analytical alternative. Some problems that cannot be solved in those
domains may be solved easily in the frequency domain.

Individual vehicle speed is a stochastic process. If data sampling is
limited to a certain time period, this process can be assumed to be
symptomatically stationary and approximately normally distributed without
obvious constant trends. This assumption makes non-linear spectral
estimation methods applicable.

The study reported reflects only initial research results showing how the
models work. Actual application might require considerable experience.
More effort is needed to evaluate these traffic impacts.

Most current vehicle-speed-related research is based on "point detection" or
"section detection,” i.e., the mean value of measured speeds is taken as the
main variable. 1In this way more important information is "averaged." In
fact, such information can be obtained from detection of the dynamic speed
process, which is called "line detection." The technique discussed in this
report belongs to line detection.

Data collected from line detection can be analyzed in the time/space
domains. Analysis in the frequency domain has been widely used in
continuous and discrete control systems and signal evaluation. The spectral
analysis technique discussed here can be used to assess highway level-of-
service (LOS), traffic congestion, and safety of the traveling public. This
technique can also be used in detecting traffic incidents and traffic
control, such as Intelligent Vehicle Highway Systems (IVHS). However,
further research is needed to apply spectral analysis techniques to these
areas.

Maximum entropy spectral estimate (MESE) is one of the spectral estimate

methods. For spectral analysis, other estimate methods could be used. Many
computer software packages are available in the market.

19
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APPENDIX. THE CONCEPT OF MAXIMUM ENTROPY SPECTRAL ESTIMATION (MESE)

The MESE method was introduced by Burg in 1968 (6). Like maximum likelihood
spectral estimation, MESE ir a kind of estimator of parameter estimation.
Consider a discrete sequence (V; | with sequence length N and sample interval T.
If the sequence is a stationary, zero mean, approximately normally distributed,
and a band-limited stochastic process, then entropy of the sequence is defined
as

1 1 B
H = —In(2B) + — | Lnls) ] aw
2 4B -B (6)

where B is band width of the sequence, and S(w) is the spectral density function

of the sequence, or

+0
S(w) = T £ R(m)e duTv (7

m=-a

In Equation 7, R(m) is defined as the autocorrelation function of sequence [VJ
R(m) = E | V,Vy,, | (8)

Combining Equations 6 and 7, entropy is obtained by

1 ' 1 B +o

H= —Ln(2B) + — | LalT T R(m)e™ | 4y

2 4B -B [ ] (9)

Suppose the values of autocorrelation R(m) are given form =0, 1, 2, ..., M.

Then the corresponding extension of the autocorrelation function is defined by
the convolution sum

M
R(m) = - Z R(m-k)a (m>M)

K=1

(10)
or, equivalently,

M
Z R(m-k)a,=0 (apg=1, m>M)
k=0

The method that Burg introduced maximizes entropy H with respect to R(m) (Im [ >M)

with restrained condition Eq. 10, so that parameters a;, a3, ..., ap can be
obtained. Mathematically, this can be expressed as
24
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JH
dR(m)

M
2 R(m-k =0
o Rk - (11)

It can be proved that with the conditions i Eq. 11, sequence [Vi ] can be
related by the following autoregression model { AR(M) model ] :

Vi - -81V1-1 - azvi-z ® ees = aHVi_M + ey (12)

where M is the order of the AR(M) model, and [ei ] is an approximately normally
distributed disturbance with zero mean value. Omitting the mathematical
derivation, one can obtain the estimate of the parameters (a;, a;, ..., a;) by
the Yule-Welker equation

R-A =P o | (13)

where R is the autocorrelation matrix of sequence [Vi } and R is called the
Toeplitz matrix:

R(0)  R(-1) ... R(1-M) R(-M)
R(1) R(0) ... R(2-M) R(1-M)
R(M-1) R(m-2) ... R(0)  R(-1)
R(M)  R(M-1) ... R(1)  R(0)

and - - _ .
1

a; 0

A= as P = 0

ay-1 0

where
Py - E [e2)

Finally, with all parameters estimated by the MESE algorithm, the maximum entropy
spectral density function can be expressed by

Py T
. S(w) =

M
1+ I gl

m=1

(14)

5



a



