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Cellular Automata for Traffic Flow Modeling

Saifallah Benjaafar, Kevin Dooley and Wibowo Setyawan
Department of Mechanical Engineering
University of Minnesota
Minneapolis, MN 55455

Abstract

In this paper, we explore the usefulness of cellular automata to traffic flow modeling. We
extend some of the existing CA models to capture characteristics of traffic flow that have
not been possible to model using either conventional analytical models or existing
simulation techniques. In particular, we examine higher moments of traffic flow and
evaluate their effect on overall traffic performance. The behavior of these higher moments
is found to be surprising, somewhat counter-intuitive, and to have important
implications for design and control of traffic systems. For example, we show that the
density of maximum throughput is near the density of maximum speed variance. Contrary
to current practice, traffic should, therefore, be steered away from this density region. For
deterministic systems, we found traffic flow to possess a finite périod which is highly
sensitive to density in a non-monotonic fashion. We show that knowledge of this periodic
behavior to be very useful in designing and controlling automated systems. These results
are obtained for both single and two lane systems. For two lane systems, we also examine
the relationship between lane changing behavior and flow performahce. We show that the
density of maximum lane changing frequency occurs past the density of maximum
throughput. Therefore, traffic should also be steered away from this density region.
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1. Introduction

Traffic flow modeling is an important step in the design and control of transportation
systems. Despite this importance, existing literature has yet to offer a comprehensive
model capable of capturing the richness and complexity of real traffic. The objective of this
paper is to explore a new modeling paradigm, cellular automata (CA), which has has
emerged in the last few years as a very promising alternative to existing traffic flow models
[2, 7, 14, 16]. CA models have the distinction of being able to capture micro-level
dynamics and relate these to macro level traffic flow behavior. This is in contrast with
existing models, which are either aggregate in their treatment of traffic flow (macroscopic
models) or detailed and limited in scope (microscopic models). Cellular automata models
are capable of explicitly representing individual vehicle interactions and relating these
interactions to macroscopic traffic flow metrics, such as throughput, travel time, and
vehicle speed. By allowing different vehicles to possess different driving behaviors
(acceleration/deceleration, lane change rules, reaction times, etc.), CA models can more
adequately capture the complexity of real traffic. CA models, by being either deterministic
or stochastic, can be more effective in accounting for the inherent variability in most real
traffic. In turn, this allows us to characterize not only average values of flow metrics but
also their higher moments (e.g., variance). Finally, CA models are amenable to
representing both single and multi-lane traffic, which is particularly crucial for the modeling
of highways.

In this paper, we build on the pioneering work of Nagel'and his colleagues [7, 8, 10,
11, 15] who were among the first to recognize the usefulness of cellular automata to traffic
flow modeling. Their models have been extended by several others in the last few years
[2,5, 6, 13, 14]. However, most of the existing models have focused on describing the
relationship between the first moments of traffic flow measures. In this paper, we examine
the behavior of higher moments of these metrics. We show that behavior of these higher

moments to be not only surprising but also to have important implications for design and
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control of traffic systems. For deterministic systems, we investigate the phenomenoﬁ of
flow periodicity. We show that, in general, traffic flow is periodic with a finite period
length. This finite period is found to be highly sensitive to traffic density in a non-
monotonic fashion. We show that knowledge of this periodic behavior can be very useful
in designing and controlling automated roadway systems.

The organization of the paper is as follows. In section 2, we provide a brief overview
of existing traffic flow models and discuss some of their limitations. In section 3, we
present a series of cellular automata models: deterministic single lane, stochastic single
lane, and stochastic multi-lane, and discuss several interesting insights obtained from these
models. In section 4, we briefly discuss the issue of time scaling as to CA-based computer

simulation. Finally, in section 5, we present a discussion and conclusion.

2. Traffic Flow Modeling in the Literature

Traffic flow models can be divided into two major categories: microscopic and
macroscopic. Microscopic models describe traffic behavior as emerging from discrete
entities interacting with each other. They range from simple analytical models, such as car-
following models [4], to detailed simulation models, such as the FRESIM [3] and
NETSIM [12] simulation software. Macroscopic models are concerned with describing the
aggregate behavior of traffic by characterizing the fundamental relationships between
vehicle speed, flow and density. Example macroscopic models include input/output,
simple continuum, and higher order continuum [4].

A major limitation of the existing microscopic models (e.g., the car-following model) is
that they assume uniform behavior for all vehicles. The models are deterministic and,
therefore, cannot capture the inherent stochasticity in vehicle behavior in real traffic. Most
microscopic models are also difficult to extend to multi-lane systems. A key limitation of
macroscopic models is their aggregate nature. Because they treat traffic flow as
continuous, they are incapable of capturing the discrete dynamics that arise from the

interaction of individual vehicles. For example, modeling different driver behaviors with
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regard to acceleration/deceleration or lane changing is difficult. Because they are
deterministic, these models can provide only average traffic flow metrics. Higher moments
of throughput, travel time, and speed are impossible to characterize. Thus, the usefulness

of most of these models is limited to characterizing the long run behavior of traffic flow and

cannot be used for real time traffic analysis and control.

3. Cellular Automata for One-Lane Traffic Flow

Cellular automata are mathematical idealizations of physical systems in which space and
time are discrete, and physical quantities take on a finite set of discrete values. A cellular
automaton consists of a regular uniform lattice, usually ﬁnite.in extent, with discrete
variables occupying the various sites. The state of a cellular automaton is completely
specified by the values of the variables at each site. The variables at each site are updated
simultaneously, based on the values of the variables in their neighborhood at the preceding
time step, and according to a definite set of "local rule.” (see [7] and [20] for a general
review). Performance metrics are generally obtained through computer simulation of the

evolution of the cellular automaton over time.

Our initial traffic model is defined as a one dimensional array with L cells with closed
(periodic) boundary conditions. This means that the total number of vehicles N in the
system 1s maintained constant. Each cell (site) may be occupied by one vehicle, or it may
be empty. Each cell corresponds to a road segment with a length [ equal to the average
headway in a traffic jam. Traffic density is given by p = N/L. Each vehicle can have a
velocity from 0 to v, The velocity corresponds to the number of sites that a vehicle
advances in one iteration. The movement of vehicles through the cells is determined by a
set of updating rules. These rules are applied in a parallel fashion to each vehicle at each
iteration. The length of an iteration can be arbitrarily chosen to reflect the desired level of
simulation detail. The choice of a sufficiently small iteration interval can thus be used to

approximate a continuous time system. The state of of the system at an iteration is



determined by the distribution of vehicles among the cells and the speed of each vehicle in
each cell. We use the following notation to characterize each system state:

x(i): position of the ith vehicle, |

v(i): speed of ith vehicle, and

g(i): gap between the ith and the (i+1)th vehicle (i.e., vehicle immediately ahead) and is

given by g(i) =x@ +1) - x(i) - L.

3.1 Deterministic Cellular Automata

In the deterministic single lane model, vehicle motion is determined by the following set

of updating rules:

1. Acceleration of free vehicles: If V(i) < Vygy and g(@) 2 v(@) + 1, then v(i) = v(i) + 1.

2. Slowing down due to other vehicles: If v(i) > g(i) - 1, then v(i) = g(i).

3. Vehicle motion: Vehicle is advanced v(i) sites.

Figure 1 shows the application of these three updating rules to an example system with 24
cells and 7 vehicles.

These updating rules were first suggested by Nagel [7] and then used in many
variations by others [5, &, 14, 16]. Under these rules, all vehicles have identical behaviors
and obey the same maximum speed. As we discuss later, these assumptions can be easily
relaxed. For example, different vehicles could be assigned different maximum speeds.
The tolerated gap between vehicles could also be made vehicle-dependent. Erratic
acceleration and deceleration may also be included by introducing random accelerations and
decelerations (see section 3.2).

Throughout the simulation, we use a maximum speed vy, = 5 cells/iteration. We let
each iteration correspond to one second. The length of each cell is taken to be 7.5 meters,
which includes the average length of a vehicle and the gap between two neighboring
vehicles in a traffic jam [7]. Therefore, vehicles assume the discrete speeds vp = Okm/h, vq

= 27km/h, vy = 54km/h, ..., and vy, = 135km/h. This scaling is, however, not unique.



For example, we could have fixed the maximum allowable speed and then obtained the
duration of each iteration. Other time scaling strategies are also possible (see section 4).

It should be recognized that deterministic CA models are greatiy simplified versions of
real traffic. However, they can be useful in gaining insights into the fundamental behavior
of traffic flow, insights that may not be easy to obtain without these simplifying
assumptions. Deterministic CA can also be useful as a modeling paradigm for automated
highway systems, where vehicle speeding and vehicle deceleration are externally
controlled. Indeed, an automated highway system would operate very much like a
deterministic cellular automaton with rules specifying the total number of vehicles allowed
in the system and the set of allowable vehicle behaviors.

Results from computer simulation of the above deterministic system are summarized in
figures 2-6. The simulation is based on a system of 300 cells evaluated over 10,000
iterations (approximately 2.8 hours) for varying density levels. For each density level,
various traffic flow measures were obtained (e.g., throughput, average speed, speed
variance, traffic periodicity, etc.). A number of interesting observations can be made:

« The model reproduces the familiar fundamental diagram of flow versus density - see
Figure 2. Flow is linearly increasing with initial increases in traffic density (laminar flow).
A maximum flow of 3000 vehicles/hour is achieved at 5y = 0.1667, beyond which flow
becomes linearly decreasing in density (back traveling start-stop waves). This behavior is
consistent with empirical observations of actual traffic [4] (a more accurate approximation
is provided by the stochastic version of the model presented in section 3.2).
e In the laminar flow phase, average speed converges to the maximum speed Vygy.
Average speed becomes a decreasing function of density for traffic densities larger than
Pmax - See Figure 3. These results are, again, not surprising and are consistent with
available empirical data. However, what is surprising is the behavior of speed variance.
As shown in Figure 4, there is a maximum variance density which occurs shortly after the

maximum throughput density. Thus, the region of maximum flow is also the region of



maximum variance. Note that during the laminar flow phase, speed variance is negligible
but starts to increase with the onset of maximum flow. The initial increase is fairly large
creating a significant discontinuity in the "variance-density” function (for example, adding a
single vehicle to a system with density p,n,y, increases variance 19 times). High speed
variance means that different vehicles in the system have widely varying speeds. It also
means that a vehicle would experience frequent speed changes per trip through the system.
In turn, this may result in higher trip travel time variance. In reality, this could also
increase the probability of traffic accidents. Thus, it seems reasonable to attempt to steer
traffic away from the density of maximum flow. A recommendation that is counter to
prevailing practice where the objective is often to maximize flow.
« Because we consider a deterministic and finite CA model with periodic boundaries, the
corresponding traffic system is periodic in its system states. That is, the number of
iterations necessary to bring back the same state is finite (Note: a state is defined by a
distribution of vehicles among the cells and the vehicles' speeds). Figures 5 and 6 depict
the behavior of the period length as a function of density for two example systems. Period
length is negligible for densities below the maximum flow densities. However, the period
length can be significant for higher densities. Surprisingly, period length is not monotonic
in traffic density. In fact, either an increase or a decrease in period length may occur with
an increase in density. More importantly, small changes in density could result in large
fluctuations in period length. For example, for the system depicted in Figure 5, an increase
in traffic density from 0.2 to 0.22 produces an increase in the period length from 300 to
18,300 (note: in each case, the simulation was run over a sufficient length to observe the
full period). In practice, a traffic system with a small period length is more desirable since
the number of states the system goes through is smaller, resulting in a system that is easier
to predict and control.

Finally, we should note that for a deterministic CA model, it is possible to obtain

analytical expressions for average speed and average flow. Average speed in the laminar



flow phase is simply Vyn,y, While in the back traveling phase, it is given by v = (1 - p)/p.
Average flow can be calculated as j = pv. The maximum flow density occurs at the
intersection of the two phases. This leads to pyax = 1/(1 + vpqy). However, obtaining
analytical expressions for higher moments of flow or speed are difficult. It is also difficult

to analytically characterize period length.

3.2 Stochastic Cellular Automata

The deterministic CA model does not capture the inherent randomness in the behavior
of vehicles in real traffic. In particular, it fails to account for non-deterministic acceleration
and deceleration, inherent variability in vehicle speed, and vehicle over-reaction when
slowing down. This stochasticity can be, in part, captured by adding a randomization rule
to the three updating rules at each iteration of the CA model (see [20] for further details).
The randomization rule is applied after the first two rules and results in reducing the speed
of each vehicle by one with some probability p (i.e.,if v>0thenv=v- 1 with probability
p; 0 < p < 1). Following this randomization step, all vehicles are advanced v cells.

Results from computer simulation of the stochastic CA models are summarized in
Figures 7-12. The simulation is conducted over 10,000 iterations, the first 1,000 of which
are eliminated from consideration (transient period). The results are similar to those
obtained for the deterministic case, with the important exception that flow, as a function of
density, is not continuous during the back traveling phase (for densities that immediately
follow P4y the initial reduction in flow is much more significant than it is for larger
densities). This behavior is again consistent with observed real world traffic. Most of our
previous observations can be generalized to the stochastic case. It is once again important
to note that the density of maximum flow is in the regidn of the density of maximum speed
variance. Therefore, operating traffic at lower densities should be pursued whenever
possible. For example, in our simulated system, operating at a density that reduces

maximum flow by 6% reduces speed variance by over 105%.



In Figures 10-12, the effect of uncertainty in vehicle behavior is examined. Three
deceleration probabilities are compared: p =0, 0.1 and 0.5. Itis easy tro see that increased
variability in vehicle behavior reduces throughput in the system. In particular. it reduces the
maximum feasible throughput and the density at which this throughput is achieved. When
variability is high (e.g., p = 0.5), the reduction can be significant. Variability also reduces
average speed and the duration of the phase of laminar flow. Note that, for high
variability, the average speed during the laminar flow phase is smaller the maximum
feasible speed vy, Furthermore, variability decreases average speed and reduces the
density at which maximum speed variance occurs. However, it is interesting to note that
partial reduction in variability (i.e., a smaller p) results in only limited reduction in speed
variance. This means that the presence of any amount variability is sufficient to result in
high speed variance. Our findings are consistent with those obtained by Nagel et al.who

conducted somewhat similar experiments [10].

3.3 Stochastic Cellular Automata for Two-Lane Traffic Flow

Most roadways db not consist of a single lane only. In fact, most highways provide
two or more lanes. Despite this prevalence, existing literature offers few analytical models
for multi-lane traffic. This can, in part, be explained by the difficulty of characterizing lane
changing behavior, which requires the explicit modeling of discrete entities. In this
section, we extend our single lane CA model to two lanes. We beiieve that CA models can
be particularly useful in modeling multi-lane traffic since they can explicitly capture varying
rules of lane changing. Our objective is to gain insights into the behavior of traffic on each
lane and the the dynamics of lane changing under varying density levels. Our approach is
to use a minimal set of acceleration, deceleration, and lane changing rules that are capable
of yielding realistic macroscopic traffic behavior.

Nagatani was the first to consider a CA model for two lane traffic [6]. His initial model
was deterministic and used a v,,;;, = 1. However, this model led to situations where

blocks of several vehicles oscillate between lanes without any of the vehicles moving
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forward. This problem was later corrected by introducing randomness into lane changing.
Building on Nagatani's model, Rickert et al. [13] considered a model with v,y 2 1.
These models serve as the basis for the model we present here. While we use similar rules
to Rickert et al. [13], the experiments we conduct, especially those pertaining to variance,
are different from those discussed in [13].

The updating rules from the single lane model are extended as follows. At the
beginning of each iteration, vehicles check whether a lane change is desirable or not. This
is done according to a set of lane changing rules. Once all lane changes are made, the
updating rules from the single lane model are applied independently to each lane. In
modeling lane changing behavior, we make two important assumptions: (1) during lane
changeover, only transversal movement are allowed (i.e., vehicles do not advance) and (2)
once a vehicle changes lanes, it remains in that lane until it becomes more desirable to move
back to the other lane (i.e., vehicles do not always return to the right lane).

The lane changing tules, which are applied in parallel to each vehicle, can be
summarized as follows:

1. Look ahead: a vehicle looks ahead to see if the existing gap can accommodate its current
speed - ie., v(i) < g@@). If not, then go to rule 2.
2. Look sideways: the vehicle looks at the other lane to see if the forward gap on that lane
will allow it to maintain or increase its current speed.
3. Look back: the vehicle looks at the other lane to see if the backward gap on that lane is
large enough not to affect the speed of other vehicles. If so, then perform a lane change.
Randomness can be introduced into lane changing, by associating a probability, Pchange:
with whether a change is actually effected, once it is deemed possible, or not. At the cost
of additional rules, a preference for the original lane (e.g., right lane) can also be modeled.
Simulation results of example systems are shown in Figures 13-16. The results were
obtained for L = 300, p = 0.5, and p¢pange = 1. Because of our symmetry assumption in

treating both lanes, traffic flow characteristics on both lanes are identical. Lane changing
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behavior is depicted in Figure 15. It is interesting to note that maximum lane changing

frequency occurs long after the criticial density of maximum throughput. It is also
interesting to observe that more frequent lane changing does not correspond to greater
speed variance. In fact, the density of maximum speed variance is in the vicinity of the
density of maximum throughput. In real traffic, frequent lane changing is undesirable since
it increases the likelihood of accidents. Therefore, traffic should be steered away from the
density of maximum lane changing frequency.

Figures 17-19 provide a comparison between one lane and two lane systems. To allow
for a fair comparison between the two systems, the one lane system has 300 cells and the
two lane system has two lanes with 150 cells each. It is interesting to observe that,
although both systems have the same number of cells and operate at the same density, the
two lane system achieves a total throughput that is double that of the one lane system.
Also, despite this higher throughput, average speed and speed variance are almost the same

in both systems.

4. Time Scaling

As we mentioned in section 3, various time scaling strategies are possible. Nagel and
Schreckenberg [11], among others, identified three different schemes for interpreting the
simulation time scales. The first scheme is based on a maximum allowable speed and a
predefined length of each cell. These are then used to compﬁte the duration of each
iteration. A variation on this scheme was used in this paper. The second scheme scales the
model using the flow-density diagram. Using the known maximum roadway capacity
(e.g., freeways have a maximum capacity of about 2000 vehicles/hour/lane), the
corresponding length Qf an iteration can be calculated. In our example stochastic single
lane system (p = 0.5), the maximum throughput is 0.38 vehicles/iteration. Thus, one
iteration corresponds to 0.68 seconds. The third scheme uses the known value for the
velocity of the back-traveling phase (e.g., a value of about 15 km/h has been measured for

freeways [12]) to obtain the length of an iteration. In our simulated stochastic system, the
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simulated maximum velocity during the back traveling phase is 0.38 sites/iteration, which
means that one iteration corresponds again to 0.68 seconds. Other time scaling schemes
may also be possible. However, the nature of the macroscopic insights obtained from the

simulation are unaffected by these time scales.

5 Discussion and Conclusion

In this paper, we explored the usefulness of cellular automata to traffic flow modeling.
We extended some of the existing CA models to capture interesting characteristics of traffic
flow that have not been possible to model using e_ither conventional analytical models or
existing simulation techniques. Using CA models, we were able to examine higher
moments of traffic flow, which we show to behave in a rather unexpected fashion. For
example, we showed that the density area of maximum throughput is also the density area
of maximum speed variance. For deterministic systems, we found traffic flow to possess a
finite period which is highly sensitive to density in a non-monotonic fashion. Knowledge
of this periodic behavior can be very useful in designing and controlling automated
systems, since shorter periods mean fewer system states and, therefore, greater traffic
predictability.

We also showed that CA models are more amenable to modeling multi-lane traffic.
Lane changing rules and behavior can be explicitly accounted for in the model. The impact
of these rules and behaviors becomes then easier to examine. In our preliminary study, we
showed that the density of maximum lane changing frequency occurs after the density of
maximum throughput. This means that lane changing does little to increase throughput.
Since more frequent lane changing means an increase in the likelihood of traffic accidents,
traffic should be operated at lower densities (e.g., through ramp meters). In fact, the
desired density should be smaller than both the density of maximum lane changing and
maximum throughput. This will ensure traffic with few lane changes and with a small

speed variance.
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The models we presented are only an initial attempt at gaining insight into the discrete
behavior of traffic flow (and its impact on microscopic performance). Our basic models
should now be extended to more realistic traffic settings. For example, vehicles do not
necessarily behave in a homogeneous fashion. Different vehicles could be assigned
different rules for acceleration, deceleraiion, and lane changing. In Multi-lane systems, the
lane symmetry assumption should be relaxed to allow for different lane preferences for
different vehicles. Our current model is based on a single entry/single exit system. Future

work should include systems with multiple entries and exits.
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Figure 2 Flow vs. Density (300 cells)
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Figure 4 Speed Variance vs. Density (300 cells)
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Figure 5 Period Length vs. Density (150 cells)



Figure 6 Period Length vs. Density (300 cells)
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Figure 7 Flow vs. Density (300 cells), p = 0.5
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Figure 8 Average Speed vs. Density (300 cells), p =0.5
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Figure 9 Speed Variance vs. Density (300 cells), p =0.5
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Figure 10 Flow vs. Density, different probabilities of deleration
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Figure 11  Average Speed vs. Density, varing probabilities of deceleration
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Speed Variance vs. Density, different probabilities of deceleration
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Flow vs. Density, two-lane system
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Figure 14  Average Speed vs. Density, two-lane system

~——=Lane 1
wadBesees | AN 2

~——Total

Density

Figure15  Speed Variance vs. Density, two-lane system
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Figure 16  Frequency of lane changing vs. Density, two-lane system
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Figure 17 Flow vs. Density for one and two-lane systemsb
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'Figure 18  Average Speed vs. Density for one and two-lane systems
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Figure 19  Speed Variance vs. Density for one and two-lane systems



