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Executive Summary

This report presents a real-time system for pedestrian tracking in sequences of grayscale
images acquired by a stationary CCD camera. The objective is to integrate this system with a
traffic control application such as a pedestriaﬁ control scheme at intersections. The system outputs
the spatio-temporal coordinates of each pedestrian during the period the pedestrian is in the scene.
Processing is done at three levels: raw images, blobs, and pedestrians. Blob tracking is modeled as
a graph optimization problem. Pedestrians are modeled as rectangular patches with a certain

dynamic behavior. Kalman filtering is used to estimate pedestrian parameters.

The system was implemented on a Datacube MaxVideo 20 equipped with a Datacube
Max860 and on a Pentium-based PC. It was able to achieve a peak performance of over 20 frames
per second. Experimental results based on indoor and outdoor scenes demonstrated the system’s

robustness under many difficult situations such as partial or full occlusions of pedestrians.
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CHAPTER 1
INTRODUCTION

OVERVIEW

Many computer systems require sensory information in order to effectively interact with
their environment. The information about a system’s environment is important because it provides
the raw data with which the system can perceive, analyze, and react to specific objects in the envi-
ronment. Of all the objects that a computer system encounters, only a subset is significant to the
task that the system has to accomplish. We term these to be objects of interest, and we concern
ourselves with operations that are performed with respect to them.

The sensory information may come from any of a variety of sensors, including:

* cameras,

» global positioning systems (GPS),
* Jasers,

» proximity detectors,

e radar,

and tactile sensors.

Cameras often provide information that is richer, more complete, and covering a larger area than
the other sensors listed above. In addition, the new CCD (Charge-Coupled Devices) cameras are
less expensive and more accurate than the older vision sensors. However, additional challenges
accompany the advantages of the vision modality. One such challenge involves the fact that the
vision sensor provides no inherent signal that an object has moved into its field of view. This can
be contrasted with a tactile sensor, where the presence of a nearby object is part of the sensor’s

signal.



Existing research in the field of computer vision has largely focused on other issues, with an
understanding that actual implementations would require the addition of an object detection com-
ponent. Sometimes, the detection problem can be avoided by restricting experimentation to
special cases where object detection is trivial. However, this issue must also be given consider-
ation if a computer system is to function in unpredictable, natural environments. Therefore, it is
the goal of this report to present a method for automatically detecting objects of interest that may

be moving at times and stationary at other times.

This report goes beyond merely detecting the presence of an object. We also connect the
detection module to other important sensory components of a vision-based system. Particularly
significant is the ability to find landmarks on objects of interest and to know about the projected
shape of objects. In addition, tracking techniques are used to monitor objects without human
intervention. Our solution to the tracking problem follows the Controlled Active Vision frame-
work [26], which avoids a heavy reliance on a priori information through the use of optical flow.

Optical flow is induced by any combination of camera or object motion.

One of the contributions of this report is a complete software and hardware implementation
of our detection and tracking framework. In the process of constructing this system, we have
selected and modified computer vision techniques which are appropriate to the visual detection
problem. Many of the techniques used by our framework (e.g., frame-differencing) have also
appeared in similar forms in existing research, which is a demonstration of their usefulness. Our
solution to the detection problem is innovative in the way in which it has uniquely combined these
techniques into a general framework that can be directly applied to real-world situations. We have
made modifications to these techniques where necessary,. and we have also incorporated our own
ideas where the existing literature was lacking (e.g., dynamic segmentation domains). Finally, we
have customized the theory to specific needs, including the application areas of transportation.
This has demonstrated that our framework can provide precisely the type of information required
to effectively manage a situation requiring visual detection. Results from experimentation in this

area shows the potential of our approach under general conditions.



BACKGROUND

An extensive body of literature has been accumulated in the computer vision community
regarding the study of motion. Most of this literature focuses on the structure-from-motion prob-
lem [35], which involves the computation of camera, object, and/or environmental parameters
based on relative motion between these entities. Often, assumptions are made in visual motion
research that prohibit the use of the proposed techniques in applications such as pedestrian control
at intersections. A large number of previously proposed systems exhibit one or more of the fol-
lowing characteristics:

« Systems which avoid the visual detection issue altogether. They assume that their

methods are applied on an image after the presence of moving objects has been iden-

tified and measured.

« Systems which are applied to artificially trivial conditions that do not occur in natural

settings.

« Systems which detect objects of interest only while they are moving. Once objects of
interest stop, they become invisible to the motion detection scheme. If the system
were responsible for reporting the location of a pedestrian who stops moving in the

middle of an intersection, this type of behavior could have drastic consequences.

« Systems which function properly only when the camera is either stationary or mov-
ing, but not both. To the contrary, our system generally operates under static camera
conditions, but also allows the freedom of visually servoing an eye-in-hand system

based upon target location.

» Systems which cope with a single moving target, even though several application

areas involve images with several targets.

+ Systems which assume that a moving object is a rigid body. Further assumptions may

include a specific pattern of motion for the object of interest.

In our work, we have tried to avoid these assumptions, specifically focusing on addressing the

goal of visually detecting objects of interest for transportation applications.
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The majority of existing attempts at detecting moving objects has employed either optical
flow or frame-differencing techniques. Optical flow methods are interesting since they naturally
encompass ego-motion of the camera (although some optical flow methods have the equalizing
disadvantage of actually requiring ego-motion). For instance, Jain [17], Nelson [24][25], and
Thompson er al. [32] have compiled a collection of optical flow-based motion detection algo-
rithms that detect a moving object as an inconsistency in some constraint on the optical flow field.
Some of these optical flow-based algorithms use a constraint that is based on the orientation of
motion vectors away from a focus of expansion (FOE). However, algorithms using the FOE con-
straint are not reliable when the distance between a moving object and the FOE is small. Another
common optical flow constraint is the assumed relation between optical flow gradients and corfe—

sponding depth disparities (typically computed with a stereo vision system). Instead of using a

stereo vision system in our research, we have restricted ourselves to monocular systems that can

acquire visual information with relatively unsophisticated off-the-shelf sensor devices.

In contrast to detection based on optical flow, our framework shares many characteristics
with other frame-differencing techniques. An example of these is the system developed by Ander-
son et al. [4]. They detect motion by adapting the Gaussian/Laplacian pyramid that Burt and
others have used in a variety of compﬁter vision systems [7][8][9]. The pyramid is applied to the
difference between a current input frame and the previously input frame. This has the disadvan-
tage of only signaling appearing and disappearing edges of a moving object. Moreover, the
difference responds similarly to large objects as it does to fast ones. Both of these situations do
not occur in our approach. The Anderson method [4] uses another Gaussian pyramid to facilitate
subsampling down to a level that motion segmentation can be performed by a general purpose
computer. However, subsampling is restricted to the logarithmic levels that are provided by a
Gaussian pyramid, whereas our framework also utilizes intermediate levels. Also, real-time exe-
cution would require that a high performance image processor (like the VLSI chip developed by

van der Wal [37]) be available to compute the pyramids.
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The frame-differencing system by Dinstein [12] provides an interesting alternative to the
figure segmentation approach described as a part of our framework. Dinstein uses four projections
to identify the centers of multiple moving objects in a fashion that is only slightly less robust than
our method. However, his method locates objects by majority vote (much like Hough transforms);
as a result, the method does not provide statistics required by other portions of our framework

(e.g., it cannot determine the geometric characteristics of an identified object).

Considering application-specific detection, Allen ez al. [1][2] have proposed using frame-
differencing techniques specifically for the detection of moving objects that are to be grasped by a
robotic system. They use a complex motion model for tracking objects moving within a fixed
plane. The robot control system used in their research is very similar to ours, utilizing many pro-
cessing devices (operating at different rates) through the use of predictive filtering. However, this
system requires additional modifications before it can be directly applied to situations with multi-

ple moving objects. In addition, it assumes the use of a static camera.

Research on visual object detection has also taken place for use in intelligent transportation
systems, such as the CARTRACK [39] and Autoscope [22] systems. CARTRACK detects the rear
of vehicles in real-time through the use of a symmetric filter that exploits the regular rectangular
form of a car. Autoscope detects the average speed of vehicles in order to monitor traffic flow
through a method similar to that of Inigo [16] and Takatoo et al. [31]. Because shadows can inter-
fere with the real-time monitoring of traffic objects, Kilger [20] has used transportation heuristics
to develop a shadow-handling system. Finally, Mori et al. [23] combines motion detection and
segmentation with techniques for the recognition of pedestrian and vehicle motion patterns.
Although transportation problems are application areas of our framework, we have created a gen-
eral system that may be used in many situations without relying on conditions particular to one

specific problem set.

Considering the visual tracking portion of our framework, we rely on the Sum-of-Squared
Differences algorithm discussed by Anandan [3] as a means for calculating displacement vectors.

This algorithm has previously been used by Papanikolopoulos [26] in his implementations of

5



Controlled Active Vision, and it has been used by Tomasi et al. [34] to measure the suitability of
feature windows for tracking. Vision tracking systems have been proposed for intelligent trans-

portation problems, including:
.« a system for tracking vehicles at road junctions [15],
* acollision avoidance system [36],
* acar-following system [19],
* lane-following autonomous vehicles [10][33],
* and a system for visually counting vehicles [27]. |

The use of tracking information as feedback to our robot control scheme is based on a
MIMO adaptive controller of Feddema et al. [13]. Similar adaptive schemes have previously been

used by Koivo et al. [21] and Weiss et al. [38] for the control of manipulators. Moreover, adaptive

schemes have been used by Brown [6] and Dickmanns et al. [11] for the control of various other .

mechanical systems (e.g., robotic heads, satellites, and cars).

MOTIVATION AND APPROACH

Our system uses a single fixed camera mounted in an arbitrary position. We use simple rectan-
gular patches with a certain dynamic behavior to model pedestrians. Overlaps and occlusions are
dealt with by allowing pedestrian models to overlap in the image space and by maintaining their
existence in spite of the disappearance of some cues. The cues that we use are blobs obtained by
thresholding the result of subtracting the image from the background. Our choice of using blobs
obtained after background subtraction is motivated by the efficiency of this preprocessing step
even though some information is permanently lost. In a typical scene, a blob obtained this way
does not always correspond to a single pedestrian. An example is shown in Figure 1. This is the
main source of weakness in many of the systems mentioned above which assume a clean one-to-

6



Figure 1. Top left: background image. Bottom left: foreground. Right: difference image showing that a
blob does not always correspond to one pedestrian.

one correspondence between blobs and pedestrians. In our system, we allow maximum flexibility
by allowing this relation to be many-to-many. This relation is updated iteratively depending on the
observed blobs behavior and predictions of pedestrians behavior. Figure 2 gives an overview of
the system. Three levels of abstractions are used. Each level deals with a certain type of data and
retains a state of the data it produces to be used in conjunction with the data received from the
lower level. The lowest level deals with raw images. It receives a sequence of images and per-
forms background subtraction producing difference images. In the second level, which deals with
blobs, difference images are segmented to obtain blobs which are subséquently tracked. Tracked
blobs are passed on to the pedestrians level where relations between pedestrians and blobs as well
as information about pedestrians is inferred using previous information about pedestrians in that

level.



Image Sequence

Differencg Images

(>

Tracked Pedestrians

Figure 2. The three levels of abstraction and data flows among them.



CHAPTER 2
DEFORMABLE MODELS AND PEDESTRIAN TRACKING

INTRODUCTION

The system proposed in this chapter uses active deformable models to track pedestrians
moving in dynamic real-world scenes. First, figure pixels are separated from a fixed or slowly
evolving ground image. Then, a initial segmentation process identifies interesting pixel blobs for
tracking. The output of the segmentation process is used to choose the starting position of the con-

trol points of the active deformable model.

Active deformable models have been used to track image gradient contours produced by
objects. They offer a framework in which local image properties and some local or global model
parameters can be combined, without the need for a priori knowledge of the scene object being
tracked. Because the contour of a walking human body changes in shape and deforms continu-
ously, we believe that methods using active deformable models to track contours are well suited

for pedestrian tracking.

APPROACH

We propose to track the movement of pedestrians in an area observed by a stationary cam-
era by approximating with an active deformable model the boundary of the area of image
differences created by the motion of the pedestrian. As the image of the pedestrian being tracked

translates and deforms in the image, continuous adjustments to the elements of the active deform-

‘able model transform and deform the boundary approximation accordingly.
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There are many distracting features in the difference image, such as insignificant image
deformations caused by pedestrian self-motion, the appearance of other motion in the scene, and
image noise. The parameters of the active deformable model and the number of control points can
be set so that these factors are ignored while following significant displacements of the pedestrian
in the image plane.When the system begins operation, a background image of the scene is cap-
tured to be used as the background image, for the calculation of image differences. When a
significant motion appears in the scene, as signaled by a large region in the difference image, the
image is analyzed for possible pedestrians. If the image fits the criteria established for the classifi-
cation of a blob as a possible pedestrian, a bounding box is determined for the pedestrian. An
active deformable model is then placed around the possible pedestrian with control points on the
bounding box. Once the active deformable model has been placed, its movements are controlled

by the minimization of an energy equation.

The formulation of active deformable models used in this paper to approximate the pedes-
trian boundary draws on the work done in recent years by the computer vision community on
active deformable models of contours, often referred to as “snakes.” The snakes are computed
based on an energy term that consists of “curvature” energy, the “image” energy, and the “con-
straint” energy. These terms are usually sufficient to define an active deformable model
approximation.of an image contour when all terms vary significantly across the neighborhood of
possible contrdl point locations. However, using our current techniques, when the active deform-
able model is placed, it may have several control points which are far enough from the
pedestrian’s image that the image gradient is unvaryingly zero throughout the neighborhood of
candidate locations. For these points, the “image” term plays no role at all and they only respond
to the internal energy and exterhal constraints, rather than to a combination of image energy and

constraints.

To facilitate the initial placement of the active deformable model, we have augmented the
energy equation with a “model” energy term inspired by the “balloon factor” used by the com-

puter vision community to overcome a tendency toward implosion in their active deformable
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models. The “model” term is calculated as follows. First, a neighborhood of the control point in
the difference image is examined. If the percentage of difference pixels set within the neighbor-
hood falls short of a predetermined level, the control point is defined as “outside” the pedestrian’s
image. To bias movement of the control point toward the pedestrian’s image, the locations closest
to the pedestrian’s image are assigned the value -1 for the “model” energy term. Other locations
are assigned the value 0.

The locations closest to the pedestrian’s image can be determined because the active
deformable model control points are numbered counter-clockwise around the closed active
deformable model. A similar energy assignment is performed for control points which are
“inside” the pedestrian’s image. Besides aiding initial placement of the contour, this model energy
also occasionally comes into play during later tracking stages when an object moves very quickly
o has been temporarily lost for some other reason (e.g., occlusion). Most past applications of
active deformable models for contour tracking have attempted to capture the entire boundary of
the imaged object. Therefore, the number of control points has been chosen so that the control
points fall relatively close together along the image contour. This allows the active deformable
model to follow small deformations, but also makes the active deformable model vulnerable to
small occlusions. One solution to this difficulty is to give the model a sense of shape through the
use of internal or external constraints and to weigh these terms more strongly. This solution is not
suitable for tracking pedestrians for two reasons. First, the process of tracking the pedestrian’s
image requires that the image forces be given considerable weight or performance degrades. Sec-
ond, pedestrians do not have a well-defined shape. People must move their legs and tend to swing
their arms while walking. Worse, they may turn 90 or 180 degrees, presenting an entirely different
set of features and sithouette to the camera. For many purposes, it is not necessary to track these
deformations. In fact, they are a distraction from the important information -- the horizontal trans-

lation of the pedestrian. We have found that simply reducing the number of control points allows

11



the model to follow a useful approximation of a pedestrian’s image boundary while ignoring
deformations. Because the speed of the current algorithm is linear in the number of control points,

this reduction also has performance benefits.

EXPERIMENTAL RESULTS

The system runs at or near frame rates on the image processing system of the lab (see the

next chapter). At these speeds it can successfully track motion of a walking pedestrian, even when

the pedestrian’s image deforms in unexpected ways such as those caused by thrusting out one’s |

arms or kicking a leg forward in an exaggerated manner. It is also fairly robust with respect to
occlusions such as when two pedestrians pass in opposite directions or a single pedestrian passes

behind a large tree. Potentially, more than one pedestrian could be tracked simultaneously.

Although such a system should be equally robust with respect to occlusions caused by two
tracked pedestrians passing one another, it would probably not be possible to tell whether the
active governable models had continued to track the same individual. Such a system might have
difficulty distinguishing between two pedestrians approaching one another and then returning the

way they came and two pedestrians walking past one another.

Further development of the system will require overcoming the inherent limitations of using
a difference image to provide image forces for the active governable model. These problems
include short and long time-scale changes in the background caused by lighting changes or con-
tinuous regular movement of objects in the scene, for example, the rustling of leaves in the wind.
The system is also vulnerable to the effects of camera self-motion. A slight jitter in the camera
mount could cause many patches of noise in the difference image. Although these patches will

generally be ignored once contour tracking has begun, they do disturb the initial placement of the

snake.
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SUMMARY

We have presented an approach to pedestrian tracking from a static camera using active
deformable models. We use these models to track the boundaries of the pedestrian’s image in the
difference image. By using the difference image, we avoid some difficulties associated with
pedestrian tracking by tracking features, such as the occlusion of features by other parts of the
pedestrian. The application of active deformable models also overcomes some of the difficulties,
such as the continuous deformation of the pedestrian’s image during movement, which pedestrian

tracking poses to rigid model-based approaches.
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CHAPTER 3
VISUAL DETECTION AND TRACKING HARDWARE

ESSENTIAL COMPONENTS

The purpose of this chapter is to outline the hardware components that we use to implement
the visual detection and tracking framework described in this report. From an abstract viewpoint,
there are a few general components that are essential for any implementation of the framework.

These essential components are:.
* an input source of video information,
* image frame transmission unit(s),
* processing unit(s) for performing computations,
 and any desired display or output processing devices.

Naturally, applying the detection framework to robotic problems will require the following addi-

tional components:
* robot hardware
 and a control system for driving the robot.

Different instantiations of the above list will produce systems that are able to support the
detection framework with different levels of success. It is particularly important that the computa-
tion take place on a high performance processing unit. Also important is that the transmission of
image frames should take place in an intelligent manner. Systems capable of transmitting frames
between parallel hardware elements will allow the framework to be feasible for some real-time

applications that are not possible with serial forms of image transmission.
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THE MINNESOTA VISION PROCESSING SYSTEM

For our experimentation, we use a system called the Minnesota Vision Processing System
(MVPS) [28]. As shown in Figure 3, the MVPS can receive input from either live camera feed or
from recorded imagery. Diverse applications of the MVPS are possible because a camera can be
mounted in several ways (e.g., fastened to a static tripod, to a passenger car, or to a robot’s end-
effector), and several forms of recorded imagery are possible (e.g., playback from a VHS video-

cassette or a Silicon Graphics movie file). The transmission of image frames is performed by a

Datacube MaxVideo 20 video processor. Because of the pipeline architecture of the MaxVideo

Datacube MaxTower

Datacube MaxVideo 20

Intel Max860

Motorola MVME-147

Sun SPARCstation

Figure 3. The Minnesota Vision Processing System.
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20, all of its calculations are performed at a rate equal to that of the incoming image frames. The
MaxVideo 20 contains image processing elements that are programmed with Datacube’s Image-
flow software libraries to compute the figure and ground images.

The limited collection of MaxVideo 20 processing elements cannot perform the more com-
plicated algorithms required for figure segmentation. Instead, figure segmentation occurs on a
separate Intel Max860 processing unit. This RISC processor has a peak performance rating of 80
Megaflops and receives image frames from the MaxVideo 20 through a 20 Megahertz P2 pixel
bus. The segmentation of a single test object (200 by 300 pixels) in a 512 by 480 pixel image
takes 150 milliseconds. This time was clearly reduced through the use of multiple, smaller
domains. The Max860 processor is also used for any correlation computation, because of fheir
computationally intensive nature.

A couple of other devices serve to support the vision system. The high-level control of the
MVPS is performed by software executed on a VME-based Motorola MVME-147 Single Board
Computer (SBC) running the OS-9 real-time operating system. The MVME-147 is able to drive
the other processing units through a portable 7-slot VME chassis. Finally, a Sun workstation is

used to develop the software source code and to store multiple versions of the system.

HARDWARE PLATFORM MIGRATION

When considering application of the system, hardware cost was a major issue due to the
high cost of the Datacube Maxtower system. Therefore, alternative platforms have been consid-
ered. The new hardware consists of a dual Pentium II 200 Mhz PC equipped with a Matrox

Genesis DSP board. The system was successfully ported to the new hardware without any loss of

performance.
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CHAPTER 4
ISSUES RELATED TO DIVERSE OPERATING CONDITIONS

OVERVIEW OF THE SYSTEM

As discussed in previous chapters, the pedestrian tracking system is composed of a single
camera mounted at one side of the crosswalk. The signal received from the camera is fed into the
Datacube vision processor which performs pedestrian detection and tracking at frame rate. The
Datacube then sends the proper command to the traffic light controller. The system components

and connections are depicted in Figure 4.

IRRELEVANT EVENTS

One desired property of the system is to limit tracking to pedestrians crossing the street. An
intersection is usually a crowded place and not everyone in the view of the camera is crossing the
street. Moreover, there could be other moving objects in the scene which should not be taken into

consideration. This case will be considered below when we discuss false targets.

Our solution to the first problem was to segment the scene into two regions: interesting and
ignored. The interesting region is assigned at setup time. It is simply the projection of the three-

dimensional region where pedestrians crossing the street may possibly occupy to the image frame.
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The average pedestrian height, the width and location of the crosswalk, and the edges of the two
sidewalks are all taken into account to compute this three-dimensional region. Figure 5(a) depicts
such a region where the region boundaries are shown as dashed lines. The interesting region is the
projection of this region to two-dimensions. It is shown in Figure 5(b) as the region inside the

bold line.

Having done this, everything outside the interesting region can be safely ignored. Notice,
however that parts of the scene which should be ignored may still show up in the interesting
region. Even though false target elimination, which is discussed below, may be able to eliminate
many objects that should be ignored, it won’t eliminate objects if they were pedestrians. We pro-
pose two solutions to this problem. The first is to have multiple cameras positioned in a way such
that the intersection of their interesting regions yields only the projection of the base of the three-
dimensional region. The output of each camera is processed separately and later when a decision
about the presence of a pedestrian needs to be made, all cameras must agree. The second solution
is to have one camera but to require that part of the pedestrian (which is normally the feet) to
touch the base. Although this solution is more straightforward, it may miss some real targets in

cases where the pedestrian legs have a color very close to that of the street.

FALSE TARGETS

Normally, the scene being captured by the camera contains many types of objects in addi-
tion to pedestrians. The most common of these are small objects such as moving tree branches and

leaves or vehicles that come in the field of view.
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Figure 4. Pedestrian Tracking System Components and Con-
nections.

SMALL OBJECTS

Our system is motion sensitive and therefore will pick up the motion of tree leaves due to
wind. Such objects should be regarded as false. Although the interesting region is usually lower
than trees, it is still possible that tree leaves may show up in the interesting region. Therefore, this
case had to be handled by our system. We found that requiring that the size of the detected object
to be larger than a certain value was very effective in eliminating most of the false targets due to
small objects. We went one step further and defined other requirements for an object to be recog-

nized as a pedestrian. One of these requirements is the ratio between width and height. These
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requirements, however, were not enforced in a strict manner so that we do not miss pedestrians
with abnormal proportions such as those on wheelchairs. However, it is always necessary that the

size of the object be large enough in order to accept the object as a pedestrian.

VEHICLES

Although vehicles are not supposed to pass the crosswalk lines, they sometimes do. If we do

not handle this case, the system may think that a pedestrian is positioned in the crosswalk and -

make the undesired response of keeping the walk signal on. Another place where vehicles may
show up is in a region in the background of another street which happens to be part of the interest-
ing regioﬁ. Again, if a vehicle in that region becomes stationary, the same undesired result will
occur. Our system handles this situation by requiring that objects do not remain stationary. If an
object is not moving, it is simply ignored. Doing this, however, may lead to mistakenly ignoring a
pedestrian because he or she had stopped momentarily. We solve this by allowing stops for only a
short time. One thing that is worth mention here is that in the case a single camera is used, the
camera mounting location should be chosen carefully so not to allow another street to show up in

the background and within the interesting region.

CROWDS

In some intersections, large groups of people usually cross simultaneously. It would be
extremely difficult to isolate each individual because they overlap. This does not pose any prob-
lems though because we really do not need to isolate individuals. The whole group of pedestrians
can be considered as a single moving object. Therefore, we should not have an upper limit on the

size of allowable objects.
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SHADOWS

In computer vision, isolating an object from its shadow is a very difficult problem. Shadows
will be picked up by the system simply because they have a different color from the ground and
because they move (as the pedestrian moves). However, because shadows are always attached to
pedestrian, they will always be detected as part of the pedestrian. The only side effect is that the
pedestrian will seem larger in size but this does not cause any problems. Figure 6 shows how the

system picked up shadows attached to pedestrians and considered everything as one unit.

CHANGES IN LIGHT CONDITIONS

Our pedestrian tracking system is based on image differencing where intensity values of the
image are subtracted from a pre-stored background to detect changes. If the lighting conditions
change due to a cloud that came in the way of the sun for example, a global change in intensity
values will occur resulting in a large difference between the image and the background. This
would cause the system to think that a huge object showed up in the scene. We solve this problem
by allowing the background to be updated with time. An exponential update equation is used to
gradually change the background so that it captures the lighting conditions as they change. This
method yielded acceptable results. The only side effect was that the system goes temporarily blind

right after the change but soon stabilizes and converges to the new condition.

EXPERIMENTS IN DIVERSE WEATHER CONDITIONS

We have tested our system indoors and outdoors in a variety of weather conditions. These
range from intersections early in the morning or late at night (with very little light) to intersections
with snow or rain. The system was successful in the majority of the cases. It failed in cases of

extreme snow (since there was not enough contrast to pick pedestrians) and in cases of intersec-
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tions with no light. We have made several modifications in order to have a system robust to
clouds, strong winds, and busy intersections. The average number of failures was 3% and this
number consisted mainly of false positive alarms (mainly detections of vehicles as pedestriéns).
However, it will be beneficial if Mn\DOT allows us to use the system in a real intersection in order

to make the necessary modifications that will allow us to build a robust and efficient system.

SUMMARY

Even though visual tracking systems that track human bodies are useful in many applica-
tions, our system was designed with one application in mind. This application is pedestrian
control at intersections. In many aspects of our design, the system was tailored to suit this applica-
tion. Our main goal was to achieve an acceptable performance in terms of speed and accuracy as
required by this application. In this report, we consider several issues specific to the application of

pedestrian control at intersections.

Figure 6. Shadows Become Part of the Detected Pedestrian.
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CHAPTER 5
BLOB ANALYSIS

INTRODUCTION

A static camera model has the advantage that the scene background remains constant to a cer-
tain extent. This allows us to get a good approximation of the location of changes in the image by
subtracting the image from the background and then thresholding the result using an appropriate
threshold value. This approach has been used extensively. The resulting image, which we call the
difference image, is a binary image with 1’s in places where there are changes and 0’s everywhere
else. Of course, changes captured this way may or may not correspond to moving objects. Shad-
ows, image noise, changes in lighting conditions, changes in weather cpnditions, and small
changes in the camera’s intrinsic parameters are some examples of changes that show up in the
difference image but do not correspond to moving objects. It is also possible that some moving
objects do not introduce any change to the difference image, such as a moving object which is
very similar in color to the background beneath it. This problem is commonly encountered in
computer vision. For example, optical flow and motion field do not always correspond to each

other.

There are several techniques which are usually employed to reduce these effects. Adaptive
background update, low pass filtering and ignoring small clusters of 1’s in the difference image
are some of these techniques. We use the latter two techniques in our system. The input to the sys-
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tem is a stream of gray scale images of size 512 X 480. For efficiency reasons, the images are
subsampled to half the number of pixels on each side. A threshold value of 20 is used to obtain the

difference image.

BLOB ANALYSIS

The concept of blobs is not new. In this level, we present a novel approach to track blobs regard-
less of what they represent. The tracking scheme attempts to describe changes in the difference
image in terms of motion of blobs and by allowing blobs to merge, split, appear, and vanish.

Robust blob tracking was necessary since the pedestrians level relies solely on information passed

from this level.

Blob Extraction

Once a difference image is computed, connected segments of 1’s are extracted using border fol-
lowing. Another way to extract connected components is to use the raster scan algorithm. The
advantage of the latter method is that it extracts holes inside the blobs while border following does
not. However, for the purpose of our system, holes do not constitute a major issue. Moving pedes-
trians usually form solid blobs in the difference image and if these blobs have holes, they may be
still considered part of the pedestrian. Border following has the extra advantage of being more
efficient. While raster scan algorifhm has to traverse every pixel in the image, with border follow-
ing, the interior of blobs does not need to be considered. Thus, the larger the total area of all the
blobs in the image, the faster the segmentation process becomes. The following parameters are

computed for each blob b:
1. Perimeter,
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2. Area, denoted by A(b): the number of pixels inside the blob,
3. Bounding box: the smallest rectangle surrounding the blob,
4. Density, denoted by D(b): A(b) / Bounding box area,

5. Velocity, denoted by V(b), calculated in pixels per second in horizontal and vertical direc-

tions.

Blob Tracking

When a new set of blobs is computed for frame i, an association with frame (i—1)’s set of

blobs is sought. Ideally, this association can be an unrestricted relation. With each new frame,

blobs can split, merge, appear or disappear. The relation among blobs can be represented by an
undirected bipartite graph, G;(V, E;), where V, = B, U B, _,. B, and B, _, are the sets of vef-‘
tices associated with the blobs in frames i and i — 1, respectively. We will refer to this graph as a
blob graph. Since there is a one-to-one correspondence between the blobs in frame i and the ele-
ments of B;, we will use the terms blob and vertex interchangeably. Figure 7 shows how the blobs

in two consecutive frames are associated. The blob graph in the figure expresses the fact that blob
1 split into blobs 4 and 5, blob 2 and part of blob 1 merged to form blob 4, blob 3 disappeared, and

blob 6 appeared.

The process of blob tracking is equivalent to computing G, fori = 1,2, ..., n, where 7 is the
total number of frames. Let N,;(u) denote the set of neighbors of vertex ue V,,
N (u) = {v|(u,v) e E;}. To simplify graph computation, we will restrict the generality of the

graph to those graphs which do not have more than one vertex of degree more than one in every
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Figure 7. (a) Blobs in frame (i — 1) . (b) Blobs in frame 7. (c) Relationship among
blobs.

* connected component of the graph. Mathematically, this can be expressed as:

V(u,v) € E; [N;(w)] > 1= |Ny(o)| = 1. 1)
This is equivalent to saying that from one frame to the next, a blob may not participate in a split-
ting and a merging at the same time. We refer to this as the parent structure constraint. According
to this constraint, the graph in figure 7(c) is invalid. If, however, we eliminate the arc between 1
and 5 or the arc between 2 and 4, it will be a valid graph. This restriction is reasonable assuming a

high frame rate where such simultaneous split and merge occurrences are rare.

There are exponentially many ways a general bipartite graph can be constructed. In fact, given

two sets of vertices of sizes m and n, there are Zmn‘ different possible graphs. This number is
reduced with the parent structure constraint but still remains exponential. To further reduce this
number, we use another constraint Which we call the locality constraint. With this constraint, ver-
tices can be connected only if their corresponding blobs have a bounding box overlap area which
is at least half the size of the bounding box of the smaller blob. This constraint, which signifi-
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cantly reduces possible graphs, relies on the assumption that a blob is not expected to be too far
from where it was in the previous frame. This is also reasonable to assume if we have a relatively
high frame rate. We refer to a graph which satisfies both the parent structure and locality con-

straints as a valid graph.

To find the optimum Gi , we need to define a cost function, C (Gi) , so that different graphs can
be compared. A graph with no edges, i.e. E; = &, is one extreme solution in which all blobs in

V,_, disappear and all blobs in V; appear. This solution has no association among blobs and

should therefore have a high cost. In order to proceed with our formulation of the cost function,

we define two disjoint sets, which we call parents, Pi, and descendents, Di’ whose union is Vi

such that D; = U N,(u). P can be easily constructed by selecting from V' all vertices of

ueP;

degree more than one, all vertices of degree zero, and all vertices of degree one which are only in

B;. Furthermore, let S;(u) = 2 A(v) be the total area occupied by the neighbors of u.
ve Nyj(u)

We now write the formula for the cost function as

2
_ |A(u) - Sl-(u)l
CGy = 2, max(A(u), S;(u))’ @

uePi

This function favors associations in which blobs do not change much in size. It also favors

changes in large blobs’ sizes to changes in small blobs’ sizes which is intuitively reasonable.

Using this cost function, we can proceed to compute the optimum graph. First, we notice that
given a valid graph G(V,E) and two vertices u,ve V, such that (u,v)¢ E, the graph
G'(V,E v {(u,v), (v,u)}) has alower cost than G provided that G' is a valid graph. If it is not
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possible to find such a G', we call G dense. Using this property, we can avoid some useless enu-

meration of graphs which are not dense. In fact, this observation is the basis of our algorithm to

compute the optimum G.

Our algorithm to compute the optimum graph works as follows: A graph G is constructed such
that the addition of any edge to G makes it violate the locality constraint. There can be only one
such graph. Note that G may violate the parent structure constraints at this moment. The next step

in our algorithm systematically eliminates just enough edges from G to make it satisfy the parent
structure constraint. The resulting graph is valid and also dense. The process is repeated so that all

possible dense graphs are generated. The optimum graph is the one with the minimum cost.

At the end of this stage, we use a simple method to calculate the velocity of each blob, v, based
on the velocities of the blobs at the previous stage and the computed blob graph. The blob velocity
will be used to initialize pedestrian models as described later. If v is the outcome of a splitting
operation, it will be assigned the same velocity as the parent blob. If v is the outcome of a merg-

ing operation, it will be assigned the velocity of the biggest child blob. If v is a new blob, it will

be assigned zero velocity. Finally, if there is only one blob, u, related to v, the velocity is com-

puted as

(b,-b,)
V(o) = P+ (1-B)V(w) ©

where b, and b, are the centers of the bounding boxes of v and u, respectively, P is a weight

factor set to 0.5, and 0t is the sampling interval since the last stage.
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CHAPTER 6
MODELLING PEDESTRIANS

INTRODUCTION

Our pedestrian tracking scheme has three levels. The first level is the images level, the second v
level is the blob level and the final level in our hierarchy is the pedestrians level (please see previ-
ous report for detailed description of these levels). In all these levels, filtering is essential. Filter-
ing incorporates our understanding of the model and smooths the input data. This report will
describe in detail the filtering schemes we tried. Let us focus our attention to the pedestrians level.
The input to this level is tracked blobs and the output is the spatio-temporal coordinates of each
pedestrian. The relationship between pedestrians and blobs in the image is not necessarily one-to-
one. A pedestrian wearing clothes which are close in color to the background may show up as
more than one blob. Partially occluded pedestrians may also result in more than one blob or even
in no blobs at all if the pedestrian is fully occluded. Two or more pedestrians walking close to
each other may give rise to a single blob. For this reason, it was necessary to make the pedestrians
level capable of handling all the above cases. We do this by modeling the pedestrian as a rectangu-
lar patch with a certain dynamic behavior (this is combined with a sophisticated filtering scheme).
We found that for the purpose of tracking, this simple model adequately resembles the pedestrian
shape and motion dynamics. We now present this model in more detail and then describe how
tracking is performed. |
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PEDESTRIAN MODEL

Pedestrians usually walk with a constant speed. Moreover, the speed of a pedestrian usually
changes gradually when the pedestrian desires to stop or start walking. Three different approaches
for pedestrian modeling have been attempted. The latter two are based on the assumption that the
scene has a flat ground. This assumption is necessary so that back projection from the scene to the
image plane can be performed with the knowledge of the camera geometry to determine the
expected dimensions and dynamic behavior of the pedestrian in the image coordinate system.
Small variations in ground elevation will still be tolerated especially in distant areas. This restric-
tion can be removed if the scene topology can be determined a priori.

1. 2-D dynamics and 2-D shape:
The pedestrian is modeled as a fixed size rectangular patch whose dimensions are similar to
the projection of the dimensions of an average size pedestrian located somewhere near the
middle of the scene. The patch is assumed to move with a constant velocity in the image coor-
dinate system.

2. 2-D dynamics and 3-D shape:
The pedestrian is modeled as a rectangular patch whose dimensions depend on its location in
the image. The dimensions are equal to the projection of the dimensions of an average size
pedestrian at the corresponding location in the scene. As in the first approach, the patch is
assumed to move with a constant velocity in the image coordinate system.

3. 3-D dynamics and 3-D shape:
The rectangular patch dimensions are as in the previous approach but the patch is assumed to

move with constant velocity in the scene coordinate system.

In all these approaches, the patch acceleration is modeled as zero-mean, Gaussian noise to accom-
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modate for changes in velocity. Given a sampling interval 8¢, the discrete-time dynamic system
for the pedestrian model can be described by the following equation:
X, .1 = Fx;+vy, @)
T . - . .
where x = [x Xy y':l is the state vector consisting of the pedestrian location, (x, y) and veloc-
16t00
0100

1 &t
0001

ity, (%, y), F is the transition matrix of the system given by , and v, is a sequence of
zero-mean, white, Gaussian process noise with covariance matrix Q. In the first two approaches
above, (x,y) is the image coordinates of the bottom left corner of the patch, while in the third
approach, x is the ground distance between the center line of the camera and the left side of the

patch, and y is the ground distance between the camera optical center and the patch. Q is com-

(3n° (3)
puted as ':A O}q where A = | 3 2 | and g represents the variance of the acceleration.
0 A (8t)°
- ot

PEDESTRIAN TRACKING

Tracking pedestrians depends on the current state of pedestrians as well as the input to pedestri-
ans level which is the tracked blobs. In our system, we use Kalman filtering (KF) in the case of the
first two modeling approaches and extended Kalman filtering (EKF) in the case of the third
approach to estimate pedestrian parameters. We maintain a many-to-many relationship between
pedestrians and blobs and then use it to provide measurements to the filter. The next five sections
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describe one tracking cycle.

Relating Pedestrians to Blobs
We represent the relationship between pedestrians and blobs as a directed bipartite graph,

GP,(VP, EP,), where VP, = B, U P. B, is the set of blobs computed from the i th image. P is
the set of pedestrians. An edge (p, u),.p € P and u € B, denotes that blob u participates in
pedestrian p. We call GP; a pedestrian graph. Given a blob graph, C’;i(Vi, E;), and a pedestrian
graph, GP;_,, EP; is computed as follows:

EP; = {(p,u)|(u,v) € E;n(p,v) € EP;_,}. - (5)

In other words, if a pedestrian was related to a blob in frame (i~ 1) and that blob is related to

another blob in the 7th frame (through a split, merge, etc.), then the pedestrian is also related to

the latter blob.

Prediction
Given the system equation above, the prediction phase of the Kalman filter is given by the fol-
lowing equations:
X1 =Fxyp

A T ©6)
P,. =FPF +Q.

Here, X and P are the predicted state vector and state error covariance matrix, respectively. x and

P are the previously estimated state vector and state error covariance matrix.

Calculating Pedestrian Positions
In this step, we use the predicted pedestrian locations as starting positions and we apply the fol-
lowing rule to update the locations of pedestrians: Move each pedestrian, p, as little as possible so
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b,

Figure 8. Overlap area. Pedestrians p; and p, share blob b2 while bl is only part of

P1 (See text for overlap area computation).

that it covers as much as possible of its blobs, {u|(p, u) € EPi} ; and if a number of pedestrians

share some blobs, they should all participate in covering all these blobs. There are many vague
terms in this rule which need to be specified. First of all, the amount by which a pedestrian covers
a blob implies a measure bof overlap area. We have already used the bounding box as a shape rep-
resentation of blobs. However, since the blob bounding box area may be quite different from the

actual blob area, we will include the blob density in the computation of pedestrian-blob overlap
area. Let BB(p) be the bounding box of a pedestrian p, and BB(b) be the bounding box of a
blob, b. The intersection of BB(p) and BB(b) is a rectangle which we denote its area as
X(BB(p),BB(b)). The overlap area between p and b is computed as

X(BB(p), BB(b)) x D(b). When more than one pedestrian share a blob, the overlap area is com-
puted this way for each pedestrian only if the other pedestrians do not also overlap the intersection

area. If they did, that particular overlap area is divided by the square of the number of pedestrians

whose boxes overlap the area. Figure 8 illustrates this situation. The overlap area for p, is com-
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cx D(b,)

' cxD(b
puted as a X D(b;) + b x D(b,) + 2
2

)
—22—2— - For p, , the overlap areais d x D(b,) +

The problem of finding the optimum locations of pedestrians can be stated in terms of the over-
lap area measure that we just defined. We would like to place pedestrians such that the total over-
lap area of each pedestrian is maximized. We restate the optimization problem as the problem of
finding the minimum total overlap area arrangement of pedestrians which has the least sum of
square distances between old and new locations of the pedestrian. We do not attempt to solve the
problem optimally because of its complexity. Instead, we resort to a heuristic solution using relax-
- ation. First, a small step size is chosen. Then, each pedestrian is moved in all possible directions
by the step size and the location which minimizes the overlap area is recorded. Pedestrian loca-
tions are then updated according to the recorded locations. This completes one iteration. In each
following iteration, the step size is increased._In our implementation, we start with a step of one

pixel and double the step size in each iteration until a maximum of 32 pixels.

The resulting locations form the measurements that will be fed back into the KF or the EKF to
produce the new state estimates. Moreover, we use the overlap area to provide feedback about the
measurement confidence by setting the measurement error standard deviation, which is described
below, to be inversely proportional to the ratio of the overlap area to the pedestrian area. That is,
the smaller the overlap area, the less confident the measurement is considered.

Estimation

A measurement is a location in the image coordinate system as computed in the previous sec-

. T
tion, z = [u U:I . Measurements are related to the state vector by
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z, = h(x,) +w,, N

where h is the measurement function and W, is.a sequence of zero-mean, white, Gaussian mea-

c
t . The measurement error standard deviation,

2

0 o

surement noise with covariance R, given by

o, depends on the overlap area computed in the previous section. In the case of 2-D dynamics

modeling approaches in which pedestrian locations are in image coordinates, h is a linear func-

tion given by

0010

In this case, the state estimation equations for the Kalman filter are

h(x) = Hx = {:1 00 O:lx. (8)

N T .oa T -1
K1 =P H (HP; i H +R))
Xpe1 = ’A(t+1+Kt+l(zt+1"H§(t+1)’ ®
Pirp1 = I-Ky [ H)Prpy,

where K, ;| is the Kalman gain at £ + 1. In the third modeling approach, however, pedestrian

locations are expressed in world coordinates resulting in h being a non-linear function which per-
forms projection into image coordinates. In this case, the extended Kalman filter was used. We let

H be the Jacobian of h. The EKF state estimation equations become

A T oon T -1
K,y =P HHP H +R)

Xppq = Xy + Ky (2 - h(Xe ), (10)

Pior1= (I‘Kt+1H)Pt+l-

The estimated state vector x, _ ; is the outcome of the pedestrians level. When using a 3-D

shape modeling technique we also compute the dimensions of the pedestrian patch based on the

39



estimated pedestrian location.

REFINEMENT

At the end of this stage, we perform some checks to refine the pedestrian-blob relationships
since pedestrians have been relocated. This step improves the performance of filtering. These

steps can be summarized as follows:

a. If the overlap area between a pedestrian and one of its blobs becomes less than 10% of the size
of both, it will no longer be considered belonging to this pedestrian. This serves as the split-

ting procedure when two pedestrians walk past each other.

b. If the overlap area between a pedestrian and a blob that does not belong to any pedestrian
becomes more than 10% of the size of either one, the blob will be added to the pedestrian
blobs. This makes the pedestrian re-acquire some blobs that may have disappeared due to

occlusion.

c. Select one of the blobs that do not belong to any pedestrians. If the area of this blob is large
enough (1000 pixels in our implementation), create a new pedestrian centered around the
bounding box of the blob with initial velocity equal to that of the blob. This step actually

serves as the initialization stage.

d. Select one of the blobs which is already assigned one or more pedestrians but can accbmmo-
date more pedestrian patches. Create a new pedestrian for this blob as in ¢. This handles cases
in which a group of people form one big blob which does not split. If we do not do this step,
only one pedestrian would be assigned to this blob.
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CHAPTER 7
HANDLING CROWDS

INTRODUCTION

Some pedestrian intersections are naturally much more crowded that others. A system that
tracks pedestrians at intersections should be able to adapt to this parameter for successful opera-
tion. In this report we illustrate the problem of crowded intersections and show how our system

performs in these situations. We also present some solutions to problems with our system.

LIMITATION OF THE PEDESTRIAN TRACKING SYSTEM

Recently, we have been able to successfully track an arbitrary number of pedestrians simulta-
neously. However, as the number of pedestrians increase, system performance degrades due to the
limited processing power. When the number of pedestrians exceeds 12, the processing.rate
reaches below 3 frames per second. This makes it hard to keep accurate track of every pedestrian

because of the large displacement among pedestrian locations in the processed frames.

TESTING ON SAMPLE VIDEO SEQUENCES OF CROWDED INTERSEC-
TIONS

Sample video sequences of crowded intersections were collected in order to perform extensive
testing of the system. Figures 9-15 show several snapshots taken from different sequences.

Results from the tests can be summarized in the following.
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Difficulty of obtaining a background image.

One of the system requirements is an empty background scene which does not contain any
pedestrians or vehicles. In a crowded intersection, it is almost always the case that there are

pedestrians or vehicles present. A solution to this problem is given below.

Interference of vehicles.

Intersections crowded with pedestrians are usually crowded with vehicles as well. Our system
was designed to track objects that can be modeled as pedestrians and therefore expects only

pedestrians in the scene. This is easily solved by manually selecting the crosswalk area of the
intersection where only pedestrians are expects to be present. However, as in Figure 11, vehi-

cles may occlude pedestrians even in these areas.

Inability to isolate individuals.

The primary problem when dealing with crowded intersection is the difficulty associated with
isolating individual pedestrians. Occlusions (Figure 14) and camera distance (Figure 15) are
the main factors contributing to this problem. It is often difficult even for the human eye to

isolate pedestrians. A solution to this problem is given below.
System performance.
This is a direct consequence of the previous problem. As the system tries to isolate pedestri-

ans, it may end up with a large number causing a degraded performance. This is due to limited

processing power.

Indefinite waiting.

Another related problem is that in case where the presence of pedestrians is to be used to con-
trol the walk signal, it is desired not to keep the walk signal for ever. The flow of pedestrians

in a crowded intersection can last for a long time.
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POSSIBLE SOLUTIONS

1.

Difficulty of obtaining a background image.

Instead of trying to obtain an empty background image, adaptive update methods can be used
here. By averaging a history of image sequence over time, an image very close to the empty
background image can be obtained. This will require a higher detection threshold in order to

ignore false targets.
Interference of vehicles.
When a vehicle such as a bus occludes a crosswalk, tracking is temporarily lost. This problem

can be solved by setting up the camera in such a way that vehicles cannot be present between

the camera and the pedestrians.

Inability to isolate individuals.

When the objective is to check for the existence pedestrians (either in the crosswalk or waiting
to cross), isolating individual pedestrians becomes unnecessary. Instead, we can try to detect
pedestrians and track them as a group rather than individuals. This is why we introduced the

crowd mode. Whenever the system performance degrades, it automatically switches to crowd

mode where it no longer attempts to track individual pedestrians but groups of people.
System performance.
If we adopt the solution above, system performance is automatically improved.

Indefinite waiting.

This is more of a traffic optimization problem. An obvious solution is to have a maximum
time limit for the walk signal beyond which the presence of pedestrians has no effect on the

controller.
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Figure 10. Intersection 2 at downtown Minneapolis.
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Figure 12. Intersection 4 at downtown Minneapolis.
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Figure 14. Intersection 6 at downtown Minneapolis.
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Figure 15. Intersection 7 at downtown Minneapolis.
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CHAPTER 8
RESULTS AND CONCLUSIONS

EXPERIMENTAL RESULTS

The three modeling approaches were tested. The 3-D shape models performed noticeably better
than the 2-D shape model. The 3-D dynamics model, however, only slightly outperformed the 2-D
dynamics model. The system was tested on several indoor and outdoor image sequences. Several
outdoor sequences in different weather conditions (sunny, cloudy, snow, etc.) have been used. In
most cases, pedestrians were tracked correctly throughout the period they appeared in the scene.
Scenarios included pedestrians moving at a slow or very high speeds, partial and full occlusions,
bicycles, and several pedestrian interactions. Interactions between pedestrians included occlusion
of one another, repeated merging and splitting of blobs corresponding to two or more pedestrians
walking together, pedestrians walking past each other, and pedestrians meeting and then walking
back in the direction they came from. The system has a peak performance of over 20 frames per
second. In a relatively cluttered image with about 6 pedestrians, the frame processing rate dropped

down to about 14 frames per second.

Figure 16 shows 16 snapshots spanning a sequence of 8.4 seconds. The sequence demonstrates
the system behavior against occlusions, both partial and full. Figure 17 shows 12 snapshots from a
scene under different weather conditions. The snapshots span a sequence of 35 seconds. We also
performed a pedestrian counting experiment for a sequence of 12 minutes in which 124 pedestri-
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ans were counted manually. The system gave a count of 130 making it successful by over 95%.

Most of the failures were due to bicyclists who were double counted because the blob they gener-

ated was closer to the size of two pedestrians.

There are other cases where the system failed. Those include highly crowded images. Other
inevitable failures occur when a pedestrian is almost similar in color to the background. In this
case, if a pedestrian box is tracking this pedestrian, it will be prone to clamp to other nearby
pedestrians having bigger blobs. Also, when a pedestrian becomes totally occluded but then reap-
pears at an unexpected location, the pedestrian box will loose track. Finally, in cases where two
pedestrians walk very closely around each other, their pedestrian boxes may get interchanged

erroneously.

CONCLUSIONS AND FUTURE RESEARCH

We presented a real-time model-based pedestrian tracking system capable of working robustly
under many difficult circumstances such as occlusions and ambiguities. For each pedestrian in the
view of the camera, the system produces location and velocity information as long as the pedes-
trian is visible. This data can be used by a scheduling algorithm to control walk signals at an inter-

section in order to increase the safety and efficiency of existing traffic systems.

There are several issues that still need to be addressed. Spatial interpretation of blobs is one
such issue. In the current system, the only spatial attribute of blobs taken into consideration is the
blob area. The shape of the blob can give a good clue on its contents. Since the camera is mounted
in a fixed location, use of a priori known scene topology is another issue that can be considered.
Although blobs obtained from difference images can be sufficient to decide the location of pedes-
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trians in many cases, the intensity information may be useful to resolve certain ambiguities. The
use of such information in the form of statistical distribution of intensities may add to the robust-

ness of the current system and is well worth pursuing.
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