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damage resulting from the use of, any information, apparatus, method, or pro-
cess disclosed in this report.
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publication are those of the author(s) and do not necessarily reflect the views of
MCEER or the Federal Highway Administration.



IR MCE!

MULTIDISCIPLIRARY CENTER FOR EARTHQUARE ENGINEERING RESEARCH
 National Centes of Excellnce in Advanced Techvology Applications

Evaluation of Bridge Damage Data from the
Loma Prieta and Northridge, California Earthquakes

by

N. Bas6z'and A.S. Kiremidjian?

Publication Date: June 2, 1998
Submittal Date: December 15, 1997

Technical Report MCEER-98-0004

Task Number 106-E-7.3.3

FHWA Contract Number DTFH61-92-C-00106

1 Senior Staff Engineer, K2 Technologies, Inc.; former Post-doctoral Researcher, The John A.
Blume Earthquake Engineering Center, Department of Civil Engineering, Stanford University

2 Professor and Director, The John A. Blume Earthquake Engineering Center, Department of
Civil Engineering, Stanford University

MULTIDISCIPLINARY CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
State University of New York at Buffalo
Red Jacket Quadrangle, Buffalo, NY 14261

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. DEPARTMENT OF COMMERCE






Preface

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) is a national center
of excellence in advanced technology applications that is dedicated to the reduction of earthquake
losses nationwide. Headquartered at the State University of New York at Buffalo, the Center was
originally established by the National Science Foundation in 1986, as the National Center for
Earthquake Engineering Research (NCEER).

Comprising a consortium of researchers from numerous disciplines and institutions throughout
the United States, the Center’s mission is to reduce earthquake losses through research and the
application of advanced technologies that improve engineering, pre-earthquake planning and
post-earthquake recovery strategies. Toward this end, the Center coordinates a nationwide
program of multidisciplinary team research, education and outreach activities.

MCEER’s research is conducted under the sponsorship of two major federal agencies, the
National Science Foundation (NSF) and the Federal Highway Administration (FHWA), and the
State of New York. Significant support is also derived from the Federal Emergency Management
Agency (FEMA), other state governments, academic institutions, foreign governments and
private industry.

The Center’s FHW A-sponsored Highway Project develops retrofit and evaluation methodologies

for existing bridges and other highway structures (including tunnels, retaining structures, slopes,

culverts, and pavements), and improved seismic design criteria and procedures for bridges and
other highway structures. Specifically, tasks are being conducted to:

« assess the vulnerability of highway systems, structures and components;

 develop concepts for retrofitting vulnerable highway structures and components;

» develop improved design and analysis methodologies for bridges, tunnels, and retaining
structures, which include consideration of soil-structure interaction mechanisms and their
influence on structural response;

» review and recommend improved seismic design and performance criteria for new highway
structures.

Highway Project research focuses on two distinct areas: the development of improved design
criteria and philosophies for new or future highway construction, and the development of
improved analysis and retrofitting methodologies for existing highway systems and structures.
The research discussed in this report is a result of work conducted under the existing highway
structures project, and was performed within Task 106-E-7.3.3, “Evaluation of Bridge Damage
Data from Recent Earthquakes” of that project as shown in the flowchart on the following page.

The overall objective of this task was to correlate observed bridge damage resulting from the 1989
Loma Prieta and 1994 Northridge earthquakes to the local ground motions, bridge structural
characteristics, and repair costs and time. Damage states reported after the earthquakes were
investigated and new damage state definitions for concrete bridges were proposed. Bridges were
grouped by their structural characteristics and correlation studies were performed to obtain
ground motion-damage relationships and ground motion-repair cost ratio relationships. Logistic
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regression analysis was used to obtain empirical fragility curves. Currently available fragility
curves and damage probability matrices were compared to observed damage data and the
empirical relationships developed in this study.
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ABSTRACT

This report presents the significant findings from a study of damage to bridges during the 1989
Loma Prieta and the 1994 Northridge, CA earthquakes. In both earthquakes, less than five
percent of the bridges that were exposed to ground shaking were damaged. As éxperienced in
the past earthquakes, bridges with non-monolithic abutment types, discontinuous spans and
single column bents performed poorly. High skew contributed to high damage levels.
Performance of bridges designed and built before 1971 was poorer than those designed according
to more recent standards. The total estimated repair cost of $150 million for the bridges damaged
in the Northridge earthquake was about two thirds of the repair cost estimated from the Loma

Prieta earthquake. Column damage was the most damaged component in both earthquakes.

Data on bridge damage were compiled, reviewed and analyzed to correlate observed bridge
damage to structural characteristics of a bridge, ground motion levels and estimated repair costs.
Damage states reported after the earthquakes were investigated and new damage state definitions
for concrete bridges were proposed. Bridges were grouped by their structural characteristics and
correlation studies were performed to obtain ground motion-damage relationships and ground
motion-repair cost ratio relationships. Logistic regression analysis was used to obtain empirical
fragility curves. Currently available fragility curves and damage probability matrices were

compared to observed damage data and the empirical relationships developed in this study.
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SECTION 1

INTRODUCTION

1.1 MOTIVATION

Damage to highway systems from recent earthquakes has emphasized the need for risk
assessment of the existing highway transportation systems. Risk assessment efforts were initiated
in California by the early seventies and within the last few years have been followed by efforts in
other states. The 1971 San Fernando earthquake caused substantial damage to then recent bridge
construction and exposed a number of deficiencies in bridge design specifications in effect at that
time. Following the earthquake, bridge design specifications in California were modified.
During the 1987 Whittier Narrows, and the 1989 Loma Prieta earthquakes, bridges designed to
pre-1971 force levels specified by Caltrans or AASHTO were damaged extensively. In contrast,
the majority of bridges performed well in the most recent 1994 Northridge earthquake
demonstrating the benefits of improved seismic bridge design and retrofitting schemes in the
United States within the previous two decades. Bridge damage data from these earthquakes,
however, have not been systematically studied with the objective to evaluate damage

characteristics and to correlate these to observed or estimated ground motion levels.

This report presents the significant findings from a study of damage to bridges during the 1989
Loma Prieta and the 1994 Northridge, CA earthquakes. These two earthquakes caused the most
significant bridge damage since the San Fernando earthquake. This study (Task No. 106-7.3.3)
was part of the seismic research project conducted by the National Center on Earthquake
Engineering Research (NCEER) entitled "Seismic Vulnerability of Existing Highway
Construction” with funding by the Federal Highway Administration. The project aims "to
produce state-of-the-art guidance on the seismic assessment, screening, evaluation and

retrofitting of not only the structural components of highway systems (bridges, tunnels, retaining



walls and alike) but also the system itself as a network of transportation corridors” [Buckle and

Friedland, 1996].

The performance of the system is highly dependent on the performance of individual components
as well as the connectivity of these components. Assessment of potential damage to bridges is
thus essential to estimate the performance of the transportation system. The vulnerability
assessment of bridges is useful for seismic retrofitting decisions, disaster response planning,
estimation of direct monetary loss, and evaluation of loss of functionality of the highway system
due to damage to bridges from earthquakes. During the post-earthquake recovery period, the
structural vulnerability assessment can assist in decisions, such as whether a bridge should be
open to traffic immediately after an earthquake, it should be demolished or repaired,.and if there
are several bridges to be repaired in what order should they be repaired or replaced. A detailed
methodology for risk assessmént of highway transportation systems is presented in Basdz and
Kiremidjian [1996]. A similar study is under progress as part of the NCEER seismic research
project [Werner et al., 1996]. A key component of the methodologies in these studies is the
quantification of bridge vulnerability, i.e., the relationship between bridge damage and ground
motion as well as the relationship between bridge damage and repair cost/time, therefore the

bridge functionality.

1.2 OBJECTIVE AND SCOPE

The objectives of this study were:

* to compile, review and analyze bridge damage data from the 1989 Loma Prieta and

1994 Northridge earthquakes, and

* to correlate observed bridge damage to its structural characteristics as well as the

ground motion and repair cost.

A major effort was undertaken in the compilation of a comprehensive database on bridge damage
and repair cost for the two most recent California earthquakes that struck an urban area. This
database can be used for comparative studies on bridge damage and to identify the needs for

better data collection and post-earthquake investigation.



In both the Loma Prieta and the Northridge eaﬂhquakeé, local bridges were reported to have
sustained much less damage than the state bridges. Therefore, damage only to state bridges was
analyzed in this study. Statistics were obtained for the bridges compiled in this database.
Correlation studies were performed to obtain ground motion-damage relationships and ground

motion-repair cost ratio relationships.

A geographic information system (GIS) was used to obtain the ground shaking levels at each
bridge site. A relational database management system (RDBMS) was used to compile the

database on bridge damage and structural characteristics of bridges.

The results of this study are specific to bridges designed and constructed according to California
standards. These results, however, can be utilized to develop an improved understanding of the

seismic vulnerability of bridges in other parts of the country.

1.3 ORGANIZATION OF THE REPORT

Section 2 of this report outlines the tasks of the study and describes the approach used to analyze
data on bridge damage. This section includes the structure of the database and its attributes, and
the descriptions for different bridge classifications used in the correlation studies. A review of
damage state definitions used in post-earthquake investigations is presented. The methods used

to obtain relationships between ground motion and bridge damage and repair cost are explained

in Section 2.3.

The application of the methods described in Section 2 to the 1989 Loma Prieta and the 1994
Northridge earthquakes and the results are presented respectively in Sections 3 and 4. A
discussion of the results is provided at the end of each section. The results from the two

earthquakes are compared in Section 5. Lastly, major findings of this study are presented in

Section 6.






SECTION 2

ANALYSIS METHOD FOR DAMAGE DATA

In order to achieve the objectives stated in Section 1, the following tasks were defined:
(1) Data compilation:

(1.2) Compile a database on structural characteristics of damaged and undamaged

bridges in the San Francisco Bay area and the Greater Los Angeles area,

(1.b) Collect bridge damage data observed in the 1989 Loma Prieta and the 1994
Northridge earthquakes,

(1.c) Collect data on repair cost from the two earthquakes,

(1.d) Obtain ground motion levels at bridge sites either from recordings or from
seismic hazard analysis conducted for the areas affected by the Loma Prieta

and Northridge earthquakes.
(2) Classification of bridges according to structural characteristics and damage states:
(2.2) Review bridge inventory data,
(2.b) Classify bridges by structural characteristics,
(2.c) Review definitions for damage states,
(2.d) Analyze bridge damage and repair cost data.

(3) Correlation studies: Develop ground motion-damage and ground motion-repair cost

ratio relationships based on the data from the Loma Prieta and the Northridge

earthquakes.

The methods for compiling and analyzing the data are outlined in this section. The results for the

Loma Prieta and the Northridge earthquakes are presented in Sections 3 and 4, respectively.



2.1 CHARACTERISTICS OF THE BRIDGE DATABASE

A database was compiled for each of the events, the 1989 Loma Prieta and the 1994 Northridge
earthquakes. Each database includes five types of data: (i) structural characteristics, (ii) bridge
damagé, (iif) repair cost, (iv) ground motion levels at bridge sites, and (v) soil characteristics at
bridge sites. A commercial relational database management system (RDBMS), dBase™, was
used to compile the data and to perform queries on bridge damage, ground motion levels,
structural characteristics and repair cost. In addition, a commercial geographic information
system (GIS), Arc/Info™, was used to perform spatial queries on the ground motion levels

observed in the two earthquakes and soil types.

Structural Characteristics: Several structural characteristics were compiled in a database for the

bridges that were exposed to ground shaking in each of the two earthquakes. These structural
characteristics include abutment type, number of spans, type of superstructure and substructure,
length and width of the bridge, skew, number of hinges at joints and bents, abutment and column
foundation types, and design year. These structural attributes were obtained from the Structural
Maintenance System (SMS) database compiled and managed by Caltrans. The detailed
descriptions for each of these attributes can be found in the OSM&I Guide [Caltrans, 1993].

Caltrans is currently in the process of compiling a database that includes information on
abutment details (e.g., seat width, type and height of bearings), and column and footing details
(e.g., minimum/maximum column height, footing type and column/footing connection).
However, only about 15 percent of all the California bridges, 25 percent of the bridges damaged
in the Northridge earthquake, and about 20 percent of the bridges damaged in the Loma Prieta

earthquake are currently in this database.

Bridge Damage: Detailed damage descriptions and the corresponding damage states were
compiled for the bridges damaged in the Loma Prieta and the Northridge earthquakes. The
damage descriptions were obtained mainly from the bridge damage reports compiled by Caltrans
[1989; 1994]. For the Northridge earthquake, these descriptions were cross-referenced with
those provided by Buckle [1994], EERI [1995], and Yashinsky [1995]. Judgment was used to

treat inconsistencies in the interpretation of the observed damage data.



The bridge damage data were used in correlation studies to obtain ground motion-damage
relationships as described in Section 2.3. The database on bridge damage includes only minor
and major damage states for bridges damaged in the Loma Prieta earthquake, and minor,
moderate, major and collapse damage states for those damaged in the Northridge earthquake.

These damage states were used in the correlation studies as well.

Damage State Definitions: Currently, no guidelines exist for evaluating physical bridge damage.

The terms minor, moderate and major used to describe the severity of damage are subjective.
Definitions of damage states for columns, abutments, joints and connections of concrete bridges
were proposed by Basoz and Kiremidjian [1996] based on the observed bridge damage in the
Northridge earthquake. Under this project a questionnaire was formulated to acquire expert
opinion on the proposed damage state definitions and was given to bridge engineers at Caltrans.
The questionnaire together with the responses from several bridge engineers is given in
Appendix A. The results showed considerable agreement among the practicing engineers. Thus,

the survey results can be used for formulating standard definitions for damage states for bridges.

Repair Cost: The estimated repair costs for bridges damaged in the Northridge and Loma Prieta
earthquakes were compiled in a database. These estimated repair costs were obtained from
supplementary bridge reports compiled by Caltrans following each earthquake. The database
includes total estimated repair cost for a bridge, repair cost ratio, and a more detailed information
on repair work and cost for each bridge that was repaired. The repair cost ratio was defined as
the ratio of repair cost to replacement cost of a bridge. The replacement cost of a bridge was

estimated to be $90/ft* based on the 1995 cost books [Caltrans, 1994b].

Ground_Motion Levels: In addition to structural characteristics, soil type and peak ground

acceleration at each bridge site were compiled. For the Northridge earthquake, available ground
shaking maps were used to obtain the peak ground acceleration (PGA) at each bridge site.
Unlike the Northridge earthquake, however, ground shaking maps based on recordings from the
Loma Prieta earthquake were not available. The PGA levels at bridge sites were obtained by

simulating the Loma Prieta earthquake within GIS.



2.2 CLASSIFICATION OF BRIDGES

The compiled inventory of bridges was reviewed to: (i) select bridges to be used in correlation
studies, (if) identify structural characteristics (attributes) that best describe the seismic response
of bridges, and (iii) verify the correctness of the attribute values included in the bridge inventory

database.

Data Sets: Several data sets were used for statistical analyses. All the analyses were performed
for state bridges since most of the reported damage in both earthquakes pertained to state bridges.
First, all state highway bridges were selected and gathered in the highway bridge data set.
Statistics on design year and ground shaking levels were obtained for this data set. Most of the
bridge damage pertained to concrete structures in both earthquakes. This might be due to smaller
number of steel bridges in both the Greater Los Angeles area and the San Francisco Bay area.
The number of steel bridges that were damaged in either of the two earthquakes was not large
enough for detailed statistical analysis. Therefore, the correlation studies were mainly conducted

for concrete highway bridges.

One of the objectives of the study was to identify the effect of various structural characteristics
on bridge damage susceptibility. Two structural characteristics were considered: abutment type
and column bent type. In order to determine the effect of each attribute, only bridges with
homogeneous structural characteristics were selected from the concrete highway bridge data set.
For the purposes of this study, bridges with unique abutment type and column bent type were
defined as homogeneous. For example, a bridge with a seat type (non-monolithic) and a
diaphragm type (monolithic) abutments, was defined as a heterogeneous bridge and was
excluded from the homogeneous data set. Similarly, a bridge with both multiple and single
column bents was defined as a heterogeneous bridge, and was excluded from the homogeneous
data set. Bridges with incomplete information were also excluded from this data set. Bridges
with heterogeneous characteristics were not analyzed separately in this study. However, several
statistics were obtained for the concrete highway bridge data set, which included both
homogeneous and heterogeneous bridges. Similarly, statistics were obtained for all damaged

bridges, including steel bridges.



The available ground shaking maps for the Loma Prieta and the Northridge earthquakes are
limited to certain geographic areas and do not cover the locations of all bridges that were
exposed to lower ground shaking levels. A complete data set for correlation analyses requires
that all the bridges exposed to a given ground shaking level be included in the data set. In order
to satisfy this requirement, a minimum PGA level was selected as a threshold value. This PGA
level was determined based on the available ground motion maps. Bridges that were exposed to
the selected PGA level or higher were extracted from the homogeneous data set and the new data

set was referred to as the correlation data set.

The bridges in the correlation data set were grouped first by the superstructure type and
substructure material. Then, these bridges were further classified into sub-categories based on
other structural characteristics, such as number of spans, abutment type, column bent type and
span continuity. Bridges within the same sub-category are expected to experience similar
damage under a given seismic loading. Table 2-1 lists the 21 bridge sub-categories (3 for single
span bridges and 18 for multiple span bridges) used in the correlation analyses. In table 2-1,
"continuous" refer to bridges with no joints at hinges or bents. The list of abutment types grouped
as monolithic, non-monolithic and partial are listed in table 2-2. Figures 2-1 and 2-2 illustrate

different column bent types and abutment types.

The bridge sub-categories were based on the bridge classification given by Baséz and
Kiremidjian [1996]. Four of the sub-categories, C1S1, C152, CIM1 and C1IM10', correspond to
the sub-categories of a generic bridge class defined in that classification. These four sub-
categories are expected to represent the least and the most vulnerable single and multiple span
bridge groups, respectively. Accordingly, the fragility curves for the least and most vulnerable
curves are expected to provide lower and upper boundaries for bridges in a given class. The
fragility curve of any particular bridge can then be obtained by modifying these boundaries

according to the structural characteristics of that bridge.

! C181: single span bridges with monolithic type abutments.
C1S82: single span bridges with non-monolithic type abutments.
C1M1: multiple span bridges with monolithic type abutments, continuous spans and multiple column bents.

C1IMI10: multiple span bridges with non-monolithic type abutments, discontinuous spans and single column bents.
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TABLE 2-1 Description of Bridge Sub-categories (based on Baséz and Kiremidjian, [1996])

Bridge Sub-category | Abutment Type , Column Bent Type S[;an Continuity
Single Span Bridges
C181 Monolithic Not applicable Not applicable
C182 Non-monolithic Not applicable Not applicable
C183 Partial integrity Not applicable Not applicable
Multiple Span Bridges
CIM1 Monolithic Multiple Continuous
CiM2 Monolithic Multiple Discontinuous
CIiM3 Monolithic Single Continuous
CiM4 Monolithic - Single Discontinuous
CIMS Monolithic Pier wall Continuous
C1M6 Monolithic Pier wall Discontinuous
CiM7 Non-monolithic Multiple Continuous
CiM8 Non-monolithic Multiple Discontinuous
CIM9 Non-monolithic Single Continuous
CIM10 Non-monolithic Single Discontinuous
CiM11 Non-monolithic Pier wall Continuous
CIM12 Non-monolithic Pier wall Discontinuous
CIM13 Partial integrity Multiple Continuous
CiM14 Partial integrity Multiple Discontinuous
C1M15 Partial integrity Single Continuous
CiM16 Partial integrity Single Discontinuous
CiM17 Partial integrity Pier wall Continuous
CIM18 Partial integrity Pier wall Discontinuous
TABLE 2-2 Description of Abutment Types
Inventory Code Description Abutment Type
A Diaphragm Monolithic
E Rigid Frame Monolithic
B Seat Non-monolithic
C Cantilever Non-monolithic
D Strutted Non-monolithic
F Bin Partial
G Cellular Closure Partial

10
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Bridges were also grouped using the bridge classifications defined by HAZUS [1997] and ATC-
13 [1985]). The HAZUS classification was used to compare the empirical fragility curves
obtained in this study to those provided in HAZUS. The ATC classification was used to compare

the repair cost ratios to damage probability matrices (DPMs) provided in ATC-13 [1985].

Reliability of the Database: Caltrans currently has two database systems: the first one, Structure

Maintenance System (SMS), follows the Federal Highway Administration (FHWA) National
Bridge Inventory System but is more detailed, and the second one, Bridge Inspection Records
and Information Systems (BIRIS), is a database that stores the inspection records and the
construction drawings for all the bridges. All the paper format information from each bridge
inspection is scanned into BIRIS. For some of the 25,000 bridges in the state of California,

discrepancies exist between the two databases.

The two databases were compared to verify the correctness of the attribute values for some of the
bridges that were damaged in the Loma Prieta and the Northridge earthquakes. The abutment
type and column bent type were found to be more likely to have errors than the other attributes
that are of interest for this study. For example, only in few cases (for 2 to 3 percent of the
damaged bridge data set) the values of the design year and skew attributes were found to be

incorrect. Table 2-3 lists samples of potential inconsistencies for these attributes.

TABLE 2-3 Examples of Data Error in Bridge Inventory Databases

Bridge ID Attribute BIRIS Code (Database 1)* SMS Code (Database 2)°

53 0645L Abutment Type C (cantilever) N (pier wall)

530732K Abutment Type B (seat) C (cantilever)

530739 Abutment Both abutments are on S One abutment is F, the other is S
Foundation Type

531126 Abutment Type A (diaphragm) F (bin)

531133 Abutment Type D (strutted) C (cantilever)

531153 Abutment Type closed end column abutments B (seat)

53 06451 Column Bent Type RC pier J (single column bent)

53 1985F Column Bent Type RC 2 column bents J

53 2057 Column Bent Type RC 3 column bents J

2 BIRIS and SMS are two separate databases obtained from Caltrans.
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Where there were discrepancies between the two databases, the structural plans were investigated
with the assistance of bridge engineers from Caltrans to determine the correct attribute values. In
order to assess the effect of error in the databases on ground motion-damage relationships,
correlation studies were performed using a data set with corrected and uncorrected attribute
values. The correction of attribute values in the database is very time consuming and it is beyond

the scope of this study to correct all the incorrect attribute values in Caltrans SMS database.

2.3 CORRELATION STUDIES

Correlation analyses were performed using the data from the Loma Prieta and the Northridge

earthquakes to achieve the following objectives:
(i) To determine the structural characteristics which best reflect damage potential,

(i)) To obtain ground motion-damage relationships for bridges with similar structural
characteristics,

(iti) To obtain ground motion-repair cost ratio relationships to estimate direct loss due to
bridge damage,

(iv) To correlate damage and repair cost ratio. -

2.3.1 Attributes Used in the Correlation Studies

As discussed in Section 2.2, bridges were grouped by their structural characteristics. For each of
these classes, relationships between the following attributes and the damage state, and similarly

- between these attributes and repair cost ratio were obtained:

Peak ground acceleration: Observed and/or estimated PGA were used to characterize the ground

shaking level at a bridge site. Spectral acceleration values at various periods were also available
for the Northridge earthquake. However, a reliable estimate of the fundamental period of a
bridge could not be determined from the available information. Therefore, PGA was used in the

analyses.

Design vear: The original bridge design year was used in this study. The design year was not

updated based on the reconstruction or upgrading dates (either seismic or non-seismic).
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Structural characteristics: The number of spans, abutment type, substructure type, span

continuity, skew and span length were used to group bridges into various classes.

The data on bridge damage were compiled in the form of damage frequency matrices, i.e., the
number of bridges with each level of observed damage at different PGA levels. Then, the damage
probability matrices (DPMs), i.e., the probability of being in a damage state given the ground
motion level, were obtained for each group of bridges. The damage matrices were used as input
data to logistic regression analyses in order to obtain empirical fragility curves. Similar
procedures were used to obtain empirical relationships between ground motion levels and repair
cost ratios. The correlation analyses performed for each of the earthquakes are discussed in

detail in Sections 3 and 4.

2.3.2 Logistic Regression Analysis

This sub-section provides a brief description of logistic regression analysis used in this study.
Among other references, more detailed discussion on logistic regression analysis can be found in

Hosmer and Lemeshow [1986], SAS Manual [1995], and Agresti [1996].

The goal of logistic regression analysis is to find the best fitting model to describe the
relationship between an outcome and a set of independent variables. The fit of the model is then
appraised, and the coefficients are evaluated to indicate the impact of the individual variables.
Logistic regression model is used as a multivariate technique for estimating the probability that

an event occurs. It is used for discrete outcome variables that take two or more possible values.

The relationship between the outcome and the independent variable is generally expressed in
terms of the conditional mean, E(Ylx). In general, the curve E(Ylx) versus x generally
resembles a plot of a cumulative distribution function of a random variable — in which case

E(Yx) ranges between 0 and 1. The specific form of the logistic regression model used in the

analysis is as follows:

oPothix

1+ Pothix @)

m(x)=
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where 7(x) = E(Y1x) for logistic distribution. The logit transformation as described in equation
(2-2) is used to attain many desirable properties of a linear regression model; e.g., the logit, g(x)

is linear in its parameters, may be continuous, and may range from —ee to +eo, depending on the

range of x.
| LX)
gln)= 1“[1 - Jz(x)} (2-2)
=fo+ Bix

For a collection of k independent variables denoted by x = (x;,x;,---, X ) , the logit of the logistic

regression model takes the form of

g(x)= fo + f1xy + Poxy +-+ Prxy (2-3)
in which case

(2-4)

The parameters of the model are estimated using the maximum-likelihood method. The method
of maximum likelihood yields values for the unknown parameters which maximize the

likelihood of obtaining the observed set of data.

In this study, two types of models were used:

e a single variable model to obtain probabilities of exceedance at different levels of the
discrete dependent variable, where the analysis based on the above equations was carried
out.

e alinear logit model with multiple variables to identify the independent variables that have
the most effect on the outcome, in which stepwise logistic regression algorithm was used.
Stepwise logistic regression is a statistical algorithm which checks for the importance of
variables [Hosmer and Lemeshow, 1987]. The importance of a variable is defined in
terms of a measure of statistical significance of the coefficient for the variable. In logistic
regression, the errors are assumed to follow a binomial distribution, and significance is

assessed via the likelihood ratio chi-square test. Thus, at any step in the procedure the
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most important variable, in statistical terms, is the one that produces the greatest change
in the log-likelihood relative to a model not containing the variable. The p-values
calculated in stepwise selection procedures are considered as indicators of relative
importance among variables. One of the biggest advantages of stepwise multivariate
analysis is that, given the attributes the model determines which attributes to include in
the model. Furthermore, any type of interaction between variables can be included in the

model statement. Variables can take continuous or discrete values.

Once the model is fit, then the significance of the variables in the model is assessed. This
usually involves formulation and testing of a statistical hypothesis to determine whether
the independent variables in the model are "significantly” related to the outcome variable.
For this purpose, observed values of the response variable are compared to predicted

values obtained from models with and without the variable in question. For statistical

evidence the p-value associated with the ;(2 test is used. For example, a variable with p-

value less than 0.05 is considered as significant in this study.

After fitting a model, it is necessary to interpret the values of the estimated coefficients. Testing
the hypothesis that "the parameter estimate on the model is zero" is performed by chi-square test
with (z — 2) degrees of freedom. A chi-square statistics that is equal to zero implies that the
independent variable does not affect the response variable. The estimated coefficients for the
independent variables represent the rate of change of a function of the dependent variable per

unit of change in the dependent variable. The odds ratio, denoted by ¥ , is one of the measures

of association and for logistic regression with a dichotomous independent variable is given by:

2 /[1- ()]
 2(0) / [1 - 7(0)]

(2-5)

The odds ratio y approximates relative risk, i.e., how much more likely (or unlikely) it is for the

outcome to be present among these with x = 1 than among those with x = 0. For example, if y
denotes whether or not the bridge is damaged, and x denotes number of spans in a bridge

(multiple, or single), then § = 2 indicates that damage occurs twice as often among multiple

span bridges than among single span bridges for the given data set. Here, ¥ denotes the
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maximum likelihood value for w . For the multivariate case, the odds ratio shows the change in

2

the probability of Y, when the value of x; advances one unit, from 0 to 1, while all other

variables are held constant. Each f j coefficient in equation (2-4) is the natural logarithm of the

odds ratio for the variable x j

The univariate Wald statistics is used to test whether the independent variable significantly

affects the outcome. The Wald-chi square value for each coefficient is calculated as:

,B 2
Wald — chi square = J (2-6)
std.error of f3;

The statistical software package SAS was used to perform the logistic regression analysis. For

each of the analyses performed in this study, the p-value associated with ;(2 test, parameter

estimate, standard error, probability associated with Wald statistics and odds ratio are computed.
A complete ‘set of the empirical fragility curves obtained from the logistic regression analysis is

provided in the Appendices.
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SECTION 3
BRIDGE DAMAGE DATA FROM THE LOMA PRIETA, CA EARTHQUAKE

The 1989 Loma Prieta earthquake of magnitude 7.1 was the largest earthquake to occur in the
San Francisco Bay area after the 1906 San Francisco earthquake. The earthquake caused damage
and collapse of bridges in the area, 60 miles away from the epicenter located in the Santa Cruz
Mountains. Sixty-two lives were lost including forty-one deaths from the collapse of the
Cypress Viaduct, and one death on the San Francisco-Oakland Bay Bridge. The extent of the
damage from the earthquake was limited due to the short duration of the earthquake. The impact
of the earthquake was much more than the loss of life and direct damage. The Bay Bridge was
out of service for 31 days; five of the six viaducts of the San Francisco Freeway system were
also closed to traffic following the earthquake. Because of the San Francisco Bay area’s
geography, the closure of the Bay Bridge and other major arteries had significant economical

consequences.

The cost of the earthquake to the transportation system was $1.8 billion. Damage to state-owned
viaducts totaled about $200 million and damage to other state-owned bridges was about $100
million [Thiel, 1990]. About 5 percent of all the bridges that were affected by the earthquake
sustained damage. Majority of the bridge damage was in the San Francisco Bay area, about 60
miles away from the epicenter. Thirteen of the state-owned bridges in the Bay area sustained
major damage and were closed to traffic following the earthquake. Soft soil at bridge sites

contributed to the extensive damage observed this far away from the epicenter.

Following the earthquake, Caltrans gathered bridge damage and repair cost data. The data,
however, have not been studied in detail. In this study, the characteristics of the bridges exposed
to ground shaking during the Loma Prieta earthquake were reviewed to obtain statistics for
damaged bridges. Correlation studies were performed to identify the structural characteristics
that most contribute to the observed damage. Several difficulties were encountered in

performing the statistical analyses and the correlation studies. These difficulties included the
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limited damage data, lack of information on the ground motion levels at bridge sites and the
definitions of damage states, which were too vague. Nevertheless, the available data were
reviewed, and used for statistical analyses. Following the procedures described in Section 2,
ground motion-damage relationships were developed for groups of bridges for which damage
data are available. In this section, the data on bridge damage and the repair cost from the Loma

Prieta earthquake, the correlation analyses and findings from these analyses are presented.
3.1 GROUND-MOTION CHARACTERISTICS

The epicenter of the Loma Prieta earthquake was located in the southern Santa Cruz Mountains.
An outer zone of modified Mercalli intensity of VII extended more than sixty miles northwest to
San Francisco and Oakland, and 30 miles southeast to Salinas and Hollister. Within these
regions, free-field, peak horizontal ground accelerations exceeded 0.6g close to the source and
were as high as 0.26g at a distance of 60 miles. Strong shaking lasted less than 15 seconds.
Local soil conditions significantly influenced the spatial distribution of damage. The ground
motions at soft soil sites in the Bay area, where much of the damage to bridges and viaducts
occurred, were significantly greater than the motions recorded at nearby rock and stiff soil sites

[Thiel, 1990].

At the time of this study, no contour maps based on the ground motion recordings were available
for the Loma Prieta earthquaké. In order to evaluate ground motion-damage relationships, the
ground motion level at each bridge site was estimated from a scenario event. The scenario event
for the Loma Prieta earthquake was generated using geographic information system (GIS). The
resulting buffer zones for the bedrock level ground shaking are shown in figure 3-1. Because the
available geology map was limited to a portion of the San Francisco Bay area, the ground motion
levels were estimated only for the section of the Bay area shown in figure 3-1. The surface level
ground shaking was obtained using the geology map developed by USGS and the attenuation
relationship by Boore et al. [1997] for strike-slip faults. The maximum peak ground acceleration

(PGA) level obtained using this attenuation relationship was 0.61 g in the epicenter area.

The estimated PGA levels were compared to the available strong motion recordings. During the
main shock of the Loma Prieta earthquake, strong motion records were obtained at 98 free-field

stations maintained by the California Strong Motion Instrumentation Program (CSMIP) and U.S.
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stations maintained by the California Strong Motion Instrumentation Program (CSMIP) and U.S.
Geological Survey (USGS) [Thiel, 1990]. Table 3-1 lists the recorded PGA levels at 29
recording stations and those estimated by using Boore et al. [1997] attenuation relationship at
these recording stations. The ground motion levels estimated by this attenuation relationship

deviate from the recorded PGA levels at most of these locations.

The surface level PGA values were also estimated by using the attenuation relationship
developed by Campbell [1991]. This attenuation relationship is solely based on data only from
the Loma Prieta earthquake. The ground motion levels in the San Francisco Bay area obtained
by using Campbell's attenuation relationship are mapped in figure 3-2. The locations of

recording stations listed in table 3-1 are also mapped in figure 3-2.

122.014 W
[

37.877TN

N

T Pacific Ocean
36.872 N |
121.826 W

FIGURE 3-1 Buffer Zones for Ground Shaking at Bedrock Level from the Loma Prieta

Scenario Event
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TABLE 3-1 Estimated and Recorded PGA Levels from the Loma Prieta Earthquake

Name of the Recording Station PHAL(g)' | PHA2 (g)’ PHA PHA s
BJF? Campbell

Agnew 0.16 0.17 0.2122 0.205
Capitola 0.47 0.54 0.2963 0.2866
Corralitos 0.5 0.64 0.495 0.6092
Coyote Lake Dam — Downstream 0.19 0.17 0.1671 0.1682
Fremont - Calaveras Array 0.15 0.2 0.139 0.13
Fremont - Mission San Jose 0.11 0.13 0.1419 0.1331
Gavilon College 0.37 0.33 0.2821 0.2731
Gilroy #1 0.5 043 0.1663 0.1949
Gilroy #2 0.33 0.37 0.2692 0.2608
Gilroy #3 0.37 0.55 0.2468 0.2391
Gilroy #4 0.22 0.42 0.2371 0.2296
Gilroy #6 0.17 0.13 0.1151 0.1346
Gilroy #7 0.33 0.23 0.1763 0.1687
Gilroy - 2 st. Bldg. 0.25 0.28 0.2821 0.2731
Halls Valley 0.11 0.13 0.1716 0.1638
Hayward - BART Station 0.16 0.16 0.1071 0.099
Oakland - 2 st. Office Building 0.2 0.26 0.0852 0.099
Oakland - Outer Harbor Wharf 0.29 0.27 0.0825 0.1861
Piedmont Jr. High School 0.08 0.07 0.0473 0.0673
San Francisco International Airport 0.33 0.24 0.0985 0.1861
Santa Cruz 0.44 0.47 0.133 0.1561
Saratoga 0.34 0.53 0.3694 0.3719
SF - Diamond Heights 0.12 0.1 0.0478 0.0673
SF - Pacific Heights 0.05 0.06 0.0453 0.0673
SF - Rincon Hill 0.09 0.08 0.0463 0.0673
South SF - Sierra Point 0.11 0.06 0.0525 0.0673
Stanford - SLAC 0.29 0.19 0.0938 0.1083
Sunnyvale 0.22 0.19 0.2051 0.1979
Woodside 0.08 0.08 0.1235 0.1217

' PHA1 and PHA? are the recorded values reported in Boore et al., [1993].
2 Boore et al., [1997].
* Campbell, [1991].
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FIGURE 3-2 Sample Recording Stations and Estimated Ground Shaking Levels for the Loma
Prieta Earthquake '

The PGA levels at the recording stations obtained from the scenario event using Campbell's
attenuation relationship are listed in table 3-1. Comparison of the results based on the two
attenuation relationships, i.e., Boore et al. [1997] and Campbell [1991], shows that Campbell's
attenuation relationship gives better estimates of the observed ground motion levels at some of
the recording stations. The estimated values, however, do not agree well with the recorded
ground motion levels at all locations. Figure 3-3 shows the comparison of the average recorded
PGA levels with those estimated by using Campbell's [1991] attenuation relationship. Despite
the discrepancies in the recorded and estimated ground motion levels, the estimated PGA levels

based on Campbell's attenuation relationship were used in the correlation analyses.
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FIGURE 3-3 Comparison of Recorded and Estimated PGA Levels, Loma Prieta Earthquake

3.2 INVENTORY OF BRIDGES AFFECTED IN THE LOMA PRIETA EARTHQUAKE

The San Francisco Bay area encompasses twelve counties: Alameda, Contra Costa, Marin,
Monterey, Napa, San Benito, San Francisco, San Mateo, Santa Clara, Santa Cruz, Solano and
Sonoma Counties. The locations of state bridges in the twelve counties are shown in figure 3-4.
The number of state and local bridges and the number of damaged state bridges in the twelve

counties are listed in table 3-2.

The inventory of state and local bridges for the counties of the San Francisco Bay area was
extracted from the Bridge Maintenance Database compiled by Caltrans [1993]. The structural
characteristics, structural type and material, number of spans, abutment type, span continuity,
design year indicating the seat width and column longitudinal reinforcement, substructure type,

skew, and foundation type, were included in this database.
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FIGURE 3-4 State Bridges in the San Francisco Bay Area

TABLE 3-2 Distribution of State and Local Bridges and the Number of Damaged State Bridges

in the San Francisco Bay Area

County Number of Number of Total Number | Number of Damaged
State Bridges | Local Bridges of Bridges State Bridges

Alameda 485 320 805 10
Contra Costa 277 331 558 10

Marin 88 119 207 2
Monterey 150 204 354 0

Napa 50 104 154

San Benito 23 44 67 3

Santa Clara 498 461 959 13

Santa Cruz 85 106 191 20

San Francsico 97 53 150 5

San Mateo 235 143 378 11
Solano 163 181 344 2
Sonoma 178 390 568 0

Total 2,329 2,456 4,785 76
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As shown in table 3-2, there are 2,329 state and 2,456 local bridges in the twelve counties of the
San Francisco Bay area. In this study, inventory and damage data were studied for only the state
bridges since most of the damage reported in the Loma Prieta earthquake was for state bridges.
Of the 2,329 state bridges, 2,131 carry highway traffic! and were gathered in the highway bridge
data set. The number of bridges in the highway bridge data set classified by superstructure type
and substructure material is shown in table 3-3. As shown in table 3-3, most of the bridges
(1,883 out of 2,131) are concrete structures. Steel bridges form only about 7 percent of the
bridge inventory in the area. Furthermore, more than 80 percent of the bridges damaged in the

Loma Prieta earthquake were concrete structures.

Bridges exposed to ground shaking during the Loma Prieta earthquake were grouped in various
data sets. For example, the set of 1,869 highway state bridges (with concrete superstructure and
concrete substructure for multiple span bridges and with concrete superstructure for single span
bridges) was referred to as the concrete highway bridge data set. Examples of concrete
superstructure include concrete box gider, concrete girder, precast concret girders, cast-in place

prestressed slab, precast prestressed box girder and precast prestressed I girder.

Next, bridges with homogeneous structural characteristics were selected from the concrete

highway bridge data set. Bridges with heterogeneous characteristics (i.e., bridges with mixed

TABLE 3-3 Distribution of State Highway Bridges in Counties of the San Francisco Bay Area

by Superstructure Type and Substructure Material

Superstructure Type
Concrete Steel Truss Arch | Suspension | Others

Concrete 1,500 139 14 14 1 4
£ Steel 0 1 0 2 1 0
g g‘ Masonry 0 0 2 0 0
£ £ | Unknown 14 3 0 0 0 0
= ingle Span
£ g;cglgefp 369 11 0 25 0 23

! Structures identified with the descriptions given in Appendix B are excluded from the analyses. These
descriptions are extracted from the Caltrans OSM&I Guidelines.
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abutment or column bent types) were excluded from this data set in order to concentrate on
studying the effect of structural component types on bridge damage, such as effect of abutment
type (monolithic or non-monolothic), and number of columns per bent. Bridges with incomplete
information were also excluded from this data set and the resulting data set was referred to as the

homogeneous bridge data set.

Next, to obtain a complete data set for the correlation studies, only bridges that were exposed to
PGA levels of 0.10g or higher were selected from the homogeneous bridge data set. The new
data set was called the correlation data set. The threshold PGA level was selected as 0.10g
because it is likely that bridges outside of the areas covered by the ground shaking map used in
this study (see Section 3.1) experienced PGA levels less than 0.10g. Including only some of the
bridges that were exposed to PGA levels below 0.10g would bias the results of the correlation
studies. In this sub-section, statistics are presented for both the highway bridge data set and the

correlation data set.

Figure 3-5 shows the distribution of the bridges in the highway bridge data set by design year.
Seventy three percent of these bridges were designed using pre-1971 design standards. The
distribution of the bridges in the correlation data set by design year is shown in figure 3-6. Sixty
seven percent of the bridges in the correlation data set, i.e., concrete highway bridges (with
homogeneous characteristics) exposed to PGA levels of 0.10g or higher in the Loma Prieta
earthquake, were designed according to pre-1971 design standards. Figure 3-7 shows the
distribution of single span bridges in the correlation data set by abutment type. The distribution
of multiple span bridges by abutment type and column bent type in this data set are depicted in

FIGURE 3-5 Distribution of State Highway Bridges in the San Francisco Bay Area by Design

Year

27



after 1980 before 1940
18% 8%

1972 - 1980

FIGURE 3-6 Distribution of Bridges in the San Francisco Bay Area by Design Year
(correlation data ser)

partial

pier walls

multiple
columns/bent

non-monolithic

33% . 61%

FIGURE 3-8.a Distribution of Multiple FIGURE 3-8.b Distribution of Multiple

Span Bridges by Abutment Type Span Bridges by Column Bent Type

(correlation data set) (correlation data set)2

! See table 2-2 for description of abutment types.
? Frame bents and pile bents were grouped as multiple column/bent.
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figures 3-8.a and 3-8.b, respectively. Almost half of the bridges in the correlation data set had

monolithic abutments and about two thirds of the multiple span bridges had multiple columns per

bent.

Next, the correlation data set of 1,112 bridges was grouped into bridge sub-categories listed in
table 2-1. Figure 3-9 shows the distribution of bridges in the correlation data set by these sub-
categories. Eighty percent of the bridges were multiple span bridges. The majority of the
multiple span bridges was classified into sub-categories CIMI1, CIM7, CIM17%.  This
classification was performed to examine the relationships between the structural characteristics
and the ground motion levels and the estimated repair cost. The results from the correlation

studies based on this bridge classification are presented in Section 3.4.

! See table 2-1 for description of the bridge sub-categories.
2 C1M1: multiple span bridges with monolithic type abutments, continuous spans and multiple column bents.
C1M7: multiple span bridges with non-monolithic type abutments, continuous spans and muitiple column bents.

CIM17: multiple span bridges with bin or cellular closure type abutments, continuous spans and pier walls.
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Bridge Retrofit Status

Following the 1971 San Fernando earthquake, Caltrans adopted a cable restrainer seismic retrofit
program to prevent superstructure unseating at piers and in-span hinges. At the time of the Loma
Prieta earthquake, phase I retrofitting, i.e., use of cable restrainers, was completed for 1,260 of
the bridges in California. About 200 of these bridges were affected in the Loma Prieta
earthquake. Several bridges with phase I retrofitting suffered damage due to deficiencies in the
joint restrainers. Upgrading of non-ductile columns was not given priority before the Loma
Prieta earthquake since the failure of these components was expected to cause loss of
serviceability rather than collapse. Consequently, phase II retrofitting, i.e. retrofitting of single
column bents, was completed for only 262 bridges before the Loma Prieta earthquake.
Following the Loma Prieta earthquake, Caltrans proposed an accelerated schedule for retrofitting
392 bridges that have single column bents and included 700 more bridges with multiple column
bents in the program. The Caltrans database on retrofit history of bridges is not complete and
includes only about 30 of these bridges. Therefore, correlation studies for retrofitted bridges

were not performed.
3.3 COMPILATION AND REVIEW OF BRIDGE DAMAGE DATA

Following the earthquake, ten counties in the San Francisco Bay area were declared as state and
federal disaster areas: Alameda, Contra Costa, Marin, Monterey, San Benito, San Francisco, San
Mateo, Santa Clara, Santa Cruz and Solano Counties. Seven of these counties (Alameda, Contra
Costa, Marin, San Francisco, San Mateo, Santa Clara, and Santa Cruz) were within the
jurisdiction of Caltrans District 4. Caltrans post-earthquake investigation teams (PEQIT)
examined about 350 bridges in the San Francisco Bay area immediately after the earthquake.
District 4, whose jurisdiction approximates the area of the most intense earthquake damage, was
responsible for 1,896 state bridges of which about 4 percent sustained some degree of damage
(mostly minor) during the earthquake. Six state bridges were damaged in other counties. State
bridges in Monterey and San Benito (District 5) counties sustained only minor damage, while

only one state bridge in Solano County (District 10) sustained damage.



Forty-three bridges maintained by local government were reported as damaged. Five of those
bridges were closed to traffic for some period of time, but none of the local bridges collapsed

[Thiel, 1990].

Bridge damage data gathered by the PEQIT were compiled by Caltrans engineers following the
earthquake [Caltrans, 1989]. In this study, the list of damaged bridges given by the PEQIT was
reviewed. A total of 76 damaged bridges, which were reported with minor or major damage,

were identified.
3.3.1 Damage State Descriptions

In the Caltrans PEQIT report [1989], damaged bridges were reported either without any detailed
description of the damage or with minor or major damage. The definitions for minor and major
damage covered a broad range. For example, major bridge damage included total or partial
collapse, as well as damage to bearings and anchor plates, and significant cracking and spalling
of the columns. Minor damage referred to failure or damage of keeper plates and anchor bolts,
spalling and cracking of columns, cracking of abutment walls, railing damage, shear key failure,
joint seal failure, approach settlement and damage to restrainers. The broad definition for minor
and major damage states made it more difficult to identify structural characteristics that most
contribute to damage. During the post-earthquake investigation for the Northridge earthquake,
bridges were reported to be in one of the four (minor, moderate, major and collapse) rather than
two damage states. The four level damage assessment provided a better description of damage
details. Furthermore, the empirical ground motion-damage relationships developed for various
damage states are more informative. The detailed damage state definitions defined for the
concrete bridges and the empirical ground motion-damage relationships for the Northridge
earthquake are presented in Section 4. A comparison of the damage descriptions for the Loma
Prieta and the Northridge earthquakes revealed that minor and moderate damage in Northridge
earthquake reconnaissance reports correspond roughly to minor damage reported in those of the
Loma Prieta earthquake. Similarly, major damage and collapse in the Northridge earthquake
damage reports correspond approximately to major damage used in the damage reports for the

Loma Prieta earthquake.
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3.3.2 Description of Bridge Damage

Several statistics related to bridge damage were obtained in this study. Table 3-4 gives the
characteristics of the collapsed bridges, summary description of damage and estimated repair
costs. The san Francisco-Oakland Bay Bridge was a steel structure with 42 spans located on bay
mud and was built in 1936. It suffered partial collapse. The Cypress Viaduct, a concrete box
girder bridge built in 1957, was also located on bay mud. Forty-eight bents of the double deck
structure suffered collapsed. The Struve Slough Bridge, a concrete slab bridge was subjected to
relatively higher PGA levels (0.41g) and suffered damage to its pile bents. In addition to the two
double deck structures that collapsed, four others suffered damage in the Loma Prieta
earthquake. These viaducts were part of the San Francisco Freeway system (Terminal
Separation, Embarcadero, Central Viaduct, Southern Freeway Viaduct). All of the four viaducts
and the China Basin Viaduct - a single deck viaduct in the San Francisco Freeway system - were
closed to traffic following the earthquake. The damage to the viaducts was mostly shear fracture

and/or shear failure of columns and knee joints.

The distribution of the 76 bridges by design year is given in figure 3-10. About 80 percent of the
damaged bridgeé were designed by pre-1971 design standards. Only one bridge that was
designed according to more recent design standards (bridge No. "33 0483F" - Southbound
Connection Overcrossing in Alameda County) sustained major damage to its outriggers. Figure
3-11 shows the distribution of bridge damage by service type on the bridge. Two of the 76

damaged bridges were concrete railroad bridges and suffered minor damage.

Fourteen of the 76 damaged bridges were steel structures. Among these fourteen bridges only
the San Francisco-Oakland Bay Bridge suffered major damage (partial collapse) while other
steel bridges suffered minor damage. For example, anchor bolt failures were observed on San
Mateo-Hayward Bridge. No evidence of structural steel-girder failure was observed. All steel
bridges that suffered damage were built before 1972. Estimated ground motion levels at these
bridge sites ranged from 0.19g to 0.29g and the soil type at these site was either soft soil or bay

mud.

Fourteen of the 60 damaged concrete bridges were outside the boundaries of the ground motion

map shown in figure 3-2, thus PGA levels could not be estimated for these bridges. Three
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FIGURE 3-11 Distribution of All Damaged Bridges by Service Type and Damage State
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FIGURE 3-12 Distribution of Damaged Concrete Highway Bridges by Design Year
for PGA 2 0.10g

Other bridges experienced PGA levels below 0.10g. Figure 3.12 shows the design year
distribution of the 43 damaged highway bridges with concrete super and sub-structure subjected
to PGA of 0.10g or larger. Fifteen of these damaged concrete highway bridges had
heterogeneous characteristics. Consequently, only 28 of the 62 concrete bridges, which were
reported as damaged, were included in the correlation data set. It should be noted that for the
reasons described above, only 6 of the 14 bridges that suffered major damage were included in

the correlation data set.

Distribution of damaged bridges in the correlation data set by bridge sub-categories, listed in
table 2-1, is shown in figure 3-13. All damaged single span bridges had non-monolithic type of
abutments. Damage for multiple span bridges was observed mostly for non-monolithic abutment

types (sub-categories C1IM7, C1IM8 and C1M9Y).

! C1M7: Multiple span bridges with non-monolithic abutment type, continuous span, multiple column bents.
C1MS8: Multiple span bridges with non-monolithic abutment type, discontinuous span, multiple column bents.
CIM9: Multiple span bridges with non-monolithic abutment type, continuous span, single column bents.
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FIGURE 3-13 Distribution of Damaged Bridges by Bridge Sub-Categories (correlation data sef)

In order to compare the fragility curves provided in HAZUS [1997] with the observed data,
bridges in the highway bridge data set were classified according to HAZUS bridge classification.
Figure 3-14 shows the distribution of damaged bridges, which were exposed to PGA levels 0.10g
or higher, according to that classification. Twenty-four of the bridges in the highway data set
had span lengths larger than 500 feet, therefore were classified into HAZUS classes HBR1 and
HBR7 (major bridges). However, only two of the twenty-four major bridges were reported with
a damage state in the PEQIT reports and the PGA level at one of these two bridges was 0.07g.
Hence, there is only one HBR1 bridge listed in figure 3-14.

3.3.3 Data Error in the Inventory

As discussed in Section 2.1, some of the attribute values for abutment type, column bent type
and joint location were found to be incorrect in the database used in this study. For all the
bridges damaged in the Loma Prieta earthquake, the SMS and BIRIS databases were compared
and attributes with discrepancies were identified. Due to insufficient resources, however, these

attributes were not corrected.
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FIGURE 3-14 Distribution of Damaged Concrete Bridges by HAZUS Bridge Classification and
Damage State for PGA > 0.10g

3.3.4 Relative Importance of Attributes that Most Contribute to Damage

A multivariate logistic regression analysis was performed to identify the characteristics that
contribute most to bridge damage. The analyses were conducted for: ({) multiple span bridges in
the correlation data set, and (ii) all bridges in the correlation data set. Peak ground acceleration
and abutment type were found to be the most important characteristics in both analyses. The
design year was found to be an important attribute when all bridges were analyzed but it was not
among the important attributes for the multiple span bridge data set. Skew, however, was found

to be among the important structural characteristics for multiple span bridges.
3.4 CORRELATION STUDIES FOR BRIDGE DAMAGE

3.4.1 Empirical Fragility Curves

Correlation studies were performed to identify structural characteristics that are most susceptible
to damage. The data set was first grouped to obtain damage frequencies at different PGA levels

and damage probability matrices (i.e., probability of being in a damage state). Tables 3-5 and 3-6
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show the damage matrix and the damage probability matrix for multiple span bridges included in

the correlation data set.

Empirical fragility curves were developed from the damage matrices using logistic regression
analysis. Table 3-7 lists the different types of attributes considered in grouping bridges to obtain
empirical fragility curves. The empirical fragility curves developed based on these damage

matrices are presented in Appendix C. As can be inferred from figure 3-13, no damaged bridges

TABLE 3-5 Damage Matrix for Multiple Span Bridges

Peak Ground Acceleration (g)
Observed | o102 | 02-03 | 03-04 | 04-05 | 05-06 | 06-07 | total
damage
None 338 176 24 4 1 1 544
Minor 4 10 0 3 0 20
Major 0 0 0 2 0 0 2
Total 342 186 27 6 4 1 566
TABLE 3-6 Damage Probability Matrix for Multiple Span Bridges (%)
Peak Ground Acceleration (g)
Observed | 44 ¢, 0.2-0.3 0.3-0.4 04-05 | 0s- 0.6 | 0.6-0.7
damage
None 08.83 94.62 88.89 66.67 25 100
Minor 1.17 5.38 11.11 0 75 0
Major 0 0 0 33.33 0 0

TABLE 3-7 Characteristics of Data Groups Used in Correlation Analyses

Dependent Independent Data Set Grouped by Results are Presented in
Variable Variable
damage state estimated PGA | e number of spans Appendix C
values e abutment type
(Campbell’s
attenuation e column bent type
relationship e bridge sub-categories given in
(1991]) table 2-1

e design year
e HAZUS classes
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were reported for some of the bridge sub-categories. For some of the bridge sub-categories,
although a number of bridges were reported to sustain damage, the number of bridges or the
distribution of bridges at different PGA levels were not adequate to obtain a statistically
satisfactory fit of the fragility curves. Due to lack of data, correlation studies were not performed

for different sub-categories of steel bfidges.

Figure 3-15 shows the empirical fragility curves for multiple span bridges. The comparison of
the empirical fragility curves with the observed data for each damage state is shown in figure 3-
16. Examples of fragility curves listed in table 3-8 are shown in figures 3-17 through 3-19. Each
figure consists of two graphs:

e GRAPH A shows the probability of being in or exceeding a given damage state at different

PGA levels,
e GRAPH B shows the probability of being in a damage state at different PGA levels.

The ratio of bridges in each damage state and statistical significance test results are presented in
these figures. The number of bridges in each damage state, 1.e., no damage, minor damage and
major damage, are listed. The statistical parameters are valid for both graphs and were briefly
discussed in Section 2.3. In general, a model is accepted with a p-value of the Wald chi-square
statistic at a significance level of less than or equal to 0.05. A chi-square test with (7 - 2) degrees
of freedom is used to test whether the parameter estimate on the model is zero. The variable ¢
represents the number of response variable levels. When data exist only for two damage states,
the chi-square statistics is not applicable and is denoted by N/A. The odds ratio reported in these
figures is the exponentiated value of the corresponding parameter estimate. Note that for
parameter estimates larger than about 6.5, the odds ratio becomes larger than 1,000 and is

reported as 999 indicating sparse data.

TABLE 3-8 Description of Example Fragility Curves for Damage States

Dependent | Independent Data-Set Grouped by Shown in Figure
Variable Variable
Damage state | Estimated PGA | o single span bridges 3-17
values
(Campbell’s ¢ multiple span bridges with monolithic 3-18
attenuation abutment type and multiple columns/bent
relationship (C1M1)
[1991]) e bridges designed between 1940 and 1971 3-19
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3.4.2 Comparison of HAZUS Fragility Curves and Observed Damage

Empirical fragility curves were developed also for bridges grouped according to the HAZUS
bridge classification. Damage was reported for bridge classes HBR-1, 3, 9 and 11. Number of
bridges in bridge class HBR1 was not sufficient for statistical analysis. Therefore, empirical
fragility curves were obtained using logistic regression analysis for the bridge classes HBR-3, 9
and 11. The fragility curves provided in HAZUS and the empirical values were compared for
each of these classes. Figure 3-20 shows the comparison of exceedance probabilities and
probabilities of being in a given damage state for the HAZUS bridge class HBR11. For class
HBR11, the chi-square statistics suggests a good fit for the data points. However, as observed in
figure 3-20, the curves obtained from the regression analyses do not match to those provided in
HAZUS [1997]. The curves for HBR11 overestimate the probability of being in major damage
state at most of the PGA levels. They overestimate the probability of being in minor damage
state at Jower PGA levels and underestimate it at higher PGA levels. Comparisons of empirical
and the HAZUS fragility curves for the other classes are given in Appendix C. The observed
damage data do not appear to agree well with the empirical ground motion-damage relationships
for the majority of the classes. Similar to HBR11, the fragility curves for other HAZUS bridge
classes overestimate the exceedance probabilities at all ground motion levels for any given

damage state.

Multiple Span Bridges
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£ 08¢
£2 077
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= 04
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Number of bridges
Chi-square with 1 DF

544, 20, 2

1.3654; p = 0.0001
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FIGURE 3-15 Empirical Fragility Curves for Multiple Span Bridges
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Number of bridges 137,2,4
Chi-square with 1 DF | 9.5881; p = 0.002
Parameter Estimate | Standard Error Prob. > Chi-square Odds Ratio
21.9938 5.3284 0.0001 999
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FIGURE 3-17 Empirical Fragility Curves for Single Span Bridges
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Number of bridges 153,3,0
Chi-square N/A
Parameter Estimate | Standard Error Prob. > Chi-square Odds Ratio
8.3065 4.4761 0.0635 999
Bridge Sub-category C1M1
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FIGURE 3-18 Empirical Fragility Curves for Multiple Span Bridges with Monolithic Type
Abutments, Continuous Spans and Multiple Column Bents (Sub-category CiM1)
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Number of bridges 639, 27,4
Chi-square with 1 DF 0.4658, p = 0.4949

Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
6.6853 1.4996 0.0001 800.54
GRAPH A Bridges Built between 1940 - 1971
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FIGURE 3-19 Empirical Fragility Curves for All Bridges Built between 1940 and 1971




Number of bridges 522,24,6
Chi-square with 1 DF | 0.3591, p = 0.841
Parameter Estimate Standard Error | Prob. > Chi-square Odds Ratie
9.0553 1.8627 0.0001 999

GRAPH A HAZUS Bridge Class HBR11
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3.5 ESTIMATED REPAIR COST

3.5.1 Description of Repair Cost Data

An extensive database on the estimated repair costs was compiled from the damage assessment
forms obtained from Caltrans [1989]. This database includes total estimated repair cost and more
detailed information on repair work and cost for 84 bridges. A total of about $280,000,000 was
reported as repair cost in these reports. Ninety percent of the total estimated repair cost was for
the repair of the Cypress Viaduct. The majority of the 84 bridges are located in Alameda, San
Francisco, San Mateo, Santa Clara and Santa Cruz Counties. Repair cost estimates were
reported for only two bridges in other counties: one in San Benito County ($30,000) and the
other in Monterey County ($5,600). Tables 3-9 and 3-10 show estimated repair cost for
damaged bridges by damage state, and structural type and number of spans. Repair costs were
reported for 47 bridges which were not reported as damaged in the PEQIT reports. The damage
state distribution for ranges of estimated repair cost is shown in figure 3-21. In addition, the
repair cost for various components were included in the repair cost database. Data on repair cost
by structural components, however, were not reported for all bridges. For sixty-six of the 84
bridges, a breakdown of repair cost by component was provided, while for others only the total
repair cost and a general description of the repairs were given. No repair cost was reported for

19 bridges that suffered minor damage.

TABLE 3-9 Distribution of Estimated Repair Cost by Damage State

Damage state Number of Bridges Estimated Repair Cost
major 14 (12 with repair cost $272,674,010
estimate)
minor 62 (25 with repair cost $2,400,510
estimate)

TABLE 3-10 Distribution of Estimated Repair Cost by Structural Type and Number of Spans

Superstructure Type Number of Spans Estimated Repair Cost
concrete girder >1 $268,771,590
concrete girder =1 $18,500

steel girder >1 $12,117,650
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FIGURE 3-21 Distribution of All Damaged Bridges by Repair Cost and Damage State

Figure 3-22 shows the distribution of repair cost by bridge components for different damage
states. The estimated repair cost for the Cypress Viaduct is not included in this figure since a
detailed description of repair by component type was not available. According to figure 3-22,
column damage was the costliest for bridges with minor damage. Damage to columns, joints and
the deck contributed almost equally to repair cost for bridges with major damage. Reported
repair cost due to abutment damage was minimal. As one might expect the repair cost for
bridges that suffered major damage was larger than for those with minor damage. Miscellaneous

repairs include repairs to railings, curbs, sidewalks and electrical conduits.

In order to investigate the distribution of repair cost by structural type, bridges were grouped by
the bridge sub-categories given in table 2-1. Figure 3-23 shows the distribution of repair cost by
these sub-categories. Only five of the sub-categories are included in this figure. Data were not
available for the other sub-categories. The number of bridges in each bridge sub-category
ranged from 2 to 4 as shown above each bar in figure 3-23. Note that the repair cost shown in

this figure is only a small fraction of the total estimated repair cost. Therefore, the results should
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be interpreted with caution. Estimated repair cost due to traffic control was only available for 14

bridges; therefore it was not included in the analysis.
3.5.2 Correlation Studies on Repair Cost Ratio

Similar to ground motion-damage relationships, empirical ground motion-repair cost ratio
relationships were developed. The repair cost ratio was defined as the ratio of repair cost to
replacement cost. The replacement cost was obtained as the product of the unit cost per square
feet ($90/ft?) by bridge width and length. Seven repair cost ratio intervals were used: 0; 0-10%;
10-20%; 20-30%; 30-40%; 40-50%; >50%. The empirical fragility curves listed in table 3-11 are
presented in Appendix D. Example fragility curves listed in table 3-12 are presented in figures
'3.24 to 3-26. In each figure two graphs are presented: (i) GRAPH A shows the probability of
being in or exceeding a repair cost ratio at different PGA levels, and (if) GRAPH B shows the
probability of being in a repair cost ratio at different PGA levels. The number of bridges in each
repair cost ratio interval, i.e., 0; 0-10%; 10-20%; 20-30%; 30-40%; 40-50%; >50% and statistical

significance test results are presented in these figures.

TABLE 3-11 Characteristics of Data Groups Used in Correlation Analyses

Dependent Independent Data Set Grouped by Results are
Variable Variable Presented in
repair cost estimated PGA ¢ number of spans Appendix D
ratio values (Campbell’s o desi
. esign year
attenuation
relationship [1991]) | ® bridge sub-categories given in table 2-1

TABLE 3-12 Description of Example Fragility Curves for Repair Cost Ratio

Dependent Independent Data Set Grouped by Shown in
Variable Variable figure

repair cost estimated PGA ¢ multiple span bridges 3-24
ratio V;Luelf (tiCa:lmpbell 5 | o multiple span bridges with monolithic 3-25

attenuatior abutment type and multiple

relationship [1991]) columns/bent (C1M1)

. 3-26
e design year
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Number of bridges 539,27,0,0,0,0,0
Chi-square N/A

Parameter Estimate Standard Error | Prob. > Chi-square Odds Ratio

6.9101 1.8833 0.0002 999
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FIGURE 3-24 Empirical Fragility Curves for Multiple Span Bridges, Repair Cost Ratio
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Number of bridges 152,4,0,0,0,0,0
Chi-square N/A

Parameter Estimate | Standard Error Prob. > Chi-square QOdds Ratio

7.9759 4.0593 0.0494 999
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FIGURE 3-25 Empirical Fragility Curves for Multiple Span Bridges with Monolithic Type
Abutments and Multiple Column Bents (Sub-category C1M1), Repair Cost Ratio
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Number of bridges | 635,35,0,0,0,0,0
Chi-square N/A
Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
3.6167 1.6738 0.0307 37.216
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3.6 DISCUSSION

Based on the analysis of data presented in this section, several important observations can be

made. These are summarized as follows:

Ground motion levels: Peak ground acceleration was used to characterize the ground shaking

Jevels observed in the Loma Prieta earthquake. Due to lack of a map based on recorded ground
motions, a ground motion map was generated based on a Loma Prieta scenario event. The
surface ground shaking levels obtained in this study, however, do not agree well with the
recorded ones at all locations. Figure 3-27 shows the discrepancy between the estimated and the
recorded peak ground accelerations (denoted as PHA1 and PHA2 in figure 3-26); The effect of
the variability in the estimated ground shaking levels (denoted as BJF and Campbell in figure 3-

26) on the results obtained in the correlation studies should be investigated further.

The ground motion levels could only be obtained for a portion of the San Francisco Bay area
(see figure 3-1), because information on the local geology was available only for that area. In
order to use a data set with consistent characteristics in the logistic regression analysis, only
bridges subjected to 0.10g or larger PGA levels were included in the analysis. This criterion for

data selection was adapted instead of selecting bridges within a geographical boundary.

Damage states: The damage states that were reported during the post-earthquake bridge

inspections were used in the analyses. Damaged bridges were grouped into two damage states:
bridges with minor damage and bridges with major damage. These damage states covered a
broad range of physical damage making it difficult to identify structural characteristics that
contribute to damage. Different physical damage states were lumped together, although their
consequences were not the same. For example, a bridge with minor cracks at columns and a
bridge with shear key failure and abutment movement were both considered to sustain minor
damage. However, the repair cost and the reduction of bridge functionality were higher for the
bridge with shear key failures and abutment movement. In addition, a detailed investigation of
the damage state definitions demonstrated the inconsistency and the subjectivity in bridge

damage assessment among practicing engineers, and the need for a more systematic procedure to

assess bridge damage.
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FIGURE 3-27 Recorded and Estimated PGA Levels at Sample Recording Stations - Loma
Prieta Earthquake

Structural characteristics and damage: A total of 76 bridges were reported as damaged. Two of

these bridges were railroad bridges. Fourteen of the damaged bridges had steel superstructure.
Empirical fragility curves were developed for all steel bridges exposed to peak ground
accelerations of 0.10g or higher and were compared to empirical fragility curves developed for

all concrete bridges.

Figure 3-28 shows the empirical fragility curves for steel and concrete bridges. The largest PGA
level experienced at the site of any steel bridge was 0.45g in comparison to 0.75g at the site of
concrete bridges. The empirical fragility curves obtained for steel bridges, however, do not
satisfy the statistical significance requirements for Wald chi-square test at the 0.05 significance
level. Therefore the fragility curves for steel bridges obtained from the Loma Prieta data do not

provide useful information.

Because the majority of the bridges in the San Francisco Bay area and the bridges damaged in
“the Loma Prieta earthquake were concrete bridges, analyses were carried out mainly for concrete

highway bridges. Concrete highway bridges with homogeneous characteristics were used in the
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correlation studies. This criterion reduced the data set for damaged concrete bridges, however, it
provided a database with homogeneous bridge characteristics. The effects of different abutment

and column bent types on bridge damage susceptibility were determined based on this data set.

The majority of the damaged bridges were designed according to pre-1971 standards. For
analysis purposes, four design year periods were used: before 1940, between 1940 and 1971,
between 1972 and 1980, and after 1980. Based on the results from logistic regression analysis,

the performance of bridges was best for bridges built after 1980.

Bridges in the correlation data set were grouped into three categories according to their
abutment types: (i) monolithic, (if) non-monolithic, and (iii) partial abutment types, i.e., bin or
cellular closure type abutments. Figure 3-29 shows empirical fragility curves for multiple span
bridges with monolithic, non-monolithic and partial abutment types. As shown in this figure,
bridges with monolithic abutments were observed to perform better than those with non-
monolithic abutments, while bridges with partial type abutments performed better than the

bridges with monolithic abutments at higher PGA levels.
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FIGURE 3-29 Performance Comparison of Different Types of Abutments
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Figure 3-30 shows a comparison of probabilities of being in or exceeding different damage states
for bridges with multiple column bents, single column bents and pier walls. Bridges with single
column bents performed worse than those with multiple column bents and pier walls. Two of the
bridges with multiple column bents experienced major damage, and the damage was

concentrated at the outrigger knee bent joints.
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FIGURE 3-30 Performance Comparison of Different Types of Column Bents

Bridee classification and ground motion-damage relationships: In order to explore the effect of

structural characteristics, such as number of spans, abutment type, column bent type and span
continuity, the bridges were grouped into twenty-one sub-categories, listed in table 2-1. Bastz
and Kiremidjian [1996] proposed bridge classes based on these structural characteristics. In that
study, the authors defined the least and the most vulnerable sub-categories of a given bridge class

for single and multiple spans. These four sub-categories for concrete bridges were included in

the sub-categories used in this study.

‘There were no damaged bridges in the least vulnerable sub-category for single span bridges, i.e.,

single span bridges with monolithic abutments. Single span bridges with non-monolithic
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There were no damaged bridges in the least vulnerable sub-category for single span bridges, i.e.,
single span bridges with monolithic abutments. Single span bridges with non-monolithic
abutment types, in contrast, sustained both minor and major damage. Figure 3-31 shows
fragility curves for multiple span bridge sub-categories C1IM1 and CIM7. The sub-category
CIM1 represents bridges with monolithic type abutment, multiple column bents, continuous
span and is the least vulnerable sub-category. There was not sufficient data on bridges with non-
monolithic type abutments, discontinuous span and single column bents (bridge sub-category
C1M10). Bridges with non-monolithic abutment, multiple column bents and continuous spans
(bridge sub-category C1M?7) are expected to be less vulnerable than bridges included in sub-
category C1M 10 but more vulnerable than those included in sub-category C1IM1. As shown in
figure 3-31, the ‘probability of being in or exceeding a given damage state was higher for bridges
in sub-category C1M7 than it was for CIM1 for minor damage and probability of exceeding

major damage was non-zero only for CIM7.
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In addition to the bridge classes defined in this study, the bridges were grouped according to
HAZUS [1997] bridge classes. The observed damage data do not appear to agree well with the
available ground motion-damage relationships for most of the bridge classes. The poor
agreement between the observed and the predicted damage can be partially attributed to the size
of the data set. In general, it is also expected that damage data from a single earthquake will not
agree precisely with the heuristic fragility curves or DPMs since these functions are intended to
represent average values over many earthquakes. A more detailed analysis of the damage data,
however, indicated potential problems with the structural characteristics considered in the
available ground motion-damage relationships. The bridge classes currently used in practice do
not consider the effect of the structural material and type, substructure type, and design details,
such as column reinforcement and/or seat width. The HAZUS classification identifies bridges
with older design characteristics (designed before 1960), superstructure irregularity or span
discontinuity as high risk. However, a bridge with any of these characteristics is assumed to be
high risk. For example, a continuous bridge with no skew constructed in late 1950s is assumed
to be as vulnerable as a bridge constructed in late 1960s with discontinuous span and high skews.
Since both bridges will be classified in the same bridge class according to HAZUS classification,
damage estimates and fragility curves used in damage analyses for either of these bridges will

yield the same results, even though the bridges may perform in a completely different manner.

Estimated repair cost: Similar to damage states, several statistical analyses were carried out

using the estimated repair cost reported for the damaged bridges. For some of the bridges, no
repair cost was reported. Likewise no damage state was assigned to some bridges for which
repair cost estimates were reported. Repair cost was reported by structural components for some
of the bridges. Among these bridges with complete data on component-based repair cost data,
about 50 percent of the repair cost was due to column damage, about 21 and 18 percent 6f the
damage was due to deck and joint damage, respectively. Estimated repair cost due to abutment
damage was only 2 percent. It should be noted that these percentages were based on the

estimated repair cost only for bridges with repair cost information reported by structural

components.

‘The component repair costs were also grouped by bridge class sub-categories, however, the

available data were too limited to draw general conclusions.
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Similar to damage states, empirical relationships between the repair cost ratio and ground motion
levels were developed. The maximum observed repair cost ratio was 14 percent. However, the

repair cost ratio-grouhd motion relationships did not include the Cypress Viaduct since it was not

included in the correlation data set.

As discussed in this section, several factors made it difficult to derive general conclusions from
the analyses of the bridge damage and repair cost data from the Loma Prieta earthquake. These
include quality and the size of available data sets and broad definitions for the damage states.
Data on bridge damage from the Northridge earthquake, discussed in the next section, provided
the means to substantiate and elaborate on the analysis results obtained in this section. In
addition to the analyses presented in this section, analyses of data with respect to retrofit history
and reliability of the data set were conducted using the data from the Northridge earthquake.
Summary and comparison of results from the Loma Prieta and Northridge earthquakes are

presented in Section 5.
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SECTION 4
BRIDGE DAMAGE DATA FROM THE NORTHRIDGE, CA EARTHQUAKE

The January 17, 1994 Northridge, California earthquake caused serious damage to bridges in the
region, resulting in disruptions to the transportation system. The earthquake was of moderate
size (a moment magnitude of 6.7) and occurred at 4:31 am local time. These two factors
contributed to the low number of casualties. The impact of bridge closures on emergency
response activities immediately after the earthquake was negligible. Closure of the damaged
bridges, however, caused major rerouting of traffic during the months following the earthquake.
Despite the high ground motion levels observed in the 1994 Northridge earthquake, only about

three percent of all the bridges in the area experienced major damage.

The Northridge earthquake provided valuable information to study damage to bridges. In this
study, the data from the earthquake were analyzed to correlate the observed damage to ground
motion levels, structural characteristics, and repair costs. Statistical analyses were performed for
the inventory of bridges impacted in the Northridge earthquake. In addition, empirical damage
probability matrices and fragility curves were developed based on observed bridge damage. The
correlation between structural characteristics and observed damage was investigated. In this
section, statistics on structural characteristics of bridges affected in the earthquake, ground
shaking levels at bridge sites, bridge damage characteristics and estimated repair costs are
presented. Findings of the correlation studies for bridges impacted in the Northridge earthquake

are also discussed.

4.1 INVENTORY OF BRIDGES AFFECTED BY THE NORTHRIDGE EARTHQUAKE

The bridges in the Greater Los Angeles area, including Los Angeles, Ventura, Riverside, and
Orange Counties, were exposed to ground shaking during the 1994 Northridge earthquake. Table

4-1 lists the number of state and local bridges, and the number of damaged state bridges in each
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of the four counties. A database of state and local bridges for these four counties was extracted
from the Bridge Maintenance Database compiled by Caltrans [1993]. The structural
characteristics included in this database were structural type and material, number of spans,
abutment type, span continuity, substructure type, skew, foundation type and design year

indicating the seat width and column longitudinal reinforcement.

As shown in table 4-1, there are 3,533 state and 2,571 local bridges that are located in the four
counties. Of the 3,533 state bridges, 3,318 (1,902 bridges in Los Angeles County, 312 in Ventura
‘County, 462 in Orange County and 642 in Riverside County) carry highway traffic' and are
grouped in the highway bridge data set. The number of bridges in the highway bridge data set
listed by superstructure type and substructure material is shown in table 4-2. Figure 4-1 shows
the distribution of these bridges by design year. Seventy six percent of the bridges in the
highway bridge data set were designed according to pre-1971 design standards.

TABLE 4-1 Distribution of State and Local Bridges and the Number of Damaged State Bridges
in the Greater Los Angeles Area

County Number of Number of Total Number of Number of
State Bridges { Local Bridges Bridges - Damaged Bridges
Los Angeles 2,097 1,553 3,650 228
Riverside 644 338 982 -
Orange 463 505 968 -
Ventura 329 175 504 5
Total 3,533 2,571 6,104 233
before 1940 FIGURE 4-1 Distribution of State

after 1980 4%

1972 - 1980

Highway Bridges in Los Angeles,
Ventura, Orange and Riverside
Counties by Design Year

! Structures identified with the descriptions given in Appendix B are excluded from the analyses These descriptions
are extracted from the Caltrans OSM&I Guidelines.
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TABLE 4-2 Distribution of State Highway Bridges in Los Angeles, Ventura, Orange and

Riverside Counties by Superstructure Type and Substructure Material Type

Superstructure Type and Material
Concrete | Steel | Truss | Timber | Arch | Suspension | Unknown
& | Concrete 2,394 119 4 0 12 1 4
£ | Steel 9 3 0 1 0 0
£ | Timber 0 0 0 4 0 0
é Single Span Bridges 708 32 0 0 15 0 6

The majority of the bridges in the four counties listed in table 4-2 are concrete structures.
Furthermore, more than 85 percent of the bridges damaged in the Northridge earthquake were
concrete structures. Of the 3,318 state bridges that carry traffic 3,102 bridges (with concrete
superstructure and concrete substructure for multiple span bridges and with concrete
superstructure for single span bridges) are grouped into the concrete highway bridge data set.
Examples of concrete superstructure include concrete box gider, concrete girder, precast concret

girders, cast-in place prestressed slab, and precast prestressed box girder.

In order to study the effect of structural component types on bridge damage, such as effect of
abutment type (monolithic or non-monolithic) and number of columns per bent, bridges with
heterogeneous characteristics were excluded from the homogeneous data set. Bridges with
incomplete information were also excluded from this data set. Furthermore, to attain a complete
data set for the correlation studies, only bridges that were exposed to peak ground acceleration
(PGA) of 0.15g or higher were compiled in the correlation data set. The minimum PGA level
was selected as 0.15g since it is not likely that bridges outside these four counties experienced
PGA levels larger than 0.15g. Therefore, all bridges subjected to PGA levels of 0.15g or larger
are expected to be included in this data set. Moreover, only four of the damaged bridges were
exposed to PGA levels less than 0.15g. Table 4-3 gives a summary of number of bridges
included in various data sets used in this study. The distribution of single and multiple span
bridges in each data set is also given in table 4-3. The statistics for highway bridge data set and

the correlation data set are presented in this sub-section.

! These 9 bridges have concrete slab type superstructure and have both concrete and steel column bents.
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TABLE 4-3 Number of Bridges Includéd in Various Data Sets

Highway Concrete Highway | Homogeneous | Correlation
Bridges Data Set | Bridges Data Set Data Set Data Set

Los Angeles | single span 490 458 414 291
County multiple span 1,412 1,321 1,109 700
Ventura single span 80 72 61 32
County multiple span 232 209 189 100
Orange single span 69 62 54 7
County multiple span 394 362 306 38
Riverside single span 129 116 101 3
County multiple span 512 502 417 10
Total 3,318 3,102 2,651 1,181

Figure 4-2 shows distribution of the bridges in the correlation data set by design year. A

comparison of figures 4-1 and 4-2 shows that the correlation data set is a representative sample

for the design year attribute. Figure 4-3 shows the distribution of single span bridges in the

correlation data set by abutment type. The distribution of multiple span bridges by abutment

type and column bent type are depicted in figures 4-4.2 and 4-4.b, respectively. Monolithic

abutment types were common for both single and multiple span bridges. Number of bridges with

multiple column bents was about four times the number of bridges with single column bents.

after 1980 before 1940
2%

1972 - 1980

FIGURE 4-2 Distribution of Bridges by Design Year (correlation data set)
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FIGURE 4-3 Distribution of Singlé Span Bridges by Abutment Type (correlation data sef)!

Pier walls

partial

monolithic
18%

FIGURE 4-4.a Distribution of Multiple FIGURE 4-4.b Distribution of Multiple
Span Bridges by Abutment Type Span Bridges by Column Bent Type2

(correlation data set) (correlation data sef)

Next, the correlation data set (ie., 1,181 concrete state highway bridges with homogeneous
abutment and column bent types that were exposed to 0.15g or higher PGA levels) were
classified into bridge sub-categories listed in table 2-1. Figure 4-5 shows the distribution of
bridges in the correlation data set by these bridge sub-categories. The results from the

correlation studies based on this bridge classification are presented in Section 4.4.

! See table 2-2 for description of abutment types.

2 Frame bents and pile bents are grouped as multiple column/bent.
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4.2 GROUND-MOTION AT BRIDGE SITES

In order to obtain empirical ground motion-damage relationships for the bridges affected by the

Northridge earthquake, two sets of PGA values were used:

(i) PGA values reported by USGS, which were obtained from the contours of observed
PGA recordings in horizontal direction [USGS, 1994],

(ii) PGA values reported by WCFS [1995] that were obtained from the contours of
average of the PGA values measured in the E-W and N-S directions. Recorded
ground motion levels were used to scale the empirical Green’s functions which were

used in simulating the ground shaking levels [Somerville et al., 1996].

The PGA value at a given bridge site was obtained within a geographic information system (GIS)
by overlaying the ground shaking map and the bridge location map. Subsequently, the highest
PGA values obtained at a bridge site were 1.55g and 0.66g for the USGS [1994] and WCFS
[1994] maps, respectively. Since the PGA levels from the two data sets varied considerably, the

correlation studies were performed for both data sets. Figures 4-6 and 4-7 show the recorded
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PGA values reported by USGS [1994] and WCFS [1995], and the locations of state highway
bridges of the Los Angeles, Ventura, Orange and Riverside Counties. From these maps it can be
observed that most of the bridges in Riverside and Orange Counties did not experience ground

shaking levels higher than 0.15g in the Northridge earthquake.

4.3 COMPILATION AND REVIEW OF BRIDGE DAMAGE DATA
4.3.1 Damage State Descriptions

In various damage reports, bridges were reported to be in one of the four damage states: minor,
moderate, major and collapse. In this study, any bridge that was not reported as damaged was
assumed to have sustained no damage. Major damage generally referred to cases where column
spalling and rebar buckling extended over a length of one column diameter or more, or to cases
where severe hinge damage and near unseating occurred. Moderate damage referred to cases
where column spalling or shear cracking occurred without buckling, or where abutment/pier
damage was substantial. Minor damage was used for bridges with no danger of imminent

structural collapse or easily repairable damage [EERI, 1995].

The subjectivity in damage evaluation leads to inconsistencies in bridge damage reports by
different bridge engineers. For example following the Northridge earthquake, different bridge
engineers reported the same bridges with minor and major damage during different inspections.
In this study, detailed damage descriptions were obtained mainly from bridge damage reports
compiled by Caltrans [1994b]. These descriptions were cross-referenced with those provided by
Buckle [1994], EERI [1995], and Yashinsky [1995]. Judgment was used to treat inconsistencies
in the interpretation of the observed damage data. Table 4-4 shows detailed damage descriptions
for a sample of damaged bridges as compiled in this study. As discussed in Section 2.1, damage
state descriptions were developed based on Northridge damage and were proposed for post-

earthquake bridge damage assessment.
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4.3.2 Description of Bridge Damage

The bridge damage from the Northridge earthquake pertained mostly to state bridges in Los
Angeles and Ventura Counties. Bridges in these two counties also experienced much higher
accelerations than bridges in Riverside and Orange Counties where there were 63 bridges
exposed to peak ground acceleration (PGA) levels of 0.15g or higher. Immediately after the
Northridge earthquake, Caltrans inspected about 850 state bridges in the vicinity of the epicenter,
and reported 233 of them as damaged [Caltrans, 1994b; Buckle, 1994; EERI, 1995]. Only 5 of
the damaged bridges were in Ventura County. The remaining bridges were in Los Angeles

County.

Several statistics were obtained for the bridges that sustained damage from the Northridge
earthquake. Figure 4-8 shows the distribution of the damaged bridges by service type and
damage state. Ten pedestrian and two railroad bridges were reported as damaged by Caltrans.
The inventory of steel bridges in Greater Los Angeles area is small compared to that of concrete
bridges, as shown in table 4-2. A detailed description of damage to steel bridges is given by
Astaneh-Asl [1995]. Pounding damage between adjacent elements, buckling of cross bracing,
bending of cross-brace gussets, restrainer fractures, damage to the interface between the steel
superstructure and concrete substructure and damage to anchor bolts due to shearing forces and
high tensile forces were the most common forms of damage to steel bridges [EERI, 1995]. Three
steel bridges were reported to have major damage, 11 bridges sustained moderate damage and
another 5 sustained minor damage. Due to the limited number of steel bridges that were

damaged, steel bridges were excluded from the correlation studies.

Two hundred of the damaged bridges were concrete highway bridges, of which 28 were single
span and 172 were multiple span bridges. However, only 164 of the damaged bridges (27 single
span, 137 multiple span bridges) had homogeneous abutment and/or column bent types. Four of
these 164 bridges were exposed to PGA levels less 0.15g, therefore, a total of 160 bridges were
included in the correlation data set. Table 4-5 summarizes the number of bridges in each data

set used in statistical analyses.
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FIGURE 4-8 Distribution of All Damaged Bridges by Service Type and Damage State

TABLE 4-5 Number of Damaged Bridges Included in Various Data Sets

Highway Bridge | Concrete Highway | Homogeneous Correlation
Data Set Bridge Data set Data Set Data Set
Los Angeles Single span 27 27 26 26
County Multiple span 189 170 135 131
Ventura Single span 1 1 1 1
County Multiple span 4 2 2 2
Total 221 200 164 160
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Number of Bridges
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FIGURE 4-9 Distribution of All Damaged Bridges by Design Year and Damage State

Figure 4-9 shows the distribution of all damaged bridges by design year and damage state. Sixty
eight percent of the damaged bridges were designed by pre-1971 design standards, a ratio close to
that of all the bridges in the highway bridges data set (76 percent). Seventy-three bridges that
were designed during 1972 to 1980 period sustained damage. Fifty-five of these bridges were
located on soft alluvial (Type C) soils mostly with skews greater than 20°. The PGA levels at
these bridge sites ranged from 0.35g to 1.10g and 0.20g to 0.66g according to USGS and WCFS

ground shaking maps, respectively.

The distribution of damaged bridges by HAZUS classification and damage state is shown in
figure 4-10. The bridge classes HBR-3, 6, 9 and 11 represent respectively the seismically
designed/retrofitted continuous bridges, seismically designed/retrofitted simply supported
bridges, seismically designed/retrofitted "high risk" continuous bridges and seismically

designed/retrofitted "high risk" simply supported bridges.

_In Section 4-4, the ground motion-damage relationships provided in HAZUS [1997] are

compared with the observed damage for these classes.

72



Number of Bridges

moderate
major

HAZUS Bridge Class

collapse

FIGURE 4-10 Distribution of All Damaged Bridges by HAZUS Bridge Classification and
Damage State

The six bridges that collapsed in the Northridge earthquake are listed in table 4-6. The damage
descriptions, ground motion levels at bridge sites, structural characteristics and repair costs for
these bridges are also included in table 4-6. All collapsed bridges were of concrete box girder
type with multiple spans constructed with pre-1971 design standards. Despite the relatively low
level of ground shaking, high skew, irregularity in substructure stiffness, and inadequate seat
width in some cases caused the collapse of these bridges. Structural characteristics, observed
damage and the failure analysis of collapsed bridges are discussed in detail by Caltrans [1994a],
Buckle [1994] and EERI [1995].

Only four of the six bridges that collapsed in the Northridge earthquake had homogeneous
abutment and/or column bent types. Thus, only four of the six collapsed bridges were included
in the correlation data set. Distribution of damaged bridges in the correlation data set by bridge
sub-categories listed in table 2-1 is shown in figure 4-11. Figures 4-12 through 4-15 show the
distribution of damaged bridges in the correlation data set by number of spans, design year,

abutment type and column bent type. Twenty percent of the damaged bridges were single span
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(correlation data set)

! See table 2-1 for description of bridge sub-categories.
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FIGURE 4-13 Distribution of Damaged Bridges by Design Year and Damage State (correlation
data set)

monolothic
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FIGURE 4-14 Distribution of Damaged Single Span Bridges by Abutment Type (correlation

data set)
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FIGURE 4-15.a Distribution of Damaged FIGURE 4-15.b Distribution of Damaged
Multiple Span Bridges by Abutment Type Multiple Span Bridges by Column Bent Type
(correlation data set) (correlation data set)

bridges. None of the single span bridges with bin or cellular closure type abutments were
reported as damaged. Multiple span bridges with pier walls (bridge sub-categories C1M13
through C1IM16) experienced no damage except when the bridge had bin or cellular closure type
of abutments (CIM17 and CIM18). Thirteen percent of the multiple span continuous bridges
with monolithic abutment types (C1M1) were reported as damaged. Similarly, 15 percent of all
the multiple span continuous bridges with non-monolithic abutment types (CIM7) were reported

as damaged.

Figures 4-15.a and 4-15.b show the distribution of damaged bridges by abutment and column
bent types. It could be inferred from figure 4-15.a that fewer bridges with non-monolithic
abutment types sustained damaged than the ones with monolithic type abutments. However, this
is misleading since in the correlation data set the number of bridges with monolithic abutments
was higher than that of bridges with non-monolithic abutments. Instead, the damage ratio (i.e.,
the ratio of number of damaged bridges to the number of bridges in the inventory should be used
for comparison. Figure 4-16.a shows the ratio of total number of damaged bridges with
monolithic abutments to the total number of bridges with monolithic abutments at a given PGA

level.
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For example, according to figures 4-16.a and 4-16.b, all bridges with non-monolithic abutments
were damaged at PGA levels between 0.5g and 0.6g compared to 70 percent for bridges with
monolithic abutment types. Figures 4-16.b and 4-16.c depict a similar ratio for multiple span
bridges with non-monolithic abutments and bin or closure type abutments, respectively. Similar

explanations are valid for column bent types as demonstrated in figures 4-17.a, 4-17.b and 4-

17.c.

Multiple Span Bridges with Monolithic Abutment Types
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FIGURE 4-16.a Comparison of Damaged Bridges with Monolithic Abutment Types to Total
Number of Bridges with Monolithic Abutment Types
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FIGURE 4-16.b Comparison of Damaged Bridges with Non-monolithic Abutment Types to
Total Number of Bridges with Non-monolithic Abutment Types
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FIGURE 4-16.c Comparison of Damaged Bridges with Partial Abutment Types to Total
Number of Bridges with Partial Abutment Types
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FIGURE 4-17.a Comparison of Damaged Bridges with Multiple Column Bents to Total Number
of Bridges with Multiple Column Bents
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FIGURE 4-17.b Comparison of Damaged Bridges with Single Column Bents to Total Number
of Bridges with Single Column Bents
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Multiple Span Bridges with Pier Walls
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FIGURE 4-17.c Comparison of Damaged Bridges with Pier Walls to Total Number of Bridges
with Pier Walls

Damage to Retrofitted Bridges

Several of the retrofitted bridges were impacted in the Northridge earthquake. A detailed
description of performance of retrofitted bridges is given by Yashinsky [1995]. In most cases the
retrofitted bridges, especially with jacketed columns, performed well. There were cases in which
the hinge restrainers did not perform adequately. Based on the list of retrofitted bridges provided
by Yashinsky [1995], 189 of the bridges in the highway data set were retrofitted. One of the
three types of retrofits was used for these bridges: (i) hinge restrainers (phase I), (if) column

retrofitting (phase II), and (iif) phase I and Il. The statistical analyses performed for retrofitted

and unretrofitted bridges are presented in Section 4.4.

4.3.3 Relative Importance of Attributes that Most Contribute to Damage

A multivariate logistic regression analysis was conducted to identify the characteristics that
_contribute most to bridge damage. In the analyses, peak ground acceleration, skew, abutment

type, column bent type, span length, design year, span length, number of spans, span continuity
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and soil type were included. Peak ground acceleration, span length and skew were defined as
continuous variables. The analyses were conducted for: (i) multiple span bridges in the
correlation data set, (ii) all bridges in the correlation data set, and (iii) multiple span damaged
bridges in the correlation data set. Peak ground acceleration, abutment type, skew, span length
and span continuity were found to be the most important characteristics in all cases. In addition,
for the multiple span bridge data set, column bent type was found to be important. In the
analyses, high correlation between span length and damage was observed. When the span length
is defined as a binary variable, i.e., less than 500 feet or greater than or equal to 500 feet as used
in the HAZUS [1997] and in ATC-13 [1985] bridge classifications, poor correlation was

obtained between span length and bridge damage.

4.4 CORRELATION STUDIES FOR BRIDGE DAMAGE

4.4.1 Empirical Fragility Curves

Correlation studies were performed to identify the structural characteristics that are most
frequently associated with damage. In addition, empirical fragility curves were developed for
bridges in the correlation data set. Bridges in this data set were first grouped to obtain damage
frequency matrices, i.e., number of bridges in a given damage state at different ground motion
levels, and to obtain damage probability matrices. Empirical fragility curves were developed
from the damage frequency matrices using logistic regression analysis. In several cases, the data
or the distribution of data by damage and PGA levels were not sufficient to obtain a statistically
satisfactory fit for the fragility curves. Table 4-7 lists the different types of attributes considered
in grouping bridges to obtain different sets of empirical fragility curves. The empirical fragility
curves for various groups of bridges are presented in the Appendices listed in table 4-7. In
addition, empirical fragility curves were developed by using only the groups of damaged bridges,
L.e., excluding the undamaged bridges. These fragility curves (i.e., conditional fragility curves)
would provide information on the damage state of a damaged bridge. However, for most of the
bridge sub-categories considered in this study, the number of damaged bridges was insufficient to
provide reliable statistics. Therefore, these empirical fragility curves are not presented in this

" report except for an example in figure 4-20.
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TABLE 4-7 Characteristics of Data Groups Used in Correlation Analyses

Dependent | Independent Data Set Grouped by Results are
Variable Variable Presented in
damage state | PGA values ¢ abutment type Appendix E
reported by e number of spans

USGS [1994] ¢ column bent type
 sub-categories given in table 2-1
o design year

o HAZUS classes

e retrofit history

PGA values e number of spans Appendix F

reported by e sub-categories given in table 2-1

WCES [1995] | ® desien year

e HAZUS classes

As discussed previously, the number of steel bridges in the inventory and among the bridges
damaged in the Northridge earthquake was small. An empirical fragility curve was developed for
all steel bridges, which is shown in figure 4-18. Correlation studies were not performed for

different sub-categories of steel bridges due to lack of data.

Tables 4-8 and 4-9 show the damage frequency matrix and the damage probability matrix for the
multiple span bridges included in the correlation data set. Figures 4-19 and 4-20 show the
empirical fragility curves for all the multiple span bridges in this data set, unconditional and
conditional on damage, respectively. The comparison of the empirical fragility curve for multiple
span bridges with the observed data is shown in figure 4-21 for different damage states. Other
examples of fragility curves are shown here for bridges grouped by the criteria listed in table 4-
10. Figures 4-22 through 4-26 show these fragility curves. The PGA values shown on the
horizontal axis of these figures are the observed values reported by USGS [1994]. Each figure

consists of two graphs:
e GRAPH A shows the probability of exceeding a given damage state at different PGA levels,

e GRAPH B shows the probability of being in a damage state at different PGA levels.
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TABLE 4-8 Damage Frequency Matrix for Multiple Span Bridges

USGS Peak Ground Acceleration (g)

Observed | 15 02 | 02-03 | 03-04 | 04-05 | 05-06 |06-07| 07-08
damage
None 194 262 150 31 10 15 17
Minor 2 8 16 2 6 4 2
Moderate 1 8 8 9 6 5 1
Major 0 6 0 5 5 3 1
Collapse 0 0 0 0 0 0 0
Total 197 284 174 47 27 27 21
USGS Peak Ground Acceleration (g)
Observed | ¢ 09 | 09.1.0 | 1.0-11 | 11-12 | 12-13 | 13-14 | total
damage
None 18 7 9 1 0 1 717
Minor 0 5 1 1 0 0 47
Moderate 4 7 3 0 0 0 52
Major 1 9 0 0 0 0 30
Collapse 2 1 1 0 0 0 4
Total 25 29 14 2 0 1 848
TABLE 4-9 Damage Probability Matrix for Multiple Span Bridges (%)
USGS Peak Ground Acceleration (g)
Observed | g45_ 02 | 02-03 | 03-04 | 04-05 | 05-06 | 06-07 | 07-08
damage
None 98.48 92.25 86.21 65.96 37.04 55.56 80.95
Minor 1.02 2.82 9.20 4.26 22.22 14.81 9.52
Moderate 0.51 2.82 4.60 19.15 22.22 18.52 4.76
Major 0 2.11 0 10.64 18.52 11.11 476
Collapse 0 0 0 0 0 0 0
USGS Peak Ground Acceleration (g)
Observed | o5 g9 | 09-1.0 1.0-1.1 11-12 | 1.2-13 1.3-14
damage
None 72.00 24.14 64.29 50 0 100
Minor 0 17.24 7.14 50 0 0
Moderate 16.00 24.14 21.43 0 0 0
Major 4.00 31.03 0 0 0 0
Collapse 8.00 345 7.14 0 0 0
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The ratio of bridges in each damage state, and statistical significance test results are presented in
these figures. The number of bridges in each damage state, i.e., no damage, minor damage,
moderate damage, major damage and collapse, are listed. The statistical parameters are valid for
both graphs and were briefly discussed in Section 2.3. In general, a model is accepted for a p-
value of the Wald chi-square statistic at a significance level of less than or equal to 0.05. A chi-
square test with (7 - 2) degrees of freedom is used to test whether the parameter estimate on the
model is zero. The variable ¢ represents the number of response variable levels. When data exist
only for two damage states at all ground motion levels, the chi-square statistics is not applicable
and is denoted by N/A. The odds ratio reported in these figures is the exponentiated value of the

corresponding parameter estimate.

TABLE 4-10 Description of Example Fragility Curves Obtained for Different Damage States

Dependent | Independent Data Set Grouped by Shown in
Variable Variable figure
damage state | PGA values s  single span bridges 4-22
gggréeﬁgg 41 e single span bridges with monolithic abutment 4-23
types (C1S1)
e multiple span bridges with monolithic abutment 4-24

type and multiple columns/bent (C1IM1)

e bridges designed between 1940 and 1971

e bridges by retrofit history 4-25
4-26
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Number of bridges 62,5,10,3
Chi-square with 1 DF | 6.865; p= 0.0088
Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
3.5065 1.3656 0.0102 33.332
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FIGURE 4-18 Empirical Fragility Curves for Steel Bridges
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Number of bridges 715,47,52,30,4
Chi-square with 3 DF 4.5136; p=0.2111
Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
3.9028 0.3564 0.0001 49.543
GRAPHA Multiple Span Bridges
(USGS pga values - unconditional on damage)
1
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FIGURE 4-19 Empirical Fragility Curves for Multiple Span Bridges, Unconditional on Damage
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Number of bridges . 47,52,304
Chi-square with 2 DF 3.80; p=0.1496
Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
1.7878 0.6144 0.0036 5.9778
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(USGS pga values - conditional on damage)

0.8 + - moderate |
|——major |
0.7 1 - collapse |

Probability of Being in or
Exceeding a Damage State
(=}

(9]

0 : : ; 1 TR ; [ ;
0 01 02 03 04 05 06 07 08 09 1 1.1 12

Multiple Span Bridges
(USGS pga values - conditional on damage)

0.9 + ——minor
8 -+ -#-moderate
—&- major

! - collapse

° o o
AN 3 o
| N R |
LR

Damage State
o o
Hon

Probability of Being in a
o
w

o ©
b [\®)
I )

T T

0 b e e e T [pgu )

0 01 02 03 04 05 06 07 08 09 1 11 1.2

FIGURE 4-20 Empirical Fragility Curves for Multiple Span Bridges, Conditional on Damage
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Number of bridges
Chi-square with 2DF

306, 11, 11, 5,0
4.1333; p = 0.1266

Parameter Estimate Standard Error Prob. > Chi-square QOdds Ratio
2.6972 0.5393 0.0001 14.838
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FIGURE 4-22 Empirical Fragility Curves for Single Span Bridges
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Number of bridges
Chi-square with 1 DF

197,5,11,1,0
5.9637; p = 0.0507

Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
2.2107 0.6464 0.0006
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Number of bridges 228, 16, 13,6,0
Chi-square with 2DF | 0.2596; p = 0.8783

Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
3.0251 0.6207 0.0001 20.597
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Number of bridges 887, 49, 59,28, 3
Chi-square with 3 DF | 9.5481; p = 0.0228

Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
2.3905 0.3152 0.0001 10.9195
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4.4.2 Comparison of HAZUS Fragility Curves and Observed Damage

In order to compare the observed damage with the fragility curves provided in HAZUS [1997],
empirical fragility curves were developed for bridges grouped by the HAZUS bridge
classification. The bridges in the highway data set were grouped into HAZUS bridge classes
HBR-3, 5, 9 and 11, and damage frequency matrices were obtained for each of the classes. Then

empirical fragility curves were obtained for each of these groups using logistic regression

analysis.

The HAZUS fragility curves were compared both with observed data and the empirical curves
for each of these classes. Figures 4-27 through 4-30 show the probability of being in different
damage states as functions of peak ground acceleration for HAZUS bridge classes HBR-3, 5, 9
and 11. In these figures, the solid symbols show the probability of being in a.damage state
obtained from the observed damage and the lines with hollow symbols represent the fragility
curves given in HAZUS. Figure 4-31 shows the comparisons for the exceedance probabilities
and probabilities of being in a given damage state for class HBRS5. Comparisons of HAZUS
fragility curves with the empirical ones for the other classes are given in Appendix E. The
observed damage data do not appear to agree well with the available ground motion-damage
relationships in the majority of the cases investigated in this study. Similar to HBRS, the
HAZUS fragility curves of other classes overestimated the exceedance probabilities for any given
damage state. The curves for HBRS overestimate the probability of being in major damage state
at most of the PGA levels. They overestimate the probability of being in minor damage state at

lower PGA levels and underestimate it at higher PGA levels for the given data set.

As discussed in Section 4.2, the PGA levels reported by USGS and WCEFS vary considerably.
Therefore, the observed damage was compared to the HAZUS fragility curves using both sets of
. ground motion data. Figure 4-32 compares the HAZUS fragility curves with the empirical
fragility curves using the PGA values reported by WCFS [1995]. The difference between the
predicted and the empirical exceedance probabilities is smaller when the WCFES PGA values are
used. However, the HAZUS fragility curves still overestimate the exceedance probabilities for a

_given damage state at all PGA levels for all bridge classes.
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Number of bridges 539, 38, 39, 19, 2
Chi-square with 3DF | 7.0884, p = 0.0691

Parameter Estimate Standard Error | Prob. > Chi-square Odds Ratio
3.0228 0.3627 0.0001 20.5485
GRAPH A HAZUS Bridge Class HBR5
10 .
09 +
B éf 08 +
En 0.7 +
& &
£ & o6t
2 £
& 05
T a
.é: :0 04 +
= =
= 037 .
i o
-8 ® 02+ C ) .
Q p - -
= e .. o o
0.0 - R s ae bt 5T PGA(R)
0 010203040506070809 1 1.1 12131415 16
—&— HAZUS-minor ~—#—HAZUS-moderate —eo—HAZUS-major
—4&—HAZUS-collapse -+<-- Empirical-minor -+8-- Empirical-moderate
-+ ©-- Empirical-major --A-- Empirical-collapse

HAZUS Bridge Class HBR5

Probability of Being in a
Damage State

- PGA(g)
1.1 1213141516
——HAZUS-none —s— HAZUS-minor —e—HAZUS-moderate |
—&— HAZUS-major —¥—HAZUS-collapse -+©-- Empirical-none i
--8-- Empirical-minor --©-- Empirical-moderate --»-- Empirical-major
-- X-- Empirical-collapse i
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Number of bridges 463, 36,39, 19, 2
Chi-square with 3DF | 7.3775, p = 0.0608

Parameter Estimate Standard Error | Prob. > Chi-square QOdds Ratio
6.9848 0.7831 0.0001 999
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4.4.3 Data Error in the Inventory

As discussed in Section 2.1, some of the attribute values for abutment type, column bent type and
joint location were found to be incorrect in the database used in this study. For all the bridges in
the Northridge earthquake, the SMS and BIRIS databases maintained by Caltrans were compared
and attributes with discrepancies were identified. Fifteen percent of the abutment information
was found to have errors and were corrected based on the as-built plans. Due to time constraints,
only the error in abutment type attribute was corrected. In only a few cases (for 2 to 3 percent of
the damaged bridge data set) were the values of the design year and skew attributes found to be
incorrect. Statistical analyses were carried out to determine the potential effect of data error in
the inventory on the correlation studies. The two main consequences of data error were the

following:

e The total number of homogeneous bridges included in the correlation data set
changed. This was due to the fact that bridges that were listed with heterogeneous
abutment types in the SMS database were found to have homogeneous characteristics

Or vice versa.

e The number of bridges in a given bridge sub-category changed. Therefore, the
probability of being in a damage state for a given bridge sub-category changed. This

was also because of the changes in the abutment types during the correction process.

For example, for bridge sub-category CIM1 (multiple span continuous bridges with monolithic
abutments and multiplé column bents) the number of undamaged bridges was large. Thus, a
change in the number of damaged bridges did not affect the probability values significantly.
However, for the bridge sub-category C1M4 (multiple span discontinuous bridges with
monolithic abutments and single column bents) the effect of data error on the results was more
noticeable. Examples that illustrate the change in the results due to data correction are shown in
tables 4.11.a and 4.11.b for all multiple span bridges with monolithic abutments. The shaded

cells in table 4.11.b represent the cells with changes in number of bridges.

“Unconditional and conditional fragility curves were obtained for multiple span bridges with

monolithic abutments and non-monolithic abutments using both the corrected and uncorrected
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data. The effects of data error with respect to data size are illustrated in these fragility curves
shown in figures 4-33 through 4-36. The dotted lines in the figures show the fragility curves
obtained from the corrected data set. The solid lines show the fragility curves for the uncorrected
data. The empirical fragility curves indicate that the effect of data error was more emphasized
for smaller data sets. The change in the probabilities of being at or exceeding a damage state

after the correction of data was higher for the conditional fragility curves as expected.

TABLE 4-11.a Number of Multiple Span Bridges with Monolithic Abutments for Different
Damage States at Different PGA Values [USGS, 1994], - uncorrected data

0.15-02 | 0.2-03 | 03-04 | 04-05 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 09-10 | 10-11 | 1.1-1.2 total

no 79 116 78 20 6 8 8 11 5 9 1 341
minor 0 3 9 1 6 2 1 0 5 0 1 28
moderate 0 0 3 S 6 2 0 3 4 0 0 23
major 4] 1 0 3 1 1 ! 0 4 0 1] 11
11 0 0 0 0 [ 0 0 2 0 0 0 2
total 79 120 90 29 19 13 10 16 18 9 2 405

TABLE 4-11.b Number of Multiple Span Bridges with Monolithic Abutments for Different
Damage States at Different PGA Values [USGS, 1994], - corrected data

15-.2 2-3 3-4 4-.5 S5-.6 6-.7 7-.8 8-9 9-1.0 | 1.0-1.1 total
no 79 116 78 20 6 8 8 i1 5 9 340
minor 0 6 1 5 2 1 0 4 1- 23
moderate 0 1 3 4 6 2 0 4 4 0 24
major 0 1 o] 3 2 1 0 0 3 0 10
collapse 0 0 0 0 0 0 0 2 1 0 3
total 79 121 87 28 19 13 9 17 17 10 400
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4.5 ESTIMATED REPAIR COST

4.5.1 Description of Repair Cost Data

Estimated repair cost data were obtained from the supplementary bridge damage reports
compiled by Caltrans following the Northridge earthquake. A total of about $190 million was
reported as the repair cost in these reports. The total repair cost for the six collapsed bridges
corresponds to seventy five percent of the reported repair cost of all damaged bridges. Table 4-

12 shows the estimated repair cost of damaged bridges by damage state.

The distribution of bridges by estimated repair cost and damage state is shown in figure 4-37.
Only 77 of the 160 damaged bridges in the correlation data set were reported to have some
repair cost. No repair cost was reported for the remaining 83 bridges in the correlation data set.
Repair costs were reported for 12 bridges, which were not reported as damaged. Figure 4-38

shows the damage state distribution for bridges with no reported repair cost.

TABLE 4-12 Distribution of Estimated Repair Cost by Damage State

Damage State Estimated Repair Cost ($)
Collapse 152,845,000
Major 30,876,272
Moderate 5,660,094
Minor 536,640

An extensive database on repair cost was compiled from the supplementary bridge reports
obtained from Caltrans [1994b]. The database included total estimated repair cost and more
detailed information on repair work and cost for 130 bridges in Los Angeles and Ventura
Counties. In addition, repair costs for various components were gathered. Data on component
repair costs were not reported for all bridges. For forty-three of the 77 bridges, a breakdown of
repair cost by component was provided while for the others only the total repair cost and a
general description of the repairs were given. The forty-three bridges with detailed component
-repair cost data were further analyzed. Figure 4-39 shows the distribution of repair cost by

bridge components for different damage states. The collapsed bridges were not included in this
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FIGURE 4-39 Distribution of Estimated Repair Cost by Bridge Components for Different

Damage States

figure since a detailed description of repair by component type was not available for those
bridges. According to figure 4-39, most of the repair costs for bridges with minor damage were
for approach settlement. Bridges with minor damage did not suffer damage to the columns or
joints. While approach settlement was not reported for bridges that suffered moderate damage,
the damage to abutments was the most significant type of damage for these bridges. Although
abutment damage contributed significantly to repair cost for bridges with major damage, the
highest repair cost for bridges with major damage was due to column damage. Damage to joints
was observed mostly in bridges with major damage. The average repair cost for bridges that
suffered major damage (about $500,000/bridge) was about 5 times that for bridges with moderate
damage (about 110,000/bridge). Under miscellaneous repairs, repair to railings, curbs, sidewalks

and electrical conduits were included.

- In order to investigate the distribution of repair cost by structural type, bridges were also grouped

by the bridge sub-categories given in table 2-1. Figure 4-40 shows the distribution of estimated
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repair cost by bridge sub-categories. Only nine of the sub-categories were included in this figure.
Data were not available for the other sub-categories. The number of bridges in each bridge sub-
category ranged from 2 to 13 as shown in figure 4-40. Costs due to traffic closures were not
included in the analysis. Figure 4-40 shows that bridge sub-category CIMI10, identified as the
most vulnerable, accounted for about 40 percent of the total repair cost. For bridge sub-
categories C1IM7 through C1M10, which had non-monolithic type abutments, most of the repair
cost was due to abutment damage. ‘Estimated repair cost for joints was noticeable for sub-
categories with discontinuous spans, i.e., sub-categories CIM4, CIM7 and CIM10. Bridge sub-
category C1IM1 was defined by Bastz and Kiremidjian [1996] as the least vulnerable multiple
span bridge sub-categories for concrete bridges. In figure 4-40, the repair cost for 9 bridges in

this class was shown to be one of the smallest repair cost values.
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FIGURE 4-40 Distribution of Estimated Repair Cost by Bridge Components for Different
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Estimates on costs associated with traffic closure were reported for only 13 bridges. Therefore,
due to lack of data, estimated repair costs used in this study did not include costs due to traffic
control. Figures 4-41 and 4-42 show the estimated costs due to traffic closure and its ratio to the
total repair cost for bridges with moderate and major damage, respectively. The ratio of traffic
closure cost to total estimated repair cost showed significant variation for these thirteen bridges

while the high percentages were associated with low repair costs.

The repair cost ratio was defined as the ratio of repair cost to replacement cost. Seven repair cost
ratio intervals were used in the correlation analyses: 0; 0-10%; 10-20%; 20-30%: 30-40%; 40-
50%; >50%. According to ATC-13, one-to-one correspondence exists between the repair cost
ratio and the damage states. Furthermore, repair cost ratios less than 1 perceﬁt are expected to
correspond to only minor damage state. The repair cost ratios for different damage states
observed in the Northridge earthquake are plotted in figure 4-41. As illustrated in this figure, in
the Northridge earthquake low repair cost ratios less than 1 percent were observed for minor,
moderate and major damage states. However, the mean repair cost ratios do increase with

severity of damage states.
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FIGURE 4-41 Ratio of Traffic Closure Cost to Estimated Repair Cost - Moderate Damage
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FIGURE 4-42 Ratio of Traffic Closure Cost to Estimated Repair Cost - Major Damage

The repair cost ratio was defined as the ratio of repair cost to replacement cost. The replacement
cost was obtained as the product of the unit cost per square feet ($90/ft>) by bridge width and
length. Seven repair cost ratio intervals were used in the correlation analyses: 0; 0-10%; 10-20%;
20-30%; 30-40%; 40-50%; >50%. According to ATC-13, one-to-one correspondence exists
between the repair cost ratio and the damage states. Furthermore, repair cost ratios less than 1
percent are expected to correspond to only minor damage state. The repair cost ratios for
different damage states observed in the Northridge earthquake are plotted in figure 4-43. As
illustrated in this figure, in the Northridge earthquake low repair cost ratios less than 1 percent
were observed for minor, moderate and major damage states. However, the mean repair cost

ratios do increase with severity of damage states.
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4.5.2 Correlation Studies for Repair Cost Ratio

Similar to ground motion-damage relationships, empirical ground motion-repair cost ratio
relationships were developed. For most of the bridge sub-categories listed in table 2-1, data were
available for only two repair cost ratio levels: 0% and 0.1 to 10%. The empirical fragility curves
for ground motion-repair cost ratios are presented in the Appendices listed in table 4-13.
Example fragility curves listed in table 4-14 are presented here. In figures 4-44 to 4-48 two
graphs are presented: (i) GRAPH A shows the probability of being in or exceeding a repair cost
ratio at different PGA levels, and (ii) GRAPH B shows the probability of being in a repair cost
ratio at different PGA levels. The ratio of bridges in each repair cost ratio interval, and statistical
significance test results are presented in these figures. The number of bridges in each repair cost

ratio interval, i.e., 0; 0-10%; 10-20%; 20-30%; 30-40%; 40-50%; >50%, is listed.
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TABLE 4-13 Characteristics of Data Groups Used in Correlation Analyses

Dependent | Independent Data Set Grouped by Results are
p P
Variable Variable Presented in

repair cost PGA values number of spans Appendix G
ratio reported by . : G i

USGS [1994] bridge sub-categories given in table 2-1

design year ’

PGA values number of spans Appendix H

reported by . : e )

WCES [1995] bridge sub-categories given in table 2-1

design year

TABLE 4-14 Description of Example Fragility Curves for Repair Cost Ratio

Dependent | Independent Data Set Grouped by Shown in figure
Variable Variable
repair cost PGA values multiple span bridges 4-44
ratio reported by . . 4-45
USGS [1994] single span bridges
single span bridges with monolithic 4-46
abutment types (C151)
multiple span bridges with monolithic 4-47
abutment type and multiple columns/bent
(C1IM1)
4-48

bridges built between 1940 and 1971
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Number of bridges 777,65,0,2,0,0,4
Chi-square with 2 DF | 22.306; p= 0.0001

Parameter Estimate Standard Error | Prob. > Chi-square Odds Ratio
3.6441 0.4301 0.0001 38.248
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FIGURE 4-44 Empirical Fragility Curves for Multiple Span Bridges, Repair Cost Ratio
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Number of bridges 315,9,0,0,0,0,0
Chi-square N/A
Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
2.9131 0.8059 0.0003 18.414
GRAPH A Single Span Bridges
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FIGURE 4-45 Empirical Fragility Curves for Single Span Bridges, Repair Cost Ratio
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Number of bridges 199,6,0,0,0,0,0
Chi-square N/A
Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
1.993 0.9765 0.0413 7.337
GRAPH A Bridge Sub-category C1S1
(USGS pga values)
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FIGURE 4-46 Empirical Fragility Curves for Single Span Bridges with Monolithic Type
Abutments (Sub-Category C1S51), Repair Cost Ratio
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Number of bridges 248.14,0,0,0,0, 1

Chi-square with 1DF | 4.2087; p = 0.0402

Parameter Estimate Standard Error Prob. > Chi-square Odds Ratio
2.0366 0.8679 0.019 7.666
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Number of bridges 743,41,0,2,0,0,2
Chi-square with 2DF | 346.4903; p = 0.0001

Parameter Estimate Standard Error | Prob. > Chi-square QOdds Ratio
2.0205 0.4602 0.0001 7.542
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FIGURE 4-48 Empirical Fragility Curves for Bridges Built between 1940 and 1971
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4.5.3 Comparison of ATC-13 Damage Probability Matrices and Repair Cost Ratio Data
from the Northridge Earthquake

In ATC-13 [1985], ground motion-damage relationships are expressed in terms of damage
probability matrices (DPMs). A damage probability matrix gives the probability of being in a
damage state at a given MMI level. Damage states in ATC-13 are based on damage factor,
which is defined as the ratio of repair cost of a structure to its replacement value. The damage
states in ATC-13 are related to ranges of damage factor as listed in Table 4-15, where damage
factor is defined as the ratio of repair cost of a structure to its replacement value.- In order to
distinguish between the definitions of damage states used earlier in the report and those used in
ATC-13, the ATC-13 damage states are referred as the repair cost ratio states. Thus, the damage

states listed in Table 4-15 also refer to the repair cost ratio states.

TABLE 4-15 ATC-13 Damage States and Damage Factors

Repair Cost Ratio State Damage Factor (%)
(Damage State — ATC-13)

None 0

Slight 0-1

Light 1-10
Moderate 10-30

Heavy 30-60

Major 60-100
Destroyed 100

The ATC-13 DPMs were compared to the repair cost ratio of the damaged bridges that were
affected in the Northridge earthquake. The isoseismal map by Dewey et al. [1994] was used to
obtain the MMI levels at each bridge site. According to this map, the maximum MMI level
experienced at any bridge site was IX. Repair cost ratios corresponding to heavy and major

damage states defined by ATC-13 were not observed in the Northridge earthquake data set.
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Figures 4-49 and 4-50 show the probabilities of being in a given damage state at different MMI
levels for ATC bridge classes 24 and 25, respectively. The results showed that the ATC-13
DPMs agree quite well with the observed damage and the repair cost ratios for low MMI values.
The results show that the ATC-13 DPMs overestimate the expected repair cost ratio for both
classes, especially for moderate and collapse states. The ATC-13 DPMs provide a non-zero
probability for only two repair cost ratio states for most of the MMI levels. In contrast, for
several MMI levels damage was observed in more than two or three repair cost ratio states. For
example according to ATC-13, the probabilities of being in light and moderate damage states at
MMI level IX are respectively 56.5 and 43.5 percent for bridges in class 25. However, non-zero
probabilities were obtained for repair cost ratio states none, slight, moderate and destroyed, as

shown in Figure 4-50.e based on the damage data.

ATC-13 Bridge Class 24
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none slight light moderate heavy major destroyed

FIGURE 4-49.a Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 24 MMI V
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FIGURE 4-49.b Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 24 MMI VI
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FIGURE 4-49.c Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 24 MMI VII
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FIGURE 4-49.d Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 24 MMI VIII
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FIGURE 4-49.¢ Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 24 MMI IX
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FIGURE 4-50.a Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 25 MMI V
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FIGURE 4-50.b Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 25 MMI VI

125



ATC-13 Bridge Class 25

S MMI = VII
w 100
-4
*g' 90 1
© 807 - DATC-13
:5;. 70 B observed
& i
s o 00
E 8 504 e
@ 7 50
.5 40 |
-
307
2
2
I N | L | Y ]
[

none slight light moderate heavy major destroyed

FIGURE 4-50.c Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 25 MMI VII
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FIGURE 4-50.d Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 25 MMI VIII
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FIGURE 4-50.e Comparison of Observed and Predicted Probabilities of being in a given Repair
Cost Ratio State, ATC-13 Bridge Class 25 MMI IX

4.6 DISCUSSION

Based on the analysis of data presented in this section, several important observations can be

made. These are summarized as follows:

Ground motion levels: Peak ground acceleration was used to characterize the ground shaking.

The two sets of ground motion levels available for the Northridge earthquake [USGS, 1994,
WCFS, 1995] were used in the correlation studies. The highest PGA values at a bridge site
obtained from the USGS and WCFS reports were 1.55g and 0.66g, respectively. A total of 1,181
and 1,003 bridges were included in the correlation data set using USGS [1994] and WCEFS
[1995] PGA values, respectively. Because the PGA levels were considerably different, empirical
ground motion-damage and ground motion-repair cost ratio relationships were obtained for both
data sets. Figure 4-51 shows comparison of PGA values reported by USGS and WCEFS.
According to the PGA values reported by USGS, a number of bridges experienced PGA levels

higher than 1.0g.
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FIGURE 4-51 PGA Values Reported by USGS [1994] and WCEFS [1995] — Northridge
Earthquake

Figures 4-52 and 4-53 show the probabilities of being in or exceeding a damage state at different
PGA values reported by USGS and WCEFS respectively, for multiple span concrete bridges with
monolithic abutment, continuous span and multiple column bents (sub-category C1M1) and
multiple span bridges. The probability values at a given PGA level were quite different. In cases
where the maximum USGS PGA value was around 1.0g, however, the shapes of the fragility
curves based on the two ground motion data sets were similar. The probabilities of exceeding or
being in a damage state were also quite similar at the respective maximum PGA levels. As can
be inferred from figure 4-53, when bridges at higher USGS PGA values were included in the
analysis, differences were observed both in the shapes of the curves and the maximum

probability values.

In order to use a data set with consistent characteristics in the logistic regression analysis, only
bridges subjected to 0.15g or higher PGA were included in the analysis. This criterion for data

selection was adapted instead of selecting bridges in a geographical boundary.
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Damage states: In this study, the damage states reported during the post-earthquake bridge

inspections were used in the analyses. A detailed investigation of the damage state definitions
demonstrated the inconsistency and the subjectivity in bridge damage definitions among
practicing engineers, and the need for a more systematic procedure to assess bridge damage.
Based on the damage reports from the Northridge earthquake, component-based damage states

were defined for concrete bridges.

Structural characteristics and damage: A total of 233 bridges were reported as damaged. Twelve

of these bridges were pedestrian or railroad bridges. Twenty-one of the damaged bridges had
steel superstructure. Because the majority of the bridges in the Greater Los Angeles area and the
bridges damaged in the earthquake (200 out of 233 damaged bridges) were concrete bridges,
analyses were carried out mainly for concrete highway bridges. However, empirical fragility
curves were developed for all steel bridges that were exposed to PGA levels 0.15g or higher
reported by USGS [1994]. These fragility curves are compared to empirical fragility curves

developed for all concrete bridges in figure 4-54.

The largest PGA level experienced at the site of any steel bridge was 0.85g in comparison with
1.45g at the site of concrete bridges. None of the steel bridges collapsed, thus the probability of
collapse for steel bridges was obtained as zero based on the data. Based on the damage data, the
probability of major damage at a given PGA level below 0.85g was the same for concrete and
steel bridges. On the other hand, steel bridges were more likely to experience moderate or minor

damage than concrete bridges.

Bridges with homogeneous characteristics were used in the correlation studies. This criterion
reduced the data set for damaged concrete bridges from 200 to 164. Although a small data set is
not desirable, this criterion provided a database with more homogeneous bridge characteristics
from which the effects of different abutment and column bent types on bridge damage
susceptibility were determined. Due to lack of data, bridges with heterogeneous characteristics

were not studied in detail.
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The majority of the damaged bridges were designed according to pre-1971 standards, and were
not retrofitted at the time of the earthquake. For analysis purposes, four design year periods were
used: before 1940, between 1940 and 1971, between 1972 and 1980 and after 1980. Based on the
results from logistic regression analysis, however, the performance of bridges did not show much
variation with design year. One possible explanation is that the original design year recorded in
the database was used in the statistical analyses. Some of the bridges, however, had been

upgraded seismically or for daily traffic loads. These upgrades were not considered in this study.

The performance of retrofitted bridges was also studied and compared to that of unretrofitted
bridges. The comparisons were based only on the PGA levels at bridge sites and some structural
characteristics, such as number of spans, abutment type, column bent type and span continuity.
In general, bridges with column retrofits performed well. In some cases, bridges with hinge
restrainers suffered major damage. In order to determine the effect of specific retrofitting

schemes more complete information on retrofit history is necessary.

As mentioned above, abutment type was among the aftributes that significantly contributed to
bridge damage. Bridges in the correlation data set were grouped into three categories according
to their abutment types: (i) monolithic, (ii) non-monolithic, and (iii) partial abutment types, i.e.,
bin or cellular closure type abutment. Figure 4-55 shows empirical fragility curves for multiple
span bridges with monolithic, non-monolithic and partial abutment types. As shown in figure 4-
55, bridges with monolithic abutments were observed to perform better than those with non-
monolithic abutments, while bridges with partial type abutments performed at least as well as the

bridges with monolithic abutments.

Figure 4-56 shows a comparison of probabilities of exceeding different damage states for bridges
with multiple column bents, single column bents and pier walls. Bridges with single column

bents had the worst performance among the three column bent types.

Bridee classification and ground motion-damage relationships: In order to explore the effect of

structural characteristics, such as number of spans, abutment type, column bent type and span
continuity, the bridges were grouped into sub-categories. Baséz and Kiremidjian [1996] proposed
bridge classes based on these structural characteristics. In that study, for a given bridge class

defined by the superstructure type and substructure type and material, the authors defined the
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FIGURE 4-57 Empirical Fragility Curves for Single Span Bridges with Monolithic (C151) and
Non-monolithic (C1S2) Abutments

the least and the most vulnerable single span and multiple span sub-categories. These four sub-
categories for concrete bridges were included among the twenty-one sub-categories used in this
study. The empirical fragility curves developed in this study were used to validate the bridge
class definitions by Basoz and Kiremidjian [1996]. Figure 4-57 shows the empirical fragility
curves obtained in this study for the least and the most vulnerable sub-categories for single span
concrete bridges. As shown in this figure, the probability of exceeding a given level of damage is
higher at all PGA levels for single span bridges with non-monolithic abutments (most vulnerable

sub-category) than it is for bridges with monolithic type abutments (least vulnerable sub-

catgegory).

Figures 4-58 and 4-59 show the probability of being in a damage state at different PGA levels for
the least vulnerable (C1M1), most vulnerable (CIM10) and intermediate level (C1M7) bridges

with multiple spans. The probability values represent the ratio of number of damaged bridges to
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the total number of bridges of a given sub-category at a specified PGA level. For all PGA levels
at which damage was observed, higher frequency values were obtained for bridge sub-category
C1M10 in comparison to CIM1. The probability values obtained for C1M7 were between the
probability values obtained for the least vulnerable sub-category (C1M1) and the most vulnerable
sub-category (C1M10) for multiple span concrete bridges. Figure 4-60 shows the empirical
fragility curves for the two sub-categories of multiple span bridges: C1M1 (bridges with
monolithic abutment type, multiple column bents, continuous span), and CIM7 (bridges with
non-monolithic abutment, multiple column bents and continuous spans), respectively. The
probability of exceeding a given damage state was higher for bridges in sub-category C1M7 than
it was for C1IM1 for all damage states. Due to scarcity of data, the fragility curves developed for
C1M10 (bridges with non-monolithic abutment, single column bents and discontinuous spans),

the most vulnerable bridge sub-category, did not meet the statistical goodness of fit criteria.

In addition to the bridge classes defined in this study, the bridges were grouped according to
HAZUS [1997] bridge classes. The observed damage data do not appear to agree well with the
available ground motion-damage relationships for most of the bridge classes. Furthermore, the
observed relative vulnerabilities between some of the bridge classes do not follow the expected
pattern. Figure 4-60 shows the comparison of the empirical and the HAZUS fragility curves for
bridge classes HBR3 and HBR9. The "high risk" bridge class HBR9 performed better in the
Northridge earthquake than the bridge class HBR3.

Reliability of the inventory data: Another issue investigated in this study was the correctness of

the inventory data. The original bridge inventory database contained errors in abutment type and
column bent type data. In order to determine the effect of data error on the empirical fragility
curves obtained in this study, the ground motion-damage relationships obtained from the
corrected data set were compared to those obtained from the uncorrected data. The results of the
analysis indicated that the effect of data error on ground motion-damage relationships was more

pronounced for smaller data sets.
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Bridge Sub-categories C1M1 and C1M7
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Estimated repair cost: Similar to damage states, several analyses were carried out using the

estimated repair cost reported for the damaged bridges. Discrepancies were found between
bridge damage data and repair cost data. For some of the bridges, no repair cost was reported.
Likewise no damage state was assigned to some bridges for which repair cost estimates were
reported. About 75 percent of the repair cost was due to collapsed bridges. A breakdown of
component repair cost by damage state showed that column and joint damage accounted for most
of the repair cost. Column and joint damage were mostly observed in bridges with major
damage state. Abutment damage was observed at all damage states, with higher frequency in

bridges that suffered moderate damage.

The component repair costs were also grouped by bridge sub-categories. Repair cost data existed
for only some of the bridge sub-categories; however, the distribution of available component
repair cost data by sub-categories reflected the vulnerability levels of the components in these
sub-categories. For example, bridge sub-category C1M10 included multiple span bridges with

non-monolithic abutment types, single column bents and discontinuous spans.
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Similar to damage states, empirical relationships between the repair cost ratio and ground motion
levels were developed. These curves facilitate estimation of repair cost of bridges given the
ground shaking level and the structural characteristics. The observed repair cost ratio for single
span bridges was not more than 10 percent while for multiple span bridges repair cost ratios as
high as 50 percent were observed. When the ATC-13 DPMs were compared with the observed
repair cost ratios from the Northridge earthquake, it was found that the ATC-13 DPMs agree
quite well with the observed damage and the repair cost ratios for low MMI values. In most
cases for MMI values VII and higher ATC-13 DPMs overestimated the observed values from the
Northridge earthquake.

The results presented in this section provide an overview of the bridge damage from the
Northridge earthquake. Several conclusions on ground motion-damage relationships, ground
motion-repair cost ratios, and repair cost-damage relationships were drawn in this section.
Comparisons of these results with those obtained from the Loma Prieta earthquake bridge

damage data are presented in the next section.
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SECTION 5

COMPARISON OF RESULTS FROM THE LOMA PRIETA AND THE
NORTHRIDGE, CA EARTHQUAKES

The results from the analyses of data on bridge damage in the Loma Prieta and the Northridge
earthquakes were discussed in Sections 3 and 4, respectively. These results provide a unique
opportunity to understand the seismic performance of bridges. In this section, comparisons of
the results from the two earthquakes are presented. Although the two earthquakes had different
characteristics, such as magnitude, location and source mechanism, general conclusions on
seismic performance of bridges can be drawn based on their structural characteristics and the

- construction practices.

The total number of state bridges in twelve counties of the San Francisco Bay area is about
2,300. In Los Angeles, Ventura, Orange and Riverside counties there are about 3,500 state
bridges. The percentage and number of damaged state bridges in the Loma Prieta and the
Northridge earthquakes are shown in figures 5-1 and 5-2, respectively. The total number of
damaged bridges during the Northridge earthquake was about three times as large as that from
the Loma Prieta earthquake. This difference can be attributed to the fact that damage from the
Northridge earthquake was concentrated in the vicinity of the epicenter, an urban area. The
majority of the bridge damage in the Loma Prieta earthquake was as far as 60 miles away from

the epicenter where soil amplification played a key role in bridge damage.

The economic consequences of bridge failures were not as significant in the Northridge
earthquake as they were after the Loma Prieta earthquake. This was mainly due to the different
geographic characteristics of the two areas. For example, the highway system that connects the
Peninsula to the East Bay in the San Francisco Bay area is not highly redundant while there are
several arterial roads in Los Angeles county, the hardest hit urban area in the Northridge
earthquake. Furthermore, the restoration time of the bridges with major damage or collapse was

much shorter in the Northridge earthquake than it was in the Loma Prieta earthquake.
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The closure of the San Francisco-Oakland Bay Bridge in addition to several viaducts had
significant economic consequences following the Loma Prieta earthquake. The number of
fatalities due to failure of the Cypress Viaduct was much higher than the total number of

casualties due to bridge damage in the Northridge earthquake.

Figures 5-3 and 5-4 show the distribution of bridges in the San Francisco Bay area and the
Greater Los Angeles area by design year. In both exposure areas, more than 75 percent of the
bridges were built before 1972. In fact, the distribution of bridges by design year interval in the
two regions is very similar. It should be noted that, the percentage for "post-1980" design year
period in the San Francisco Bay area included bridges designed/built between 1981 and 1989.
Distribution of bridges damaged in the Loma Prieta and the Northridge earthquakes are shown in
figures 5-5- and 5-6.
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Figure 5-7 shows the distribution of damaged bridges in the Loma Prieta and Northridge
earthquakes by design year interval. The distribution of damaged bridges by design year interval
shows similar characteristics to that of the bridge inventories excepf that a much higher percent

of bridges built between 1972 and 1980 sustained damage in the Northridge earthquake.
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Concrete bridges are more common than any other type in the state of California. More than 90
percent of the bridges in the Greater Los Angeles area and about 80 percent of the bridges in the
San Francisco Bay area are concrete structures. Similarly, about 82 percent and 91 percent of the

damaged bridges in the Loma Prieta and the Northridge earthquakes respectively, were concrete

structures.

During the post-earthquake investigations for the Northridge earthquake, bridges were reported
to be in one of the four (minor, moderate, major and collapse) damage states. In comparison,
only two (minor and major) damage states were used for bridges damaged in the Loma Prieta
earthquake. The four level damage assessment provided a better representation of the description
for damage details. Furthermore, the empirical ground motion-damage relationships developed
based on the four damage states are more informative. A comparison of the damage descriptions
for the Loma Prieta and the Northridge earthquakes revealed that minor and moderate damage in
Northridge earthquake reconnaissance reports corresponded roughly to minor damage in those of
the Loma Prieta earthquake. Similarly, major damage and collapse from the Northridge
earthquake corresponded approximately to major damage in the Loma Prieta earthquake. It is
important to have a well-defined and consistent set of damage states in order to study and
‘compare the ground motion-damage relationships for bridges in different earthquakes. As
described in Singhal and Kiremidjian [1997], Bayesian analysis can be used to update the

empirical and/or analytical ground motion-damage relationships, as more data become available.

Multivariate stepwise logistic regression analysis was used to identify the structural
characteristics that are most susceptible to damage. Ground motion levels, abutment type and
skew were found to have high correlation with the observed damage in both earthquakes.
According to the damage data from the Northridge earthquake, column bent type and span
continuity were also found to be among the characteristics that are most susceptible to damage.
Based on the bridge damage data from the Loma Prieta earthquake data, design year was found
to correlate well with the observed damage while column bent type and span continuity were
found to be statistically insignificant. Note that the design year used in statistical analyses was
the original design year recorded in the database. Some of the bridges, especially at the time of
the Northridge earthquake, were seismically upgraded. That is, a bridge built before 1972 might
have been retrofitted and hence might have performed better in the Northridge earthquake. The
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design year used in the analyses was not modified to reflect these upgrades. Therefore, the

performance of bridges in the Northridge earthquake did not show much dependence on design

year.

Figure 5-8 shows empirical fragility curves developed for bridges built between 1940 and 1972
based on the Loma Prieta and Northridge earthquake data. Higher probabilities of exceeding
minor and major damage states were observed from the Northridge earthquake data. For the
Northridge earthquake the PGA values reported by WCES and for the Loma Prieta earthquake

estimated PGA values using Campbell attenuation relationship were used.

In both earthquakes, bridges with monolithic abutments performed better than those with non-
monolithic abutments, and bridges with bin or cellular closure type of abutments performed as
good as those with monolithic abutments. Similarly, bridges with multiple column bents
performed better than single column bent bridges in both earthquakes. Bridges with pier walls

performed better than the multiple column bents in most cases.

For the purpose of the correlation studies, concrete bridges with homogeneous structural
characteristics which were exposed to peak ground acceleration levels higher than a threshold
value were grouped in a data set. This data set was referred to as the correlation data set.
Bridges in the correlation data set were grouped into sub-categories listed in table 2-1, according
to their structural characteristics, such as abutment type, column bent type and span continuity.
Figure 5-9 shows the distribution of bridges in the San Francisco Bay area and the Greater Los
Angeles area by these sub-categories. The distribution in the two areas is very similar. The
majority of bridges were multiple span bridges with multiple column bents and continuous span.
Likewise, the distribution of damaged bridges by structural characteristics shown in figure 5-10
was very similar .in the two areas. The exception was single span bridges with monolithic
abutments, none of which were reported as damaged in the Loma Prieta earthquake in contrast to
10 percent of all damaged bridges in the Northridge earthquake. High skew and high ground

motion levels contributed to damage at these bridge sites.
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For the Northridge earthquake, two sets of PGA levels were available: one reported by USGS
[1994] and another by WCFS [1995]. The PGA at a given bridge site was obtained within a GIS
by overlaying the ground shaking and the bridge location maps. The highest PGA values
obtained at a bridge site were 1.55g and 0.66g for the USGS and WCFS maps, respectively.
Since the PGA levels from the two data sets varied considerably the correlation studies were

performed for both data sets.

In contrast to the Northridge earthquake, a map of the ground motion intensity levels based on
the recordings was not available for the Loma Prieta earthquake. For the Loma Prieta earthquake,
a scenario event was generated using GIS. The PGA values obtained from the scenario event
were found to be considerably different from the recorded ones at some locations. Nevertheless,
due to lack of a better measure of the ground motion at bridge sites, the ground motion map
based on the scenario event was used in studying the bridge damage from the Loma Prieta
earthquake. Soft soil contributed to the bridge damage significantly in the Loma Prieta
earthquake in contrast to the Northridge earthquake.

Ground motion-damage relationships were obtained for various groups of bridges. The ground
motion-damage relationships from the two earthquakes are compared in figures 5-11 through 5-
13 for multiple span bridges, and bridge sub-categories CIM1 and CIM7', respectively. In these
figures fragility curves based on different sets of PGA levels for different damage states are
shown. In each figure, two graphs are presented: the first graph shows minor damage for the
Loma Prieta earthquake and minor and moderate damage for the Nothridge earthquake. The
latter one shows major damage for the Loma Prieta earthquake and major damage and collapse
for the Nothridge earthquake. For the Northridge earthquake the PGA values reported both by
USGS and WCFS were used. For the Loma Prieta earthquake the PGA values estimated using
the Campbell attenuation relationship and "observed” PGA levels estimated based on the best

line fit in figure 3-3 were used.

Several observations can be made from these figures. The variability of the ground motion

estimates was considerable. At a given PGA level, the probability of being in or exceeding a

1 C1M1: multiple span bridges with monolithic type abutments, continuous spans and multiple column bents.

C1M?7: multiple span bridges with monolithic type abutments, discontinuous spans and multiple column bents.
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given damage state can vary by as much as a factor of 4. For a given damage state, similar
patterns were observed among the fragility curves based on WCFS PGA levels for the
Northridge earthquake and those based on USGS PGA levels and "observed" PGA levels. This
might be due to the maximum PGA levels observed at a bridge site, e.g., 0.74g for the Loma
Prieta earthquake as estimated based on the Campbell attenuation relationship and 0.66g for the
Northridge earthquake based on the WCFS data set. Note that among the four PGA levels, the
set of "observed" Loma Prieta PGA levels is the least reliable estimate since it was based on a

best fit curve of the available data points.

The probability of being in a given damage state showed some variation between the Loma
Prieta and the Northridge earthquakes. Among other reasons, this can be due to different
definitions of the damage states. For example, for bridge sub-categories C1M1 and C1M7, the
probability of being in minor damage for the Loma Prieta earthquake was very close to the sum
of the probabilities of being in minor and moderate damage states for the Northridge earthquake.
For the multiple span bridges shown in figure 5-11, however, there is not an obvious relationship

between the damage probabilities for the two earthquakes.

The damage data from both earthquakes were compared to the fragility curves provided in
HAZUS [1997]. In both cases, the HAZUS fragility curves overestimated the exceedance
probabilities for all damage states. The poor agreement between the observed and the predicted
damage can be partially attributed to the size of the data set. In addition, damage data from a
single earthquake are not expected to match exactly with heuristic fragility curves or DPMs,
since these functions are intended to represent average values over many earthquakes. A more
detailed analysis of the damage data, however, indicated that the structural characteristics
considered in the available ground motion-damage relationships do mot include super and
substructure material and type. Both of these characteristics were found to be highly correlated

to damage observed in Loma Prieta and Northridge earthquakes.

The total estimated repair cost for the bridges damaged in the Northridge earthquake was about
two thirds of the Loma Prieta earthquake. However, 90 percent of the total estimated repair cost
in the Loma Prieta earthquake was due to one structure: the Cypress Viaduct. The bridges that
collapsed in the Northridge earthquake constituted 75 percent of all repair costs estimated after
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the earthquake. Figure 5-14 shows the distribution of repair cost by damage state for the Loma
Prieta and the Northridge earthquakes.

Figure 5-15 shows the comparison of estimated repair cost by components for the two
earthquakes. Column damage was the costliest in both earthquakes. In contrast to the
Northridge earthquake, the repair cost due to abutment damage was negligible in the Loma Prieta
earthquake. It should be noted that, the repair costs depicted in figure 5-15 are only a portion of
the total estimated repair cost. The figure only includes repair costs for bridges with complete
information for individual components, that is, there was no available breakdown by component

for collapsed bridges.

Similar to damage states, empirical relationships between ground motion levels and repair cost
ratios were developed for different levels of repair cost ratio. Figures 5-16 through 5-18 show the
ground motion-repair cost ratio relationships for multiple span bridges and bridge sub-categories

CIM1 and C1M7, respectively.

Repair cost ratios greater than 10 percent were not observed in the Loma Prieta earthquake.
Therefore, the ground motion-repair cost ratio relationships are presented here only for the 0
percent and the 0 — 10 percent intervals. The probabilities of exceeding or reaching given repair
cost ratio intervals were very close for the two earthquakes. Similar to the fragility curves for
different damage states, similar patterns were observed among the ground motion-repair cost
ratio relationships based on WCFS PGA levels for the Northridge earthquake and those based on
USGS PGA levels and "observed" PGA levels. Note that for the sub-category C1M7, the ground
motion-repair cost ratio relationship curve based on the set of "observed" Loma Prieta PGA

levels did not satisfy the statistical goodness-of-fit criterion.

The estimated repair cost ratios for the bridges damaged in the Northridge earthquake were also
compared with the ATC-13 DPMs. The ATC-13 DPMs were found to agree quite well with the
observed damage and the repair cost ratios for low MMI values. In most cases for MMI values
VII and higher, however, ATC-13 DPMs overestimated the observed values from the Northridge
earthquake.
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SECTION 6
CONCLUSIONS AND CONTRIBUTIONS

The Loma Prieta and Northridge earthquakes provided valuable data on bridge damage and repair
cost. These data were studied in detail with the objective of identifying the structural
characteristics that most contribute to bridge damage and repair cost, and correlating ground
motion levels with damage states and repair cost ratios. Data on bridge damage and ground
motion levels were better documented after the Northridge earthquake in comparison to the
Loma Prieta earthquake. Despite the difference in size and quality of data from the Loma Prieta

and the Northridge earthquakes several conclusions can be drawn from the analyses:

e In both the Loma Prieta and the Northridge earthquakes, less than five percent of the
bridges that were exposed to ground shaking were damaged. As experienced in the
past earthquakes, bridges with non-monolithic abutments, discontinuous spans and
single column bents performed poorly. High skew contributed to high damage levels.
Performance of bridges designed and built before 1971 was poorer than those
designed according to fnore recent standards. In both earthquakes, collapse of
concrete bridges was observed while steel bridges experienced at most major

damage’ .

e Two different sets of PGA values were reported for the Northridge earthquake (USGS
and WCFS) and three for Loma Prieta (observed, Boore and Joyner, Campbell). At a
given PGA level, the probability of being in or exceeding a damage state or repair
cost ratio can vary as much as a factor of 4. More attention needs to be paid to the
differences in fragility relations due to different assumptions regarding the PGA

values.

! Note that the number of steel bridges exposed to ground shaking was significantly less.
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e Different definitions for damage states were used in reporting damage after the Loma
Prieta and the Northridge earthquakes. The four level damage-state definitions used
in the Northridge earthquake were found to be more representative of the observed
damage compared to the two level definitions used in the Loma Prieta earthquake.

Furthermore, inconsistencies were observed in the definitions of damage states.

e Currently available bridge classes and the corresponding ground motion-damage
relationships do not properly estimate the observed damage from the Loma Prieta and
the Northridge earthquakes. In this study, empirical ground motion-damage
relationships were developed for a set of bridge sub-categories. Data, however, were
not sufficient to develop empirical fragility curves for all of the sub-categories.
Logistic regression analysis was found to be very effective in developing the
empirical fragility curves. Although the fragility curves developed for the Loma Prieta
and Northridge earthquakes showed similar trends, it should be recognized that they
are based on data from only two earthquakes and they should be updated as more data
become available. In order to update the empirical fragility curves using future

damage data, consistent definitions for damage states are needed.

® Several structural characteristics such as, abutment type, column bent type and span
continuity were used to group bridges. Bridge sub-categories based on the
classification proposed by Baséz and Kiremidjian [1996] were adopted in this study.
Ground motion-damage relationships and ground motion-repair cost ratio
relationships were obtained for these sub-categories. In that study, the authors defined
the least and the most vulnerable sub-categories for single and multiple span bridges.
The observed damage data from the Loma Prieta and the Northridge earthquakes were
used to validate the assumptions used in defining bridge classes. The data showed
that bridges grouped under the proposed "least vulnerable sub-category" for single or
multiple span bridges did in fact perform better than bridges in the proposed “most

vulnerable sub-category".

A more detailed analysis of the damage data indicated that the structural

characteristics considered in the available ground motion-damage relationships do not
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adequately reflect the seismic vulnerability of bridges. The currently available bridge
classes do not consider the effect of the structural material and type, substructure type,
and design details, such as column reinforcement and/or seat width. The structural
characteristics selected to define the bridge sub-categories were found to be highly

correlated with the observed damage.

The reliability of the bridge inventory data (Caltrans SMS database, 1993) used in this
study was investigated, revealing incorrect attribute values for several characteristics.
These attributes include abutment type, column bent type and design year. Errors in
the abutment type data for bridges damaged in the Northridge earthquake were
corrected based on bridge plans. The effect of data error on the probability of
exceeding or reaching any given damage state was observed to be larger for smaller
data sets as expected. It was beyond the scope and resources available for this project
to correct all the erroneous attribute values in the Caltrans SMS database. The effect
of data error might be considered to be negligible for a broad group of bridges, such
as all mﬁltiple span bridges or all concrete bridges. However, the correction of the
available bridge inventories is crucial for the vulnerability assessment of individual

bridges or small groups of bridges and should be pursued further.

The total estimated repair cost of $190 million for the bridges damaged in the
Northridge earthquake was about two thirds of the repair cost estimated from the
Loma Prieta earthquake. However, 90 percent of the total cost in the Loma Prieta
earthquake was due to one structure: the Cypress Viaduct. The bridges that collapsed
in the Northridge earthquake constituted 75 percent of all repair cost estimated after
the earthquake. Columns were the most damaged component in both earthquakes. In
contrast to the Northridge earthquake, the repair cost due to abutment damage was
negligible in the Loma Prieta earthquake. In the Northridge earthquake, column and
joint damage were mostly observed in bridges in major damage state. Although
abutment damage was observed at all damage states, it was a major part for bridges

that suffered moderate damage.
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The results from this study can be used to assist in decisions for mitigation, such as prioritization
of bridges for seismic retrofitting, and during post-earthquake response and recovery activities.

More specifically the areas that can benefit from the results of this project include the following:

» Database of bridge damage and repair cost: A comprehensive database on bridge
damage and repair cost was compiled for the two most recent major earthquakes with
significant consequences in the United States. This database includes several
structural characteristics that were used in the vulnerability assessment of bridges in
this study. Many structural characteristics that are necessary to better estimate bridge
vulnerability and to perform bridge specific vulnerability assessment are not included
in any of the currently available bridge inventories. The database compiled in this
study can be used in identifying the deficiencies of those inventories and setting

priorities to improve them.

* Classification of bridges and ground motion-damage relationships: Analytical
methods used to assess individual bridge vulnerabilities and to determine the damage
state of a bridge under a particular ground shaking level require detailed information.
Most of the time, however, this detailed information is not available and the data
gathering is very time consuming and tedious. Besides, with the large number of
bridges, it is rather difficult, if not impossible, to evaluate the seismic response of
each individual bridge in detail. The classification used in this study, which is based
on structural characteristics, can be used to assess the seismic vulnerability of a large

bridge inventory when detailed data are not available.

Empirical fragility curves were developed based on the damage data from the Loma Prieta and
the Northridge earthquakes. These fragility curves can be used to improve currently available

ground motion damage relationships.

® Damage state definitions: The damage state definitions proposed in this study are
based on observed damage descriptions and can be used to: (i) develop analytical

fragility curves to assess the vulnerability of bridges, and (ii) to establish a post-
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earthquake investigation form that will assist in compiling comprehensive bridge

damage data in a consistent manner.

® Repair cost estimates: The empirical repair cost-damage relationships developed in
this study can be used to estimate the direct loss from damage to bridges in
earthquakes. The repair cost data from the Northridge earthquake can be used to
update the DPMs provided in ATC-13. Due to lack of data the estimated repair costs
used in this study did not include costs from traffic closures. In order to evaluate the
functionality of a highway system, restoration functions, i.e., relationships between
damage state and repair time, are essential. Further research is necessary to develop
these relationships based on the limited available data on repair time, aﬁd expert

opinion.

The results obtained in this study provide a validation tool for analytical studies that are
necessary to evaluate the vulnerability of individual bridges. These results are specific to
California earthquakes and to California bridge design and construction practices. However,
similar results can be obtained for other states by using subsets of bridge data compiled in this

study which are representative of bridge design and construction practices outside of California.
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APPENDIX A

QUESTIONNAIRE ON DAMAGE STATES FOR CONCRETE BRIDGES

The objective of this questionnaire is to capture expert opinion on damage definitions for
. components of concrete bridges. The results can be used in developing analytical fragility curves
to assess the vulnerability of bridges, and/or developing a post-earthquake investigation form that

will assist to compile bridge damage more consistently than the current practice.

In general, different structures experience different damage types for a given level of
ground shaking. For vulnerability assessment of bridges, the damage state of a bridge can be
expressed by one of the five qualitative assignments: no damage, minor damage, moderate
damage, severe damage and collapse. The damage state of a bridge is a function of the damage
state of its components, such as abutments, superstructure and substructure. In this
questionnaire, a set of preliminary damage states for components of concrete bridges are defined
based on observed bridge damage in the past earthquakes, mainly the Northridge earthquake.
The damage states for: (i) abutments, (ii) substructures (column bents and/or pier walls), and (i)

connections and bearings of concrete bridges are listed respectively in Tables 1 through 3.

In Tables 1 through 3, the first column shows the damage state index, I, which is an
indication of the severity of the damage. The index I increases with increasing severity of the
damage. The descriptions for possible damage to the component, i.e., the column, connections
and bearings, or the abutments, are listed in column 2. In order to fill in columns 3, 4 and 5,

please answer the following questions:

Column 3 -Agree? (yes/no)- : Would you agree with the damage state index assigned to  each

damage description,

Column 4 -New Index- : If your answer in column 3 is no, what damage state index would

you assign to the given damage description?

Column 5 -Remarks- : List any other damage descriptions that should be included for the

given damage severity index of the respective component.

A-1



Please, provide any other comments and/or suggestions that you might have.

Thank you for your time and interest.

Your name:

July 1996, Nesrin Bas6z, Ph.D.

Post-doctoral Researcher

The John A. Blume Eqk. Eng. Ctr
Department of Civil Engineering
Stanford University

Stanford, CA 94305-4020

Phone: (415) 725-3168
Fax: (415) 725-9755
E-mail: nesrin @leland.stanford.edu

List of the earthquakes that you have been involved in post-earthquake bridge damage inspection:
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APPENDIX B

BRIDGE INVENTORY CODES FOR STRUCTURES OTHERTHAN
HIGHWAY BRIDGES

Attribute

Inventory Code

Description

County suffix

Maintenance station or other Caltrans Facility
Safety roadside rest

Sign

Toll plaza

Scale or inspection facility

Transit facility or park-and-ride lot

Bridge number suffix

Buried hazard or miscellaneous structures
Structure does not serve state highway traffic

Drainage pumping plants

Type of service (on
the structure)

Railroad

Pedestrians only

Building or plaza

Miscellaneous structure

Retaining walls

Pedestrians over an obstacle other than a road
Other

Pipelines, runways, etc.

Grade crossing

Drainage pumps

Structure closed or
open

ZRQAEX R U orw|I<LZ|X 30w

New structure not yet open to traffic
Bridge closed to all traffic
Closed or partially closed

B-1







APPENDIX C
EMPIRICAL FRAGILITY CURVES

The statistical software package SAS was used to perform the logistic regression

analyses. For each of the analyses performed in this study, the input data set, the p-value

associated with ;(2 test, parameter estimate, standard error, Wald statistics and odds ratio, are

provided. The curves fitted to the data set using logistic regression analysis are presented both in
terms of probabilities of exceeding a given level of the dependent variable (GRAPH A) and in
terms of the probabilities of reaching a given level of the dependent variable (GRAPH B).

The number of bridges row shows the number of bridges in different damage states or
repair cost ratio intervals. When the dependent variable used in the analysis is the damage state,
then the numbers in this row corresponds to number of bridges with no damage, minor damage,
moderate damage, major damage and collapse in this order. For the repair cost ratio; the
numbers in the number of bridges row correspond to repair cost ratios 0; 10% - 20%; 20% -

30%: 30% - 40%; 40% - 50% and larger than 50%.

In order to determine whether the independent variables in the model are "significantly”
related to the outcome variable, observed values of the response variable to predicted values
obtained from models with and without the variable in question are compared. In general, a
model is accepted with a p-value of the Wald chi-square statistic at a significance level of less
than or equal to 0.05. A chi-square test with (¢ - 2) degrees of freedom is used to test whether the
parameter estimate on the model is zero. The variable 7 represents the number of response
variable levels. When data exist only for two damage states, the chi-square statistics is not
applicable and is denoted by N/A. The odds ratio reported in these figures is the exponentiated
value of the corresponding parameter estimate. Note that for parameter estimates larger than
about 6.5, the odds ratio becomes larger than 1,000 and is reported as 999 indicating sparse data.
The bridge class sub-categories used to group bridges are listed in table 2-1 and are given in table

C-1 for convenience.

Definitions of different data sets used throughout the report are also presented here. The

empirical fragility curves are obtained from the correlation data set.

C-1



TABLE C-1 Description of Bridge Sub-categories (based on Baséz and Kiremidjian, [1996])

Bridge Sub-category | Abutment Type | Column Bent Type Continuity
Single Span Bridges »
C181 monolithic N/A N/A
C182 non-monolithic N/A N/A
C183 partial integrity N/A N/A
Multiple Span Bridges
CiMI1 monolithic multiple continuous
CiM2 monolithic multiple discontinuous
CiM3 monolithic single continuous
CiM4 monolithic single discontinuous
CIMS5 monolithic pier wall continuous
CIM6 monolithic pier wall discontinuous
C1M7 non-monolithic multiple continuous
CIMS8 non-monolithic multiple discontinuous
C1IM9 non-monolithic single continuous
CIM10 non-monolithic single discontinuous
CiIM11 non-monolithic pier wall continuous
CiM12 non-monolithic pier wall discontinuous
CiM13 partial integrity multiple continuous
. CIM14 partial integrity multiple discontinuous
CIM15 partial integrity single continuous
CIM16 partial integrity single discontinuous
CiM17 partial integrity pier wall continuous
CiM18 partial integrity pier wall discontinuous

TABLE C-2 Description of Abutment Types

Inventory Code Description Abutment Type

A Diaphragm monolithic

E Rigid Frame monolithic

B Seat non-monolithic
C Cantilever non-monolithic
D Strutted non-monolithic
F Bin partial

G Cellular Closure partial




Event: Loma Prieta earthquake.
Dependent variable: Damage state.

Independent variable: Peak ground acceleration based on the scenario event.

Grouped by Data set
Bridge sub-categories correlation data set
Number of spans correlation data set
NIBS bridge classes highway bridge data set
Abutment type correlation data set
Column bent type correlation data set
Design year highway bridge data set
DATA SET DEFINITIONS

Highway bridge data set: State highway bridges.

Concrete highway bridge data set: State highway bridges with concrete superstructure type and

substructure material (when applicable).

Homogeneous data set: State highway bridges with concrete superstructure type and
substructure material (when applicable) with unique abutment and column bent type (excludes

bridges with incomplete information).

Correlation data set: State highway bridges with concrete superstructure type and substructure
material (when applicable) with unique abutment and column bent type exposed to a PGA level

larger than or equal to a threshold value (excludes bridges with incomplete information).
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APPENDIX D
EMPIRICAL FRAGILITY CURVES

Event: Loma Prieta earthquake.

Dependent variable: Repair cost ratio.
Independent variable: Peak ground acceleration based on the scenario event and

Campbell attenuation relationship.

Grouped by Data set (conditional on damage)
Bridge sub-categories correlation data set
Number of spans correlation data set
Design year highway bridge data set
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APPENDIX E
EMPIRICAL FRAGILITY CURVES

Event: Northridge earthquake.
Dependent variable: Damage state.

Independent variable: Peak ground acceleration based on USGS [1994].

Grouped by Data set
Bridge sub-categories correlation data set
Number of spans correlation data set
NIBS bridge classes highway bridge data set
Column bent type correlation data set
Abutment type correlation data set
Retrofit history correlation data set
Design year highway bridge data set
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APPENDIX F
EMPIRICAL FRAGILITY CURVES

Event: Northridge earthquake.
Dependent variable: Damage state.

Independent variable: Peak ground acceleration based on WCFS [1995].

Grouped by Data set
Bridge sub-categories correlation data set
Number of spans - correlation data set
NIBS bridge classes highway bridge data set
Design year highway bridge data set
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APPENDIX G
EMPIRICAL FRAGILITY CURVES

Event: Northridge earthquake.
Dependent variable: Repair cost ratio.

Independent variable: Peak ground acceleration based on USGS [1994].

Grouped by Data set
Bridge sub-categories correlation data set
Number of spans correlation data set
Design year highway bridge data set
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APPENDIX H
EMPIRICAL FRAGILITY CURVES

Event: Northridge earthquake.
Dependent variable: Repair cost ratio.

Independent variable: Peak ground acceleration based on WCFS [1995].

Grouped by Data set
Bridge sub-categories correlation data set
Number of spans correlation data set
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Multidisciplinary Center for Earthquake Engineering Research
List of Technical Reports

The Multidisciplinary Center for Earthquake Engineering Research (MCEER) publishes technical reports on a variety of
subjects related to earthquake engineering written by authors funded through MCEER. These reports are available from both
MCEER Publications and the National Technical Information Service (NTIS). Requests for reports should be directed to
MCEER Publications, Multidisciplinary Center for Earthquake Engineering Research, State University of New York at
Buffalo, Red Jacket Quadrangle, Buffalo, New York 14261. Reports can also be requested through NTIS, 5285 Port Royal
Road, Springfield, Virginia 22161. NTIS accession numbers are shown in parenthesis, if available.

NCEER-87-0001

NCEER-87-0002

NCEER-87-0003

NCEER-87-0004

NCEER-87-0005

NCEER-87-0006

NCEER-87-0007

NCEER-87-0008

NCEER-87-0009

NCEER-87-0010

NCEER-87-0011

NCEER-87-0012

NCEER-87-0013

Formerly the National Center for Earthquake Engineering Research

"First-Year Program in Research, Education and Technology Transfer,” 3/5/87, (PB88-134275, A04, MF-
A01).

"Experimental Evaluation of Instantaneous Optimal Algorithms for Structural Control," by R.C. Lin, T.T.
Soong and A.M. Reinhorn, 4/20/87, (PB88-134341, A04, MF-A01).

“Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by AM. Reinho
and R.L. Ketter, to be published. ‘

"The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C.
Lee, 6/1/87, (PB88-134259, A03, MF-A01). This report is available only through NTIS (see address given
above).

"A Finite Element Formulation for Nonlinear Viscoplastic Material Using a Q Model," by O. Gyebi and G.
Dasgupta, 11/2/87, (PB88-213764, A08, MF-AQ1).

"Symbolic Manipulation Program (SMP) - Algebraic Codes for Two and Three Dimensional Finite Element
Formulations," by X. Lee and G. Dasgupta, 11/9/87, (PB88-218522, A05, MF-A01).

"Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A.
Akbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333, A06, MF-A01). This report is only available
through NTIS (see address given above).

"IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures," by Y.J. Park,
AM. Reinhom and S.K. Kunnath, 7/20/87, (PB88-134325, A09, MF-A01). This report is only available
through NTIS (see address given above).

"Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by
M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704, A03, MF-A01). This
report is available only through NTIS (see address given above).

"Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.S. Veletsos and K.W.
Dotson, 6/1/87, (PB88-134291, A03, MF-A01). This report is only available through NTIS (see address
given above).

"Seismic Probabilistic Risk Assessment and Seismic Margins Studies for Nuclear Power Plants," by
Howard H.M. Hwang, 6/15/87, (PB88-134267, A03, MF-A01). This report is only available through NTIS
(see address given above).

"Parametric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration Excitations,"
by Y. Yong and Y.X. Lin, 6/10/87, (PB88-134309, A03, MF-A01). This report is only available through
NTIS (see address given above).

"Frequency Response of Secondary Systems Under Seismic Excitation," by J.A. HoLung, J. Cai and Y.X.
Lin, 7/31/87, (PB88-134317, A0S, MF-A01). This report is only available through NTIS (see address given
above).
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NCEER-87-0028

NCEER-88-0001

NCEER-88-0002

Formerly the National Center for Earthquake Engineering Research

"Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series
Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283, A0S, MF-A01). This report is only
available through NTIS (see address given above). -

"Detection and Assessment of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 8/25/87,
(PB88-163712, A0S, MF-AQ1). This report is only available through NTIS (see address given above).

"Pipeline Experiment at Parkfield, California,” by J. Isenberg and E. Richardson, 9/15/87, (PB88-163720,
A03, MF-A01). This report is available only through NTIS (see address given above).

"Digital Simulation of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada, 8/31/87,
(PB88-155197, AG4, MF-A01). This report is available only through NTIS (see address given above).

"Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Truncation of
Small Control Forces," J.N. Yang and A. Akbarpour, 8/10/87, (PB88-163738, A08, MF-A01). This report is
only available through NTIS (see address given above).

"Modal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation," by J.N.
Yang, S. Sarkani and F.X. Long, 9/27/87, (PB88-187851, A04, MF-A01).

"A Nonstationary Solution in Random Vibration Theory," by JR. Red-Horse and P.D. Spanos, 11/3/87,
(PB88-163746, A03, MF-AO1).

"Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by A.S. Veletsos and K.W.
Dotson, 10/15/87, (PB88-150859, A04, MF-A01).

"Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M.
Shinozuka, 10/9/87, (PB88-150867, A0S, MF-A01). This report is available only through NTIS (see
address given above).

"Active Structural Control in Civil Engineering," by T.T. Soong, 11/11/87, (PBS8-187778, A03, MF-A01),

"Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by K.W. Dotson
and A.S. Veletsos, 12/87, (PB88-187786, A03, MF-A01).

"Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and
Engineering Practice in Eastern North America,” October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB88-
188115, A23, MF-AO1).

"Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by J. Pantelic and A.
Reinhorn, 11/87, (PB88-187752, A03, MF-A01). This report is available only through NTIS (see address
given above).

"Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S.
Srivastav and J.F. Abel, 12/30/87, (PB88-187950, A05, MF-AO1). This report is only available through
NTIS (see address given above).

"Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480, A04, MF-
AOD).

"Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics,” by W.
McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760, A03, MF-AO1). This report is only available
through NTIS (see address given above).

"Optimal Control of Nonlinear Flexible Structures," by JN. Yang,
(PB88-213772, A06, MF-A01).

FX. Long and D. Wong, 1/22/88,
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NCEER-88-0011
NCEER-88-0012
NCEER-88-0013
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NCEER-88-0016

NCEER-88-0017

NCEER-88-0018

NCEER-88-0019

Formerly the National Center for Earthquake Engineering Research

"Substructm'xig Techniques in the Time Domain for Primary-Secondary Structural Systems," by G.D.
Manolis and G. Juhn, 2/10/88, (PB88-213780, A04, MF-AO1). -

"Tterative Seismic Analysis of Primary-Secondary Systems," by A. Singhal, L.D. Lutes and P.D. Spanos,
2/23/88, (PB88-213798, A04, MF-A0Q1).

“Stochastic Finite Element Expansion for Random Media," by P.D. Spanos and R. Ghanem, 3/14/88,
(PB88-213806, A03, MF-AQ1).

"Combining Structural Optimization and Structural Control," by F.Y. Cheng and C.P. Pantelides, 1/10/88,
(PB88-213814, A05, MF-AQ1).

"Seismic Performance Assessment of Code-Designed Structures," by HH-M. Hwang, J-W. Jaw and H-J.
Shau, 3/20/88, (PB88-219423, A04, MF-A01). This report is only available through NTIS (see address
given above).

"Reliability Analysis of Code-Designed Structures Under Natural Hazards," by HH-M. Hwang, H. Ushiba
and M. Shinozuka, 2/29/88, (PB88-229471, A07, MF-AO1). This report is only available through NTIS (see
address given above). '

"Seismic Fragility Analysis of Shear Wall Structures," by J-W Jaw and H.H-M. Hwang, 4/30/88, (PB89-
102867, A04, MF-A01).

;'Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of
Performances of Various Systems," by F-G Fan, G. Ahmadi and 1.G. Tadjbakhsh, 5/18/88, (PB89-122238,
A06, MF-A01). This report is only available through NTIS (see address given above).

"Seismic Floor Response Spectra for a Combined System by Green's Functions,"” by F.M. Lavelle, LA.
Bergman and P.D. Spanos, 5/1/88, (PB89-102875, A03, MF-A01).

"A New Solution Technique for Randomly Excited Hysteretic Structures,” by G.Q. Cai and Y.K. Lin,
5/16/88, (PB89-102883, A03, MF-A01).

"A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge," by K. Weissman,
supervised by J.H. Prevost, 5/24/88, (PB89-144703, A06, MF-A01).

"Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils," by J.H.
Prevost and D.V. Griffiths, to be published.

"Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam," by D.V.
Griffiths and J.H. Prevost, 6/17/88, (PB89-144711, A04, MF-A01).

"Damage Assessment of Reinforced Concrete Structures in Eastern United States," by A.M. Reinhom, M.J.
Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220, A04, MF-A01). This report is only available
through NTIS (see address given above).

"Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils," by S.
Ahmad and A.S.M. Israil, 6/17/88, (PB89-102891, A04, MF-AQ1).

"An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers,” by R.C. Lin,
Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212, A0S, MF-A01). This report is available
only through NTIS (see address given above).

"Experimental Investigation of Primary - Secondary System Interaction,” by G.D. Manolis, G. Juhn and
AM. Reinhomn, 5/27/88, (PB89-122204, A04, MF-A01).
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Formerly the National Center for Earthquake Engineering Research

"A Response Spectrum Approach For Analysis of Nonclassically Damped Structures," by JN. Yang, S.
Sarkani and F.X. Long, 4/22/88, (PB89-102909, A04, MF-A01).

"Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad,
7/21/88, (PB89- 122196 A04, MF-AO01). This report is only available through NTIS (see address given
above).

"Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E.
DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188, A0O5, MF-A01). This report is available only
through NTIS (see address given above).

"Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure," by B.K. Bhartia and E.H. Vanmarcke,
7/21/88, (PB89-145213, A05, MF-AO1).

"Automated Seismic Design of Reinforced Concrete Buildings," by Y.S. Chung, C. Meyer and M.
Shinozuka, 7/5/88, (PB89-122170, A06, MF-AO01). This report is available only through NTIS (see address
given above).

"Experimental Study of Active Control of MDOF Structures Under Seismic Excitations," by L.L. Chung,
R.C.Lin, T.T. Soong and A.M. Reinhorn, 7/10/88, (PB89-122600, A04, MF-A01).

"Earthquake Simulation Tests of a Low-Rise Metal Structure," by J.S. Hwang, K.C. Chang, G.C. Lee and
R.L. Ketter, 8/1/88, (PB89-102917, A04, MF-AO1).

"Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes," by F. Kozin and
HX. Zhou, 9/22/88, (PB90-162348, A04, MF-A01).

"Seismic Fragility Analysis of Plane Frame Structures," by H.H-M. Hwang and Y.K. Low, 7/31/88, (PB89-
131445, A06, MF-AQ1).

"Response Analysis of Stochastic Structures," by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88, (PB89-
174429, A04, MF-A01).

"Nonnormal Accelerations Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D. Lutes,
9/19/88, (PB89-131437, A04, MF-AQ1).

"Design Approaches for Soil-Structure Interaction,” by A.S. Veletsos, A.M. Prasad and Y. Tang, 12/30/88,
(PB89-174437, A03, MF-AO1). This report is available only through NTIS (see address given above).

"A Re-evaluation of Design Spectra for Seismic Damage Control," by C.J. Turkstra and A.G. Tallin,
11/7/88, (PB89-145221, A05, MF-AQ1).

"The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tensile Loading," by
V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB89-163737, A08, MF-A01).

"Seismic Response of Pile Foundations,” by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88, (PB89-
145239, A04, MF-AQ1).

"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A M. Reinhorn,
S.K. Kunnath and N. Panahshahi, 9/7/88, (PB89-207153, A07, MF-AO1).

"Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular
Integrals, Modal Analysis, and Substructuring,” by C-S. Tsai, G.C. Lee and R.L. Ketter, 12/31/88, (PB89-
207146, A04, MF-A01).

"Optimal Placement of Actuators for Structural Control," by F.Y. Cheng and C.P. Pantelides, 8/15/88,
(PB89-162846, A05, MF-A01).
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"Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling," by A.
Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457, A10, MF-A01). This report is
available only through NTIS (see address given above).

"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M.
Ettouney, 10/15/88, (PB90-145681, A04, MF-A01).

"Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and
M. Ettouney, 10/15/88, to be published.

"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads," by W.
Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625, A05, MF-A01).

"Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak,
10/15/88, (PBR9-174445, A03, MF-AO1).

"Nonstationary Models of Seismic Ground Acceleration,"” by M. Grigoriu, S.E. Ruiz and E. Rosenblueth,
7/15/88, (PB89-189617, A04, MF-AQ1).

"SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M.
Shinozuka, 11/9/88, (PB89-174452, A08, MF-AO1).

"First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle,
9/15/88, (PB89-174460, A05, MF-A01). This report is only available through NTIS (see address given
above).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383, A05, MF-AQ1).

"Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation," by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88, (PB89-174478,
A04, MF-A01).

"Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismically
Excited Building," by J.A. HoLung, 2/16/89, (PB89-207179, A04, MF-A01).

*Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures," by HH-M.
Hwang and J-W. Jaw, 2/17/89, (PB89-207187, A05, MF-AO1).

"Hysteretic Columns Under Random Excitation,” by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513, A03,
MF-A01).

"Experimental Study of ‘Elephant Foot Bulge' Instability of Thin-Walled Metal Tanks," by Z-H. Jia and
R.L. Ketter, 2/22/89, (PB89-207195, A03, MF-AQ1).

"Experiment on Performance of Buried Pipelines Across San Andreas Fault," by J. Isenberg, E. Richardson
and T.D. ORourke, 3/10/89, (PB89-218440, A04, MF-A01). This report is available only through NTIS
(see address given above).

"A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings," by M. Subramani,
P. Gergely, C.H. Conley, J.F. Abel and A H. Zaghw, 1/15/89, (PB89-218465, A06, MF-AQ1).

"Liquefaction Hazards and Their Effects on Buried Pipelines,” by T.D. ORourke and P.A. Lane, 2/1/89,
(PB89-218481, A09, MF-A01).
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NCEER-89-0017
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NCEER-89-0019

NCEER-89-0020
NCEER-89-0021

NCEER-89-0022

NCEER-89-0023

NCEER-89-0024

Formerly the National Center for Earthquake Engineering Research

"Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and
M. Shinozuka, 1/26/89, (PB89-207211, A04, MF-AO1).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico," by
A.G. Ayala and M.J. ORourke, 3/8/89, (PB89-207229, A06, MF-A01).

"NCEER Bibliography of Earthquake Education Materials," by K.E.K. Ross, Second Revision, 9/1/89,
(PB90-125352, A0S, MF-AOQ1). This report is replaced by NCEER-92-0018.

"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Structures (IDARC-3D),
Part I - Modeling," by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB90-114612, A07, MF-A01).

"Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108648, A15,
MF-A01). :

"Repair and Strengthening of Beam-to-Column Connections Subjected to Earthquake Loading,” by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885, A06, MF-AQ1).

"Program EXKAL?2 for Identification of Structural Dynamic Systems,” by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877, A09, MF-A01).

"Response of Frames With Bolted Semi-Rigid Connections, Part 1 - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A.M. Reinhomn, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89,
to be published.

"ARMA Monte Carlo Simulation in Probabilistic Structural Analysis," by P.D. Spanos and M.P. Mignolet,
7/10/89, (PB90-109893, A03, MF-A01).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools,” Edited by K.E.K. Ross, 6/23/39, (PB90-108606, A03, MF-A01).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our
Schools,"” Edited by K.E.K. Ross, 12/31/89, (PB90-207895, A012, MF-A02). This report is available only
through NTIS (see address given above).

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146, AG4, MF-A01).

"Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S.
Nagarajaiah, A M. Reinhorn and M.C. Constantinou, 8/3/89, (PB90-161936, A06, MF-A01). This report
has been replaced by NCEER-93-0011.

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y. Cheng
and C.P. Pantelides, 8/3/89, (PB90-120445, A04, MF-A01).

"Subsurface Conditions of Memphis and Shelby County,” by K.W. Ng, T-S. Chang and H-H.M. Hwang,
7/26/89, (PB90-120437, A03, MF-A0Q1).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines,” by K. Elhmadi and M.J.
ORourke, 8/24/89, (PB90-162322, A10, MF-A02).

"Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-
127424, A03, MF-AO1).

"Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S.
Hwang and G.C. Lee, 9/18/89, (PB90-160169, A04, MF-A01).
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Formerly the National Center for Earthquake Engineering Research

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical
Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944, A07, MF-AQ1). This report is available only
through NTIS (see address given above). -

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by
AM. Reinhom, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-
173246, A10, MF-AQ2).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699, A07, MF-AQ1).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by HH.M.
Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633, A0S, MF-AOQ1).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes," by HHM. Hwang,
C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330, A04, MF-AQ1).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658, A08, MF-A01).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M.
Grigoriu and T.T. Soong, 11/10/89, (PB90-161951, A04, MF-AQ1).

"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. ORourke and M. Hamada, 12/1/89,
(PB90-209388, A22, MF-A03).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures," by J.M. Bracci,
AM. Reinhorn, J.B. Mander and S.K. Kunnath, 9/27/89, (PB91-108803, A06, MF-A01).

"On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89,
(PB90-173865, A05, MF-A01).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts,” by A.J. Walker and HE. Stewart,
7/26/89, (PB90-183518, A10, MF-AQ1).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and
L. Baumgrass, 1/17/89, (PB90-208455, A04, MF-AQ1).

"A Deterministic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294, A03, MF-A01).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB90-173923, A04, MF-A01).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority," by C.J. Costantino,
C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887, A06, MF-AO1).

"Centrifugal Modeling of Dynamic Soil-Structure Interaction," by K. Weissman, Supervised by J.H.
Prevost, 5/10/89, (PB90-207879, AG7, MF-A01).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment," by I-K. Ho and
AE. Aktan, 11/1/89, (PB90-251943, A07, MF-A01).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by
T.D. ORourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596, AG5, MF-A01).
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NCEER-90-0009
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NCEER-90-0011
NCEER-90-0012

NCEER-90-0013

NCEER-90-0014
NCEER-90-0015
NCEER-90-0016
NCEER-90-0017
NCEER-90-0018

NCEER-90-0019

Formerly the National Center for Earthquake Engineering Research

"Nonnormal Secondary Response Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes,
2/28/90, (PB90-251976, A07, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-251984, A05, MF-
AO0S5). This report has been replaced by NCEER-92-0018.

"Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90, (PB90-251984,
A05, MF-A01). '

"NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3),”
by P. Friberg and K. Jacob, 3/31/90 (PB90-258062, A04, MF-A01).

"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,"
by HH.M. Hwang and C-H.S. Chen, 4/16/90, (PB90-258054, A04, MF-A01).

"Site-Specific Response Spectra for Memphis Sheahan Pumping Station," by HH.M. Hwang and C.S. Lee,
5/15/90, (PB91-108811, A05, MF-A01).

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. ORourke, T. ORourke and M. Shinozuka, 5/25/90, (PB91-108837, A06, MF-A01).

"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S.
Cakmak, 1/30/90, (PB91-108829, A04, MF-A01).

"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M.
Shinozuka, 6/8/9, (PB91-110205, A0S, MF-A01).

"Program LINEARID for Identification of Linear Structural Dynamic Systems,” by C-B. Yun and M.
Shinozuka, 6/25/90, (PB91-110312, A08, MF-A01).

"Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by AN. Yiagos,
Supervised by J.H. Prevost, 6/20/90, (PB91-110197, A13, MF-A02).

"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A M. Reinhorn, 7/1/90, (¥BI1-
110320, AO8, MF-A01).

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details,” by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795, A11, MF-A02).

"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes," by JN. Yang and A.
Danielians, 6/29/90, (PB91-125393, A04, MF-A01).

"Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li,
6/29/90, (PB91-125401, A03, MF-A01).

"Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90,
(PB91-125377, A03, MF-A01).

"Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee
and H. Hwang, 8/10/90, (PB91-125427, A09, MF-A01).

"Experimental and Analytical Study of 2 Combined Sliding Disc Bearing and Helical Steel Spring Isolation

System," by M.C. Constantinou, A.S. Mokha and A M. Reinhorn, 10/4/90, (PB91-125385, A06, MF-A01).
This report is available only through NTIS (see address given above).
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NCEER-91-0002

NCEER-91-0003

NCEER-91-0004

NCEER-91-0005

NCEER-91-0006

NCEER-91-0007

Formerly the National Center for Earthquake Engineering Research

"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a
Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90, (PB91-125419, A0S,

MF-A01). .

"Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, (PB91-170381, A0S, MF-AO1). :

"Evaluation of Seismic Damage Indices for Reinforced Concrete Structures,” by S. Rodriguez-Gomez and
A.S. Cakmak, 9/30/90, PB91-171322, A06, MF-A01).

*Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Gazetas and MR. Oh,
10/11/90, (PB91-196857, AC3, MF-A0Q1). .

"A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and
Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272, A03, MF-A01).

“A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong
and A.H.-S. Ang, 10/30/90, (PB91-170399, A09, MF-AOQ1).

"MUMOID User's Guide - A Program for the Identification of Modal Parameters,” by S. Rodriguez-Gomez
and E. DiPasquale, 9/30/90, (PB91-171298, A04, MF-AQ1).

"SARCF-TI User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez, Y.S.
Chung and C. Meyer, 9/30/90, (PB91-171280, A05, MF-A01).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris
and M.C. Constantinou, 12/20/90 (PB91-190561, A06, MF-AQ1).

"Soil Effects on Earthquake Ground Motions in the Memphis Area," by H. Hwang, C.S. Lee, KW. Ng and
T.S. Chang, 8/2/90, (PB91-190751, A0S, MF-AQ1).

"Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. ORourke and M.
Hamada, 2/1/91, (PB91-179259, A99, MF-A04). :

"Physical Space Solutions of Non-Proportionally Damped Systems," by M. Tong, Z. Liang and G.C. Lee,
1/15/91, (PB91-179242, A04, MF-A01).

"Seismic Response of Single Piles and Pile Groups,” by K. Fan and G. Gazetas, 1/10/91, (PB92-174994,
A04, MF-AOQ1).

"Damping of Structures: Part 1 - Theory of Complex Damping," by Z. Liang and G. Lee, 10/10/91, (PB92-
197235, A12, MF-A03).

"3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part IL" by S.
Nagarajaiah, A.M. Reinhorn and M.C. Constantinou, 2/28/91, (PB91-190553, A07, MF-A0Q1). This report
has been replaced by NCEER-93-0011.

"A Multidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices," by
E.J. Graesser and F.A. Cozzarelli, 4/9/91, (PB92-108364, A04, MF-A01).

"A Framework for Customizable Knowledge-Based Expert Systems with an Application to 2 KBES for

Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves, 4/9/91,
(PB91-210930, A08, MF-AO1).
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NCEER-91-0008

NCEER-91-0009

NCEER-91-0010

NCEER-91-0011

NCEER-91-0012

NCEER-91-0013

NCEER-91-0014

NCEER-91-0015

- NCEER-91-0016

NCEER-91-0017

NCEER-91-0018

NCEER-91-0019 -

NCEER-91-0020

NCEER-91-0021

NCEER-91-0022

NCEER-91-0023

NCEER-91-0024

NCEER-91-0025

Formerly the National Center for Earthquake Engineering Research

"Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method,"
by G.G. Deierlein, S-H. Hsieh, Y-J. Shen and J.F. Abel, 7/2/91, (PB92-113828, A05, MF-A01).

"Earthquake Education Materials for Grades K-12," by K.EK. Ross, 4/30/91, (PB91-212142, A06, MF-
AO01). This report has been replaced by NCEER-92-0018.

"Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile,” by N.
Makris and G. Gazetas, 7/8/91, (PB92-108356, A04, MF-A0Q1).

"Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model," by K.C. Chang,
G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," 7/2/91, (PB93-116648, A06, MF-A02).

"Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers," by K.C. Chang, T.T.
Soong, S-T. Oh and M.L. Lai, 5/17/91, (PB92-110816, A05, MF-A01).

"Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling,” by S.
Alampalli and A-W.M. Elgamal, 6/20/91, to be published.

"3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures,” by P.C.
Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91, (PB92-113885, A09, MF-A02).

"Evaluation of SEAOC Design Requirements for Sliding Isolated Structures,” by D. Theodossiou and M.C.
Constantinou, 6/10/91, (PB92-114602, A11, MF-A03).

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R.
Somaprasad, T. Toksoy, H. Yoshiyuki and A .E. Aktan, 7/15/91, (PB92-129980, A07, MF-A02).

"Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building," by A.G. El-Attar, RN.
White and P. Gergely, 2/28/91, (PB92-222447, A06, MF-AQ2).

"Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building," by A.G. El-Attar,
R.N. White and P. Gergely, 2/28/91, (PB93-116630, A08, MF-A02).

"Transfer Functions for Rigid Rectangular Foundations," by A.S. Veletsos, AM. Prasad and W.H. Wu,
7/31/91, to be published.

"Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems," by J.N. Yang, Z. Li and A.
Danielians, 8/1/91, (PB92-143171, A06, MF-AQ2).

"The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for
U.S. Earthquakes East of New Madrid," by L. Seeber and J.G. Armbruster, 8/28/91, (PB92-176742, A06,
MF-A02). .

"Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for
Change - The Roles of the Changemakers,” by K.EK. Ross and F. Winslow, 7/23/91, (PB92-129998, A12,
MF-A03).

"A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings," by
HHM. Hwang and H-M. Hsu, 8/10/91, (PB92-140235, A09, MF-A02).

"Experimental Verification of a Number of Structural System Identification Algorithms," by R.G. Ghanem,
H. Gavin and M. Shinozuka, 9/18/91, (PB92-176577, A18, MF-A04).

"Probabilistic Evaluation of Liquefaction Potential," by HHH.M. Hwang and C.S. Lee,” 11/25/91, (PB92-
143429, A0S, MF-AQ1).
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NCEER-91-0026

NCEER-91-0027
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NCEER-92-0006

NCEER-92-0007

NCEER-92-0008

NCEER-92-0009

NCEER-92-0010

NCEER-92-0011

NCEER-92-0012

NCEER-92-0013

NCEER-92-0014

NCEER-92-0015

NCEER-92-0016

Formerly the National Center for Earthquake Engineering Research

"Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers," by
JN. Yang and Z. Li, 11/15/91, (PB92-163807, A04, MF-A01).

"Experimental and Theoretical Study of a Sliding Isolation System for Bridges," by M.C. Constantinou, A.
Kartoum, A.M. Reinhorn and P. Bradford, 11/15/91, (PB92-176973, A10, MF-A03).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case
Studies," Edited by M. Hamada and T. ORourke, 2/17/92, (PB92-197243, A18, MF-A04).

"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United States
Case Studies," Edited by T. ORourke and M. Hamada, 2/17/92, (PB92-197250, A20, MF-A04).

"Issues in Earthquake Education,” Edited by K. Ross, 2/3/92, (PB92-222389, A07, MF-A02).

"Proceedings from the First U.S. - Japan Workshop on Earthquake Protective Systems for Bridges," Edited
by LG. Buckle, 2/4/92, (PB94-142239, A99, MF-AQ6).

"Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space,” A.P. Theoharis,
G. Deodatis and M. Shinozuka, 1/2/92, to be published.

"Proceedings from the Site Effects Workshop," Edited by R. Whitman, 2/29/92, (PB92-197201, A04, MEF-
A01).

"Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction,” by
M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3/24/92, (PB92-222421, A13, MF-A(3).

"A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D.
Poland and J.O. Malley, 4/2/92, (PB92-222439, A20, MF-A04).

"Experimental and Analytical Study of a Hybrid Isolation System Using Friction Controllable Sliding
Bearings," by M.Q. Feng, S. Fujii and M. Shinozuka, 5/15/92, (PB93-150282, A06, MF-A02).

"Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J.
Durrani and Y. Du, 5/18/92, (PB93-116812, A06, MF-A02).

"The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under
Cyclic Loading and Strong Simulated Ground Motion," by H. Lee and S.P. Prawel, 5/11/92, to be
published. '

"Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades,
M.C. Constantinou and A M. Reinhorn, 5/20/92, (PB93-116655, A08, MF-AQ2).

"Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing,” by P.R. Witting
and F.A. Cozzarelli, 5/26/92, (PB93-116663, A05, MF-AO1).

"Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines," by M.J. ORourke,
and C. Nordberg, 6/15/92, (PB93-116671, A08, MF-A02).

"A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem," by M.
Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496, A05, MF-A01).

"Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and

Detailing Strategies for Improved Seismic Resistance," by G.W. Hoffmann, S K. Kunnath, A.M. Reinhorn
and J.B. Mander, 7/15/92, (PB94-142007, A08, MF-AQ2).
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NCEER-92-0017

NCEER-92-0018

NCEER-92-0019

NCEER-92-0020

NCEER-92-0021

NCEER-92-0022

NCEER-92-0023

NCEER-92-0024

NCEER-92-0025

NCEER-92-0026

NCEER-92-0027

NCEER-92-0028

"NCEER-92-0029

"Observations on Water System and Pipeline Performance in the Limén Area of Costa Rica Due to the
April 22, 1991 Earthquake,"” by M. ORourke and D. Ballantyne, 6/30/92, (PB93-126811, A06, MF-A02).

"Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.EX. Ross, 8/10/92,
(PB93-114023, A07, MF-A02).

"Proceedings from the Fourth Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures for Soil Liquefaction," Edited by M. Hamada and T.D. ORourke, 8/12/92, (PB93-
163939, A99, MF-E11).

"Active Bracing System: A Full Scale Implementation of Active Control,” by AM. Reinhorn, T.T. Soong,
R.C. Lin, M.A. Riley, Y.P. Wang, S. Aizawa and M. Higashino, 8/14/92, (PB93-127512, A06, MF. -A02).

"Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral
Spreads," by S.F. Bartlett and T.L. Youd, 8/17/92, (PB93-188241, A06, MF-A(2).

"IDARC Version 3.0: Inelastic Damage Analysis of Reinforced Concrete Structures,” by S.K. Kunnath,
AM. Reinhorn and R.F. Lobo, 8/31/92, (PB93-227502, A07, MF-A02).

"A Semi-Empirical Analysis of Strong-Motion Peaks in Terms of Seismic Source, Propagation Path and
Local Site Conditions, by M. Kamiyama, M.J. ORourke and R. Flores-Berrones, 9/9/92, (PB93-150266,
A08, MF-A02).

"Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part I: Summary of
Experimental Findings of Full Scale Beam-Column Joint Tests," by A. Beres, R.N. White and P. Gergely,
9/30/92, (PB93-227783, A0S, MF-A01).

"Experimental Results of Repaired and Retrofitted Beam-Column Joint Tests in Lightly Reinforced
Concrete Frame Buildings,"” by A. Beres, S. El-Borgi, R.N. White and P. Gergely, 10/29/92, (PB93-227791,
A05, MF-A01). '

"A Generalization of Optimal Control Theory: Linear and Nonlinear Structures," by J.N. Yang, Z. Li and S.
Vongchavalitkul, 11/2/92, (PB93-188621, A0S, MF-A01).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I -
Design and Properties of 2 One-Third Scale Model Structure,” by J.M. Bracci, A M. Reinhomn and J.B.
Mander, 12/1/92, (PB94-104502, A08, MF-A02).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part II -
Experimental Performance of Subassemblages,” by L.E. Aycardi, J.B. Mander and A.M. Reinhorn, 12/1/92,
(PB94-104510, A08, MF-A02).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part I -

~ Experimental Performance and Analytical Study of a Structural Model,” by J.M. Bracci, A.M. Reinhorn and

NCEER-92-0030

NCEER-92-0031

NCEER-92-0032

Formerly the National Center for Earthquake Engineering Research

J.B. Mander, 12/1/92, (PB93-227528, A09, MF-A01).

“Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part I - Experimental
Performance of Retrofitted Subassemblages,” by D. Choudhuri, J.B. Mander and A.M. Reinhomn, 12/8/92,
(PB93-198307, A07, MF-A02).

"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures; Part II - Experimental
Performance and Analytical Study of a Retrofitted Structural Model,” by J.M. Bracci, A M. Reinhorn and
J.B. Mander, 12/8/92, (PB93-198315, A09, MF-A03).

"Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid
Viscous Dampers," by M.C. Constantinou and M.D. Symans, 12/21/92, (PB93-191435, A10, MF-A03).
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NCEER-93-0014

NCEER-93-0015

Formerly the National Center for Earthquake Engineering Research

"Reconnaissance Report on the Cairo, Egypt Earthquake of October 12, 1992," by M. Khater, 12/23/92,
(PB93-188621, AG3, MF-AO01).

"Low-Level Dynamic Characteristics of Four Tall Flat-Plate Buildings in New York City," by H. Gavin, S.
Yuan, J. Grossman, E. Pekelis and K. Jacob, 12/28/92, (PB93-188217, A07, MF-AQ2).

"An Experimental Study on the Seismic Performance of Brick-Infilled Steel Frames With and Without
Retrofit,” by J.B. Mander, B. Nair, K. Wojtkowski and J. Ma, 1/29/93, (PB93-227510, A07, MF-AQ2).

"Social Accounting for Disaster Preparedness and Recovery Planning," by S. Cole, E. Pantoja and V. Razak,
2/22/93, (PB%94-142114, A12, MF-A03).

"Assessment of 1991 NEHRP Provisions for Nonstructural Components and Recommended Revisions," by
T.T. Soong, G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639, A06, MF-A02).

“Evaluation of Static and Response Spectrum Analysis Procedures of SEAOC/UBC for Seismic Isolated
Structures," by C.W. Winters and M.C. Constantinou, 3/23/93, (PB93-198299, A10, MF-A03).

"Earthquakes in the Northeast - Are We Ignoring the Hazard? A Workshop on Earthquake Science and
Safety for Educators," edited by K.E.K. Ross, 4/2/93, (PB94-103066, A09, MF-A02).

"Inelastic Response of Reinforced Concrete Structures with Viscoelastic Braces,” by R.F. Lobo, JM.
Bracci, K.L. Shen, AM. Reinhorn and T.T. Soong, 4/5/93, (PB93-227486, A05, MF-A02).

"Seismic Testing of Installation Methods for Computers and Data Processing Equipment,” by K. Kosar,
T.T. Soong, K.L. Shen, J.A. HoLung and Y.X. Lin, 4/12/93, (PB93-198299, A07, MF-A02).

"Retrofit of Reinforced Concrete Frames Using Added Dampers,” by A. Reinhorn, M. Constantinou and C.
L4, to be published. .

*Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers,”
by K.C. Chang, M.L. Lai, T.T. Soong, D.S. Hao and Y.C. Yeh, 5/1/93, (PB94-141959, A07, MF-AQ2).

"Seismic Performance of Shear-Critical Reinforced Concrete Bridge Piers,” by J.B. Mander, S.M. Waheed,
M.T.A. Chaudhary and S.S. Chen, 5/12/93, (PB93-227494, AO8, MF-A02).

"3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base
Isolated Structures,” by S. Nagarajaiah, C. Li, AM. Reinhorn and M.C. Constantinou, 8/2/93, (PB%-
141819, A09, MF-A02).
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