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We investigated the feasibility and desirability of implementing mathematical freight forecasting
models to be operated by the Ohio Department of Transportation. We interviewed potential users
to elicit what they considered desirable model outputs and conducted a survey of freight
forecasting efforts in other state DOT’s. The many different outputs mentioned by potential Ohio
users indicate a need for a general model. Despite many available freight models proposed in the
literature, our survey results show that few states can be considered to be active in comprehensive
freight forecasting. Still, several appear active in aspects of freight forecasting, primarily
addressing truck trips and using a few publicly available databases, often supplemented with
private data and special data collection efforts. More detailed investigations of statewide freight
models being developed in three states showed that the models in these states are all being
developed by consultants and designed to address statewide passenger, as well as freight
forecasting. They all employ modular frameworks resembling the traditional 4-step urban
transportation planning modeling system and presently emphasize assigning truck trips to the
highway network, although the eventual intent is to allow multimodal freight assignment. We
illustrate that simple models could presently be implemented with existing databases to serve
either as components in such statewide models or as stand-alone models. However, we also show
that different specifications can produce very different forecasts, and that it is not yet clear which
alternatives would be most useful.

We expect that statewide freight modeling activities should increase in state DOT’s in the near
future, that many of the models will resemble the 4-step urban passenger forecasting system, and
that implementations will concentrate on the highway network in the near future. We encourage
ODOT to implement a statewide freight model using a similar framework if it commits to
sustained development, research, and testing designed to regularly identify and implement
improved model components and accelerate understanding the appropriate use of the model.
Given the lack of experience with statewide freight models, we foresee that having consultants
simply “develop and turn over” a model would fail without such a commitment, even if agency
personnel are trained to run the model. To reduce costs, make expertise more readily available,
and help sustain commitment to regularly implementing improved components, we propose that
models be developed in collaboration with other states. Such collaboration would also allow a
stronger influence to be exerted in the design of federal freight studies and data collection efforts.
It could even be advantageous to formalize interstate collaboration by pooling funds to develop a
regional model that could be scaled to appropriate resolutions for the participating states.
Additionally, we encourage the formation of an advisory group consisting of experts who would
ensure the relevance of model developments and increase the likelihood of practical use.

We also present three similar methods of updating truck origin-destination (OD) matrices from
observed volumes and show that recently available network databases could be used with existing
software to perform intermodal assignment. We suggest that ODOT estimate a statewide truck OD
matrix from data recently collected in a roadside survey and routinely use some method to update
the estimated matrix. However, since the quality of intermodal assignments is limited by a lack of
acceptable logic and commodity OD matrices at this time, we propose that the use of intermodal
databases and software should presently be limited to developing and testing intermodal
assignment algorithms.
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DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the
facts and the accuracy of the data presented herein. The contents do not necessarily
reflect the official views or policies of the Ohio Department of Transportation or the
Federal Highway Administration. This report does not constitute a standard,
specification, or regulation.
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Section 1. Introduction

This report documents the results of our investigation into the feasibility of developing a

freight movement model for use in public sector planning in Ohio.

1.1 Motivation for Freight Modeling

Interest in freight planning issues has been increasing due, in part, to ISTEA legislation
and to the increased recognition of the economic importance of an efficient freight
transportation system. Large-scale infrastructure and policy alternatives are costly and
irreversible in the short term. Therefore, it is useful to be able to predict the resulting

impacts of the various alternatives before deciding which alternative to implement.

Freight flows can be considered a relatively direct impact of implemented
alternatives because of the economic benefits associated with freight transportation and
handling in a region. For instance, building or expanding an intermodal facility would
generate more freight flow in the surrounding region, increasing the economic activity in
the region. Freight flows can also be considered inputs to other impacts, such as
congestion, pavement deterioration, and accidents. For example, increased activity
derived from the new intermodal facility could generate increased truck or at-grade rail
traffic, which in turn could negatively affect highway network traffic unless further
investments are made or policies changed. Also, some freight attracted to the intermodal
facility might be diverted from facilities in other regions of the state, causing decreased

economic activity in these regions.

Although such impacts might be qualitatively envisioned through more informal
means, it would be preferable to support large-scale infrastructure and policy decisions
with quantitative estimates of the potential flows. Such estimates could conceivably be

produced from mathematical models based on explicit and understandable rules.
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A similar motivation exists for predicting passenger movements. The field of
passenger movement forecasting has matured to the point where there are well-
established and widely-recognized theories, algorithms, data collection procedures, and
institutional arrangements indicating who has what responsibility for the various
components of the process. Like other states, Ohio has an operational, model-based
system that is used to predict passenger flows. A similar model might be envisioned for

freight flow modeling.

Yet, even the mature field of passenger flow forecasting is presently being
reconsidered, and although forecasting freight movements appears to have many general
similarities to forecasting passenger flows, there are important differences that complicate

freight movement forecasting. For example:

- Freight transportation involves multiple commodities with distinct
cost characteristics and time requirements.

- The unit of analysis may not be the same across transport modes.

- Freight shipments can be greatly consolidated, making independence
assumptions among units of flow much less reasonable than in passenger flow
modeling.

- Route and mode choice decisions are the result of decisions of both shippers
and carriers.

- Freight cost functions are not always convex or even continuous; for instance,

rail cost functions are concave (marginally decreasing with higher volumes)

and discontinuous (jump to higher levels) when capacity is reached.

Empty rolling stock is an important component of freight transportation, and

special attention must be paid to backhauling operations.

The confidentiality of some freight data bases can make model estimation

difficult.

Such complexities make it unlikely that theoreticians and practitioners will soon
agree on a comprehensive, operational freight movement model or set of models. Indeed,
as we see in Section 3, there are many types of freight movement models being
developed. Although most of these are developed by academics, there have been parallel
modeling efforts undertaken at state departments of transportation. There have also been

federally funded studies attempting to coalesce the various freight modeling efforts into
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practical guidance, but as of yet, we have seen no acknowledged acceptance of these
guidelines by practitioners. Indeed, as we see in Section 2, responses to a survey of state
departments of transportation indicate that states vary greatly in their experience with

modeling.
1.2 Setting and Objectives

During the course of our work, some individuals proposed that the types of complexities
mentioned above make it unlikely that freight movement models useful to practitioners
could ever be developed. However, all models, including those dealing with passenger
flows, are simplifications of reality; they will, therefore, never replicate existing
conditions perfectly or produce error-free forecasts. Rather than evaluate the freight
forecasting system by how closely it produces outputs exhibited in reality, the system can

only be evaluated as to whether the benefits of using such a system outweigh its costs.

There have been no conclusive studies documenting that the benefits of modeling
passenger flows outweigh the costs. Nevertheless, ongoing investments in passenger
models and their widespread use demonstrate an important belief that the inaccuracies
and uncertainties inherent with modeling the trip making process are overcome by the
benefits of having these model outputs. Such revealed belief in the benefits of a flow
forecasting system can only come with time, however, and we feel that it would be too
difficult to determine whether a freight forecasting system would eventually demonstrate
net benefits. A review of freight forecasting efforts and data availability (see Section 3)
showed that specific freight models could be pursued. We, therefore, turned our attention
to assessing whether the time was appropriate to take steps toward the implementation

of a freight forecasting system and identifying what these steps might be.
We considered appropriate steps toward implementing a freight forecasting

system that would be regularly used for analysis of freight issues to public agencies in

Ohio. Discussions with individuals involved with freight transportation led us to
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conclude that the Ohio Department of Transportation (ODOT) would have primary
responsibility for any regularly used freight system developed in the near future. As seen
in Section 2, we investigated the desires of organizations other than ODOT, but we
considered these desires so that ODOT could take appropriate steps toward a system that

would be responsive to these needs.

There may be no more accurate means of understanding freight movements, and
even of quantifying and forecasting the magnitudes of the movements, than that of using
expert judgments. Indeed, if ODOT eventually commits to a formal freight forecasting
system, and as such a commitment would move closer toward implementation, we
recommend that appropriate individuals be formally designated as an advisory group
scheduled to discuss freight issues on a regular basis. The benefits of such a group
would lie in its ability to foresee structural changes that could not be forecast with a
mathematical modeling system which assumes that past correlations hold in the future.
Expert judgment would also be valuable in determining the values of parameters used in
mathematical models, modifying such values estimated from other means, and checking

the outputs of more traditional mathematical models for reasonableness.

Although we recognize the great benefits associated with using a designated group
of experts to provide judgments on freight movements, we focused on steps toward
implementing a mathematical forecasting system. Such a system can produce outputs and
a formal structure that help clarify expert judgment. It is also more conducive to an
ongoing, formal process that can be institutionally controlled by a lead organization. This
type of process would also lead to systematic collection, processing, and interpretation of
data that serve as inputs to the mathematical models, but that may also have secondary
uses and indirect benefits. In addition, a mathematical modeling system gives the
appearance of being less susceptible to individual biases than a system based solely on
expert judgment. This perceived objectivity would help generate support for propositions

based on the model results.
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1.3 Design and Overview of Report

In summary, we focused our investigation on determining the desirability of taking steps
toward implementing mathematical freight forecasting models eventually operated by
ODOT that address planning issues of concern to Ohio and identifying what the next
steps might be. To accomplish this, we investigated the perceived needs for a forecasting
model in Ohio, freight forecasting efforts in other state departments of transportation, and
the availability of models and freight databases. The results are presented in Sections 2

through 4, which serve as Part I of our report.

In Section 2 we report on the perceived needs for a forecasting model in Ohio and
freight forecasting efforts in other states. We interviewed individuals in Ohio for the
types of outputs they would desire from a freight forecasting model. The interviewees
provided many, varied, and general responses; no single output was predominant. Table
2.2 summarizes the general types of outputs mentioned by the interviewees and the
questions they said the outputs would help answer. We also present the results of our
survey of freight forecasting efforts in other states in Section 2. Table 2.3 summarizes the
responses to our survey. Similar to what was found in a survey conducted by Cambridge
Systematics, Inc. et al., (1997), few states consider themselves to be active in
comprehensive freight forecasting efforts. However, we found that more than the few
states mentioned in the Cambridge Systematics survey are involved with aspects of
freight forecasting, and many more are involved with forecasting truck trips. Table 2.4
presents a more detailed, “conditional” breakdown of the responses. It shows that, other
than for monitoring truck trips on the highway network, the same states seem to be

involved with several aspects of freight forecasting.

In Section 3 we summarize our investigations of existing freight databases and
models. We consider proposed models in the literature and modeling efforts underway
in three states. The overall impression is that many freight models exist that could

conceivably be employed in practice, but very few are. The efforts underway in the states
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investigated are similar. They are being developed by consultants and use a framework
resembling the modular approach of the traditional 4-step urban transportation planning
process. The intention is to develop intermodal and multimodal assignment models, but

the present emphasis is on assigning truck trips to the highway network.

We draw conclusions on Part I in Section 4. We believe that there is presently
little systematic freight modeling routinely conducted at state DOT’s, but we expect
activity to increase. We also believe that the activities in various states will probably
resemble variations of the 4-step process and concentrate on the highway network in the
near future. We propose that such a model could be developed in Ohio, but that it would
be risky to simply develop an Ohio statewide freight model at the present time. We feel
that statewide freight modeling is relatively new and expect that models produced in the
near future will be somewhat inaccurate and unresponsive to users’ needs, needs which
we saw to be not well articulated in our survey. We, therefore, conclude that if ODOT is
to pursue systematic freight modeling, it must be committed to sustained development
that would allow improvements in model components to be implemented on a regular
basis. There must also be an accompanying program of research, testing, and
performance tracking of model components that would allow the improvements to be
made. It would be advantageous to pursue this long-term development and refinement in
formal collaboration with other states. Formal collaboration would reduce costs to the
participating states, facilitate the sharing of expertise, and help sustain commitment to
model development and refinement after initial efforts are concluded. It would also lead

to a stronger influence on federal studies and data collection efforts.

In Part II, we consider a few simple, specific models or components that could
either stand alone or be incorporated in more complex statewide models. In Section 5,
we illustrate that indicator models could be used to forecast future commodity generation
in Ohio. These forecasts could be useful in themselves or modified for use in a trip
generation module of a larger model. In Section 6, we consider a model proposed to

forecast freight usage at intermodal facilities. The model formulation is similar to that
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used for discrete choice analysis, which frequently forms the basis of components of the
4-step model. Like the indicator models of Section 5, the model proposed in Section 6
could presently be used in Ohio. However, we illustrate that different alternatives of the
models in these two sections can produce very different forecasts, and it is not clear
which alternatives would be most useful either as a stand-alone model or as a components

in a statewide model.

In Section 7, we discuss three similar methods of updating truck origin-destination
(OD) matrices from observed truck volumes. Since ODOT has recently completed a
roadside survey from which a truck OD matrix could be estimated, and since
truck volumes are routinely collected, it would be relatively inexpensive to use any of
these procedures to maintain estimates of a statewide truck OD matrix. Simply
determining an OD matrix that is consistent with observed traffic flows does not directly
lead to forecasts of future conditions, but a good estimate of a current OD matrix could be
used to calibrate or validate components of a larger-scale model. Moreover, accurate

estimates of current OD patterns could assist experts when forecasting future patterns.

In Section 8, we show that recently available databases could be used with
existing software to perform intermodal assignment. Although the quality of the
assignments is presently limited by a lack of acceptable intermodal assignment logic,
these databases could be used to develop, test, and experiment with intermodal

assignment algorithms in the future.

In Section 9, we conclude by encouraging ODOT to pursue a statewide freight
modeling if a commitment is made to sustained development and modification; the
development efforts are similar to those that will be made in other states; and parallel
efforts are made to investigate, test, and track the performance of alternative component
formulations. We also recommend that ODOT try to formalize collaboration with other
states by pooling funds to developed a regional model that could be scaled to the
appropriate levels for the participating states. We further suggest that ODOT estimate a



statewide truck OD matrix and use observed truck volumes on highway segments to
update the matrix on a regular basis. Finally, if ODOT pursues systematic freight
modeling, we encourage the formation of an advisory group consisting of experts who
would ensure the relevance of model developments and increase the likelihood of

practical use.
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PART I: Needs, Surveys, and Reviews






Section 2. Background on Needs and Previous Efforts

In this section, we present what planners in Ohio expressed as desirable outputs from a
freight forecasting model and responses to a survey of freight forecasting activities in
other states. ODOT would want to ensure that any system developed would respond to
the needs of those who would use its outputs. We, therefore, interviewed selected
individuals in an open-ended, but structured manner to elicit what they thought would be
useful outputs from a forecasting model and the types of questions these outputs would
help answer. We see from the results in Section 2.1 that the individuals provided many
and varied responses. Many of the responses are associated, as least indirectly, with
forecasting freight on the highway network. Still, the responses were so different that
they illustrate that there is presently no consensus as to what an Ohio freight forecasting

model should produce.

In Section 2.2 we describe the survey of forecasting efforts in other states that we
administered. The general impression obtained from the results is that no mature, widely
accepted state DOT freight forecasting system exists; nor does it appear that one will
likely emerge in the near future. However, it appears that there is interest and activity in

freight forecasting and that this interest and activity may be increasing.

2.1 Local Interviews

Cambridge Systematics, et al., (1997) surveyed state departments of transportation about
needs they hoped freight forecasting models could fulfill. The needs most often cited by

the 38 states responding to the survey are listed in Table 2.1.

One can see from this table that truck-related needs dominated the responses.
Moreover, the first four needs, and to some extent the fifth need, listed in the table would
all require some type of truck trip assignment model, i.e., a model that would forecast

which highway segments would carry large volumes of truck traffic.



Table 2.1 Most often cited forecasting needs for a freight model

Forecasting Needs Total No. of States

Highway needs analysis 36

Truck routes and restrictions 35

Highway planning 35

Truck size and weight regulations 34

Planning of truck/rail intermodal facilities 35 (sic)
Airport planning 31

Rail facility and access planning 31
Promotion of economic development 30

Source: Cambridge Systematics, Inc., et al., 1997

The Cambridge Systematics survey of state needs is informative in at least two
ways. It can help federal officials direct freight modeling research and development
efforts that would be responsive to the needs of the states. It might also indicate where
individuals undertaking various modeling efforts in the states might expect collaboration
or shared expertise from other states. That is, it would be advantageous for a specific
state to develop freight models of interest to other states, thereby raising the likelihood of
being able to receive feedback from a greater pool of transportation professionals faced
with similar circumstances and to share results, expertise, and experiences with these

professionals.

Since our focus was on Ohio, we wanted to determine the perceived freight
modeling needs of key individuals in Ohio. We, therefore, met with the individuals

listed in Appendix 2.1 to discuss what they would want from a freight modeling system.

We allowed open-ended responses but tried to structure the discussions by asking
a predetermined set of questions. Specifically, we first asked for specific outputs the
individuals desired from freight forecasting models and for specific questions that these
outputs would help answer. We emphasized that the individuals should not consider
technical, economic, or institutional feasibility of producing these forecasts, but that they

should think of what they would like to be able to know in terms of freight flow. We then
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described the types of outputs produced from each component of the traditional passenger
flow 4-step process (Trip Generation-Trip Distribution-Modal Split-Traffic Assignment)

and asked if they considered any of these to be valuable in freight context.

We found that our structured approach was useful in eliciting responses from the
individuals, but not in eliciting specific model outputs desired. Rather, the responses to
the questions on the types of outputs desired triggered many comments that demonstrated
a general desire for freight modeling outputs. Except for the few individuals very
familiar with transportation modeling, however, these questions did not elicit well-
formulated specifications for model outputs. Our impression was that the individuals did
not feel especially hampered by not having a specific forecast available but, when asked,
could think of many general outputs they would consider useful. Perhaps due to this lack
of well-formulated desires for specific outputs, reactions to the types of the outputs
consistent with each component of the 4-step process did not help focus the needs any

further, except for those few individuals who were very familiar with this process.

In Table 2.2 , we list the types of outputs mentioned in our interviews and the
questions they might help answer. Since our questions encouraged open-ended responses,
and these responses were not expressed as cogent, well-formulated model outputs, we had
to edit and interpret answers to produce this table. However, we tried to limit our
personal interpretations and avoided extending responses outside of what was explicitly
stated. For example, some of the outputs listed in the table could be used in slightly
different ways, but we do not list these different ways if they were not explicitly
mentioned in the interviews. Similarly, one individual commented that knowing the time
when intermodal flows would increase would be important for budgeting purposes. This
timing issue would have similar importance for other model outputs, as well, but we only

list it where it was explicitly stated.

Although we had hoped to use a list like that in Table 2.2 to help prioritize the

types of freight forecasting models to be developed in Ohio, we strongly caution against
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doing so. Most of the questions listed in Table 2.2 could only be answered if freight
movements on the highway network could be forecast, and developing truck models may,
therefore, be a logical first step in developing a freight modeling system. Still, the
conclusion that we wish to draw from this list is that there is no consensus of opinion on
specific outputs desired from Ohio freight models. Moreover, when coupled with the
general impression we received from these meetings, we do not believe that pursuing
efforts to elicit freight forecasting needs of individuals in Ohio would be fruitful at this
time. There has recently been much change in many state agencies, and we expect this to
continue. Indeed, some of the individuals interviewed no longer hold the same positions
they did when they met with us. Many of the needs alluded to seemed to stem from
personal experiences, rather than needs associated with the position held by the
individual. Therefore, this list would probably not be stable through time, and one would

not wish to use it to fix long-term plans.

Table 2.2 Desirable freight modeling outputs stated in discussions and
motivating questions

Modal diversion:

What is the impact, in terms of truck-induced highway congestion, revenues, ... of
different rail investment scenarios?

What would be the diversion from truck to rail in response to increased highway
costs?

How much freight expected at a new facility would be carried by modes other
than trucks (to allow highway capacity planning around the facilities)?

How much air freight using other state airports would use Ohio airports in
response to investments in facilities?

Hazardous material routes:

What hazardous material routes should be designated by policy makers?

How much hazardous material is/will be carried on specific highway segments?

Origin-destination data:

How many truck trips will be destined for specific communities?
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Table 2.2 Desirable freight modeling outputs stated in discussions and
motivating questions (continued)

How much truck traffic could use local by-pass routes?

In which corridors are there/will there be significant shipments of commodities
that could be carried by both truck and rail (to determine “intercept” markets for
intermodal transport)?

Which corridors have significant truck traffic (to prioritize investments in
highways corridors)?

What OD table should be used in local assignment models? - -

What OD table should be used in state-wide assignment models?

Truck assignment data:

What are pavement and geometric requirements on highway segments?

How much traffic is expected at railroad-highway grade crossings?

How many empty trucks are using a segment (to determine potential for backhaul
traffic)?

Which segments should receive snow and ice removal priority (to facilitate
carrying high-value, time-sensitive goods)?

What quantities of commodities that could be carried by rail are/will be carried on
highway routes that parallel existing rail infrastructure?

What will be future levels of truck-induced pollution under various highway
investment scenarios?

What will be future highway capacity needs?

What will be truck volumes for alternative projects (to be used for project
prioritization)?

Rail movements:

How much traffic is expected at railroad-highway grade crossings?

What will be rail freight schedules (to allow coordination with intermodal
movements)?

Commodity levels:

How much freight, by commodity type, is/will be traveling in Ohio?
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Table 2.2 Desirable freight modeling outputs stated in discussions and
motivating questions (continued)

Truck response to tolls:

How many trucks will divert from Ohio toll roads in response to increased tolls?

Intermodal data:

How much in- or outbound freight at intermodal facilities will be carried by truck
(for highway capacity planning)?

How much intermodal freight will use a potential or existing facility?

When will critical levels of intermodal freight use a facility (to allow for capital
budgeting)?

Aggregate regional data:

How much freight originates or terminates in a region (to help prioritize regional
investments targeted toward job retention)?

2.2 DOT Surveys

As mentioned above, it would be advantageous if freight forecasting efforts in Ohio
paralleled those of other states. This is even more true, since our interviews in Ohio
revealed such varied desires on the types of outputs to be produced. We, therefore,
investigated general efforts underway in other state departments of transportation. We

did this by investigating available literature and by surveying the states.

Although some of the published literature mentioned models with state names
attached, we discovered that these could not be taken as indicative of efforts ongoing in
the states. After contacting some states, we found that some models associated with
states in the literature were either no longer used by the states or never were. In addition
to surveying states for their freight forecasting needs, Cambridge Systematics, et al.,
(1997) also asked for the freight forecasting efforts undertaken by the states. They
concluded that most states had “little or no experience in freight forecasting,” mentioning

Iowa, Oregon, and Washington as exceptions.
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We did not wish to duplicate the Cambridge Systematics, Inc. (CSI) survey.
However, based on the discussions with Ohio personnel discussed above and our review
of freight models (see Section 3), we were beginning to believe that any freight model
pursued by a DOT would have to be highly modular, with the possibility of developing
components that may be useful in themselves, as well as when combined with other
components in a more complex model. Therefore, we designed and administered our

own survey of the states.

Based on our model review (see Section 3), the CSI survey of state desires, and
our local interviews, we felt that the following components would be the most likely to be
contained in freight models developed at ODOT in the near future: 1) a component that
would correlate aggregate freight traffic with economic “indicators;” 2) a component that
produces a freight-based origin-destination matrix; 3) forecasts of truck trips on highway
segments. We wanted to keep the survey short to encourage response. Therefore, we
limited our questions to these components. The survey and accompanying cover letter

can be found in Appendix 2.2.

Through various means we found contacts that were likely to be associated with
freight modeling at the state departments of transportation. = We contacted these
individuals by email or fax with a preliminary letter (see Appendix 2.2), asking to whom
we should send the survey and whether they preferred to receive the survey by email or
fax. We received 37 responses to this inquiry and sent out surveys to the names provided
in these 37 responses. We received 23 (62.1%) completed surveys from the 37 we sent
out. A list of responding agencies and the contact points for these agencies are provided

in Appendix 2.2.

The responses are summarized in Table 2.3. Some of the responses confirm what
was found in the CSI survey, but some give a different impression. Specifically, as in the

CSI survey, we found few states actively involved with most aspects of freight modeling.



From Table 2.3, it is especially noteworthy that 16 of the 23 respondents said that they
never track the correlation between freight data and indicator variables (Question 1), and
that the other 6 said that they tracked this correlation “sometimes, but not regularly.” In
the same way, only eight of the 23 respondents have or produce freight OD tables
(Question 5), and only one of these said that that they update these regularly (every five

years).

Table 2.3 Responses to survey of freight modeling efforts in state agencies
(23 states returned questionnaire)

Questions Responses

Question 1. Track Correlation between Freight Data and
Indicator Variables

Regularly 1 (Illinois)
Sometimes 6 (Alaska, Indiana, Iowa, Kansas,
Minnesota, and Oregon)
Never 16
Question 2. Type of Freight Data Tracked Commodity Flows and Truck Weight, Tons

Moved by Origins & Destinations by
Commodity, Daily Traffic Counts, and

Vehicle Miles Traveled.
Means to Obtain Freight Data
Special Surveys 4 (Alaska, Illinois, Minnesota, and Iowa)
Private Data Supplier 2 (Minnesota and Iowa)
Public Data Source 7 (Alaska, Illinois, Indiana, Iowa, Kansas,
Minnesota, and Oregon)
Other 2 (Illinois and Indiana)
Question 3. Type of Correlated Variables Tracked Fuel Consumption, Economic Indicators,

Agricultural Production, and Demographic
Indicators (e.g., Population, Employment).

Means to Obtain Indicator Variables

Special Surveys 1 (Kansas)
Private Data Supplier 2 (Iowa and Kansas)
Public Data Source 3 (Jowa, Kansas, and Oregon)
Other 2 (Illinois and Indiana)
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Table 2.3 Responses to survey of freight modeling efforts in state agencies
(23 states returned questionnaire) (continued)

Questions

Responses

Question 4. Explicit Analysis of Correlation among
Freight Data and Other Variables

Yes 3 (Illinois, Kansas, and Oregon)
No 4
Type(s) of Explicit Analysis
Graphing Trends 2 (Indiana and Kansas)
Calculating Ratios 3 (Illinois, Indiana, and Kansas)
Regression Analysis 1 (Kansas)
Time Series Analysis 1 (Oregon)
Other 1 (Oregon)
Question 5. Has/Uses Freight O-D Table
Yes 8 (Colorado, Illinois, Indiana, Iowa, Kansas,
Maine, Minnesota, and Oregon)
No 15
If Yes, Updated How Often?
Every Five Year 1 (Maine)
Irregularly 7
If Yes, O-D Table Kept by Commodity?
Yes 7 (Colorado, Illinois, Indiana, Iowa, Kansas,
Minnesota, and Oregon)
No 1
If Kept by Commodity, Type of Category
STCC 5 (Colorado, Indiana, Iowa, Minnesota, and
Oregon)
SITC 0
Commodity Names (e.g., Coal, Grain) 3 (Illinois, Indiana, and Kansas)
Other 0
Associated Commodity Units
Tons/Year 4 (Colorado, Illinois, Iowa, Kansas)
Carload/Day 3 (Illinois, Indiana, and Oregon)
Means to Update the O-D Tables
Special O-D Survey 3 (Illinois, Kansas, and Oregon)
Models 4 (Indiana, Kansas, Maine, and Oregon)
Other (e.g., Receive and/or Purchase Information; 4 (Colorado, Illinois, Iowa, and Minnesota)

Public Data Sources)
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Table 2.3 Responses to survey of freight modeling efforts in state agencies
(23 states returned questionnaire) (continued)

Question 6. Monitor Truck Trips on Highway Network
Regularly

Yes 14 (Alaska, Arizona, Colorado,
Connecticut, Illinois, Indiana, Iowa,
Kansas, Kentucky, Maine, Minnesota,
North Dakota, Oregon, and West
Virginia)

No 9

Forecast Truck Trips

Yes 13 (Arizona, Colorado, Connecticut,
Illinois, Indiana, Iowa, Kansas,
Kentucky, Maine, Minnesota, North
Dakota, Oregon, and West Virginia)

No 1

Methods Used to Forecast

Trend Projection 9 (Arizona, Colorado, Connecticut, Indiana,
Iowa, Kentucky, Minnesota, North
Dakota and West Virginia)

Correlation 2 (Iowa and Minnesota)

Trip Assignment 6 (Connecticut, Iowa, Kansas, Kentucky,
Maine, and Oregon)

QOther 3 (Illinois, Minnesota, and West Virginia)

The results differ from the CSI survey when considering the responses to Question
6, however. It was not surprising that more than half the respondents said that they
“regularly monitor truck trips on ﬂighway links.” (We were actually surprised that more
than 14 of the 23 respohdents did not respond affirmatively, since such activity is an
important activity of most state DOT’s. Therefore, there may have been some
misunderstanding in this question, and one must be careful in drawing too strong a
conclusion from the responses.) However, collecting these data does not necessarily
mean that the states would also forecast truck trips. Yet, almost all (13 of 14) states
monitoring truck trips also said that they forecast truck trips.

We were also interested in the data sources and methods used by those responding
affirmatively to the questions. The states that track correlation between general freight
data and economic indicators mentioned Commodity Flows, Truck Weight, Tons Moved

by Origins & Destinations by Commodity, Daily Traffic Counts, and Vehicle Miles
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Traveled as freight variables and Fuel Consumption, Economic Indicators, Agricultural
Production, and Demographic Indicators as indicator variables. Although private data
suppliers and special surveys were used, public data sources were almost always used.
The public sources most often mentioned were the 1993 Commodity Flow Survey
(Bureau of Transportation Statistics, Department of Transportation), BEA Regional
Projections to 2040 Publication (Bureau of Economic Analysis), and Estimated
Waterborne Commerce Statistics Publication (US Army Corps of Engineers). The two
private sources listed on the surveys were Transearch (Reebie Associates) and Woods &
Poole Economics, Inc. Only three of the seven states responded that they “explicitly
analyze” the correlation (Question 4). Again, it is possible that different respondents
interpreted this question to mean different things, but we intended it to mean -- and
expect the respondents to have meant -- a systematic effort to assess the quality of the
correlation, as opposed to simply calculating some arbitrary correlation to be used (see

Section 5).

Eight of the 23 states said that they had or produced freight OD tables (Question
5). Some of these stated that these tables were kept by commodity, with most keeping
these by Standard Transportation Commodity Code (STCC). A list of the STCC is
provided in Appendix 2.2. Four of these eight said that they used models to produce the
OD tables, with Commodity Flow, Network Flow Transshipment, and Economic Input-
Output Models mentioned explicitly.

Trend projection was the most commonly stated means of forecasting truck trips
on highway links (Question 6), but assignment techniques were also mentioned

frequently.

We also looked at “conditional” responses to the survey. Specifically, in Table
2.4 we present the number of states responding affirmatively to aspects of freight
modeling, conditional upon the number that responded affirmatively to other aspects. For

example, the first row of numbers in the table shows that of the seven states which said
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that they conduct some type of analysis of economic indicators, (seven conduct some type
of analysis of economic indicators), six estimate some type of freight origin-destination
matrix, all seven monitor truck traffic on highway segments, and six forecast truck traffic
on highway segments. As another example, the entries in the row labeled “Indicators, O-
D matrices (6),” mean that of the six states that both analyze economic indicators and
estimate freight origin-destination tables, (all six analyze economic indicators), (all six
estimate freight origin-destination tables), all six monitor truck traffic on highway

segments, and all six forecast truck traffic on highway segments.

The entries in the table indicate that the same six or seven states are involved with
most of the freight modeling activity. Several other states are involved with monitoring
and forecasting truck traffic on highway segments, but if a state is going to be involved

with some other aspect, it seems that it will be involved with several aspects.

Table 2.4 Number of states conducting aspects of freight modeling, conditional on
having conducted other aspects of freight modeling

Indicators | O-D Matrices Monitor Highway Links Forecast Highway Links
Indicators (7) 7 6 7 6
O-D Matrices (8) 6 8 8
Monitor (14) 7 8 14 13
Forecast (13) 7 8 13 13
Indicators, O-D Matrices (6) 6 6 6 6
Indicators, Monitor (7) 7 6 7 6
Indicators, Forecast (6) 6 6 6 6
O-D Matrices, Monitor (8) 6 8 8 8
O-D Matrices, Forecast (8) 6 8 8 8
Monitor, Forecast (13) 7 8 13 13
Indicators, O-D, Monitor (6) 6 6 6 6
Indicators, O-D, Forecast (6) 6 6 6 6
Indicators, Monitor, Forecast (6) 6 6 6 6
O-D, Monitor, Forecast (6) 6 6 6 6
Indicators, O-D, Monitor, Forecast (6) 6 6 6 6
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Section 3. Review of Models and Databases

When beginning this project, we had not seen reviews of models or available data for
operational use. We, therefore, began searching the literature for proposed freight models
and looking on the internet for various public and private data sources. During our
searches, other helpful reviews appeared. Moreover, we determined that there were far
too many proposed data sources and models to review during this project in any
meaningful way. We, therefore, did not attempt to be comprehensive in our reviews.
Rather, we focus in this section on mentioning other reviews and on summarizing the
characteristics of selected databases that were mentioned in responses to our survey (see

Section 2) and on selected ongoing efforts in other state Departments of Transportation.

3.1 Review of Databases

Data could be useful in developing freight models in several ways.

1) Data on the freight movement variable (dependent variable) could be
extrapolated in time to form forecasts. These extrapolations could be formal,
using time series or trend analysis techniques. Or, they could be more informal,
based on holistic judgments after observing past and present data values.

2) Data on inputs (independent variables) to some existing freight movement
model may be used to run the models under alternative infrastructure or policy
scenarios, “predicting” the characteristics of freight movements under these
alternative scenarios. If the data only exists for present and past time periods,
freight movements that “could have existed” under the various scenarios could be
predicted. Or, like the dependent variables, the historical data could be
extrapolated into the future to predict the freight movements under the various
alternatives under future conditions. On the other hand, if future values of the
independent variable are presently forecast by other organizations, these values
could be used in the analysis.

3) Paired data on dependent (output) and independent (input) variables could be
used to investigate correlation between the variables and to test the degree of
correlation achieved with various models. Investigating correlation could be
relatively informal, e.g., plotting the paired data to see if they appear to be
correlated. Or, the investigation could be more formal, e.g., using the paired data
to calibrate parameters of a mathematical relation correlating the freight
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movement (dependent) variables with the (independent) variables thought to
influence the freight movement. Tests of correlation or statistics summarizing the
fit of the model to the data may be used to help determine if a given model should
be pursued, to choose among competing models, or to quantify the amount of
uncertainty in the forecasts.

Therefore, we thought it useful to investigate existing databases of variables that might be
relevant to freight forecasting models. When beginning this project, we had not seen
reviews of databases that could be used for freight forecasting. We, therefore, began
searching the literature and the internet for various public and private data sources.
However, during our searches, we found that good database reviews had previously been

conducted.

Cambridge Systematics, Inc., et al.  (1997) reviewed and summarized
approximately 50 freight databases from various public and private data sources. Most of
the data sources that they listed are also available in the Directory of Transportation Data
Sources (BTS) of the U.S. Department of Transportation. The authors tabulated the
selected data sources into different categories based on key characteristics, such as the

modes, commodities and types of movements covered in the data sources.

Fang, et al. (1996) investigated a number of available data sources that could be
useful in helping to forecast commodity flows between the U.S. and Mexico. The authors
listed seven major sources, along with brief descriptions of other data sources reviewed
by other study groups. They concluded that the accuracy of the predictive models
depends greatly on the quality of the available data.

The authors of the Quick Response Freight Manual (Cambridge Systematics, Inc.,
et al., 1996) listed state data centers from which users can obtain many freight-related

data when forecasting or modeling freight movements. Two data centers were mentioned

for Ohio;
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The Ohio Department of Development: The Ohio Department of Development
provides both historical and forecasting data on the general demographic statistics
and regional economic growth.

The Ohio State University, School of Public Policy and Management: The School
of Public Policy and Management at the Ohio State University published
Benchmark Ohio (Shkurti and Bartle, 1991). This publication tabulates a series of
statistical indicators in Ohio, such as population and economic variables, and
provides a guide to public sources with information on the categories (e.g.,
education, taxation, etc.) contained in the publication. ’

In addition to the state data centers, the authors also listed a number of other public and
commercial freight data sources. They categorized each source in terms of the perceived

usefulness to a quick response freight modeling process.

We review the most often mentioned databases from our survey (see Section 2)
and those databases that we discuss in other sections of this report. In addition to a brief
summary of each database, examples to illustrate the layout of the databases are also
provided. We group the databases according to whether they are available from a public

agency or private organization.

Public Data Sources: In general, data from public sources are usually easier to obtain and

less expensive than data from private sources. The majority of the public sources
mentioned in our Section 2 survey and used by us in Part II are provided by the U.S.
Department of Transportation (DOT) and related federal agencies. Moreover, many of
the public databases, are available over the Internet or can be obtained from the agencies

on other media (CD-ROM, Prints) for free.

Commodity Flow Survey 1993 Database: The 1993 Commodity Flow Survey was
conducted by the Census Bureau with major funding provided by the U.S. DOT. Flows
of goods and materials from origins to destinations within the United States are presented
in this database. Both detailed and aggregated data are prepared at different levels of

aggregation by geographic area (e.g., origin-destination pairs at the County, National



Transportation Analysis Region (NTAR), or State level). Commodity information is

categorized according to Standard Transportation Commodity Codes (STCC) up to 5-

digits. Other information collected for the sampled shipments are mode of transport,

weight, value of the shipment, and ton-miles. Table 3.1a provides an example for a

summary table from the database. This table indicates the “total” commodities shipped

into Ohio from neighboring states. An excerpt from the database, indicating shipment

characteristics by commodity (indicated by STCC codes) and mode of transportation

(indicated by different modes), can be found in Table 3.1b.

Table 3.1 Examples of 1993 Commodity Flow Survey Data

3.1a Example of 1993 Commodity Flow Survey Data: Shipments destined
for Ohio from neighboring states

State of Origin Value (million $) | Weight % value of % weight of
(thousand tons) state’s shipments | state’s shipments
Indiana 14,299 11,258 8.0 3.9
Kentucky 8,985 30,161 8.0 8.5
Michigan 20,735 26,873 8.1 8.3

Pennsylvania 11,288 15,705 4.5 3.8

West Virginia 4,136 27,520 11.8 11.7

Source: 1993 Commodity Flow Survey, TC92-CF, 1996

3.1b Example of 1993 Commodity Flow Survey Data: 1993 Shipment
characteristics by commodity and mode of transportation for Ohio

STCC code/Description/Modes Value Tons Ton-miles
Number % Number % Number % Average
(million $) (thousands) (millions) miles per
shipment
All Commodities Total 325,626 100.0 469,652 100.0 89,974 100.0 362

STCC 14, Nonmetallic Minerals

Total 1,225 100.0 128,639 100.0 6,357 100.0 41

Single Modes
Parcel, U.S. Postal Service S) S) - - - - (8)

. Private truck 681 55.6 81,049 63.0 3,309 52.1 34
For-hire truck 505 41.2 40,494 31.5 2,161 34.0 55
A.il' — — ——— —— -—— . —
Rail 14 1.1 3,150 2.4 647 10.2 21.4
Inland water (D) D) D D) (D) D) D)
Great Lakes (D) (D) (D) (D) (D) (D) (D)




3.1b Example of 1993 Commodity Flow Survey Database: 1993 Shipment
characteristics by commodity and mode of transportation for Ohio (continued)

STCC code/Description/Modes Value Tons Ton-miles

Number % Number % Number % Average
(million $) (thousands) (millions) miles per
shipment

Deep sea water --- --- --- --- --- --- ---

Pipeline --- “a- - —— - - -

Multiple Modes

Private and For-hire trucks — --= S) - --- - (S)

Truck and air - — —— — ——— - ——

Truck and rail — -—- --- — - - -

Truck and water - - - - — —— -

Truck and pipeline --- --- - --- - - -

Rail and water --- - - — - — —

Inland water and Great Lakes -- - --- - - - -

Inland water and deep sea -

Other Modes

Other and unknown modes 19 1.5 2,635 2.0 168 2.6 84

STCC 39, Miscellaneous Products of Manufacture

---Represents zero or less than 1 unit of measure

(D) Denotes figures withheld to avoid disclosing data for individual companies

(S) Data do not meet publication standards due to high sampling variability or other reasons
Source: 1993 Commodity Flow Survey, TC92-CF-36, Table 6, 1996

Bureau of Economic Analysis Regional Accounts Databases: Several databases are
prepared by the Bureau of Economic Analysis (BEA), which is a U.S. Department of
Commerce agency. The Gross State Product database covers the years from 1977 to
1994 and is categorized by industry. Table 3.2a provides a sample entry of the database

format.

The State Personal Income database includes tables for the years 1929 to 1996.
These are prepared on an annual basis, while quarterly tables are available from 1969 to

1997. Table 3.2b demonstrates the format used for the income database.

The Local Area Personal Income and Per Capita Personal Income database

contains average and total wages at the county and Metropolitan Statistical Area (MSA)
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levels on a per capita basis. This information is available from 1969 to 1996. Table 3.2¢

provides an excerpt from this database.

The Projections database currently includes data starting in 1969 and projected to
the year 2045. Projections are made 50 years in the future, and the BEA updates its U.S.
economic and population projections every five years. The primary database components

are Gross State Product, Employment, and Income data. Tlustrations excerpted from the

Projections database are provided in Table 3.2d.

Table 3.2 Examples of Bureau of Economic Analysis Regional Accounts Data

3.2a Example of Bureau of Economic Analysis Regional Accounts Data:
Gross State Product 1977 - 1994

1977 1993 1994
Industry (million dollars) (million dollars) | (million dollars)
Total Gross State Product 97,740 | ... 256,050 274,844
Farms 1,059 | .. 1,730 2,121
Mining 1,053 | ... 1,154 1,238
Nonmetallic minerals 143 300 304

Source: U.S. Department of Commerce, BEA, Regional Economic Analysis Division

3.2b Example of Bureau of Economic Analysis Regional Accounts Data:
Per Capita Personal Income, by state and regional, 1996

Region Income | % of national average | Dollar difference from U.S.Rank | % change
(dollars) national average 1995-1996

U. S. 24,426 100 0 4.6
Great Lakes
Mlinois 26,848 110 2,422 7 4.9
Michigan 24,954 102 519 16 3.7
Ohio 23,457 96 -969 21 4.0
Wisconsin 23,320 95 -1106 22 4.2
Indiana 22,601 93 -1825 28 4.1

Source: BEA, U.S. Department of Commerce
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3.2¢c Example of Bureau of Economic Analysis Regional Accounts Data:

Ohio personal income and per capita personal income

1994 1995 % change 1994 1995 Rank
Area Name personal income | personal income | 1994-1995 per capita per capita (within state)
(million §) (million §) income ($) income (§)

Ohio 236,544 250,865 6.1 21,317 22,531 -
Metropolitan 199,903 212,308 6.2 22,179 23,508 -
region

Non-metro. 36,641 38,557 5.2 17,587 18,338 -
Region

Franklin Co. 23,874 25,410 6.4 23,787 25,193 5

Source: USDOC/BEA, Survey of Current Business, August 1997

3.2d Example of Bureau of Economic Analysis Regional Accounts Database:
Projections of Employment, Income, and GSP in Ohio (1969-2045)

1969 1992 2045

Employment (thousand jobs)

All-industry total 4,687.9 5,881.7 8,012.4

Farm 126.3 99.2 74.5
Income (million of $87)

All-industry total 94,391.7 121,203.3 239,226.2

Farm 1,311.1 936.9 1,250.8
GSP (million of $87)

All-industry total (NA) 203,155.0 425,938.7

Farm (NA) 2,040.4 3,565.1

Source: Bureau of Economic Analysis, U.S. Department of Commerce

Estimated Waterborne Commerce Statistics Publications:

statistics on the commercial movement of foreign and domestic cargo.

These publications contain

Several

publications and data are prepared by the United States Army Corps of Engineers

(USACE). The Internal U.S. Waterway Monthly Tonnage Indicators database presents

trends in commodity tonnage flows from January 1994 to February 1998. The “Internal”

qualifier denotes that the commodities moved solely within the boundaries of the U.S.

Four different tonnage indicators (total monthly indicator, coal indicator, petroleum and




chemicals indicator, and food and farm products indicator) are included in this database
and updated on a monthly basis. The data are presented in both tabular and graphical
formats. Table 3.3a and Figure 3.1a illustrate the total monthly tonnage indicator in this
database.

The Internal U.S. Waterway Tonnage Comparisons database presents short tons
and percent change in short tons between adjacent years for both fiscal and calendar

years. Table 3.3b gives an example of the database comparing calendar year 1997 and
1996.

The Final Estimated Waterborne Commerce Statistics database is prepared and
published annually. The most recent report that we found is for calendar year 1996. In
this database, national tonnage and tonnage on selected inland waterways are reported on
a yearly basis from 1987 to 1996. Additional national summaries of the U.S. waterways
and domestic and foreign harbors are also provided in the database. Data are presented in
both tabular and graphical formats. Table 3.3c shows annual traffic on the Ohio River
(Upbound) from 1987 to 1996, categorized by commodity. Upbound, downbound, and
total commerce are all listed for the selected inland water. Table 3.3d and Figure 3.1b

illustrate the total monthly tonnage indicators in this database.

The 1996 Waterborne Tonnage for Principal U.S. Ports and all 50 States and
U.S. Territories database reports tonnage for domestic, foreign (imports and exports), and
intra-State waterborne traffic at the selected U.S. ports. This information is presented in a

tabular format. Table 3.3e and Table 3.3f illustrate the database format.
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Table 3.3 Examples of Estimated Waterborne Commerce Statistics Publications Data

3.3a Example of Estimated Waterborne Commerce Statistics Publications Data:

Total monthly tonnage indicator 1994-1998

Total Tons (millions)

Jan | Feb | Mar | Apr | May | June | July | Aug | Sep | Oct | Nov | Dec
1994 | 399 | 41.0| 49.7| 51.1 | 52.4| 50.0| 50.1 | 53.0| 519 55.6 | 540 51.4
1995 | 49.5]| 44.7| 52.6 | 53.4| 45.1 | 47.2 | 53.3| 52.1 | 51.8 | 55.2{ 54.4] 50.5
1996 || 42.7 | 41.1 | 52.8 | 51.5| 49.5[ 50.0 | 52.3 | 48.8 | 47.7 ] 52.8 | 53.0 | 44.6
1997 | 39.5]| 443 | 442 | 469 ] 523 | 50.4| 49.6 | 50.8 | 47.9 | 55.4| 52.3 ] 49.0
1998 | 41.8 | 43.8

Source: Waterborne Commerce Statistics Center, 1998

3.3b Example of Estimated Waterborne Commerce Statistics Publications Data:
Internal U.S. waterways short ton comparisons:

CY 1996 CY 1997 Percent Change
National Domestic Total 1100.7 1111.7 1.0
National Lakewise Total 114.9 123.1 7.2
National Coastwise Total 267.4 265.8 -0.6
National Internal Total:
All Internal Commodities 622.1 625.8 0.6
Food and Farm 89.3 85.2 -4.6
Coal 176.3 178.8 1.4
Chemicals 52.1 53.4 2.5
Petroleum 151.8 147.2 -3.0
Metal 29.2 29.9 2.6
Other 123.4 126.4 2.4
Waterways:
Alabama-Coosa River 0.7 0.7 3.5
Allegheny River 3.3 4.0 18.4
Apalachicola River 0.6 0.5 -17.3
Atlantic Intracoastal 4.3 3.9 -9.0
Black Warrior River 249 26.0 4.6
Columbia River 18.3 19.2 5.0
Cumberland River 17.2 23.0 34.0
Gulf Intracoastal 118.0 120.4 2.0
Illinois Waterway 46.2 45.4 -1.9
Kanawha River 24.8 24.7 -0.5
McClellan-Kerr Wtwy 10.6 11.7 10.6
Mississippi River 319.6 317.6 -0.6
Missouri River 8.2 8.2 0.0
Monongahela River 36.6 37.3 2.0
Ohio River 237.7 238.2 0.2
Snake River 5.7 6.0 5.2
Tennessee River 45.5 48.7 7.0
Tennessee Tombigbee 8.0 8.5 6.8

Source: Waterborne Commerce Statistics Center, 1998
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3.3c Example of Estimated Waterborne Commerce Statistics Publications Data:
Commerce on Ohio River - Upbound, by commodity, 1987-1996

(Millions of tons)

Year 1987 1988 1989 1990 1991 1992 1993 1994 | 1995 1996
Total 88.34 85.52 88.98 | 101.40 93.48 96.15 | 107.65 | 110.87 | 107.61 | 109.45
Coal 50.65 40.21 43.63 5294 | 48.82 49.56 53.13 55.471 53.09 54.40
Petro & Chem 19.93 21.51 21.68 19.81 17.73 18.51 19.64 | 20.53 18.87 17.92
Nonmetal 8.54 13.86 13.28 15.47 14.46 15.16 19.01 17.71 19.01 20.71
Other 10.23 10.40 13.17 12.47 12.92 15.87 17.16 16.65 16.41

Source: Waterborne Commerce Statistics Center, 1997

3.3d Example of Estimated Waterborne Commerce Statistics Publications Data:
Commerce on U.S. total and selected waterways and internal
traffic, 1987-1996 (millions of tons)

Year 1987 1988 1989 1990 1991 1992 1993 1994 | 1995 1996
Total Internal 569.83 | 588.12 | 606.01 | 622.60 | 600.39 | 621.04 | 607.25 | 618.41 | 620.32 | 621.88
Mississippi 293.23 | 298.76 | 298.87 | 306.19 | 301.67 | 315.71 | 298.26 | 314.58 | 323.02 | 318.46
Ohio 197.17 | 192.59 | 202.67 | 224.70 | 218.32 | 226.39 | 227.24 | 236.66 | 234.06 | 236.84
Tennessee 4171 | 47.10{ 43.06 | 4451 ] 42.09| 46.08 | 48.16 | 49.14 | 46.39 | 4553
Illinois 41411 4097 | 39.67) 4330 | 43.11 | 4267 | 4564 | 5088 | 4743 4624

Source: Waterborne Commerce Statistics Center, 1997

3.3e Example of Estimated Waterborne Commerce Statistics Publications Data:
Tonnage for selected U.S. ports in 1996 ranked by total tons

Rank Port;Name Total Foreign Imports Exports Domestic
1 South Louisiana, LA 189,814,564 | 83,769,483 | 25,172,134 | 58,597,349 | 106,045,081
2 Houston, TX 148,182,876 | 87,058,288 | 58,041,465 | 29,016,823 61,124,588
3 New York, NY & NJ 131,601,244 | 56,485,614 | 48,472,360 8,013,254 | 75,115,630
40 Cleveland, OH 16,720,837 3,977,549 3,367,610 609,939 12,743,288
41 Lorain, OH 15,977,949 121,947 121,947 - 15,856,002
42 Portland, ME 15,242,802 | 13,369,237 | 13,289,315 79,922 1,873,565
149 | Huron, OH 1,003,830 13,485 10,178 3,307 990,345
150 | Redwood City, CA 985,392 513,392 227,175 286,217 472,000

-Source: Waterborne Commerce Statistics Center, 1998
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3.3f Example of Estimated Waterborne Commerce Statistics Publications Data:
CY1996 Waterborne tonnage by state (in units of 1000 tons) sorted by tons

STATE Shipping to Receiving From
Totals Domestic | Foreign | Domestic | Foreign | Intra-state
Louisiana 494,249 99,374 114,616 133,560 104,692 42,007
Texas 385,585 48,533 53,765 23,943 209,355 49,988
California 181,165 6,779 46,925 52,100 48,075 27,285
Ohio 123,459 24,247 13,535 61,193 5,762 18,722
Florida 117,430 13,718 18,337 58,352 23,056 3,968
Vermont 0 0 0 0 0 0
Interstate | Exports | Interstate | Imports | Intra-state
Totals | 2,284,063 767,715 450,794 767,715 732,592 332,962

Source: Waterborne Commerce Statistics Center, 1998

Figure 3.1 Examples of Estimated Waterborne Commerce Statistics Publication Data

3.1a Example of Estimated Waterborne Commerce Statistics Publications Data:
Total monthly tonnage indicator 1994-1998
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3.1b Example of Estimated Waterborne Commerce Statistics Publications Data:
Commerce on U.S. total and selected waterways and internal traffic,

1987-1996

700

500 - —4— Total Internal
<J}-- Mississippi

400 -
~—4— Ohio
—X¥— Tennessee
—O—lllinois

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996

Source: Waterborne Commerce Statistics Center, 1997

ICC Carload Waybill Sample Database: The ICC Carload Waybill Sample Database
contains detailed information on Class I freight railroads. This database was prepared by
Association of American Railroads, and the information is based on a one percent sample
of rail waybill data from 1988 to 1992 supplied to the Interstate Commerce Commission
(ICC) on actual rail shipments. The information includes commodities carried; railroad
involved; origin, destination, and junction points; number of carloads; tons transported;
and total revenues. For confidentiality reasons, the public-use version of the sample only
contains movements reported at the BEA-to-BEA level and commodities reported at the
5-digit STCC code level. Table 3.4 provides an example of the public-use data. This

example contains rail shipments from and to Ohio.
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Table 3.4 Example of ICC Carload Waybill Sample Database: Rail shipments of the
five largest commodities (ranked by weight) from and to Ohio (1992)

Commodity | Tonnage | Percent of state total
Originated within Ohio
Metallic ores 11,975,461 19
Primary metal products 8,434,228 14
Coal 7,227,043 12
Farm products 7,118,235 12
Nonmetallic minerals 5,095,968 8
Terminated within Ohio
Coal 33,620,329 41
Primary metal products 7,870,137 10
Chemicals 6,897,453 8
Nonmetallic minerals 5,765,024 7
Metallic ores 5,039,708 6

Source: Rail Waybill Data, compiled by DOT Federal Railroad Administration (Washington, DC:1996)

National Transportation Statistics, Annual Report:

The National Transportation

Statistics, Annual Report contains transportation statistics and mode profiles along with

economic, safety, energy, and environmental information. Since data are aggregated at

the national level, it would not be a very good source for state-wide freight modeling.

Table 3.5 contains an example from the transportation and economy section.

Table 3.5 Example of National Transportation Statistics, Annual Report Data:
Employment in for-hire transportation by mode: 1983-1995 (in percent)

Mode 1983 1995
Trucking 44.5 47.6
Air 16.6 20.1
Transit 9.3 10.8
Services 8.3 10.5
Railroad 13.7 6.1
Water 6.9 4.4
Pipeline 0.7 0.4

Source: Table 2-5, Transportation Statistics Annual Report, BTS, U.S. DOT, 1997,




1992 Census of Transportation:

The Bureau of Census prepares the Census of

Transportation, Communications, and Utilities database to provide periodic (every five

years), detailed data on transportation, communication, and utility establishments and

activities. This database is specialized to cover only those commodities categorized from

Standard Industry Commodity Codes (SIC) 40 to SIC 49, except railroads (SIC 40), the

U.S. Postal Service (SIC 43), and large certificated passenger air carriers (part of SIC

4512). Data are prepared and updated for the entire United States, each state, the District

of Columbia and Selected Metropolitan Statistical Areas (MSAs) on a five year basis for

years ending in “2” and “7.” Table 3.6 demonstrates the layout of this database.

Table 3.6 Example of 1992 Census of Transportation Data: 1992 Summary Statistics
for the United States and States

SIC code | Geographic area and kind of business Establishment | Revenue Annual payroll | First-quarter Paid employees
(number) (3$1,000) (31,000) payroll ($1,000) (number)
United States
Total Transportation, communications, (NA) 869,251,440 178,424,510 (NA) 5,566,120
and utilities except U.S. Post Office
Total transportation except U.S. Post Office (NA) 327,623,049 92,211,414 (NA) 3,356,872
40 Railroad transportation (NA) 28,348,895 8,752,862 (NA) 197,421
41 Passenger transportation 17,805 12,649,307 5,191,117 1,245,956 354913
411 Local and suburban passenger transportation 8,275 5,968,003 2,623,812 612,903 153,278
4111 Local and suburban transit 1,135 1,363,966 837,711 198,901 37,653
42 Motor freight transportation and warehouse 110,908 143,794,366 39,895,651 9,196,480 1,580,095
421 Trucking and courier service, except air 101,169 135,436,985 37,760,025 8,691,103 1,484,655
4213 Trucking, except local 40,821 78,357,536 20,974,464 4,807,742 758,435
44 Water transportation 8,147 29,207,214 5,170,196 1,213,197 171,314
45 Air transportation (NA) 82,670,356 24,530,166 (NA) 707,148
46 Pipelines, except natural gas 844 7,063,056 821,085 203,267 16,779
47 Transportation service 46,593 23,889,855 7,850,337 1,854,022 329,202
48 Communication 39,244 230,667,167 47,057,941 12,335,145 1294,236
49 Electric, gas, and sanitary service 20,049 310,961,224 39,155,155 9,720,355 915,012
ALABAMA
OHIO

Source: Table 1, 1992 Census of Transportation, Communication, and Utilities, Bureau of Census, U.S.
Department of Commerce, Washington, DC: 1995.

3-14



Private Data Sources: Private data suppliers request fees for their products. The private

firms collect national data on the transportation system and related indicator variables
primarily by conducting regional surveys and by compiling and repackaging of public
data. Based on the information collected, the private firms also produce future

projections.

Woods & Poole Economics, Inc.: Woods & Poole Economics, Inc. specializes in detailed
long-range projections for regional and demographic data. The database contains more
than 550 economic and dcmographic variables for every state, region, county,
Metropolitan Statistical Area (MSA) and Designed Market Area (DMA) in the U.S. for
every year from 1970 to 2020. Upon contact, Woods & Poole sent us an example of their
database layout, which can be found in Appendix 3.1. The information contains both
historical and projected data on different variables, such as population (grouped by
different age cohorts and races) and total employment (categorized in different
industries), and others, for Alameda County, CA. Additional information may be
requested from Woods and Poole Economics, Inc. (Phone Number: 202-332-7111) for a

fee.

TRANSEARCH: TRANSEARCH is available from Reebie Associates. According to the
company’s description, “TRANSEARCH is a market-to-market, industry (commodity)-
and mode-speciﬁc database of freight traffic activity throughout the country.” The
database is produced annually. Table 3.7 shows an illustration of the layout at the
“Business Economic Area (BEA)” level. An illustration of the BEA map for the eastern
part of U.S. is shown in Figure 3.2. The O-D information is shown by Origin BEA
(followed by affiliated city/state) and Destination BEA (affiliated city/state). The
commodity information is classified by STCC (up to 5-digits) codes and given in annual
tons by mode. For example Table 3.7 presents commodities shipped from BEA region
#18 (Philadelphia, PA) to BEA region #55 (Memphis, TN). The first line shows that
there were 134 tons of Farm Products (STCC-01) shipped by only two modes (i.e., For
Hire Truckload [101 tons] and Private Truckload [33 tons]) during the given year.
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Information beyond this example may be requested from the company (Phone Number:

203-661-8661) for a fee.

Table 3.7 Example of TRANSEARCH database
(Source: TRANSEARCH

Two-digit STCC Summary

STCC  Commodity

Reebie Associates, 1
; VEN :

01 Farm products 0 0 101 0. 33 0 0
11 Coal 0 0 595 0 0 0 0
20 Food or kindred products 1008 0 4664 1399 342 0 0
22 Textile mill products 0 0 586 285 742 0 0
23 Apparel or related products 0 0 0 274 63 69 0
24 Lumber or wood products 0 0 737 0 3706 0 0
25 Furniture or fixtures 0 0 0 127 0 0 0
26 Pulp, paper or allied products 21719 9334 0 7258 220t 2926 0 0
27 Printed matter 67 0 0 0 67 0 0 0
18630 0 11109 507 6322 0 0
9560 0 533 165 0 0 0
0 0 2346 2890 1013 0 0
722 0 2673 407 3483 0 0
4868 0 7594 586 260 0 0
Fabricated metal products 2145 159 0 610 1150 226 0 0
Machinery 5718 0 0 2627 2513 407 171 0
36 Electrical Equipment 2095 0 0 468 737 890 0 0
37 Transportation Equipment 9468 5747 0 3172 103 443 3 0
38 Instrum, photo eq., optical eq. 645 0 0 0 249 396 0 0
39 Misc. manufacturing products 539 0 0 454 29 56 0 0
40 Waste or scrap materials 722 722 0 0 0 0 0 0
50750 920 45646 17847 21318 243 0
Percent of Total 100.0 37.1 0.7 33.4 13.1 15.6 0.2 0.0
Additional STCC Detail Total Rail Highway Air  Water
Carload Intermodal For Hire Priv/Ex
STCC  Commodity Tons TL LTL
01195  Potatoes, other than sweet 81 0 0 61 0 20 0 0
01399  Misc. fresh vegetables 53 0 0 40 0 13 0 0
11112 Prepared anthracite 595 0 0 595 0 0 0 0
20000  Food or kindred products 1229 0 0 1190 0 39 0 0
20100  Meat or poultry, fresh or chill 673 0 0 32 641 0 0 0
20300  Canned or preserved food 515 0 0 251 264 0 0 0
20330  Canned fruits, vegetables, etc. 1237 0 0 1087 147 3 0 0
20334  Canned fruit juices 824 0 0 671 151 2 0 0
20359  Sauces or seasonings 22 0 0 21 0 1 0 0
20381  Frozen prepared food or soup 551 0 0 362 0 189 0 0
20520  Biscuits, crackers or pretzels 107 0 0 93 0 14 0 0
CONT
! Specific traffic lane
? Seven modes of transport
* Annual tons
* Listing of commodities
5 Totals of traffic lane
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Figure 3.2 Ilustration of Business Economic Areas (BEA) map of the eastern part
of the U.S. (Source: Bureau of Economic Analysis, 1996)
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U.S. Air Freight Origin Traffic Statistic: The U.S. Air Freight Origin Traffic Statistic
database is prepared by The Colography Group, Inc.. According to a review from the
Quick Response Freight Manual (Cambridge Systematics Inc., 1997), this database
contains express and freight air traffic shipments, based on a survey of firms that generate
air traffic shipments. The data are reported on a geographic basis at the 4-digit SIC level
by industry type. The originating data are also categorized as either domestic or exports,
depending on their destinations. This database is compiled based on the survey results
from shippers, which included both express mail and small shipments (under 3,000 1bs.).
Detailed information may obtain from the company (Phone Number: 770-565-0464).

3.2 Review of Models

Models in the Literature: Winston (1983) provided an extensive review of freight
demand models. He classified freight demand models into aggregate and disaggregate
models. In aggregate models, the basic unit of observation is the share of a specific
freight mode at a relatively coarse geographic level, such as a region. In disaggregate
models, the unit of observation is an individual shipment. Winston claimed that the
aggregate models would be useful in analyzing freight flows for policy analysis or for
practical prediction in the context of large-scale regional or national studies. He noted
that while disaggregate models are generally more attractive from a theoretical
perspective, their extensive data requirements represent a significant disadvantage.
Winston also discussed the extent and nature of intermodal competition, the importance
of service quality, and the effect of the regulatory environment in the context of freight

demand modeling.

Fang, et al., (1996) reviewed approximately 20 models dealing with choice of
freight modes, distinguishing between aggregate econometric, disaggregate econometric,
and network-based models. The authors further broke down the aggregate econometric
models into regression and aggregate logit models, and the disaggregate econometric

models into abstract mode, linear programming, microeconomic, and discrete choice
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models. They also specified the required inputs for the various models. They proposed
that although aggregate models are usually used in specific studies, they are inferior to the

disaggregate models on theoretical grounds.

Cambridge Systematics, Inc., et al. (1996) reviewed approximately 40 freight
forecasting models. The authors classified the models into those employing a structural
approach and those employing a direct approach. The structural approach forecasts
freight demand by applying techniques similar to those used in the traditional Four-Step
Urban Transportation Modeling System (trip generation, trip distribution, mode choice,
and route assignment). The direct approach uses simpler techniques to estimate
correlation between freight ‘demand and other variables that are expected to influence
freight demand. They did not draw any conclusions about the relative merits of the two

approaches in their review.

Before discovering these model reviews, we began reviewing freight models
found in the literature according to the structure described in Appendix 3.2. We felt that
this structure that would be useful for determining the appropriateness of proposed
models for operational use in public planning issues. Given the many models found in
the literature, we determined that typing the models in this way was beyond the scope of
this project. We, therefore, terminated this effort but illustrate it in Appendix 3.2 with

freight modeling components discussed in the second part of this report.

DOT Models: We became aware of ongoing freight modeling efforts at various state
DOT’s and contacted three states -- Indiana, Michigan, and Oregon -- to investigate
efforts there. We conducted phone conversations with representatives of Indiana (Smith,
1998) and Oregon (Upton, 1998) and left a phone message at Michigan, which resulted in
an email response (Nellet, 1998). We also found further descriptions of the freight
modeling efforts through web sites (Parsons Brinckerhoff Quade & Douglas, Inc., et al.,
1996 a and b) and mailed reports (Cambridge Systematics, Inc., 1998; Black, 1997).
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The models being developed are sophisticated enough that we do not review or critique
them in detail. Rather, we highlight the features that should be helpful in clarifying steps
ODOT should take in determining its immediate modeling efforts.

The freight forecasting models being developed by Indiana, Michigan, and Oregon
are components of statewide models being developed that also include passenger
forecasting components. All the models are being developed by consultants, and although
it appears that DOT employees are committed to development and implementation, the
efforts presently appear to be geared toward having individuals outside the organizations
work with DOT personnel to develop tools for use by the organization. In at least one of
the states, the possibility has been raised that the models might be run on an occasional
basis by individuals outside of the organization. At the time of this writing, the models
are all fairly advanced in terms of initial development, but they have not yet been used in

supporting policy or alternative analysis.

In spite of the many methods and variations presented in the literature and the
difficulties mentioned in Section 1, all the models seem to be based on the traditional 4-
step passenger transportation forecasting process. The models differ from each other in
details, and there are also slight differences from what one might consider to be a direct
transfer of the 4-step process to statewide freight modeling. We also noticed discussion
of combining some of the four steps, just as there is discussion of doing so in passenger
modeling. Still, the basic framework of generating freight productions and attractions by
zones, developing origin-destination matrices, splitting origin-destination flows by mode,
and assigning flows to the network seems to be the backbone of the freight models under
development. And, although there is some discussion of feeding back results from later
stages into earlier stages, the implication seems to be one of retaining a highly modular

structure.

In all the models, the initial emphasis seems to be on forecasting truck traffic on

the highway network, but the intention is to allow future development into truly
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multimodal and intermodal models. The basic approach seems to be one of generating
commodity flows and distributing the flows generated to form commodity flow origin-
destination (OD) tables. The OD tables are converted to modal OD commodity flow
tables, and truck commodity flow units are converted to truck trips before assigning them

to the highway network.

We observed a common optimism in the potential of freight modeling. This
optimism is heavily based on anticipated improvements in quality and quantity of freight
data. The consultants are relying on several of the data sources mentioned in Section 3.1
to forecast independent variables and to calibrate model components, with the 1993
Commodity Flow Survey receiving most mention. Still, data from surveys or other
special studies are required. Moreover, delays in making elements of the Commodity
Flow Survey available were mentioned several times as slowing progress in model
development. Like the advances in data availability, all the efforts seem to rely heavily
on newer generations of transportation GIS and modeling software. Specific packages are

mentioned.

Again, our objective is not to critique or evaluate the models based on our
admittedly brief review of material available to us. We expect more methodological
documentation to be available in the future, but it is apparent that the consultants have not
“written the final chapter” on statewide freight modeling. Nevertheless, it seems that they
are producing state-of-the-art operational models, striking a reasonable compromise
between applicability and a rigorous behavioral basis. As with all large-scale system
models involving elements of human decision making, the consultants have had to blend
theoretical principles, judgments, and, at times, almost arbitrary adjustments to make
model outputs match flow observations, where the observations are themselves imperfect
estimates obtained from limited data. Depending on one’s background, an individual
might argue that more emphasis should be given to one component or another of this
blend, but we feel that the consultants, working with the representatives of the DOT’s, are

presently in the best position to make these decisions.
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Discussion is given to validating the models by comparing predictions to
observations. However, as mentioned in Section 1.2, one cannot expect model outputs to
match observations completely, and, therefore, one must resort to the fundamental
concept of determining whether the benefits of making simplifying assumptions outweigh
the costs of doing so. As mentioned above, a lack of experience with applications makes
it too early to evaluate the models on this criterion, but the DOT representatives contacted

are presently optimistic about the potential of the models to assist the DOT’s.

Many of the difficulties (with methodology, data, ...) were not discovered until
development was underway. This is not surprising, but it is important to recognize that
useful freight models will not be developed and implemented exactly as proposed. That
is, the states must be committed to development over the long run, and a one-time project
devoted to developing a freight model that would then be turned over to the state would
probably not be sufficient. We return to this point in the following section. Similarly, the
developers note that the present efforts must be thought of as first phases and that the
models must therefore be flexible and designed in such a way that modules can be added

and components changed to keep up with results obtained from research or other freight

studies.
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Section 4. PART I Conclusion

A review of freight models and databases shows that much work has been and continues
to be devoted to developing freight forecasting models and to making freight data
available for use in such models. Despite this work, our survey indicates that, other than
monitoring truck traffic on highway networks, there is presently little systematic freight
modeling conducted at state DOT’s. Similarly, the results of our interviews with
potential users of Ohio freight models exhibit no present consensus on the desired outputs

of a freight model to be used for public planning issues.

Still, our survey of freight modeling activity at state DOT’s shows more activity
than mentioned in the Cambridge Systematics, et al., (1997) survey. There may have
been some misunderstanding of our questions, but responses implied that any
misunderstanding would have underestimated forecasting activity. Moreover, our
personal communications with DOT personnel developing freight models in Indiana,
Michigan, and Oregon, and the documentation on these developments, lead us to believe
that freight modeling activity to support public planning issues is increasing and will be

more widespread in the future.

Similarly, even though there is no real consensus on desired freight model outputs
in Ohio, or apparently in other states, many of the outputs and motivating questions of
Table 2.2 were related in some way to freight forecasting on the highway network. This
was also the case in the results of another independent survey (see Table 2.1).
Additionally, the intent at the Indiana, Michigan, and Oregon DOT’s appears to be one of
developing intermodal and multimodal models, but the initial emphasis is on forecasting
truck trips on the highway network. These models will probably produce origin-
destination (OD) tables in units of commodity flows, but in the near future the OD tables
will be converted to truck OD tables, which are then assigned to the network. Black
(1997, p. 101) offers a good explanation of why assigning rail -trips to a network is
inherently more difficult than assigning truck trips. Such difficulties, along with the
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apparent broader and deeper interests in highway network issues seen in Section 2,
probably explain much of the reason that these states are beginning with an emphasis on
the highway network. Therefore, we expect to see an increase in truck trip forecasting to

support the analysis of public planning issues in the near future.

The similarities we observed in the developing Indiana, Michigan, and Oregon
models also lead us to believe that future activities in freight modeling will be similar to
each other. If the Ohio Department of Transportation (ODOT) is going to begin freight
modeling activities, it would make sense to pursue methods that will be common to
several states. This does not mean that the methods could not eventually be modified to
suit the needs and characteristics specific to Ohio. However, the benefits of being able to
share experiences and expertise with colleagues faced with similar issues make
commonality desirable, at least commonality in the general modeling framework,
architecture, and primary data sources exploited. In addition, pursuing models common
to other states would be helpful in estimating external flows (i.e., flows from, to, or
through states other than Ohio) that would eventually travel in Ohio, an issue that seems

to require a great deal of effort in the models presently under development.

It would also seem that the basic elements of the traditional 4-step passenger
forecasting system -- generating flows originating or destined for a region or zone;
distributing originating flows among destinations and destined flows among origins to
form origin-destination matrices; splitting origin-destination flows among modes; and
assigning the flows to mathematical representations of the physical transportation
networks -- should still be relevant in any modeling system eventually implemented.
Indeed, despite the many different freight models proposed in the literature and the
difficulties mentioned in Section 1.1, the developing Indiana, Michigan, and Oregon
models strongly resemble the 4-step process, with a highly modular sequencing of the
steps, and where estimated dependent variables are fit against estimated independent
variables to produce some type of best-fit relations at each step that are assumed to

remain constant in the future.
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There are several advantages to this approach. There is a long experience with
using it for forecasting passenger flows on highway networks. Therefore, although
relatively complex, the framework is generally familiar to modelers, administrators, and
users. Not only is it familiar to these groups, but it has been producing results that are
used in a routine manner in the passenger forecasting context. The intermediate outputs
produced (productions, attractions, origin-destination flows, and origin-destination flows
by mode), as well as the final assigned link volumes, have proven useful when estimating
measures of interest to policy studies. Therefore, even though there is no consensus on
the desired outputs of a freight model, one is tempted to think that something useful can
be obtained from the outputs of one or more of the stages of a 4-step freight forecasting
model. Moreover, progress in the states investigated has already demonstrated that
existing software can produce outputs from these methods using available data
supplemented with limited special studies. Finally, the 4-step model is attractive because
experience is being gained from developing similar models in different states, and this

experience should be transferable to development efforts of similar models in the future.

Despite its advantages, trying to implement this type of model at ODOT at the
present time is risky. As mentioned previously, developing such large-scale, systems
models requires a judicious blend of theoretical rigor and practical compromises. The
typical approach also involves extensive model calibration and validation. ODOT does
not presently have sufficient resources to commit its own personnel to such an effort.
The blend of required knowledge and the objective of producing an operational tool
would make such work suitable and attractive to only a few consulting firms, where the
expertise is geographically distant from ODOT and is expected to be increasingly in
demand from other states. It is doubtful that any new, large-scale model such as this will

be adequate the first time around, that is, at the end of the initial contract.

The danger, then, is that a consulting arrangement will produce a model that
initially is not frequently used and which is turned over to DOT employees who feel no

sense of ownership in it. There are several individuals at ODOT who understand flow
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modeling issues sufficiently to realize that developing a workable and useful large-scale
freight model is a long-term project. However, these individuals have so many daily and
longer term commitments in the present environment that, unless they feel strong
ownership in the product, it will be much easier for them to dismiss an initial effort as a
failure than to try to convince administrators that additional contracts are needed to
produce a useful product. The documentation associated with the Indiana, Michigan, and
Oregon efforts demonstrates that these DOT’s and their consultants realize this potential
danger. However, no specific solution is offered to reduce the likelihood of its
occurring.. In short, we feel that developing a large-scale freight model at this point is
doomed to failure in the present environment unless ODOT is willing to commit to long-

term development

We propose that working with several states in a formal relationship is one way
to motivate ODOT (or any other state) to remain committed to the model development
throughout and after initial efforts. Such a relationship could take the form of a working
group with regularly scheduled meetings. Or, we feel it would be more beneficial to join
other states in collaboratively funding model development by consultants. We envision
pooling funds to develop either identical models in the participating states or, if the
participating states were contiguous, a regional model that could be scaled down to
sufficient resolution in each of the states. There may be certain unique details in the
various states that would need to be addressed, but there would be common framework,

architecture, hardware, and data requirements.

Working with colleagues in other states to supervise and direct the development
of a common model would motivate DOT technical representatives to remain
philosophically committed to the development process over the long run and allow one
state to call on others to convince administrators to remain financially committed. In
addition, such a process should facilitate discussion of issues and sharing of expertise,
produce economies in the development process, and, if a regional model is produced, lead

to easier and more accurate estimation of external flows. Finally, working with other
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states would focus interest in such a way that the group could exert stronger influence on
federal studies. That is, a coalition of states would be in a better position than an

individual state to define a research agenda or request data collection efforts.

Any large-scale model like one based on the 4-step process also poses the danger
of turning into a black box that produces results which are consistent across the steps, but
does so at the price of reducing the transparency of the relationships among its variables,
inhibiting the ease of drawing insights from the numbers produced, and limiting the
ability to modify the forecasts produced with expert opinion or common sense.
Calibrating relations on historical data may produce good fits and even good results in
validation studies, but the relations must hold into the future if the model is to produce
good forecasts. In these models, there are many intertwined relations with no real
behavioral justification. Moreover, even where there is a behavioral basis, there is no
reason to believe that human behavior remains constant over time. Therefore, the flows

forecast from the model cannot be expected to be realized in the future.

If model forecasts are know to be erroneous, it would make sense that they be
modified by expert judgment when intended for use in supporting policy or alternative
analysis. The many and dependent relationships in a large-scale model makes this
modification more difficult. This is especially true in the anticipated freight models,
where little experience has been gained. The models being developed in Indiana,
Michigan, and Oregon appear to be state-of-the-art. However, we believe that a panel of
true experts could produce more accurate forecasts than the first generations of these
models. Such a panel would also have much more flexibility than a large-scale model in
forecasting different freight measures. The hope is that the model forecasts could
eventually assist the experts develop better forecasts than they could otherwise produce
without the use of the models. We doubt that this hope will be realized without more
experience gained from applications and from systematic model testing, tracking, and

experimentation.
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To expedite the development of this experience, we propose that research and
experimentation with alternative model components be conducted and that the forecast
accuracy of the components be tracked on an ongoing basis. Modular systems like those
being developed have the advantage that their components can be readily modified
without having to reinvent the entire framework. However, if developed under contract
for immediate implementation without any accompanying experimentation with its
components, there is a strong possibility that modifications will not be made and the

entire model will be dismissed as irrelevant.

Black (1997) proposes that research is needed on the freight generation step, and
the consultants developing the Oregon model (Parsons Brinckerhoff Quade & Douglas,
Inc., et al., 1996b) emphasize the need recognized in other publications to calibrate
models over longer time periods than are traditionally considered. We agree. However,
we also feel that every component of the freight forecasting system would benefit from
systematic research and that it would be better to assess the fits of alternative
specifications and functional forms of model components than to restrict the efforts to

calibrating a component specified at the outset.

We again mention that there may no be no more accurate forecast than that
produced by a panel of experts, and the real value of a forecast produced from a
mathematical model might best be measured in its ability to modify these expert
forecasts. Even if a model or model component is shown to produce good fits to existing
data, it will be of little predictive use if it does not change “prior” expert forecasts, those
that would have otherwise been produced without its availability. (These prior forecasts
might not change either because of a lack of confidence that the good-fitting empirical
correlations used in the model would hold in the future or because the model would
'produce forecasts that could have been obtained with simpler reasoning.) Therefore,
rather than limit the research to assessing correlations between dependent and
independent variables, alternative forms of the components of the models should also be

considered in terms of an ability to modify expert forecasts of measures useful for policy
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analysis. This is an open field, since there is presently no set of agreed upon useful
measures, but this openness does not mean that this aspect should be ignored. As a

minimum, it would appear that simplicity in the components should be valued.

We also propose that forecast accuracy be systematically tracked. Validation
studies, where calibrated outputs are compared to existing flows and then assumed to
perform well enough if some deviation measure is low, are useful but not sufficient to
assess predictive performance. Like the call to calibrate models over longer time periods,
predictive ability should also be systematically assessed over longer time periods. This
type of analysis should not only be considered as leading to assessments of whether a
model is performing “well enough,” but also of producing a feel for the level of
uncertainty associated with the forecasts. This feeling is underestimated by traditional
simulation experiments, where output variability is produced by simply varying inputs
and/or model parameters. This type of work is sorely lacking even in the passenger
forecasting field, and it is complicated in the freight modeling context because of data
limitations. Still, it must be considered if one is to develop any appreciation on proper

use of the outputs before users dismiss the entire model as being too inaccurate.

The proposed agenda for research and experimentation with model components is
ambitious and likely beyond what ODOT (and most DOT’s) sees as its present mission.
However, we feel that it is important if an operational statewide freight model is to be
accepted for use. Again, pooling resources with other states could help implement this
work: Some of the economies gained by pooling resources could be put toward funding
these efforts; different tasks could be funded by different states with group oversight of
the entire program; and the group could collectively provide input to the federal research

and development program.






PART II: llustrative Models and Components

In this part, we consider a few simple, specific models or components that could either
stand alone or be incorporated in more complex models. In Section 5, we consider
simple indicator models that could be used to forecast future commodity generation in
regions. These forecasts could be useful in themselves or modified for use in a trip
generation module of a larger model. In Section 6, we consider a model proposed to
forecast freight using intermodal freight facilities. The model formulation is similar to
that used for discrete choice analysis, which is frequently the basis of trip distribution and
mode choice models. The models considered in Sections S and 6 could be presently used
in Ohio. However, we illustrate that different specifications are possible and that they
can produce very different forecasts. Also, as mentioned in the previous section, we
believe that simply finding which specification fits past data best is not sufficient for

determining which will be most valuable for forecasting in practice.

In Section 7, we discuss different methods of updating truck origin-destination
(OD) tables from observed truck volumes. We feel that the methods considered would
lead to similar results. Simply determining an origin-destination table that is consistent
with observed traffic flows does not directly lead to forecasts of future conditions.
However, since truck volumes are routinely collected, using any of these procedures
would be inexpensive to implement on a systematic basis, and a good estimate of a
present OD matrix could be used to calibrate or validate model components. Moreover,

accurate OD estimates could assist experts when forecasting future OD patterns.

In Section 8, we show that recently available databases could be used with
existing software to perform intermodal assignment. Although the quality of the
assignments is presently limited by a lack of acceptable intermodal assignment logic,
these databases could be used to develop, test, and experiment with intermodal

assignment algorithms in the future.






Section 5. Freight Indicators

Freight indicators are variables describing socio-economic activity expected to be
correlated with freight movement activity. The assumption motivating the use of
indicator methods is that it is easier to forecast the indicators and infer forecasts of freight
movement variables than to forecast the freight movement variables directly. Therefore, it
is necessary that data, and hopefully forecasts, are available for the freight indicator
variables. As claimed in Cambridge Systematics, Inc. et al., (1996), such methods can be
used to establish rough, but quick and inexpensive forecasts of statewide, regional, or
even local and facility-specific freight activity. They are also closely related to traditional
trip generation methods. The major advantages of forecasting freight movements through

forecasts of indicators are ease of use and low expense.

In this section, we show that indicators can be used with available databases to
produce forecasts of commodity flows generated in Ohio at an aggregate level. As such,
indicators methods could be readily implemented for use in Ohio. However, we also
demonstrate that there are several alternatives -- approaches, functional forms, and
independent variables -- that can be used. We feel that the regression methods described
offer the most modeling flexibility with relatively little added complexity. We also
determine goodness of fit statistics that can be used to judge the degree of correlation
between the freight movement and indicator variables. However, as mentioned in the
previous section, longer term analysis would be required to determine which indicators
predict freight movements well over time, gain some sense of the variability inherent in
such forecasts, and assess which indicators can be best used to help support policy or

alternative analysis by themselves or in modules of more complex models.

5.1 Methods

Dependent Variable Growth Factor: Perhaps the simplest model for forecasting future

freight movements is one which applies a *“growth factor” to the variable of interest Y,
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indicating freight flows (Cambridge Systematics, Inc. et al., 1996). Actually, the
Dependent Variable Growth Factor method is not truly an indicator method, since there is
no explicit relation between the freight movement variable Y and some economic
indicator X.  Still, it is related to the Independent Variable Growth Factor method

presented below and is often mentioned in the context of simple models.

If Y, is the level of the freight movement variable value in year ¢ and Y,, is the
level in year ¢,, then the Dependent Variable Growth Factor method determines Y, from

Y, as:
Y= Yio(1+0)*, (5.1

where r is an annual growth rate. This growth rate r could either be assumed or
calculated from observations of the freight movement variable in two years, e.g., Y, in

year f, and Y, in year #,. Substituting Y, Y., t,,and t,, ¢, > ¢, in (5.1), and rearranging:
r=-1+(Yo/Yy) V& (5.2)

As an example, the Bureau of Census (Bureau of Transportation Statistics,
1997C) showed that there were 140,040 thousand tons of Nonmetallic Minerals shipped
in Ohio in 1989 and 128,639 thousand tons shipped in 1993. Using Equation (5.2):

r=-1+ (128,639/140,040) /199319890 _ g 071,

To forecast the Ohio shipments of Nonmetallic Minerals in the year 2000, for example,

this value is substituted in Equation (5.1):

Y2000 = 128,639(1 - 0.021)°%199) _ 111,000 [10° tons].

Another example of this method can be found in Quick Response Freight Manual
(Cambridge Systematics Inc. et al., 1996).
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If observations of the freight movement variable are available for more than two
years in a period considered representative of that being forecast, an econometric

procedure could be used to fit a growth factor.

This growth factor model assumes that traffic “grows” by itself or compounds like
an interest-bearing investment. This would seem difficult to accept, since one of the
principles of transportation analysis is that transportation is a derived good, dependent on
other factors. By ignoring any relation with an independent variable X, this model
ignores this basic principle. Also, by not modeling any relation to an independent,
“causal” variable, there is no room to forecast freight flows under different policy
alternatives. The model also assumes that the growth calibrated in some time interval
will hold in other time intervals. The only way that this could be argued as acceptable is
if one could claim that “all relevant changes in factors in freight movement during the

period of analysis will be the same” as during the calibration period.

In spite of its limiting assumptions, this growth factor method could form the
basis of critical reasoning. Specifically, freight movements could be forecast for some
future time using an assumed rate or one calibrated from past data. Then, one could use
expert opinion to decide whether more, less, or about the same amount of growth is
expected than that calculated. In this way, the calculated value would serve as a lower or

upper bound, or a best guess estimate.

Independent Variable Growth Factor (Unit Elasticity): The previous growth factor
method can be amended to allow a relation between some economic indicator variable X
and the freight movement variable of interest ¥ (Cambridge Systematics, Inc. et al.,
1996). Again let Y, be the level of the freight movement variable value in year ¢ and Y,
be the level in year #,, and let X, and X,,, respectively, be the levels of the economic
indicators in years ¢ and #,. This model assumes that the growth in Y from year ¢, to year ¢
will mirror that of X in the same period. Specifically, X is assumed to grow at a constant

yearly rate between #, and ¢



Xe= Xio(140)4), (5.3)

where r’ is the annual growth rate in the economic indicator X. Rearranging Equation

(5.3), this rate is found as:

r=-1+X¢Xio); (5.4)

and used to forecast Y, from Y,,:

Ye= Yoo (1457)E), (5.5)

As an example, consider a case where Ohio Employment in the Non-Metallic
Minerals Mining sector is used as an indicator for Total Tons of Non-Metallic Minerals
shipped in Ohio. From the Bureau of Economic Analysis (1996), Employment in Non-
Metallic Minerals Mining was 4.8 [10°] in 1993 and forecast to be 5.0 [10%] in 2000,
From the Bureau of Census (Bureau of Transportation Statistics, 1997C), there were

128,639 [10° tons] of Non-Metallic Minerals shipped in 1993. Using Equation (5.4):
r' = -1+ (5.0/4.8)@%0-199%) _ 0 0058,

and substituting this in Equation (5.5):
Ya000 = 128,639(1+ 0.0058)%01999 _ 134,000 [10° tons].

Again, the growth rate in X could be assumed or decided upon from expert
opinion, rather than using observations of X in different time periods. One would then
use Equation (5.5) directly, and by comparing to Equation (5.1), the process is seen to be
identical to that in which the growth factor is applied directly to the freight movement
variable Y Also, as before, if there are observations on the economic indicator in more

than two years, some econometric technique could be used to fit a value of 7’ to the data.

This method can be simplified by noticing that substitution of Equation (5.4) in
Equation (5.5) yields:

5-4



Yi = Yo (X¢Xo). (5.6)

Equation (5.6) can be used to find Y, directly if ¥,, X;, and X, are given. So, in the above

example, one could simply calculate:

Ya000 = 128,639(5.0/4.8) = 134,000 [10° tons].
The relation in Equation (5.6) can be rewritten as:

Yt = (Yo/ Xo) Xb (5-7)

and as:
Y/Y, = X/Xo. (5.8)

The form in Equation (5.7) becomes important when discussing linear regression
models below. The form in Equation (5.8) becomes significant when determining the
elasticity implied by this growth factor method. The elasticity is the ratio of relative

changes in the freight movement variable to the relative changes in indicator variables:
elasticity = [(Y¢-Yi0)/ Yio] / [(Xi-Xio)/ Xio]- (5.9)

Algebra on Equation (5.9) yields elasticity = (Y/Y,, - 1) / (X/X}, - 1), and using Equation
(5.8), yields:

elasticity = 1.0.

That is, the Independent Variable Growth Factor method implies a unit elasticity,
which means that changes in Y correspond exactly to the changes in X. There is no room
for economies of scale. Also, as in the preceding method, which applied a growth factor
directly to the freight variable, the assumption in this model is that the growth in X during
the period of analysis will be the same as that during the period when the growth factor is

calibrated.
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In spite of these strict assumptions, this growth factor model could be used to
reason as before, i.e., by calculating a number with the method and using expert opinion
to decide whether this is a high, low, or middle estimate. In this case, however, the
reasoning would be on the anticipated growth in economic indicator X, and the levels of
the freight flow Y would be deduced. Before doing this, however, one would want to
ensure that there really is a strong unit elastic correlation between Y and X. This could be
done by looking at several years of paired X and Y data to see either if Equation (5.6)
holds or if the unique value of r’ resulting from the econometric method fits the data well.
Alternatively, two years of paired X-Y data could be used from several geographical

areas. We discuss a related approach in the regression models below.

Constant Elasticity Method: The Independent Variable Growth Factor method allowed Y
to be correlated with some economic indicator. The correlation was seen to be such that
the elasticity--the ratio of relative changes in the freight variable to relative changes in the
indicator variable--is unity. This unit elasticity could be relaxed slightly to say that the
ratio of relative changes is constant but equal to some value b, which is not necessarily

unity. That is:

elasticity = [(Y-Yiwo)/ Yol / [(Xi-Xi0)/Xio] = b. (5.10)
Solving for Y.
Y= Y[l + b(Xi-Xi0)/ Xio]- (5.11).

So, for example, the Bureau of Economic Analysis (1996) data show that
employment in the Ohio Non-Metallic Minerals sector was 5.1 [10°] and 4.8 [103] in
1989 and 1993, respectively, and the Bureau of Census (Bureau of Transportation
Statistics, 1997C) data show that there were 140,040 [10° tons] and 128,639 [10° tons]
shipped in Ohio in these years. Using Equation (5.10), the elasticity b is estimated as:

b = [(128,639-140,040)/140,040] / [(4.8-5.1)/5.1] = 1.38.
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To estimate Non-Metallic Minerals shipments in 2000, this elasticity, an
employment forecast of 5.0 [10°] in the Ohio Non-Metallic Minerals sector in 2000 (see
Bureau of Economic Analysis, 1996), and some base year data would be used in Equation

(5.11). Using the 1993 year as the base:

Yao00 = 128,639[1+1.38(5.0-4.8)/4.8] = 136,000 [10° tons].

Again, an elasticity b could alternatively be determined from expert opinion.
Similarly, if there are paired observations on X and Y in more than two years, an

econometric technique could again be used to fit an elasticity.

The formulation of elasticity in Equation (5.10) deals with finite, discrete changes
in variables, (Y#-Yt0) and (Xt-Xto). Infinitesimal changes dY and dX could be used instead

to write:

elasticity = b= (dY/Y)/ (dX/X) = (dY/dX) (X/Y). (5.12)
In this case, a model of the form:
Y = aX®, (5.13)

would be consistent with Equation (5.12), since (dY/dX) (X/Y) = (abXb'I ) X (X/aXb )=b.
Paired indicator X and freight movement Y values in two years would be sufficient to
calculate values of the two parameters a and b of Equation (5.13). If paired observations
are available for more than two years, or if 2-year data pairs are available from several
geographic locations, an econometric technique could once again we used to fit these

parameters. We discuss this in more detail when presenting the regression method below.

For example, consider the Bureau of Economic Analysis and Bureau of Census
data cited above for Non-Metallic Minerals employment and shipments in 1989 and
1993. Substituting these data in Equation (5.13) to form two equations in ¢ and b, and
solving yields a = 14,300, b = 1.4. Substituting these values in Equation (5.13) with
X2000 = 5.0 would yield:



Y000 = 14,300(5.0"4) = 136,000 [10° tons].

Although this value is identical to that found above, there could be some
difference because of rounding error and, especially, because of the difference of
estimating “arc” elasticities based on discrete differences and “point” elasticities based on

infinitesimally small changes.

As before, this method assumes that the elasticities calculated in one period hold
during another period. And, as before, the model could be used as a basis for reasoning
such as, “If the ratios of changes were the same, we would expect 136,000 [tons] (for
example). We expect that certain increases in efficiency will make the changes of Y,
relative to changes of X, increase more than previously. Therefore, we feel that there

would be more than 136,00 [103 tons] produced in 2000.”

Regression Methods: Although there is some merit to the above approaches, we feel that
regression approaches to indicator variable modeling are more general. They, therefore,
incorporate the advantages of the other approaches but allow more flexibility--essentially
the use of more data to calibrate parameters. Perhaps, the simplest regression models to

consider would be linear specifications:

Yt=aXt+k, (5.14)
and exponential specifications:
Y, = aX.. (5.15)

If the “intercept” k in the linear specification is set equal to zero, a comparison
between Equations (5.7) and (5.14) shows that the linear specification corresponds to the
Independent Variable Growth Factor method, with the parameter a equal to the ratio of
freight movement variable Y to the indicator variable X in some base year. As mentioned
above, this means that the elasticity of ¥ to X is equal to unity. Similarly, as discussed

above, the exponential specification would correspond to a constant elasticity method
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with elasticity equal to the exponent b. Therefore, these specifications would imply

assumptions similar to those discussed in the Unit and Constant Elasticity methods.

The parameters of the specifications would be fit to paired X-Y data in several
years or in several regions using ordinary least squares techniques. The exponential form

would first be transformed to a linear one by taking the logarithm of both sides to obtain:

log Y; =log a + b log X.. . (5.16)

The advantage of using the regression techniques is that they allow more than the
minimum number of data observations to be used to determine “best fit” parameters of
the model. They also produce r* statistics that indicate how well the assumed
specification fits the data, i.e., how well the underlying assumptions of the method are
being satisfied. The regression methods produce other indicative statistics, such as F-
and #-statistics, although their use in hypothesis testing should be considered with caution
because of the additional assumptions required. Multivariate regression of the freight
movement model Y against several indicator variables X, , X, , ..., X, could be considered.
Indeed, this would provide a better estimation of the parameters when several indicators
vary simultaneously in data sets. However, this would be more similar in spirit to trip
generation models than to simple indicator models. Using a single indicator has the
advantage of simplicity. Doing so can be more easily justified when considering different
indicators for different commodities or types of movement, as is illustrated in the next

section.
5.2 Numerical Dlustrations

We provided simple numerical examples above when discussing the different methods.

VHere, we compare the methods further and illustrate how they may be used with available

data bases. Specifically, we compare the Independent Variable Growth Factor (Unit
Elasticity) method, the Constant Elasticity method, and Regression methods using both

Linear and Exponential specifications. For simplicity, we use the estimate of the
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exponent in the Exponential Regression as the estimated elasticity in the Constant

Elasticity Method. The rationale and difficulties with doing this were presented above.

Calibration: One would be interested in identifying indicators and forecasting freight
movements for important commodities. We, therefore, first used the Commodity Flow
Survey data (Bureau of Transportation Statistics, 1997C) to identify the most important
commodities, in terms of tons shipped, originating in Ohio in 1993. In Table 5.1, we
present the 13 most important commodities, along with the tonnage and percentages

shipped by truck, rail, multimodal, and other or unknown mode.

Table 5.1 Shipments originating in Ohio by commodity and mode in 1993

Total Tons| Truck Rail Multimodal | Other/
(thousands) Unknown
Non-Metallic Minerals 128,639 94.5% 2.4% 0.0% 2.0%
Petroleum/Coal Products 80,418 57.0% 3.6% 0.0% 26.1%
Primary Metal Products 40,819 86.6% 9.4% 0.6% 0.9%
Clay, Concrete, Glass, Stone 35,467 97.3% 0.0% 0.0% 0.9%
Food, Kindred Products 32,785 88.5% 9.8% 0.1% 1.5%
Farm Products 32,680 40.8% 44.7% 0.0% 13.0%
Coal 27,391 45.4% n.a. n.a. 43.0%
Chemicals, Allied Products 25,003 74.3% 8.8% 0.9% 0.2%
Waste, Scrap Materials 11,445 56.7% 41.0% 0.0% 0.0%
Lumber, Wood Products 11,021 38.6% 0.3% 0.2% 0.1%
Transportation Equipment 10,416 71.9% 9.3% 12.4% 6.0%
Fabricated Metal 8,574 89.3% 5.3% 0.1% 4.4%
Pulp, paper, Allied Products 8,570 95.4% 2.5% 0.2% 1.6%
Other 39,939 54.0% 5.9% 2.3% 37.8%
Total 493,167 78.5% 8.2% 0.6% 12.2%

Source: Table 5, CFS 1993, Report by State of Origin, Ohio (Bureau of Transportation Statistics, 1997C)

As indicators for the commodities in Table 5.1, we considered various data
available from the Bureau of Economic Analysis (1996), as summarized in Table 5.2.
Rather, than look at time series data to perform the regressions, we considered cross-
section data. Specifically, we used the tons of the commodity shipped in each state in

1993 as the freight movement variable Y, paired with the value of the indicator variable
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X in the same state in 1993. For the Linear Regression Specification, we assumed no

intercept (k = 0) to allow comparison with the Unit Elasticity Method results.

Table 5.2 Potential indicators available from the Bureau of Economic Analysis

Indicator Level

Gross State Product -GSP-by Industry 57 Industries (State), 14 Industry Groups (BEA
Economic Areas, Metropolitan Statistical Areas)

Employment by Industry 57 Industries (State), 14 Industry Groups (BEA
Economic Areas, Metropolitan Statistical Areas)

Earnings by Industry 57 Industries (State), 14 Industry Groups (BEA
Economic Areas, Metropolitan Statistical Areas)

Personal Income State, BEA Economic Areas, Metropolitan
Statistical Areas

Population State, BEA Economic Areas, Metropolitan
Statistical Areas

Source: Bureau of Economic Analysis, U.S. Department of Commerce (1996)

As an example, we regressed the sum over all commodities shipped against the

Total Industry Employment to obtain:

Linear Specification: Y =57.45 X, with 1* = 0.596;

Exponential Specification: Y = 445.57X°7, with I’ = 0.583;
and also the sum over all commodities shipped against the Total Production Employment
(defined as the Total Employment minus that in the Services Industries and Government)
to obtain:

Linear Specification: Y =277.04 X, with r* = 0.703;

Exponential Specification: Y =1193.18 X7,  with r* = 0.607.

Both indicators show that the tons shipped would increase with the employment
variable, as expected. Therefore, one might consider the r* values to say that the Total
Production Employment indicator performed better than the Total Industry Employment
indicator. We represent the Linear and Exponential specification fits to the data in Figure

5.1



Figure 5.1 Linear and exponential fits of Total Tons Shipped vs. Total Production
Employment using 1993 cross-section data
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We continued in this way with the 13 commodities listed in Table 5.1, performing
regressions of the linear and exponential specifications using a few of the indicators listed
in Table 5.2. In Table 5.3 we present the results of those producing the best results, in
terms of expected signs of coefficient a and fit parameter 7. (In the table, we present the
estimate of In a, the natural logarithm of the coefficient a for the exponential

specification.) Note that, when looking across commodities, the estimated exponents b of

the exponential specification were not very different from unity, indicating that a unit
elasticity might be reasonably assumed in this data. Although we present the results for
these “best” indicators in Table 5.3, this exercise was meant to be illustrative only.

Further analysis is recommended before deciding on best indicators for practice.



Table 5.3 Regression results for selected indicators for commodities in Table 5.1
Model 1- Linear Model 2 - Exponential
y=ax Iny=Ina+blnx
Commodity (y) Indicator (x) Estimateda [ 2 | Estimated Ina | Estimatedb | 2
(Standard (Standard Error| (Standard
Error a) In a) Error b)
All Commodities  |Production 57.451 0.596 7.084 0.7801 0.607
Employmentl (3.948) (0.582) (0.0946)
Non-Metallic Employment Non- 16053.80 | 0.646 9351 1.1572 0.646
Minerals Metallic Minerals (1100.35) (0.140) 0.137)
Mining
Petroleum and Coal |[Employment Petroleun| 11138.77 [0.920 9.920 0.6275 0.730
Products Products (444.03) (0.0893) (0.0627)
Primary Metal Employment Primary 413.16 0.940 5.467 1.1241 0.849
Products Metal Products (12.241) (0.1675) (0.0715)
Clay, Concrete, Employment Stone, 1292.0 0.777 7.773 0.78251 0.803
Glass and Stone Clay and Glass (66.63) (0.1308) (0.05841)
Products
Food and Kindred |Employment Food 493.999 |0.879 6.137 1.0165 0.927
Products Manufacturing (17.925) (0.1382) (0.04256)
Farm Products Employment Farming 199.894 |0.246 3.715 1.2982 0.521
(26.861) (0.8410) (0.2046)
Coal ‘Employment Coal 822999 ]0.317 9.315 0.7925 0.634
Mining (1797.5) (0.2899) (0.1669)
Chemicals and Employment Chemical 424.25 0.320 6.924 0.7149 0.653
Allied Products Products (61.00) (0.2343) (0.08237)
‘Waste, Scrap Production 3.9347 0.823 -2.317 1.5073 0.818
Materials Employmentl (0.2215) (0.7403) (0.1185)
Lumber and Wood |[Employment Lumber 859.72 0.611 5.949 1.1432 0.755
Products and Wood Products (72.122) (0.2697) (0.10062)
Transportation Employment Motor 48.392 0.787 3.989 0.88835 | 0.668
Equipment Veh.+ Other Transp. (3.2616) (0.3432) (0.10304)
Equipment
Fabricated Metals |Employment Fabricated| 63.259 0.859 4.061 0.99288 | 0.872
Metals (2.9216) (0.1714) (0.05739)
Pulp, Paper and [Employment Paper 287.98 0.654 5.967 0.9023 0.826
Allied Products Products (17.672) (0.1727) (0.06636)

1. Production Employment = Industry Employment - (Transportation + Wholesale and Retail + Financial, Insurance,

Real Estate + Services + Government) Employment

Sources: CFS (BOC, 1996), SPEA (BEA, 1996), Own Calculations
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Forecasting: We apply the four methods to future forecasts of the indicator variables for

Ohio to illustrate how the indicators could be used in forecasting. We obtained these

forecasts from the Bureau of Economic Analysis (1996) and show selected projections in

Table 5.4.
Table 5.4 Forecasts of indicators
Indicators 1993 | 1998 | 2000 | 2005 | 2010 | 2015 | 2025 | 2045
Production Employment 1523.31 1558.9| 1557.6] 1568.3] 1573.8] 1569.6| 1538.5| 1617.3
Employment Non-Metallic Minerals 4.8 4 91 5.0 5.0 5.1 5.1 4.9 5.2
Mining '
Employment Petroleum Products 7.8 771 7.6 73 7.1 6.9 6.5 6.6
Manufacturing )
Employment Primary Metal 90.4f o, lf 86.5] 83.51 809 785 7421 755
Products Manufacturing '
Employment Stone, Clay and Glass 43.8 41 81 41.0 39.2 37.6 36.3 34.0 34.1
Manufacturing ’
Employment Food Manufacturing 633 ¢35l 633] 628] 623] 616] 599 628
Employment Farming 99.5| g74l| 962 939 91.0f 873 796 745
Employment Coal Mining 4.8 3 81 34 2.9 2.5 2.3 1.9 1.4
Employment Chemical Products 67.8 68 O1 68.1 68.3 68.4| 68.3 67.2] 71.1
Manufacturing )
Employment Lumber and Wood 272| ,9sl| 304 3201 332 339 343 367
Products Manufacturing ’
Employment (Motor Veh.+Other 130.5 1f 132.1 1319 131.2| 130.2| 126.4] 131.1
. 131.6
Transp. Eq.) Manufacturing
Employment Fabricated Metals 123.4| 19.11| 117.4/ 1135 1100/ 1069 101.1] 1024
Manufacturing '
Employment Paper Products 37.2 3731 37.4) 374 374 372] 36.5] 38.4
Manufacturing )

1. Interpolated value not provided by BEA.
Source: SPEA 1993-2045 (BEA, 1996)

To demonstrate, consider applying the procedures to forecast Total Tons of Non-
Metallic Minerals shipped in Ohio in 1998. From Table 5.3, the relevant indicator for this

freight movement variable Y is Employment in the Non-Metallic Mineral Mining sector

in 1998. We use 1993 as the base year #, in the Independent Variable Growth Factor

(Unit Elasticity) and Constant Elasticity methods, since freight movement data can be

found in the Commodity Flow Survey for this year. Table 5.1 shows that ¥,, = 128,639



[10° tons] of Nonmetallic Minerals shipped in Ohio in 1993. Table 5.4 shows that the
Employment in the Non-Metallic Mineral Mining sector was 4.8 [10°] in 1993 and
forecast to be 4.9 [103] in 1998.

Using Equation (5.7), the 1998 forecast using the Independent Variable Growth
Factor (Unit Elasticity) method would be:

Y905 = (4.9/4.8) 128,639 = 131,000 [10? tons].

From Table 5.3, the estimated elasticity for this freight movement and indicator variable
would be 1.1572, rounded to 1.16. Using Equation (5.11), the 1998 forecast using the
Constant Elasticity Method would be:

Y998 = 128,639[1 + 1.16(4.9-4.8)/4.8] = 132,000 [10° tons].

From Table 5.3, the estimated parameter a in the Linear Specification regression method
would be 16,053.80, rounded to 16,100. Using Equation (5.14) with k=0, the 1998

forecast using this method would be:

Y1998 = 16,100 (4.9) = 78,700 [10 tons).

From Table 5.3, the estimated parameters a and b in the Exponential Specification
regression method would be ¢** = 11,500 and 1.16, respectively. Using Equation (5.15),
the 1998 forecast using this method would be:

Y1908 = 11,500 (4.9)16 = 72,600 [10® tons].

The differences between the Elasticity Methods (Unit and Constant Elasticity) and
Regression (Linear and Exponential) results are apparent. The differences stem from the
fact that the ratio of the tons of Non-Metallic Minerals shipped to the Employment in the
Non-Metallic Mineral Mining sector was higher in Ohio than the least squares ratio of the
fifty states in 1993, 26,800 (=128,639/4.8) compared to 16,100. The Unit Elasticity

(Independent Variable Growth Factor) and Constant Elasticity results are similar because
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the constant non-unit elasticity used in the latter method was close to unity. This also
explains the closeness between the Linear and Exponential Specification regression

results.

We forecast the 1998, 2000, 2005, 2010, 2015, and 2025 tons shipped in Ohio for
the commodities listed in Table 5.1 with each of these four methods. We present the
results in Table 5.5. We also total these forecast tonnage and list these in the table. From
Table 5.1, one can deduce that these commodities represented apprbyéimately 92% of the
total tons shipped in Ohio in 1993. The totals in Table 5.5 could be factored up by
dividing by 0.92 if the contribution of these commodities was expected to stay the same
in the future. However, we would propose a less drastic assumption, one that says that
the sum of these commodities will continue to represent a “large proportion” of tons
shipped in Ohio unless significant structural changes occur. In the absence of these
changes, the calculated totals in Table 5.5 would represent a large percentage of
shipments in Ohio in the corresponding year. Again, we emphasize that these numbers
are intended only to be illustrative of the type of results that could be obtained with the

use of indicators, and not to represent accurate forecasts.

Table 5.5 Forecasts of freight shipments originating in Ohio 1998-2025 [million tons]
using various indicator methods

1993 1998 2000 2005 2010 2015 2025
128.6 [Elasticity=1 131.6 1340 1340 136.7 136.7 131.3
Non-Metallic Elasticity=b 132.0 134.8 134.8 137.9 137.9 131.7
Minerals Iinear 78.8 80.3 80.3 81.9 81.9 78.7
Exponential 72.6 74.1 74.1 75.8 75.8 72.4
80.4 [Elasticity=1 79.5 78.4 75.3 73.2 71.1 67.0
Petroleum/Coal Elasticity=b 79.8 79.1 77.2 75.9 74.6 72.0
HProducts [ inear 85.9 84.7 813 79.1 76.9 72.4
Exponential 73.3 72.6 70.8 69.6 68.3 65.8
40.8 [Elasticity=1 39.6 39.1 37.7 36.5 354 335
[Primary Metal Elasticity=b 394 38.8 37.3 36.0 34.8 326
Products [ inear 36.2 35.7 345 334 324 30.7
Exponential 36.1 35.6 342 33.0 31.9 30.0
35.5 [Elasticity=1 339 33.2 31.7 30.4 29.4 275
Clay, Concrete, Elasticity=b 34.2 33.7 32.6 31.5 30.7 29.3
IGlass, and Stone [inear 54.0 53.0 50.6 48.6 46.9 43.9
Products Exponential 44.1 43.4 41.9 40.6 39.5 37.5
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Table 5.5 Forecasts of freight shipments originating in Ohio 1998-2025 [million tons]
using various indicator methods (Continued)

1993 1998 2000 2005 2010 2015 2025
32.8 [Elasticity=1 32.8 32.8 325 323 319 31.0
Food, Kindred Elasticity=b 32.8 32.8 325 323 31.9 31.0
Products [ inear 313 313 31.0 30.8 30.4 29.6
Exponential 314 31.4 31.1 30.9 30.5 29.7
32.7 Elasticity=1 32.0 31.6 30.8 29.9 28.7 26.1
Farm Products Elasticity=b 31.8 31.3 30.3 29.1 27.5 24.2
[ inear 19.5 19.2 18.8 18.2 17.5 15.9
Exponential 15.7 15.4 14.9 14.3 13.6 12.1
27.4 [Elasticity=1 21.7 19.4 16.5 14.3 13.1 10.8
Coal [Elasticity=b 229 21.1 18.8 17.0 16.1 14.3
I inear 314 28.0 23.9 20.6 18.9 15.6
Exponential 32.0 29.3 25.8 22.9 215 18.5
25.0 [Elasticity=1 25.1 25.1 25.2 25.2 25.2 24.8
Chemicals and Elasticity=b 25.1 25.1 25.1 25.2 25.1 24.8
Allied Products [ inear 28.9 28.9 29.0 29.0 29.0 28.5
Exponential 20.8 20.8 20.8 20.9 20.8 20.6
11.4 [Elasticity=1 11.7 11.7 11.8 11.8 11.8 11.6
Waste, Scrap Elasticity=b 11.8 11.8 12.0 12.0 12.0 11.6
[Materials [ inear 6.1 6.1 6.2 6.2 6.2 6.1
Exponential 6.4 6.4 6.5 6.5 6.5 6.3
11.0 [Elasticity=1 12.0 12.3 13.0 13.5 13.7 13.9
Eumber, Wood Elasticity=b 12.1 12.5 13.2 13.8 14.1 14.3
roducts inear 25.4 26.1 27.5 28.5 29.1 29.5
Exponential 18.4 19.0 20.2 21.0 21.5 21.8
10.4 [Elasticity=1 10.5 10.5 10.5 10.5 10.4 10.1
[Transportation Elasticity=b 10.5 10.5 10.5 10.5 10.4 10.1
[Equipment inear 6.4 6.4 6.4 6.3 6.3 6.1
[Exponential 4.1 4.1 4.1 4.1 4.1 4.0
8.6 [Elasticity=1 8.3 8.2 7.9 7.6 7.4 7.0
Fabricated Metal Elasticity=b 8.3 8.2 79 7.6 7.4 7.0
[Products [inear 7.5 7.4 7.2 7.0 6.8 6.4
Exponential 6.7 6.6 6.4 6.2 6.0 5.7
8.6 [Elasticity=1 8.6 8.6 8.6 8.6 8.6 8.4
Pulp, Paper, Elasticity=b 8.6 8.6 8.6 8.6 8.6 8.4
Allied Products [inear 10.7 10.8 10.8 10.8 10.7 10.5
Exponential 10.2 10.2 10.2 10.2 10.2 10.0
453.2 [Elasticity=1 447.11 4449 435.6 430.5 423.4] 403.1
Total Elasticity=b 449.3 448.3 440.8 4373 431.1 411.5
[ inear 422.1 417.9 407.3 400.3 393.0( 3739
Exponential 37171 368.9 361.1 356.0f 350.2| 334.2
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The differences in the freight movement forecasts produced by the different
methods are apparent in Table 5.5. We illustrate these differences by graphing the
forecast totals in Figure 5.2. This would indicate that the choice of indicator method used
could make a difference in the forecast produced. We personally feel that the regression
methods are preferable to the elasticity methods, but note that there is no reason to
believe that the forecast produced by any method would be more accurate than that
produced by any other method for a specific year. Therefore, if a forecast produced from
the indicator methods would be useful in supporting policy or alternative analysis or as an
input to a more complex model, we would presently suggest using all the methods to
produce a range of forecasts that would serve as a lower bound indicator of the

uncertainty in the expected freight movements.

Figure 5.2 Forecasts of freight shipments 1998-2045 [million tons] based on Table 5.1
commodities originating in Ohio using various indicator methods
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5.3 Discussion

We demonstrated that indicator methods can presently be used with available public data
sources to forecast generated freight at the state level. We have also been experimenting
with indicators at the finer National Transportation Analysis Regions (NTAR) level (see
Section 3) and obtaining similar results. We also showed that different indicator

variables and methods could be considered. Although we believe that the regression
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methods should be preferred because they impose less restrictive assumptions than the
other methods, this does not mean that these methods would produce more accurate
forecasts for any given year. Similarly, the correlation statistics we calculate provide an
indication of how well the calculated relationships fit freight variables to indicator
variables, but they offer no indication of how well the forecasts will perform over time or
how useful the forecasts will be in supporting analysis of public planning issues. An
indicator method can be decided upon as a stand alone model or as a component of a
more complex model if necessary, but longer term analysis would be required before one

could use the results with any confidence.
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Section 6. Intermodal Flows at New Facility: Example of Discrete Choice

Freight movement models could be used to help forecast usage at new freight terminals or
transfer points. We illustrate variants of one such approach in this section. Although we
do not expect new facility models to be used on an ongoing basis, we discuss this
application in the event that ODOT would want to conduct or contract for such analysis
of a new freight facility. We also note that like many models, alternatives for freight
shipments -- the facility used, in this case -- are modeled as depending on certain level of
service or performance characteristics. Indeed, we see that the heart of the methodology
is similar to traditional modal choice models, where instead of facilities, the alternatives

are the modes.

Again, we wish to illustrate that explicit freight movement modeling is possible,
that models have been proposed and used for such analysis, and that variations of the
models could easily be imagined. We illustrate this by discussing the application of what
we call a New Facility Model NFM to the analysis of converting Rickenbacker military
base, located in Central Ohio, to an intermodal, air-based facility. The NFM model has
been proposed and used for new freight facility siting (Weinblatt and Edwards, 1997,
Cambridge Systematics, Inc., et al., 1997). Much of the data required would be obtained
from private databases discussed in Section 3. Keeping with the illustrative nature of this
report, we do not obtain these real data, but present the examples with realistic data. That
is, the form of the data used in this analysis would be similar to that which could be

obtained, but we assumed the actual numerical values of the data.

We also show that the different ways of combining independent variables
proposed by the NFM developers can lead to very different forecasts. Different ways of
fitting dependent variables to independent variables leads to forecasts that are very
similar, but the differences due to the way in which the independent variables are
combined illustrate how these similarities can be misleading in the absence of further

investigation.



6.1 Setting of Dllustrative Example

We consider converting Rickenbacker military base into an intermodal, air-based terminal
that would compete for intermodal freight with existing facilities in Ohio. We consider
the six facilities listed in the Access Ohio report (Ohio Department of Transportation,
1993). The locations of the facilities, and that of Rickenbacker, are shown in Figure 6.1.

Figure 6.1 Locations of Rickenbacker and Competing Ohio Air Freight Facilities
(source: Exhibit 2-8 in Ohio Department of Transportation (1993))

AIR CARRIER AND AIR CARGO
AIRPORTS IN OHIO
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Forecasting the amount of freight that would use Rickenbacker would be of
interest when assessing the desirability of converting it to an intermodal facility and the
desirability of alternative capacity and operational options of the converted facility. One
component of freight usage would be traffic either arriving at the facility by ground and
departing by air, or arriving by air and departing by ground. Similar to what is proposed
in Cambridge Systematics, Inc., et al. (1997), we discuss one direction, that dealing with
freight arriving by ground and departing by air, what we call ground-to-air freight.
Separate models could be developed for the air-to-ground component, or this volume
could be assumed to equal the ground-to-air component over an extended time period,
such as a year (Cambridge Systematics, Inc., et al, 1997). Also, similar to the
methodology proposed in Cambridge Systematics, Inc., et al., (1997), we only consider
the freight diverted from existing facilities. Traffic generated by adding a new facility
could eventually be added to the diverted traffic, but this would require a different
methodology. However, the methodology presented here is not limited to existing freight

patterns, but can just as easily be applied to forecasts of generated freight.

We base our analysis on that proposed in (Weinblatt and Edwards, 1997) and used
in North Carolina (Cambridge Systematics, Inc., et al., 1997). The methodology requires
dividing the study area into geographic freight generating regions, calculating distances
from these regions to the air facilities, and determining facility level-of-service variables.
For demonstration purposes, we arbitrarily selected regions roughly corresponding to the
National Transportation Analysis Regions (Bureau of Transportation Statistics, 1997b) in
Ohio (see Figure 6.2) and calculated the distances from geographic centroids of these
regions to the facilities (see Table 6.1). Freight generating regions could, of course,
extend beyond the state borders. This would not complicate the type of analysis

presented in this section.



Figure 6.2 Regio

14

ns used in New Facility Model example applications

Table 6.1 Distances in miles from facilities of Figure 6.1 to regions of Figure 6.2
Region 1 RegionII Region ITI Region IV Region V

(Cleveland, NTAR65) | (Columbus, NTAR66) | (Cincinnati, NTAR67) | (Dayton, NTAR6S) | (Toledo, NTART0)
Airbome Airpark 180 40 70 45 155
Dayton 215 80 50 10 145
Toledo 110 140 190 145 5
Cincinnati 240 105 5 50 190
Cleveland-Hopkins 10 140 240 215 110
Columbus 135 5 105 80 140
Rickenbacker 200 30 120 120 165
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The facility level-of-service variables could take several forms. The North
Carolina study used number of operations per year, available capacity, frequency of
service, and cost of shipments. For demonstration purposes, we used frequency of service
(measured by number of operations per year) and number of destinations served. We
could not find values for these variables, even for the existing facilities, but note that the
values used in the North Carolina study were obtained from the Colography Group, Inc., a
private data supply firm reviewed in Section 3. Rather than purchase such data for an
illustrative study, we assumed values of the data and present them in Table 6.2. We
assumed values in such a way that the airports shown to handle more freight in 1991
(Ohio Department of Transportation, 1993) had larger numbers of operations and

destinations served than those that handled less freight.

Table 6.2 Values of Level-of-Service variables assumed
for the air facilities of Figure 6.1

Frequency No. of Destination
Airborne Airpark 49,000 100
Dayton 44,500 85
Toledo 42,000 63
Cincinnati 35,000 40
Cleveland-Hopkins 18,000 30
Columbus 800 13

The Access Ohio report (Ohio Department of Transportation, 1993) provides
magnitudes and percentages of freight enplaned in 1991 at the existing Ohio airports but
gives no information on the origins of the freight. To generate such values, we arbitrarily
asSumed that 20% of the ground-to-air freight would be generated in each of the five
regions of Figure 6.1. These shares could be refined using public or private data bases,
but the illustrative nature of this study did not warrant such refinement. We considered
the unit of ground-to-air freight to be the ton, assumed the shares of ground-to-air tons

using the existing facilities equaled the shares of total freight enplaned at the existing



facilities in 1991, and arbitrarily assumed that the busiest facility (Airborne Airpark)

would enplane an average of 957.5 tons per day (= 349387.5 tons per year).

With these conditions we calculated a total of 184732.8 (annual) tons of ground-
to-air freight generated in each region. To determine the tons of ground-to-air freight
generated in each region using each of the existing facilities, we used a multinomial logit

model:

ooy - PBrszo PREQ(@) + Brogs NDES(@) + By DIST(F )]
(@lr') = " eXplBrxp FREQ(a) + Bupss NDES(a) + Byysy DIST( )]

a=1,6

a=12,..,61r"=12..5, (6.1)

where P(a’lr’) is the probability that a ton of ground-to-air freight generated in region r’
would use facility (airport) a’, FREQ(a) and NDES(a) are, respectively, the number of
yearly operations at and number of destinations served by facility a, DIST(r’,a) is the
distance from the centroid of region #’ to facility a, and Brreg ,Byvpes , and Bpsr are,
respectively, coefficients of the FREQ, NDES, and DIST variables. We found the values
of these coefficients by using the 1991 shares as estimates of probabilities that a unit of
ground-to-air freight would be enplaned at the facility, and regressing these probabilities
against the FREQ, NDES, and DIST variables in Equation (6.1). (Regressing shares
against variables in a way consistent with the multinomial logit model is described below,
where the emphasis is on methodology.) We found Brreg = 3.41E-05, Bypes = 1.28E-02,
Boisr= -1.75E-03. This led to the P(a’!r’) values shown in Table 6.3.
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Table 6.3 Probability of a unit of ground-to-air freight generated
in region r’ using facility a’ assumed for study

Regionl Region II Region III Region IV Region V

{Cleveland, NTAR65) | (Columbus, NTAR66) | (Cincinnati, NTAR67) | (Dayton, NTARGS) | (Toledo, NTAR70)

Airborne Airpark 0.365 0.397 0.382 0.382 0.351
Dayton 0.243 0.262 0.280 0.288 0.253
Toledo 0.203 0.164 0.152 0.158 0.224
Cincinnati 0.095 0.102 0.123 0.109 0.095
Cleveland-Hopkins 0.070 0.047 0.040 -7 0.040 0.054
Columbus 0.025 0.027 0.023 0.023 0.023
Total 1.00 1.00 1.00 1.00 1.00

We assumed that the annual number of tons of ground-to-air freight using each
facility in the base case (i.e., the scenario in which Rickenbacker did not exist as an air
freight facility) was the expected (mean) number of tons using the facility, found by
combining the number of tons assumed to be generated in each region above with the
conditional probabilities of Table 6.3. We present these numbers in Table 6.4. All
numbers would change with time and fluctuate from year to year, of course, but we

assumed one year of data for the illustrations used in this section.

Table 6.4 Tons of ground-to-air freight generated
in region r’ using facility a’ assumed for study

Region I Region I Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) | (Cincinnati) (Dayton) (Toledo)

Airborne Airpark 67,443.8 73,445.7 70,555.7 70,650.7 64,875.6 346,972 37.6%
Dayton 44,907.0 48,447.4 51,725.6 53,172.9 46,736.4 245,019 26.5%
Toledo 37,393.4 30,242.5 28,053.2 29,091.6 41,374.8 166,155 18.0%
Cincinnati 17,447.2 18,866.7 22,7543 20,157.9 17,563.5 96,819 10.5%
Cleveland-Hopkins 12,880.2 8,744.7 7,432.0 7,442.1 9,955.5 46,454 5.0%
Columbus 4,631.2 4,955.8 42120 4,217.6 4,227.0 22,243 2.4%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100%

In summary, for our illustrations we assume that the six facilities other than
Rickenbacker shown in Figure 6.1 operate with frequencies given in Table 6.2 and serve
the number of destinations shown there. Ground-to-air freight using these six facilities is

generated from the five regions portrayed in Figure 6.1. The distances from these five
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regions to these six facilities are given in Table 6.1, and the quantities of freight generated

in the regions and using the airports, measured in units of tons, are those in Table 6.4.

6.2 New Facility Model

We call the model proposed in Weinblatt and Edwards (1997) to predict freight flows to a
new facility and applied in North Carolina (Cambridge Systematics, Inc., et al., 1997)

New Facility Model NFM. We summarize the model as consisting of the following steps:

1) Determine competing facilities;

2) Divide the study area into freight generating regions;

3) Forecast the annual freight volumes produced in (or attracted to) each region;

4) Assign a “proximity score” for each region-facility combination;

5) Assign a “Level-of-Service (LOS) score” for each facility;

6) Combine the proximity and LOS scores to determine an “overall score” for
each region-facility combination;

7) Based on the overall scores of Step 6), assign the region freight forecasts of
Step 3) to the facilities;

8) Sum the assignments of Step 7) across regions to obtain freight forecasts for
each facility.

We illustrate this procedure by applying it to the Rickenbacker conversion example.

Steps 1) , 2) and 3) have been illustrated in Section 6.1. The resulting facilities
and regions are shown Figures 6.1 and 6.2. The regional freight forecasts are found as the
Regional Totals in Table 6.4.

The developers for NFM suggest that the proximity score of Step 4) be based on
the “highway distance” from the approximate centroid of economic activity in the region
to the facility. A default function is provided to map these distances into proximity
scores and illustrated in Figure 6.3. The region-facility distances were given above in
Table 6.1. Applying the function of Figure 6.3 to the distances of Table 6.1 leads to the
proximity scores of Table 6.5. The authors propose that the proximity function could be

adjusted to consider transport cost, time, and reliability, although no guidance or default
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function is provided. However, the functions could be calibrated in a manner similar to

that shown below.

Figure 6.3 Suggested proximity score function for New Facility Model (taken from:
Weinblatt and Edwards, 1997)

Score

Distance (miles)



Table 6.5 Proximity scores for New Facility Model based on region-facility
distances of Table 6.1 and proximity score function of Figure 6.3

Region I Region I1 Region I11 Region IV Region V

(Cleveland, NTAR6S) | (Columbus, NTAR66) | (Cincinnati, NTAR67) | (Dayton, NTAR6S) | (Toledo, NTAR70)
Airbome Airpark 5.4 10.0 10.0 10.0 6.5
Dayton 4.7 10.0 10.0 10.0 6.8
Toledo 9.0 6.9 5.2 6.8 10.0
Cincinnati 4.1 9.5 10.0 10.0 52
Cleveland-Hopkins 10.0 6.9 4.1 47 9.0
Columbus 7.2 10.0 9.5 10.0 6.9
Rickenbacker 5.0 10.0 7.0 7.0 6.0

To develop the LOS score in Step 5), the NFM developers suggest that the
facilities be compared in terms of number of destinations served, frequency of service,
and unit costs of carriers using the facilities. Other than suggesting that the LOS scores
be determined on the basis of judgment, that the facility considered best on these criteria
receive a score of 10, and that the scores of the other facilities be determined in relation to
this score, no guidance is provided for determining these scores. In our illustrative
example, we base LOS scores on destinations served and frequency of service (number of

operations).

We assumed data values so that the busiest existing facility was the best on each
of these measures, the next busiest existing facility was next best on each of the
measures, and so on (see Table 6.2). We also assumed data for the Rickenbacker facility
so that its numbers of destinations and operations were equal to those of the Cincinnati
facility. Therefore, the ranking of facilities was obvious. Since no guidance is given for
mapping the LOS variables into LOS scores, we simply assigned scores for the existing
(without Rickenbacker) case so that the scores were uniformly distributed between 1 and
10. We then assigned the Rickenbacker facility a score equal to that of Cincinnati. These

LOS scores are given in Table 6.6.
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Table 6.6 New Facility Model Level-of Service scores
based on facility measures of Table 6.2

Airports LOS
Airborne Airpark 10.0
Dayton 8.2
Toledo 6.4
Cincinnati 4.6
Cleveland-Hopkins 28
Columbus 1.0
(Rickenbacker) (4.6)

Developers of the model suggest that the proximity and LOS scores be combined
either additively or multiplicatively in Step 6). That is, the overall score for a region-
facility combination could either be the sum or the product of the region-facility
proximity score determined in Step 4) and the LOS score of the facility determined in
Step 5). The sets of overall scores formed by using the additive and multiplicative

combinations with the LOS scores of Table 6.6 are presented in Table 6.7.

Table 6.7 New Facility Model overall scores formed by combining L.LOS scores
of Table 6.6 with proximity scores of Table 6.5 additively and multiplicatively

6.7a Additive combination

Region I Region II Region III Region IV Region V

(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 154 20.0 20.0 20.0 16.5
Dayton 12.9 18.2 18.2 18.2 15.0
Toledo 15.4 13.3 11.6 13.2 16.4
Cincinnati 8.7 14.1 14.6 14.6 9.8
Cleveland-Hopkins 12.8 9.7 6.9 7.5 11.8
Columbus 8.2 11.0 10.5 11.0 79
(Rickenbacker) 9.6) (14.6) (11.6) (11.6) (10.6)
Total 73.4 86.3 81.8 84.5 77.4
(83.0) (100.9) (93.4) (96.1) (88.0)
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6.7b Multiplicative combination

Region I Region IT Region III Region IV Region V

(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 54.00 100.00 100.00 100.00 65.00
Dayton 38.54 82.00 82.00 82.00 55.76
Toledo 57.60 44.16 33.28 43.52 64.00
Cincinnati 18.86 43.70 46.00 46.00 23.92
Cleveland-Hopkins 28.00 19.32 11.48 13.16 25.20
Columbus 7.20 10.00 9.50 10.00 6.90
(Rickenbacker) (23.00) (46.00) (32.20) (32.20) (27.60)
Total 204.20 299.20 282.30 294.70 240.80
(227.20) (345.18) (314.46) (326.88) (268.38)

In Step 7), the NFM developers suggest that the freight from a region be assigned
to a facility in direct proportion to the fraction of the total overall score for a facility that
comes from the region. For example, consider the freight to be assigned based on using
an additive combination of proximity and LOS scores. The overall scores for this
scenario are given in Table 6.7a. In this scenario, the proportion of, for example, Region
I freight assigned to the Airborne Airpark facility would be the proportion of the total
freight from Region I (184732.8 tons according to Table 6.4) obtained by taking the ratio
of the Region I-Airborne overall score (15.4) to the sum of the region-facility overall
scores for the Airborne facility (73.4). That is, the forecast use of Region I freight using
Airborne Airpark would be (15.4/73.4) x 184732.8 = 38758.7 [tons].

Summing across regions in Step 8) is straightforward. The forecast region-facility

assignments and totals for subareas and regions for the four overall score scenarios

considered are given in Table 6.8.
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Table 6.8 Forecast freight in tons using facilities by region based on the four sets of
overall scores of Table 6.6

6.8a Additive composition for overall score, without Rickenbacker

Region I Region II Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 38,758.7 42,811.8 45,166.9 43,723.7 39,381.0 | 209,842.1 22.7%
Dayton 32,466.7 38,958.7 41,101.9 39,788.6 35,8009 | 188,116.8 20.4%
Toledo 38,758.7 28,469.8 26,196.8 28,857.7 39,1424 | 161,425.3 17.5%
Cincinnati 21,896.1 30,1823 32,9719 31,9183 23,389.9 | 140,358.6 15.2%
Cleveland-Hopkins 32,215.0 20,763.7 15,582.6 16,396.4 28,163.4 | 113,121.1 12.2%
Columbus 20,637.7 23,546.5 23,712.6 24,048.1 18,855.2 | 110,800.1 12.0%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 | 923,664.0 100.0%
6.8b Additive composition for overall score, with Rickenbacker
Region I Region II Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 34,275.7 36,617.0 39,557.3 38,446.0 34,637.4 | 183,533.4 19.9%
Dayton 28,7115 33,3215 35,997.2 34,985.8 31,488.5 | 164,504.5 17.8%
Toledo 34,275.7 24,350.3 22,9433 25,3743 34,427.5 | 141,371.1 15.3%
Cincinnati 19,363.6 25,815.0 28,876.9 28,065.5 20,572.5 | 122,693.5 13.3%
Cleveland-Hopkins 28,488.9 17,759.2 13,647.3 14,417.2 24771.0 | 99,083.7 10.7%
Columbus 18,250.7 20,139.4 20,767.6 21,1453 16,584.0 | 96,886.9 10.5%
Rickenbacker 21,366.7 26,730.4 22,943.3 22,298.7 22,251.9 | 115,590.9 12.5%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 | 923,664.0 100.0%
6.8c Multiplicative composition for overall score, without Rickenbacker
Region I Region IT Region Il Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 48,852.0 61,746.4 65,447.7 62,689.3 49,869.7 | 288,605.1 31.2%
Dayton 34,865.8 50,632.0 53,667.1 51,405.2 42,780.6 | 233,350.8 25.3%
Toledo 52,108.8 27,267.2 21,781.0 27,282.4 49,1025 | 177,541.8 19.2%
Cincinnati 17,062.0 26,983.2 30,106.0 28,837.1 18,352.1 { 121,340.3 13.1%
Cleveland-Hopkins 25,330.6 11,929.4 7,513.4 8,249.9 19,334.1 72,3575 7.8%
Columbus 6,513.6 6,174.6 6,217.5 6,268.9 52939 | 30,468.6 3.3%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 | 923,664.0 100.0%
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6.8d Multiplicative composition for overall score, with Rickenbacker

Region I Region I Region T Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)

Airbomne Airpark 43,906.6 53,517.8 58,746.0 56,514.0 44,741.2 | 257,425.5 27.9%
Dayton 31,336.3 43,884.6 48,171.8 46,341.4 38,381.0 | 208,115.1 22.5%
Toledo 46,833.7 23,633.5 19,550.7 24,5949 44,052.8 | 158,665.5 17.2%
Cincinnati 15,334.8 23,387.3 27,023.2 25,996.4 16,464.7 | 108,206.4 11.7%
Cleveland-Hopkins 22,766.4 10,339.6 6,744.0 7.437.2 17,345.8 64,633.1 7.0%
Columbus 5,854.2 5.351.8 5,580.9 5,651.4 4,749.4 | 27,187.7 2.9%
Rickenbacker 18,700.9 24,618.2 18,916.2 18,197.5 18,997.8°| 99,430.6 10.8%

Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 | 923,664.0 100.0%

In Figure 6.3 we plot the percentages of total generated freight using the various
air facilities for the four different cases corresponding to Table 6.8--with and without
Rickenbacker, each with the additive and multiplicative composition for the overall score.
In general, the differences between the percentages predicted by the additive and
multiplicative forms for a given scenario (either with or without Rickenbacker) are
greater than the differences between the percentages predicted in the with and without
Rickenbacker cases for a given functional form (either additive or multiplicative). For
example, the difference between the percentages of freight predicted to use Airborne
Airpark for the additive and multiplicative compositions in the without Rickenbacker
case can be seen to be approximately 8% in Figure 6.3 (and calculated to be 8.5% from
Table 6.8). For the additive composition, the difference between the percentages of
freight predicted to use Airborne Airpark in the with and without Rickenbacker cases can
be seen to be only approximately 3% in Figure 6.3 (and calculated to be 2.8% from Table
6.8). The exception is the difference in the Rickenbacker and, perhaps, the Toledo and
Cincinnati facilities. At the Rickenbacker facility there is a great difference between the
with and without scenarios (roughly, 10-12%) because the facility had no freight in the
without scenario, while the difference between the additive and multiplicative forecasts
whén Rickenbacker is added is only approximately 2%. The differences in forecasts due
to functional form and those stemming from adding Rickenbacker cases are

approximately the same in the Toledo and Cincinnati cases.
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Figure 6.4 Predicted percentages using the facilities under additive and multiplicative

composition assumptions in the with and without Rickenbacker
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Since neither the additive or multiplicative form is prescribed as more appropriate,
the differences due to the different forms can be thought of as a lower bound on the
accuracy of the models; that is, one should not be able to predict percentages to a level
finer than these differences. Since the differences in the predicted percentages between
the with and without Rickenbacker cases are less than or equal to these differences, this

model would not be useful in predicting changes in freight usage at the facilities.

Both the additive and multiplicative compositions capture the general trends of
Table 6.4 (see Table 6.9). This is not very surprising, since although the Table 6.4 data
was generated using a model different from the NFM, it was generated using the same
causal variables assumed in the NFM--frequency, number of destinations served, and
distance. The forecasts obtained with the multiplicative formulation match the Table 6.4
data better than do the forecasts obtained with the additive formulation. However, once
again, no reason is given to prefer the multiplicative over the additive formulation.
Although the forecasts obtained with the additive composition do rank the facilities in the
same order as does the generated data leading to Table 6.4, the differences in the

magnitudes of the predicted percentages are great enough to indicate that such a model

6-15



could only be used as a very rough estimate of the actual magnitude of freight using the

facilities.

Table 6.9 Percentages of freight using the facilities in the without Rickenbacker scenario
generated by region predicted in the New Facility Model under additive (from
Table 6.8a) and multiplicative (from Table 6.8c) score compositions and base

data
Additive Multiplicative Base data

Airborne Airpark 22.7% 31.2% | 37.6%
Dayton 20.4% 25.3% 26.5%
Toledo 17.5% 19.2% 18.0%
Cincinnati 15.2% 13.1% 10.5%
Cleveland-Hopkins 12.2% 7.8% 5.0%
Columbus 12.0% 3.3% 2.4%

Total 100.0% 100.0% 100.0%
6.3 Model Calibration

The new facility model NFM presented above is essentially a two-stage model, one that
“generates” freight in regions, and one that assigns the freight generated in each region to
the various facilities. The methodological details in the model lie in the latter stage. The
suggested method is typical of many passenger trip distribution and modal choice models
in that the assignments are based on measures that indicate the relative attractiveness of
the alternative (the facility, in this case) and of the “trip maker -alternative (region-
facility, in this case) pair. In the example developed above, the assignment is based on
the distance of the region centroid to the facility and on the number of destinations served

and annual operations at the facility.

The empirical results of the preceding section illustrated that the NFM, as
presented, could only be used to obtain a very rough estimate of freight using the various
facilities. The advantage of this type of model is that it is easy to use, and for the
assignment stage presents default, “quick response-like” parameter values. As with most

forecasting models, one might want to use data to calibrate parameters of the model. This
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will ensure a better fit to the conditions used in the calibration. Of course, this improved
fit to existing conditions will not necessarily translate to improved forecasts of altered or
future conditions if no acceptable behavioral meaning can be ascribed to the functional
form of the model. Still, we discuss calibrating the models to data because: i) it is
commonly suggested for transportation models, even those with no behavioral
interpretation; and ii) if done over many data sets, it can be used to identify robust
correlations among independent and dependent variables. We discuss calibrating the

NFM model, and an alternative logit formulation of the NFM.

Assuming that the proximity scores for region r; to facility a; and the LOS score
for facility a;--denoted PROX;; and LOS;, respectively--are combined additively in Step 6)
of the NFM, the model can be written:

F(a,)= ZF(a,-.,r,-) , i'=1,..,1 (6.22)

J=LJ

(PROX, ; + LOS,)
> (PROX, , +LOS,)

i=1,l

F(a,.r,)=F(r) , i’=1,..,Lj=1,..,7  (6.2b)

where, F(a;) is the amount of freight using facility ay, F(a;,r;) is the amount of freight
using facility a; generated in region rj, PROX;; is the proximity score of facility a; to
region rj, LOS; is the Level-of-Service score for facility a;, there are I airports, and there
are J regions. A similar model can be written for the multiplicative combination of
proximity and LOS scores by changing the PROX.,. + LOS. term to PROX.,. XLOS.. For

ease in exposition, we only discuss the additive combination here.

Given the form of equation (6.2b), the assumptions in the NFM model are related
to the way in which the LOS and PROX scores are determined. The proximity score
function of Figure 6.3, which is a function of distance DIST, is claimed to be based on

experience, and the developers also state that judgment should be used in deciding upon
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LOS scores from the LOS variables, FREQ(a;) and NDES(a;) in the example above. One
could think of the PROX.,.+ LOS. expression (or the multiplicative equivalent) as a value
function, V(PROX, LOS) = PROX.,.+ LOS.. With this concept, one could investigate the
form of V(PROX, LOS) = V(DIST, FREQ, NDES) using either structured value
assessment techniques (e.g., Keeney and Raiffa, 1976) from experts if no historical data

are available or econometric fitting techniques if such data are available.

To illustrate the type of fitting that could be done with historical data, consider
what we call “Data Calibration Scenario 1.” This scenario assumes that the amount of
freight using the various facilities F(q;), i = 1, ..., I, and the amount of freight from the
various regions F(r;), j = 1, ..., J, are known. For example, the amount of freight using
the existing facilities was found from the Access Ohio Report (Ohio Department of
Transportation, 1993), and the freight from the various regions could be found from
historical data or estimated in the first stage of NFM using generation models, such as the
indicator models considered in Section 5. Consider that one accepted the proximity score
function of Figure 6.3, assumed that the highest ranked facility had a LOS score of 10,
and wanted to fit the LOS scores for the other facilities. In this case, the set of / equations
formed when substituting the equations of (6.2b) in those of (6.2a) would contain I-J
unknowns (the LOS for all but the LOS =10 facility). One could conceivably use some
fitting technique, but inspection of (6.2) shows that the equations would be nonlinear in

the LOS unknowns, and some efficient solution techniques would need to be used.

We used trial and error to obtain what we thought were reasonable fits of the LOS
variables in the “without Rickenbacker” case. We then set the Rickenbacker LOS equal
to that of the Cincinnati facility, as before. The LOS values and the resulting forecasts for
use of the various facilities in the “without” and “with” Rickenbacker cases are presented

in Tables A6.1a-c in Appendix 6.

In “Data Calibration Scenario 2, ” we still use the historical data on the freight

using the facilities and the freight generated from each region, but relax the constraint that
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the LOS score of the best facility is equal to 10; rather, we fit all the LOS scores. This
offers more flexibility and makes it easy to handle new facilities with better LOS scores
than the previous best facility. As such, it seems preferable. In this case the I equations
formed when substituting the equations of (6.2b) in those of (6.2a) would now contain [
unknowns (the I LOS scores). Again, the equations would be nonlinear in the /
unknowns and not easy to solve. Using the same data as before, we again found *“good
fitting” LOS values by trial and error. The LOS values and the resulting “forecasts” are
given in Tables A6.2a-c in Appendix 6. Note that the “forecasts” in the “without”
Rickenbacker case should replicate the original data of Table 6.4. We came close but did
not replicate these data exactly because we did not find values that would solve the 6

nonlinear equations exactly.

Historical data on the amount of freight shipped from each region to each facility
F(a;r;) could be used advantageously. This data would require special surveys which
could be commissioned from private firms (see Section 3.2). With this data, the I x J

equations in (6.2b) could be transformed into:

~F(r,)PROX, , + F(a,,r,) >, PROX,, = F(r,)LOS, - F(a,,r;) 3. LOS, ,

i=1,I i=LI
P=1,..,L j=1,....7 (63)

The left-hand side of (6.3) would be known, and the right-hand side would contain the
unknown LOS values to be fit. The advantage over the preceding scenarios is that the I x

J equations are now linear in the unknowns and standard linear regression packages could

be used to solve for best fit LOS values.

In “Data Calibration Scenario 3,” we fix the best LOS at 10 and fit the 30 (I = 6
facilities x J = 5 regions) equations to the 5 (= I-1) LOS values. In “Data Calibration

Scenario 4,” we do not constrain the best LOS to be 10 and regress the 30 equations to
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find estimates of the 6 unknown LOS values. Again, the LOS value of Rickenbacker is
considered to be that of the Cincinnati facility. The results are presented in Tables A6.3
and A6.4 in Appendix 6. Notice that this technique can, and did, lead to negative LOS
values. The negative LOS values could lead to predictions of negative flows from a
region to a facility (see, e.g., Table A6.3b and c). Negative flows would not make sense,
and some type of ad hoc adjustment could conceivably be made. Our interest was in
showing concepts, and we see no need to propose such adjustments at this time.
Therefore, we leave the negative LOS values and flow predictions. Although the NFM
model was proposed as intuitive, without claim to theoretically appealing foundations, the

potential for negative values indicates a theoretical problem with the model.

One could also consider explicit functional forms for the LOS and proximity

scores, for example:

LOS; = B;FREQ(a;) + BoNDES(ay), i=1,2,...1, (6.4

PROX;; = BsDIST(ayr),  i=1,2,..5 j=1,2,..,7, (6.5)

where, as above, FREQ(a;) and NDES(a;) are, respectively, the number of yearly
operations at and number of destinations served by facility a;, and DIST (ai,rj) is the
distance between facility a; and region 7;. Alternatively, one could use PROX;; =

B3 | DIST(a;r;) to approximate the proximity function in Figure 6.3 better. Doing so
would not complicate any of the following. Accepting the proximity function of Figure
6.3 would eliminate (6.5) and, therefore, the need to estimate Bs. One could also add
constant terms to the LOS equation--e.g., LOS; = f; + BIFREQ(a;) + B.NDES(a;)--to
reflect the unspecified influence of variables other than FREQ and NDES on the LOS
score of the facility. For illustration purposes, we use (6.4) and (6.5).

Substituting the equations of (6.4) and (6.5) in those of (6.2b), one could then

proceed as above. Specifically, if one only had estimates of the amount of freight

produced in each region F(r;) and shipped to each facility F(a;), one would have to
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estimate the three B values from the I = 6 equations formed by substituting (6.2b) in
(6.1). Unfortunately, the equations would be nonlinear in the B values, and solving for a
good solutions would not be easy. As before, we used trial and error for this “Data
Calibration Scenario 5” and found the B and LOS values given in Table A6.5a in
Appendix 6. Here, Brreq = -1.3E-06, Bxpes = 0.004492, and Bpist = -0.00035. The LOS
and proximity scores for Rickenbacker would be found from (6.4) and (6.5) using the
Rickenbacker FREQ, NDES, and DIST values with the estimated B’s. The freight
forecasts are given in Tables A6.5b and A6.5¢ in Appendix 6.

The functional form used in (6.2b) to predict freight assignments from a region to
a facility based on the proximity and LOS scores could also be reconsidered. For

example, the freight could be assigned using a multinomial logit formulation:

expa(PROX, ;+ LOS,;)
Y expa(PROX,;+LOS,)"

i=1,1

F(ai"rj)zF(rj){

'=1,..,L j=1..,1,  (6.6)

where exp(.) is the inverse function of the natural logarithm, o is a scaling parameter, and
all other variables are as before. Much of theoretical appeal for using a logit model
disappears in light of the difficulties discussed in the Introduction of this report. Still,
logit is a widely used model with properties just as appealing as those of the NFM

formulation. Moreover, it is familiar to many transportation planners and engineers.

Fitting proximity and LOS scores to data would proceed as with the NFM
formulation. Fitting the LOS scores in a way similar to either Data Calibration Scenario 1
or 2, where the F(a;,r;) are unknown, would involve solving nonlinear equations in the
unknowns. If the F(a;rj) were known, one could form (I-1)x J linear equations in the

unknowns from (6.6) by noting that:
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r[F(ai',rj)/F(rj)] _ rF(ai"rj)
TF@.r)/ Fa)l' Flanr)

}= a(PROXi., i PROX,..., j) +o(LOS; — LOS,.)
fori’=1,..,I, i’#i”j=1,..,J; and some i, (6.7)

In “Data Calibration Scenario 6”, we fixed the Airborne LOS to 10, assumed the
proximity score function given in Figure 6.3, and used the (I-1)xJ = 5x 5 = 25 equations
of (6.7) to find the five other LOS values and the value of the scaling parameter Q.
presented in Table A6.6a of Appendix 6. As before, the LOS score for Rickenbacker is
assumed to be equal to that of the Cincinnati facility. The resulting freight forecasts for
Data Calibration Scenario 6 are given in Tables A6.6b and A6.6¢c in Appendix 6. Table
A6.6a exhibits negative LOS scores. This is perfectly compatible with the intervally-
scaled interpretation of the function used in logit models (see, e.g., McCord and Villoria,
1987, Ben-Akiva and Lerman, 1985), however, and negative signs will not produce

negative freight flows.

Specifying PROX and LOS as functions of their independent variables DIST,
FREQ, and NDES, as in (6.4) and (6.5), and fitting these specifications to data would also
proceed as in the NFM formulation. Unknown F(a;r;) would lead to nonlinear equations
in the three B values of (6.4) and (6.5). On the other hand, if the F(a;rj) were known,
substitution of (6.4) and (6.5) in (6.7) would lead to (I-1)x J linear equations to be fit to
the three B values. (The value of the scaling parameter a. is absorbed in the B values in

this case.) We present the results of this “Data Calibration Scenario 7" in Tables A6.7a-c
of Appendix 6.
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Table 6.10 Summary of Calibration Scenarios

Data Data Data Data Data Data Data
Calibration | Calibration | Calibration | Calibration | Calibration | Calibration | Calibration
Scenario 1 | Scenario2 | Scenario 3 | Scenario 4 | Scenario 5 | Scenario 6 | Scenario 7

Freight from

Regions, Known Known Known Known Known Known Known

F(r)

Freight at

Facilities, Known Known Known Known Known Known Known

F(ay)

Freight from

Region to Unknown Unknown Known Known Unknown Known Known

Facility, F(a;, 1) a8

Structure

(LOS, PROX) NFM NFM NFM NFM NFM Logit Logit

LOS Score LOS(ay, LOS(ay, LOS(a), LOS(ay, B:FREQ LOS(a)), B\FREQ
best LOS = | best LOS best LOS = | best LOS +B,NDES | best LOS = | +B,NDES
10 uncon- 10 uncon- 10

strained strained

Proximity Score | From Fig. | FromFig. | FromFig. | FromFig. | B;DIST From Fig. | B;DIST
6.3 6.3 6.3 6.3 6.3

Results Tables Tables Tables Tables Tables Tables Tables
A6.1 A6.2 A6.3 Ab6.4 Ab.5 A6.6 A6.7

We summarize the Calibration Scenarios in Table 6.10. In Table 6.11, we present
the predicted percentages obtained under the various Calibration Scenarios (taken from
the tables of Appendix 6), along with the predicted percentages in the uncalibrated
models. As expected, Calibration Scenario 7 replicates the Table 6.4 data, since
Calibration Scenario 7 assumes the same model used to generate the data. (Calibration
Scenario 6 also replicates the percentages of Table 6.4, but upon inspection of the
detailed data in Appendix 6, it does not replicate the exact facility-region volumes.) In
Table 6.12a, we present the absolute values of the deviations from the Table 6.4 data of
the without Rickenbacker forecasts obtained under the various Calibration Scenarios. We
did not generate any data for the with Rickenbacker case, but if we followed the logit
generation scheme used in the without Rickenbacker case, the data would have been
identical to that obtained in the with Rickenbacker case under Calibration Scenario 7.
Therefore, in Table 6.12b we present the absolute values of the deviations from with
Rickenbacker-Calibration Scenario 7 percentages of the forecasts obtained under the

various Calibration Scenarios.
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The absolute values of the differences from the Table 6.4 data presented in Table
6.12a are small for all Calibration Scenarios. Although this would be expected for the
explicit least squares fits of Calibration Scenarios 3, 4, 6, and 7, we were able to find
good “trial-and-error” fits in the nonexplicit Calibration Scenarios 1, 2 and 5, where we
assumed that we did not have access to the more refined F(a,r). Table 6.12b indicates
that the fits remain good in the with Rickenbacker case, even when using the NFM model
structure to forecast data generated from a different (logit) structure and when using the
“trial-and-error” fits. However, unless behavior, and therefore freight flow, follows the
assumed structure, this says nothing about the ability to predict flows under altered or
future conditions with calibrated models. It does indicate, however, that choosing
between the NFM or logit form and selecting the approach to data fitting may not be very
important. Of course, this result would have to be replicated on a much larger scale and

with more realistic data before it could be accepted for practical use.

6.4 Discussion

We presented the New Facility Model to illustrate a type of discrete choice model
proposed for freight transportation.  Variations of the model could be considered--
additive and multiplicative combinations of independent variables; logit formulation
versus that proposed in the model. The difficulties presented in Section 1.1 eliminate
much of the behavioral justification traditionally proposed for using logit models.
Therefore, one would be hard-pressed to justify one formulation over the other on

theoretical grounds.

The numerical differences in the results produced when combining the
independent variables either additively or multiplicatively were seen to be too great to
consider using NFM for anything but a rough estimate of freight flows at a facility.
Calibrating the additive version of the model and a logit variant of it in several ways led
to fairly stable forecasts from the model. However, this stability does not mean that such

forecasts would be accurate. Rather, it indicates that once calibrated on a common set of
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data, the forecasts will tend to mimic each other. In fact, the uncalibrated versions of the
model were presented based on previous work by the model developers. We feel that the
differences seen when transferring these versions to the problem presented here would be
more representative of forecasting performance than the differences produced from
different data fits of a single additive formulation. Once again, models of this type could
presently be developed and parameters could be estimated, but more analysis would be

required to have confidence in the accuracy and usefulness of the forecasts produced.
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Section 7. Monitoring and Updating Truck Origin-Destination Tables

Origin-destination (OD) matrices, or trip tables, are at the center of many freight
movement applications. Several of the expressed needs for freight movement models in
Section 2 could be answered, at least partially, with a freight OD matrix. Moreover, OD
matrices are used as inputs when assigning trips to links of a network, another important
output of freight movement models. ODOT has recently undertaken a large roadside
survey. The type of vehicle, trip origin, and trip destination are included in the collected

information, and a truck OD matrix could be estimated from the data.

Although OD matrices are perceived as useful, obtaining the data to estimate these
matrices is expensive and time consuming. Much of the information obtained from
surveys like that recently conducted by ODOT is collected for purposes other than freight
studies. Still, the millions of dollars of costs involved are mostly fixed and could not be
avoided by collecting only freight information. As such, an OD matrix represents a
substantial financial investment, and inexpensive methods to keep its entries current

would be useful.

In this section, we illustrate inexpensive methods of updating or even estimating
OD matrices. The methods use observed truck volumes on highway segments, data that
are routinely obtained in ODOT's traffic monitoring programs. They also require some
truck assignment logic. This logic is comprised of two elements: one representing the
choice rule for selecting paths between origins and destinations, and another representing
the performance of the paths in terms of the attributes influencing the choice of paths.
Determining the relevant attributes of path selection for highway trips may be a subject
for future research. We feel, however, that routing trucks on the minimum time path

between its origin and destination would be sufficient at this point.

Since the effect of congestion on path times would probably only be of concern in

urban areas at selected times of the day, one might not need to incorporate congestion



(volume-delay) functions on most link segments. Incorporating these functions is
straightforward with most assignment algorithms and software packages, however.
Therefore, in this section, we consider the assignment logic to be one of selecting routes
between origins and destinations that minimize path travel times, while the travel times
respond to passenger-car equivalent volumes through the well-known Bureau of Public

Roads (BPR) functions:

ta(Xa) = toa [1 + A(Xa/Ca)B], (7.1)

where ta(Xa) gives the travel time on segment (arc) a as function of the volume Xa in
passenger-car equivalents on this segment, o is the free-flow travel time on segment a,
Ca is a parameter based on the capacity of segment a, and @ and B are parameters, which
may or may not depend on the segment. In this section, we set @ and B to their typically

used values of 0.15 and 4.0, respectively.

7.1 Updating OD Tables with Observed Link Volumes

Using observed link volumes (ground counts) to update OD tables has been discussed in
the urban transportation context. These techniques could be readily modified to update
truck OD tables. We discuss two of these methods. We also discuss a technique we

found that was developed especially for use in estimating statewide truck OD tables.

Method 1: Sheffi (1985) presents a general method to estimate an OD matrix directly
from link flows. The general approach is one of finding an OD matrix that can reproduce
the observed conditions when the network is at equilibrium. Specifically when the OD
matrix is assigned to the network, the assigned flows should produce assigned OD travel
times equal to the observed OD travel times. However, different OD matrices can
produce the same set of arc flows and, therefore, the same set of travel times. Therefore, a

second step consists of choosing, from all the OD matrices that produce the observed
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travel times, the matrix that is the closest to a "target matrix." A target matrix is usually

obtained from a previous field survey.

The problem is solved by an iterative descent method using partial Lagrangians.
In Appendix 7.1, we translate the general description of this method (Sheffi, 1985) into a
set of algorithmic steps and illustrate these steps. To compare to methods represented
below, we apply the method to a small example. The network used in this example is
shown in Figure 7.1. In this figure, the numbers in the ovals identify the links of the

network, and the numbers in the boxes identify the nodes of the network. The parameters

of the BPR link performance functions and the observed arc flows &) are given in

Table 7.1. The target OD matrix {qrs } is shown in Table 7.2. We use a matrix that has
primarily zero entries to make the problem simple enough to solve with a spreadsheet. A
computer code could be developed for more realistic problems. Extending the concepts is
straightforward. There would simply be more computations, and an available shortest

path algorithm would be required to find minimum time paths.

Figure 7.1 Example Network (to illustrate Method 1)

< D
1 >

@ 5
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Table 7.1 Parameters for network of Figure 7.1

BPR function parameters Observed flow X,
Free flow travel time toa | CapacityCa | B
Link ID, «a
| 5 4| 0.15 4 2.23
2 15 4{ 0.15 4 2.77
3 10 41 0.15 4 3.10
4 20 6| 0.15 4 9.18
5 5 6| 0.15 4 13.81
Table 7.2 Target OD matrix for the example
From\ To 1 2 4
1 0 0 0 7
2 0 0 0 9
3 0 0 0 6
4 0 0 0 0

The final OD and link flow estimates from this method are presented in Tables 7.3

and 7.4. We also present the percent differences between the estimated (assigned) and

the observed minimum OD path times and link flows. This simple example required 16

iterations in Part A (see Appendix A7.1) and an average of 25 iterations for each value of

v in Part B to reach convergence.

Table 7.3 Estimated OD matrix and travel times obtained by applying Method 1
to example problem compared to observed OD times

From\To | 1 | 2 | 3 4 Estimated OD time | observed time | Difference(%)
|Est-Obs|/Obs
1 0100} 659 41.65 41.57 0.2
2 0f0]0{ 94 36.46 36.49 0.1
3 00| 0| 696 25.75 26.06 2.6
4 0[0]0 0 N/A N/A N/A
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Table 7.4 Estimated link flows obtained by applying Method 1 to
example problem compared to observed link flows

Link ID Estimated flow *¢ | Observed flow *s %g%ﬁféﬁ)
1 3.41 223 52.9
2 3.18 2.77 14.8
3 3.63 3.10 17.1
4 9.18 9.18 0
5 13.76 13.81 3.6

Method 2: Park and Smith (1996) developed a state-wide truck demand model for
Wisconsin using a small OD travel survey data and extensive truck classification count
data. Like Method 1, the general approach of what we shall call Method 2 is also one of
finding an OD matrix that can reproduce the observed conditions when the network is at
equilibrium. The target OD matrix in Method 2 is generated by a gravity model. The
gravity model uses trip productions and attractions estimated from a small-scale OD
survey, zonal populations and trip rates. After assigning the target OD matrix to the
network, the estimated trip productions and attractions are adjusted by the ratio between
assigned and observed flows on selected links. The new estimated productions and
attractions are input to the gravity model to produce a new OD matrix, which is assigned
to the network. The ratios of assigned and observed volumes on selected links are used to
estimate new productions and attractions, and the procedure continues until the ratios of
assigned and observed volumes are close to one, where closeness is defined according to

some convergence criterion.

Again we describe the steps of Method 2 and illustrate it with a simple example in
Appendix 7.2. We present the results of the same example here. The example can be
solved using a spreadsheet. All steps could be programmed, however, and more realistic

problems could be readily solved with the method.
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The network used in this example is shown in Figure 7.2. Again, the numbers in

the ovals identify the links of the network, and the numbers in the boxes identify the

nodes of the network. The parameters of the BPR link performance functions and the

observed "selected link" flows {Er } are given in Table 7.5. The small-scale OD survey

matrix {q" } is shown in Table 7.6. Note that the survey matrix {q's } contains all study

zones except zone 2a, corresponding to an assumption that no survey data is available for

zone 2a. The distances between zone pairs are shown in Table 7.7.

The example was solved with a spreadsheet. A computer code could be developed

for more realistic problems. Extending the concepts is straightforward. There simply

would be more computations in the parameter estimation and traffic assignment tasks.

Table 7.5 Parameters for network of Figure 7.2

BPR function parameters Observed flow *r
Free flow travel time toa | Capacity Ca o B
Link ID,a
1 5 4 0.15 | 4 54
2 15 4 0.15 | 4 38
3 10 4 0.15 | 4 55
4 20 6 0.15 | 4 /
5 5 6 0.15 | 4 62
6 13 4 0.15 | 4 57
7 10 6 0.15 ] 4 42
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Figure 7.2 Example Network (to illustrate Method 2)
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Table 7.6 Results {‘7’: } of small-scale OD survey for the example of Method 2

From\To 1 2 3 4
1 7 18 9 6
2 18 11 17 9
3 9 12 8 8
4 9 10 6 5
Table 7.7 Assumed distances between zone pairs {dij}
From\To 1 2 2a 3 4
1 46 55 142 196 66
2 55 61 77 49 76
2a 142 77 54 89 106
3 196 49 89 55 65
4 66 76 106 65 50

The estimated OD table is shown in Table 7.8, and the estimated link flows are
shown in Table 7.9. We also present the percent differences between the estimated

(assigned) and the observed minimum link flows in Table 7.9. No differences in link
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travel times are shown, since we used an all-or-nothing traffic assignment algorithm (see
Appendix 7.2), and link travel times were, therefore, always considered to be free flow
travel times. In Table 7.9 we see that the percentage differences in link flows are very

small (all but one are less than or equal to 0.05%).

Method 2 requires different input than Method 1. Method 1 requires a target
matrix with every zone in the estimated target matrix. Method 2 assumes models for trip
generation and trip distribution. A small-scale survey is used to calibrate a trip
distribution model (a gravity model in this case), in order to produce a calibrated target
OD from trip productions and attractions. As presented by Park and Smith (1996),
Method 2 also assumes that trip productions and attractions for each zone are based on its
zonal population and trip rates. Original estimates could be obtained from historical data.
Also independent variables other than population could be used for the trip generation
step. When calibrated, of course, Method 2 providés more information than Method 1,

especially information on trip generation and distribution models.

Table 7.8 Estimated OD table of the problem illustrating Method 2

From\ To 1 2 2a 3 4 Pi
1 6.1 15.4 6.4 6.3 2.9 37.1
2 12.7 7.7 6.6 8.2 3.0 38.2
2a 19.5 24.5 13.4 14.5 6.1 78.0
3 23.6 37.3 17.9 16.8 8.2 103.8
4 5.2 6.5 3.6 3.9 1.6 20.8
Aj 67.1 91.4 47.9 49.7 21.8 /
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Table 7.9 Estimated link flows of the problem illustrating Method 2

Link ID | Estimated link flow | Observed link flow | Difference (%)
|[Est-Obs| /Obs
1 54.02 54 0.03
2 37.99 38 0.03
3 54.00 55 1.82
4 0.000 N/A N/A
5 62.03 62 0.05
6 56.99 57 0.02
7 41.99 42 0.02

Method 3: Nielsen (1994) presents a third method for estimating trip matrices. Using a
target OD matrix, a network, and a set of traffic counts as input, his Single Path Matrix
Estimation Method (SPME) estimates a new trip matrix to minimize the average
deviation between counted and assigned traffic along the minimum time path between
each zone pair. The estimated trip patterns reflect the route choice patterns given by a
specified traffic assignment, and various traffic assignment algorithms can be used. If a
traffic dependent assignment, such as user equilibrium is used, iterations of "inner loop"
estimations are required for each "outer loop" iteration. In this way the algorithm is
similar to Method 1 above, where there are main loops and traffic assignment iterations

within each loop. We summarize the algorithm in Appendix 7.3.

Nielsen's algorithm (Nielsen, 1994) is implemented by Caliper (1996) in
TransCAD 3.0®0. We used TransCAD 3.0® to run the problems used to illustrate
Methods 1 and 2 above. The results using the data used to illustrate Method 1 are
presented in Tables 7.10 and 7.11. We also present the differences between the estimated
and the observed minimum OD path times and link flows. Comparing with Method 1
(see Tables 7.3 and 7.4), Method 3 gives similar, but slightly poorer results. In Method 1,
it took approximately 190 iterations (16 iterations in Part A plus an average of 25
iterations for each of the seven values of ¥ we tried in Part B) to reach convergence.
Method 3 took only 50 iterations to converge to its solution. Since each iteration takes

similar time for both methods (to run user equilibrium traffic assignment, find the
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shortest path, etc.), Method 3 converged more rapidly than Method 1 in this example,

while yielding similar results.

Table 7.10 Estimated OD matrix and travel times obtained by applying
Method 3 to example problem in Method 1(after 50 iterations).

From\To [ 1 | 2 | 3 4 Estimated OD | Observed time | Difference (%)
time |[Est-Obs| /Obs
1 0] O0f O} 6.48 39.37 41.57 2.9
2 0] 0] 0] 9.47 34.12 36.49 6.5
3 0] 0| O] 6.25 23.45 26.06 10.0
4 0] 0 O 0 N/A N/A N/A
Table 7.11 Estimated link flows obtained by applying Method 3 to
example problem in Method 1 (after 50 iterations)
Link ID Estimated flow *¢ | Observed flow *a E:f(r)ebr;clj gfs)
1 3.04 2.23 36.3
2 3.44 2.77 24.2
3 3.91 3.10 26.1
4 8.84 9.18 11.3
5 13.36 13.81 3.3

The results using the data used to illustrate Method 2 are presented in Tables 7.12
and 7.13. Again, we show the differences between the estimated and the observed link
flows. No differences are shown for link travel times, since only free flow travel times are
used in Method 2. Method 3 converged after two iterations and gave a set of estimated

link flows that are all within 5.2% of the observed ones. Method 2 yielded link flows

closer to the observed flows for this example (see Table A7.2.5).
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Table 7.12 Estimated OD matrix and travel times obtained by applying
Method 3 to example problem in Method 2 (after 2 iterations).

From\ To 1 2 2a 3 4 Pi
1 6.1 17.4 9.9 9.2 8.9 51.5
2 17.3 15.6 18.9 14.9 11.9 78.6
2a 9.7 19.2 10.1 7.2 13.6 59.8
3 10.7 15.6 7.9 4.7 4.8 43.7
4 8.1 12.1 12.3 4.4 6.9 43.8
Aj 51.9 79.9 59.1 40.4 46.1 /
Table 7.13 Estimated link flows obtained by applying Method 3 to
example problem in Method 2 (after 2 iterations)
Link ID | Estimated link flow | Observed link flow | Difference (%)
[Est-Obs| /Obs
1 54.27 54 0.5
2 36.72 38 3.4
3 54.49 55 0.9
4 0.000 N/A N/A
5 65.23 62 5.2
6 57.71 57 1.2
7 40.99 42 2.4

In order to compare the estimated OD matrices of Methods 2 and 3, we use the
sum of square difference between the estimated OD matrix and the target matrix, i.e.,
DG, —4,)"
s . The target matrix in Method 2 is the one calibrated from the gravity
model in Table A7.2.3. The smaller this value is, the closer the estimated OD matrix is to

the target Matrix. While the results of the link flows are similar, Method 3 yields an OD
>, -9,

matrix closer to the target OD matrix. -

> (Gr —4,.)’

=165 for Method 3, while

= 1629 for Method 2. It should be noted, however, there is no reason to
want an updated OD matrix close to the target matrix. The target matrix is simply a seed

to allow the estimation of a matrix that will update link flows.
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Discussion of Methods: In the examples all three methods produced solutions that
reasonably replicated observed link volumes, indicating that they produced good OD
matrices, as well. In general, accuracy in the solutions would depend on the accuracy of
the model assumptions. All three methods are based on the assumption that truck
volumes on highway segments can be modeled as the result of assigning a truck OD
matrix to a network with some assumed traffic assignment logic (Sheffi, 1985). Method
1 assumes an “equilibrium” logic, and Method 3 is claimed to handle more general
assignment algorithms, including the equilibrium assignment. Method 2 assumes an “all-
of nothing” logic, which, unlike the equilibrium logic, ignores congestion effects.
However, for intercity truck assignment, ignoring congestion is probably acceptable.
Methods 1 and 3 lead to all-or-nothing assignments when flows are low enough that
congestion is not an issue. Therefore, we believe that the three methods would be

roughly equivalent on the basis of the acceptability of their assignment logic.

In Methods 1 and 3, the major assumptions are those of the traffic assignment
logic, the logic that converts an OD matrix to link flows. Method 2 requires the
additional assumptions associated with the trip generation and trip distribution models. If
the only goal is to develop an OD matrix that replicates the observed truck volumes on
highway segments, Methods 1 and 3, with their fewer assumptions, should perform
better. Method 2 sacrifices accuracy in the updated OD matrix for the benefit of
producing trip generation and distribution models. Of course, if the assumptions leading
to the generation and distribution models are unacceptable, then the calibrated models

would have no real forecasting power.

All three methods require a target OD matrix and observed truck volumes on
highway segments as input. Preliminary analysis of Method 3 (Zhang, 1988) indicates
that the outputs are much less sensitive to the target matrix inputs than to the observed
link volume inputs. (We conducted the analysis on Method 3 because of software
availability.) In their target matrices, Methods 1 and 3 require an estimate of OD flows

for the entire matrix but do not place restrictions on how these are to be obtained. In
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Method 2 a trip distribution model is estimated. (A traditional gravity model is proposed
by the model developers.) This trip distribution model is then used with outputs of a trip
generation model to estimate a complete OD matrix. The target OD matrices required in
Methods 1 and 3 could be estimated in the same way. That is, none of the methods seems

to offer an advantage in terms of required effort for the initial OD target matrix.

Methods 1 and 3 require volume counts on all segments that will be used by the
OD flows, whereas the purported advantage of Method 2 is that it does not. However, we
note that Method 1 (and, seemingly, Method 3) is guaranteed to estimate an OD matrix
that approximates the observed volume counts when processed through the assignment
algorithm assumed. As noted above, the assignment logic of Method 2 can be handled by
Method 1. Therefore, if the volumes on links not considered when using Method 2 would
impact the estimated OD matrix produced by Method 1, not considering these volumes in
Method 2 would affect its matrix unless the effect is somehow compensated. The
compensation comes from the trip generation and distribution models that lead to the
estimated volumes on the unobserved links. That is, the fewer number of link
observations come at the expense of requiring the additional trip generation and
distribution models. The choice, then, is one between estimating link volumes from data
or models. Since link volumes are routinely collected and available, the marginal cost of
data collection is low, and the choice reduces to one based on perceived accuracy between

volumes estimated from models or from collected data.

In the examples all three methods converged to solutions that closely
approximated link volumes. Method 1 is special case of a more general mathematical
programming problem which can be guaranteed to converge. Although they did not
claim guaranteed convergence, Park and Smith (1996) found that Method 2 converged
after three iterations for the Wisconsin network. (We required many more iterations in
our simple example, since we used very strict convergence criteria for all methods. These

criteria would be unrealistic to use for planning level applications.) Nielsen (1994)



claims that Method 3 can be proven to converge, and the method has been claimed to

work well in practice (Caliper, 1996).

7.2 Applying Method 3 to More Realistic Data

Method 3 is available in TransCAD 3.0%. We apply it to a more realistic network using
two different origin-destination (OD) target matrices and the same set of observed link

counts.

Origin-destination matrix: We used a subset of the data collected in ODOT's roadside
survey to form the target matrices. We did not wish to commit resources to developing
an accurate table, since our purpose is one of illustration. We developed a highly
aggregated truck OD matrix representing five zones in Ohio (Figure 7.3), sampled the
data sparingly, and did not explicitly account for external trips (trips with origin or

destination outside Ohio) found in the data.

Figure 7.3 Illustration of five zones used in aggregated truck OD matrix

COLUMBUS

ZANESVILLE
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We obtained the raw data file from ODOT for six survey areas (Akron, Columbus,
Dayton, Springfield, Toledo, and Newark) and extracted the truck data from the files.
We identified the truck data based on the vehicle type field. After extracting the truck
data, we sampled 10% of the truck trip entries. Because we were only interested in
illustrating the OD updating methods and not in estimating an OD matrix, we did not
sample randomly, but rather chose the first 10% of the entries in each file for which both
the origin and destination zip codes were available from the data. Based on the origin and
destination zip codes, we summarized each trip into a 14 x 14 trip'ta—lble using the 3-digit
zip code map defined by the U.S. Postal Service (1994). We show a portion of this map
in Figure 7.4.

Figure 7.4 Portion of 3-digit zip code map (U.S. Postal Service, 1994) used for
OD matrix estimation
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We aggregated the 14 zones into the five regions of Figure 7.3, where Cincinnati,
Columbus, Cleveland, Toledo, and Zanesville served as the major cities in the regions.
We scaled up the entries by a factor of 10 to compensate for the 10% sample taken and
again scaled up by a factor of 1.5 to produce the 24-hour matrix shown in Table 7.14.
(The 1.5 factor was somewhat arbitrarily chosen in an attempt to account for the fact that
the samples were taken in consecutive 12-hr periods expected to contain more than half

the daily volumes.)

Table 7.14 Initial 5 x 5 24-hour truck origin-destination matrix used in analysis
(no external trips included)

Toledo Cleveland | Cincinnati | Zanesville | Columbus
Toledo 3,602 105 225 105 195
Cleveland 75 3,563 0 75 950
Cincinnati 90 45 2,393 969 45
Zanesville 30 93 228 849 270
Columbus 90 210 60 660 4,274

The matrix in Table 7.14 table does not contain any "external" trips, trips with
either an origin or destination outside Ohio. Since there is a large amount of external
truck traffic traveling in Ohio, assigning Table 7.14 to the highway network would
grossly underestimate the truck volumes on highway segments. Therefore, we believe
that this matrix would be far from one that would be compatible with observed link

counts.

We created a second OD matrix to reflect external volumes more accurately, but
in an admittedly artificial manner. Specifically, for each OD pair we found the path of
minimum length between the origin and destination and used ODOT's state ADT map to
identify the smallest truck count on any link of this path. This count was used as the
number of truck trips made between this OD pair. For example, the shortest length path
between Toledo and Columbus contains four segments, U20, U23, U36 and I71. The
truck counts on them are 3500, 3170, 2500 and 7618, respectively. Since 2500 is the
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smallest among these four, we take it as the number of truck trips traveling between these

two cities per day (1250 for each direction). The matrix developed in this way is

presented in Table 7.15.

Table 7.15 Truck origin-destination matrix formed directly from link counts

Toledo Cleveland | Cincinnati | Zanesville | Columbus
Toledo -— 4,000 4,000 796 1,250
Cleveland 4,000 — 370 2,903 - 3,809
Cincinnati 4,000 370 ——— 1,152 3,809
Zanesville 796 2,903 1,152 — 4,000
Columbus 1,250 3,809 3,809 4,000 ———-

Network and link counts: We used the National Transportation Atlas Database (NTAD)
obtained from the Bureau of Transportation Statistics to develop a computerized
statewide highway network. For illustrative purposes, we only wanted a sparse network.
Therefore, we extracted Ohio highway data from the NTAD, eliminated all links which
were not designated as Interstate or US routes in the database, and converted the data into
a geography file. The resulting geography file could be used by a standard transportation
GIS software. We used TransCAD®, and we show the resulting network in Figure 7.5.
The NTAD database also provided link attributes, such as number of lanes and length,

which allowed us to determine link performance functions.
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Figure 7.5 Highway network used for assigning truck trips




We obtained daily passenger car and truck count maps from ODOT's Bureau of
Technical Services. Again, since we were only developing data for illustrative purposes,
we did not wish to commit resources to entering the detailed volumes on each link of the
Figure 7.5 network. Rather we identified those links with flows after running a user
equilibrium traffic assignment using the truck OD matrix of Table 7.14 on the Figure 7.5
network. We entered the passenger car and truck volumes from the ODOT maps on these
links. When we referred to the ODOT count map, we took the median of the flow range
for one route within a county as the truck count for every link of this route. For example,
the segment of U23 in Delaware county has a count range of 1500 to 5000 truck per day.
Therefore, we considered all links of U23 in Delaware county (ID 85667, 85668, 85669)
to have 3250 (i.e., the midpoint in the range) trucks per day. We did the same thing for

passenger car counts.

We entered the passenger car volumes by link as a field in our database and the
truck volumes as a second field. The passenger car volumes would be used as
"preloaded" volumes below, and the truck volumes would be used as "observed" truck
volumes below. We estimated free flow travel time on the arcs -- o, from Equation (7.1)
-- based on distance and functional classification of the highway segment. In an ad hoc
attempt to handle some peaking of the daily truck trips to be assigned, we estimated
capacities Ca of the Equation (7.1) to correspond to a 10-hour capacity of the segment in

terms of passenger car equivalents.

To be compatible with these functions, we converted the truck trip table to
passenger equivalents by multiplying by a passenger car equivalent of 1.5. In practice,
different passenger-car equivalents for different highway segments could be incorporated
by dividing the segment-specific Ca parameter by the corresponding passenger-car
equivalent for trucks on that segment. We used the passenger car segment volumes
obtained from ODOT's Bureau of Technical Services and discussed above as "preloaded"

volumes on the network. Although the software we used contains an option for



assignment with preloaded traffic, other assignment codes could be easily modified to

allow such assignment.

‘ We assigned the truck trip tables of Tables 7.14 and 7.15 to this preloaded
network and compared the results to the "observed" truck trips obtained from ODOT's
Bureau of Technical Services discussed above. We used a user equilibrium traffic
assignment algorithm (Sheffi, 1985), although we would expect most algorithms to lead
to very similar results because of the minor congestion effect anticipated. After the
assignment, each trip table produces a set of "assigned" link flows. In Figure 7.6a and
7.6b, we plot the distribution of the absolute values of difference between the "assigned"
and the "observed" flows on each link, using the truck OD matrices from Table 7.14 and

7.15, respectively. Table 7.16 provides summary statistics of the results.

Figure 7.6a Distribution across links of absolute differences between "assigned" and
"observed" flows using truck OD matrix of Table 7.14
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Figure 7.6b Distribution across links of absolute differences between "assigned" and
"observed" flows using truck OD matrix of Table 7.15
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Table 7.16 Summary statistics of differences between “assigned” and “observed”

flows using OD matrices from Tables 7.14 and 7.15 (390 observation)

ABS (Difference, from Table 7.14) ABS (Difference, from Table 7.15)
Mean 5162.6 | Mean 4362.0
Median 4447.5 | Median 2250.0
Standard Deviation 4188.3 { Standard Deviation 4869.7
Skewness 0.2 | Skewness 1.5
Minimum 97.5 | Minimum 0
Maximum 11748 | Maximum 24162

We see that the median difference in Figure 7.6a is 4500 vehicles, while it is only

2300 in Figure 7.6b. Moreover, 30% of the differences are greater than 9000 vehicles in
Figure 7.6a, while fewer than 20% of the differences are greater than 9000 in Figure 7.6b.
Table 7.16 also indicates that the differences between the “observed” and “assigned”
flows are markedly greater when using the OD matrix of Table 7.14 than when using that
of Table 7.15. That is, the absolute value of differences between the “assigned” and
“observed” flows reflects the belief that Table 7.15 is a better OD matrix than Table 7.14.

Using the inferior Table 7.14 as the target matrix with Method 3 and the observed
link counts produces Table 7.17 as the estimated OD matrix. Using Table 7.15, which we
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believed to be a much better matrix than that of Table 7.14 as the target matrix, produces
Table7.18 as the estimated OD matrix.

Table 7.17 Method 3 estimation of new trip matrix using Table 7.14 as target matrix

Toledo Cleveland | Cincinnati | Zanesville | Columbus
Toledo 3602 1916 542 876 911
Cleveland 1916 3563 0 1215 3513
Cincinnati 507 134 2393 353 97
Zanesville 857 1249 353 849 473
Columbus 861 3456 149 473 4274

Table 7.18 Method 3 estimation of new trip matrix using Table 7.15 as target matrix

Toledo Cleveland | Cincinnati | Zanesville | Columbus
Toledo 0 1916 449 717 833
Cleveland 1916 0 65 1383 3277
Cincinnati 449 65 0 313 267
Zanesville 717 1383 313 0 499
Columbus 833 3277 267 499 0

We assigned the truck trip tables of Tables 7.17 and 7.18 to the preloaded network
in Figure 7.5 and compared the results to the “observed” truck trips obtained from
ODOT’s Bureau of Technical Services discussed above. We used a user equilibrium
traffic assignment, although we would except most algorithms to lead to very similar
results because of the minor congestion effect anticipated. After the assignment, each trip
table produces a set of “assigned” link flows. In Figure 7.7a and 7.7b, we plot the
distribution of the absolute values of difference between the “assigned” and the

“observed” flows on each link, using the truck OD matrices from Table 7.17 and 7.18,

respectively. Table 7.19 provides summary statistics of the results.
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Figure 7.7a Distribution across links of absolute differences between “assigned”
and “observed” flows using truck OD matrix of Table 7.17
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Figure 7.7b Distribution across links of absolute differences between “assigned”
and “observed” flows using truck OD matrix of Table 7.18
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Table 7.19 Summary statistics of differences between “assigned” and “observed”
flows using OD matrices from Tables 7.17 and 7.18 (390 observation)

ABS (Difference, from Table 7.17) ABS (Difference, from Table 7.18)
Mean 3351.1 | Mean 3349.6
Median ' 1546.2 | Median 2167.4
Standard Deviation 3513.1 || Standard Deviation 3517.8
Skewness 1.1 | Skewness 1.1
Minimum 73.1 || Minimum 3.6
Maximum 13111.9 || Maximum 12330.2

Comparing the distributions in Figure 7.7 and statistics in Table 7.19, we see that
there is little difference in the distribution of assigned link flows, regardless of whether
the OD matrix of Table 7.17 or that of Table 7.18 was used, even though the target matrix
leading to Table 7.17 (Table 7.14). We also compared the assigned link flows between
Tables 7.17 and 7.18. The results are shown in Figure 7.8 and Table 7.20. The mean of
the absolute difference is around 200, which is much smaller than the means in Table
7.19. Although this is just one example, it indicates that Method 3 can produce OD
matrices that lead to assigned link volumes which are fairly insensitive to the target

matrix used.

Comparing the statistics in Table 7.16 and 7.19, we also observed marked
decreases in means and standard deviations after updating the OD matrix with Method 3.
For results from Table 7.17 and 7.18, the means decreased by 34% and 23%, respectively.
The standard deviations decreased by 16% and 28%. That is, Method 3 not only seems to
produce results that are insensitive to the target matrix, but the OD matrices assign link

volumes that match observed link counts much better than the original target matrices do.
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Table 7.20 Summary statistics of differences between “assigned”
flows using OD matrices from Tables 7.17 and 7.18 (390 observation)

ABS (Difference, from Tables 7.17 and 7.18)
Mean 204.5
Median 119.8
Standard Deviation 206.2
Skewness 0.9
Minimum 0.0
Maximum 781.7

Figure 7.8 Distribution across links of absolute differences between
“assigned” flows using truck OD matrices of Tables 7.17 and 7.18
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7.3 Discussion

We presented different methods of updating truck origin-destination (OD) matrices from
observed truck volumes. The methods are based on determining an OD matrix that, when
processed through a traffic assignment logic, replicates the observations. All the methods

performed well on the simple examples examined. One of the methods is included in

7-25



commercial software presently available and has been claimed to work well in practice.
This same method has been used by the Indiana Department of Transportation in
developing its statewide model (Smith, 1998).

ODOT has recently conducted a large roadside survey that contains data elements
from which a statewide truck OD matrix could be estimated. Since truck volumes are
routinely collected, using any of these procedures would be inexpensive to implement on
a systematic basis. Therefore, it would be feasible and relatively inexpensive for ODOT
to maintain a current estimate of a statewide OD matrix. Simply determining an origin-
destination matrix that is consistent with observed traffic flows does not directly help
forecast future conditions. However, such a matrix could be indirectly used for
forecasting.  An accurate estimate of a truck OD matrix could be used to calibrate or
validate components of a larger-scale model that forecasts a truck OD matrix. Moreover,
accurate estimates of present OD patterns could assist experts when forecasting future

patterns.
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Section 8. Intermodal Network

Assignment of freight onto networks is at the heart of many freight movement concerns.
We discussed assigning truck traffic to a highway network in Section 7. Doing so
required a truck origin-destination (OD) matrix. The truck OD pattern will be a function
of how freight is distributed across the network encompassing complementary and
competitive modes to transport the freight. There would be similar interest in assigning
rail-, air-, and water-borne networks. Moreover, we saw in Section 2 that being able to
analyze the potential to have freight switch modes in Ohio was expressly stated as a

desire for a freight movement model.

Therefore, it would eventually be desirable for ODOT to possess an operational
model capable of assigning freight onto an intermodal network. Network assignment
models require a mathematical (computer coded) network, an OD table, and an
assignment logic with parameters of the network-based impedance functions compatible
with this logic. From Part I, it appears that some states are pursuing the development of
commodity flow OD tables, and such tables could be developed for Ohio. Much of the
freight transported in Ohio would be external freight, having at least one of its trip ends
exterior to the state. Developing anything but a crude freight OD table useful in
determining what type of exterior freight could be transported in Ohio would probably
require a federal effort or, at least, parallel efforts in many states. Given the recent
interest in freight issues, it is not unreasonable to imagine such efforts in the future.
However, the quality of such products would need to be assessed before one could use

them confidently.

Developing an acceptable intermodal assignment logic to distribute tons of
bommodities among modes and routes would appear to be more difficult. In reviewing
models, we did not see anything that would appear to be operational and accurate enough
for DOT use in the near term. Nevertheless, the wide dissemination of the Bureau of

Transportation Statistics’s (BTS) National Transportation Atlas Database (NTAD) (1997)
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and the increasing federal and state interest in freight movement models indicate a
potential that some common efforts in intermodal assignment may be forthcoming in the
future. In this section, we demonstrate that available software can be used with the
NTAD to form a network for intermodal assignments with only minor modification. We
do this by using standard software with a slightly modified version of the NTAD to show
that the minimum impedance routes between a specified origin and destination, which are
at the heart of network assignments, can encompass a different mode or a combination of
modes, depending on the impedance of intermodal transfer points or the impedance

characteristics of the modes.

The NTAD contains spatial information on transportation facilities, networks,
intermodal terminals, and related attributes. Points, lines, and polygons are used to define
the spatial features in the NTAD database. A point is given by an (X, y)-coordinate pair.
Some examples of point data are airports, truck terminals, water ports, and highway/rail
transfer terminals. Lines are series of connected points that represent the transportation
networks. Highway, rail, and waterway links are examples of line data. Polygons are
closed areas formed by joining lines. Polygons define specific regions such as a
counties, states, National Transportation Analysis Regions (NTAR), or congressional
districts. Some of the networks (e.g., highway and rail) also include related attributes for
characterizing the nodes and links (e.g., length, speed limit, number of lanes, ...) of
different networks. The most recent database that we obtained terminals (NTAD, Bureau
of Transportation Statistics, 1997) does not provide explicit connections between modes
and, and BTS will provide more information and accessibility on the intermodal
connectivity and passenger and commodity flow information in future releases. However,

the database was sufficient to conduct the following experiments.
We used the NTAD highway and rail networks in Ohio to demonstrate that

minimum impedance paths could use database links depicting these two modes.

Extensions to other modes would be similar. We used the TransCAD® software package
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to build the mathematical network, perform shortest path operations, and display results.

To do this, we:

1) extracted the Ohio highway and rail data from the NTAD;

2) pasted the rail file into the highway file in Microsoft® Notepad;

3) converted this joint file to a geography file;

4) opened this geography file in TransCAD®;

5) used the list of intermodal points in the NTAD to identify the latitudes and
longitudes of selected intermodal locations in Ohio;

6) found one highway and one rail node near each latitude-longitude pair
identified in Step 5);

7) added an “intermodal” link between the highway and rail node pairs identified
in Step 6);

8) opened the file in TransCAD®, which formed the "connected" intermodal

network.

We show the original NTAD highway and rail networks in Figure 8.1, and the
connected intermodal network in Figure 8.2. The circles on the intermodal network of
Figure 8.2 represent the locations where we added intermodal links in the following
analyses. These locations were found in the NTAD “Tofccofc.geo” file. We zoom in on

the intermodal location in Columbus representing the Buckeye Yard in Figure 8.3.
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Figure 8.1 Original NTAD Ohio rail and highway networks
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Figure 8.1b Highway network
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Figure 8.2 Ohio intermodal network formed by connecting the Figure 8.1 rail and
highway networks at intermodal locations represented by symbols

3 AN
e 4, -~ i
Y % N 3 \x o
ﬁ AL i€ \
- e e “ . S ' S
_xaf - -, {
S =~ - b, d‘(/ ¥
) ' v
? z)" 8
e ‘ H / 3 - $
1 =~
- ; -¢
[ N
3, /
R, 4
£
2\
%

represented by symbols
- y ez Rail
——— Highway
0 10 20 30
N

Miley

intermodal Facilities

8-6




/| o

Intermodal Facilities
Buckeye Yard
sczx Rail
— Higliway
.80 16 24

Milew

8-7




We considered two cases of intermodal movements over our connected rail-
highway network. The first case was intended to represent that a highway shipment
crossing Ohio could switch to rail in Ohio by decreasing the impedance of an intermodal
link. The second case was intended to represent modal choice for freight in Ohio
according to impedance of the modes. We used the link distance as the impedance for
both demonstrations. As mentioned above, determining appropriate measures of freight
impedance is an open issue, but many measures would be related to distance, which we

use as a first-cut measure of route impedance.

Figure 8.4 Ohio rail-highway network with added external dummy nodes and
connector links

Intermodal Network
with added e xternal dummy nodes
=cs Rl
— Highway
2] 20 40 60

[ owsemesss |
Milea

8-8




To illustrate the case in which exterior highway freight would switch to rail in
Ohio, we added two dummy nodes, one to the east of the Ohio network and one to the
west at approximately the latitude where I-70 enters and leaves the state. We connected
each node to the intermodal network with two dummy links, one connecting the node to
the nearest interstate highway link and one connecting it to the nearest rail link. This

network is shown in Figure 8.4.

Using the lengths provided in the NTAD database as the impedance, we found the
minimum impedance route from the western to the eastern node by running the shortest
path routine in the TransCAD® software. This route, shown in Figure 8.5a, followed all
highway links. We then decreased the impedance on the intermodal link shown in Figure
8.3 until we saw that the minimum impedance route, found in the same way, followed
highway links up to the intermodal connector link, where it switched to a rail link, and
followed rail links out of Ohio. In Figure 8.5b we show this intermodal route, and in

Figure 8.5¢ a zoom of this route around the intermodal facility.

We needed to add a negative length to the intermodal link to force the shipment to
change modes. Freight would not be expected to follow routes according to length only,
however, and one should not draw conclusions from this unrealistic routing example.
Still, in addition to indicating the potential of the NTAD database to serve as the
underlying intermodal network for intermodal assignment, this would indicate the types
of results that could be expected: If it truly did require an impossible negative impedance
at an intermodal facility to fulfill an objective of getting a shipment off the highway and
onto rail, then one could conclude that added investments in the intermodal facility would

not be warranted.
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Figure 8.5a Minimum impedance route from point west of Ohio to point east of Ohio
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Figure 8.5b Minimum impedance route from point west of Ohio to point east of Ohio
with decreased impedance on intermodal link (Route changes from highway to

rail links)
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To illustrate the effect of link impedance on the mode chosen through the
network, we added a node in the intermodal links at the northeastern and southwestern
Ohio locations depicted in Figure 8.2 and considered these as the origin and destination
of the shipment. We found the minimum impedance route from the northeastern to the
southwestern nodes again using the TransCAD®shortest path routine with the NTAD
lengths as the impedance. This route, shown in Figure 8.6a, used all rail links. We then
artificially increased the lengths of some of the rail links, and the route (Figure 8.6b)

changed to one using all highway links.

The NTAD could be used, then, as a network that could eventually be used for
intermodal assignment. Modal and intermodal routes depended on impedances of links
representing intermodal transfers and mode-route selection in the manner expected.
Adding the intermodal transfer links and changing impedances was straightforward. The
major challenges associated with developing intermodal assignment capabilities would be
in developing the freight OD matrix and, especially, an acceptable assignment logic and
estimates of impedance parameters associated with this logic. The NTAD would appear

to be a useful tool for developing and testing intermodal assignment algorithms.
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Figure 8.6a Minimum impedance route using original impedance (Route follows all rail

links)
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Figure 8.6b Minimum impedance route for same origin-destination pair of Figure 8.6a
after increasing impedance on selected rail links (Route follows all highway

links)
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Section 9. Conclusions

Our review of freight modeling in the literature and in practice makes it clear that
available software packages could be used with existing databases, supplemented by
limited special data collection efforts, to develop working freight models in Ohio. These
models could either be statewide, complex modeling systems, or more limited models.
Our goal, then, was to assess whether the time is appropriate for ODOT to pursue freight

model development and, if so, how to pursue it.

Model developments seem promising in the state DOT’s we investigated.
However, a lack of experience with applications in these states, coupled with a wide
range of model outputs desired from potential users in Ohio, makes it difficult to foresee
where Ohio freight models would see routine application. We feel that a panel of experts
could forecast more accurately and more flexibly than mathematical freight models that
would be developed in the near future, and that the experts could probably fit in the
institutional framework surrounding policy or alternative analysis better. Freight
modeling is new, and like most initial efforts in large-scale modeling, we expect products

to be of limited initial value.

Despite our pessimism for the immediate value of an Ohio freight forecasting
system, we are optimistic about the long-term potential of freight modeling. The
importance of issues requiring freight forecasts will not go away. Moreover, it appears
that freight forecasting activity will be increasing elsewhere. If those responsible for
financing the models remain committed to development, initial results can be modified
when it becomes apparent where improvements are possible. Although initial efforts
would probably fall short, we expect sustained efforts to produce a useful product.
Moreover, even if inaccurate, formal mathematical modeling systems appear objective
and sophisticated, advantages that cannot be dismissed in the public arena. We,
therefore, encourage ODOT to pursue a statewide freight model if:

i) a commitment is made to sustained, rather than one-time development efforts;
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ii) the development efforts are similar to those that will be made in other states;
iii) parallel efforts are made to investigate, test, and track the performance of

alternative formulations.

Whether out of need for the improved accuracy that could eventually result from a
model or from the imposition of mandates, we believe that ODOT will eventually become
involved with routine freight modeling, even if nothing is pursued at present. There are
good reasons to join the effort now, however. Modeling capabilities will develop more
quickly with more participants, and, therefore, ODOT would be “doing its part” in
developing the field of freight forecasting for support of public policy issues. Of more
direct benefit, getting involved early will allow ODOT personnel to more quickly gain
experience and to more readily influence future model developments and federal research

and data collection efforts.

Since there is no consensus in Ohio on desired freight model outputs, it makes
sense to pursue a model that can produce fairly general outputs and that can be readily
modified and expanded in light of future developments. The traditional 4-step urban
demand modeling system has responded to these needs in the passenger forecasting
context. This responsiveness and its familiarity to developers, administrators, and users
probably explain why the statewide freight models being developed in the DOT’s we
investigated are based on this framework. We expect a modular, 4-step-like approach to

form the basis of most, if not all, near-term efforts in other statewide freight models.

Since several states will be pursuing similar models, the opportunity exists for
sharing expertise. This opportunity is a big reason for our optimism. More strongly, we
recommend against pursuing a unique model. Given ODOT'’s present staffing situation,
the large-scale, statewide freight models that presently seem most suitable would have to
be developed under consulting contract and turned over to ODOT when finished. We
expect ODOT personnel to be interested and involved in the development efforts, but we

fear that they will be unable to commit the time necessary to develop a sense of



ownership in the initial product. Without this sense of ownership, they would be
insufficiently motivated to fight for further contracts when administrators become aware
of the difficulties that will inevitably arise from the initial product. If ODOT develops a
unique product, or proceeds without support of colleagues in other states, we foresee that

development efforts would be halted after the initial contracts come to a close.

On the other hand, if ODOT could join with other states in sustained
development, initial deficiencies would be overcome, and incremental progress should
eventually lead to a valuable product. We suggest that collaboration with other states be
formalized by pooling funds to develop regional models that could be scaled to the
appropriate levels for the participating states. This should reduce development costs
paid by any state, lead to easier and more accurate estimation of relevant external flows,
and motivate individuals to discuss issues and share expertise. It would also focus
interest in such a way that a formal group of states could exert stronger influence on
federal studies and data collection efforts. Most importantly, perhaps, it would motivate
technical DOT personnel to remain intellectually committed to the development process
over the long run and help the states assist each other in trying to convince administrators

to remain financially committed when potential benefits are questioned.

Research and experimentation with alternative model components and tracking
performance on an ongoing basis would be important in hastening the usefulness of the
model. Alternatives would exist for almost every component of a proposed model.
Hlustrations in Sections 5 and 6 indicate what is probably obvious: Different alternatives
can produce different forecasts. Best-fit parameter estimates of certain specifications can
be obtained with past data, and validation studies can be conducted on hold-out samples,
but these do not indicate how well the model will forecast future flows or how useful the
forecasts will be in updating expert forecasts. Moreover, a specification or estimate that
appears to be inferior today may turn out to be superior under future conditions. To
proceed toward implementation, initial choices must be made, and traditional tests of

specification are good ways to make these choices. However, these initial choices should
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be reconsidered through time. The anticipated models should be designed flexibly
enough to allow easy updating and substitution of improved modules, specifications, and
parameter estimates as more freight forecasting experience is gained. However, if the
model is simply turned over to the states after being developed with outside expertise,
such updates and improvements will likely be made less frequently than they should. An
ongoing research, development, and monitoring program that is explicitly targeted toward
improving components would ensure that the model is designed with an open architecture
and keep the states aware that substitutions and regular improvements are expected.
Keeping in mind at the outset that the forecasts are intended to be modified by expert
forecasts should also argue for developers making model components as transparent as

possible.

Smaller-scale, stand-alone freight models are also feasible. If desired, the
indicator methods of Section 5 and the method for forecasting freight at a new intermodal
facility presented in Section 6 could be used in Ohio. These models are straightforward,
and they probably would not be used frequently. Therefore, systematic development of
these types of specific models seems unwarranted, except where they can lend insight on
components of the anticipated statewide model. The smaller-scale models could be
developed as needed for specific studies. However, in the absence of further
investigation and development, we feel that a panel of experts could produce forecasts as
useful as those produced from these models. Before investing in developing these models
for a specific study, we would encourage that experts be polled to see if any of the
possiblé model outputs could change their beliefs about the future. If not, development is

clearly not warranted.

We also saw that the National Transportation Atlas Database could be used for
intermodal assignment. However, we feel that legitimate intermodal assignment is
presently limited by lack of acceptable logic. We do not necessarily suggest that ODOT
pursue research in this area, but if a consortium of states wished to develop these

capabilities, the supporting infrastructure seems available.
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We do suggest that ODOT estimate and use observed truck volumes on highway
segments fo continually update a statewide truck origin-destination matrix. The data to
estimate an origin-destination matrix are available from a recently conducted roadside
survey. In Section 7 we saw that there are several methods that can use observed
volumes to update target OD matrices. Since truck volumes are routinely collected, using
any of these procedures would be inexpensive to implement on systematic basis. A good
estimate of the present OD matrix would be useful in calibrating or validating
components of developing models. It could also assist experts when forecasting future

OD patterns.

If ODOT does pursue systematic freight modeling, we encourage the formation of
an advisory group of experts in shipping, transportation, and freight logistics. The group
would meet regularly to discuss freight issues with an objective of ensuring that model
developments are relevant. Regular interaction between freight experts and modelers
should markedly increase the likelihood that model outputs could be used with expert
opinion to produce more valuable forecasts than could be produced by the model or the
expert opinion alone. The experts would also be called upon to anticipate structural
changes that models could not endogenously capture. And since experts can forecast
more flexibly and probably more accurately than mathematical models, ready access to a
group of experts would be valuable when forecasts are needed to support alternative or
policy analysis. Such an advisory group would be even more useful if the experts could
be drawn from several states and if they worked with technical personnel from many state
DOT’s in a formal manner. Once again, we feel that a pooled funding arrangement

would facilitate organizing and profiting from such a group.
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Appendix 2.1

Individuals Interviewed for Needs of Section 2.1
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John R. Platt, Chief of Staff, Ohio Department of Transportation

Mark Byram, Chuck Gebhardt, and Greg Giaimo, Bureau of Technical Services,
Ohio Department of Transportation

Gary Coburn and Larry Sutherland, Bureau of Planning, Ohio Department of
Transportation

Lou Jannazo, Chief Planner, Ohio Rail Development Commission

Elena Constantine, Mid-Ohio Regional Planning Commission

A-2



Appendix 2.2

Questionnaire and Respondents to Survey of State DOT’s
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2.2a Preliminary Fax/Email Letter

The Ohio State University

Department of Civil & Environmental Engineering and Geodetic Science

470 Hitchcock Hall - 2070 Neil Avenue - Columbus, OH 43210 - USA
Date:
To: Alabama Public Service Commission
Fax No.: (334) 242-5218 Phone No.: (334) 242-5980

Message:

Dear Sir or Madam:

We are conducting a research project for the Ohio Department of Transportation to
help them investigate the feasibility of developing a freight forecasting system.

We have developed a short questionnaire to survey the other State DOTs. This
questionnaire is regarding to some freight activities (Origin-Destination
data/survey). In order to send this survey questionnaire to the right person, we
need the email/snail mail addresses or fax number of the appreciate people. Please
give us these information via email (chung.77@osu.edu), or fax (614-292-3780).
Should you have any questions or comments, feel free to contact me
(chung.77@osu.edu; 614-688-3761) or my advisor — Dr. Mark McCord
(mccord.2@osu.edu; 614-292-2388).

Thank you for any information you can provide to us.

Sincerely,

Yi-Ying Chung
Graduate Research Associate

From: Dr. Mark R. McCord/Yi-Ying Chung
Phone No.: 614-292-2388 Fax No.: 614-292-3780
Number of pages (including cover page): 1
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2.2b Cover Letter

Dear Sir or Madam:

I am conducting a research project for the Ohio Department of Transportation to help them
investigate the feasibility of developing a freight forecasting system. One step is to investigate
what other state DOTSs have been doing in this area. Therefore, we have developed a short
survey. The Ohio Department of Transportation has looked at this survey and given me
permission to send it out. Completing this survey should take only a few minutes once it is in the
hands of the individual familiar with any freight analysis conducted by your agency or who
knows that none is conducted. Please email the completed survey to my assistant
(chung.77@osu.edu) or fax (614-292-3780) it to me. Should you have any questions or
comments, feel free to contact me (mccord.2@osu.edu; 614-292-2388).

Thank you for your anticipated cooperation.

Sincerely,

Dr. Mark R. McCord
Associate Professor

Civil Engineering

City & Regional Planning

Encl.




2.2¢ Survey Questionnaire



1. Does your organization track correlation between general freight data and other variables?
___ Regularly

___ Sometimes, but not regularly

__ Never (go to Question 5)

2. What type of freight data does your organization track?

Where do you obtain these data?
Special surveys
Private data supply company (Please specify)

Public data source (Please specify)

Other (Please specify)

3. What type of “correlated” variables does your organization track?

Where do you obtain these data?
Special surveys
Private data supply company (Please specify)

Public data source (Please specify)

Other (Please specify)

4. Does your organization explicitly analyze the correlation between freight data and
other variables?
. Yes
___ No (go to Question 5)

What type of explicit analysis is performed to identify the correlation?
____ Graphing trends
____ Calculating ratios
____ Regression analysis
____ Advanced time series analysis
____ Other (Please specify)




5. Does your organization have/use any freight origin-destination (O-D) tables?
Yes
No (go to Question 6)

How frequently do you update these tables? (e.g., annually, every 5 years,
irregularly, ....)

Do you keep O-D tables by commodity? ___ Yes; ____ No
If yes, by what kind of Commodity Category?
___ Standard Transportation Commodity Code (STCC)
Standard International Trade Classification (SITC)
General names of commodity (Example, please)

Other (Example, please)

What are the units associated with the commodity?
(e.g., ton/year; carloads/day; dollar value of commodity/quarter)

How does your organization update these commodity O-D tables?
___ Special O-D surveys
____ Models and other data (Please specify; e.g., trip generation data
and gravity models)

Other

6. Does your organization regularly monitor truck trips on highway links?
Yes
No (go to Question 7)

Does your organization also forecast truck trips on the links?
Yes
No (go to Question 7)

What forecasting models do you perform to forecast the link flows?
____ Trend projection
— Correlation with other indicators
_____ Trip Assignment
—_ Other (Please specify)
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7a. Agency (State DOT) of individual answering this questionnaire:

7b. Section/Bureaw/Office of individual answering this questionnaire:

8. Who could be contacted if we have any further questions?
Name:

Phone No.:

Email @:

Bureau/Office:
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2.2d Sampled and Responding States
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States Contacted * = States to | ** = States Contact
which returning
questionnaire | questionnaire
was sent
Alabama (AL) *
Alaska (AK) * *k Jeff Ottesen
Chief of Statewide Planning
jeff_ottesen@dot.state.ak.us
(907) 465-6971
Arizona (AZ) * *% Louis Tognacci
Intermodal Division
Ltognacci@dot.state.az.us
(602) 255-8137
Arkansas (AR)
California (CA)
Colorado (CO) * *¥ Dave L. Ruble Jr.
Intermodal Branch
(303) 757-9819
Connecticut (CT) * *k Joseph Spragg
Bureau of Policy and Planning
(860) 594-2022
(860) 594-2056 (FAX)
Delaware (DE) *
Florida (FL)
Georgia (GA)
Hawaii (HI) *ok Gordon Lum
Oahu MPO
(808) 587-2015
(808) 587-2018 (FAX)
Idaho (ID)
Illinois (IL) *k James Johnson
Office of Planning & Programming
(312) 793-5744
(312) 793-5966 (FAX)
Indiana (IN) * *k Steve Smith
Division of Planning &
Programming
planners376@aol.com
(317) 232-5646
(317) 232-1499 (FAX)
Iowa (1A) * *% Craig O'riley
Planning & Programming Division
coriley@iadot.email.com
(515) 239-1520
Kansas (KS) * *k Rick Miller
Statewide Planning Unit
rick@dtthpo.wpo.state.ks.us
(913) 296-7441
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States Contacted * = States to | ** = States Contact
which returning
questionnaire | questionnaire
was sent
Kentucky (KY) * *% Rob Bostrom
Division of Transportation
Planning
rbostrom@mail kytc.state ky.us
(502) 564-7183
Louisiana (ILA) * *k James B. Norman
Weights & Standards
jnorman@dotdmail.dotd.state.la.us
(504) 377-7131
Maine (ME) * %k Edward W. Hanscom
Planning Division
www.ed.hanscom@state.me.us
(207) 287-3131
(207) 287-3292 (FAX)
Maryland (MD) *
Massachusetts (MA)
Michigan (MI)
Minnesota (MN) * ko C. Snaft
Freight T.R.I.M. Division
(612) 276-1666
Mississippi (MS)
Missouri (MO) *
Montana (MT) *% Bill Cloud
Data and Statistics Bureau
(406) 444-6114
(406) 444-7671 (FAX)
Nebraska (NE) * *k Rick Ernstmeyer
Transportation Planning Division
dor5005@vmhost.cdp.state.ne.us
(402)479-4520
(402) 479-3884 (FAX)
Nevada (NV)
New Hampshire (NH) * *% Stephen W. Gary
Highway Maintenance
(603) 271-2693
New Jersey (NJ) *
New Mexico (NM)
New York (NY) *
North Carolina (NC)
North Dakota (ND) * *% Jeff Patten
Planning Division
(701) 326-4197
(701) 3281404 (FAX)
Ohio (OH) *
A-12



States Contacted * = States to | ** = States Contact
which returning
questionnaire | questionnaire
was sent

Oklahoma (OK) * *ok Sam Shehab
Planning Division
(405) 521-6433
(405) 521-6917 (FAX)

Oregon (OR) * *x Bill Upton
Planning Section
william. j.upton@odot.state.or.us
(503) 986-4106

Pennsylvania (PA)

Puerto Rico

Rhode Island (RI)

South Carolina (SC) *

South Dakota (SD)

Tennessee (TN) * *% Awin H. Pearson
Office of Public Transportation
(615) 741-3227
(615) 741-3169 (FAX)

Texas (TX) * * Joe Barnard
Motor Carrier Division
(512) 465-3044

Utah (UT)

Vermont (VT) * *ok Karen Songhurst
ksonghurst@aot.state.vt.us

Virginia (VA) *

Washington (WA)

West Virginia (WV) * *k Jerry L. Legg
Transportation Planning Division
jllegg@mail.dot.state.wv.us
(304)558-2864

Wisconsin (WI)

Wyoming (WY)

A-13




2.2¢ List of Standard Transportation Commodity Code (STCC)




- I .

STCC Code Commodity Description
01 Farm products
08 Forest products
09 Fresh fish or other marine products
10 Metallic ores
11 Coal
13 Crude petroleum, natural gas or gasoline
14 Nonmetallic minerals
19 Ordnance or accessories
20 Food and kindred products
21 Tobacco products, excluding insecticides
22 Textile mill products
23 Apparel or other finished textile products or knit apparel
24 Lumber or wood products, excluding furniture
25 Furniture or fixtures
26 Pulp, paper or allied products
27 Printed matter
28 Chemicals or allied products
29 Petroleum or coal products
30 Rubber or miscellaneous plastic products
31 Leather or leather products
32 Clay, concrete, glass or stone products
33 Primary metal products, including galvanized
34 Fabricated metal products
35 Machinery, excluding electrical
36 Electrical machinery, equipment or supplies
37 Transportation equipment
38 Instruments, photographic goods, optical goods, watches, or clocks
39 Miscellaneous products of manufacturing
40 Waste or scrap materials not identified by producing industry
41 Miscellaneous freight shipments
42 Containers, carriers or devices, shipping, returned empty
48 Waste hazardous materials or waste hazardous substances

Commodity unknown

Source: Commodity Coding Manual, 1993 Commodity Flow Survey,
Bureau of the Census
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Appendix 3.1

Example of Woods & Poole Economics, Inc. Database:
State Profile Series
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ALAMEDA, CA

Unit of Geography: County

1990 Land Area: 737.5 Square Miles
FIP$S CODE: 06001

ALAMEDA. CA

1
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>
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Note

Total Population (Thousands)
Under 8 Years

5To9 Years

10To 14 Years

15 To 19 Years

20To 24 Yoars

25To 29 Yean

30 To 34 Years

35To 39 Years

40 To 44 Yoary

45 To 49 Years

50 To 54 Years

55 To 59 Years

60 To 64 Years

65 To 69 Years

70 To 74 Years

75 To 79 Years

80 To 84 Years

85 Years and Over

White Population

Black Population

Other Populauon

Hispanic Population. Any Race
Popuiation 0-19 Years (Thousands)
Population Age 20-64 Years
Poputation Age 65 Years and Over
Male Population (Thousands)
Female Population

Population Age 16 Years and Over
Median Age of Population (Years)
Total Employment (Thousands)
Farm Employment

Agncultural Services, Other
Mining

Construction

Manufacturing

Transport, Comm. & Public Utility
Wholesale Trade

Retail Trade

Finance, Ins. & Real Estate
Services

Federal Civilian Gowi.

Federal Military Govt.

State and Local Govt.

Total Earmings (Millions 1992 $)
Farm Earmings

Agnaultural Services, Other
Mining

Construction

Manufsctunng

Transport, Comm. & Public Utility
‘Wholesale Trade

Retail Trade

Finance, lns. & Rea! Estaie
Services

Federa) Civihian Govt.

Federal Military Govt,

Stats and Local Govt.

Penooal Income (Millicos 1992 3)
Wage and Salaies

Other Labax Income

Proprietors income

Dividends. Laterest & Reot
Transfer Pmts. To Persons

Less Socaal Ins. Conmbutions
Restdence Adjustment

Income Per Capita (1992 §)
Income Per Capita (Current $)
W&P Wealth Index (U.S. = 100)
Number of Housebolds (Thousands)
Persons Per Housebold (People}
Relu! Sales Per Housebold (1992 3)
Mean Housebold Income (1992 $)
Mean Housebold inc. (Qurreat $)
Housebold with Mooey [nc. (Thousand)
Less than $10.000 (1990 $)
$10.000 w0 $19.999

$20.000 to $29.999

$30.000 to $39.999

$40.000 w0 $49.999

$50.000 to $59.999

$60.000 to $74.999

$75.000 w0 $99.999

$100.000 10 5124999

$125,000 10 $149.999

$150.000 ar Mare

Total Retaul Sajes (Millioa 51992 $}
Building Matenials, Hurdwars
Genorai Merchandise

Food Stares

Automobele Deaiers

Gasoline Service Stations

Apparel and Accessanies
Furmture, Homs Furnishings
Eating and Drinking Placos

Drug Stares

Miscellaneous Retad Stores

1970
1073.96
83.80
97.35
98.04
9423
112.04
86.26
65.83
58.06
62.13
66.47
58.79
50.65
41.56
32.47
25.80
19.05
12.82
8.61
857.40
162.19
54.37
135.02
373.42
601.80
98.75
526.16
547.80
17608
27.81
4991
376
1.85
1.24
21.87
85.90
3316
24.39
73.02
3460
92.42
2784
2491
7494
14309.32

3724

19445

13766
36681
s
na
na
na
[¥S
na
(¥
na
na.
na

(¥
T121.68
215.61
933.92
1707.17
1259.48
516.04
438.69
33258
627.78
367.54
0292

1980
1108.79
7327
70.49
79.26
95.68

11083 °

110.08
10472

59.61
5315
5594
5699
46.52
39.01
2895
21.08
1371
11.88

20877
101.00
126.50
318.66
675.48
114,65
539.18
569.61
868.38
30.67
601.72
.14

0.96
217
87.19
3421
3118
97.43
46.34

144.38
2198
1212
90.52
17299.97
54.40
57.00
8334
1235.12
3524.74
145492
116232
2037.29
836.30
3285.39
792.58
22593
2550.64
22631.96
14450.22
1395.14
1434.61
3639.22
3223.64
903.49
£27.39
20411
11939
1512
4882
252

51703
30241
ass2
fa

aa

aa

ne

o

na.

na

na

na

na

2a
8610.34
34117
961.34
1911.30
151988
736.26
349.36
430.33
885.59
38134
1093.40

1990
127824
100.71
87.68
.42
81.68
105.40
122.70
126.74
1i4.76
102.66
3.7
56.21
47.35
46.03
44.55
34.26
2632
16.30
13.69
834.18
233.89
21017
18298
341.50
795.61
135.12
628.73
649.51
997.64
32.48
761.59
144
Slle
0.84¢
38.40
8493
44.48
43.49
121.89
s4.08
22.45
2325
19.23
102.32
22943.85
26.06
101.12¢
28.50e
1681.64
3361.59
1864.76
1636.51
2426.82
1008.24
6079.97
843.47
418.00
3467.13
31187.94
18795.46
2049.46
2098.93
5361.51
4170.13
1533.18
245.64
24399
22669
144.55
481.23
2.58
21096
63382
38888
481.23
56.18
64.02
68.85

933
10152.01
466.02
1130.96
2093.08
2040.31
632.07
476.64
661.12
1143.58
508.68
999.56

1995
1321.98
103.28
9401
8421
8038
9407
108.57
125.56
12407
11235
89.91
64.73
49.37
291
4391
39.22
29.58
19.23
16.61
828.98
241.42
251.58
219.61
361.89
81154
148.56
650.04
67194
1024.36
33.50
9110
143
6.16
0.82
35.87
81.02
45.15
48.33
12498
4931
258.04
19.77
1423
100.04
2489122
12.59
106.17
2227
139401
3781.28
1853.11
1887.57
245276
113690
7601.86
832.29
329.17
3486.81
3317065
20034.88
253085
2331.07
5304.99
5134.18
mmn
-447.59
25092
27071
113.45
492,46
260
21706
65743
70930
492.46
5276
60.12
64.66
61.33
63.06
5181
35.38
.22
18.49
721
10.42
10689.19
34373
1196.11
198430
2222.58
62473
521.47
838.86
122286
51973
1014.83

1997
1337.16
98.18
99.34
8575
84.42
89.59
104.24
118.64
125.52
118.08
9475
7163
51.80

43.15
.13
32.00

19.79
827.05
242.69
267.43
230.85
367.69
817.12
15235
654.87
682.29

1037.19

819.98

37.67

278.53

1040.73

1998
1346.04
96.73
100.63
87.27
86.35
90.78
101.36
115.08
125.39
120.55
96.57
74.53
5403
43.55
42.34
38.90
n9
20.64
18.40
825.91
243.83
276.31
23499
370.98
821.80
15326
658.93
687.12
1044,78
3480
829.34
135
6.58
0.81
3793
87.79
47.11
.98
129.17
50.40
284.74
18.92
13.48
101.09
27167.0
19.90
113.60
28.00
1488.15
4254.74
1950.54
2025.54
2560.28
1295.02
8678.22
835.01
32931
3589.10
35966.26
2204435
2628.03
2535.02
5702.41
3479.45
1886.99
-497.01
26720
30758
11495
508.02
2.58
21665
69342
79821
508.02
5129
58.44
62.85
59.62
66.94
56.80
60.72
5L77
20.27
7.90
4G
11006.26
5$59.81
1240.73
1975.68
2346.50
658.4¢
52629
865.52
1244.48
55291
1035.94

Part of the Far West Region

Part of the San Francisco-Oakland-San Jose, CA - Economic Area
Part of the San Francisco-Oakland-San Jose DMA

Pact of the San Francisco-Oakiand-San Jose, CA CMSA

Pact of the Oakland, CA PMSA

1999
135481
93.56
100.78
89.67
87.73
93.02
97.89
12.02
12478
12227
98.94
78.02
55.76
43
am
38.56
33.67
2112
19.00
824.56
24486
28539
239.16
3mnn
826.98
154.11
662.94
691.87
105227
35.03
838.70
132
6.62
081
3118
88.14
41.52
5057
130.06
50.76
2101
18.80
13.48
10145
27728.00
19.93
11520
28.19
1507.06
431398
1984.48
2063.30
2590.94
132474
8983.47
835.20
332,11
3627.42
36688.74
2247136
2676.86
2573.78
5814.83
35911
1942.69
-509.16
27080
3892
115.04
$12.40
2.58
21660
70142
82604
512.40
50.50
57.55
61.89
5871
67.83
58.71
6276
53.52
2095
8.17
1.8
11098.51
362.53
1258.62
197477
236701
666.07
53039
871.87
1266.08
362.69
1036.48

2000
1363.43
94.80

88.47
4791
5116
13094
513
29734
18.67
13.47
101.80
28294.52
19.98
116.82
28.36
1525.75
4376.20
2018.23
2100.50
2621.62
1354.63
929599
83526
33452
3665.87
3741985
2295591
2726.07
2612.54
5927.04
5719.85
2000.08
-521.48
27445
33100
115.12
516,71
2.57
21696
70951

1040.77

2005
1405.90
93.87
92.32
99.06
98.36
105.72
96.73
96.66
108.73
122,66
112.32
92.86
7326
52.18

53.99
135.40
52.95
330.02
18.03
13.46
103.61
31255.02
20.39
125.42
29.08
161.6.54
4662.50
2184.48
2286.75
2776.41
1506.54
10972.3%
83393
349.13
3861.46
41214.7%
28406.16
297450
284436
6498.93
6391.32
2315.08
-585.48
29316
40421
115.41
53171
255
22220
75120
103577
53771
44.88
5114
55.00
52.17
65.67
7311
78.18
66.63
2609
10.17
1471
11948.00
601.52
1399.54
2016.50
2548.72
716.74
568.25
946.00
1431.16
626.15
1092.82

2010
1450.37
96.46
91.82
92.52
10598
116.66
106.06
98.58
95.67
108,78
11179
103.32
8392

140.08
34.80
364.49
1739
13.45
105.56
34355.68
21.16
135.03
2992
1704.43
4923.8%
2346.49
247020
293823
1661.61
12847.63
83097
363.61
4065.56
4526121
28005.00
323283
3097.84
7085.18
7178.90
2684.80
£53.75
31207
50426
115.58
55113
.54
23087
79573
128580
551.73
39.78
45.34
48.76
4625
5821
80.61
9532
8128
3182
12.40
17.94
12876.30
646.25
1539.82
2082.18
2755.14
767.14
611.14
1022.92
1599.96
680,44
117131

2015
1498.15
100.28
94.56
92.55
9.03
12497
115.87
107.12

103.64

3386

19572.24
30767.59
350227
3363.67
7680.26
8105.52
3120.80
726.28
33089
63487
115.67
515.67
254
24231
84484
162099
575.67
3533
40.26
43.29
41.07
31.69
76.21
11491
97.98
3836
1495
21.63
13948.94
6935.43
1689.02
2154.49
3021.18
825.21
661.43
1119.77
1790.16
730.04
1262.22

1546.84
103.08
98.36
95.62
99.01
116.74
12323
16.18
105.30
97.34
88.51
93.54
9497
86.49
Il
55.75

34.67

43.08
92.51
419
61.96
150.27
58.63
438.66
16.19
13.4
110.16
4113827
2398
138.61
32.54
1876.80
5363.43
2654.16
283528
3270.40
1974.16
17219.62
823.87
39328
4509.14
54171.10
3370898
3783.83
3642.47
8278.02
9199.30
3638.28
-803.22
35021
79805
1Hsm
$89.37
2.56

1511071
748.74
1852.61
222581
3296.13
894.76
72130
1222.62
2009.82
7171.85
136407

Histanical employment, esrmngs, and income dats, 1969- 1995, and population dsia, 1969-1996, is from U.S. Dept. of Commerce (USDoC): rotail sales data 1s histonical for 1972, 1977, 1982, 1987, and 1992 from USDoC; housebold data is
fustoncat for 1970, 1980, 1985 and 1990 from USDoC: Hispame date 13 hustoncal for 1970, 1980, and 1990-1996 from USDoC: all other years of data, 1969-1995, for retail saies, bouseholds, and Hispanic populstion are estimated by Woods & Poole
{W&P), “¢” indicates withhsid employment and earmings data estimated by WAP; all data, 1996-2020 (1997-2020 for populstion), is projected by WP, residontial population as of July 1; Hispamc populstion 18 persons of Spanish arigin regardleas of
roce - White. Black. and Other sum 0 total population: other 18 the sum of Asian Amenicans, Native Amencans. and Pacific Islanders; employment in mumber of jobs includes proprietors and part-time jobs; earnings by industry are earnings of workers -
the sum of wagss & salanes. propnetors 1ncome, and other labor 10come. histoncal data on households by money income bracket 18 for 1990 only {from U.S. Dept of Commerce) and is not consistent with mean househoid total persoaal income data; the
progections. 1991-2020, of bousehoids by money 1ncome beacket (10 1990 §) are based on 1990 data oaly: please read “Technical Description of the 1998 Regonal Projections and Database” (Chapter 2 of this ropart) for an explanstion of data sources,
data defimtons, and projection methads. H ISTORICAL DATA IS SUBJECT TO REVISION; PROJECTIONS ARE UNCERTAIN AND FUTURE DATA MAY DIFFER SUBDTANTIALLY FROM THESE PROJECTIONS. WOODS & POOLE DDOES
NOT GUARANTEE THE ACCURACY OF THE PROJECTION OR HISTORKCAL DATA OONTAINED IN THIS TABLE. THIS DATA IS PROVIDED SUBJECT TO ALL TERMS AND CONDITIONS OF THE WOODS & POOLE ECONOMICS,
[NC. END USER LICENSE AGREEMENT AND [S NOT AUTHORIZED FOR USE IN LEGAL OR FINANCIAL TRANSACTIONS. COPYRIGHT {998 WOODS & POOLE ECONOMICS, INC. ALL RIGHTS RESERVED. REPRODUCTION BY
ANY METHOD 5 PROHIBITED.
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ALAMEDA, CA Comparstive Data Tabic
Unit of Geography: County
FIPS Code: 06001

Selected Calculations
Rank of ALAMEDA, CA Among all 58 Counties in CA - In Parentheses
1970-1995 1980-1995 1995-2020

Population Growth Rate +0.83% (54) +1.18% (45) +0.63% (44)
Employment Growth Rate +1.85% (47) +1.84% (37) +1.13% (36)
Population Change (Thousands) +248.02 (12) +213.19 (9) +224.85 (11)
Employment Change (Thousand) +291.19 (8) +189.39 (8) ) +257.67 (8)

1970 1980 1990 2000 2010 2020
Percent of Population Age 0-19 34.77% (43) 28.74% (41) 21.19% (45) 27.56% (46) 26.67% (43) 25.60% (40
Percent of Population Age 65 and Over 9.19% (3%5) 10.34% (34) 10.57% (39) 11.39% (35) 11.87% (34) 14.77% (32)
Percent of Population White 79.84% (56) 72.33% (57) 65.26% (5T) 60.37% (57) 55.69% (57) 51.83% (5T)
Percent of Population Black 15.10% (1) 18.56% (1) 18.30% (1) 18.03% (1) 17.29% (1) 16.29% (1)
Percent of Population Hispanic (Any Race) 12.57% (21) 11.41% (27) 1431% (27) 17.85% (28) 19.78% (29) 22.19% (29)

1970 1980 1990 2000 2010 2020
Percent of Jobs in Manufacturing 17.18% (13 14.49% (10} 11.15% (16) 10.43% (16) 9.63% (17) 8.82% (18)
Percent of Jobs in Services 18.49% (27) 23.99% (21) 29.21% (17) 35.06% (15) 38.59% (15) 41.83% (12)
Percent of Jobs in Framing 0.75% (55) 0.36% (55) 0.19% (56) 0.15% (55) 0.12% (S55) 0.10% (55)
Percent of Jobs in Government 25.54% (18) 20.71% (21) 1901% (22) 15.79% (25) 14.44% (33) 13.33% (35)

1970 1980 1990 2000 2010 2020
Population Rank 4 5 6 7 7 7
Income per Capita Rank 9 11 8 7 7 7
Mean Househald Income Rank 15 19 12 . 12 12 11
Retail Sales per Household Rank 32 27 24 24 24 24

Note: Average annual rate of growth in percent; historical data, 1970-1995, from U.S. Dept of Commerce; projected data, 1996-2020, from Woods & Poole Economics, Inc.; retail sales, household,
population by age. and Hispanic population data are estimated; government is Federal. military, and state and local. please read “Technical Description of the 1998 Regional Projections and
Database™ (Chapter 2 of this report) for an explanation of data sources, data definitions. and projection methods. H ISTORICAL DATA IS SUBJECT TO REVISION; PROJECTIONS ARE
UNCERTAIN AND FUTURE DATA MAY DIFFER SUBDTANTIALLY FROM THESE PROJECTIONS. WOODS & POOLE DDOES NOT GUARANTEE THE ACCURACY OF THE
PROJECTION OR HISTORICAL DATA CONTAINED IN THIS TABLE. THIS DATA IS PROVIDED SUBJECT TO ALL TERMS AND CONDITIONS OF THE WOODS & POOLE
ECONOMICS, INC. END USER LICENSE AGREEMENT AND IS NOT AUTHORIZED FOR USE IN LEGAL OR FINANCIAL TRANSACTIONS. COPYRIGHT 1998 WOODS & POOLE
ECONOMICS. INC. ALL RIGHTS RESERVED. REPRODUCTION BY ANY METHOD IS PROHIBITED.

Labor Force and Unemployment

1994 1995 1996 897 9197 10/97
Civilian Labor Force (Thousands) 683.33 682.17 684.76 701.01 697.83 701.63
Employed 641.51 642.88 650.76 667.81 665.03 670.88
Unemployed 41.81 39.30 34.00 33.21 32.80 30.75
Uremployment Rate 6.1% 5.8% 5.0% 47% 47% 4.4%

Note: Historical Labor force. employment and unemployment data Is from Bureau of Labor Statistics: monthly data s not seasonally adjusted and is subject to revision; employment by place of
residence, not by place of work: employment data excludes proprietors and government workers.

Private Non-Farm Establishments by Size

1994 1954 1994 1995 1995 1995
Total 1 to 49 Employees 50 or more Total 1 to 49 Employees 50 or more
Employees Employees

Total Number of Business Establishments 33301 31366 1935 33461 31427 2034
Agnicultura Services. Forestry, and Fishing 39 392 7 413 404 9
Minng 19 14 5 19 14 s
Constructuon 2509 2412 97 2463 2365 98
Manufacturing 2541 2167 374 2576 2169 407
Transporation and Public Utlities 1337 1191 146 1342 1193 149
Wholesale Trade 3272 3074 198 3313 3097 216
Retail Trade 7003 6594 409 6927 6521 406
Finance. [nsurance, and Real Estate 3067 2973 94 2966 2880 86
Service 12930 12325 605 13110 12453 657
Unclassified Establishments 224 224 0 332 331 1
Note Historical data from U.S. Dept of Commerce; data excludes proprietors and government workers; industry classifications based on 1987 SIC itions: unclassified i are
businesses that cannot by classified in any industry group because of insufficient kind-of-business information: are assigned proportionally to counties within state by Woods
and Poole

Composition of Hisparuc and Other Population by Race

1990 1996
Percent of Hispanx Populzuon, Race White 85 78% 86.18%
Percent of Hispanic Population, Race Black 5.59% 6.00%
Percent of Hispanx Population. Race Native American 2.12% 1.91%
Percent of Hispanx Population. Race Asian and Pacific Isiander 6.51% 591%
Percent of Other Populauon. Race Asian and Pacific Islander 94 94% 95.78%
Percent of Other Populauon. Race Native American 500% 4.22%

Nowe Hispanc populauon can be of any race - the percentages in this table indicate the proportion of the Hispanic population by race; other population is the sum of Native Americans, Asians and
Pacific {slanders - the percentages in this table indicate the proportion of other population by its comp p for Other include Hispanic Asians/Pacific Islanders and Hispanic Native
Americans. hustonical data from 1990 Census modified age, race. and sex data and 1996 Census Bureau estimates.

Educational Attanment

1970 1980 1990
Percent of Populauon Age 25+, Not Completing High School 37.0% 24.0% 18.6%
Percent of Populauan Age 25+, Completing High School Only 48 4% 53.7% 52.6%
Percent of Populaton Age 25+, Completing 4 Years of College or More 14.6% 22.3% 28.8%
Note Ed as percent of population age 25 and over is from 1970, 1980, and 1990 Census of Population; data is based on self-reporting by Census respondents.
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Appendix 3.2

Illustration of Freight Model Classification Framework
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We began reviewing freight models found in the literature according to the structure
found in Table A3. We tried to develop a structure that would be useful for determining
the appropriateness of a model for operational use in public planning issues. We note that
we began developing our approach before finding the reviews discussed in Section 3.
Therefore, we limit the entries in Table A3 to those models discussed in Part II of the

report.

The columns of the table represent different aspects that we felt would be
important when evaluating a model for use in an operational system. The first column
indicates the specific model analyzed. The second column represents whether the model
is descriptive or normative. The distinction is based on the anticipated use of the freight
movement model. We use “descriptive” to mean a model that describes or forecasts
some aspect of freight movement under different “what if” scenarios. That is, a
descriptive model generates forecasts of movements or behavior, i.e., describes what the
movements or behavior will be. On the other hand, a “normative” model suggests to
decision makers what to do based on some norms or objectives. For example, an
objective may be selecting a route for transporting freight between cities that minimizes
the cost of shipments. The output of the model would be the route that should be
followed to achieve this cost minimizing objective. This suggested route may or may not
be followed, and, therefore, the model does not attempt to describe what the freight flows
will be. It is possible, however, that the modeler would intend to use this cost minimizing
objective to predict where shipments will travel. If knowing the route that minimizes cost
is intended to be used to tell a decision maker how a shipment should be routed, the
model would be classified as normative; if it is intended to be used by planners to predict
or describe how a shipment will be routed, it would be classified as descriptive. Since
we are primarily interested in models that will predict freight movements under different
conditions, we mostly sought descriptive models in our literature search and limit the

entries of Table A3 to descriptive models.
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The modes involved in the freight movement model are shown in the third
column. Most of the freight movement models we saw dealt with truck trips.
Furthermore, statistics indicate that truck trips account for approximately 75% of freight
movements produced in the United States. (Bureau of Transportation Statistics, 1994).
However, most of the models considered in Part II of this report and, therefore,

summarized in Table A3 are more general.

The fourth and fifth columns indicate the inputs to the model. We address the
inputs at two levels: general (fourth column) and specific (fifth column). The general
inputs give an idea of the type of data required. Further specification would be required,
however, until the data could be quantified in a form that could be used by the model.
This specification is provided in the fifth column. For example, an origin-destination
table would describe input at a general level. However, one would need to know the
freight category (e.g., commodity group), units of measurement (e.g., vehicle loads, tons,
dollar value, ....), and period of measurement (e.g., per.day, per quarter, per year, ...)

before being able to estimate input for the model.

The sixth and seventh columns indicate the model outputs. Again, we consider
the outputs at general (sixth column) and specific (seventh column) levels, where the
distinction is similar to that made between general and specific inputs. For example, link
flows would be a general output, whereas trucks of five or more axles per day on a
highway link would add the specification necessary to understand how the model output

could eventually be used.

The eighth column provides a general description of the methodology underlying
the transformation of inputs to outputs. The methods are almost all based on either
simulation, econometric fits to data, or mathematical programming (optimization)

techniques.

The final column allows for miscellaneous comments.

A-22




Il Nl SG A EEEEEEEEEEEEED.s

To demonstrate how to interpret this model review table, consider the first entry in
Table A3. The first column provides the reference for this model. It can be found in our
list of references under Weinblatt and Edwards (1997). The “descriptive” annotation in
the second column indicates that the model is intended to predict freight movements that
will occur--freight volumes from various regions to specific intermodal facilities, in this
case--as opposed to being intended to dictate the movements that should occur to satisfy

some objective.

According to column three, this model considers freight transferred at an
intermodal facility. Inputs of the model are shown in the next two columns. The general
inputs are essentially regional freight volumes, intermodal facility information, and
distances between regions and facilities. More specifically, base-year annual volumes
generated in or destined for each region considered, level-of-service characteristics of the
intermodal facilities (numbers of destinations served and capacity are used as examples),
and highway distances between regional centroids and the facilities are used as inputs.
The sixth and seventh columns contain the general and specific outputs generated. In this
case, the general and specific outputs are essentially the same, namely, the region-facility
volumes for a given year. The methodology uses a variation of the gravity model, as seen
in the eighth column. In the final column we note that this model was applied to predict

freight that would use a new air-based intermodal facility in North Carolina.
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Appendix 6

Tables for Calculations of Section 6
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Table A6.1a Estimated LOS scores in Data Fit Scenario 1

Airports LOS
Airborne Airpark 10.0
Dayton 7.9
Toledo 5.5
Cincinnati 3.0
Cleveland-Hopkins 1.7
Columbus 0.6
(Rickenbacker) 3.0)

Table A6.1b Freight forecasts at facilities in Data Fit Scenario 1, without Rickenbacker

Region I Region II Region Il Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)

Airbomne Airpark 57,248.62 70,192.57 73,813.40 70,944.66 57,518.84 | 329,718.10 35.6%
Dayton 39,363.72 55,452.13 58,312.59 56,046.28 47,537.10 | 256,711.80 27.8%
Toledo 52,477.90 26,638.08 21,110.63 26,533.30 48,669.78 | 175,429.70 19.0%
Cincinnati 13,039.96 20,004.88 22,144.02 21,283.40 13,804.52 | 90,276.78 9.8%
Cleveland-Hopkins 18,022.71 8,233.59 5,144.79 5,668.48 13,539.05 | 50,608.62 5.5%
Columbus 4,579.89 421155 4,207.36 4,256.68 3,663.51 20,918.99 2.3%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%

Table A6.1c Freight forecasts at facilities in Data Fit Scenario 1, with Rickenbacker

Region I Region I Region III Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airbome Airpark 52,711.08 63,010.03 68.,099.24 65,650.09 52,953.04 | 302,423.50 32.7%
Dayton 36,243.75 49,777.92 53,798.40 51,863.57 43,763.65 | 235,447.30 25.5%
Toledo 48,318.49 23,912.31 19.476.38 24,553.14 44,806.42 | 161,066.70 17.4%
Cincinnati 12,006.41 17,957.86 20,429.77 19,695.03 12,708.73 82,797.80 9.0%
Cleveland-Hopkins 16,594.23 7,391.08 4,746.52 5.245.44 12,464.33 46,441.59 5.0%
Columbus 4,216.89 3,780.60 3,881.66 3,939.01 3,372.70 19,190.85 2.1%
Rickenbacker 14,641.97 18,903.01 14,300.84 13,786.52 14,663.92 | 76,296.25 8.3%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%
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Table A6.2a Estimated LOS scores in Data Fit Scenario 2

Airports LOS
Airborne Airpark 10.5
Dayton 7.9
Toledo 53
Cincinnati 3.0
Cleveland-Hopkins 1.7
Columbus 0.6
(Rickenbacker) 3.0)

Table A6.2b Freight forecasts at facilities in Data Fit Scenario 2 , without Rickenbacker

Region I Region I Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)

Airbomne Airpark 59.802.17 72,702.19 76,296.83 73,464.92 60,035.30 | 342,301.40 37.1%
Dayton 39,161.46 54,699.74 57,404.28 55,273.61 47,254.16 | 253,793.30 27.5%
Toledo 50,309.76 25,321.13 20,026.10 25,215.96 46,620.82 | 167,493.80 18.1%
Cincinnati 12,972.96 19,733.45 21,799.10 20,989.98 13,722.35 89,217.84 9.7%
Cleveland-Hopkins 17,930.10 8,121.87 5,064.66 5,590.33 13,458.46 | 50,165.43 5.4%
Columbus 4,556.36 4,154.41 4,141.83 4,198.00 3,641.70 | 20,692.29 22%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%

Table A6.2c Freight forecasts at facilities in Data Fit Scenario 2 , with Rickenbacker

Region [ Region I Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airbomne Airpark 55,084.67 65,353.58 70,475.40 68,052.29 55,295.88 | 314,261.80 34.0%
Dayton 36,072.20 49,170.79 53,024.35 51,201.25 43,523.73 | 232,992.30 25.2%
Toledo 46,341.07 22,761.72 18.498.11 23,358.14 42,940.39 | 153,899.40 16.7%
Cincinnati 11,949.58 17.738.83 20.135.83 19,443.51 12,639.06 | 81,906.81 8.9%
Cleveland-Hopkins 16,515.69 7.300.93 4,678.22 5,178.46 12,396.00 | 46,069.29 4.9%
Columbus 4,196.93 3,734.49 3,325.81 3,888.70 3,354.21 19,000.14 2.1%
Rickenbacker 14,572.66 18,672.45 14,095.08 13,610.46 14,583.53 75.534.18 8.2%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%
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Table A6.3a Estimated LOS scores in Data Fit Scenario 3

Airports LOS
Airborne Airpark 10.0
Dayton 4.80
Toledo 1.17
Cincinnati -2.56
Cleveland-Hopkins -4.49
Columbus -7.51
(Rickenbacker) (-2.56)

Table A6.3b Freight forecasts at facilities in Data Fit Scenario 3, without Rickenbacker

Region I Region II Region Il Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)

Airborne Airpark 68,048.41 67,535.61 73,588.78 69,833.31 66,542.35 | 345,548.50 37.4%
Dayton 41,992.35 49,987.38 54,467.72 51,688.06 46,794.47 | 244,930.00 26.5%
Toledo 44,943.67 27,254.60 23,442.36 27,832.69 45,051.91 | 168,525.20 18.2%
Cincinnati 6,784.34 23,419.19 27,357.95 25,961.79 10,628.06 | 94,151.33 10.2%
Cleveland-Hopkins 24,344.01 8,135.61 -1,437.63 730.74 18,185.34 | 49,958.06 5.4%
Columbus -1,379.97 8,400.42 7.313.62 8,686.22 -2,469.33 | 20,550.96 2.2%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%

Table A6.3c Freight forecasts at facilities in Data Fit Scenario 3, with Rickenbacker

Region I Region II Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airbomne Airpark 64,302.60 59,454.92 67,615.50 64,431.77 61,900.05 | 317,704.80 34.4%
Dayton 39,680.83 44,006.35 50,046.52 47,690.04 43,529.87 | 224,953.60 24.4%
Toledo 42,469.69 23,993.56 21,539.52 25,679.86 41,908.88 | 155,591.50 16.8%
Cincinnati 6,410.89 20,617.06 25,137.28 23,953.67 9,886.60 | 86,005.50 9.3%
Cleveland-Hopkins 23,003.96 7,162.18 -1.320.94 674.21 16,916.65 | 46,436.06 5.0%
Columbus -1,304.01 7,395.30 6,719.97 8,014.35 -2,297.05 18,528.55 2.0%
Rickenbacker 10,168.83 22,103.44 14,994.95 14,288.91 12,887.82 | 74,443.94 8.1%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%
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Table A6.4a Estimated LOS scores in Data Fit Scenario 4

Airports LOS
Airborne Airpark 23.31
Dayton 14.09
Toledo 7.46
Cincinnati 1.09
Cleveland-Hopkins -2.75
Columbus -6.69
(Rickenbacker) (1.09)

Table A6.4b Freight forecasts at facilities in Data Fit Scenario 4, without Rickenbacker

Region [ Region II Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)

Alrbome Airpark 68.955.73 68,513.09 72,126.67 69,914.18 68,058.34 | 347,568.00 37.6%
Dayton 45,134.40 49,552.70 52,166.26 50,566.06 47,697.46 | 245,116.90 26.5%
Toledo 39.538.43 29.540.78 27,418.03 29,935.01 39,866.90 | 166,299.10 18.0%
Cincinnati 12,468.15 21,783.70 24,015.23 23,278.56 14,363.04 95,908.69 10.4%
Cleveland-Hopkins 17,413.89 8,537.08 2.924.82 4,094.37 14,270.17 47,240.32 5.1%
Columbus 1,222.19 6.805.45 6,081.80 6,944.62 476.90 21,530.96 23%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%

Table A6.4c Freight forecasts at facilities in Data Fit Scenario 4, with Rickenbacker

Region | Region II Region 11 Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Atrbome Airpark 63.895.62 60,982.55 65.878.86 64,028.16 62,574.51 | 317,359.70 34.4%
Dayton 41,822.34 44,106.18 47,647.47 46,308.94 43,854.22 | 223,739.10 24.2%
Toledo 36,637.02 26,293.84 25.043.00 27,414.80 36,654.61 | 152,043.30 16.5%
Cincinnau 11,553.22 19,389.37 21.934.96 21,318.76 13,205.74 | 87,402.04 9.5%
Cleveland-Hopkins 16,136.02 7.598.73 2,671.47 3,749.66 13,120.34 | 43,276.23 4.7%
Columbus 1,132.51 6,057.44 5.554.97 6,359.96 438.48 19,543.35 2.1%
Rickenbacker 13.556.08 20,304.69 16.002.06 15,552.53 14,884.91 80,300.27 8.7%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%
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Table A6.5a Estimated LOS scores in Data Fit Scenario 5

B’s Value Airports LOS
Brreq -1.3E-06 | Airborne Airpark 0.3855
Brpes 0.004492 | Dayton 0.3240
Boist -0.00035 | Toledo 0.2284
Cincinnati 0.1342
Cleveland-Hopkins 0.1114
Columbus 0.0574
(Rickenbacker) (0.1342)

Table A6.5b Freight forecasts at facilities in Data Fit Scenario 5, without Rickenbacker

Region 1 Region II Region Il Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)

Airborne Airpark 64,111.44 64,605.75 66,043.82 65,051.59 62,440.81 | 322,253.42 34.9%
Dayton 49,444.34 51,470.70 56,067.73 56,381.57 51,502.12 | 264,866.45 28.7%
Toledo 37,750.41 31,197.88 29,618.37 31,253.97 42,722.90 | 172,543.52 18.7%
Cincinnati 9.975.54 16,943.58 24,227.65 20,527.98 12,757.72 | 84,432.47 9.1%
Cleveland-Hopkins 21,442.05 10,844.72 5,005.43 6,352.98 13,734.15 | 57,379.32 6.2%
Columbus 2,009.02 9.670.17 3,769.80 5,164.72 1,575.11 22,188.82 2.4%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%

Table A6.5c Freight forecasts at facilities in Data Fit Scenario 5, with Rickenbacker

Region I Region I Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 59.969.61 57.868.12 60.519.10 59.801.64 57.923.43 | 296,081.90 32.1%
Dayton 46,250.05 46,102.90 51,377.53 51,831.32 47,776.12 | 243,337.92 26.3%
Toledo 35,311.59 27.944.31 27.140.72 28,731.63 39.632.04 | 158,760.29 17.2%
Cincinnati 9.331.09 15,176.56 22,200.95 18,871.28 11,834.74 | 77.414.62 8.4%
Cleveland-Hopkins 20,056.81 9.713.74 4,586.71 5,840.26 12,740.53 | 52,938.06 5.7%
Columbus 1,879.23 8,661.68 3.454.45 4,747.90 1,461.16 | 20,204.43 2.2%
Rickenbacker 11,934.42 19,265.49 15.453.33 14,908.76 13,364.79 | 74,926.79 8.1%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%
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Table A6.6a Estimated LOS scores in Data Fit Scenario 6

o =0.053714 Airports LOS
Airborne Airpark 10.0
Dayton 3.58
Toledo -3.11
Cincinnati -13.22
Cleveland-Hopkins -26.39
Columbus -41.51
(Rickenbacker) -13.22

Table A6.6b Freight forecasts at facilities in Data Fit Scenario 6, without Rickenbacker
Region I Region I Region I Region IV Region V Total Proportio
(Cleveland) {Columbus) (Cincinnati) (Dayton) (Toledo) n

Airbome Airpark 65.957.70 71,337.53 72,665.54 71,558.40 65,721.18 | 347,240.30 37.6%
Dayton 45,004.24 50,540.02 51,480.87 50,696.50 47,317.42 | 245,039.10 26.5%
Toledo 39,569.32 29.861.77 27,763.16 29,793.76 39,216.21 | 166,204.20 18.0%
Cincinnati 17,673.84 19,954.72 20,879.49 20,561.37 17,610.46 96,679.87 10.5%
Cleveland-Hopkins 11,960.24 8,554.00 7.496.56 7.624.14 10,646.13 46,281.08 5.0%
Columbus 4,567.47 4,484.75 4,447.18 4,498.63 4,221.40 22,219.43 2.4%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%

Table A6.6¢c Freight forecasts at facilities in Data Fit Scenario 6, with Rickenbacker

Region 1 Region I Region Il Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 59.939.14 64,212.53 66.288.34 65.365.77 59,772.88 | 315,578.70 34.2%
Dayton 40,897.66 45,492.22 46,962.86 46,309.25 43,034.81 | 222,696.80 24.1%
Toledo 35,958.67 26.879.26 25.326.64 27,215.42 35,666.83 | 151,046.80 16.4%
Cincinnati 16,061.12 17.961.69 19.047.08 18,781.99 16,016.57 | 87,868.46 9.5%
Cleveland-Hopkins 10,868.89 7.699.65 6,838.66 6,964.35 9,682.57 | 42,054.11 4.6%
Columbus 4,150.69 4,036.82 4,056.89 4,109.33 3,839.33 | 20,193.06 2.2%
Rickenbacker 16.856.63 18,450.63 16,212.33 15,986.69 16,719.82 | 84,226.10 9.1%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%
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Table A6.7a Estimated B’s and LOS scores in Data Fit Scenario 7

B's Value Airports LOS
Brreq 3.41E-05 | Airborne Airpark 2951
Bpes 0.0128 | Dayton 2.605
Boist -0.00175 | Toledo 2.239
Cincinnati 1.706
Cleveland-Hopkins 0.998
Columbus 0.193
(Rickenbacker) 1.706

Table A6.7b Freight forecasts at facilities in Data Fit Scenario 7, without Rickenbacker

Region 1 Region I Region Il Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)

Airborne Airpark 67,443.76 73,445.73 70,555.71 70,650.72 64,875.64 | 346,971.60 37.6%
Dayton 44,907.02 48,477.36 51,725.59 53,172.87 46,736.35 | 245,019.20 26.5%
Toledo 37,393.40 30,242.46 28,053.20 29,091.56 41,374.81 | 166,155.40 18.0%
Cincinnati 17,477.15 18,866.67 22,754.27 20,157.94 17,563.49 | 96,819.51 10.5%
Cleveland-Hopkins 12,880.24 8,744.69 7.432.06 7.442.06 9,955.47 | 46,454.52 5.0%
Columbus 4,631.24 4,955.89 4,211.98 4,217.65 4,227.04 | 22,243.80 2.4%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%

Table A6.7c Freight forecasts at facilities in Data Fit Scenario 7, with Rickenbacker

Region I Region I Region I Region IV Region V Total Proportion
(Cleveland) (Columbus) (Cincinnati) (Dayton) (Toledo)
Airborne Airpark 61,230.82 65,784.86 64,099.58 64,430.67 59,013.96 | 314,559.90 34.1%
Dayton 40,770.17 43,420.85 46,992.49 48,491.56 42,513.60 | 222,188.70 24.1%
Toledo 33,948.70 27,087.97 25,486.22 26,530.36 37,636.49 | 150,689.70 16.3%
Cincinnati 15.867.15 16,898.75 20.672.16 18,383.25 15,976.58 87,797.89 9.5%
Cleveland-Hopkins 11,693.71 7.832.56 6,751.99 6,786.87 9,055.97 | 42,121.10 4.6%
Columbus 4,204.61 4,438.96 3.826.57 3,846.33 3,845.12 | 20,161.58 2.2%
Rickenbacker 17,017.64 19,268.85 16.903.79 16,263.77 16,691.07 86,145.12 9.3%
Total 184,732.8 184,732.8 184,732.8 184,732.8 184,732.8 923,664 100.0%
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Appendix 7.1

Description and Illustration of Method 1 for Updating OD Matrices
from Ground Counts
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We translate the general description of the method presented by Sheffi (1985) into
a set of algorithmic steps, and illustrate this method with a small example that can be
solved using a spreadsheet. All steps could be programmed, however, and real problems

could be readily solved with the method.

A7.1.1 Method Description

The program can be formulated as the solution to the following minimization program

(Sheffi, 1985):

minZ(x,.q)= Y., —§,,)’ (A7.1.1)
9 rs
subject to
S fE=as Vs (A7.12)
k
fk"-‘ 2 0 V k9ras (A7. 1 .3)
[ @)do-Y g, <n* (A7.1.4)

where g,; is the total flow from origin r to destination s; g, is the total flow from origin r

to destination s in the target OD matrix; f;”is the flow on path k from origin r to

destination s; x, is the flow on link a; #,(w) is the link performance function on arc a,

which determines the time to traverse the link when the flow is w; #_is the “observed”

shortest travel time between origin r and destination s; n* is the optimal (minimum)

value of z Jox" t (w)dw -Zﬁ”q”. By optimal, we mean the lowest possible value that

satisfies the general flow constraints (see Part A below).

This program can be solved by decomposing it into two parts (Sheffi, 1985). In
the first part, which we call Part A, a minimization program is solved to find n*, the right
hand side of constraint (A7.1.4). In what we call Part B, the value of n* is used in the
minimization program above. The specific steps corresponding to Part A and Part B can

be stated as follows.
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Part A. The minimization program to find 77* is:

Min Z(x,@)= Y. | 1, (@)dw - Y. 7, (A7.1.5)
subject to
Y=g Vrs (A7.1.6)
k
=20 vV krs (A7.1.7)

The notation is that given above. In addition to the network structure and link
performance functions, the only input to this program is the set of observed link flows

{x,}. The solution to this program produces a set of “assigned” link and OD flows
denoted as x* and ¢* respectively. We then set n*=2joxa t, (w)da)-zu“”q; and

calculate its value.
To solve the part A minimization program, one can use the following algorithm.

Part A algorithm

Initialization:

Step 1. Set an upper bound OD flow g, for each OD pair. This upper bound should be
set high enough so that it would never be binding (i.e., the upper bound should be
greater than the possible maximum OD flow for each OD pair).

Step 2. Arbitrarily generate an OD matrix {qrs'} as the initial OD matrix to be assigned

to the network.

Step 3. Use the observed link flow ¥ = {X, }and link performance functions (e.g. BPR
function given in equation (7.1)) to calculate “observed link travel times”,
r=A{1)}

Step 4. Based on “observed link times” 7 find the minimum “observed OD travel time”

u,. between each origin-destination pair rs.
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Step 5. Find the minimum “free flow travel path” u, , between each origin-destination

pair rs. This is the path found using free-flow link travel time to,a.

Step 6. Set iteration number n to 1. Assign the set of OD flows of {g,, } on the paths

found in Step 5 and obtain a set of assigned link flows {x; } where n denotes the

iteration number.

Calculate link travel times:

Step 7. Use the link performance functions and the assigned flows { x; } to determine the

assigned link travel times {f, }.

Calculate auxiliary OD and link flows

Step 8. Based on the assigned link travel times {; } of Step 7, find the minimum

n
rs,m

assigned travel time path m and corresponding time u,_,, for each OD pair rs.

Step 9. Compare the assigned OD travel time u,,, from Step 8 with the “observed”

—~

travel time #,, from Step 4 for each OD pair. If the assigned shortest path

time u, . is smaller than the observed time #%_ for pair rs, set the

corresponding auxiliary path flow equal to the OD flow upper bound set in

step 1, and set the auxiliary path flows for other paths equal to O, i.e.

gr =g, g7 =0 ¥ kem. If the assigned shortest path time u”,, is greater

than the observed time,, , set all auxiliary path flows to zero, i.e., g =0 V

rs

k.

Step 10. Calculate the auxiliary OD flows v, from origin r to destination s at iteration n

and auxiliary link flows y for arc a at iteration n as:

V) = 2 g’ Vr,s
k
Ye = 228?"5;.2 Va (A7.1.8)
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where 8 is a indicator variable--- 8, =1 if arc a is on path k between r and s;

8 . =0 otherwise.

Step 11. Find the value of a (0 < a < 1) that minimizes
Z()y=Y [P (0)dw - T8, (gl + 2 —gl) (A7.1.9)

where { x} } was found in Step 6, {g,, } was chosen in Step 2, and {vy; }and {y, }
were found in Step 10. Denote the value of @ that minimizes (A7.1.9) by .

Update flows
Step 12. Use the value of o found in Step 11 to update the link and OD flows:

n+l

XV =xl+a"(yl - x;), Ya

n+l

g, =q,; +a" (v, —qy), Vrs (A7.1.10)

Convergence test

Step 13. Check convergence.
If Z(x", @)-Z(x™', @™ ) <k, set x, =x?*! Va; g =q"" V15, and stop,
if Z(x", q")-Z(x™", q"*') > k, set n=n+1, and go to step 7;
where Z(x", q") is the objective function in equation (A7.1.5), and k is a

dimensionless convergence criterion set beforehand.

Once this algorithm terminates by passing the criterion test of Step 13, the set of
flows {x*;} and {g*,} are substituted in the right-hand side of equation (A7.1.5) to
obtain Z(x*,q*). The value of Z(x*,g*) is denoted as n*. Note that if the BPR function
(equation (7.1)) is used for the link performance functions t,(®), solving the integral on

the rnight-hand side of (A7.1.5) and, therefore, evaluating Z is straightforward.

Part B. By introducing a dual variable v associated with constraint (A7.1.4), the original

program (A7.1.1)-(A7.1.4) can be transformed into the partial Lagrangian problem:

min L(x’ q’ y)= Z(qrx -q”)z +’Y[ 2.[:0 tﬂ (w)dw -zﬁrxqr: -n*] (A7'1'1 1)
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subject to
S fr=as Vs (A7.1.12)

k
20 Vkr,s (A7.1.13)
20 (A7.1.14)

where v is the dual variable associated with the (single) constraint (A7.1.4), and

the other terms are defined above.

To solve the Part B minimization program, one can use the following algorithm.
In addition to the network structure and link performance functions, the inputs to this

program are the set of observed link flows {X,}, the target matrix {g,, } and the value of

17*. The solution to this program produces a set of estimated link and OD flows.

Part B algorithm

Initialization

Step 1. Set an upper bound of total possible flow g for each OD pair. This upper bound
should be set high enough so that it would never be binding (i.e., the upper bound
should be greater than the possible maximum OD flow for each OD pair). Set the
dual variable vy in equation (A7.1.11) to some positive value, ¥y >0

Step 2. Use the target matrix {g,, } as the initial OD matrix {grs'} to be assigned to the
network.

Step 3. Use the observed link flows {%,}and link performance functions (e.g. BPR
function given in equation (7.1)) to calculate “observed link travel times” {'t; }

Step 4. Based on observed link times 7, find the minimum observed travel time &,
between each origin-destination pair rs. These are the same observed times in the
Part A algorithm.

Step 5. Find the shortest time path from every origin to every destination using free flow

travel time to,a. This is the same free-flow path found in the Part A algorithm.
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Step 6. Set the iteration number n to 1. Assign the OD flows { g;, } on the paths found in

Step 5 and obtain the set of assigned link flows {x} }, where n denotes the

iteration number.

Calculate link travel times:

Step 7. Use the link performance functions and the assigned flows {x] } to acquire

assigned link travel times {z; }.

Calculate auxiliary OD and link flows

Step 8. Based on the assigned link travel times {z; } of Step 7, find the minimum

assigned travel time path m and corresponding time on the path u, , for each OD
pair.
Step 9. Compare the assigned OD travel time u;, ,, from Step 8 with the observed travel

time %, from Step 4 for each OD pair. If the assigned shortest path time

n ~

u, , 1s smaller than the observed time #,, for pair rs, set the corresponding
auxiliary path flow equal to the OD flow upper bound set in Step 1, and set

the auxiliary path flows for other paths equal to 0, i.e., g~ =7, g =0 V

kzm. If the assigned shortest path time u;, , is greater than the observed

time i, , set all auxiliary path flows to zero, i.e.,g* =0 V .

Step 10. Calculate the auxiliary OD flows v;, from origin r to destination s at iteration n
and auxiliary link flows y; for arc a at iteration n using equation (A7.1.8).
Step 11. Find the value of & (0 £ @ < 1) which minimizes

L(a)=2[q:, ral -qy)-g, | +

rs

xg+@(yz~x7)
’Y[ZJ‘O ” t“ (O))d(l) -Zﬂrs (qn” +a(vp"ls _q:g )) _n*] (A7.1.15)
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where {x} was found in Step 6, {g,; } was chosen in Step 2, {v;; } and {y;}
were found in Step 10, {4g,, }, {#,, } and the link performance function {z, } were

given as input, y was set in Step 1, and we found 77* in Part A. Denote the value of

« that minimizes (A7.1.15) by .

Update flows
Step 12. Use the value of @" found in Step 11 to update the link and OD flows

using equation (A7.1.10)
n+l

U =xl+at(y, —x)), Va

n+l

qr =q,+a" (v, —q.), Vrs

Convergence test

Step 13. Check convergence.
If L(x", ¢°)-Lx™, @) <k, set x, =x"*! Va; ¢ =q™" Vrs, and stop;
If L(x®, g°)-L(x**, q**') > k, set n=n+1, and go to Step 7,
where L(x", q") is the objective function in equation (A7.1.11), and k is a

dimensionless convergence criterion set beforehand.

Find the value of vy that minimizes Z in equation (A7.1.11) subject to constraints
(A7.1.12)-(A7.1.14)
Step 14. Given the set of flows {x*,(y)} and {q*, ;(y)} from Step 13, calculate

a(?) o s
dL(pidy=3 [ 1, (@)dw- Y &,q;, ) -1* (A7.1.16)
a rs
Step 15. If dL(7)/dy >0, increase the value of y and go to Step 1; if dL(y)/dy<0, decrease
the value of vy, and go to Step 1 Part B. If dL(y)/dy =0(or close enough to zero
according to some convergence criterion), then stop.

When dL(7)/dy=0, the set of flows {x**',} and {¢"*',;} constitute the solution.
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A7.1.2 Example

To illustrate the approach we consider the same simple network shown in Figure 7.1.

Part A

Step 1. We choose upper bounds of 15 for all OD pairs, including those with zero OD
flow in the target matrix, i.e. g=15, V rs. We specify the convergence criterion
k=0.01.

Step 2. We arbitrarily generate an initial OD matrix with OD flows q14=3, q24=4, q34=1
and q,=0 V other rs.

Step 3. Using the BPR function (7.1), the observed link flows and the link performance
function parameters of Table 7.1, the observed link travel times can be found to
be: 1,=5.07, 1,=15.52, ,=10.52, 7, =36.49 and 7,=26.06.

Step 4. Based on the observed link travel times found in Step 3, the minimum observed
time path can be found by inspection. Between OD pair 1-2, this path consists of
arcs 1 and 4; between OD pair 2-4, it consists of arc 4; between OD pair 3-4, it

~

consists of arc 5. The times on these paths are the “observed OD travel time” &

shown in Table A7.11.

Table A7.1.1 Observed shortest OD travel time

OD (rs) From to Time
14 1 4 41.57
24 2 4 36.49
34 3 4 26.06

Step 5. The free-flow link travel times are given in Table 7.1. The shortest free-flow
time paths can be found by inspection. Between OD pair 1-5, this path uses
arcs 2 and 5; between OD pair 2-4 the path uses arcs 3 and 5; and between

OD pair 3-4, it uses arc 5.
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Step 6. Assigning the initial OD flows from Step 2 to the shortest free-flow time paths
results in link flows x; 120, x5 '=3, x5 '_4, x,'=8 and xs 1_8.
Step 7. The link performance functions and the assigned flows { x; } from Step 6 can be

used to calculate the assigned link travel times: t11-5, t21=15.71, t31=11.5, t4‘=20
and ts'=7.37.

Step 8. Again the shortest travel time path for each OD pair after the assignment of Step 7
can be found by inspection. The paths and the path times are presented in
columns two and three of Table A7.1.2.

Step 9,10. Here we must compare minimum assigned OD path travel times from Step 8
with the minimum observed OD travel times from Step 4, and assign auxiliary
flows according to equation (A7.1.8). For OD pair 1-4, Table A7.1.2 shows the
minimum assigned path time is 23.08. This time is smaller than the

corresponding observed OD travel time of 41.57(see Table A7.1.1). Therefore,
the corresponding auxiliary path flow g,‘:'l is set to the OD flow upper
boundg, =15. We calculate auxiliary path flows for the other OD pairs in a

similar manner (see Table A7.1.2). After all the auxiliary path flows are
determined, we can calculate the auxiliary OD and link flows using equation

(7.1.8). The results are shown in Table A7.1.2.

Table A7.1.2 Auxiliary path, link and OD flows for iteration 1 in Part A

Links of the | Assigned Observed
minimum path time path time
OD time path Auxiliary flows
pair (rs) | after
assignment
at n=1 u 0, Path OD Link
1-4 2,5 23.08 | <| 41.57 g,’,,41=15 v, =15 | yl=15
2-4 3,5 18.87 | < | 36.49 ;4‘ =15 vh=15 | y;=15
3-4 5 7.37 < | 26.06 83.41 =15and | Us,=15 | yi=15+15+15=45
other g =0 and y;=y,=0
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Step 11. To find the move size @ to solve equation (A7.1.9), we set

dZ(@yda= Y (y; = x)*1,(x] +a(y; = x) = Y &, (v}, —q}) =0

rs

The bi-section method (Sheffi, 1985) can be used to solve for . In this case, 11

iterations of the bi-section method yields a'=0.1439.

Step 12. Equation (A7.1.10) is used to update link and OD flows.

For example, with a'=0.1439 from Step 10, x, '=3 from Step 6, q24=4 from Step
2, yb=15 and v,,=15 from Step 10, we can calculate

x}=xy+a'(yy —x3) =3+0.1439*%(15-3) = 4.7268
qi = s +Q' (Vi — q5,) = 4+0.1439* (15— 4) = 5.5829

Other link and OD flows are found in a similar manner.

Step 13. To check convergence, we use the difference in Z values at successive iterations.

Part B

Step 1.

Step 2.
Step 3.

S . 1
At n=1, Z(x', q1)=2(to‘ax;+%(g?—)ﬂ+’)—2ﬁrsqfs - -166.3142. Since
a=l + rs

there is no previous iteration to compare with, we set n=2 and go to Step 7 (using
link flows x’ from Step 11 to calculate link travel times). Continuing in this
fashion, at iteration n=16, we found Z(x", qls)-Z(x16, q16)= -355.8108-(-
355.8194)= 0.0086. This satisfied our convergence test, since 0.0086 < 0.01.
Therefore, we end Part A with n* = -355.819. Although a set of assigned OD

flows {¢'*} and link flows {x.°} are produced for this final iteration, they are

only used to calculate n*. They are not used in Part B.

We again arbitrarily choose upper bounds of 15 for all OD pairs, including those

with zero OD flow in the target matrix (i.e., g=15 for all rs) and arbitrarily set

v=4.
We use the target matrix in Table 7.2 as the initial {qrs1 }.

The observed link travel times are the same as those calculated in Step 3, Part A.
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Step 4. The observed OD travel times # are the same as those calculated in Step 4, Part

A and shown in Table A7.1.1.
Step 5. The minimum free-flow time paths for OD pairs are the same as those found in
Step 5, Part A.
Step 6. Assigning the initial OD flows form Step 2 to the shortest free-flow time paths
results in link flows x; 1=0, X 1=7, X3 1=9, X4 =0 and Xs 1222,

Step 7. The link performance functions and the assigned flows {x; } from Step 6 can be

used to calculate the assigned link travel times: t11=5, t21=36.10, t31=48.44, t41=20
and t5'=140.56.
Step 8. Again by inspection, we find the minimum travel time path for each OD pair after
the assignment. These paths are presented in Table A7.1.3. |
Step 9,10. Here we again compare the minimum assigned OD travel times in Step 8 with
the observed minimum OD travel time from Step 4 and assign auxiliary flows
according to equation (A7.1.8). For OD pair 3-4, Table A7.1.3 shows the
minimum assigned path time is 68.44. This time is greater than the corresponding

observed OD travel time of 26.06(see Table A7.1.1). Therefore, the

corresponding auxiliary path flow g:‘l is set to 0. We calculate auxiliary path
flows for the other OD pair in similar manner (see Table A7.1.3). After all the

auxiliary path flows are determined, we can calculate the auxiliary OD and link

flows using equation A7.1.8. The results are shown in Table A7.1.3.
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Table A7.1.3 Auxiliary path, link and OD flows for iteration 1 in Part B

Arcs of the Assigned Observed

minimum path time path time
OD time path Auxiliary flows
pair (rs) | after
assignment
Atn=1 uls - . Path OD Link
1-4 1,4 25 < 41.57 g,‘"“l=15 v114=15 )’11=15
2-4 4 20 < 36.49 g,f,“l =15 v, =15 | y,=15+15=30
3-4 3,4 68.44 |>| 26.06 83.41 -0 and vh,=0 | yl=y;=y;=0
other g,:’l =0

Step 11. To find the move size ¢ to minimize equation (A7.1.15), given dL(a)/da=

> 2w, - a)la) + ey —q8) =4, )+ v 0 —x) *,[x] +aly; —xD1= Y&, W), —q7)}

we use the bi-section method (Sheffi, 1985) repeatedly for various levels of .

In this case, performing seven iterations of the bi-section method yields 0=0.331

Step 12. Equation (A7.1.10) is used to update link and OD flows.

For example, with a=0.331 from Step 11, x; '=7 from Step 6, q24=9 from Step 2,
ys=0and v},=15 from Step 10, we can calculate

x;=xy+a'(y; —x;)=7+0.331%(0-7) = 49668
gi = qh + ' (Vi —q3,) =9 +0.331%(15-9) =10.9867

Step 13. To check convergence, we use the difference in L value at successive iterations.

Atn=1,

L', q', y)=2(q,, q,s)z+4[2(t0axa +‘; C, (" )y — Zu”qm -(-355.819)]

= 2320.97. Since there is no previous iteration to compare with, we set n=2 and
go to Step 7 (using link flows x” from Step 12 to calculate link travel times).
At iteration n=25, we found L(x**, ¢**)-L(x®, ¢®)= 1.2562-1.2533=0.0029.

This satisfies our convergence test, since 0.0029 < 0.005. So for y=4, we stop

here with a set of flows {x*,} and {g*,}.
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Step 14. At y=4, dL(y)/dy = 0.034 > k. Therefore, we increase y and redo all the

steps in Part B above.

At y=4.3, we stop after 26 iterations and get dL(y)/dy = 0.027 > k. Therefore, we
increase v and redo Part B. At =6, we stop after 25 iterations and get dL(y)/dy = -0.046
<-k. Therefore, we decrease ¥ and redo Part B again. We continue in this way until we
try Y= 5. For y= 5, we stop after 2 iterations and get dL(y)/dy = 0.0025. This satisfies our
convergence test, since 0.0025 < 0.005. Therefore, we end Part B with y = 5 and the
corresponding set of flows {x*,} and {g*,;} obtained at iteration 26 as the final estimates

of link and OD flows.
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Appendix 7.2

Description and Illustration of Method 2 for Updating OD Matrices
from Ground Counts
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A7.2.1 Method description

Method 2 of Section 7.1 can be summarized by the following algorithm. In addition to

network structure and link performance functions, the inputs to this program include

- limited OD data {g,, } obtained from a small-scale survey and a set of “selected link”

counts { X, }, where r indicates a “selected link”.

Trip generation and friction factor estimation

Step 0. Set the convergence level k and the iteration number n=1.

Step 1. Obtain zonal population and trip rates for each study zone, calculate zonal trip

productions and attractions.

P' = Al =r, *POP, (A7.2.1)
where P; and A; are, respectively, the number of trips produced and attracted by
zone i during a given time period (Park and Smith (1996) used one day as their
time period); 1; is the trip rate for zone i; POP; is the population of zone i; and
one denotes the iteration number.

Step 2. Obtain zone-to-zone travel time of each zone pair in the small-scale survey, and
derive trip length frequency (TLF) distribution curves of three trip types--Internal-
Internal (I-I), Internal-External (I-E), and External-External (E-E).

Step 3. Use the information from Steps 1 and 2 to develop fTiction factor curves of the
gravity model for each of the three trip types, namely, I-I, I-E, E-E.

Alternatively, specifying a gravity model with “friction factors” that are functions
of travel times is acceptable.

Step 4. Use the friction factors, trip productions and trip attractions with the gravity

model to estimate an OD table {g,. }, where n denotes the iteration number.

Traffic assignment

Step 5. Assign the OD table obtained from Step 4 to the highway network using an all-

or-nothing traffic assignment based on free-flow travel times. The assignment

yields assigned link volumes { x } for each link a.
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Step 6. Calculate the root mean square error RMSE between the assigned volumes {x; }
and the observed volumes { X, } corresponding to links r where observed volumes

are available:

(A7.2.2)

where N is the number of “selected links” ( i.e., links where observed volumes
are available), and the other notation has been described above.
Step 7. Check convergence.
If RMSE" <k, set ¢"= ¢! and stop;
If RMSE" > k, then go to Step 8,

where k is the convergence criterion set in Step 0

Selected link adjustment

Step 8. For each selected link r, calculate the link adjustment ratio:

al =%,/ 17" (A7.2.3)
i

where ais the ratio between observed traffic volume and assigned volume for
“selected link” r at iteration n; X, is the observed volume (vehicle classification
count data) for “selected link” r; t;;"" is the number of trips from zone i to zone j

n

using “selected link” r after the traffic assignment at iteration n, Zt,.;.'” =x.

ij
Step 9. Calculate zonal adjustment factors for trip productions and attractions:

R} =Y [art" 1Y 11"] (A7.2.4)
EDNCRHTDIN (A7.2.5)

where R”"; is the adjustment factor for trip productions in zone i at iteration n; S is

the adjustment factor for trip attractions in zone j at iteration n; ¢." (= Zt,.;."')is
i

the sum of all the flows on link r that come from zone i at iteration n;
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Ll (= Zt;"’) is the sum of all the flows on link r that go to zone j at iteration n,
i

and a” for every selected link r at iteration n was determined in Step 8.
Step 10. Estimate new productions and attractions
P =R *P" (A7.2.6)

AT =81 *A (A7.2.7)

Step 11. Recalibrate the gravity model and estimate a new OD matrix {g"" } using the
new productions and attractions found in Step 10.

Check gravity model stability

Step 12. Calculate the mean trip lengths for the three trip types (I-], I-E, E-E, see Step 2)

n+l
rs

from{ g~ } found in Step 11. If they are no longer “reasonably close” to the

mean trip lengths from the small-scale survey (e.g., within 10%), then go to Step
3 and re-derive friction factor curves for the three trip types; If the mean trip

lengths have not changed much, set n=n+1 and go to Step 5.
Method 2 terminates in Step 7 with output {g, } and {x, }. These represent the

estimated OD matrix and the assigned link volumes, respectively. The algorithm is

illustrated in Figure A7.2.1.
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Figure A.7.2.1 Flow chart for algorithm (taken from Park and Smith, 1994)
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A7.2.2

Example

To illustrate the method we consider the same simple network shown in Figure 7.2.

Trip generation and distribution estimation

Step O.
Step 1.

Step 2.

Step 3.

We arbitrarily set the convergence level k=0.05.
In real problems the trip generation rates and zonal populations could be obtained
from statistical data. For this hypothetical problem, we arbitrarily chose a set of
trip productions and attractions. P!, =55, P12=70, P12a=53, P13=45, P!,=40,
A'1=46, A'=88, A'5,=50, A'3=32, A' =47
Since developing the friction factor curves is relatively complicated and not the
major concern of our study, we used a gravity model:
. = DAL
j Z AF, (A7.2.8)
j
where Tj; is the number of trips made from zone i to zone j; P; is the total number
of trips produced in zone i; A; is the total number of trips attracted to zone j; F;; is

the friction factor between i and j, and friction factor F; is specified as a function

of distance:

F.=e¢ P (A7.2.9)

ij
where dj; is the distance between i and j, and B is a parameter.
The unknowns in equation (A7.2.8) must be calculated before we can actually use
this equation to estimate a trip matrix. The calibration strategy is to find values of
F;; that replicate the small-scale survey data in Table 7. 6 as closely as possible. Fj;

is estimated using an iterative procedure. The results are shown in Table A7.2.1.
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Table A7.2.1 Friction factor table

Fii 1 2 2a 3 4

1 0.6593 1.3240 0.9138 1.0083
2 1.3240 0.6353 1.1495 1.0026
2a

3 0.9138 1.1495 0.8757 1.0143
4 1.0083 1.0026 1.0143 0.9643

Step 3a. Equation (A7.2.9) can be transformed into

(A7.2.10)

In F}j “’B * dij
Using equation (A7.2.10) we regressed F;; from Step 3 (Table A7.2.1) against d;;
of Table 7.7 (without 2a), to obtain an estimate of § = 2.68E-5

Step 3b. We then used the estimated value of B found in Step 3a, the distances between
2a and other zones, and equation (A7.2.9) to obtain the estimated friction factors

associated with zone 2a. Combined with the other friction factors in Table

A7.2.1, this leads to Table A7.2.2.

Table A7.2.2 Estimated friction factor matrix for the example of Method 2

F, 1 2 2a 3 4

1 0.6593 | 1.3240 | 1.00381 | 0.9138 | 1.0083
2 1.3240 | 0.6353 | 1.00207 | 1.1495 | 1.0026
2a 1.00381 | 1.00207 | 1.00145 | 1.00239 | 1.00285
3 09138 | 1.1495 | 1.00239 | 0.8757 | 1.0143
4 1.0083 | 1.0026 | 1.00285 | 1.0143 | 0.9643

Step 4. We used the gravity model of equation (A7.2.8) to estimate the OD matrix {q,, }.

The friction factors were obtained in Step 3b (Table A7.2.2), and the trip

productions and trip attractions were given in Step 1. The estimated OD matrix

is shown in Table A7.2.3.
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Table A7.2.3 Estimated OD table for the example of Method 2 at iteration 1

From\To 1 2 2a 3 4
1 6.1 23.4 10.1 5.9 9.5
2 17.0 15.6 14.0 10.3 13.2
2a 9.3 17.7 10.1 6.4 9.5
3 7.0 16.9 8.4 4.7 8.0
4 7.1 134 7.6 4.9 6.9

Traffic assignment

Step 5. We assigned the estimated OD matrix {q.. } in Table A7.2.3 to the network in

Figure 7.2 using an all-or-nothing assignment based on free-flow travel time. This
led to a set of assigned link volumes: x,'=59.8, x,'=29.5, x3'=53.8, x4'=0.0,
xsl=70.9, x61=51.1, X71=31.9. The links constituting the shortest path between
each OD pair are shown in Table A7.2.4.

Table A7.2.4 Links on minimum free-flow travel time paths for OD pairs

OD Link ID
pair

1 2 3 4 5 6 7

1-2 X

1-2a X X

1-3 X

1-4 X X

2-2a X

2-3 X

2-4 X X

2a-3 X

X

2a-4 X

3-4 X

Step 6. Using equation (A7.2.2) to calculate the root mean square error between the

assigned volumes { x. } from Step 5 and the observed volumes %, given in Table

7.5, we found RMSR'= 7.34
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Step 7.

Since RMSE' =7.34 > 0.05, we do not consider the algorithm to have converged,

and we continue to Step 8.

Selected link adjustment

Step 8.

Step 9.

As an example of how to use equation (A7.2.3) to calculate the link adjustment
i

ratio, consider link 1(r =1). On this link, » 7' = x; = 23.4+17+10.1+9.3= 59.8
i

from Step 5, and X, = 54. Therefore, using equation (A7.2.3), we obtained

al =%/ 17 =54/59.8 = 0.903. In a similar manner, we found: a; = 1.288, a;
if
=1.023, al = 0.874, a} = 1.116, a; = 1.315.

As an example of how to use equation (A7.2.4) to determine the adjustment

factors for trip productions, consider zone one:

R! = Lprd g rd all(qIIZ +‘I112a)+a;(%13 +‘1114)+a;‘11l4 +aé%lza
1 —z[artl" Z,II‘ 1= 1 I 1 1 1 1
r i Y Gi2s Y93 Y 94 T G1a T 491,
_ 0.903*(23.4+10.1)+1.288*(5.9+9.5)+0.874*9.5+1.116*10.1
23.4+10.1+59+9.5+9.5+10.1

=1.017
In a similar manner we found R,'=0.983, R5,'=1.110, R3'=1.061, R4'=1.029
As an example of how to use equation (A7.2.5) to get adjustment factors for trip

attractions, consider zone one:

1

Sll - z[a:t:l.l /2, t:l,1]= all(Q;l +)q;al)l+ a; (?;l + ?:1)+lasq‘l‘ll+aéq;al
; 9o t 920 193 794+ 94 t 9,
30.903*(17.0+9.3)+1.288*(7.0+7.1)+0.874*7.l+1.116*9.3
17.0+93+7.0+7.1+7.1+9.3

=1.030
Similarly we found S,'=0.986, S,,'=1.099, S3'=1.074, S,'=1.034.

Step 10. As an example of how to use equations (A7.2.6) and (A7.2.7) to get new trip

productions and attractions, consider zone one again:
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PP =R/ *P' =1.017%¥55=55.9
Al =S *Al = 1.030%46 = 47.4
Similarly, we found P?=68.8, P%,=58.8, P%=47.8, P%=41.1 and A%=86.7,
A%,=55.0, A%=34.4, A%=48.6.
Step 11. Using the productions and attractions from Step 10, the friction factors in Table

A7.2.2, and the gravity model of equation (A7.2.8), we estimate a new OD

matrix {qfs } shown in Table A7.2.5.

Table A7.2.5 OD trip estimation g’ after link flow adjustment

From\ To 1 2 2a 3 4
1 6.2 22.8 11.0 6.2 9.7
2 16.5 14.5 14.5 10.4 12.8
2a 10.3 18.7 11.9 7.4 10.5
3 7.5 17.2 9.5 5.2 8.5
4 7.2 13.2 8.3 5.3 7.1

Step 12. If the friction factors were obtained from friction factor curves, here one would

need to calculate the mean trip lengths for the three trip types (I-1, I-E, E-E, see

n+l
rs

Step 2) from {gq," } found in Step 11. If the calculated trip lengths were no

longer “reasonably close” to the mean trip lengths obtained from the small-scale
survey (e.g., within 10%), then one would go to Step 3 and re-derive friction
factor curves for the three trip types. If the mean trip lengths had not changed
much, then one would set n=n+1 and go to Step 5. Since we use “friction factors”
that are functions of travel times, there is no need to check the mean trip lengths

and re-derive friction factor curves. So we directly set n=2, and go to Step 5.

We repeated the steps above and checked convergence each time we reached Step
7. i.e., we decided whether the RMSE was still greater than 0.05. At Step 7 of iteration
n=179, RMSE = 0.036 < 0.05. Therefore we stopped and obtained an estimated OD

matrix from Step 11 of iteration n=178.
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Appendix 7.3

Description and Illustration of Method 3 for Updating OD Matrices
from Ground Counts
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A7.3.1 Method Description

Given a network, a target matrix {4, } and a set of observed link counts {X, }, the
objective of the SPME method is to estimate a new trip matrix {q,, } that, when assigned
to the network, minimizes the difference between the assigned link flows {x, } and the
observed link flows {X, }. As with the other algorithms, {x, } is obtained by running a
traffic assignment model for {g, }. As we mentioned when introducing Method 1,

different OD matrices can produce the same set of link flows. To find the one that is

nearest to the target matrix, Nielsen uses the target matrix as a “seed” with which to start.

The key to Nielsen’s approach is one of replicating “observed flows” by

multiplying all OD flows using a particular link by the ratio between the “observed” and
“assigned” flows on this link. This modified OD flow gq(,,., is called the “expected

traffic” of OD pair rs using link agat iteration n. It is estimated by multiplying the

t

assigned OD flow g on link a at the previous iteration n-I by a ratio (which is the

ratio between the assigned and observed link flow). Thus, the sum over all OD pairs of
“expected traffic” using a link will be the observed flow on this link. Since we have
different “expected traffic” for one OD pair with respect to the different links to which
the OD flow is assigned, we take the average of them as the estimated one.

In addition to the network structure and link performance functions, the inputs of

this algorithm are the set of observed link flows {X, } and a target matrix {4, }. The

solution to this program produces a set of estimated link and OD flows.

The procedure can be summarized as below:

Step 1. Set iteration number n = 1, initial OD matrix g7 = §,, and the convergence level

to k.
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Step 2. Assign g""' to the network, using some traffic assignment algorithm — for
example, an all-or-nothing algorithm — to obtain a set of assigned link flows
{x}}

Step 3. For each OD pair s, use a shortest path algorithm to find the shortest travel time
path p from r to s through the network using link times estimated from the
assigned flow {x] }.

Step 4. Calculate the “expected traffic” g/, for each OD pair rs using linka.

~

X ~
Uerea="n * 4 ‘ (A7.3.1)

a

Step 5. Calculate the arithmetic mean of all the “expected traffics” for OD pair rs with

respect to the links on its shortest time path p as the estimated number of trips g,

betweenr and s:

1 n
q" = > @era (A7.3.2)

Nae(r.p) a&(t.p)

where g, is the “expected traffic” between the zone pair r and s on link a

found in Step 4; 7 is the set of links with observed traffic along the shortest time
path p: N is the number of links along the shortest path with observed traffic.

Step 6.Using the same traffic assignment algorithm used in Step 2, assign g, to the
network to obtain a set of new assigned link flows {x;l+1 }.

Step 7. For each OD pair rs, use a shortest path algorithm to find the shortest travel time
path p from r to s through the network using link times estimated from the
assigned flow {x""' }.

Step 8. Check convergence by calculating, for example:

n+l

max ;

ae(tr.p)

n
X, —Xx

(A7.3.3)

where x, is found in Step 2; x]"' is found in Step 6; aand 7 are defined in Step

S; and the shortest travel time path p is found in Step 7.
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If max
ae(t,p)

If max
ae(t,p)

n
X, —Xx

n
X, — X

n+l
a

n+l
a

<k, then {g" } is the estimated matrix, and stop.

>k, set n=n+1, and go to Step 4.
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