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IMPLEMENTATION REPORT

The scope of this research project was to develop an interpretational tool, which
could make the dynamic cone penetrometer test (DCPT) a practical and simple technique
for assessing the in-situ soil characteristics under the pavement in the approximate zone
of influence of traffic. Also, DCPT could be employed to determine the densities of the
compacted subgrade instead of other methods. This method could also be employed to
verify the INDOT proof-rolling operation. These tasks became the objective of this
study.

A correlation between DCPT penetration index (inch/blow or mm/blow), water
content, density and other commonly used parameters was proposed. The goals were to
explore the ways in which the DCPT could effectively be used by INDOT geotechnical
and construction personnel and to perform testing and analysis that will lead to
knowledge of necessary relationships between Indiana Soils and DCPT measurements.

The DCPT can be applied to characterize the subgrade soils in many different
scenarios, such as in confined areas, during preliminary geotechnical investigation, and in
small earth works. It is an ideal tool for construction monitoring. For low volume roads,
a relationship between CBR and penetration index could be established. DCPT is to be
utilized in lieu of proof-rolling on projects that are too short (to justify expense of proof-
rolling) or have shallow utilities (which would prevent proof-rolling).

There is a need to further verify/enhance the correlations and methods proposed in
this report. This can be done by allowing INDOT crews to use the DCPT equipment,
initially together with other techniques. The data should be aggregated to existing data
and analyzed for further validation and extension of correlations. This could also be
done, perhaps in a more effective way, by funding an implementation project with the
specific goal of turning the correlations into a useful method for INDOT’s use. The
specific goals should be to (1) enlarge the database of soil types, (2) to refine the
correlations by considering more data, (3) to carry out resilient modulus testing to refine
the correlations with resilient modulus, (4) to develop a relationship between DCPT and
other soils parameters, and (5) to establish the appropriate frequency of DCPT testing on
a particular project.
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Chapter 1

The Dynamic Cone Penetrometer

1.1 Introduction

Dynamic or static penetration tests are widely used in geotechnical engineering.
Various penetrometers and testing methods are utilized in soil exploration in response to
different purposes and requirements. During the preliminary exploratory phase,
penetration tests are employed to determine the soil conditions, such as soil type, the
depth, thickness and lateral extent of the soil strata. During the detailed exploration
phase, penetration tests are also important. The shear strength and stiffness of the soil can
be estimated from penetration testing data, so that the ultimate bearing capacity and the
compressibility of the soil can be assessed.

Penetration tests have a very long history (Broms and Flodin, 1988). In the 15th
century, test piles were used to determine the required length of pile foundations. Thus,
pile driving can be regarded as an early type of penetration testing. The earliest dynamic
penetrometer may have been a "ram penetrometer” developed in Germany at the end of
the 17th century by Nicholaus Goldmann. The standard penetration test (SPT) can be
traced back to Colonel Charles R. Gow in 1902, who developed a 25mm diameter
sampler which was driven by a 50kg hammer into the bottom of a borehole. Earlier, Sir
Stanford Fleming (Broms and Flodin, 1988) had proposed a soil investigation method in
1872, in which a steel rod was pushed into the soil and the resistant force was measured.
This was probably the first modern static penetrometer. Today, the cone penetration test
(CPT) is commonly used as static sounding method in engineering practice, and different

cones are available for different purposes.



Each kind of penetration test has advantages and limitations so that they can’t be
used in all circumstances. This study focuses on the dynamic cone penetrometer (DCP),
which is used to assess the mechanical properties of subgrade soils in highway and airport

engineering.

1.2 Development of the DCP

The invention of the dynamic cone penetrometer (DCP) was attributed to Scala
(1956). The DCP was developed in Australia in response to the need for a simple and
rapid device for the characterization of the subgrade soil. The DCP used by Scala
included a 9kg (20 pound) hammer with a dropping distance of 508mm (20 inches). A
15.875mm (5/8 inch) diameter rod with a 30 degree angle cone was used to penetrate
762mm (30 inches) into the soil. In his study, Scala tried to find the correlations between
DCPT results and CBR, and also between DCPT results and the bearing capacity of soils
estimated by a static cone.

In the Jate 1960's, D.J. Van Vuuren continued to develop the DCP in Pretoria. He
used a similar device, except for some differences in dimensions: a 10kg (22-pound)
hammer was dropped from a height of 460mm (18.1 inches), forcing a 30 degree cone
connected to a (16mm) 0.63 inch diameter rod into the soil up to 1000mm (39.4 inches).
DCP tests were preferred to CBR tests in Pretoria, and the DCP was believed to be
applicable in soils with CBR values of 1 to 50.

In 1973, the Transvaal Roads Department in South Africa decided to use the DCP
as a rapid evaluation device for the extensive evaluation of existing roads. The drop
weight of the DCP was 8kg (17.6 pounds) and the falling height was 574 mm (22.6
inches); two kinds of cones with 30 and 60 degree angles were utilized. E.G. Kleyn
(1975) evaluated the effects of soil type, plasticity, moisture content, and density on the

test results of DCPT. He indicated that these factors affect the DCPT and CBR in similar



ways, and generalized DCP/CBR correlations applicable to the full range of materials
tested were proposed. Other researchers developed the relations between DCP and
unconfined compressive strength (Bester et al 1977 and Villiers 1980). Kleyn et al.
(1982) discussed the application of the DCP to characterization of stabilized materials,
evaluation of potentially collapsible soils, use as a construction control method, and use
as a structural evaluation technique. They also introduced the concepts of "DCP Structure
Number (DSN)" and "Pavement Strength-Balance (PSB)", and developed a pavement
design model based on correlations with the Heavy Vehicle Simulator (HVS). Later,
Kleyn (1983) used the DCP as a means to optimize pavement rehabilitation.

Livneh and Ishai (1985) refined DCP/CBR correlations in Israel, adapting a
device that was used in the South Africa, except for the cone angle, which was 30
degrees. Livneh (1987) presented a comparison of 21 DCP/CBR correlations from
Australia, England, South Africa and Israel. He also indicated that the variability
associated with DCP testing is less than that associated with "field" CBR testing.

The advancement of the DCP may be attributed primarily to the research done in
Australia, New Zealand, South Africa and Israel. The DCP was not accepted in the
United States until the early 1980%s. Yoder et al (1982) first mentioned the DCP as a
technique for the determination of in-situ CBR. His study focused on the use of the Clegg
Hammer and presented the DCP/CBR correlations by van Vuuren. Based on the work of
Yankelevski and Adin (1980), Chua (1988) developed a model to connect the initial
elastic modulus of soils to the penetration resistance of the DCP. Chua and Lytton (1988)
mounted an accelerator on the top of the DCP, and used this modified DCP to estimate
the hysteretic and the viscous damping ratios in situ. In their study, the DCP is modeled
as a series of springs and masses, and the soil as a dashpot. Ayers et al (1989) conducted a
series of DCP tests on granular materials in the laboratory, relating the shear strength of
granular materials to DCP test data. When comparing compaction methods in narrow
subsurface drainage trenches, Ford et al. (1993) utilized the DCP as a control method,
indicating that the DCPT results generally correlated well with Proctor compaction data,

thus showing promise for evaluating compaction in narrow, granular-backfilled trenches.



Burnham and Johnson (1993) reported the application of the DCP in the projects of the
Minnesota Department of Transportation. Little (1996) used the DCP to determine the in-
situ strength and to verify the effective stiffness of lime-stabilized soils for
backcalculation purposes.

From the above historical review of the development of the DCP, we see that the
DCP testing can be applied to the characterization of subgrade and base material
properties. The greatest strength of the DCP device lies in its ability to provide quickly
and simply a continuous profile of relative soil strength with depth. The small and
relatively lightweight design of the DCP enables it to be used in confined areas such as
inside buildings, or used at congested sites that would prevent larger testing equipment
from being used. The DCP is also ideal for testing through core holes drilled through
existing pavement. The applications of the DCP may be summarized as follows: (1)
preliminary soil exploration, (2) construction control, (3) structural evaluation of existing
pavements, (4) pavement design.

Many factors affect the results of the field and laboratory DCPT testing and were
studied by many researchers. Usually those factors are attributed to variability induced by
human factors, mechanical conditions, and material factors. For shallow depth (less than
about 20cm, which is the meaningful range for subgrade soils), we can identify the
following factors:

(1) human factors (testing procedure and operation);

2 mechanical conditions (size of the mold, geometry of the penetrometer,

cone apex angle);

3) material factors (gradation, density, moisture content).



1.3 Research Objectives

The primary objectives of this study were:

1. establish the correlation of the penetration resistance of the DCP with the dry
density and moisture content of subgrade soils, so that these relationships can be used in
preliminary exploration, quality control and engineering design;

2. establish the correlation of the DCP penetration resistance with resilient

modulus of the subgrade soil, which is an important pavement design parameter.

1.4 Description of the DCP used in this Study

The DCP consists of two 16mm (0.63in) diameter rods. The lower rod, containing
an anvil and a replaceable 60° cone tip, is marked at every 5.1mm (0.2 inches). The upper
rod contains an 8kg (17.6 1b) drop hammer with a 575mm (22.6 inches) drop distance, an
end plug for connection to the lower rod, and a top grab handle. All materials (except the
drop hammer) are stainless steel for corrosion resistance.

Operation of the DCP requires two persons, one to drop the hammer and the other
to record the depth of penetration. The test begins with the operator "seating" the cone tip
by dropping the hammer until the widest part of the cone is just below the testing surface.
At this point, the other person records this initial penetration as "Blow 0". The operator
then lifts and drops the hammer either one or more times depending upon the strength of
the soil at the test location. Following each sequence of hammer drops, a penetration
reading is recorded. This process continues until the desired depth of testing is reached, or
the full length of the lower rod is buried. The maximum penetration depth is about 1.02m
(40 inches). After the testing is completed, a special adapted jack is used to extract the

device. The DCP device is shown in Figure 1.1.
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Data from a DCP test is processed to produce the penetration index (PI), which is
simply the distance that the cone penetrates with each drop of the hammer. The Pl is
expressed in terms of either inches per blow or millimeters per blow. The penetration
index reflects the varying strength and stiffness of different soil layers, but may be
directly correlated with a number of common pavement design parameters. Some of

these correlations will be described in the next section.

1.5 Existing DCP Correlations

DCP test results have been correlated with other testing results for a broad range

of material types.

1.5.1 DCP/CBR Correlations

Many studies have been done on DCP/CBR correlations and numerous relations
have been developed. In 1987, Livneh presented 20 DCP/CBR correlations; several of the

most accepted correlations are summarized below:

logCBR=3.38-0.71(logPD)'~
logCBR=4.66-1.32(logPT)
CBR=405.3(PI)**
logCBR=2.0-1.3log(PI-0.62)

il

PI is the penetration index (mm/blow). Equation 1 was developed from a 30 degree cone

tip; the other equations were developed for a 60-degree cone tip.



1.5.2 DCP/Unconfined Compressive Strength Correlation

A graphical relatibnship between DCP test results, in terms of DN (mm/blow),
and g, is shown in Figure 1.2. The relationship was developed for a broad range of

materials.

1.5.3 DCP/SPT Correlation

Livneh and Ishai (1988) developed a relationship between DCP and SPT. The
correlation equation took the form:

Log(PI)=-A+Blog(Nspr)
where PI= penetration index (mm/blow), Nspr = SPT blow count.

It should be noted that the above equation is suitable for values of SPT blow count

less than 30.

1.5.4 DCP/Shear Strength Correlation for Granular Materials

Ayers et al (1989) conducted the DCP test in the laboratory to determine a
relationship between the DCP and the shear strength of granular materials. The equations
took the form,

DS=A-B(P])

where DS = deviator stress at failure and PI= penetration index.
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1.6 Advantages and Limitations of the DCP

1.6.1 Advantages:

1. The DCP is a simple device, requiring 2 people for its operation, whereas the
automated DCP requires only one operator.

2. The DCP is portable and easy to operate; it is not expensive.

3. The testing results are easy to process.

4. The DCP can be used to quickly characterize the subgrade soil; it is suitable for
congested areas.

5. The DCPT measurements can be correlated with the shear strength of the

subgrade soil or other common design parameters (for example, CBR).

1.6.2 Disadvantages:

1. The DCPT is not yet a standard testing method, although a proposed ASTM
standard is being considered.

2. The DCP is not suitable for gravel soils: the DCP rod may be bent during
testing. Variability of the results can be expected to be significant in such soils.

3. The DCP is a dynamic test, which means it is somewhat difficult to analyze and

interpret.

1.7 Summary

In this chapter, we reviewed the historical development of the DCPT. Like the
SPT and other dynamic penetration tests, the DCPT is a destructive testing method. The
factors affecting the DCPT test results were discussed. The dynamic cone penetrometer

used in this study was described.
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The measurement of penetration resistance provides an almost continuous profile
of relative shear strength of subgrade soils. The penetration index may be correlated to
other regular pavement design parameters, including CBR, SPT and unconfined
compression strength. However, the test is dynamic, which introduces difficulties in its

analysis and interpretation.
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Chapter 2

Testing Program

2.1 Preliminary Test Results

Figure 2.1 shows the results of preliminary testing done at different sites in the
summer of 1997 to develop familiarity with the test equipment and better understand the
research problem. The test data in this figure are put together independently of soil
classification. The data points are rather scattered, and apparently no relationship can be
found between penetration index (PI) and dry density or moisture content of soils. So the

question arises as to how to reduce this scatter.

2.2 Review of Soil Compaction Concepts

In this study, the DCP is used to determine the mechanical properties of the
subgrade soil; however, compaction is often conducted to improve the properties of the
subgrade soil, and we focus our study mainly on this compacted soil. So it is necessary to
review the properties of compacted soil before we continue.

The compaction tests can be conducted in the laboratory according to ASTM
standard. When the dry densities of samples are determined and plotted versus the water
contents for each sample, a curve called the compaction curve is obtained. The peak point

of the curve corresponds to the maximum dry density and so-called optimum moisture
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content (OMC). Many scholars did significant study on compacted soil. Lambe (1958)
investigated the influence of compaction on clay structure and particle orientation. His
study showed that many factors affect compaction: (1) dry density, (2) water content, (3)
compactive effort, and (4) soil type (gradation, amount of clay minerals, etc.). The
research by these scholars addressed the following: (1) the effect of dry density and
moisture content of the compacted soil on shrinkage, swelling, swell-pressures, stress-
deformation characteristics, undrained strength, pore-water pressures and effective
strength characteristics (Seed et al. 1959); (2) settlement analysis of foundations on
saturated clay (Skempton and Bjerrum 1957); (3) hydraulic conductivity of compacted
clay (Boynton and Daniel 1985; Day and Daniel 1985); (4) permeability of sandy soils
(Juang and Holtz 1986); (5) influence of clods on hydraulic conductivity of compacted
clay (Benson and Daniel 1990); (6) water-content-density criteria for compacted soil
liners (Daniel Benson 1990); (7) CBR values along compaction curves (Turnbull and
Foster, 1957; Faure and Mata, 1994). The fabric of the compacted soil is very
complicated, as indicated by Holtz (1981): "at the same compactive effort, with
increasing water content, the soil fabric becomes increasingly oriented. Dry of optimum
the soils are always flocculated, whereas wet of optimum the fabric becomes more
oriented or dispersed”. The fabric of the soil affects its properties, such as permeability,
compressibility, swelling, and shear strength. So when we use compaction to stabilize
soils and improve their engineering behavior, we must note what the desired engineering
properties of the fill are: they are not just its dry density and water content, because the
desired properties do not necessarily correspond to the maximum dry density or optimum

moisture content.

2.3 Testing Philosophy

Let’s return to the question posed earlier: how to reduce the scatter in the

penetration test data? In order to address that, it is desirable that the dynamic cone
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penetration testing be conducted along the compaction curve, and that the penetration
resistance along the compaction curve be studied with different compaction efforts. In
this way, the contour of the Penetration Index (PI) with respect to dry density and
moisture content can be developed, as will be explained in detail later. It is desired to
perform the penetration testing along the field compaction curve; however, field
compaction testing requires equipment that was not available for this project. As the best
alternative, DCPT should be conducted along the compaction curves obtained in the
laboratory.

In order to determine the correlation of penetration resistance and resilient
modulus, the DCPT is performed in the laboratory and unconfined compression tests on
disturbed soil samples are conducted in the laboratory. The relationship between results
of unconfined compression testing and resilient modulus proposed by Lee (1993, 1997 )
is then used to correlate penetration resistance and resilient modulus. A similar approach

is followed to correlate field penetration resistance and resilient modulus.
2.4 Testing Procedure

The dynamic cone penetration testing was conducted in the as-compacted
subgrade soil. However, there is usually a time gap between the compaction work and the
DCPT. The dry density and moisture content were measured with the nuclear gage, and in
some sites, the sand cone method was used. The DCPT was performed at the same time
and location as the density tests. Because the nuclear gage usually measures the density
of the top 152mm (6 inches) of soils (the top lift), the penetration depth of the DCP is
also 152mm (6 inches) when the nuclear gage is used.

Disturbed soil samples were collected in the field. Sieve analysis and Atterberg
limits testing were conducted on these soils. The laboratory DCPT was conducted on
these soils within a 304.8mm (12 inch) diameter metal mold. The soil sample is 304.8mm
(12 inch) in diameter, 165.1mm (6.5 inch) in height. Four different compaction energies

are applied: 213970 J/m>, 320940 J/m® , 427950 J/m>, 591980 J/m® (4469 ft.1b/ft>, 6703
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ft.lb/ft’, 8938 frlb/ft® and 12364 ftIb/ft®). The last energy level corresponds to the
standard Proctor compaction test. For the same energy level, samples were made at four
different moisture contents in order to obtain a complete compaction curve. The
confinement of the wall and the base of the mold has an effect on the penetration testing
results. Ayers (1990) studied the confining effect of the mold on the DCPT, and
concluded that a diameter of 304.8mm (12 inches) is large enough to eliminate the effect
of the confinement. We remain cautious about possible mold boundary effects and
believe that field compaction testing is recommended for developing relationships for use
in engineering practice. After the laboratory penetration testing, the contour of penetration
index PI with respect to dry density and moisture content can be developed.

After the penetration testing, unconfined compression test were performed in the
laboratory for clay soils. The disturbed soil samples are 71.12mm (2.8 inch) in diameter
and 152.4mm (6 inch) in height. The samples are made in the 71.12mm (2.8 inch) mold
with the same compaction energies as those used in the 304.8mm (12 inch) mold. The
correlation between the stress associated with 1.0% strain (Sul%)_ in the unconfined
compression test and resilient modulus (M;) suggested by Lee (1993, 1997) is used to

relate the Penetration Index (PI) to resilient modulus (M;).

2.5 Summary

This chapter reviewed basic soil compaction concepts, and described how the
testing program was designed for this study.

In order to develop the relationship between penetration resistance, dry density
and moisture content of subgrade soils, DCPT tests were performed in the field and
conducted along the compaction curves obtained in the laboratory. Unconfined
compression tests were also performed in the laboratory to relate the penetration index to
resilient modulus. However, field compaction tests are highly recommended for further

development of correlations for use in practice.
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Chapter 3
Test Results and Analysis

3.1 Introduction

Field DCPT testing was conducted at 8 different sites. The soils range from
clayey sand to sandy lean clay. The information for the testing sites is shown in Table

3.1.1L

3.2 Test Results and Analysis

3.2.1 The Railroad Relocation Project at West Lafayette

The compaction work was finished at 6:00 p.m., 4/18/1998. The DCPT was
conducted at 11 am, 4/20/1998, 41 hours later than the compaction work. The compaction
was done with a Caterpillar CAT CS563 smooth drum vibratory roller. The dry density
and moisture content were measured with the nuclear gage at the same time as the DCPT.
During compaction the numbers of passes of the compaction equipment were not
controlled. The dry density and moisture content were used for quality control. The field
test results are shown in Table 3.2.1. The logs of the DCPT are shown in Figures 3.1
through 3.7. After the field tests, disturbed soil samples were collected for laboratory
testing.

The relationships between moisture content, dry density and penetration index

from the field tests are shown in Figures 3.8, 3.9, and 3.10, respectively.
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Sieve analysis and Atterberg Limits testing were conducted in the laboratory. The
sieve analysis results are shown in Figure 3.11. The w; is 12.4, the wy_ is 21, the plasticity
index (I,) is 8.6. The soil is a clayey sand.

As mentioned in the previous chapter, the DCPT was conducted on samples of
30.48cm (12 inches) in diameter, 16.5lcm (6.5 inches) in height. Each sample was
compacted in three layers. A 44.5N hammer was used to compact the soil from a
dropping height of 0.46m. The numbers of blows for each soil layer corresponding to the
compaction energies of 213.97x10°, 320.94x10%, 427.95x10°, 591.98x10° J/m’® (4469,
6703, 8938, 12364 ft.1b/ft’ ) are 42, 63, 84, 116 respectively. Test results are shown in
Table 3.2.2.

The relationships between moisture content, dry density and penetration index
measured in the laboratory are shown in Figure 3.12, 3.13, 3.14 respectively. In order to
get more convenient presentation of penetration index, the data in Figure 3.12 and 3.13
are transferred to a plot of dry density versus moisture content. By finding the points of
intersection of curves with any horizontal lines in Figure 3.13, it is possible to read a
series of corresponding values of moisture content and dry density which correspond to
the same penetration index value. These points define a contour of penetration index in a
plot of dry density versus moisture content. The contours for this clayey sand is shown in
the Figure 3.15. The curves are from laboratory testing; the seven scattered points

represent the field testing results.

Analysis:

. (1) In the field, the compaction energy was not uniform, because the number of
passes of the compaction equipment was not controlled. In Figure 3.8, the scattered data
points may be on different compaction curves corresponding to different compaction
energies. However, from Figure 3.9 and 3.10, we can still see the trend, i.e., when

moisture content decreases or dry density increases, the penetration index decreases.
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(2) About 28.8% of soil passes the 200# sieve; the soil is a clayey sand. From
Figure 3.12, there are four laboratory compaction curves corresponding to 4 different
compaction energies. Under low compaction effort, the dry density increases with
increasing moisture content; under high compaction effort, the dry density first increases
and then decreases with increasing moisture content. The change in between occurs
approximately at a moisture content of 10%.

(3) In Figure 3.13 and 3.14, we can see that higher compaction effort corresponds
to lower penetration index. With moisture content and dry density increasing, the
penetration index first decreases a little and then increases quickly, which means the
shear strength increases a little and then decreases quickly with increasing moisture
content and dry density. This phenomenon results from the combined effect of different
dry density, moisture content and soil fabric.

(4) In Figure 3.15, we see the contours of PI with respect to moisture content and
dry density. This is the relationship between penetration resistance and moisture content
and dry density which is required for this project, although this contour is developed from
laboratory tests. This contour may be useful in preliminary investigation, quality control
or engineering design. However, the field testing data points do not fit the laboratory
testing curves. This is expected, because the compaction condition is different between
the field and laboratory: the non-uniform compaction energy in the field, the confining
effect of the wall of the 12 inch mold, the small impact hammer used in the laboratory,

are all complicating factors.
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Figure 3.3 The Log of the DCPT (Station: 138+25, Offset: 3.0m RT)
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Figure 3.11 The Results of Sieve Analysis for West Lafayette Railroad Relocation

Project
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3.2.2 The New Interchange of 165 at Johnson CO.

The DCPT was performed just after compaction. In the compaction work, there
were 4 passes of a Caterpillar CAT 815F sheepsfoot roller. The nuclear gage was utilized
to measure the dry density and moisture content. The field test results are shown in Table
3.2.3. And the DCPT logs are shown in Figures 3.16 through 3.22.

The relationships between moisture content, dry density and field penetration
index are shown in Figures 3.23, 3.24 and 3.25, respectively.

Sieve analysis and Atterberg Limits test were conducted in the laboratory. The
sieve analysis results are shown in Figure 3.26. the w, is 13.58, The w; is 20.25, the
plasticity index (1) is 6.67. The soil is a sandy silty clay (CL-ML).

The laboratory DCPT was conducted in the same way as mentioned previously.
The test results are shown in Table 3.2.4.

The relationships between moisture content, dry density and penetration index
from the laboratory DCPT are shown in Figures 3.27, 3.28 and 3.29, respectively. The
contours of PI with respect to dry density and moisture content from the laboratory
testing was developed in the same way as mentioned in the previous section, as shown in
Figure 3.30.

Unconfined compression tests were also conducted in the laboratory; the samples
were 7.112cm (2.8 inch) in diameter and 15.24 cm (6 inch) in height. The compaction
energies were the same as the soil sample in the 30.48 cm (12 inch) mold. Each sample
consisted of 3 layers. The hammer weight was 24.5N and the drop distance was 0.305m.
The number of blows for each soil layer is shown in the Table 3.2.5.

The test results of unconfined compression test are shown in Table 3.2.6.
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Table 3.2.5 Number of Blows for Each Soeil Layer

Compaction Energy Layer 1 Layer 2 Layer 3
(x10* J/m®)
213.97 6 6 7
320.94 9 10 10
427.95 12 13 13
591.98 17 18 18

The relationships between moisture content, dry density and the shear stress S, o,
at 1% strain measured in the unconfined compression test are shown in Figures 3.31, 3.32
and 3.33, respectively. Based on these results, the contours of S, with respect to
moisture content and dry density are developed, as shown in Figure 3.34. The
corresponding PI values can be found in Figure 3.30. The results for S,, o, penetration
index and resilient modulus are shown in Table 3.2.7.

According to the results of Lee (1993), the correlation between S,; o, and Resilient
Modulus (M,) is

M,=695.3604S,, 45,-5.92966S,,; ¢o°
This relationship is used to correlate PI to M..
The relationships between PI and S, and between PI and M, are shown in

Figure 3.35 and Figure 3.36.

Analysis:

(1) In Figure 3.23, a clear relationship between moisture content and dry density
from field testing is not evident; in Figures 3.24 and 3.25 the same tendency exists, as
mentionedbefore, i.e., the penetration index increases with increasing moisture content or

decreasing dry density.
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(2) The soil is a sandy silty clay; however, an OMC is not evident from the
laboratory compaction tests for the range of water contents found in the field compaction.
From the available data (Fig. 3.23, 3.24) it is not possible to know what the target values
were for field compaction.

(3) In Figures 3.28 and 3.29 for the laboratory DCPT, higher compaction effort
corresponds to lower penetration index. With increasing moisture content and dry
density, the penetration index decreases first and then increases at the moisture content of
about 10%.

(4) In Figure 3.30, the field DCPT data points do not fit the contours from the
laboratory DCPT; the reasons are the same as previously discussed. The contours for this
sandy silty clay is different from that of clayey sand, but the shape is quite similar.

(5) As shown in Figure 3.31, the compaction curves from 2.8 inch samples used in
unconfined compression tests are different from those obtained for the size samples used
in laboratory DCPT testing. The reason is obvious: the 2.8 inch mold provides stronger
confining effect than the 12 inch mold. The dry densities for the 2.8 inch mold are higher
than those for the 12 inch mold.

(6) In Figure 3.32, S, ¢, first increases and then decreases when the moisture
content increases. The contours of S, ,,, were also developed; as shown in Figure 3.34,
the shapes of the S,; ¢, contours are similar to those of the PI contours lines.

(7) From Figure 3.35, the relationship between S, and the penetration index
contains significant scatter. When S, ,,, increases, the penetration index decreases. Using
the correlation suggested by Lee(1993), we can establish the relationship between PI and

M,, as shown in Figure 3.36.
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Figure 3.16 The log of the DCPT (Station: 32+25 Ramp SWR, Offset: 3.0m RT)
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3.2.3 The SR67 at Delware CO. (1)

The compaction work ended about one week before the DCPT was performed. A
sheepsfoot roller was used for compaction. The dry density and moisture content were
measured with a nuclear gage at the same location as the DCPT. The field test results are
shown in Table 3.2.8. The logs of the DCPT are shown in Figures 3.37 through 3.43.

The relationships between moisture content, dry density and penetration index
from the field tests are shown in Figures 3.44, 3.45 and 3.46 respectively.

Sieve Analysis and Atterberg Limits tests were conducted in the laboratory. The
sieve analysis results are shown in Figure 3.47. The w; is 13.87, the w; is 25.66 and the

plasticity index (I,) is 11.79. The soil is a sandy lean clay (CL).

Analysis:

The laboratory DCPT was not conducted on this soil. From Figures 3.44, 3.45,
and 3.46, the trend can be observed that the field penetration index increases with
increasing moisture content and decreasing dry density. We should note that, because
there is a one week gap between compaction work and DCPT, and dry density and
moisture content were measured only in the top lift soil, the measured moisture content
may not reflect the as-compacted condition, but the dry density should be very close to
the as-compacted dry density. The data for PI shown on Figures 3.42, 3.43, and 3.46 are,

‘indeed, useful measures of how PI varies with those compaction variables.
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Figure 3.40 The log of the DCPT (Station: 43+482, Offset: 9m RT)
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Figure 3.42 The log of the DCPT (Station: 43+490, Offset: 10m LT)
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3.2.4 The SR67 at Delware CO. (2)

The DCPT was performed immediately after the compaction work was finished.
A sheepsfoot roller was used for compaction. The dry density and moisture content were
measured with a nuclear gage at the same locations where the DCPT was performed. The
field test results are shown in the Table 3.2.9. The logs of the DCPT are shown in Figures
3.48 through 3.54.

The relationships between moisture content, dry density and penetration index are
shown in Figures 3.55, 3.56 and 3.57, respectively.

Sieve Analysis and Atterberg Limits test were conducted in the laboratory. The
sieve analysis results are shown in Figure 3.58. The w; is 17.04, the w; is 38.92 and the

plasticity index (L) is 21.88. The soil is a sandy lean clay (CL).
Analysis:
The laboratory DCPT was not conducted on this soil. From Figures 3.55, 3.56 and

3.57, the trend can be observed that the penetration index increases with increasing

moisture content and decreasing dry density.
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Figure 3.48 The log of the DCPT (Station: 39+790, Offset: 1.9m EB RT)
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Figure 3.49 The log of the DCPT (Station: 39+790, Offset: 2.6m EB RT)



64

Penetration Index (mm/blow)
0 & 10 15 20 25 30 35 40

LI O U R Yt e S B B S

Depth (cm)
(8] E; o (en]

—

N
o
p

Figure 3.50 The log of the DCPT (Station: 39+790, Offset: 3.3m EB RT)
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Figure 3.51 The log of the DCPT (Station: 39+790, Offset: 4.2m EB RT)
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Figure 3.53 The log of the DCPT (Station: 39+790, Offset: 6.4m EB RT)
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3.2.5 The SR62 in Evansville

Five D~CPTs and three SPT tests were conducted at the same time at the Northeast
corner of the intersection of SR62 and Garvin Street in Evansville.

Sieve analysis results are shown in Figure 3.59. About 15.5% of the soil passes
the 200# sieve. The PL is 16.4, the LL is 24.3, the [, is 7.9. The soil is a clayey sand
(SC).

The DCPT logs are shown in Figures 3.60 through 3.64. DCPT penetration index
and SPT blow count are shown in Table 3.2.10 and plotted together in Figure 3.65.

Analysis:

The data in Figure 3.65 are scattered and not sufficient to establish the correlation

between SPT blow count and penetration index.
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Figure 3.59 The Results of Sieve Analysis for The Intersection of SR62 and Garvin
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3.2.6 The US.24 by-pass in Logansport

Seven DCPT tests were conducted at the site of the US24 by-pass in Logansport.
The dry density and moisture content were measured, respectively, with the nuclear gage
and sand cone methods. The compaction was done with a sheepsfoot roller. The field test
results are shown in Tables 3.2.11 and 3.2.12. The DCPT logs are shown in Figure 3.66
to 3.72.

The relationship between penetration index, moisture content and dry density
from the nuclear gage and sand cone methods are shown in Figure 3.73 and Figure 3.78.
The measured dry density and moisture content are different for the two methods, as the
comparisons of the two methods shown in Figures 3.79 and 3.80 illustrate.

Sieve analysis and Atterberg Limits tests were conducted in the laboratory. The
sieve analysis results are shown in Figure 3.81. The w; is 15.8, the w; is 27.7 and the

plasticity index (I,) is 12.1. The soil is a sandy lean clay (CL).

Analysis:

(1) Similar results for penetration index versus moisture content and dry density
can be obtained with the nuclear gage and sand cone method, as shown in Figures 3.73
through 3.78.

(2) The test results from nuclear gage method and sand cone method are different,
as shown in Figures 3.79 and 3.80. There are two possible reasons for that: (1) the test
location for the nuclear gage and sand cone methods are not exactly same; (2) there are
inaccuracies in both methods. This suggests a need for a closer examination of how to
measure compaction results when DCPT relationships are to be used in the future in

practice.
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Figure 3.67 The Log of the DCPT (Station: 438+67, Offset: 3.66m LT)

80



81

Penetration Index (mm/blow)
0 2 4 6 8 10 12 14 16 18 20 22 24

0

2t

4t
- 61 *
£ ool .
= 3 .
Fool .

.

14 | *

16 L *

18 hd

Figure 3.68 The Log of the DCPT (Station: 438+67, Offset: 2.44m RT)
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Figure 3.69 The Log of the DCPT (Station: 405-26, Offset: 7.92m LT)
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Figure 3.70 The Log of the DCPT (Station: 405-26, Offset: 4.88m LT)
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Figure 3.71 The Log of the DCPT (Station: 405-26, Offset: 2.44m LT)
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3.2.7 The SR.24 in Logansport

Seven DCPT tests were conducted at the Northeastern corner of SR24 and US35
in Logansport. The compaction equipment utilized was a sheepsfoot roller. The dry
density and moisture content were measured with nuclear gage and sand cone method at
the same location. The field test results are shown in Tables 3.2.13 and 3.2.14. The logs
of the DCPT are shown in Figures 3.82 through 3.88.

The relationship between penetration index, moisture content and dry density
from the nuclear gage and sand cone methods are shown in Figures 3.89 to 3.94. The
measuring dry density and moisture content are different for the two methods; the
comparisons of the two methods are shown in Figures 3.95 and 3.96.

Sieve analysis and Atterberg Limits tests were conducted in the laboratory. The
sieve analysis results are shown in Figure 3.97. The w, is 15.9, the w; is 25.4 and

plasticity index (I,) is 9.5. The soil is a sandy lean clay (CL).

Analysis:

As in the previous section, the test results from the nuclear gage and sand cone
methods are different, as shown in Figure 3.95 and 3.96. For moisture content, the test
results of the two methods are quite consistent; but for dry density, the test results present

some scatter. The reasons are the same as previously discussed.
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Figure 3.84 the Log 3 of the DCPT for SR24 in Logansport, IN
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Figure 3.85 the Log 4 of the DCPT for SR24 in Logansport, IN
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Figure 3.86 the Log 5 of the DCPT for SR24 in Logansport, IN
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Figure 3.87 the Log 6 of the DCPT for SR24 in Logansport, IN
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Figure 3.88 the Log 7 of the DCPT for SR24 in Logansport, IN

94



95

2 1
s o
X 18 ¢
& 175 ¢ .
2 17 | *
16.5
Qe 16 E,I L ,Hv,|...y,|mr”r1’|u,lw‘
o 0 5 10 15 20

Moisture Content (%)

Figure 3.89 The Relationship between Dry Density and Moisture Content with
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3.2.8 The US41 in Parke CO.

The DCPT and SPT were conducted on US41 in Parke CO., 3.8 miles north of the
intersection of US41 and SR163. Three DCPT and three SPT tests were performed to get
the relationship between SPT and DCPT.

The results of the sieve analysis are shown in Figure 3.98. About 28.3% of the
soil passes 200# sieve; the soil is a silty sand (SM).

The logs of DCPT are shown in Figures 3.99 through 3.101.

The relationship between DCPT and SPT is shown in Table 3.2.15 and Figure
3.102.

Analysis:

From Figure 3.102, a clear relationship between DCPT and SPT is not
established. The reasons may be as follows: (i) DCPT and SPT couldn’t be conducted in
the exact same location, (ii) there are inaccuracies in both test methods, and (iii) the

amount of data is not sufficient.
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3.3 The Results for Sandy Lean Clay and Sandy Silty Clay

Sections 3.2.3, 3.2.4, 3.2.6 and 3.2.7 all deal with sandy lean clay, although the
fraction of the soil passing the 200# sieve and plasticity index values are different. The
field data from nuclear gage and sand cone tests for these four soils are summarized in
Figures 3.103 through 3.108. From these graphs, the relationship between penetration
index, moisture content and dry density can be found. As shown in Figures 3.104 and
3.107, the penetration index first decreases; at a moisture content of about 8%, the
penetration index begins to increase. It can also be seen in Figures 3.105 and 3.108 that
the penetration index decreases with increasing dry density.

The soil from the Johnson CO. site is a sandy silty clay with w, equal to 20.25
and plasticity index equal to 6.67. If we combine the field test data and the S,
contours (Figure 3.34), we can find the relationship between field penetration index and
S,10% Then we can relate the field penetration index with M, through the relationship
between S, and M, given by M,=695.3604S,, 4,-5.92966S,; 0y, (as described in
Section 3.2.2). The results are shown in Table 3.3.1.

Table 3.3.1 The Relationships between Field PI, S, .., and M, for Sandy Silty

Clay
PI (mm/blow) S,1.0% (KN/m?) M, (kN/m?)

74.42 26.20 14148.47
93.98 14.48 8825.28

72.9 14.48 8825.28
105.66 13.24 8166.26
100.08 18.48 10824.55
42.67 15.17 9183.52
45.21 13.79 8461.41

The soil from Delware CO. (2) is a sandy lean clay with w; equal to 38.92 and plasticity
index equal to 21.88. Figure 3.55 shows the relationship between moisture content and

dry density from the field test data. The four leftmost points are close to the OMC.
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To create laboratory test specimens having the same fabric as that in the field, samples
were compacted according to the instructions in the study of Lee (1997). Unconfined
compression tests were then performed for these four points. Using the relationship
suggested by Lee (1993), the relationship between field PI, S, and M, is shown in
Table 3.3.2.

Table 3.3.2 The Relationship between Field PI, S, ,., and M, for Sandy Lean Clay

PI (mm/blow) S, 1,09 (KN/m) M, (KN/m)
14.73 28 1482124
17.53 ) 18745.22
254 30 15524.12
16.26 47 19583.32

The soils from Johnson CO. and Delware CO. were sufficiently similar for the
results of the tests depicted in Tables 3.3.1 and 3.3.2 to be combined. The results are
shown in Figures 3.109 and 3.110. So S, ¢, and M, decrease when the penetration index
increases.

In order to investigate the magnitude of size effects in laboratory DCPT testing,
Figures 3.36 and 3.110 may be compared. From Figure 3.36, we see that the equation for
M, in terms of P1 is

M, =-452.3P1+14932
based on the laboratory DCPT testing; from Figure 3.110, we see that the equation for M,
in terms of Pl is

M, =-86.878PI+17273
based on the field DCPT testing. Table 3.3.3 illustrates the values of M, that would result
from different values of PI based on these two equations. The ratios of the resulting
resilient modulus values may be taken as an indication of the amount of correction that
would be needed for M,-PI correlations developed from laboratory DCPT testing to be
applicable in the field. According to Table 3.3.3, a correction in the 30 to 50% range

would be sufficient for finding field M, values of well compacted soils.
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Table 3.3.3 The Relationship between M, from Field and M, from Laboratory

PT (m/blow) | Mgy (VM) | My (VM) | Moaud/Mo
6 16751.73 12218.2 1.37
8 16577.98 11313.6 1.47
10 16404.22 10409.0 1.58
12 16230.46 9504.4 1.71
14 16056.71 8599.8 1.87
16 15882.95 7695.2 2.06
18 15709.2 6790.6 2.31
20 15535.44 5886.0 2.64
22 15361.68 4981.4 3.08
24 15187.93 4076.8 3.73
26 15014.17 3172.2 4.73

3.4 The Relationship between DCPT and SPT

The DCPT and SPT were conducted at the same time and location in Evansville
and Parke CO. The soil for Evansville was clayey sand; and the soil for Parke CO. was
silty sand. The data from these two sites are combined as follows:

(1) For the depth from O to 6 inches, the results are shown in Table 3.4.1 and Figure
3.111.

Table 3.4.1 The Relationship between DCPT and SPT (0 to 6 inches)

PI (mm/blow) SPT Blow Count
11.40 13
11.75 2
14.15 5
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(2) For the depth from 6 to 12 inches, the results are shown in Table 3.4.2 and Figure
3.112.

Table 3.4.2 The Relationship between DCPT and SPT (6 to 12 inches)

PI (mm/blow) SPT Blow Count

5.54 15
7.04 2
11.07 6
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Figure 3.112 The Relationship between the DCPT and SPT (6 to 12 inches)
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(3) For the depth from 12 to 18 inches, the results are shown in Table 3.4.3 and Figure
3.113.

Table 3.4.3 The Relationship between DCPT and SPT (12 to 18 inches)

PI (mm/blow) SPT Blow Count

8.26 13
5.53 4
12.07 8
30.48 4
57.66 5
14.22 2
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Figure 3.113 The Relationship between the DCPT and SPT (12 to 18 inches)

(4) For the depth from 18 to 24 inches, the results are shown in Table 3.4.4 and Figure
3.114.

Table 3.4.4 The Relationship between DCPT and SPT (18 to 24 inches)

PI (mm/blow) SPT Blow Count
13.18 8
9.68 16
4.12 2
22.61 4
35.56 3
19.05 2
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(5) For the depth from 24 to 30 inches, the results are shown in Table 3.4.5 and Figure
3.115.
Table 3.4.5 The Relationship between DCPT and SPT (24 to 30 inches)

PI (mm/blow) SPT Blow Count

10.59 8
3.87 12
3.13 6
15.49 4
38.83 3
23.62 3
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Figure 3.115 The Relationship between the DCPT and SPT (24 to 30 inches)
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(6) For the depth from 30 to 36 inches, the results are shown in Table 3.4.6 and Figure
3.116.

Table 3.4.6 The Relationship between DCPT and SPT (30 to 36 inches)

PI (mm/blow) SPT Blow Count

12.88 9
3.72 9
5.53 3
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Figure 3.116 The Relationship between the DCPT and SPT (30 to 36 inches)

(7) For the depth from 36 to 42 inches, the results are shown in Table 3.4.7 and Figure
3.117.

Table 3.4.7 The Relationship between DCPT and SPT (36 to 42 inches)

PI (mm/blow) SPT Blow Count
13.34 12
11.92 2
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The general trend is observed that PI increases when SPT blow counts decrease. The
slope of the relationship seems to be steeper for higher blow counts and lower PI values.
However, no specific, reliable correlation could be found between the two parameters

with the amount of information available.

3.5 Summary

(1) Field and laboratory DCPT testing was performed, and the nuclear gage and
sand cone methods were used to measure the dry density and moisture content of
different soils. The contours reflecting the relationship between laboratory PI, dry density
and moisture content were developed for clayey sand and sandy silty clay as shown in
Sections 3.2.1 and 3.2.2. The relationships between PI, dry density and moisture content
from field testing are shown in Figures 3.103 through 3.108.

(2) In section 3.2.2, for the sandy silty clay, unconfined compression tests were
conducted on disturbed samples. Using the correlation by Lee (1993), the relationship
between penetration index and resilient modulus was established. The contours of S, o,

with respect to dry density and moisture content were also developed. Figures 3.109 and
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3.110 reflect the relationship between field PI, S, and M, for sandy lean clay and
sandy silty clay.

(3) DCPT and SPT were conducted at the same time and location for two sites, as
shown in Section 3.2.5 and 3.2.8; a clear relationship between PI and N, was not

established from these data.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

(1) Field and laboratory tests were conducted on clayey sand, silty sand, sandy silty clay
and sandy lean clay soils. The relationships between penetration index, dry density and
moisture content obtained from field results present some scatter; however, the trends
were clearly that increases in dry density or decreases in moisture content lead to
decreases in penetration index. For sandy clay, when all the field data are combined,
satisfactory relationships between penetration resistance, dry density and moisture

content can be found.

(2) DCPT was also conducted in a 12 inch mold in the laboratory. The soil samples were
prepared with different moisture contents and under four different compaction energy
levels. The laboratory DCPT testing was performed along these compaction curves. The
contours of penetration index with respect to dry density and moisture content were
developed based on such testing. However, due to the confining effect of the mold, such

relationships should be used carefully.

(3) Unconfined compression tests were also conducted in the laboratory. The relationship
between penetration index and the stress at 1% strain in the unconfined compression test

is very good. Using the correlation suggested by Lee (1993), penetration index was
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related to the resilient modulus. Combining the data for sandy silty clay and sandy lean

clay, we also find the relationships between field PI, S, o, and M.

(4) DCPT and SPT were conducted at the same time and location for two sites. However,
a clear relationship between SPT blow count and PI could not be found for the amount of

data available.

4.2 Application to Compaction Control

Compared with some of the other techniques used for compaction control, the DCP is
a much more punctual measurement. The penetration index is heavily dependent on what
is immediately beneath the cone point. The presence of a gravel or a gravel-size clay clod
may give values of 81 that are too low to be representative of the state of the compacted
soil at that location. That this does happen is evidenced by scatter observed in some of
the testing presented in this report.

It follows that inspectors should carefully select the location where to do the
testing. If a location is selected such that no clods or gravels are present, the measured PI
is going to be representative of soil conditions and can be related (as shown earlier) with
good success to dry density, water content, and resilient modulus.

It should also be noted that more than one blow is likely to be necessary to drive
the cone through the entire thickness of a given lift. So a possible approach for
inspection purposes is to carefully select several locations for testing, where no clods or
gravels are expected to be present, do the testing, and average the PI over the depth at

each location.
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4.3 Future work
(1) This study shows that it is possible to, given enough data, obtain satisfactory
correlations between penetration index, dry density, water content and resilient modulus.

Further testing is needed to develop a complete database.

(2) Once such database is established, it may be possible to develop general or unified

correlations between penetration index, dry density, moisture content and plasticity index.

(3) Such correlations will still need to be verified by field performance observations.
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