PB99-142713

.
Accident Models for Two-Lane Rural

Roads: Segments and Intersections

PUBLICATION NO. FHWA-RD-98-133 OCTOBER 1998

e

US.Department of Transportation
Federal Highway Administration

Research and Development
Turner-Fairbank Highway Research Center
6300 Georgetown Pike

Mclean, VA 22101-2296

REPRODUCED BY: INTIS.
U.S. Department of Commerce™
i Technical ion Service
Springfield, Virginia 22161




FOREWORD

This report is a direct step for the implementation of the Accident Analysis Module in the
Interactive Highway Safety Design Model (IHSDM). The Accident Analysis Module is expected
to estimate the safety impact of two-lane rural highway characteristics for existing and new
projects. Several accident models are developed to estimate accident frequencies. The three main
models are for road segments (with non-intersection accidents), one-way stop-controlled
intersections with three legs, and two-way stop-controlled intersections with four legs. This
report describes the collection, analysis, and modeling of accidents on rural roads in Minnesota
(1985-1989) and Washington State (1993-1995).

Models of the Poisson type, negative binomial type, and extended negative binomial type are
developed, and advanced statistical techniques are applied to assess the explanatory value of the
models in the presence of Poisson randomness and overdispersion. The models derived from
these data indicate that exposure and traffic counts are the chief highway variables contributing
to accidents. Other variables that affect accidents on road segments are: lane width, shoulder
width, horizontal and vertical alignments, roadside conditions, and driveway density. Other
variables that affect accidents at intersections are: vertical and horizontal alignments, roadside
conditions, number of driveways, posted speed, approach angles, and turning lanes.
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1. INTRODUCTION

Estimating the number of accidents that may result for a given highway design is a matter of great
interest to the highway engineering community. Numerous studies have been performed in this area
(see McGee et al.' and references cited therein) with the aim of determining the effects of different
design elements and their relative importance. Since safety is a primary consideration in highway
design, the safety consequences of highway design features have been and will remain a matter of
continuing interest.

The present study was undertaken in connection with the development of the Interactive Highway
Safety Design Model (IHSDM). The IHSDM is envisioned as a set of tools to assist the highway
designer. In particular it is expected to include an Accident Analysis Module that will relate
accidents to highway variables along segments and at intersections. Rural roadways tend to have
high accident rates,” and adequate models for these roadways are especially desirable. This study
focuses on segments of rural two-lane roads and on three- and four-legged intersections on such
roads, stop-controlled on the minor leg or legs.

The study makes use of Highway Safety Information System (HSIS) data for two States, Minnesota
and Washington. Accident data (including both severity and type), traffic data, lane and shoulder
width data, and some alignment data are available in HSIS files. Data were also obtained from
photologs and, in the case of Minnesota, construction plans. These data include horizontal and
vertical alignments, channelization, driveways, and Roadside Hazard Rating. The latter is a measure
of sideslope and clear zone proposed by Zegeer et al. (1987).2

The analysis and modeling on the data sets have been performed with SAS® software. SAS includes
a variety of procedures for summarizing univariate and multivariate statistics and for modeling the
relationship between a variable such as number of accidents and covariates such as traffic volumes
and highway design variables.

Accident models are typically of Poisson and generalized linear form. The number of accidents

I McGee, H.W., Hughes, W.E., and Daily, H., “Effect of Highway Standards on Safety,”
National Cooperative Highway Research Program, Report 374, Transportation Research Board,
National Research Council, Washington, D.C., 1995.

2 Tessmer, J.M., “Rural and Urban Crashes: A Comparative Analysis,” Technical Report
DOT-HS-808-450, National Highway Traffic Safety Administration, United States Department
of Transportation, Washington, D.C., 1996.

3 Zegeer, C.V., Hummer, J., Reinfurt, D., Herf, L., and Hunter, W., "Safety Cost-
Effectiveness of Incremental Changes in Cross-Section Design — Informational Guide," FHWA-
RD-87-094, Federal Highway Administration, Washington, D.C., 1987.



in a given space-time region is regarded as a random variable that takes values 0, 1, 2, ... with
probabilities obeying the Poisson distribution. A characteristic feature of this distribution is that the
variance, or mean squared deviation of this variable, is equal to its mean. The mean number of
accidents is assumed to be an exponential applied to a suitable linear combination of highway
variables. Thus the model falls under the heading of a generalized linear model. The exponential
function guarantees that the mean is positive.

More recently negative binomial models, a variant of the Poisson, have been used in accident
modeling. Such models generalize the Poisson form by permitting the variance to be overdispersed,
equal to the mean plus a quadratic term in the mean whose coefficient is called the overdispersion
parameter. When this parameter is zero, a Poisson model results. When it is larger than zero, it
represents variation above and beyond that due to the highway variables present in the model. Such
variation is due to accident-related factors pertaining to drivers, vehicles, and location not
encompassed by the highway variables. The LIMDEP® software package, or SAS-based programs,
can be used to develop negative binomial models.

In addition, Shaw-Pin Miaou has developed an “extended” negative binomial model that permits
variables with multiple values along a roadway to be treated in disaggregate form, value by value,
rather than in aggregate form, by averages over the whole roadway. Highway segments are not truly
homogeneous even if shoulder widths, lane widths, speed limits, and the like stay constant along
them. Other variables, such as horizontal and vertical alignments, are subject to variation within the
typical segment. The extended negative binomial model aims to capture the effect of such
inhomogeneities.

In the following chapters the literature is reviewed; the data collection methodology is described in
detail; the data analysis is presented; accident models of Poisson, negative binomial, and extended
negative binomial type are exhibited; and validation and additional analyses are performed. The
modeling chapter includes logistic modeling of accident severities on the Minnesota data. The last
chapter presents the final models (obtained earlier in Tables 27 and 35) in the form of equations and
exhibits associated Accident Reduction Factors. Two appendices offer additional information about
the Minnesota population and the final model equations in metric form, respectively.

Some of the results in this report are to be found in the article by Vogt and Bared (1998).*

* Vogt, A., and Bared, J.G., “Accident Models for Two-Lane Rural Segments and
Intersections,” Transportation Research Bnard, TRR 1635, Washington, D.C., 1998, to appear.

2



2. LITERATURE REVIEW

This chapter surveys the modeling literature pertaining to highway segments and intersections and
reviews variables used in past studies. It also includes a discussion of artificial neural networks.

SEGMENT MODELS

Miaou et al. (1993)° used a model of Poisson type to estimate accidents along highway segments.
Although the model was applied to truck accidents, it is applicable to other vehicles on a highway.
Poisson regression provides one of the most suitable models because vehicle accidents are discrete
rare events and accident counts are nonnegative integers. Accidents are usually positively skewed
because of the high proportion of highway segments without accidents. Poisson regression models
provide an easy linkage to probability, as opposed to other commonly used models such as multiple
linear regression. The form of the model is:

iV

! -

(Avye ™
P(y) - i

1 yI!

where

y; is the number of trucks involved in accidents on the i-th two-lane undivided
highway segment for a given exposure;

P(y, is the probability that y, trucks will be involved in accidents;

A; is the mean accident rate (ir number of trucks per million truck-miles) on the i-th
segment; and

v; is the truck exposure (in millions of truck-miles) on the i-th segment.

In this formulation A, is estimated by:

A, = exp(0.0818 + 0.1022x,, + 0.0949x,, + 0.0426x,, + 0.0341x, - 0.0263x,) .

5 Miaou, S.-P., Hu, P.S., Wright, T., Davis, S.C., and Rathi, A.K., "Development of
Relationship between Truck Accidents and Geometric Design: Phase I," FHWA-RD-91-124,
Federal Highway Administration, Washington, D.C., 1993.
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For the i-th segment

x,; = Average daily traffic per lane (in thousands of vehicles)

x,; = Horizontal curvature (in degrees per hundred feet)

x;; = X,; x horizontal curve length (in miles)

x,; = Deviation of stabilized outside shoulder width per direction from 12 ft (in feet)
x;; = Percent trucks in traffic stream.

The estimated value of A, is always non-negative and is represented by a loglinear function of
explanatory variables x; related to geometry, traffic, and other highway characteristics. With respect
to the underlying Poisson assumption that the mean equals the variance, the model for two-lane rural
segments is not very satisfactory since the estimated ratio of variance to mean, 1.36, is not close to
one. A negative binomial regression model was proposed to allow for overdispersion, with variance
equal to mean y; plus an extra term of the form K(u; )2 The quantity K is the overdispersion
parameter. The regression coefficients in the negative binomial model are similar to those of the
Poisson model. However, the negative binomial allows for additional variance representing the
effect of omitted variables.

Poisson and negative binomial modeling techniques are believed to be robust and quite suitable for
accident modeling. One weakness of the above model, though, is the minuscule frequency of truck
accidents, since they constitute a very small proportion of total accidents, even though the highway
sample of 14,731 lane-miles extending over a 5-year period is large. Another weakness may be
ascribed to a highly significant variable, truck ADT(Average Daily Traffic). This variable was
acquired from the Highway Performance and Monitoring System (HPMS), a separate data source
that was integrated with the original data. Whether the values of truck ADT were sufficiently local
to represent the truck traffic on a given segment adequately is not known.

The report of Luyanda et al.® utilized a variety of multivariate statistical techniques to investigate
relationships between the major factors of rural highway conditions and accident occurrences.
Cluster analysis, discriminant analysis, factor analysis, and linear regression were applied in stepwise
fashion. Highway segments were divided into three groups: multi-lane segments, two-lane segments
in flat and rolling terrain, and two-lane segments in hilly terrain. Comparisons were made between
groups and within groups. Within the multi-lane segments, the significant variables identified by
discriminant analysis were different from those identified by stepwise regression. For the other two
groups, the R* values’ were disappointingly low, 0.23 and 0.07, respectively. The report should be

¢ Luyanda, F., Smith R.W., Padron, M., Resto, P., Gutierrez, J., and Fernandez, L.,
"Multivariate Statistical Analysis of Highway Accident and Highway Conditions," University of
Puerto Rico, Mayaguez School of Engineering Research Center, Report DOT-RSPA-DMA-
50/84/9, Puerto Rico, 1983.

" R? is the coefficient of multiple determination, defined in Chapter 5 below.
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regarded as exploratory because of uncertainties in accident location and the small sample size.
Although the results of the discriminant analysis seem to be reliable, they do not give a safety
evaluation, but rather a classification by grouping. The assumption of linearity in the regression
analysis is simplistic and should be refined. Moreover, highway segments and intersections were
not differentiated to permit classification of accidents into segment accidents or intersection
accidents.

The reports of Zegeer et al. (1986), Mak (1987), and Zegeer et al. (1991)® applied regression
techniques to develop accident models for two-lane roads. The model for cross-section safety on
two-lane highways proposed by Zegeer et al. (1986) is:

A4 = 0.0019(4DT)"*24(0.8786)"(0.9192)™(0.9316)""(1.2365)7(0.8822)™R/(1.3221)"ER?

where

A = number of accidents per mile per year
ADT = two-directional average daily traffic

W = lane width in feet

PA = width of paved shoulder in feet

UP = width of unpaved shoulder in feet

H = median roadside hazard rating

TERI =1 for flat terrain, 0 otherwise

TER2 = 1 for mountainous terrain, 0 otherwise.

8 Zegeer, C.V., Hummer, J., Reinfurt, D., Herf, L., and Hunter, W., "Safety Effects of
Cross-Section Design for Two-Lane Roads," FHWA-RD-87-008, Federal Highway
Administration, Washington, D.C., 1986.

Mak, K K., "Effect of Bridge Width on Safety," State of the Art Report 6, Relationship Between
Safety and Key Highway Features — A Synthesis of Prior Research, Transportation Research
Board, National Research Council, Washington, D.C., 1987.

Zegeer, C.V., Stewart, R., Reinfurt, D., Council, F., Neuman, T., Hamilton, E., Miller, T., and
Hunter, W., "Cost Effective Geometric Improvements for Safety Upgrading of Horizontal
Curves," FHWA-RD-90-021, Federal Highway Administration, Washington, D.C., 1991.



The accidents considered in this model are single vehicle accidents, head-on accidents, and same and
opposite direction sideswipe accidents.

A quadratic model for accidents on bridges was developed by Mak (1987):

Y = 0.50 - 0.061RW + 0.0022(RW)>

where

Y = number of accidents per million vehicles
RW = relative bridge width (bridge width minus width of traveled way) in feet.

Zegeer et al. (1991) developed a model for accidents on horizontal curves:

4, = [1.552LxV + 0.14DxV - 0.12S><V](0.978)(W - 30)

where

A,, = total number of accidents on a horizontal curve in a 5-year period
L = length of the curve (in miles)

V = volume of vehicles in a 5-year period (in millions of vehicles)

D = degree of curve (in degrees per hundred feet)

S =1 for a spiral curve, 0 for no spiral

W = roadway width including shoulder widths (in feet).

The last-mentioned study, Zegeer et al. (1991), reviewed data base characteristics, determined the
important variables through a preliminary analysis, and then proceeded to model building. The
preliminary analysis made use of several multiple linear regression models to identify significant or
"important" variables. The authors reported that a linear accident rate model was much better than
a log-linear model. For a nonlinear model they adopted and reparametrized an existing model.” This
model was a hybrid, with both linear and nonlinear components. Although the required statistical
assumptions were not fully stated, use of the least-squares method was based on the assumption that

® Designing Safer Roads: Practices for Resurfacing, Restoration, and Rehabilitation,
Transportation Research Board, SR 214, Washington, D.C., 1986.



the residuals would follow a normal or log-normal distribution. Because accident distributions are
skewed to the right, normality is not a tenable assumption.

Arguing that previous efforts were not sufficiently successful in attributing accidents to individual
geometric elements and traffic characteristics, Kuo-Liang and Chin-Lung (1988)" explored a
technique that purported to remove the assumptions of normality and linearity. Their model was
developed for two-lane rural roads. A technique called Automatic Interaction Detection (AID) was
used to group roadway segments by selected or created categories of explanatory variables. These
categories of variables maximize the difference between group sums of squares. Then a model was
developed by the Multiple Analysis Classification (MAC) technique of the following form:

Y, , =Y +d4 +B + . E

ij.n ij.n

where

Y;. .= the score of unit n that falls in category i of predictor A, category j of predictor B, etc.
Y = grand mean of the dependent variable

A, = the effect of membership in the i-th category of predictor A

B; = the effect of membership in the j-th category of predictor B

E

ij...n

= error term for this unit.

This method, though in part innovative, is still a variation on simple linear regression and accounts
for only 33% of the total variance. The low predictive power may also be due to the lack of a
horizontal alignment variable and small sample size.

Durth (1989)"" used risk analysis to perform highway safety evaluation. This is quite different from
conventional approaches to accident analysis and modeling. The method is well-known in the fields
of nuclear power plants and chemical factories. Based on research in Germany from 1986, the claim
is made that risk analysis can be successfully applied to traffic safety. A risk model relies on diverse
information in modular and hierarchical form from different branches of sciences (medicine,
mechanical engineering, civil engineering, psychology, etc.). It reconstructs known dependencies
and identifies relationships that need to be verified. Although the method may be promising, the

1 Kuo-Liang, T., and Chin-Lung, Y., "A Predictive Accident Model for Two-Lane Rural
Highways in Taiwan," Republic of China, Traffic Safety Theory and Research Methods, Session
4, Statistical Analysis and Models, Amsterdam, 1988.

1 Durth, W., "Risk Analysis in Highway Engineering," Proceedings of Strategic
Highway Research Program and Traffic Safety on Two Continents, VTI Report 351A,
Gothenburg, Sweden, 1989.



report of Durth does not clearly describe the substance of the research. Nor does it indicate how to
develop the stated dependencies and how to verify them practically.

Kulmala and Roine (1988)'* developed models for Finnish roads. They assumed a Poisson error
distribution and intended their models to be used for prediction. Their typical model form was:

4 =K x 8% x exp(Z, bx)

where

A = total number of fatal and injury accidents on a segment

S = exposure in vehicle-kilometers

x, = explanatory variables such as surface width in meters, percentage of the segment length
for which passing sight distance exceeds 300 meters, percentage of heavy vehicles,
average curvature, and an interaction variable (pavement and speed limit).

This multiplicative Poisson regression model is comparable to that of Miaou et al. (1993).

SEGMENT VARIABLES
Average Daily Traffic (ADT)

ADT is one of the most significant variables in predicting accidents, yet it is not controllable. Many
models have used traffic exposure as a dependent variable although its relationship with accident
counts is not fully linear. In general, it is recommended to use ADT as an independent variable for
greater accuracy because it interacts with other controllable variables, and it measures the effect of
traffic flow intensity (Hauer, 1994)."

Lane Width, Shoulder Width, and Shoulder Type
Modeling approaches vary from study to study, and techniques of data collection and analysis

likewise vary. Thus the effect of lane width and shoulder width on accident frequency has some
variation in different studies. Generally it has been found that accident rates decrease when lane and

12 Kulmala, R., and Roine, M., "Accident Prediction Models for Two-Lane Roads in
Finland," Technical Research Centre of Finland, Traffic Safety Theory and Research Methods,
Session 4, Statistical Analysis and Models, Amsterdam, 1988.

13 Hauer, E., "On Two Uses of Exposure," Paper Presented at the Transportation Research
Board Annual Meeting, Washington, D.C., 1994.
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shoulder widths increase. The report by Zegeer et al. (1986) on the effect of cross-section for two-
lane rural roads indicated that a paved shoulder widening of 2 feet per side reduces accidents by
16%, while reports of Miaou et al. (1993) and Zegeer et al. (1986) found reductions of 8% and 6.6%,
respectively. The latter two reports take into account horizontal curvature and curve length as
explanatory variables, while the former does not explicitly include horizontal alignment. Luyanda
et al. (1983) showed that shoulder type, an amalgam that includes width and surface type, is a
significant variable but did not define this variable in detail. The synthesis of Jorgensen (1978)"
reported a negative relationship between accidents and shoulder width for two-lane rural highways
on the basis of studies done primarily in the 1950's and 1960's. Variation of shoulder width for
Interstate Highways and other freeways exists mostly along the inside shoulder, and older reports
indicate that accidents increase as the inside shoulder width increases, contrary to the findings of
Miaou et al. (1993). The increase of accidents with inside shoulder width may be due to emergency
parking on wider shoulders or to insufficient accident history in the older studies.

Horizontal and Vertical Alignment

Horizontal and vertical alignment can be expressed in alternative ways to capture the effect of
individual curves (disaggregate) or a sequence of curves (aggregate). Examples of measures of
horizontal curvature are as follows:

e Horizontal curvature change rate - Miaou et al. (1993)

CCR = Z,_, [0{i+1} - 0}

where 0{i} is the degree of curve (degrees per hundred feet) of the i-th horizontal curve on a
segment, recorded as positive if to the right and negative if to the left in the increasing roadway
direction, and k is the number of horizontal curves on the segment. If k =1, CCR is set to zero.
CCR is an aggregate measure, while 0{i} is a disaggregate measure.

® Average curvature - Polus (1980)"
2 afi}
L

AC

where L is the segment length in miles and a{7} is the absolute horizontal angle between the i-th and

14 Roy Jorgensen Associates, "Cost and Safety Effectiveness of Highway Design
Elements," National Cooperative Highway Research Program, Report 197, Transportation
Research Board, National Research Council, Washington, D.C., 1978.

15 Polus, A., "The Relationship of Overall Geometric Characteristics to the Safety Level
of Rural Highways," Traffic Quarterly, 34(4), 1980.



(i+1)-th tangents, in degrees. Here AC is aggregate and a{i} is disaggregate. Vertical grade
variables can be expressed similarly. Researchers have used both aggregate explanatory variables
(Polus, 1980; Kulmala and Roine, 1988) and disaggregate ones (Miaou et al. 1993; Zegeer et al.,
1991) in the modeling process, although aggregate variables are not directly helpful to designers who
are improving individual curves. Nevertheless, aggregate variables are useful as surrogates in
evaluating alignment safety. In most of the referenced reports, the results confirm the common sense
opinion that sharper and longer curves result in more accidents, regardless of whether the statistical
techniques applied are multiple linear regression or generalized linear models.

Roadside and Terrain Condition

When roadside features such as slopes, guardrails, trees, poles, etc. are considered separately, the
portion of accident rates explained by roadside features is weak. The reports by Graham and
Harwood (1982)'° and Zegeer et al. (1986) indicate this drawback. Zegeer et al. (1991) reported that
mountainous terrain type has a negative effect on safety. Zegeer et al. (1987), as noted in Chapter
1, packaged the roadside variables in a subjective measure called Roadside Hazard Rating based on
visual evaluation of clear zone and sideslope. Roadside Hazard Rating takes numerical values from
one to seven. This measure “indicates the accident damage likely to be sustained by errant vehicles
on a scale from one (low likelihood of an off-road collision or overturn) to seven (high likelihood
of an accident resulting in a fatality or severe injury).” On a segment length with variable hazards,
an average or middle value is assigned.

Speed

Various attempts have failed to find relationships between accidents and speed, whether the latter
is design speed, posted speed, or operating speed. One of the few models where speed is considered
comes from Finland (Kulmala and Roine, 1988). A report of Fridstrem et al. (1995)! indicates that

a change in posted speed lowered fatal accidents in Denmark.

Driveways

The influence of driveway accidents was highlighted by two studies (Fee et al., 1970; McGuirk and

16 Graham, J.L., and Harwood, D.W, Effectiveness of Clear Recovery Zones, National
Cooperative Highway Research Program, Report 247, Transportation Research Board, National
Research Council, Washington, D.C., 1982.

7 Fridstrem, L., Ifver, J., Ingebrigsten, S., Kulmala, R., and Thomsen L.K., "Measuring
the Contribution of Randomness, Exposure, Weather, and Daylight to the Variation in the Road
Accident Counts," Accident Analysis and Prevention, 27( 1): 1-20, 1995.
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Staterly, 1976)."® Driveway density and driveway spacing were found to be significant safety factors.
McGuirk and Staterly (1976) developed a linear model for accident rates Y-

Y = 7.728 - 0.055X,

where X is driveway spacing. Figure 1, illustrating the relationship of accidents to driveway density,
appears in Cirillo (1992)," and was taken from the report of Fee et al. (1970).

Accidents
per MVM

o

20 40 -] 80 100
Number of businesses having
direct access to highway per mile

FIGURE 1. ACCIDENT RATES ON NON-INTERSTATE HIGHWAYS FOR SELECTED
HIGHWAY TYPES BY NUMBER OF BUSINESSES PER MILE (Cirillo, 1992)

18 Fee, J.A., Beatty, R.L., Dietz, S.K., Kaufman, S.F., and Yates, S.F., "Interstate System
Accident Research Study 1," U.S. Government Printing Office, Washington, D.C., 1970.

McGuirk, W.W., and Staterly, G.T., Jr., "Evaluation of Factors Influencing Driveway
Accidents," Transportation Research Board, TRR 601, Washington, D.C., 1976.

¥ Cirillo, J.A., "Safety Effectiveness of Highway Design Features, Volume I: Access
Control,"” FHWA-RD-91-044, Federal Highway Administration, Washington, D.C., 1992.
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INTERSECTION MODELS

The methodology and statistical techniques used in a series of three reports (Lau and May, 1989; Lau
and May, 1988; Naclerio et al., 1989)* on signalized and unsignalized intersections are of interest
to intersection modelers. Accident prediction models were developed to identify locations where
accident experience was more frequent or more severe than normal, and to evaluate the safety
consequences of alternative improvements. Factors and highway characteristics reported in the
California data base were included in the model: accident data, traffic volumes, intersection
features, and control types. However, variables such as degree of horizontal curvature and rate of
vertical curvature, believed to be important, were not included. Unlike other partial studies, these
models encompass all types of intersections, and the methodology addresses the successive stages
of planning, design, and site improvement.

Three types of accident severity were modeled separately: fatal, injury, and property damage only.
Collision types such as angle, rear-end, etc., that may further explain the cause of accidents were
missing from the model. A nonparametric statistical modeling technique known as the Classification
Regression Tree (CART) was used to group intersections by significance of prediction. The
response variable was number of accidents per year, with traffic volume used only as an explanatory
variable. The CART technique has particular applicability to categorical and discontinuous
variables. However, the classification obtained was not sufficiently detailed to reveal the effect of
individual highway factors. For injury accidents, nine groups of signalized intersections were
identified, and eight groups were identified for property damage only accidents. The model for fatal
accidents was not reliable, with a correlation coefficient of only 0.009. As a starting point for the
analysis of relationships, intersections are categorized by highway functional classification into
groups that are assumed to perform differently. The potential for application to optimization, i.e.,
to help the designer choose highway characteristics that will minimize the expected number of
accidents, was noted but no application was made. Another caveat of this methodology is implied
in its tendency to produce a grouping not much different from the existing conventional State
grouping.

2 Lau, M.-K., and May, A.D., "Accident Prediction Model Development for
Unsignalized Intersections: Final Report," University of California at Berkeley, Institute of
Transportation Studies, Report UCB-ITS-RR-89-12, Berkeley, California, 1989.

Lau, M.-K., and May, A.D., "Accident Prediction Model Development: Signalized Intersections,
Final Report," University of California at Berkeley, Institute of Transportation Studies, Report
UCB-ITS-RR-88-7, Berkeley, California, 1988.

Naclerio, M.T., Kruger, P, and May, A.D., "Accident Prediction Models for Signalized and

Unsignalized Intersections. Addendum," University of California at Berkeley, Institute of
Transportation Studies, Report UCB-ITS-RR-89-17, Berkeley, California, 1989.
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Hauer et al. (1988)* developed accident prediction models for signalized intersections by maneuver
patterns (15 defined conflict patterns) before the occurrence of accidents. Each pattern involved at
most two conflicting flows. A typical model form is as follows:

E(m) = by(F)'(F,)"

where

E(m) = expected number of accidents for maneuver pattern m
F, = traffic flow of turning movement 1

b, = power of F;

F, = traffic flow of turning movement 2

b, = power of F,.

Equations were derived for each of the 15 pre-accident patterns to compute the expected number of
accidents. These equations can also be used to estimate the kinds of accident caused by traffic flow
patterns. Their design consequences are limited because they are based exclusively on traffic flow
variables, and these are uncontrollable. Unlike traffic flow patterns, physical elements such as
channelization and alignment are manageable safety improvements. On the other hand, the models
are negative binomial in form. This form, as the authors indicate, has the attractive feature that it
can be modified by empirical Bayesian techniques to incorporate actual experience at an individual
intersection.

Garber and Srinivasan (1991)* used traffic flow (left-turn volumes) movements as explanatory
variables for predicting accidents during peak-hours and otherwise. Besides safety evaluations, these
models are favorable for improvements such as installing left turn lanes and adding protected
phasing. Despite high R values, the simple linear regression models used in this study are
inadequate for discrete events such as accidents that have a very low mean and are not normally
distributed. Moreover, these models predict accidents for elderly drivers, a small segment of the
driver population.

21 Hauer E., Ng, J. C.N.,, and Lovell, J., "Estimation of Safety at Signalized Intersections,"
Transportation Research Board, TRR 1185, Washington, D.C., 1988.

22 Garber, N.J., and Srinivasan, R., "Risk Assessment of Elderly Drivers at Intersections:
Statistical Modeling," Transportation Research Board, TRR 1325, Washington, D.C., 1991.
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INTERSECTION VARIABLES
Traffic Flow

Traffic flows (ADT) have often been used as measures of exposure or as explanatory variables in
modeling accidents at intersections. Many accident studies have used intersection accident rates in
the form of accidents per million entering vehicles (Kuciemba and Cirillo, 1992).% This type of rate
has been used for safety performance evaluations and safety comparisons even though it does not
take into account the magnitude of conflicting movements. Another common way to measure
intersection accident rates is in accidents per unit time. McDonald (1966)** exhibited a model
relating accident frequency (accidents per year) to a product of powers of the cross-road and major
road entering ADT.

N = 0.000783(Vm)0-455(VC)0.633

where

N = number of accidents per year
V., = major road ADT in vehicles per day

mn

V. = cross-road ADT in vehicles per day.

Leong (1973)* proposed comparable but simpler models of the form:

N = KV, V)"

2 Kuciemba, S.R., and Cirillo, J.A., "Safety Effectiveness of Highway Design Features,
Volume V: Intersections," FHWA-RD-91-048, Federal Highway Administration, Washington,
D.C., 1992.

2 McDonald, J.W., "Relationship Between Number of Accidents and Traffic Volumes at
Divided Highway Intersections,” National Research Council, Highway Research Board Report
74: 7-17, Washington, D.C., 1966.

%5 Leong, W.H.J., "Relationship Between Accidents and Traffic Volumes at Urban
Intersections," Journal of Australian Road Research Board, 5(3): 72-90, 1973.

14



A method for handling exposure measures developed by Surti (1965)* was applied by Hakkert and
Mahalel (1978)”". The latter authors proposed that accident frequency is linearly related to an
exposure measure X, called index flow, calculated as the sum of the products of the flows at each
of 24 conflict points defined by Surti. The model for urban intersections is as follows:

N =227+ 0.000112X.

Hauer et al. (1988), as already noted, used traffic flows for each conflict pattern to predict accidents,
found different functional forms and coefficients for different patterns, and addressed the short-
comings of simple models of intersection accidents in terms of flows. The need for detailed models
by pattern is presumably greater for signalized intersections than it is for stop-controlled minor roads
with low traffic.

Control Type

The safety effect of converting to all-way stop was contradictory in two papers (Lovell and Hauer,
1986; Persaud, 1986).2 Lovell and Hauer affirmed the benefit of converting to four-way stop, while
Persaud rejected its effectiveness. King and Goldblatt (1975)® concluded that signalization reduces
right-angle accidents but increases rear-end accidents, with no significant change in total accident-
related disutility.

26 Qurti, V.H., "Accident Exposure for At-Grade Intersections," Traffic Engineering, 36
(3): 26-27 and 53, 1965.

27 Hakkert, A.-S., and Mahalel, D., "Estimating the Number of Accidents at Intersections
from a Knowledge of the Traffic Flows on the Approaches," Accident Analysis and Prevention,
10: 69-79, 1978.

28 Lovell, J., and Hauer, E., "The Safety Effect of Conversion to All-Way Stop Control,"
Transportation Research Board, TRR 1068, Washington, D.C., 1986.

Persaud, B.N., "Safety Migration, the Influence of Traffic Volumes, and Other Issues in
Evaluating Safety Effectiveness - Some Findings on Conversion of Intersections to Multiway
Stop Control," Transportation Research Board, TRR 1068, Washington, D.C., 1986.

 King, G.F., and Goldblatt, R.B., "Relationship of Accident Patterns to Type of
Intersection Control," Transportation Research Board, TRR 540, Washington, D.C., 1975.
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Sight Distance and Alignment

Three reports relate intersection sight distance (ISD) to accidents (David and Norman 1975; Wu,
1973; Moore and Humphreys, 1975).*°* David and Norman reported that an increase in sight radius
reduces the number of accidents. Sight radius was defined to be an average of all intersection sight
distances at 50 feet from the intersection. Thus sight radius is not equivalent to the ISD defined in
the AASHTO Design Manual, the so-called “Green Book.™' Wu cited the safety effect of clear
vision and poor vision at both rural and urban signalized intersections. Clear and poor vision are
qualitative descriptors as opposed to precise quantitative measures of ISD. Bared and Lum (1992),*
in a presentation on the safety effectiveness of intersection design elements, concluded that sight
distance and other alignment variables are important at intersections. Among others, Urbanik et al.
(1989)* affirmed the significance of sight distance on crest vertical curves at intersections.
Intersection sight distance will be indirectly considered in this study by surrogate variables:
horizontal curvature, vertical curvature, and Roadside Hazard Rating.

ARTIFICIAL NEURAL NETWORKS

Artificial neural network applications have recently received considerable attention. The
methodology of modeling, or estimation, is somewhat comparable to statistical modeling (Smith,

*® David, N., and Norman, J.R., "Motor Vehicle Accidents in Relation to Geometric and
Traffic Features of Highway Intersection,” Volume IT, FHWA-RD-76-129, Federal Highway
Administration, Washington, D.C., 1975.

Wu, Y.S., "Effect of Clear Vision Right-of Way on Traffic Accidents at Urban and Rural
Signalized Intersections," Report TSD-228-73, Department of State Highways, Michigan, 1973.

Moore, W L. Jr., and Humphreys, J.B., "Sight Distance Obstructions on Private Property at
Urban Intersections," Transportation Research Board, TRR 541, Washington, D.C., 1975.

*! A Policy on Geometric Design of Highways and Streets, American Association of State
Highway and Transportation Officials (AASHTO), Washington, D.C., 1994,

%2 Bared, J.G., and Lum, H., Safety Evaluation of Intersections Design Elements (Pilot
Study), Transportation Research Board Conference Presentation, Washington, D.C., 1992.

* Urbanik, T., II, Hinshaw, W., and Fambro, D.B., "Safety Effects of Limited Sight
Distance on Crest Vertical Curves," Transportation Research Board, TRR 1208, Washington,
D.C., 1989.
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1993).3* Neural networks should not, however, be heralded as a substitute for statistical modeling,
but rather as a complementary effort (without the restrictive assumption of a particular statistical
model) or an alternative approach to fitting non-linear data.

A typical neural network (shown in Figure 2) is composed of input units X, X, ... corresponding
to independent variables (in our case, highway or intersection variables), a hidden layer known as
the first layer, and an output layer (second layer) whose output units Y, ... correspond to dependent
variables (expected number of accidents per time period).

]

|
" TIst Layer T 2nd Layer !

FIGURE 2. A TYPICAL NEURAL NETWORK

In between are hidden units H,, H,, ... corresponding to intermediate variables. These interact by
means of weight matrices W and W® with adjustable weights. The values of the hidden units

are obtained from the formulas:

— M

H, =R Zijk X )
- 2)

Y, =Y, WOH).

One multiplies the first weight matrix by the input vector X = (X, X,, ...), and then applies an
activation function f to each component of the result. Likewise the values of the output units are
obtained by applying the second weight matrix to the vector H = (H,, H,, ...) of hidden unit values,

34 Smith, M., “Neural Networks for Statistical Modeling,” Van Nostrand, New York,
1993.
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and then applying the activation function f to each component of the result. In this way one obtains
an output vector Y= (Y,, Y, ...).

The activation function f'is typically of sigmoid form and may be a logistic function, hyperbolic
tangent, etc.:

1 b —eg™

fwy = ——o, flu) = =—°_

1 +e™ e +e™
Usually the activation function is taken to be the same for all components but it need not be.
Values of W and W® are assumed at the initial iteration. The accuracy of the estimated output is

improved by an iterative learning process in which the outputs for various input vectors are
compared with targets (observed frequency of accidents) and an average error term E is computed:

N . (Y(n)”T("))2
§ :,, =
N '

E =

Here
N = Number of highway sites or observations
Y™ = Estimated number of accidents at site n forn=1,2, ... N
T™ = Observed number of accidents at site n forn=1, 2, ..., N.

After one pass through all observations (the training set), a gradient descent method may be used to
calculate improved values of the weights W and W@, values that make E smaller. After
reevaluation of the weights with the gradient descent method, successive passes can be made and
the weights further adjusted until the error is reduced to a satisfactory level. The computation thus
has two modes, the mapping mode, in which outputs are computed, and the learning mode, in which
weights are adjusted to minimize E. Although the method may not necessarily converge to a global
minimum, it generally gets quite close to one if an adequate number of hidden units are employed.

The most delicate part of neural network modeling is generalization, the development of a model
that is reliable in predicting future accidents. Overfitting (i.e., getting weights for which E is so
small on the training set that even random variation is accounted for) can be minimized by having
two validation samples in addition to the training sample. According to Smith (1993), the data set
should be divided into three subsets: 40% for training, 30% to prevent overfitting, and 30% for
testing. Training on the training set should stop at the epoch when the error E computed on the
second set begins to rise (the second set is not used for training but merely to decide when to stop
training). Then the third set is used to see how well the model performs. The cross-validation helps
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to optimize the fit in three ways: by limiting/optimizing the number of hidden units, by
limiting/optimizing the number of iterations, and by inhibiting network use of large weights.

The major advantages and disadvantages of neural networks in modeling applications are as follows:
Advantages

® There is no need to assume an underlying data distribution such as usually is done in statistical
modeling.

® Neural networks are applicable to multivariate non-linear problems.

® The transformations of the variables are automated in the computational process.

Disadvantages

® Minimizing overfitting requires a great deal of computational effort.

® The individual relations between the input variables and the output variables are not developed
by engineering judgment so that the model tends to be a black box or input/output table without
analytical basis.

® The sample size has to be large.

The disadvantages appear to outweigh the advantages, particularly in view of the black box effect.
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3. DATA COLLECTION

This chapter discusses the populations on which the study is based and how samples were selected
from these populations, how sample data were collected, and the limitations on the quality of the
sample data. Table 1 gives a list of the chief variables collected.

THE POPULATIONS AND SAMPLE SELECTION

The States for which data were obtained are Minnesota and Washington. Both of these States are
included in the Highway Safety Information System (HSIS), and both States have relatively well-
maintained data bases. In addition, data for recent years (1985 through 1994 for Minnesota and 1993
through 1995 for Washington) were available, or became available in the course of the study. For
Washington a shortcoming was the unavailability of a separate intersection file.

The populations from which the samples were drawn were rural segments of two-lane roads and rural
three- and four-legged intersections of two-lane roads stop-controlled on the minor road. The roads
had to be present in State and HSIS databases, and thus the segment road or major road was always
a State highway. Roads with unusually low traffic were not included, and other reasonable constraints
were imposed. Samples were picked from the population in part randomly and in part systematically.
Since the purpose of this study was not to summarize the population of each State, but rather to obtain
insight into the effects of different variables, observations were selected with some view to achieving
variety in traffic volumes, roadway width, and terrain.

Minnesota Segments
The sample of Minnesota segments was prepared as follows:

i) HSIS files of homogeneous segments of State roads for two time periods, 1985-1987 and 1988-
1989, were obtained and the constraints below were imposed.

rural two-lane, two-way, paved road

17 feet < surface width < 24 feet

left and right shoulder width differing by 2 feet or less

average of left and right shoulder width < 12 feet

segment length > 0.1 mile

segment present in both time periods with characteristics unchanged
5-year average daily traffic (ADT) > 5 vehicles

5-year average daily commercial traffic > 5 vehicles

ii) The resulting population consisted of 3,308 segments. Some statistics, derived from HSIS data,
on this population are presented in Appendix 1. Median values of ADT, segment length, surface
width, and shoulder width were obtained for the population and used to classify segments by high
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versus low ADT, high versus low segment length, high versus low surface width, and high versus low
shoulder width. The population was then divided into 16 bins on the basis of whether each of the four
variables was high or low. The resulting bins varied in size from 13 segments to 679 segments.
Thirteen segments were randomly selected from each bin, along with a hundred other segments
randomly selected from the remaining population as a whole, and these formed a pilot study sample
of 308 segments.

iii) The pilot study sample was eventually enlarged by the addition of 416 more segments so that all
members of the six smallest bins were included in the sample. The sizes of these six bins ranged from
13 segments to 45 segments. The selection method for the final sample was equivalent to exhaustion
of the first six bins, a random choice of 45 segments from each of the remaining bins, and a random
choice of a hundred additional segments from the remaining bins without regard to bin membership.
The resulting sample consisted of 724 segments.

iv) For each of these segments an attempt was made to obtain photolog data (signage, Roadside
Hazard Rating, driveways, intersections, speed limits) at FHWA and in Minnesota and to extract
vertical and horizontal alignments along the segments as they were in the years 1985-1989 from
construction plans in Minnesota. After much investigation and double-checking, relatively complete
data could be acquired for 619 segments. These constituted the final sample. The remaining
segments were removed because photologs or construction plans were unavailable or were seriously
incomplete, because significant regrading or realignment had been done in the time period 1985-
1989, or in a few cases because photologs revealed that the segments were not two-lane roads. One
segment was removed because the ADT was 22,710 vehicles per day, substantially higher than that
of all others roads in the study.

Minnesota Intersections
The samples of Minnesota intersections were prepared as follows:

i) HSIS files of intersections with main line a State road for two time periods, 1985-1987 and 1988-
1989, were obtained and the constraints below were imposed.

rural environment

main line a U.S. trunk highway or Minnesota trunk highway

main line and cross-street two-lane, two-way road

stop sign on minor road, thru on main line

17 feet < surface width < 24 feet

intersection present in both time periods with characteristics unchanged
number of legs three or four

main line has two legs

main line does not change direction at intersection by more than 45°
traffic data on major and minor roads obtained in 1982 or later
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three-legged intersections of types tee or wye®
four-legged intersections of types right angle or skewed crossing

ii) The resulting populations consisted of 949 three-legged intersections and 1,156 four-legged
intersections. See Appendix 1 for statistics concerning these two populations. Median values of main
line ADT and minor road ADT were obtained for each population and used to classify intersections
by high versus low major road ADT, and high versus low minor road ADT. Each population was
then divided into four bins numbered 00 to 11, based on whether each of the two variables was high
or low. 1 means high, 0 low, and the first number refers to major road ADT, the second to minor
road ADT. The resulting bins had the sizes shown below.

Minnesota Intersections

Three-legged Four-legged
Bin  Final Sample % Population % Final Sample % Population %
00 103 265 274 289 84 25.7 359 31.1
01 99 255 200 21.1 79 242 229 198
10 90 23.1 201 212 87 26.6 215 186
11 97 249 274 _28.9 11 23.5 353  30.5
Total 389 100.0 949 100.0 327  100.0 1,156 100.0

iii) Initially pilot study samples of 25 intersections were chosen randomly from within each of the
eight bins. Examination of photologs showed that intersections in three of the bins failed to satisfy
the constraints in disproportionately large numbers. So 10, 5, and 7 extra intersections were chosen
randomly from the bins 3-legged 10, 3-legged 11, and 4-legged 10, respectively. Thereafter in the
course of ensuing months an additional 100, then 160, and then 200 intersections were chosen
randomly from the 3-legged bins in equal numbers; while an additional 100, and then 160 were
chosen likewise from the 4-legged bins. The total sample of 3-legged intersections consisted of 100
+ 10+ 5+ 100 + 160 + 200 = 575 intersections. The total sample of 4-legged intersections consisted
of 100 + 7 + 100 + 160 = 367 intersections.

iv) For each of these intersections an attempt was made to obtain photolog data (signage, Roadside
Hazard Rating, driveways, turning lane/bypass lane data, speed limits) at FHWA and in Minnesota,
and to extract vertical and horizontal alignments for curves any portion of which were within 764 feet
of an intersection along the main line from construction plans in Minnesota. The information was

35According to the “Green Book,” A Policy on Geometric Design of Highways and
Streets, American Association of Highway and Transportation Officials, 1994, p. 836, an inter-
section is of tee type when two legs form a through road and the third leg enters at a nonacute
angle, of wye type if all three legs have a through character or the angle with the third leg is
small.
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for the intersections as they were in the years 1985-1989. Relatively complete data could be acquired
for 389 three-legged intersections and 327 four-legged intersections. The remainder were eliminated
because photologs showed that they did not satisfy the constraints, or plans were unavailable for them,
or the intersections had significant construction during 1985-1989.

Washington Segments
The sample of Washington State segments was prepared as follows:

i) HSIS files of homogeneous segments of State roads for the years 1993 and 1994 were obtained and
the constraints below were imposed:

rural two-lane, two-way, paved road

17 feet < surface width < 24 feet

left and right shoulder width differing by 2 feet or less

average of left and right shoulder width < 12 feet

segment length > 0.1 mile

segment present in both time periods with characteristics unchanged
2-year average daily traffic (ADT) > 5 vehicles

no vertical curves of zero length with change of grade of 1% or more
no horizontal curves of zero length with angular change of 1° or more

Unlike Minnesota, horizontal and vertical alignment data were available for Washington State in
separate HSIS Horizontal and Vertical Curve files.

ii) The resulting population consisted of 6,144 segments. Median values of ADT, segment length,
surface width, and shoulder width were obtained for this population. The median segment length was
0.36 miles (considerably lower than Minnesota's median of 0.5695 miles). The segments were
classified by high versus low ADT, high versus low segment length, high versus low surface width,
and high versus low shoulder width, with the medians as the division points except for segment length
for which 0.600 miles was used. The population was then divided into 16 bins on the basis of
whether each of the four variables was high or low. The resuiting bins varied in size from 87
segments to 913 segments.

iii) 61 segments were picked randomly from each of the 16 bins, for a total of 976 segments. An
additional 25 segments were picked for which the TERRAIN variable had the value "mountainous."

iv) On the basis of videotape reviews, further examination of alignment variables, and an enlargement
of the time frame to include the year 1995, the sample was reduced to a total of 712 segments. Some
segments were eliminated because the videotapes showed that they did not meet the constraints (e.g.,
the environment was urban or the number of lanes had changed) or the alignment data contained
anomalies such as a significant difference between the outgoing grade of one vertical curve and the
incoming grade of the next. Others were omitted because in Washington State, unlike Minnesota,
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most segments begin and end with an intersection. After 250 feet were removed from one or both
ends of segments in such cases, it was found that a significant number of segments no longer met the
requirement that their length was greater than 0.1 miles. In addition, 1995 HSIS Washington State
files became available at a relatively late stage of the study and the sample was further trimmed when
the requirement was imposed that the segment also be present in the 1995 files with chief
characteristics unchanged.

Washington Intersections

There are no HSIS intersection files for Washington State nor does the State maintain separate
intersection files. Washington State videotapes were, however, accompanied by logs indicating the
locations and names of all cross-streets along each State route. Since ADT data for county and local
roads were not readily available, it was decided to note intersections of State roads found in the
videotapes and satisfying the same constraints as the Minnesota data. This was not done for all
Washington State videotapes, but only for ones being reviewed to extract data for the segment
sample. A total of 431 intersections were reviewed by this method.

The Washington State Department of Transportation provided a log of intersections for which it had
ADT data on the cross-streets. The intersections in this log were intersections on State roads together
with intersections in the Highway Performance Monitoring System. In addition, by inspecting HSIS
road files, the Project Team was able to match major and minor State roads in some other cases to
get ADT data. However, for some of the intersections no reliable estimate of cross-street ADT could
be obtained. In addition, inspection of videotapes showed that some of the intersections failed to
satisfy the intersection constraints imposed in Minnesota (e.g., they were not rural). When traffic,
alignment, and roadway data were assembled, and incomplete observations removed, the resulting
data sets, “opportunity” samples rather than a random samples, consisted of 181 three-legged
intersections and 90 four-legged intersections.

HOW DATA WERE COLLECTED

Data were extracted from HSIS data files for Minnesota and Washington, from photologs for
Minnesota and videotapes for Washington, and from construction plans at the Minnesota Department
of Transportation. In addition, weather data for the state of Minnesota were acquired from the
Midwest Climate Center. A number of small-scale investigations were also done that made use of
other data provided by personnel at the respective Departments of Transportation.

HSIS data are stored in SAS data bases. The needed data elements were extracted and assembled into
SAS data sets representing the study populations with identifiers for each population bin. Random
numbers were used to prepare SAS data sets representing the study samples (with the exception of
the Washington intersections). Other sample data were recorded manually on specially prepared data
sheets from photologs, videotapes, and plans. These were entered into SAS data sets that were
merged with the HSIS data to obtain the full sample data sets.
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Numerous data checks were done at each stage . Second and sometimes third viewings of photologs,
videotapes, and plans occurred, as well as consistency checks on SAS data base entries and some
checks on the HSIS files themselves. Variables such as Roadside Hazard Rating were determined
by two and sometimes three different individuals to minimize subjectivity.

HSIS Data

Accident data, traffic data, vertical and horizontal alignment data for Washington State, and other
geometric data were extracted from HSIS files. These data were used in part to constrain the
populations so that segments were on two-lane paved rural roads where segment lengths, surface
widths, shoulder widths, ADT, and commercial ADT fell within prescribed ranges, while intersection
geometries were three-legged or four-legged with all legs two-lane and two-way rural roads.

The data elements for the samples are those shown in Table 1. In the case of Washington State
vertical and horizontal alignment data were obtained from HSIS files, but for Minnesota they were
obtained from construction plans.

Minnesota Photologs

Photologs for the State of Minnesota were examined at FHWA'’s Turner-Fairbank Highway Research
Center. In some cases photologs were not available at FHWA, but were found and examined at the
Minnesota Department of Transportation (MNDOT) in Saint Paul, Minnesota. The photologs were
used to verify HSIS data (e.g., rural environment, two lanes, stop sign on minor road), to determine
Roadside Hazard Rating, to count driveways and intersections within a segment, to determine
channelization at intersections, and to note posted regulatory and advisory speeds when seen.

Minnesota Construction Plans

Construction plans obtained in the Plan Office of MNDOT provided horizontal and vertical alignment
data as well as the angle between legs at intersections. Location of plans was an arduous task,
requiring that true beginning and ending mileposts of a segment or reference point of an intersection
be matched up to the correct stations, that a control section be determined from a separate book, that
a card file of projects by segment be consulted to discover any projects and project numbers, and then
that the corresponding project plan sheets be recovered and verified. Plans were then copied and
were examined in detail at a later time.

Washington Videotapes

Videotapes for the State of Washington’s roadways were purchased from the Washington Department
of Transportation and were reviewed at PRAGMATICS. Like the Minnesota photologs, the video
tapes were used to verify the correctness of the HSIS data and to obtain Roadside Hazard Rating,
speeds, numbers of driveways, and channelization. In addition, they were used to estimate the angle
between legs at an intersection.
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Weather Data

Weather data were acquired for Minnesota intersections. The Midwestern Climate Center (MCC) in
Illinois provided a listing of the nine Climate Districts in Minnesota, each of which is relatively
homogeneous in its weather conditions. Weather data for each District are available based on
averages of reports from local weather stations, many of which are run by volunteers. In Northern
Minnesota the stations are sparser than elsewhere in the State. The percentages of dry, wet,
snow/slush, and ice/pack snow days, respectively, for each year from 1985 to 1989 by Climate
District were provided at a nominal charge. PRAGMATICS, Inc. staff attached these to segments and
intersections falling within the corresponding Climate District.

Modeling of the Minnesota data did not show the weather to be significant, possibly because the
weather variable could not be localized to a level below the Climate District. Consequently, weather
data were not acquired for Washington State.

Miscellaneous Investigations

Aerial photographs were consulted in both Minnesota and Washington for possible use in estimating
horizontal alignment, intersection angles, and intersection channelization. The Photogrammetric Unit
of MNDOT provided contact prints for 12 out of 20 requested intersections at a scale of 1" = 100';
the other eight were not available. Washington State provided a few sample prints of aerial
photographs at a scale of 1" = 2,000". Curvatures and angles could be readily made out from the
Washington photos, but channelization at intersections was not readily ascertainable. Since the
information could be obtained in other ways, not all intersections and segments were available in
aerial photographs, and the cost was high in Washington State, it was decided not to acquire such
photos for the full samples.

Minnesota has nine Highway Districts. Each Highway District Office was queried for information
about a sample of intersections (channelization installation dates, age of stop signs on minor roads).
Age of stop signs is thought to be related to reflectivity and visibility. All nine Districts responded
and provided some information, including sketches of the intersections. In all cases the
channelization (turning and/or acceleration lanes) was installed prior to 1985, but exact installation
dates were not available. Likewise the dates of stop sign installations were not generally available,
but the District Offices indicated that stop signs were replaced on a 10-year schedule.

Queries were also made in Minnesota about traffic data and commercial traffic data, as well as the

availability of traffic data on county roads, and in both Minnesota and Washington about
underreporting of accidents. Results are reported below.
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TABLE 1. Variables collected in the study

MINNESOTA SEGMENTS

m_sysnbr Route number HSIS

true_beg true beg. milepost miles HSIS
Identifiers | trye end true end milepost miles HSIS

beg sta beg. station hundreds of feet Plans

end sta end station hundreds of feet Plans
Traffic ADT average daily traffic vehicles per day HSIS

com_avg average daily heavy vehicle traffic | vehicles per day HSIS

LW lane width feet HSIS

SHW shoulder width feet HSIS

RHR Roadside Hazard Rating 1,2,3,4,5,6,7 Photologs
Miscel-
laneous nodrwy, number of driveways, number of Photologs

noint intersections

shl _typ shoulder type HSIS

light yes or no if li'ghting/no lighting Photologs

terrain flat, rolling, or mountainous Photologs
Weather dd, wd, ss, ips | number of dry, wet, snow/slush, days per year MCC

ice\packsnow days

pc{i} beg. station of curve no. 1 hundreds of feet Plans
Horizontal pt{i} end station of curve no. 1 hundreds of feet Plans
alignment | DEG{j} degree of curve, curve no. i degrees per 100 ft | Plans

dir{i} direction, left or right, curve no. 1 Plans

b{i} beg. station of curve no. 1 hundreds of feet Plans
Vertical ) ) ) hundreds of f Pl
alignment e{i} end station of curve no. i undreds of feet ans

g{i} grade no. i (prior to curve no. 1) percent Plans

Variables explicitly used in models are in capital letters; 1 mi=1.61 km, 1 ft=0.3048 m
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TABLE 1. Variables collected in the study (continued)

MINNESOTA SEGMENTS, continued
M
Variable Meaning Units Source
advspd advisory speed miles per hour Photologs
Speed regspd regulatory speed miles per hour Photologs
speed posted speed (accident sites only) miles per hour HSIS
TOTACC total number of non-intersection HSIS
accidents in 1985-9, 1990-3
fatal, no. of fatal, injury, HSIS
injury, non-incapacitating, possible injury,
nonincap, injury unknown, and property
Accident possinj, damage only non-intersection
data injunk, accidents
propdam
rearend, no. of rearend, sideswipe, left turn, HSIS
sswipe, run-off-road left, right angle, right
leftturn, turn, run-off-road right, headon,
rorleft, sideswipe opposite, other, and type
rtangle, unknown accidents
riteturn,
rorright,
headon,
SSwipopp,
other,
unknown

1 mi=1.61 km

29




TABLE 1. Variables collected in the study (continued)

I MINNESOTA THREE-LEGGED AND FOUR-LEGGED INTERSECTIONS l

Variable Meaning Units Source
int synb | Route number HSIS
Identifiers | refpnt nominal milepost of intersection miles HSIS
center
true sta | station of intersection center hundreds of feet | Plans
intl average daily traffic on major road vehicles per day | HSIS
Traffi
ratie int2 average daily traffic on minor road vehicles per day | HSIS
RHRI Roadside Hazard Rating within £250 1,2,3,4,5, 6,7} Photologs
ft on major road
Miscel- ND number of driveways within +250 ft Photologs
laneous on major road
light yes or no if lighting or no lighting Photologs
terrain flat, rolling, or mountainous Photologs
Weather dd, wd, number of dry, wet, snow/slush, days per year MCC
ss, 1ps ice\packsnow days
pcii} beg. station of curve no. i (if any hundreds of feet | Plans
portion of curve is within £764 ft of
Horizontal intersection center along major road)
alignment ] ) .
on major pt{i} end station, curve no. i hundreds of feet | Plans
road DEG{i} | degree of curve, curve no. i degrees per Plans
hundred feet
dir{i} direction, left or right, curve no. i Plans
b{i} beg. station of curve no. i (if any hundreds of feet | Plans
portion of curve is within +764 ft of
Vertical intersection center along major road)
alignment
ongmaj or e{i} end station of curve no. i hundreds of feet | Plans
road
g{i} grade no. i (prior to curve no. i) percent Plans

1 mi=1.61km,!1 ft=0.3048 m
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TABLE 1. Variables collected in the study (continued)

MINNESOTA THREE-LEGGED AND FOUR-LEGGED INTERSECTIONS,
continued
Variable | Meaning Units Source
advspd advisory speed miles per hour | Photologs
Speed on ]
major road regspd regulatory speed miles per hour | Photologs
ap_spd posted approach speed, both legs miles per hour | HSIS
TOTACC | number of intersection accidents or HSIS
intersection-related accidents
occurring within £250 feet of
intersection on major road during
1985-1989, 1990-93
fatal, no. of fatal, injury, HSIS
injury, non-incapacitating, possible injury,
nonincap, | injury unknown, and property
possinj, damage only accidents
Accident injunk,
data propdam
rearend, no. of rearend, sideswipe, left turn, HSIS
sswipe, run-off-road left, right angle, right
leftturn, turn, run-off-road right, headon,
rorleft, sideswipe opposite, other, and type
rtangle, unknown accidents
riteturn,
rorright,
headon,
sswipopp,
other,
unknown

1 mi=1.61 km
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Angle

TABLE 1. Variables collected in the study (continued)

Variable

angle

Meaning

angle between increasing direction of
major road and third leg

MINNESOTA THREE-LEGGED INTERSECTIONS ONLY

Units

Sttt — T ————— A ————————————————————————

degrees

Source

Plans

dir_ang

direction of third leg (left or right ) from
increasing dir. of major road

Plans

Channel-
1zation

timl

yes or no whether a right turn lane does
or does not exist on major road

Photologs

tlcs

yes or no whether a right
turn/acceleration lane does or does not
exist on the minor road

Photologs

bypass

yes or no whether a bypass lane does or
does not exist on the major road
(opposite the minor road)

Photologs

MINNES

OTA FOUR-LEGGED INTERSECTIONS

ONLY

Angle

1 angle

angle between increasing direction of
major road and left leg of minor

degrees

Plans

r_angle

angle between increasing direction of
major road and right leg of minor

degrees

Plans

Channel-
1zation

timl1

yes or no whether a right turn lane does
or does not exist along increasing
direction of major road

Photologs

timl2

yes or no whether a right turn lane does
or does not exist along decreasing
direction of major road

Photologs

1 tles

yes or no whether a right
turn/acceleration lane does or does not
exist on the left leg of the minor road

Photologs

r_tlcs

yes or no whether a right
turn/acceleration lane does or does not
exist on the right leg of the minor road

Photologs
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TABLE 1. Variables collected in the study (continued)

WASHINGTON SEGMENTS
Variable Meaning Units Source
#
rte_nbr Route number HSIS
Identifiers begmp beg. milepost miles HSIS
endmp end milepost miles HSIS
Traffic ADT average daily traffic vehicles per day | HSIS
com_avg | average daily heavy vehicle traffic | vehicles per day | HSIS
LW lane width feet HSIS
SHW shoulder width feet HSIS
Miscel. RHR Roadside Hazard Rating 1,2,3,4,5,6,7 | Photologs
laneous nodrwy number of driveways Photologs
noint number of intersections Photologs
light yes or no if lighting or no lighting Photologs
terrain flat, rolling, or mountainous Photologs
pc{i} beg. milepost of curve no. i miles HSIS
Horizontal pt{i} end milepost of curve no. 1 miles HSIS
alignment | raq(j} radius of curve, curve no. i feet HSIS
dir{i} direction, left or right, curve no. i HSIS
b{i} beg. milepost of curve no. i miles HSIS
Vertical i . . .
alignment e{i} end milepost of curve no. 1 miles HSIS
g{i} incoming grade no. i percent HSIS
h{i} outgoing grade no. 1 percent HSIS

1 mi=1.61km,1ft=0.3048m
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TABLE 1. Variables collected in the study (continued)

WASHINGTON SEGMENTS, continued

Variable Meaning Units Source
advspd advisory speed miles per hour Photologs
regspd regulatory speed miles per hour Photologs
Speed spd_limt posted speed miles per hour HSIS
hspd{i} speed on horizontal curve no. i miles per hour HSIS
vspd{i} speed on vertical curve no. i miles per hour HSIS
TOTACC total number of non-intersection HSIS
accidents in 1993-5
fatal, no. of fatal, injury, HSIS
Accident | yury, non-incapacitating, possible injury,
data nonincap, injury unknown, and property
possinj, damage only non-intersection
injunk, accidents
propdam
RORACC number of run-off-road accidents HSIS

1 mi=1.61 km
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TABLE 1. Variables collected in the study (continued)

WASHINGTON THREE-LEGGED AND FOUR-LEGGED INTERSECTIONS

Variable
rte_nbr Route number HSIS
Identifiers [arm accumulated milepost of intersection | miles HSIS
center
ADTI1 average daily traffic on major road vehicles per day | HSIS
Traffic
ADT2 average daily traffic on minor road vehicles per day | HSIS
RHRI Roadside Hazard Rating within £250 | 1,2, 3,4, 5, 6, 7| Photologs
ft on major road
Miscel- ND number of driveways within 250 ft Photologs
laneous on major road
light yes or no if lighting or no lighting Photologs
terrain flat, rolling, or mountainous Photologs
pe{i} beg. milepost of horizontal curve no. i | miles HSIS
(if any portion of curve is within £764
Horizontal ft of intersection center along major
alignment road)
on major ) ) . .
road pt{i} end milepost, curve no. 1 miles HSIS
rad{i} radius of curve, curve no. i feet HSIS
| dir{i} direction, left or right, curve no. i HSIS
b{i} beg. milepost of vertical curve no. i (if | miles HSIS
any portion of curve is within £764 ft
Vertical of intersection center along major
alignment road)
on major
road ! e{i} end milepost of vertical curve no. 1 miles HSIS
g{i} grade no. 1 percent HSIS

1 mi=1.61km, 1 ft=0.3048 m




TABLE 1. Variables collected in the study (continued)

WASHINGTON THREE-LEGGED AND FOUR-LEGGED
INTERSECTION, continued
Variable Meaning Units Source
evvemrere————
advspd advisory speed miles per hour Photologs
Speed on | )
major road regspd regulatory speed miles per hour Photologs
ap_spd posted approach speed miles per hour HSIS
TOTACC | number of intersection accidents or HSIS
intersection-related accidents
occurring within £250 feet of
intersection on major road during
1985-9, 1990-3
| fatal, no. of fatal, injury, HSIS
injury, non-incapacitating, possible injury,
nonincap, | injury unknown, and property
possinj, damage only accidents
Accident injunk,
data propdam
rearend, no. of rearend, sideswipe, left turn, HSIS
sswipe, run-off-road left, right angle, right
leftturn, turn, run-off-road right, headon,
rorleft, sideswipe opposite, other, and type
rtangle, unknown accidents
riteturn,
rorright,
headon,
SSwipopp,
other,
unknown
RORACC | number of run-off-road accidents HSIS

1 mi=1.61km
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TABLE 1. Variables collected in the study (continued)

I WASHINGTON THREE-LEGGED INTERSECTIONS ONLY

Variable

Angle

angle

Meaning

angle between increasing direction of
major road and third leg

Units

degrees

Source

Photologs

dir_ang

direction of third leg (left or right ) from
increasing dir. of major road

Photologs

Channel-
ization

timl

yes or no whether a right turn lane does
or does not exist on major road

Photologs

tles

yes or no whether a right
turn/acceleration lane does or does not
exist on the minor road

Photologs

bypass

yes or no whether a bypass lane does or
does not exist on the major road
(opposite the minor road)

Photologs

WASHINGTON FOUR-LEGGED INTERSECTIONS ONLY

Angle

1 angle

angle between increasing direction of
major road and left leg of minor

degrees

Photologs

r_angle

angle between increasing direction of
major road and right leg of minor

degrees

Photologs

Channel-
ization

tlmll

yes or no whether a right turn lane does
or does not exist along increasing
direction of major road

Photologs

timl2

yes or no whether a right turn lane does
or does not exist along decreasing
direction of major road

Photologs

1 tles

yes or no whether a right
turn/acceleration lane does or does not
exist on the left leg of the minor road

Photologs

r_tles

yes or no whether a right
turn/acceleration lane does or does not
exist on the right leg of the minor road

Photologs
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LIMITATIONS ON DATA QUALITY

As noted, numerous checks were performed on the data. Examples of such checks were repeated
reviews of plans and photologs, comparisons of values of multiple variables for consistency (for
example, radius of curvature versus degree of curve), use of computer programs to flag unusually
large values of variables, and to confirm that ordering was preserved (beginning milepost comes
earlier than end milepost for each curve). However, the accuracy of the data was limited by a
number of inherent factors discussed below.

Accident Data
Accident data were obtained from HSIS files.

Segment accidents were required to be “non-intersection” accidents, i.e., accidents that did not occur
at intersections and were not intersection related. Intersection accidents were accidents at
intersections in the database and all intersection-related accidents occurring within + 250 feet of an
intersection in the database. In the Minnesota data, a variable called “INTERSE” was used in the
segment database to exclude accidents with the values “intersection” or “intersection-related” and
in the intersection databases to include accidents with precisely these values. In Washington a
variable called “LLOC_TYPE” was used in the segment database to eliminate all accidents coded as:
at intersection and related, intersection related but not at intersection, at intersection but not related,
driveway within intersection. Likewise, “LOC_TYPE” was used to retain precisely these accidents
when they were within 250 feet of the intersection under study. Accidents occurring on the minor
road at an intersection approach were typically coded to the major road at the intersection.

Severities were also recorded for each accident, while accident types (run-off-road, etc.) were
recorded for Minnesota. In the case of Washington, accident types were not recorded since the
accident file has elaborate subcategories that differ significantly from those of Minnesota. An
exception was made in the case of run-off-road accidents. A Washington State variable called
“VIEVENT?2" in the HSIS file was used to estimate whether an accident was of run-off-road type:
If the accident was a single vehicle accident in which the vehicle struck an appurtenance or other
object, overturned, ran into a ditch or river or over an embankment (these are categories in the file),
it was taken to be a run-off-road accident.

Underreporting of accidents was a matter of some concern. In both States during the time periods
under consideration, accidents involving either injuries or property damage of $500 or more had to
be reported. In Minnesota the reporting threshold rose to $1,000 as of August 1, 1994. The amount
of any underreporting is a matter of speculation (one source in Minnesota thought there might be one
minor unreported accident for each reported one because accident-prone drivers wish to avoid both
penalties for intoxication and insurance premium increases).

The reliability of the reported accident characteristics depends on the acumen of the reporting officer

38



or official and witnesses as well as on the comparability of variables between the two States.
Traffic Data

The HSIS traffic variables in Table 1, ADT and com_avg, derive from Minnesota and Washington
traffic count data.

ADT data for the Minnesota segments appear to have been reliably estimated on a timely basis. Two
multi-year data sets, 1985-1987 and 1988-1989, and four annual data sets, 1990, 1991, 1992, and
1993, were available for this study. The traffic data in these sets seem to have been based on
measurements and calculations, e.g., interpolation and/or extrapolation both along roads and in time.
The HSIS Guidebook dated October 1993 notes that traffic data on major roads are collected on a
two-year cycle, and on minor rural roads on a four-year cycle, and that growth factors are applied for
the years in which measurements are not made.

According to MNDOT manual counts, including detailed classification of vehicle types, are done
at about a thousand sites around the State. In a manual count a person stands at the roadside and
counts and classifies every vehicle that passes over a 16-hour period (from 6 AMto 10 PMona
weekday). One hundred of the sites, the major ones, are counted every 2 years; and another 900
every 6 years. Every 2 years estimates are produced of ADT and commercial ADT throughout the
State. Count locations do not exist on every segment but are averaged from those of adjacent
segments along relatively homogeneous roads. A count might be done once in, say, 6 miles in some
places.

The vehicle types that are summarized under the variable com_avg in Table 1 are heavy vehicles,
defined as those with two or more axles and six or more tires. On roads with low traffic, about 25%
of the heavy vehicle traffic consists of five-axle semis, usually with 18 wheels; on roads with high
traffic about 75% is five-axle semis. A twin trailer (cab + tractor + trailer + another trailer) with
perhaps five or six axles, along with most three-axled trucks without tractors, would be counted as
a heavy vehicle but not a semi. The variable com_avg is thought not to be as accurate as ADT.

Minnesota intersection traffic data are somewhat less reliable than segment traffic data. The
intersection files from Minnesota give traffic counts for both the major and minor roads, along with
the year in which these data were acquired. Not only are the years quite variable from intersection
to intersection, varying from 1976 to 1992, but very few of them appear to have been updated
between the 1985-1989 time period files and the 1990-1993 time period files. Traffic counts had
been made only once in the years from 1987 to 1993 and annual files just repeated the value of an
earlier year. In other cases no traffic counts had been made since 1986 or earlier

In view of this unreliability, efforts were made to determine a growth rate factor that could be used
to update traffic counts to the time periods of interest. MNDOT personnel reported that population
growth rates did not relate in a simple fashion to traffic flow (so traffic counts on an intersection
could not be updated from one year to the next by a population growth multiplier). Sometimes
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traffic counts will be higher when new development and construction is going on and then will ease
off when the buildings and houses are occupied. A program was written to extract a growth rate by
least squares from traffic data for segments near the intersection and thereafter use the year of
intersection traffic count to extrapolate to an ADT for the years 1987 and mid-1991. The Minnesota
intersection traffic variables used in the modeling and validation below, ADT1 and ADT2, were
derived from intl and int2 by means of this program.

Washington State traffic data became available at a relatively late stage of this study but only for
segments and for some intersections along segments. The traffic data were based on upstream traffic
counts, but in some cases the count stations were rather far upstream, 10 or more miles. The Project
Team considered averaging a downstream count and an upstream count when the upstream count
was at a significant distance, but decided against it in order to maintain conformity with HSIS files.
The chief concern with these data, apart from the distance of count stations, is that routes, alternate
routes, and each half of certain divided highways have similar labels and considerable programming
is required to ensure that a count lies on a route of interest rather than a related one. According to
the HSIS Washington Guidebook, a small number of the count stations are permanent and a large
number of others are used for 72-hour counts every second or third year. The counts for com_avg
are considered to be less reliable than the overall counts, in part because they are based on fewer
stations. Washington State Department of Transportation personnel observed that the truck counts
are done on weekdays, that com_avg is based on this figure, and that it might be better to take the
weekday figure and add 10% to 20% to get the overall weekly value. It was also noted that the
percentage of truck traffic on a road can vary from 4% to 17% at different times of year, chiefly
because of seasonal variation in the nontruck traffic.

Alignment Data

Horizontal and vertical alignment data came from construction plans in the case of Minnesota and
from HSIS horizontal and vertical curve files in the case of Washington.

The Minnesota plans varied in age from a few years prior to 1985 to approximately 1920. Special
effort was made to determine that these plans showed the latest alignment or realignment and that
no realignment was done during the time periods under study. Nonetheless it is possible that some
roads were realigned and that plans were never conveyed to the Minnesota Plan Office. The Plan
Office plans are primarily Federal aid projects, and State and County aid projects sometimes do not
get recorded at the State Plan Office. In addition to location problems (discussed below), problems
sometimes arose because of illegibility of markings on the plan and inconsistencies between
alternative measures (e.g., radius versus degree of curve, or beginning and end of curve versus length
of curve) written on the plan. These were typically resolved by a judgment as to which number was
most plausible. A few horizontal curves had spiral transitions at beginnings and/or ends. These
were not recorded but a judgment was made as to a beginning and endpoint for a single idealized
horizontal curve. A very small fraction, 2% or less, of vertical curves were represented in the plans
as angle points, where the grade changes without a transition, typically a small change. Our initial
understanding was that no such transitions occurred on Minnesota major roads and these points were
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edited so that a transition curve of 50 feet was introduced. Later, visiting Minnesota engineers
reported that angle points do occasionally occur on main roads.

The Washington State alignment data were represented by a Horizontal Curve file and a Vertical
Curve file. Many segments and intersections were eliminated from the sample because of anomalies
in the values in these files, but the ones that remained also had minor anomalies. Because of
rounding errors in the original Washington data (not enough significant digits kept) some curves
appeared to overlap, and editing had to be done to restore plausible beginning and ending points for
curves. In addition in some cases there were small differences between the ending grade of one
vertical curve and the beginning grade of the next. When the intervening stretch was treated as a
straightaway during the modeling, its grade was taken to be the average of the two neighboring
grades. A few angle points occurred for both horizontal and vertical curves with small grade changes
or small angle change. Curve lengths were adjusted to 50 feet for these exceptional cases.

Location Uncertainties

Minnesota data compilation was hampered by the fact that HSIS files, Minnesota photologs, and
Minnesota construction plans use three different ways of measuring distance: true mileposts, nominal
mileposts, and control stations. HSIS variables begmp and endmp and true_beg and true_end refer
respectively to nominal beginning and ending mileposts and true beginning and ending distances of
segments. Both the Minnesota photologs and the Minnesota accident data are keyed to nominal
mileposts rather than true distances, and the primary usage of true_beg and true_end is to calculate
segment length. The milepost of an accident in the accident files is nominal rather than true distance,
and the tenths of a mile shown on Minnesota photologs are nominal mileposts not true distance.
This was confirmed by MNDOT personnel and by comparison of photologs with the Minnesota List-
Trumile-File for Trunk Highways. This latter book, a print-out of a file (our copy was dated
September 1, 1988) obtained in Minnesota, had a listing of all State highways along with reference
posts (i.e., nominal mileposts), true distances, and control stations, most of the entries effective as
of 1977 (but with some updates as recent as 1983).

Control stations, used in the construction plans, are local numbers, in hundreds of feet, and may be
equated to nominal mileposts by use of the just mentioned file. Many plans contain station
adjustments (places where a gap in the stations occurs) and converting back and forth between the
various units is an art. This conversion is especially difficult for intersections. The intersection
reference point, the nominal milepost of the intersection center, is sometimes not adequately tied to
construction plans or to features on the photologs: station numbers of nearby landmarks are
occasionally either wrong or absent, and interpolation adds a further source of error. Plans,
sometimes of ancient vintage, do not show an intersection or expected landmark, or else are
ambiguous (two or more intersections or landmarks shown in the plan are plausible candidates for
the sought after one). This is particularly true of three-legged intersections since these are the least
well-marked, least documented, and least significant data class.

Linking a particular intersection to its photolog and to a particular site on a plan involves a
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comparison among four different numbers: the reference point for the intersection, the distance
recorded on the photolog, the true distance recorded by the State, and the station number in the
construction plans. Sometimes discrepancies occur among these numbers: the intersection may be
at a slightly different point than expected in the photolog, or it may be several hundred feet away
from its expected location in the plan. When the plan does not show an intersection in the near
vicinity of the expected spot, an identifiable landmark must be found to verify locations and in some
cases this is quite difficult.

For Washington State data, distances are measured in ARM’s (accumulated route miles). The ARM
is a true milepost, used in all of the HSIS files: roadway, traffic, accident, and alignment. Only the
videotapes are in nominal mileposts, but a logbook permits unambiguous translation back and forth.
Discrepancies were rare, perhaps because Washington Department of Transportation personnel had
already resolved them. The only issue of concern was rounding errors, noted above.

A final caveat with respect to location concerns the accident data. MNDOT indicated that the
accident data reviewers attempt to locate a nearby physical feature mentioned in the police report.
They then determine the reference point for that feature and add an adjustment, typically a few
hundred feet, to get to the accident site. The reviewers aim to get within 50 feet of the true accident
site. They also assign a reliability code to their estimate.

Time Uncertainties

HSIS traffic and roadway data, the Minnesota construction plan data, and the photolog data are all
supposed to apply to the time intervals under consideration. Rural areas might be expected to change
more gradually than urban and suburban areas. However, some variables such as traffic data are
based on averages of discrete observations that may not be representative. Others, including
Minnesota intersection traffic data discussed above, may be out of date. Photolog years in Minnesota
vary from 1987 to 1990 and in Washington from 1993 to 1995; changes in the number of driveways,
speed limits, channelization, etc., may have occurred before or after the photolog was obtained.

For validation of the Minnesota model, 1990-1993 data were used. Since construction plans and
photologs for the new time period were unavailable, some variables could not be re-measured. So
it was assumed that these were generally unchanged.

Miscellaneous Limitations

Data acquired from the photologs were subject to various limitations. Minnesota photologs in reels
and CD-ROM’s offered a larger visual field than the videotapes acquired from Washington State.
On the other hand, the latter were accompanied by audio that indicated signage and roadside features
and gave the numbers on sometimes otherwise unreadable speed limit signs. The Washington voice-
over also provided intersecting street and route names and was accompanied by a written log. In
both cases some effort was required to verify that minor roads had stop signs, to determine
channelization, and to assess whether a driveway had been seen along the road. Driveways, for
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example, can sometimes be mistaken for footpaths. In addition, for Washington State the photologs
were used to estimate angle of intersection between major and minor roads, and limited visibility
along minor roads made this difficult.

Roadside Hazard Rating was determined from the photologs. Different observers would not always
agree on the value of this subjective variable (values of two, and sometimes three, independent
observers were averaged, and photologs were re-inspected in some cases). The hazard rating
sometimes varied substantially along a segment. With regard to intersections, it was more difficult
to arrive at values in the vicinity of Washington State intersections since the roadsides at these
intersections tended to be less rural than their Minnesota counterparts (small town streets rather than
country roads), and the proper rating to assign to a roadside business or residence was not always
evident.

Weather data collected by the Midwest Climate Center, as already noted, were limited by the fact
that they were not sufficiently local.

The treatment of intersections along a segment was not quite consistent between Minnesota and
Washington. In Minnesota very few segments began or ended at an intersection, and for the few that
did (thought to be less than 5%) no attempt was made to remove, say, 250 feet from the segment
and shorten it by omitting the intersection vicinity. In Washington most of the segments began
and/or ended with an intersection, and all such segments were shortened by removal of 250 feet at
each end where an intersection was encountered. On the other hand, no internal intersections were
removed from the segments in either State. In Washington 95% of the segments contained no
internal intersections, but in Minnesota more than half of the segments contained at least one
intersection. This means that in Minnesota accidents along segments are more likely to include
accidents that happened near intersections (although they would not be intersection-related or at an
intersection).

It should also be noted that some desirable variables were omitted from the study altogether, e.g.,
superelevations, alignments on minor roads, actual speeds, and sight distances. To some extent the
latter are represented in, or can be reconstructed from, horizontal and vertical alignment as well as
Roadside Hazard Rating, but a direct unambiguous measurement is lacking. Also excluded, of
course, are detailed information about drivers and vehicles on the road; accident circumstances such
as time of day, week, and year; and weather at the time and place of an accident. To some extent
demographic conditions such as ages of drivers and law enforcement practices are incorporated in
the STATE variable (see below).

SUMMARY
Minnesota and Washington State data were constrained to lie on rural two-lane roads with segment

length 0.1 miles or longer with both segments and intersections having reasonable bounds on ADT.
Other reasonable constraints were also imposed, including relatively complete and consistent data

43



for the time periods of interest. Many observations from the original populations were lost when
these constraints were imposed, but good-sized samples remained. The Washington intersection
samples, “opportunity” samples, were smaller than the other samples and it is not known how
representative they are of the population of Washington State intersections.

Data collected include: accident counts, exposure and ADT, lane and shoulder widths, Roadside
Hazard Rating, number of driveways, horizontal and vertical alignments, commercial traffic
percentage, weather (in Minnesota), intersection angles and channelization, and speed limits. These
data are often estimates based on averages and are subject to some uncertainties in location and time.
ADT’s are based on observations at selected sites, interpolation, and/or extrapolation, and are
particularly crude estimates in the case of intersections. In view of the importance of ADT in the
modeling, the crudity of these estimates should serve as a caution.

Driver and vehicle characteristics were not collected, nor were such design variables as sight
distances and minor road alignments.

Despite shortcomings in quality and completeness, the data obtained provide a relatively diverse and
comprehensive basis for analysis and modeling.
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4. ANALYSIS

To analyze the data acquired for the segments and intersections, a variety of new variables were
developed based on the originally collected variables. It has already been noted that the traffic
variables used for modeling the Minnesota intersections were obtained from the original variables
by applying growth factors from nearby segments. There was significant variation in the number and
size of vertical and horizontal curves from segment to segment and from one intersection to the next.
Thus aggregate variables were developed for vertical and horizontal alignment to summarize
alignment data and permit direct comparison of one observation with another. Other variables were
developed for such items as exposure, driveway density, and intersection density. A speed variable
was developed from the multiple speed variables collected.

For both the new variables and the old, univariate statistics were compiled showing their
distributions in each data set. In preparation for the modeling effort, bivariate comparisons were also
done to reveal correlations between variables and to clarify relationships among variables.

In this chapter we discuss the new variables and exhibit and review the univariate and bivariate
statistics for both old and new variables. See the Index of Variables, at the beginning of this report,
for a comprehensive listing of variables used in the modeling.

NEW VARIABLES
Accident Variables

Accident data for all data sets includes information on severities. So, in addition to the variable
TOTACC for all non-intersection accidents along a segment and all intersection accidents within 250
feet of an intersection, a variable, INJACC, excluding property damage only accidents was
introduced. INJACC counts fatal accidents and the various types of injury accidents (fatal + injury
+ non-incapacitating + possible injury). In the case of Minnesota some logistic modeling of
severities was also done to determine the probability that an accident is severe. This made use of
a severity variable Y defined on an accident database developed at the same time as the Minnesota
segment and intersection data sets. This variable had value 1 if an accident was in one of the first
two classes (fatal or injury) and value 0 otherwise (non-incapacitating, possible injury, or property
damage only).

Run-off-road accidents are described by the variable RORACC. In Minnesota this is the sum of
run-off-road left accidents and run-off-road right accidents. In Washington it was obtained indirectly
from the HSIS variable VIEVENT?2, as explained earlier.

Traffic Variables

A variable seg_Ing, representing segment length in miles, is used to develop an exposure variable
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EXPO for segments. Seg_Ing is obtained from true_beg and true_end in Minnesota and from
begmpr and endmpr in Washington data (begmpr and endmpr are begmp and endmp with 250 feet
removed if the segment begins or ends at an intersection). The variable EXPO is then given by:

ADT x 365 % (number of years in time period) x seg lng
10°

EXPO =

The units of EXPO are millions of vehicle-miles (MVM).

The Minnesota and Washington intersection traffic variables are ADT1 and ADT2. These represent
estimated average daily traffic on the major and minor road, respectively. As noted already, for
Minnesota these variables are derived by applying growth factors to the Minnesota traffic variables,
which tend to be somewhat out of date. In addition, a variable CINDEX, conflict index, is used for
Minnesota intersection accident severity modeling. CINDEX is defined to be the ratio of average
daily traffic entering the intersection from the minor road to average daily traffic entering the
intersection from both minor and major road. CINDEX is given by:

ADT?2

ADTI+ADT?2
(1/2)ADT2

ADTI+(1/2)ADT2

Jor four-legged intersections,
CINDEX

for three-legged intersections.

Commercial traffic is represented in both segment and intersection databases by the variable T:

100 x (com_avg)
ADT '

T =

Horizontal Alignment Variables

For horizontal curves DEG{i}, the degree of curve in degrees per hundred feet, is an important
variable. It was present in the Minnesota data, while in the Washington data it had to be computed
from the familiar formula:

18,000

DEG{i} = ————,
W T %X rad{i}

where the radius is in feet.
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Various criteria were considered to determine how horizontal curves that were not entirely within
a segment would be treated. One possible approach was to restrict attention to horizontal curves
whose midpoints lie in the segment. This possibility was explored. However, the approach
ultimately adopted was to regard a horizontal curve as eligible if any portion of it overlapped the
segment. Variables associated with individual eligible horizontal curves are:

length of portion of horizontal curve no. i within segment

WH{i}
seg Ing

and

whm{i} = length of horizontal curve no. i
seg Ingh ’

where seg_Ingh is the segment length increased by adding on any portions of horizontal curves that
fall outside the segment. These dimensionless weights are two different ways of taking into account
the fact that horizontal curves may lie partly inside a segment and partly outside (or can even
properly contain the segment). If two-thirds of the curve is inside, WH{i} has a numerator equal to
two-thirds the numerator of whm{i} while the latter has a denominator equal to the denominator of
WH{i} plus one-third the curve length plus lengths of portions of any other horizontal curve that lie
outside. These weights are intrinsically non-negative, summing to a number less than or equal to
1.

Although in the final model for segments the variable WH{i} appears explicitly and each horizontal
curve makes a separate contribution, in general the curves have to be aggregated in some fashion.
The following aggregate variables are used in some segment models:

H = ) WH{i} x DEG{i}
HMI = ) whm{i} x DEG{i}
HM15 = Y whm{i} x (DEG{i})"’
HM2 = Y whm{i} x (DEG{i})".

For the study of horizontal curves at intersections, each intersection was treated as a segment
extending + 250 feet along the major road from the intersection center or sometimes + 764 feet.
Two hundred fifty feet (or approximately 75 meters) is a typical length of an acceleration lane onto
the major road, while 764 feet (approximately 233 meters) is a typical distance required for a vehicle
turning onto a major road from a minor leg to achieve reasonable speed. Horizontal curves were
considered eligible if they met this artificial segment. Aggregate variables of the following form
were considered:
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Y DEG{i}
Number of horizontal curves overlapping intersection center +250 feet

Z, DEG{j}

Number of horizontal curves overlapping intersection center +764 feet

HI =

HEI =

where the sum is over the corresponding curves. HI and HEI (E for extended) are the unweighted
averages of the degrees of curvature of the corresponding curves.

Vertical Alignment Variables

Vertical alignment variables are subject to some of the same considerations as horizontal alignment
variables.

of j-th curve

FIGURE 3. A VERTICAL CURVE

A basic variable associated with each vertical curve is V{j}:

absolute value of change of grade at j-th vertical curve

vyy =
length I{j} of j—th vertical curve in hundreds of feet

with units of percent per hundred feet. Change of grade Ag{j} equals g{j} - g{j+1} for the
Minnesota data and g{j} - h{j} for the Washington data and 1{j} is the length of the curve in
hundreds of feet. Likewise a weight is associated with each individual curve that meets a segment,
namely WV{j}:

WV} length of portion of vertical curve no. j within segment

seg Ing

The aggregate variables VC, VM, VMC, and VMCC were used for segment models:
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vC = Y WV} x V{j}  (crests only)
, V) .
VM = ————— (all vertical curves)
seg_Ingv
Y, VU
VMC = ———— (crests only)
seg_Ingvc
>, Vi
yvmMcce = —W————— (crests of type I only)
seg_Ingvec

Crest curves are vertical curves for which the grade decreases (positive to negative, positive to less
positive, negative to more negative), and crests of type I are crests for which the grade changes
sign.®® The last three variables are unweighted averages of the V {j} variable, and their denominators
equal seg_Ing plus the length of portions of the corresponding curves that lie outside the segment.
The units of the denominators are miles. Variables for sag curves, for vertical curves with grade
increases, and for sags of type III (with sign change) were also considered separately in Minnesota,
but were not as significant as the crest variables.

For intersections three vertical variables were considered:

>,V

vcelr =
Number of vertical crest curves overlapping intersection center £250 feet
IR
Vi =
Number of vertical curves overlapping intersection center +250 feet
Y, Vi
VEI =

Number of vertical curves overlapping intersection center +764 feet

These sums are over the stipulated vertical curves, and hence VCI, VI, and VEI are unweighted
averages of V{j} for each type of curve.

Complementary to vertical curves are sections of uniform grade and these also were used in the
modeling for Minnesota and Washington segments. On such sections there is a constant absolute
grade GR{k}. In Minnesota this was readily obtainable, but in Washington there were cases where
h{k-1} and g{k} did not agree. Although other options were considered, for simplicity the segment
section from e{k-1} to b{k} was treated as if it were of uniform grade with absolute grade GR {k}

36 See the “Green Book,” A Policy on Geometric Design of Highways and Streets,
American Association of State Highway and Transportation Officials (AASHTO), Washington,
D.C., 1994, p. 281.
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= |(h{k-1}+g{k})/2|. Inaddition to GR{k}, each such section had a variable WG {k}:

length of portion of uniform grade section no. k within segment

WG{k}
seg_Ing

A composite variable GR was defined:

GR = Y WG{k} x GR{k} ,

where the sum is over all uniform grade sections overlapping with the segment.
Angle Variables

An angle variable DEV, representing the average deviation from 90°, was defined by:

langle - 90| if intersection is three-legged

DEV = |i_angle - 90|+]r_angle - 90|
2

if intersection is four—legged.

Two more angle variables are also used. DEV1S5 is a variable discovered empirically that seems to
be negatively correlated with accidents on four-legged intersections. Another intersection angle
variable considered in this study, suggested by E. Hauer, is HAU:

_ 2
DEVIS DEV - 15)
100
angle - 90 if dir_ang is right at a three-legged intersection
HAU 90 - angle if dir_ang is left at a three-legged intersection

r_angle - 1 _angle
2

at a four-legged intersection.

The variable HAU is a signed variable. See Figures 4 and 5 below. For a three-legged intersection
with the angle to the right of the increasing direction, HAU is positive when the angle is larger than
90°, as in 4(a), and HAU is negative when the angle is smaller than 90°, as in 4(b). If the angle is
to the left of the increasing direction (see Figure 5), 180° minus the angle becomes the new angle
and HAU is defined as ((180 - angle) - 90) = (90 - angle), as above. For four-legged intersections,
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as in 4(c), it is the average of the two three-legged values (and thus 90° cancels out). Figure 5
illustrates the calculation of HAU in a variety of cases. It is thought”’ that turns from the far lane of
the major road may be less accident prone in situation 4a) than in situation 4b), so that positive
values of HAU correspond to fewer accidents.

angle

Increasing
. Direction
Increasing sT0P
Direction angle /I\

/F STOP

b)

r_angle

1_angl ;/
/ Increasing
% Direction

T

©)

FIGURE 4. INTERSECTION ANGLE GEOMETRIES

’Kulmala, R., “Safety at Three- and Four-Arm Junctions: Development and Application
of Accident Prediction Models,” VTT Publication 233, Technical Research Centre of Finland,
Espoo, 1995.
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For 3-legged Intersections:
A. Minor road to right of major road in direction of increasing mileposts

0

» »
. 60
1350 90° /
HAU = angle - 90 HAU = angle - 90 HAU = angle - 90
=135-90 =90-90 =60-90
=0 =-30

=45
B. Minor road to left of major road in direction of increasing mileposts

4
115°

80° .- 90°

HAU =90 - angle HAU =90 - angle HAU = 90 - angle
=90-80 =90-90 =90-115
=10 =0 =-25

For 4-legged Intersections:
» -~
60°

N
80° .-}-..
] " 900 | 90°
\ aE 120° 7

=(r_angle - I_angle)/ 2

(minor rcad not straight)
HAU = (r_angle -i_angle}/ 2 HAU = (r_angle - 1_angle) / 2 HAU
=(110-80)/2 =(90-90)/2 = (60 -120) /2
= 15 =0 = -30

FIGURE 5. EXAMPLES OF CALCULATION OF THE ANGLE VARIABLE HAU
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Miscellaneous Variables

Some other segment variables included in the study are TOTWIDTH, DD, INTD, STATE, and SPD:

TOTWIDTH = 2 x (LW + SHW)
DD = nodrwy
seg Ing
INTD = noint
seg Ing
_ 0 if Minnesota
STATE = ( 1 if Washington
SPD = average speed along segment.

SPD is an amalgam of advisory and posted speeds seen on some roads together with HSIS speeds.
Advisory and regulatory speeds, if seen on photologs, were given preference. However, photolog
speeds were not collected for some Minnesota segments, were missing for others even when the
photolog was searched a few miles outside the segment, and had multiple values in some cases when
seen (i.e., changes in speed along a direction, different speeds in opposing directions, a difference
between regulatory and advisory speed). Minnesota HSIS speeds were for accident sites only (at the
same segment or a nearby one). For Washington data, a posted speed variable was obtained from
the HSIS roadway file, together with speeds for each horizontal and vertical curve from the HSIS
alignment files. Averaging these to achieve a single number could not be done without some
subjectivity.

Other intersection variables are RT and SPDI:

1 if one or more right turn lanes exist on the major road

RT
0 if no right turn lane exists on the major road

SPDI

average incoming speed at intersection along major road.

SPDI is an amalgam of mainline speeds observed at intersections, averaged by approach where
possible.

Finally, two weather variables NONDRYP and SNP were devised for use with the Minnesota data:

NONDRYP = fraction of nondry days in 1985-89
SNP = fraction of snow days in 1985-89.
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UNIVARIATE STATISTICS

Tables 2 through 7 indicate the behavior of the chief variables on the six data sets: segments, three-
legged intersections, and four-legged intersections in both Minnesota and Washington. It is
instructive to make comparisons among these tables and in the case of Minnesota to compare the
sample data with the population data in Appendix 1.

Minnesota versus Washington

Accidents tend to be more serious in Washington State than in Minnesota for segments and
intersections, and the accident rate (accidents per MVM) on segments is much higher in Washington
than in Minnesota. The accident rates appear to be comparable in the two States on intersections,
but this may be somewhat misleading since the conflict index is lower for Washington than
Minnesota. There also appears to be a higher percentage of run-off-road accidents in Washington.
(This may be due to the indirect method employed to count Washington run-off-road accidents.)

There is more traffic in Washington on segments and major intersection approaches, and a higher
density of driveways. Both of these suggest that the Washington data sets are less rural than those
of Minnesota. Annual exposure (MVM per year) is about the same on average in both States, and
this is accounted for by the fact that segment lengths are shorter on average in Washington.

Roadside Hazard Rating tends to be higher in Washington, with steeper grades. Washington
averages for horizontal and vertical alignment are the same as or higher than Minnesota’s, but
Washington tends to have fewer curves than Minnesota both on segments and in the vicinity of
intersections. This may reflect historical differences in highway design practice and/or in the
principles used to label roadway segments as segments. Likewise, Minnesota appears to have more
angular variation at intersections than Washington (perhaps due in part to data shortcomings), and
more turning lanes on the major road. Minnesota has wider shoulders than Washington, but
Washington has more that are paved. These differences may also reflect design considerations and
history.

Segments versus Intersections

Accidents at intersections tend to be more serious than those on segments, and accidents at
intersections are more frequent (if an intersection is regarded as a segment 500 feet long), other
things being equal. ADT rises as one goes from segments to major roads of three-legged
intersections to major roads of four-legged intersections. The tables also show that three-leggeds
tend to have more horizontal curvature than four-leggeds, but that vertical alignment tends to be
about the same in three-leggeds and four-leggeds.

Minnesota Sample versus Population

The Minnesota samples are quite comparable in the distribution of severities and the percentage of
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run-off-road accidents to their counterparts in the Minnesota populations represented in Appendix
1. With respect to segments, we can also compare ADT, commercial vehicle percentage, and lane
width and find that they are quite similar between the sample and the population. Shoulder width
and shoulder type between sample and population are also similar although there seems to be a slight
tendency for the population of segments to have less shoulder width (albeit more of it paved) than
the sample does.
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BIVARIATE STATISTICS

In this section tables are exhibited that indicate the correlation coefficient between accident count
and one other highway variable. A positive coefficient indicates that as the highway variable
increases accident counts do also; a negative coefficient indicates that as one variable increases the
other tends to decrease. When a relationship is pronounced significant in this discussion, it means
that the P-value is small (say, under 15%, and usually under 5%). The P-value is the probability that
the sample correlation would have the given magnitude or greater when the true correlation in the
population is zero. Thus significant relationships are ones that provide strong evidence that the two
variables are correlated on the population from which the sample comes.

A major limitation of bivariate statistics is that the relationship between one variable and another
may be masked or appear in a misleading light when a few especially influential variables such as
ADT are present and their effect is ignored. The effect of a geometric variable, for example, on
accidents when ADT is held constant is best revealed by the modeling to be discussed later since the
modeling attempts to assess the combined contributions of all variables. With this caveat, bivariate
statistics for accidents versus other variables are presented in Tables 8,9, and 10. In Tables 11, 12,
and 13 some of the significant correlations of highway variables with one another are also shown
(in qualitative form rather than quantitative).

Segment Accidents

The most pronounced correlations with accidents, applicable in both Minnesota and Washington,
are as follows:
positive correlation  negative correlation

EXPO T
ADT

SEG_LGN

RHR

GR

Horizontal and vertical alignment also correlate positively with accidents but are not consistently
significant. Some variables yield opposite signs from one State to the other, notably, lane and
shoulder width, each of which is negatively correlated with accidents in Minnesota and positively
in Washington. The consistent negative correlation of truck percentage suggests that trucks avoid
the most dangerous roads. The weather variables in Minnesota are not significant.

If the accidents are restricted to serious accidents or run-off-road accidents, the same relationships
persist with slight changes. The negative correlation of truck percentage is less significant. On the
other hand, for run-off-road accidents both horizontal alignment H and grade GR are more
significant.
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Three-legged Intersection Accidents
Accidents at three-legged intersections show the following relationships:

positive correlation

ADT1
ADT2
RT

Horizontal and vertical alignment or driveways nearby generally contribute positively to accident
counts but not in a consistently significant manner. Turning lanes are often installed at intersections
with high turning volumes and high accident counts, but it is not clear why a right turn lane on the
mainline would correlate positively with accidents while the conflict index would show much less
significance (in Minnesota). Bad weather is marginally significant at Minnesota three-leggeds.

Serious accidents and run-off-road accidents show the same pattern although major road ADT is not
significant for run-off-road accidents.

Four-legged Intersection Accidents

The significant correlations in this case are:

Positive correlation

ADTI1
ADT2
CINDEX

The Minnesota data, but not the Washington data, show expected dependencies on channelization,
alignment, Roadside Hazard Rating, number of driveways, as well as (weak) positive dependence
on bad weather.

Serious and run-off-road accidents behave likewise, but major road ADT is not significant for run-
off-road accidents.
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TABLE 8. Bivariate Statistics: Segment Accidents versus Other Variables

Estimated Correlation Coefficients and P-values
619 Minnesota Segments, 1985-1989 712 Washington Segments, 1993-1995
TOTACC INJACC RORACC TOTACC INJACC RORACC

EXPO

ADT

T
Truck %

SEG_LGN

LW
Lane width

SHW
Shoulder width

TOTWIDTH

RHR
Hazrat

DD
Drwyrate

INTD
Intrate

H
Hor

HM1
Adj. Hor

HM1.5
Adj. Hor to
1.5 power

HM2
Adj. Hor to
2nd power

0.76745 0.72472 0.60551 0.70743 0.64720 0.54719
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
0.27530 0.22595 0.11532 0.37440 0.36273 0.21071
0.0001 0.0001 0.0041 0.0001 0.0001 0.0001
-0.09217 -0.06136 -0.05460 -0.05653 -0.05478 -0.00644
0.0218 0.1273 0.1749 0.1319 0.1442 0.8638
0.44942 0.45724 0.48321 0.30915 0.27959 0.32665
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
-0.08012 -0.09321 -0.12262 0.02502 0.00689 0.02252
0.0463 0.0204 0.0022 0.5051 0.8545 0.5485
-0.10800 -0.10056 -0.18391 0.04740 0.02646 0.00250
0.0072 0.0123 0.0001 0.2065 0.4808 0.9469
-0.12749 -0.12374 -0.21336 0.05064 0.02668 0.00744
0.015 0.0020 0.0001 0.1771 0.4772 0.8429
0.20682 0.16669 0.21610 0.14740 0.11561 0.17778
0.0001 0.0001 0.0001 0.0001 0.0020 0.0001
-0.04493 -0.04191 -0.08898 0.04818 0.04837 -0.01197
0.2643 0.2978 0.0268 0.1991 0.1974 0.7499
-0.10648 -0.11133 -0.12677 -0.02564 0.00355 -0.00229
0.0080 0.0056 0.0016 0.4945 0.9247 0.9514
0.04330 0.04837 0.10057 0.09732 0.06497 0.14451
0.2821 0.2294 0.0123 0.0094 0.0832 0.0001
0.02686 0.03130 0.08140 0.07953 0.05023 0.12619
0.5048 0.4369 0.0429 0.0339 0.1807 0.0007
0.04812 0.05584 0.11233 0.06542 0.03098 0.09895
0.2319 0.1653 0.0049 0.0811 0.4092 0.0082
0.06678 0.08138 0.13349 0.04389 0.01040 0.06730
0.0969 0.0430 0.0009 0.2422 0.7817 0.0727
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TABLE 8.

Bivariate Statistics: Segment Accidents versus Other Variables (continued)

Estimated Correlation Coefficients and P-values
619 Minnesota Segments, 1985-1989 712 Washington Segments, 1993-1995
TOTACC INJACC RORACC TOTACC INJACC RORACC

vC
Crests

VM
Adj. Vert

VMC
Adj. Crests

VMCC
Adj. Crests
of Type I

GR
Abs. Grade

SPD
Speed

SNP
Snow %

NONDRYP
Nondry %

0.15054 0.11163 0.19049 0.00865 -0.00585 0.03563
0.0002 0.0054 0.0001 0.8178 0.8762 0.3425
0.17305 0.14311 0.25085 0.04373 0.03569 0.04593
0.0001 0.0004 0.0001 0.2438 0.3417 0.2209
0.16106 0.13484 0.23772 0.04929 0.03467 0.06381
0.0001 0.0008 0.0001 0.1890 0.3556 0.0889
0.12476 0.10869 0.19460 0.01097 -0.00574 0.04101
0.0019 0.0068 0.0001 0.7702 0.8784 0.2745
0.09618 0.04945 0.12483 0.07741 0.04929 0.11074
0.0167 0.2193 0.0019 0.0389 0.1889 0.0031
0.07167 0.06674 0.04099 -0.03082 -0.02020 -0.03805
0.0748 0.0971 0.3086 0.4116 0.5906 0.3106
-0.01842 0.02900 0.01945 not collected

0.6474 04714 0.6291

0.00181 0.04549 0.04124 not collected

0.9642 0.2584 0.3057
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TABLE 9. Bivariate Statistics: 3-Legged Intersection Accidents versus Other Variables

Estimated Correlation Coefficients and P-values

389 MN Intersections, 1985-1989

181 WA Intersections, 1993-1995

TOTACC INJACC RORACC TOTACC INJACC RORACC
ADTI1 0.52037 0.48556 0.22233 0.27304 0.28700 0.03473
0.0001 0.0001 0.0001 0.0002 0.0001 0.6425
ADT2 0.40714 0.36869 0.19482 0.41803 0.28528 0.22967
0.0001 0.0001 0.0001 0.0001 0.0001 0.0019
CINDEX 0.00491 -0.02749 0.10347 0.27266 0.19051 0.19287
0.9232 0.5888 0.0414 0.0002 0.0102 0.0093
DEV 0.07855 0.02930 0.04963 -0.05725 -0.06922 -0.07399
from 90° 0.1219 0.5645 0.3289 0.4440 0.3545 0.3222
DEVI1S 0.06977 0.02944 0.01872 -0.04358 -0.05515 -0.06044
Adj dev from 0.1696 0.5627 0.7128 0.5602 0.4609 0.4190
90°£15°
HAU 0.11514 0.10063 0.15847 -0.02998 -0.00162 0.01919
Signed dev 0.0231 0.0473 0.0017 0.6887 0.9828 0.7976
RHRI 0.13436 0.13260 0.01454 0.05133 0.00348 0.07482
Hazrat 0.0080 0.0088 0.7750 0.4926 0.9629 0.3168
ND 0.02207 0.03361 0.01447 0.10166 0.09845 -0.07505
No. Drwy £250 ft  0.6643 0.5087 0.7760 0.1733 0.1873 0.3153
Hi 0.07944 0.05850 0.15707 0.05174 0.01442 0.14196
Hor to £250 ft 0.1178 0.2497 0.0019 0.4891 0.8473 0.0566
HEI 0.09646 0.09223 0.19928 0.05586 0.04412 0.10672
Hor to £764 ft 0.0573 0.0692 0.0001 0.4551 0.5554 0.1527
VCI 0.03295 0.02387 -0.02423 -0.00235 0.01825 -0.00689
Creststo £250 ft  0.5171 0.6388 0.6338 0.9749 0.8073 0.9266
VI 0.09520 0.04164 0.07861 0.08123 0.06945 0.06602
Vert to £250 ft 0.0607 04128 0.1217 0.2770 0.3529 03772
VEI 0.02400 -0.01233 0.03026 0.12292 0.07211 0.05967
Vert to £764 ft 0.6369 0.8084 0.5519 0.0992 0.3347 0.4249
SPDI -0.07340 -0.07720 -0.039 -0.09219 -0.07893 0.02244
Speed 0.1485 0.1285 0.4320 0.2171 0.2909 0.7643
RT 0.23441 022678 0.10163 0.21566 0.15009 0.23483
Right turn lane 0.0001 0.0001 0.0451 0.0035 0.0437 0.0015
on major road
SNP 0.08129 0.08143 -0.02859
Snow % 0.1094 0.1088 0.5740 not collected
NONDRYP 0.08868 0.08400 -0.01188
Nondry % 0.0806 0.0981 0.8154 not collected

1 mile =1.61 km, 1 f£=.3048 m
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TABLE 10. Bivariate Statistics: 4-Legged Intersection Accidents versus Other Variables

Estimated Correlation Coefficients and P-values
327 Minnesota Intersections, 1985-1989; 90 Washington Intersections, 1993-1995

TOTACC INJACC RORACC TOTACC INJACC RORACC
ADTI1 0.54437 0.49973 0.40133 0.25595 0.24971 -0.01675
0.0001 0.0001 0.0001 0.0149 0.0176 0.8755
ADT2 0.61418 0.57735 0.27390 0.39618 033811 0.24331
0.0001 0.0001 0.0001 0.0001 0.0011 0.0208
CINDEX 0.13832 0.13583 -0.03482 0.24574 0.19834 0.30749
0.0123 0.0140 0.5303 0.0196 0.0609 0.0032
DEV -0.04303 -0.04538 -0.06918 0.06761 0.03049 -0.09349
from 90° 0.4380 0.4135 02122 0.5266 0.7754 0.3808
DEV15 -0.10460 -0.10775 -0.07555 -0.00113 -0.00299 -0.03156
Adj dev from 0.0588 0.0516 0.1729 0.9916 0.9777 0.7678
90°+15°
HAU -0.06632 -0.04573 -0.03414 0.09522 0.03804 0.03457
Signed dev 0.2317 0.4099 0.5384 0.3720 0.7219 0.7464
RHRI 0.10842 0.05967 0.13430 -0.16309 -0.16003 0.02006
Hazrat 0.0501 0.2820 0.0151 0.1246 0.1319 0.8511
ND 0.18270 0.14527 0.11849 0.03186 0.07011 -0.06316
No. Drwy 4250 ft  0.0009 0.0085 0.0322 0.7656 0.5114 0.5543
HI 0.16615 0.19496 0.12018 -0.20082 -0.20821 -0.10994
Hor to #£250 ft 0.0026 0.0004 0.0298 0.0577 0.0489 0.3023
HEI 0.17134 0.19274 0.11271 -0.15453 -0.14205 -0.06438
Hor to £764 ft 0.0019 0.0005 0.0417 0.1459 0.1817 0.5466
VCI 0.12097 0.09643 0.02668 0.02163 0.05819 -0.11022
Crests to £250 ft  0.0287 0.0816 0.6307 0.8397 0.5859 0.3011
VI 0.07644 0.03342 0.06234 -0.07992 -0.05111 -0.08611
Vert to 250 ft 0.1679 0.5470 0.2610 0.4540 0.6324 04197
VEIL 0.04494 0.00352 0.07422 -0.08297 -0.06621 -0.10088
Vert to 764 ft 0.4180 0.9495 0.1806 0.4369 0.5353 0.3441
SPDI -0.09505 -0.11989 -0.02332 0.09481 0.09333 0.22014
Speed 0.0861 0.0302 0.6744 0.3741 0.3816 0.0371
RT 0.21059 0.21229 0.07658 0.11450 0.09124 0.13312
Right turn lanes ~ 0.0001 0.0001 0.1671 0.2826 0.3924 02110
on major road
SNP 0.06533 0.08155 0.02198
Snow % 0.2387 0.1412 0.6922 not collected
NONDRYP 0.06827 0.08149 0.03825
Nondry % 0.2182 0.1415 0.4906 not collected

1 mile = 1.61 km, 1 ft=.3048 m
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TABLE 11. Correlations between Segment Variables in

MN and WA Samples
VARIABLE POSITIVE CORRELATES | NEGATIVE CORRELATES
ADT SHW, TOTWIDTH T, SEG_LGN
T SEG_LGN, SHW, ADT, SNP, NONDRYP
Truck % TOTWIDTH, SPD
SEG_LGN T, RHR, SPD, SNP, ADT, DD, INTD, SHW
NONDRYP
LW Lane width SPD
SHW Shoulder width ADT, T, SPD RHR, H, VC, GR
TOTWIDTH ADT, T, SPD RHR, H, VC, GR
RHR SEG_LGN, H, VC, GR, SHW, TOTWIDTH, SPD
Roadside Hazard Rating SNP, NONDRYP
DD Drwyrate INTD T, SEG_LGN, SPD
INTD Intrate DD SEG_LGN
H Hor RHR, VC, GR SEG_LGN, SHW,
TOTWIDTH, SPD
VC Crests RHR, H, GR T, TOTWIDTH, SPD
GR Absolute grade RHR, H, VC SHW, TOTWIDTH, SPD
SPD Speed T, SEG_LGN, LW, SHW, RHR, DD, H, VC, GR
TOTWIDTH
SNP, NONDRYP (MN only) | SEG_LGN, RHR, H T

NOTE: Segment length (SEG_LGN), Roadside Hazard Rating (RHR), Speed (SPD), and Truck
Percentage (T) show strong correlation with a large number of variables. Segment lengths tend to
be longer in rural areas and this accounts for the negative correlation with ADT, driveway density,
and intersection density. The Roadside Hazard Rating and Speed variables also show expected
correlates. The behavior of the Truck Percentage variable suggests that teamsters favor routes with
certain characteristics and/or that such routes are more likely to have commercial development

nearby.
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TABLE 12. Correlations between 3-Legged Intersection Variables in

MN and WA Samples
VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES
ADTI1 ADT2, ND, SNP, NONDRYP | CINDEX, SPDI
ADT2 ADTI1, CINDEX, ND, HL, RT | SPDI
CINDEX ADT2, HI ADTI1, SPDI, SNP,
NONDRYP

DEV from 90° RHRI
RHRI Roadside Hazard DEV, HI, VI
Rating
ND No. of Drwys + 250 ft 'ADT1, ADT?2, HEL SNP, SPDI

NONDRYP
HI Hor. to + 250 ft ADT?2, CINDEX, RHRI, VCI, | SPDI

VI, VEI
HEI Hor. to + 764 ft ADT2, CINDEX, RHRI, ND, | SPDI

VI, VEI
VCI Crests to + 250 ft HI, VI, VEI SPDI
VI Vert. to + 250 ft RHRI, HI, HEI, VCI, VEI SPDI
VEI Vert. to + 764 ft RHRI, HI, HEI, VCI, VI SPDI
SPDI Speed ADTI1, ADT2, CINDEX,

ND, HI, HEI, VCI, VI, VEI

RT Right Turn Lane on ADT2
Major Road
SNP, NONDRYP (MN only) | ADT1, ND CINDEX

I mile=1.61 km, 1 ft =.3048 m

NOTE: Perhaps the fact of chief interest in Table 12 (the 3-legged intersections) is the negative
correlation between posted speed and the other variables of interest. In Table 13 (the 4-legged
intersections) speed plays a similar role but not quite so marked.
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TABLE 13. Correlations between 4-Legged Intersection Variables in

MN and WA Samples
VARIABLE POSITIVE CORRELATES NEGATIVE CORRELATES
ADT1 ADT2,DEV, HI, SNP, CINDEX
NONDRYP
ADT2 ADTI1, CINDEX, RT
CINDEX ADT2,RT ADT1
DEV from 90° ADT1 SPDI
RHRI Roadside Hazard VI, VEI
Rating
ND No. of Drwys + 250 ft SNP, NONDRYP SPDI
HI Hor. to + 250 ft HEI, SNP, NONDRYP
HEI Hor. to + 764 ft HI, RT, SNP, NONDRYP SPDI
VCI Crests to +250 ft VI, VEI SPDI
VI Vert. to £ 250 ft RHRI, VCI, VEI
VEI Vert. to + 764 ft RHRI, VCI, VI SNP, NONDRYP
SPDI Speed DEV,ND
RT Right Turn Lanes on ADT?2, CINDEX, HEI
Major Road
SNP, NONDRYP (MN only) | ADT1, DEV, ND, HI. HEI VEI, SPDI

1 mile=1.61 km, 1 ft=.3048 m

Other Bivariate Relationships

Bivariate relationships between highway variables are also in evidence as might be expected. In
Tables 11, 12, and 13 above we indicate relationships in which the correlation coefficient has the
same sign in both Minnesota and Washington and the correlation is strongly significant in both
States (P-value typically less than 5%) or strongly significant in one State and moderately significant
in the other (P-value typically less than 15%). We omit obvious correlations (e.g., between different

vertical measures).

In the case of weather variables (SNP and NONDRYP) the correlation is for Minnesota data, the
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only State where weather data were collected. The weather variables show some surprising
correlations in the intersection samples. See Table 14 below. These correlations have no counter-

TABLE 14. Correlations between Weather and Minnesota Highway Variables

Correlation Minnesota 3-legged intersection Minnesota 4-legged intersection
coefficient and | sample sample
P-value

ADT1 ND ADTI ND
NONDRYP 21201, .0001 12608, .0128 12202, .0274 21916, .0001
SNP .19164, .0001 13523, .0076 09611, .0827 21555, .0001

parts in the segment data. The direct implication, however frivolous it may be, is that rural
intersections with high major road ADT or with nearby driveways tend to have more rain and snow
than other rural intersections. The correlation of weather with minor road ADT is not significant.

SUMMARY

A wide variety of variables have been introduced in this chapter to facilitate the modeling in the
next.

The summary univariate statistics for these variables (Tables 2 through 7) indicate that most of them
show a good range of values that will provide variation for the modeling. Exceptions are: lighting
along the segments (the vast majority have none), right turn/acceleration lanes on the minor legs of
intersections (most have none), and intersection angle deviation from 90° on Washington State
intersections. Most Washington intersection angles are 90°, perhaps in part because photolog
estimates had to be used in Washington State and are much cruder than those obtained from
Minnesota plans.

Bivariate statistics indicate that commercial traffic on two-lane segments correlates negatively with
accidents while surface width and lane width have unexpected effects in Washington State. Traffic
is the dominant variable for intersections, but the existence of a right turn lane on the major road
correlates positively with accidents on three-legged intersections.

Bivariate relationships between accident variables and highway variables should be interpreted with
caution: they may indicate that the highway variable correlates with a another influential highway
variable. Modeling with several variables simultaneously may permit greater insight into the relative
effects of different highway variables.
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5. MODELING

In this chapter the modeling effort is described. The chapter begins with a discussion of Poisson and
negative binomial modeling and goodness-of-fit measures. Then models are developed for the
Minnesota and Washington segments and the behavior of the variables is examined. We pass then
to an extended negative binomial model developed by Shaw-Pin Miaou that attempts to capture the
effect of variation along a roadway. In our case this can be applied to horizontal curvatures, vertical
curves, and straightaway grades along the segments. The extended negative binomial methodology
is applied to the Minnesota segments, to the Washington segments, and then jointly to the Combined
segments with a variable for the State. Thereafter Poisson and negative binomial models are
developed for the four intersection data sets and for the combined intersection data sets. Most of the
models attempt to represent the mean total number of accidents (TOTACC), but we also include a
few models of serious accidents (INJACC) as well. Finally logistic regression models for accident
severity are developed and evaluated.

POISSON AND NEGATIVE BINOMIAL MODELING TECHNIQUES

The Poisson and Negative Binomial Models

Poisson and negative binomial models, with parameters a generalized linear function of covariates,
are by now a well-accepted method of modeling discrete rare events such as roadway accidents. See
Miaou and Lum (1993).3% It is assumed that accidents occurring on a particular roadway or at a
particular intersection are independent of one another and that a certain mean number of accidents
per unit time is characteristic of the given site and of other sites with the same properties. The mean
itself is assumed to depend on highway variables. Since the mean must be greater than zero, it is
taken to have a generalized linear form given by:

p, = exp(By *+ X0 x;8) (5.1)

where 1, is the mean number of accidents to be expected at site number 1 in a given time period, X,
Xiy, -, Xip, are the values of the highway variables at site number i during that time period, and [3,,
B,, ..., B, are coefficients to be estimated by the modeling.

3 Miaou, S-P., and Lum, H., "Modeling Vehicle Accidents and Highway Geometric
Design Relationships," Accident Analysis and Prevention, 25(6): 689-709, 1993.
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In the Poisson distribution the variance in the number of accidents at a site is equal to the mean y;
The Poisson model takes the form:

exp(-p)(p)”
A

Py) =

where P(y;) is the probability of y; accidents at the given site. The negative binomial distribution

adds a quadratic term to the variance representing overdispersion. The negative binomial model
takes the form:

I'y.+>) 1
! Ky, , 1
Py) - :
o) " (1+Kll;) (1+Kll,-)

where K is the overdispersion parameter and the variance is:

p, + K@)

As pointed out by Dean and Lawless (1989)* the negative binomial allows for extra-Poisson
variation due to other variables not included in the model. Hauer et al. (1988) propose that y; is to
be regarded as the grand mean of a family of sites with the same highway variables x;;, each site
having Poisson-distributed accidents. If K equals 0, the negative binomial reduces to the Poisson
model. The larger the value of K the more variability there is in the data over and above that
associated with the mean y, .

The coefficients [; are estimated by maximizing the log-likelihood function L(B) for the Poisson
distribution:

LB) = Y, ¢og p,~p,-log y ). (5:2)

Here B = (B, B;s ----, By) is the vector of coefficients, y; is the observed accident count for segment

¥ Dean, C., and Lawless, J.F., "Tests for Detecting Overdispersion in Poisson Regression
Models," Journal of the American Statistical Association, 84 (406): 467-472, 1989.
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or intersection no. i, and , is given by (5.1). The value of B that maximizes (5.2) is the estimated
coefficient vector 3. The value of ; that it yields, denoted by y,, is the estimated mean accident
count.

For the negative binomial distribution the estimated coefficient vector and ¥; , along with an estimate
K for K, are obtained by maximizing L(B, K):

LB,K) =
3, (5% log(1+K7) - log(1+K) + yjogh, = (v+-Dlog(1+Kp) - logr)]

(5.3)

For convenience the same letters will often be used for both the parameters and their estimated
values, i.e., hats * will be omitted.

Model Evaluation - Overdispersion

A decision about whether the Poisson form is appropriate can be based on one of several statistics.
Asnoted in SAS Technical Report P-243% the deviance of a model m is:

D™ =2 -L™

where Lf is the log-likelihood (5.2) that would be achieved if the model gave a perfect fit (w;=y; for
each i, and K = 0) and L™ is the log-likelihood (5.2 or 5.3) of the model under consideration (p;=
$.). If the latter model is correct, D™ is approximately a chi-squared random variable with degrees
of freedom equal to the number n of observations minus the number p of parameters.

A value of the deviance greatly in excess of n - p suggests that the model is overdispersed due to
missing variables and/or non-Poisson form. Thus when deviance divided by degrees of freedom

D™
rn-p

40 SAS Technical Report P243, SAS/STAT Software: The GENMOD Procedure, Release
6.09, SAS Institute Inc., Cary, North Carolina, 1993.
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is significantly larger than 1, overdispersion is indicated.

Likewise, the Pearson chi-square statistic, defined by
o, - 5
2 _ Vi i
o= ) )
Yi

is an approximately chi-squared random variable with mean n - p for a valid Poisson model. If

x2
h-p

is significantly larger than 1, overdispersion is also indicated.

On the assumption that the basic form of the model is correct, Dean and Lawless (1989) recommend
yet another statistic T, to test the hypothesis that the model is a Poisson model against the alternative
that it is overdispersed. When the null hypothesis K = 0 is true and the number of observations is
large, the statistic

_ Z,- ((y, _.}?,-)2 _J’,-)

2 Y, o)

is approximately a standard normal random variable. If T, is large positive, the hypothesis K =0
is rejected, the data are considered to be overdispersed, and a negative binomial model with K
positive is an alternative candidate model.

T

1

Model Evaluation - Goodness of Fit

In addition to a plausible basis for the underlying distributional assumptions, three important tests
 for an acceptable model are the following:

» The estimated regression coefficient for each covariate should be statistically significant, i.e.,
one should be able to reject the null hypothesis that the coefficient is zero;

» Engineering and intuitive judgments should be able to confirm the validity and practicality
of the sign and rough magnitude of each estimated coefficient; and
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* Goodness-of-fit measures and statistics, such as R-squared (the coefficient of determination),
the deviance, and the Pearson chi-square, should indicate that the variables do have
explanatory and predictive power.

The modeling of the data in this study was done using SAS and LIMDEP software. Along with
approximate maximum likelihood estimates for the regression coefficients, these software packages
yield estimates of the standard error for each coefficient. From these, P-values can be computed for
the null hypothesis that the true value of some regression coefficient is zero. The z-score of the
estimated coefficient is the estimated coefficient minus zero, divided by the estimated standard error.
The P-value is the probability that a normal random variable has an absolute value larger than the
z-score obtained. If the P-value is small, we have good evidence that the corresponding variable is
significant, that the difference between the coefficient estimate and zero arises not from chance but
from a systematic effect.

Goodness-of-fit measures associated with Poisson-type models have been introduced and reviewed
by Fridstrom et al. (1995)*' and Miaou (1996).%

The R-squared goodness-of-fit measures, used to estimate the percentage of variation explained by
a regression model, are somewhat controversial. Different R-squared measures may yield
substantially different answers, or even answers larger than 1, particularly for models that are not
linear. See the article of Kvalseth (1985).* Unti! recently, R-squared measures appropriate for
Poisson or negative binomial models had not been established. Fridstrem et al. (1995) developed
several alternative goodness-of-fit methodologies for generalized Poisson regression models. Four
of these approaches are used here to evaluate goodness-of-fit.

The first approach is based on the ordinary R-squared, or coefficient of determination, used in linear
regression models:

_ Zi (Vi_fi)z
E,' (.V,'_;)z

R? =1 (5.4)

41 Fridstrem, L., Ifver, J., Ingebrigsten, S., Kulmala R., and Thomsen L.K., "Measuring
the Contribution of Randomness, Exposure, Weather, and Daylight to the Variation in the Road
Accident Counts," Accident Analysis and Prevention, 27(1): 1-20, 1995.

2 Miaou, S-P., “Measuring the Goodness-of-Fit of Accident Prediction Models,” Federal
Highway Administration, Report No. FHWA-RD-96-040, Washington, D.C., 1996.

4 Kvalseth, T.0., “Cautionary Note About R%” The American Statistician, Amer. Stat.
Assoc., 39(4): 279-285, 1985.
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where

¥ = observed accident count for highway segment or intersection no. i
y = average accident count for the sample
Vi = estimated mean accident count for observation no. i

The numerator in the second term (of 5.4) is the variation not explained by the model. In a perfectly
specified and estimated Poisson model (variance equal to mean), the most that can be explained of
the given data is expected to be P?, where

Y. ¥,
P =1 - ——Lf’-‘—_-; . (5.5)
Zi (y,'_y)

The numerator in the second term (of 5.5) is unexplainable Poisson variation, random variation to
be expected when independent events of mean frequency ¥; occur. Thus, the scaled R-squared R,
is the proportion of potentially explainable systematic variation that can be explained from the causal
factors considered.

R} = = (5.6)

Two additional approaches of Fridstrem et al., the weighted R-squared and the Freeman-Tukey R-
squared, are similar. The weighted R-squared is the same as the ordinary R-squared except that the
sum-of-squares in both numerator and denominator is divided by the predicted mean y;. For the
weighted R-squared the counterparts of (5.4), (5.5), and (5.6) are:

—ay2
2’. (yi y;)

R =1 - Vi (5.7
E (yi—;)z

-

Vi
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2
Rpy = _’f
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(5.8)

(5.9)

where n is the total number of observations in the sample. If §; is the true mean for observation
number i and y, is a Poisson variable, then (y; - §,)/V(¥;) is a variable with mean zero and standard
deviation 1. Note that the numerator in (5.7) is the Pearson chi-square statistic for a Poisson model.

The Freeman-Tukey R-squared transforms the variable y; (assumed to be a Poisson variable with
mean ¥,) to one that is approximately normal. The counterparts of (5.4), (5.5), and (5.6) are:

> ér
Re' =1 - ——
Ei (fi_f)z
PFT2 =1 - L -
AN
2
R - Ry
PFT = 5
Prr

where
f = \/;1 + 1/yi + 1 = Freeman-Tukey transform of'y;

f = sample mean of f;

and é, =\/37,+‘ﬁ:i+1 - 49,41,
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The variable €, is approximately a standard normal random variable (at least for ¥, larger than 1).

The three measures introduced so far are strongly oriented toward Poisson models. Indeed because
they do not explicitly include an overdispersion parameter they seem inappropriate for negative
binomial models. But a fourth approach is tailored to the negative binomial.

The fourth approach, the Log-Likelihood R-squared, is based on the deviance D™ of the model.
Fridstrem et al. propose the following measures:

Dm
-k -1
R; =1 - (LT) (5.13)
n -2
D
_ 5.14
Pzz) -1 - (n ok) (5.14)
n -2
2
R - R, (5.15)
PD "~ "_2‘
P,

Here D° is the deviance of a model with only two parameters, the constant term (intercept) and the
overdispersion parameter; k is the number of parameters of the model m under consideration (not
including the overdispersion parameter in the model); and D" is the expected value of the deviance
in the case when a Poisson model with the same means ¥, as the model m is the correct one. Roughly
speaking, R,2 indicates how much explanatory power results from adding the highway characteristics
and R,,? represents this as a fraction of the highest possible expected explanatory power of any
model with the same means as m.

For negative binomial and Poisson models Fridstrom et al. regard R2, and Rj., with favor.
They express reservations about R ,3 and R ﬁW : the first of these, being unnormalized, will make
observations with large predicted means more influential, while the second tends to exaggerate the

estimation errors associated with small predicted means.

Yet another measure of goodness-of-fit, this one advocated by Miaou (1996), is based explicitly on
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the overdispersion parameter.

(5.16)

Here K is the overdispersion parameter estimated in the model, and K,,,, is the overdispersion
parameter estimated in the negative binomial model discussed above, namely, the model with only
a constant term and an overdispersion parameter. Based on simulations Miaou concluded that this
measure shows promise. It is simple to calculate, it yields a value between 0 and 1, it has the
proportionate increase property (Miaou proposes as a criterion that independent variables of equal
importance, when added to a model, increase the value of the measure by the same absolute amount
regardless of the order in which they are added), and it is independent of the choice of intercept term
in the model.

SEGMENT MODELS

In this section we develop models for segments. The models are of Poisson type, negative binomial
type, and extended negative binomial type. We discuss the choice of variables and explain the steps
that lead to the final models presented. The choice of variables to retain, and the form in which to
use them, are to some extent arbitrary since not all possibilities can be examined and some are more
or less equivalent. The decisions are guided by criteria of simplicity (use of variables that are easily
understood), comprehensiveness (inclusion of as many types of variables as possible), and
significance (coefficients that are significantly different from zero according to statistical tests in one
or more models). Many models can be generated, and we present here only a selection of models
that illustrate the main phenomena and/or show the significant interactions.

In general, we will exhibit a formula for the mean number of accidents on a segment as a generalized
linear function of highway variables. This formula will show the estimated coefficient of each
variable in the model. In addition, we show the estimated standard error of the coefficient estimate
and its P-value. The P-value is the probability that the estimated coefficient would have the value
shown or any value farther from zero when the true coefficient is zero. A P-value of less than 5%
is usually considered ample confirmation that the true coefficient is non-zero and that the estimated
coefficient is significant. Later on, for the intersection models, we will liberalize this criterion
considerably.

The State Variable
The STATE variable (value 0 for Minnesota, 1 for Washington) is used on all models that combine

the two States. In effect it allows the constant or intercept term in each State to be different while
constraining other coefficients to be the same. Including such a variable is equivalent to
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acknowledging that the accident experience of two different States is likely to be different on
segments with the same traffic volumes and same highway characteristics. The STATE variable
represents the demographics and habits of a different population of drivers in a different region and
perhaps at a different era. Law enforcement practices, driver ages, and life styles may be quite
different. Although the extra degree of freedom makes it easier to develop a combined model, it is
of some interest when the coefficient of the State variable is insignificant (as it is in a few of the
models below).

The Exposure Variable

For the segment modeling it is natural to include both segment length (seg_Ing) and ADT as
explanatory variables, and to expect that the number of accidents will be roughly proportional to the
product of these factors times the time in days (365 days per year times 5 years in Minnesota or 3
years in Washington). Poisson models in Minnesota (Table 15) support this rough proportionality.
If total number of accidents is modeled as a function of segment length and ADT, we obtain the
following:

TABLE 15. Minnesota Segments, Poisson Models with Exposure Variables
Mean No. of Accidents = 5x(365/10"3)xexp{-.3916 + 1.0150 LSEG + .9765 LADT}

Estimated standard error .0448  .0278 .0344
of coefficient estimates

P-value .0001  .0001 .0001

Mean No. of Accidents = EXPOxexp{-.3934 -.0040 AVGM}

Estimated standard error 0382 .0278

of coefficients estimates

P-value 0001 .6474
1 mile=1.61 km

where LSEG is the log of the segment length and LADT is the log of AVGM (ADT in 1000's of
vehicles per day). The Minnesota standard errors are consistent with the conclusion that the true
coefficients of LSEG and LADT are 1. The second model shows the effect of using EXPO as an
offset (i.e., as a multiplier) but retaining AVGM. The Minnesota data do not support the retention
of AVGM.

Similar tables for Washington State and the Combined data sets (Tables 16 and 17) indicate that
LSEG and LADT have coefficients near 1 but still significantly different from 1 since the estimated
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standard errors are small. Also, if EXPO is taken as an offset and AVGM is retained, the latter is
found to be significant. Although other choices could be made, the decision was made to use EXPO
as an offset and exclude segment length as a separate variable, with the expectation that additional
effects apparently due to segment length can be represented by other highway variables. AVGM was
retained in some runs, although, as will be seen, it was not significant in the final model.

TABLE 16. Washington Segments, Poisson Models with Exposure Variables

Mean No. of Accidents = 3x(365/10"3)xexp{.1606 + .9121 LSEG + .8918 LADT}

Estimated standard error 0462 .0310 .0299
of coefficient estimates

P-value .0001 .0001 .0001

Mean No. of Accidents = EXPOxexp{.1674 - .0269 AVGM}

Estimated standard error .0390 .0059
of coefficient estimates

P-value 0001 .0001
1 mile = 1.61 km

TABLE 17. Combined Segments, Poisson Models with Exposure Variables

Mean No. of Accidents
= (5 or 3)x(365/10"3)xexp{-.3282 + .9685 LSEG + .9296 LADT + .4450 STATE}

Estimated standard error 0346 .0206 0226 .0366
of coefficient estimates

P-value .0001 .0001 .0001 .0001

Mean No. of Accidents = EXPOxexp{ -.3405 -.0200 AVGM + .4719 STATE}

Estimated standard error 0291 .0049 .0357

of coefficient estimates

P-value 0001 .0001 .0001
1 mile =1.61 km
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Lane Width and Shoulder Width
Wider lanes and wider shoulders should lower accidents. If we add these two variables to the
Poisson models (Table 18), some notable differences are found between Minnesota and Washington.

The lane width variable is seen to be of unexpected sign and insignificant in the Washington data.

TABLE 18. Poisson Models of Segments with Lane and Surface Width

MINNESOTA

Mean No. of Accidents = EXPOxexp{3.2115 + .0202AVGM - .2501LW - .1183SHW}

Estimated standard 4172 .0089 0354 0104

error of coefficient

estimates

P-value 0001 .0222 .0001 .0001
WASHINGTON

Mean No of Accidents. = EXPOxexp{-.0093 - .0157AVGM +.0461LW - .0759SHW}

Estimated standard 5270 .0063 0464 .0110

error of coefficient

estimates

P-value 9860 .0123 .3201 .0001
COMBINED

Mean No.of Accidents

=EXPOxexp{1.5393 - .0079AVGM - .1117LW - .0915SHW + .2850STATE}

Estimated standard 3236 .0050 0277 .0075 .0606
error of coefficient

estimates

P-value .0001 .1108 .0001 .0001 .0001

1 mile=1.61km, 1 ft=.3048 m

In the last chapter we had already noted anomalies in the correlation between accidents and lane or
shoulder width in Washington. Several factors contribute to this situation. One of them is the direct
correlation between lane width and shoulder width that occurs in the Washington State data but not
the Minnesota data. The correlation coefficients are given by:
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Lane Width LW versus MINNESOTA WASHINGTON COMBINED

Shoulder Width SHW SEGMENTS SEGMENTS SEGMENTS
Correlation coefficient -.06313 11127 07047
P-value 1166 .0029 0101

The P-values are estimated probabilities that the correlation coefficient estimates would have the
values shown or values farther from zero if there were zero correlation between the variables on the
populations from which the data sets are samples. Minnesota lane widths and shoulder widths have
a slight but not especially significant negative correlation, while Washington lane widths and
shoulder widths have a significant positive correlation. This is also reflected when we consider
univariate statistics for LW, SHW, and TOTWIDTH:

State  Variable Min Max Median  Mean
MN Lane Width LW 10 12 12 11.54
Shoulder Width SHW 0 12 8 7.08
TOTWIDTH 20 48 38 37.22
WA Lane Width LW 9 12 11 11.37
Shoulder Width SHW 0 10 5 5.01
TOTWIDTH 18 44 32 32.77
1ft=.3048m

Another relevant fact is the shoulder composition in each State:

MINNESOTA SHOULDERS WASHINGTON SHOULDERS
mixed bituminous 243 39.3% asphalt 402 56.5%
gravel or stone 335 54.1%  bituminous 230 32.3%
composite 34 55% gravel 72 10.1%
sod 5 8% curb 1 1%
missing 2 3%  missing 7 1.0%
619  100.0% 712 100.0%

Washington shoulders tend to resemble the road surface more than Minnesota shoulders.

This suggests the possibility that a more appropriate variable than either lane width or shoulder
width might be the variable TOTWIDTH, total width of road and shoulders. When the shoulder is
paved, drivers may not make as much of a distinction between it and the road, and the combined
width may be the only important variable. When variables are dependent, it is sometimes useful to
replace them with one significant combination. Against this it can be argued that lane width and
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shoulder width have different types of effects on accidents and that it is inappropriate to treat them
as one additive variable. Indeed, in the final models we do not.

Table 19 exhibits some models with only TOTWIDTH.

TABLE 19. Poisson Models of Segments with TOTWIDTH
MINNESOTA

Mean No. of Accidents = EXPOxexp{1.7994 + .0152AVGM - .0614TOTWIDTH}

Estimated standard 1828 .0087 0051

error of coefficient

estimates

P-value .0001 .0816 .0001
WASHINGTON

Mean No. of Accidents = EXPOxexp{1.2141 - .0192AVGM - .0324TOTWIDTH}

Estimated standard 1649 .0061 .0050

error of coefficient

estimates

P-value .0001 .0015 .0001
COMBINED

Mean No of Accidents
= EXPOxexp{1.3310 - .0078AVGM - .0464TOTWIDTH + .2853STATE}

Estimated standard 1313 .0050 .0036 .0386

error of coefficient

estimates

P-value .0001 .1191 .0001 .0001
COMBINED (WITHOUT AVGM)

Mean No. of Accidents = EXPOxexp{1.3480 - .0476TOTWIDTH + .2650STATE}

Estimated standard ©.1309 .0035 .0365
error of coefficient

estimates

P-value .0001 .0001 .0001

1 mile=1.61 km, 1 ft=.3048 m
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Comparison of these models with those using LW and SHW suggests that replacing LW and SHW
by TOTWIDTH plus an adjusted intercept yields similar explanatory value. However, because of
the importance of these two geometric variables and the fact that in principle their values are
independent, we retain both variables to the extent possible. In a few runs below TOTWIDTH is
used instead to facilitate comparisons between the two States.

NOTE: Variables ACCRES = (Number of accidents minus predicted number from a Poisson model
not using lane width LW) and LWRES = (LW minus predicted LW from a regression model using
other highway variables) can be developed. Their correlation coefficients and associated P-values,
not reproduced here, confirm that in Minnesota lane width has a significant independent negative
effect on accident counts while in Washington lane width has an insignificant independent positive
effect on accident counts.

Horizontal and Vertical Curve Variables /

With the exception of the extended negative binomial models, in which individual horizontal and
vertical curves were modeled, the horizontal variables used in this study have been the composites
H, HM1, HM1.5, and HM2 and the vertical variables have been the composites VC, VM, VMC, and
VMCC. All of these variables were found to be highly significant.

The only oddity is shown in Table 20 below and concerns the joint effect of H (average horizontal
degree of curve) and VC (sum of crest % grade changes per hundred feet weighted by relative crest
curve lengths).

In Table 20 the coefficients of the vertical and horizontal variables differ substantially between the
two States and VC is insignificant in Washington with P-value .1854. If one replaces VC by VMC,
an alternative measure of crest curves that sums the crest % grade changes per hundred feet over all
crests and divides by segment length, the vertical variable becomes significant and its model
coefficient stabilizes somewhat (but the horizontal variable H still shows dramatic change in its
coefficient). See Table 21. There is of course strong correlation between the horizontal and vertical
variables in both States.

Segment Variables MINNESOTA WASHINGTON COMBINED
Horizontal Correlation  .21320 38635 33840
Measure H coefficient
Crest

‘ﬁ;‘;ﬁrer\e,sc P-value 0001 0001 0001
_ Horizontal Correlation  .26423 36362 32581
Measure H coefficient

versus Crest

Measure VMC P-value .0001 .0001 .0001
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It is possible that unimportant reweighting is occurring among variables that measure essentially

TABLE 20. Poisson Models of Segments with TOTWIDTH, H, and VC

MINNESOTA

Mean No.of Accidents = EXPOxexp{.9330 - .0422TOTWIDTH + .1849H + 1.6051VC}

Estimated standard .1983 .0052 .0248 2376

error of coefficient

estimates

P-value .0001 .0001 .0001 .0001
WASHINGTON

Mean No. of Accidents = EXPOxexp{.7692 - .0257TOTWIDTH + .0985H + .2596VC}

Estimated standard 1731 .0051 .0082 .1960

error of coefficient

estimates

P-value .0001 .00001 .0001 1854
COMBINED

Mean No.of Accidents

= EXPOxexp{.9169 - .0385TOTWIDTH + .0954H + .7770VC + .2387STATE}

Estimated standard .1344 .0036 .0077 .1345 .0370
error of coefficient

estimates

P-value .0001 .0001 .0001 .0001 .0001

I mile = 1.61 km, 1 ft=.3048 m

the same thing. In Washington 63.2% of the segments contain crest curves versus 83.5% of
Minnesota’s. However, the mean values of VC and VMC are higher in Washington and their
standard deviations are much higher. It is perhaps not surprising that there would be differences
between Washington and Minnesota in the coefficient estimates, but it is surprising that VC and
VMC behave differently in Washington. VMC roughly measures the number of crests per mile (if
one assumes that they all have about the same grade change per hundred feet), while VC measures
the average grade change per hundred feet and assigns zero grade change to portions where no crest
exists. VMC will be large if there are crests with large grade change per hundred feet, but VC will
damp these down if they occur over short lengths (because they will be weighted by length).
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Because vertical and horizontal alignment are in principle independent and both are very important,
we will retain both. We do this despite the fact that the correlation coefficients are considerably
larger and more significant than those between lane width and shoulder width in Washington (which

TABLE 21. Poisson Models of Segments with TOTWIDTH, H, and VMC

MINNESOTA

Mean No. of Accidents = EXPOxexp{.9039 - .0397TOTWIDTH + .1840H + .0544VMC}

Estimated standard 2027 .0054 .0248 .0081

error of coefficient

estimates

P-value .0001 .0001 .0001 .0001
WASHINGTON

Mean No. of Accidents = EXPOxexp{.6895 - .0240TOTWIDTH + .0926H + .0395VMC}

Estimated standard .1743 .0051 .0085 0094

error of coefficient

estimates

P-value .0001 .00001 .0001 .0001
COMBINED

Mean No. of Accidents
= EXPOxexp{.7478 - .0340TOTWIDTH + .0928H + .0538VMC + .2503STATE}

Estimated standard 1373 .0036 .0075 .0059 .0369
error of coefficient

estimates

P-value .0001 .0001 .0001 .0001 .0001

1 mile=1.61 km, 1 ft=.3048 m
led us to introduce the combined variable TOTWIDTH). But in some runs we replace VC with
VMC. The relationship between the vertical and horizontal measure will be reconsidered below
when we use the extended negative binomial model, which takes into account individual curves on
a segment.

Grade, Roadside Hazard Rating, Driveway Density, and Other Variables

Other variables systematically investigated in connection with model development include GR
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(average absolute straight-away grade), RHR (Roadside Hazard Rating), DD (driveway density),
SPD (speed), T (commercial traffic %), and INTD (intersection density). Weather variables
(NONDRYP and SNP) were also investigated in Minnesota.

The weather variables can be dismissed at once. Both NONDRYP and SNP had negative regression
coefficients in models and were not significant. A higher percentage of bad weather tends to
accompany a decreased number of accidents, but the P-values are large. In a few runs SNP is
marginally significant. Because the weather variable was not local but pertained to a large Weather
District in the State of Minnesota and because of its relative insignificance, it was dropped from the
modeling and was not collected in Washington State. See Shankar et al.* for a study of weather
variables in Washington State that indicates sufficiently local weather can be significant.

Among the remaining variables, SPD is not significant in either State nor in the combined data set.
This may in part reflect lack of variation in the speed data, as well as the quality of the speed data
(speeds were not collected on some segments, but were later reconstructed from HSIS files).

GR is very significant in both States. The other variables are significant in one State or the other
(but not both) and significant in the modeling of the combined data sets. One curiosity is that T has
a negative coefficient in Minnesota and is not significant, but has a significant positive coefficient
in Washington.

The P-values for these variables in Poisson runs on the combined data sets (with other variables LW,
SHW, H, VC, and STATE; and with EXPO as an offset variable) are:

VARIABLE P-value

GR .0001
RHR .0001
DD .0107
INTD 0563
T .0697
SPD 4118

Next we attempt to include combinations of these variables in a combined Poisson model for both
States. When this is done, GR and RHR do well, as do GR and DD, and GR and T. GR, RHR, and
DD do well together (although STATE gets a P-value of .1417 in this case); and GR, RHR, and

# Shankar, V., Mannering, F., and Barfield, W., “Effect of Roadway Geometrics and
Environmental Factors on Rural Freeway Accident Frequencies,” Accident Analysis and
Prevention, 27(3): 371-389, 1995.
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INTD do well together.

Thus it is certainly appropriate to include GR and RHR in the model and at least one other variable.
INTD measures intersection density. However, intersection accidents and intersection-related
accidents are excluded from the accident variable in the segment models. For this reason, any effect
of INTD will be indirect and INTD is not strictly comparable to DD (driveway density). This rules
out a sum of DD and INTD as a measure. If GR, RHR, DD, and INTD are all included in the model,
they have the respective P-values .0001, .0001, .0001, and .1863. We conclude that INTD does have
an independent effect distinct from that of DD, but not sufficiently significant to include in the
model.

The situation is similar with the commercial traffic variable T. It appears to be significant for the
combined data set, but not sufficiently — when other variables are present — for inclusion in the
model.

Table 22 shows resultant Poisson models for Minnesota and Washington. The anomalous behavior
of lane width and VC in Washington exhibited in Table 15 has already been discussed. However,
we should note the insignificance of Roadside Hazard Rating RHR in Minnesota. An interesting set
of correlations exists with a bearing on the insignificance of RHR in Minnesota and the peculiar
behavior of lane width LW in Washington.

Correlation coefficient and MINNESOTA WASHINGTON COMBINED

P-value SEGMENTS SEGMENTS SEGMENTS
Lane Width LW versus | -.01141,.7769  .11555, .0020 -.1202, .6613
Roadside Hazrat RHR '

Shoulder Width SHW versus  -.23729, .0001  -.14910, .0001 -.33705, .0001
Roadside Hazrat RHR
TOTWIDTH versus -.23563, .0001  -.11560, .0001 -.32559, .0001
Roadside Hazrat RHR

RHR in Minnesota has a mean of 2.14 and a standard deviation of .97, while in Washington its mean
is 3.67 and standard deviation 1.57. Roadside Hazard Rating is higher and more variable in
Washington State. The insignificance of RHR in Minnesota in part relates to the absence of
variation. The unexpected sign of the lane width coefficient in Washington likewise may be in part
due to its correlation with the quite variable magnitudes of RHR in Washington. When the data from
the two States are combined, this correlation becomes insignificant and the coefficients of LW and
RHR both attain more plausible values.

In Table 22 most coefficients for the combined model are intermediate between those of the two
States. The most prominent anomalies are the negative sign of lane width in Washington, the
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TABLE 22. Poisson Models for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables Minnesota Washington Combined
(offset = exposure EXPO) 1985-89 1993-95
Intercept 2.0693 -9719 .7064

(4371, .0001) (.5444, .0742) (.3290, .0318)
AVGM 0128 -.0210 -.0112
(ADT/1,000) (-0090, .1559) (.0067,.0017) (.0052, .0322)
Lane Width LW -.1994 .0678 -.0869

(.0359, .0001) (.0480, .1577) (.0280, .0001)
Shoulder Width SHW -.0792 -.0390 -.0599

(.0111,.0001) (-0117, .0008) (.0078, .0001)
Roadside Hazard Rating .0044 .0650 .0703
RHR (.0273, .8706) (.0171, .0001) (.0141, .0001)
Driveway Rate DD .0089 0119 .0095

(.0033, .0075) (.0023, .0001) (.0019, .0001)
Degree of Curve H 1363 .0783 0711

(.0283,.0001) (.0099, .0001) (.0089, .0001)
Crest VC 1.1905 2090 .6843

(.2634, .0001) (:2073, .3135) (.1455, .0001)
Absolute Grade GR 2459 0779 .1009

(.0598, .0001) (.0234, .0009) 1 (.0213,.0001)
State - - .0909

MN=0,WA=1)

(.0453, .0447)

n, p
D"/(n - p), x*/(n - p)

619,9
1.6827, 1.6596

712,9
1.6525,1.7179

1331, 10
1.7135, 1.7422

T,

13.55

12.04

22.71

R?, P2, R2

7379, .8890,.8300

6287, .8138,.7726

6611, .8610, .7778

2 2 2
RW: PW: RPW

.8300, .8960, .9263

7641, .8609, .8875

.7886, .8777, .8984

2 2 2
RFTa PFT’ RPFT

6426, .7609, .8446

.5846, .7049, .8293

5999, .7341, 8172
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TABLE 23. Additional Poisson Models for Segment Accidents
Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables Minnesota Washington Combined
(offset = exposure EXPO) 1985-89 1993-95
Intercept 2.1930 .0378 .7048
(.4438, .0001) (-2034, .8526) (.3293, .0323)
AVGM - -.0252 --
(ADT/1,000) (.0066, .0001)
Lane Width LW -.1856 TOTWIDTH -.0918
(.0350, .0001) (.0281, .0011)
-.0135
Shoulder Width SHW -.0757 -.0664
0054, .0116
(.0106, .0001) ( ) (.0077, .0001)
Roadside Hazard Rating -- .0726 .0662
RHR (.0169, .0001) (.0143, .0001)
Driveway Rate DD .0092 .0102 .0097
(.0033, .0050) (.0024, .0001) (.0019, .0001)
Degree of Curve H .1445 .0701 .0720
(.0278, .0001) (.0101, .0001) (.0089, .0001)
Crest VC in MN, Combined; | 1.2257 .0378 6999
VMC in WA (.2567, .0001) (.0101, .0002) (.1450, .0001)
Absolute Grade GR 2438 .0740 1077
(.0582, .0001) (.0235, .0016) (.0214, .0001)
SNP in MN; -.8851 - .0070
T in Combined (.5938, .1361) (.0029, .0153)
STATE - - .0418
(.0448, .3500)
n, p 619, 8 712, 8 1331, 10
D™/(n - p), x*/(n - p) 1.6796, 1.6361 1.6396, 1.6774 1.7126, 1.7592
T, 14.54 12.04 22.55
R, P2, R} 7297, .8890,.8208 | .6279, .8138,.7716 | .6607, .8610, .7673

2 2 2
RW: PW, RPW

.8290, .8941, .9272

.7685, .8604, .8932

.7909, .8803, .8985

2 2 2
RFT> PFTa RPFT

.6421, .7609, .8439

5859, .7049, .8311

.6006, .7341, .8182
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insignificance of Roadside Hazard Rating RHR in Minnesota, and the insignificance of the crest
variable VC in Washington.

Table 23 shows a few variant Poisson models with characteristics of special interest. In Table 23
the insignificant variables from Table 22 are removed and other variables are introduced. In
Minnesota AVGM and RHR have been removed, and SNP has been added (P-value =.1361). In
Washington TOTWIDTH has replaced LW and SHW, and VMC has replaced VC. Also in Table
23 the combined data set is presented without AVGM but with the addition of T. The variable T is
quite significant but STATE loses its significance (P-value = .3500).

Poisson versus Negative Binomial

For the models in Tables 22 and 23 the values of D™/(n - p), x*(n - p), and T, are computed, along
with several measures of goodness-of-fit. The goodness-of-fit measures indicate that the models
have a good deal of explanatory power. However, the other statistics in all cases strongly support
the conclusion that the data are overdispersed. In particular, the large values of T, establish this
decisively. The sources of the overdispersion are presumably segment characteristics not included
in the model. Some of these characteristics might be items not collected (e.g., sight distances,
superelevations, local weather) that are possible to collect, but others are items well outside the scope
of this study (e.g., driver characteristics).

Negative binomial models are a natural generalization of the Poisson that permit treatment of
overdispersion. Such models can be developed with the software package LIMDEP or by trial and
error with SAS and different choices of an overdispersion parameter. The negative binomial also
has the advantage of lending itself nicely to application of empirical Bayesian techniques when past
accident data are available at a site. An adjusted model can be developed with parameters partly
derived from the past data and partly from the given negative binomial model. The new model makes
use of the old but also allows the predictions of the old model to be tempered by actual experience
on the roadway. See Hauer et al. (1988).

The phenomena noted in the earlier Poisson models occur in the negative binomial setting: dif-
ferences between the behavior of AVGM, lane width LW, VC and VMC, and RHR from one State
to the other; and marginal significance of INTD and T. So the analysis is not repeated. In general
the estimated coefficients of variables are similar to what they were under the Poisson models.
However, we have an estimate for one additional parameter, the overdispersion parameter K.

Table 24 shows four representative negative binomial models. The overdispersion parameters vary
from 0.26 to 0.30. Variables that are omitted are not significant, and some that are retained are not
as well — notably, intercept in three of the models, AVGM, and VC in the combined data set (and
in Washington, not shown). AVGM is not at all significant in Minnesota, not very significant in
Washington, and intermediate in the combined data set. Lane width has the wrong sign in
Washington (not shown), and is less significant in the combined data set than it was in the Poisson
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TABLE 24. Negative Binomial Models for Segment Accidents
Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables Minnesota Washington Combined Combined
(offset = exposure 1985-89 1993-95 Variant
EXPO)
Intercept 1.9456 0358 .6883 4733
(.6992,.0054) | (2719, .8953) | (4779, .1492) | (.4796, .3356)
AVGM - -.0242 -.0109 --
(ADT/1,000) (.0137,.0787) | (.0107, .3067)
Lane Width LW -.1821 TOTWIDTH |{-.0857 -.0700
(.0573, .0015) (.0405, .0343) | (.0404, .0833)
. -.0127
Shoulder Width -.0800 (0071, .0720) -.0577 -.0569
SHW (.0158, .0001) (.0106, .0001) | (.0105, .0001)
Roadside Hazard - .0642 0622 .0609
Rating RHR (.0254, .0116) | (.0219, .0046) | (.0219, .0055)
Driveway Rate DD | .0079 .0100 .0091 .0072
(.0042, .0630) | (.0035,.0045) { (.0027,.0007) | (.0026, .0067)
Degree of Curve H | .1421 .0735 .0856 0772
(.0545,.0092) | (.0154,.0001) | (.0126,.0001) | (.0140,.0001)
VC (MN/COM) 1.0495 .0333 3748 0394
VMC (WA/COMV) | (4964, .0345) | (.0168, .0468) | (.2605,.1502) | (.0141,.0052)
Absolute Grade GR  |.1990 .0800 .0976 0941
(.0928, .0320) | (.0295, .0066) | (.0280, .0005) | (.0280, .0008)
State - - .1420 1427
(.0679, .0366) | (.0678, .0353)
n, p 619, 7 712, 8 1331, 10 1331,9
D™/(n-p-1) 1.4938 1.4767 1.4993 1.4922
K 2657 2821 3022 2943
(.0385,.0001) | (.0385,.0001) | (.0285,.0001) | (.0281,.0001)
RZ .8609 .8302 8310 .8354
R? 7251 6268 .6489 .6669
R3, P3 3720, .5607 .3455,.5300 | .3518,.5464 | .3548,.5477
Rép 6634 6518 .6438 6478
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TABLE 25. Negative Binomial Models for Segment Injury Accidents
Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables Minnesota Washington Combined
(offset = exposure 1985-89 1993-95
EXPO)
Intercept 1.9998 -.2375 1675
(.8205, .0148) | (.3511,.4988) | (.6108,.7839)
Lane Width LW -.2458 TOTWIDTH |-.1155
(.0694, .0004) (.0531, .0296)
) -.0279
Shoulder Width -.1053 (.0089, .0017) -.0740
SHW (.0212,.0001) | . (.0143, .0001)
Roadside Hazard -- .0506 .0410
Rating RHR (.0314, .1077) | (.0272, .1315)
Driveway Rate DD | -- .0065 .0054
(.0041, .1193) | (.0035,.1192)
Degree of Curve H | .2158 .0598 .0730
(.0667,.0012) | (.0194,.0020) | (.0161,.0001)
Crest VMC -- .0405 .0399
(.0219, .0648) | (.0177,.0239)
Absolute Grade GR | -- 0725 0574
(.0377, .0543) | (.0360,.1109)
State -- - 4149
(.0879, .0001)
n, p 619, 4 712,7 1331, 9
D*/(n-p-1) 1.0702 1.1593 1.1212
K 2398 2751 2710
(.0786,.0023) | (.0682,.0001) | (.0518,.0001)
R2 .8934 8444 .8628
R? .5859 4824 5386
R3, P2 3483, .4468 3185, .4334 3303, .4399
RZ, 1795 7348 7509
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runs. The goodness-of-fit measures, including the ordinary R?, yield no dramatic conclusions. RZ
is systematically larger than the others. All the measures suggest that the Minnesota coefficients
account for Minnesota accidents a bit better than the other models.

Table 25 shows negative binomial models for serious accidents, based on the variable INJACC.
Variables with little significance have been omitted and only those that are significant or marginally
significant have been retained. The Minnesota model, with the fewest variables, once again has the
highest goodness-of-fit. The coefficients are roughly comparable to those for the models for total
number of accidents (TOTACC). Differences between the deviances D™ and R? as one passes from
Table 24 (TOTACC) to Table 25 (INJACC) are not of importance. Both measures tend to give
smaller values when observed data are near zero, and larger values when the observations are away
from zero: INJACC has small or zero values more often than TOTACC.

The Extended Negative Binomial

Extended negative binomial models are a variant of negative binomial models in which the mean
number of accidents p; at segment i is taken to have the form

p; = expBy) X[ (Tt w,explx; ) G.17)

instead of (5.1). With respect to the j-th highway variable, segment number i is decomposed into
C; subsegments of relative lengths {w;.:c =1, ..., C;} where the variables x; take the respective
putatively constant values {x;.: ¢=1,.., C;}. In effect this model slices up the segments into
subsegments*® where each variable is constant. The weights w;, are the relative lengths of the
subsegments and add to 1. The value C;; can be taken to be independent of i (and j) if the maximum
number of subsegments in the data set is specified: for segments with fewer subsegments the extra
weights can be set equal to zero. For some variables, all weights except one are set to zero, and the

model behaves like an ordinary negative binomial model with respect to them.

An advantage of the extended negative binomial model is that it permits local variation along a
roadway to be taken into account. Rather than summing local effects or averaging them, one in
effect sums the accidents occurring on subsegments where conditions are constant. This gives
the model form a scale independence: one may decompose segments into subsegments or aggregate
adjacent segments without changing model form.

4 The model treats different variables as if the ;ubsegments with respect to each variable
are independent, e.g., if one-third of the segment has a steep grade and one-half of the segment is
on a horizontal curve, then one-sixth of the segment has both steep grade and a horizontal curve.
Shaw-Pin Miaou, the author of the model, is developing a refinement that does not assume such
independence.
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TABLE 26. Extended Negative Binomial Models for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables (offset = Minnesota Washington Combined
exposure EXPO) 1985-89 1993-95
Intercept 2.0168 .0846 .6287

(.6593, .0022) | (.2883,.7692) | (.4993,.2080)
AVGM - -.0239 -.0111
(ADT/1,000) (.0107, .0252) | (.0897, .2099)
Lane Width LW -.1843 TOTWIDTH | -.0829

(.0548, .0008) (.0424, .0504)

) -.0142

Shoulder Width -.0812 (.0077 0669) -.0560
SHW (.0161, .0001) o (.0116, .0001)
Roadside Hazard -- .0689 .0665
Rating RHR (.0245, .0049) | (.0210,.0016)
Driveway Rate DD | .0089 0119 .0091

(.0044, .0423) | (.0033,.0003) | (.0026,.0005)
Degrees of Curve .0474 .0521 .0445
DEG({i} (.0133,.0003) | (.0085,.0001) | (.0078,.0001)
Crest Curve Rates 4834 - 4653
V{j} (.1416, .0006) (.1255, .0002)
Absolute Grades 2404 .089%4 1047
GR{k} (.0592,.0001) | (.0314,.0045) | (.0286,.0003)
State -- -- .1585

(.0674, .0188)

n, p 619,6 712,7 1331, 10
D®/(n-p-1) 1.4980 1.4877 1.5012
K 2722 3055 3034

(.0457,.0001) | (.0460,.0001) | (.0331,.0001)
R2 8575 8161 .8303
R? 7246 5720 .6555
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TABLE 27. Final Extended Negative Binomial Model for Segment Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables (offset = Combined
exposure EXPO)
Intercept 6409

(.5008, .2006)
Lane Width LW -.0846

(.0425, .0465)
Shoulder Width -.0591
SHW (.0114, .0001)
Roadside Hazard 0668
Rating RHR (.0211, .0015)
Driveway Rate DD | .0084

(.0026, .0011)
Degrees of Curve .0450
DEG({i} (.0078, .0001)
Crest Curve Rates 4652
V{} (.1260, .0002)
Absolute Grades .1048
GR{k} (.0287, .0003)
State .1388

(.0659, .0351)
n, p 1331, 9
D®/(n-p-1) 1.5012
K 3056

(.0331, .0001)
R2 .8291
R? 6547
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TABLE 28. Extended Negative Binomial Models for Segment Injury Accidents

Regression Coefficients (Estimated Standard Error and P-value in parentheses)

Variables Minnesota Washington Combined
(offset = exposure 1985-89 1993-95
EXPO)
Intercept 1.7147 -.1571 3534

(.-8860, .0530) | (.3657,.6675) | (.6546,.5893)
Lane Width LW -.2233 TOTWIDTH |-.1306

(.0735, .0024) (.0558, .0193)

. -.0302
SHW (.0219,.0001) | . (.0150, .0001)
Roadside Hazard -- .0568 .0598
Rating RHR (.0309, .0659) | (.0261,.0217)
Driveway Rate DD | -- .0085 .0062
(.0040, .0349) | (.0034, .0679)

Degrees of Curve .0580 .0406 .0457
DEG{i} (.0116,.0001) | (.0107,.0001) | (.0091,.0001)
Crest Curve Rates 5528 -- 4694

Vij}

(.1364, .0001)

(.1687, .0054)

Absolute Grades - 0823 --
GR{k} (.0400, .0395)
State - - 4309
(.0852, .0001)

n,p 619, 6 712, 6 1331,9
D™(n-p-1) 1.0763 1.3009 1.1308
K 2482 2951 .2880

(.0751,.0010) | (.0699,.0001) | (.0523,.0001)
R2 .8899 .8320 .8542
R? .5926 4750 5277
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As with the negative binomial the goal is to estimate the coefficient vector B and the overdispersion
parameter K. Shaw-Pin Miaou made available a program that uses maximum likelihood to estimate
these quantities. In Table 26 we show the results of the modeling.

In Table 26 AVGM and Roadside Hazard Rating RHR are strongly insignificant in Minnesota and
so were removed. In Washington the crest variable V{j}, although having the correct sign, is
strongly insignificant in the presence of the other variables and so was removed. In the combined
data set AVGM (and the Intercept variable) are insignificant. When AVGM was removed and the
commercial percentage variable T added, the estimated coefficient for T was positive but had a
significance level of about 20%. When the speed variable SPD is added instead, it has a negative
coefficient and a P-value of 50%.

Table 27 represents our final model for segments. It contains a large number of variables, all of
them significant, and it represents the combined characteristics of rural segments in two States with
a reasonable amount of variation in all variables.

Table 28 shows three extended negative binomial models for Injury Accidents. AVGM was
insignificant in all three data sets. RHR and DD were insignificant in Minnesota. The straightaway
grade variable GR{k} was not significant in Minnesota, and the crest vertical V{j} was not
significant in Washington. Extended negative binomial runs with all variables present did not
converge in the combined data set, but did when GR{k} was removed. A total of 36% of all
reported segment accidents were Injury Accidents in Minnesota versus 46% in Washington, and this
is reflected by the increase in the coefficient for State from Table 27 to Table 28.

INTERSECTION MODELS

Models for the three-legged and four-legged intersections in Minnesota and Washington are of
Poisson and negative binomial type. Extended negative binomial models, appropriate for
nonhomogeneous and variable stretches of road, are not attempted. The variables used to model
accidents describe traffic volumes, horizontal and vertical alignment, channelization, roadside
(driveways and hazard rating), intersection angle, and posted speed. Although sight distance is a
desirable variable, data were not available. The alignment variables and hazard rating can be viewed
as partial surrogates for sight distance.

Because the intersection models are based on fewer observations than the segment models, and the
relationships revealed between accidents and intersection variables are less clear-cut, some
adjustments are made in the criteria for retaining variables in the models. In order to identify design
variables that influence accidents and are subject to control of designers, in many of the models P-
values are allowed much greater range than in the segment models. Values as high as 30% occur
in some models.

To some extent this represents a shift in methodology. For a P-value of 5%, under the null
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hypothesis that a particular variable has no influence and thus has zero as its true coefficient, there
is one chance in 20 that the estimate for the coefficient will be as far away from zero as, or farther
away than, it is found to be. With a P-value of 30%, under the null hypothesis there are three
chances in 10 that the estimate will be as far from zero as, or farther than, the actual estimate. The
estimated coefficient is viewed as a fluctuation from zero due to random errors in the data.
However, there is no compelling reason why the null hypothesis should govern the analysis,
especially when engineering judgment suggests that the variable under study has an influence on
accident counts. A defensible alternative is to view the estimated coefficient arrived at by maximum
likelihood methods as a “best guess” whose confidence interval is measured by the standard error
of the estimate. Larger P-values correspond to larger confidence intervals, perhaps intervals that
include zero, but the estimate itself summarizes the data better than assignment of a zero coefficient
and removal of the variable from the model. Adopting the “best guess” viewpoint is a more
aggressive, less conservative stance toward the investigation of the underlying reality. Permitting
larger P-values may be thought of as a partial transition toward the latter stance: we still show some
deference toward the null hypothesis, but we attend closely to the estimate offered by the model,
more closely the smaller its standard error.

Tables 29 through 35 below exhibit the chief models of both Poisson and negative binomial type for
both the three-legged and four-legged intersections. For comparability, number of years is used as
an offset so that what is modeled is mean number of accidents per year. Estimated coefficients for
each variable are shown, along with their standard errors and P-values. Some variables were
considered in the preliminary analysis that may not appear in the Tables — variants of the variables
used here, as well as weather variables SNP and NONDRYP in Minnesota (these had negative sign
and were not very significant). Tables 36 and 37 exhibit models for Injury Accidents.

Traffic

The chief variables are major and minor road traffic - ADT1 and ADT2. In addition the variable
CINDEX, conflict index, measuring the relationship between these two was considered. In pre-
liminary runs it was not significant when used in addition to them, and it was less significant than
either of them when used as a substitute for one of them. ADT1 and ADT?2 have different relative
effects in the three-legged versus the four-legged cases (cf. Table 35):

Variable Estimated Coefficient
3-legged 4-legged

LADT1 .8052 .6026

LADT2 5037 .6090

For four-legged intersections, major and minor road ADT have approximately equal influence, while
for three-leggeds the major road ADT dominates. If one views a four-legged intersection as two
three-legged intersections, admittedly an oversimplification, and accordingly halves the coefficient
of LADT?2 in the last column above, the effects are seen to be roughly compatible.

108



TABLE 29. Poisson Models, 3-Legged Intersections Accidents
Regression Coefficients (Standard error and P-value in parentheses)

Variables (Offset = Minnesota Washington Combined
number of years) 1985-89 1993-95
Intercept -12.5714 -10.4414 -12.1055

(.8238, .0001) (1.5325, .0001) (.8241, .0001)
Log of ADT1 .8524 6569 .8291

(.0560, .0001) (.1386, .0001) (.0511, .0001)
Log of ADT2 4466 5219 4578

(.0461, .0001) (.0628, .0001) (.0367, .0001)
VCI 3313 -.2430 -.0010
(crests) (.1301, .0109) (.1554, .1180) (.0957, .9915)
HI .0473 -.0018 .0333

(.0141, .0008) (.0260, .9458) (.0124, .0073)
SPDI .0190 .0062 0151

(.0101, .0597) (.0146, .6731) (.0083, .0687)
Roadside Hazard Rating | .1788 .0995 1712
RHRI (.0554, .0012) (.0749, .1842) (.0431, .0001)
No. Drwys ND -.0441 -.0342 -.0436

(.0306, .1498). (.0426, .4215) (.0241, .0710)
Right Turn Lane RT 2684 1472 2554

(.1068, .0119) (.1814 .4172) (.0909, .0050)
Angle HAU .0060 -.0073 .0052

(.0016, .0002) (.0100, .4620) (.0016, .0008)
State - - -.2497
(MN =0, WA =1) (.1071, .0198)
n, p 389, 10 181,10 570, 11

D™/(n - p), x*/(n - p)

1.5388, 1.8818

1.5867, 1.5900

1.5554, 1.8344

T,

18.25

7.38

21.22

R%, P R2

4653, .8375, .5556

3298, .6844, .4819

4203, .8147, .5159

2 2 2
RW: PW: RPW

.6413, .8044, .7973

.5094, .6734, .7564

.5898, .7720, .7640

2 2 2
RFT > PFT H RPFT

4722, .5568, .8481

2702, .4090, .6606

4130, .5206, .7933
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TABLE 30. Poisson Models, 4-Legged Intersection Accidents
Regression Coefficients (Standard error and P-value in parentheses)

Variables (Offset = Minnesota Washington Combined
number of years) 1985-89 1993-95
Intercept -10.5546 -10.7648 -11.6312

(.8711,.0001) (1.4384, .0001) (.8283, .0001)
Log of ADT1 6517 3710 .6064

(.0626, .0001) (.1384, .0073) (.0556, .0001)
Log of ADT2 .6089 7934 .6739

(.0520, .0001) (.0835, .0001) (.0427, .0001)
VCI .3805 -.0064 2280
(crests) (-1090, .0005) (.1171, .9565) (.0777, .0033)
HI .0334 -.4329 0114

(.0363, .3578) (.1188,.0003) (.0308, .7106)
SPDI .0166 .0630 0415

(.0134, .2156) (.0132,.0001) (.0090, .0001)
Roadside Hazard Rating | -.0425 -.2050 -.0994
RHRI (.0508, .4026) (.0740, .0056) (.0411, .0156)
No. Drwys ND 1165 0546 .0919

(.0316, .0002) (.0472, .2472) (.0258, .0004)
Right Turn Lanes RT -.0803 -.7261 -.2323

(.1119, .4736) (.1599 .0001) (.0886, .0087)
Angle HAU -.0044 .0309 -.0016

(.0024, .0701) (.0079, .0001) (.0023, .4966)
State -- -- -.0629
MN=0,WA=1) (.1038, .5447)
n, p 327,10 90, 10 417, 11
D™/(n - p), x¥(n - p) 1.3371, 1.3665 3.1285, 2.8507 1.8524, 1.8106
T, 3.71 11.05 14.97

R?, P2 R2

.6057, .7288, .8311

4513, .8374, .5389

4556, 7868, .5791

2 2 2
RW’ PW’ RPW

5635, .6705, .8404

7564, .9039, .8369

.5695, .7558, .7535

2 2 2
RFT ’ PFT ] RPFT

4807, .5081, .9460

3813, .7792, .4894

.3700, .6183, .5985
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TABLE 31 Negative Binomial Models, 3-Legged Intersection Accidents
Regression Coefficients (Standard error and P-value in parentheses)

Variables Minnesota Washington Combined
(Offset = number of years) | 1985-89 1993-95
Intercept -12.8114 -11.3859 -12.3250

(1.2566, .0001) (2.8742, .0003) (1.1872, .0001)
Log of ADT1 .8090 .7490 .8073

(.0658, .0001) (.2492, .0027) (.0632, .0001)
Log of ADT2 .5055 5211 5027

(.0715, .0001) (.1022 .0001) (.0561, .0001)
VCI 2915 -2115 .0758
(crests) (.3025, .3353) (.2409, .3798) (.1327, .5682)
HI .0351 0175 .0270

(.0334, .2935) (.0527,.7399) (.0250, .2800)
SPDI .0253 .0100 0188

(.0188, .1780) (.0281,.7218) (.0141, .1837)
Roadside Hazard Rating .1653 .0681 1372
RHRI (.0683, .0156) (.1230, .5798) (.0584, .0188)
No. Drwys ND -.0293 -.0208 -.0270

(.0479, .5405) (.0756, .7835) (.0399, .4977)
Right Turn Lane RT 2578 .1765 2442

(.1402, .0660) (.3598, .6238) (.1265, .0537)
Angle HAU .0047 -.0069 .0040

' (.0032, .1444) (.0242, .7736) (.0033, .2355)

State - - -.1994
(MN =0, WA=1) (.1578, .2064)
n,p 389,10 181, 10 570, 11
D™(n-p-1) 1.2959 1.3731 1.3277
K 4759(.1001,.0001) |.7927(.3180,.0127) .5794(.0955,.0001)
R2 7828 .6450 .7390
R? 4452 3022 4057
R2, P2 2878, .4585 1751, .3919 2609, .4463
RZ, 6278 4468 5847
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TABLE 32. Negative Binomial Models, 4-Legged Intersection Accidents
Regression Coefficients (Standard error and P-value in parentheses)

Variables Minnesota Washington Combined
(Offset = number of years) | 1985-89 1993-95
Intercept -10.6729 -10.9301 -11.4840

(1.3603, .0001) (3.7629, .0038) (1.5737, .0001)
Log of ADT1 6179 3681 5773

(.0847, .0001) (.3828, .3364) (.0985, .0001)
Log of ADT2 6262 9218 .6944

(.0730, .0001) (-2280, .0001) (.0795, .0001)
VCI 3121 .0484 2681
(crests) (.2490, .2101) (.6446, .9401) (2147, 2118)
HI 0441 -.3381 0359

(.0482, .3605) (2142, .1144) (.0477, .4519)
SPDI 0222 .0507 .0399

(.0189, .2407) (.0274, .0644) (.0150, .0080)
Roadside Hazard Rating -.0628 -.1997 -.1175
RHRI (.0579, .2786) (.1702, .2406) (.0587, .0454)
No. Drwys ND 1295 -.0023 .1056

(.0513, .0116) (.1316, .9858) (.0501, .0351)
Right Turn Lanes RT -.0557 -7191 -.1627

(-1266, .6601) (4662 .1230) (.1407, .2474)
Angle HAU -.0052 0384 -.0023

(.0033,.1169) (.0154, .0127) (.0039, .5534)
State - - .0094
MN=0,WA=1) (.1814, .9588)
n, p 327,10 90, 10 417, 11
D"/(n-p-1) 1.2920 2.1620 1.5457
K .2044(.0670,.0023) | .9466(.2828, .0008) | .5219 (.0849,.0001)
R2 .8344 .6051 7187
R? 5882 3366 4313
R3, P2 2981, .4052 1197, .5290 .2653, .4799
R3, 7357 2262 5529

112




TABLE 33. Additional Negative Binomial Models,
Combined (MN/WA) Intersection Accidents
Regression Coefficients (Standard error and P-value in parentheses)

Variables (Offset = no. of years) | Combined 3-legged | Combined 4-legged
Intercept -12.4698 -11.0804

(1.1151, .0001) (1.5718, .0001)
Log of ADT1 .8046 5834

(.0615, .0001) (.0985, .0001)
Log of ADT2 .5002 6839

(.0552, .0001) (.0769 .0001)
VCI - 2714
(crests) (:2017, .1785)
HI .0280 -

(.0248, .2587)
SPDI 0216 .0298

(.0132,.1034) (.0149, .0448)
Roadside Hazard Rating RHRI 1412 --

(.0578, .0145)
No. Drwys ND -- .0888

(.0524, .0899)

Right Turn Lane RT 2461 -.1586

(.1266, .0519) (.1390, .2538)
Angle (HAU for 3-leggeds, .0037 -.0059
DEV for 4-leggeds) (.0033, .2681) (.0047, .2190)
State -.2068 -.1335
MN=0,WA=1) (.1574, .1890) (.1729, .4399)
n,p 570,9 417,9
D™(n-p-1) 1.3243 1.5448
K .5826(.0938, .0001) |.5281(.0832,.0001)
R} 7376 7154
R? 4016 4511
R2, P3 2628, .4484 2658, 4811
R3, .5862 5524
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TABLE 34. Additional Negative Binomial Models, Minnesota Intersection Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables Minnesota, three- Minnesota, four- Minnesota, four-
(Offset = number of years) | legged, 1985-89 legged, 1985-89 legged, 1985-89
Intercept -11.2798 -9.5860 -9.4267
(.6343,.0001) (.7397, .0001) (.7632, .0001)
Log of ADT1 7923 .6568 .6334
(.0619, .0001) (.0829, .0001) (.0881, .0001)
Log of ADT2 4920 .5882 6116
(.0683, .0001) (.0691 .0001) (.0695, .0001)
VCI - .3499 --
(crests) (.1931, .0699)
HI - - 0719
(.0308, .0195)
Roadside Hazard Rating 1944 -- --
RHRI (.0666, .0035)
No. Drwys ND -- .1088 --
(.0459, .0177)
Right Turn Lane RT 2822 - --
(.1375, .0402)
Angle DEV - -.0105 -.0111
(.0042, .0120) (.0042, .0083)
n,p 389, 5 327,6 327,5
D®/(n-p-1) 1.3316 1.2690 1.2995
K .5377(.1024,.0001) |.1854(.0611,.0024) { .2293 (.0700,.0011)
R2 7546 .8498 8143
R? 3955 .6208 5869
R3, P3 2828, .4630 3107, 4116 2941, 4115
R%, 6109 7548 7146

114




TABLE 35. Final Negative Binomial Models, Minnesota Intersection Accidents

Regression Coefficients (Standard error and P-value in parentheses)

Variables MN 3-leggeds, MN 4-leggeds,
(Offset = number of years) | 1985-89 1985-89
Intercept -12.9922 -10.4260

(1.1511, .0001) (1.3167, .0001)
Log of ADT1 .8052 6026

(.0639, .0001) (.0836, .0001)
Log of ADT2 .5037 6091

(.0708, .0001) (.0694 .0001)
VCI 2901 2885
(crests) (:2935, .3229) (.2576, .2628)
HI .0339 .0449

(.0327, .3004) (.0473, .3431)
SPDI .0285 .0187

(.0177, .1072) (.0176, .2875)
Roadside Hazard Rating 1726 -
RHRI (.0677, .0108)
No. Drwys ND -- 1235

(.0519, .0173)

Right Turn Lane RT 2671 --

(.1398, .0561)
Angle HAU .0045 -.0049

(.0032, .1578) (.0033, .1341)
n,p 389,9 327, 8
D™(n-p-1) 1.3200 1.2874
K 4811(.0998,.0001) |.2055(.0652,.0016)
R2 .7805 .8336
R? 4409 5944
R3, P} 2891, .4604 3005, .4081
R3, 6279 7364
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TABLE 36. Negative Binomial Models, 3-Legged Intersection Injury Accidents
Regression Coefficients (Standard error and P-value in parentheses)

Variables (Offset = no. of years) | Minnesota 1985-9 Washington 1993-5 | Combined
Intercept -13.0374 -13.8430 -12.9939

(1.7908, .0001) (3.2641, .0001) (1.6299, .0001)
Log of ADT1 8122 9037 .8357

(.0973, .0001) (.2915, .0019) (.0878, .0001)
Log of ADT2 4551 5445 4840

(.0977, .0001) (.1314 .0001) (.0721, .0001)
VCI .1869 -.1000 .0247
(crests) (.3657, .6092) (.2787, .7196) (.1773, .8893)
HI .0335 -.0063 0179

(.0327, .3047) (.0739, .9316) (.0294, .5424)
SPDI .0156 0165 0125

(.0269, .5618) (.0331, .6173) (.0197, .5248)
Roadside Hazard Rating RHRI 2065 -.0002 .1300

(.0930, .0263) (.1505, .9990) (.0757, .0858)
No. Drwys ND -.0120 .0293 -.0044

(.0714, .8671) (.0840, .7276) (.0525, .9331)
Right Turn Lane RT 3620 .1647 2957

(.1814, .0460) (.4034, .6830) (.1590, .0629)
Angle HAU .0051 .0016 .0046

(.0045, .2594) (.0412, .9692) (.0048, .3384)
State - -- -.1299
MN=0,WA=1) (.1924, .4996)
n, p 389, 10 181, 10 570, 11
D"/(n-p-1) 9799 9546 9625
K .4935(.1818,.0066) | .8166(.4144,.0488) | .6219 (.1693,.0002)
R2 .8208 .6500 7674
R? 4149 1251 3481
RS, P 2520, 3687 1917, 3126 2441, 3601
RZ, .6835 6134 .6778
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TABLE 37. Negative Binomial Models, 4-Legged Intersection Injury Accidents
Regression Coefficients (Standard error and P-value in parentheses)

Variables (Offset = no. of years) | Minnesota 1985-9 | Washington 1993-5 | Combined
Intercept -10.7829 -12.5872 -12.0196

(1.7656, .0001) (4.5643, .0059) (1.9399, .0001)
Log of ADT1 .6339 4738 .5963

(-1055, .0001) (4945, .3380) (.1187,.0001)
Log of ADT2 .6229 .9085 6945

(.0870, .0001) (.2459, .0002) (.0947, .0001)
VCI 2789 1074 2824
(crests) (4623, .5464) (.6848, .8754) (.3469, .4156)
HI .0729 -.6484 0506

(.0635, .2513) (.3838,.0911) (.0637, .4264)
SPDI 0112 .0651 .0377

(.0251, .6567) (.0316, .0395) (.0195, .0532)
Roadside Hazard Rating RHRI -.1225 -.3189 -2116

(.0720, .0889) (2123, .1332) (.0762, .0055)
No. Drwys ND .0857 .0303 .0900

(.0639, .1799) (.1525, .8425) (.0657, .1707)
Right Turn Lanes RT 0451 -9153 -1273

(.1665, .7865) (.5273 .0826) (.1798, .4790)
Angle HAU -.0043 .0360 -.0018

(.0044, .3258) (.0157, .0220) (.0052, .7339)
State -- - 2487
(MN =0, WA=1) (2321, .2839)
n, p 327,10 90, 10 417,11
D"/(n-p-1) 1.1051 1.8042 1.2989
K 1811(.1173,.1224) |.9692(.3751,.0098) | .6589 (.1499,.0001)
R2 .8870 .6431 7470
R? 4929 2139 3420
R3, P} 2414, .3316 1472, 4844 2404, 4186
RZ, 7279 3040 5744
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Alignment, Channelization, and Speed

Two horizontal curve variables were used — HI and HEI — measuring degree of curvature out to 250
respectively 764 feet. These variables had unexpected sign and/or were insignificant in Washington
State (for HI, see Tables 29, 30, 31, 32, 36, 37) but behaved somewhat better in Minnesota for both
three-legged and four-legged intersections. HI was more stable than HEI, and so for comparability
we elected to use HI as our horizontal variable in the runs shown.

Three vertical curve variables were considered — VCI, VI, and VEI. Each measures average grade
change per hundred feet for vertical curves near the intersection. The first is for crests out to 250
feet, the second is for both crests and sags out to 250 feet, and the third is for both crests and sags
out to 764 feet. In the Minnesota data — the larger of the two State data sets — VCI, the crest only
variable and the vertical alignment variable most closely related to sight distance, was substantially
more significant than VI and VEI, and hence was selected for inclusion in the runs presented here.
On the Washington data the vertical curve variables tended to have unexpected sign and/or be very
insignificant. :

Several measures of channelization were used in the modeling, but the measure that proved most
significant was RT, which takes the values 1 or 0 whether there is or is not at least one right turn lane
on the major road. Other channelization variables — for bypass lanes on three-leggeds, zero, one,
or two right turn lanes on four-leggeds, or acceleration lanes for the minor roads — were not
significant and/or did not show much variation. Thus RT represents channelization in all runs. On
three-legged intersections its coefficient was consistently positive and significant. It is not known
whether this variable is a surrogate for high accident intersections (i.e., because many accidents tend
to occur at the intersection, a right turn lane has been added) or a surrogate for high right turn major
road traffic (and high left turn minor road traffic). On the four-legged intersections, the coefficient
of RT tended to be negative but was not particularly significant.

The speed variable SPDI, an average of approach speeds — although negatively correlated with
ADT, the alignment variables, and number of driveways — seemed to make an independent
contribution to the accident frequency in all models.

Roadside Variables - Number of Driveways and Hazard Rating

Perhaps the most remarkable feature of the intersection models is the unexpected but systematic
behavior of the variables ND, number of driveways, and RHRI, Roadside Hazard Rating. The
coefficient of RHRI is positive at three-legged intersections while that of ND is negative. The
reverse occurs on four-leggeds: the coefficient of RHRI is negative and that of ND is positive.
Because of the unexpected negative signs, ND has been omitted from some three-legged runs and
RHRI has been omitted from some four-legged runs.

With respect to driveways, perhaps drivers take more care when driveways are to be found in the
neighborhood of a three-legged intersection, but insufficient additional care in the neighborhood of
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a four-legged intersection. Each driveway or intersection leg represents potential traffic and requires
a share of driver attention. In the intersection data sets driveways actually occur at a larger
percentage of three-legged intersections (62.5% in MN and 63% in WA according to Tables 4 and
5) than four-leggeds (32.4% in MN and 46.7% in WA according to Tables 6 and 7). At four-legged
intersections, it might be argued that driveways are a third unexpected complication in addition to
the two minor road legs, less easily integrated than two complications at a three-legged: a driveway
and one minor leg.

With respect to hazard rating, an opposite and possibly inconsistent explanation might be offered:
It may be that drivers underestimate roadside hazards at three-leggeds and relatively speaking
overestimate them at four-leggeds. Roadside hazards such as obstacles and steep sideslope do not
require the same kind of attention as potential traffic entry points. Perhaps such hazards are more
likely to be properly attended to when both sides of the roadway have entry points and available
accident avoidance tactics are more limited.

The Angle Variable

The variable HAU used in Tables 29 through 33 and 35 through 37 is a signed variable proposed by
Ezra Hauer (see Figures 4 and 5). For a three-legged intersection HAU is positive when the angle
is larger than 90° as in 4(a) and HAU is negative when the angle is smaller than 90° as in 4(b). On
the basis of work of Kulmala (1995) it is thought that turns from the far lane of the major road may
be less accident prone in situation 4(a) than in situation 4(b). Accordingly the coefficient of HAU
in the three-legged intersection model would be negative (when HAU is positive accidents are less
frequent; and when HAU is negative they are more frequent, it is proposed). Of course, there are
other turns to be made: a turn from the near lane of the major road, and turns left and right from the
minor road. The four-legged version of HAU is the average of the HAU variable for two three-
legged intersections (one to the right, one to the left), and would likewise have a negative coefficient
if accidents owing to far lane turns through large angles are predominant.

Tables 29 through 32 do not support any strong conclusion. Minnesota and Washington have
opposite experience with the variable HAU. Minnesota angle data must be considered much more
reliable, though, than Washington angle data. While Minnesota angles were determined from
construction plans, those for Washington were very rough estimates made from photologs. Visibility
of the direction of minor roads was extremely limited in the photologs. As Tables 4 through 7
indicate, for Minnesota three-leggeds 50.6% were reported as right angles versus 95.6% in
Washington; for four-leggeds 37.6% were reported as right angles in Minnesota versus 88.9% in
Washington. In the Minnesota Poisson models HAU is significant but the sign of its coefficient has
unexpected value (positive) for the three-leggeds, although it behaves as expected for four-leggeds.
Under the negative binomial models HAU is marginally significant for the Minnesota data with the
same coefficient signs as for the Poisson.

The two other angle variables considered in this study are DEV (the absolute deviation from 90° of
the angle, or the average of the two absolute deviations for the four-leggeds) and DEV15 (the
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squared difference between DEV and 15°, divided by 100). The behavior of these three variables
on the Minnesota data is summarized below.

Accident Models for Minnesota VARIABLE Poisson  Negative
three-legged intersections with Model Binomial
ADT1 and ADT2 and one of the Model
variables at right.
DEV 4906, + 9955+
P-values and signs of the estimated
coefficients of the variable. DEV15 4395, + 9248, -
HAU 0006, + .2391,+
Accident Models for Minnesota VARIABLE Poisson  Negative
four-legged intersections with Model Binomial
ADT1 and ADT2 and one of the Model
variables at right.
DEV .0014,- .0139, -
P-values and signs of the estimated
coefficients of the variable. DEVI5 0071, - .0648, -
HAU .0748,- 1419, -

Thus angle, however measured, is a significant variable at four-legged intersections, and HAU is
significant (but the others are not) at three-leggeds.

DEV15 is an empirical variable developed in connection with study of the four-legged intersections.
On some runs of Minnesota four-legged data it was more significant than DEV, suggesting that
accident rates are highest at angles of 75° and 105°. It was also more significant than DEV on the
combined Minnesota and Washington four-legged data. For reasons of simplicity we omit DEV15
from our tables, although we did use DEV on some four-legged runs (Tables 33 and 34).

Negative Binomial Models - Minnesota versus Washington

The statistics compiled in the lower rows of Tables 29 and 30 indicate that the Poisson models have
definite explanatory power, especially the Minnesota models, but that they are nonetheless
overdispersed. The values of T, should be approximately normally distributed about zero if the
overdispersion parameter is zero, but the values instead tend to be large positive numbers. The
scaled deviance and the scaled Pearson chi-square likewise have values indicative of overdispersion.
Accordingly we pass to negative binomial models in Tables 31 through 37.

Tables 31 and 32 are negative binomial counterparts of Tables 29 and 30, with the same variables.
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In general the Poisson and negative binomial models are consistent with one another: coefficients
have the same sign and similar magnitudes. In most cases the P-value of coefficients increases, the
individual variables are thus less significant, and the overdispersion parameter K, a stand-in for
omitted variables, makes a significant contribution to all of the negative binomial models. In
Washington the overdispersion parameters are larger than in Minnesota, and fewer variables are
significant.

In particular, for the Washington three-legged models the marginally significant variables VCI and
RHRI become insignificant as one passes from the Poisson model in Table 29 to the negative
binomial model in Table 31. For the Washington four-legged models the variables ADT1, HI,
SPDI, RHRI, and RT become less significant from Table 30 to Table 32, with ADT1 and RHRI
becoming insignificant. Because it is well-accepted that ADTT is an important variable, the quality
of the data is called into question. The standard error for ADT1 is consistent with both a zero value
and a much larger value (comparable to that of Minnesota).

For all intersections in this study, the traffic data are imperfect. In rural sites they typically are based
on spot measurements (part of a day at a site along the road near the intersection). Although efforts
are made to average the data, with daily, weekly, seasonal, and annual variation taken into account,
and with attempts to localize the count to the vicinity of the intersection, the results are not very
reliable. Examination of files for both Minnesota and Washington shows that reported ADT for rural
intersections is often the same from year to year (with no evidence that new measurements have been
made or that paper estimates have been revised). When traffic data are available for all legs,
sometimes they do not make sense: the difference in ADT between the two legs of the major road
has no obvious relation to the minor road ADT. Efforts were made in this study to correct
imperfections in the Minnesota intersection ADT, but because the Washington data were not part
of an established data base, no similar efforts could be made with them.

The Minnesota models are thus more trustworthy. Nonetheless, models for both sets of data, and
for combined data, are included for comparison purposes. Where there is disagreement between
Minnesota and Washington, the relevant variable should receive extra scrutiny and the evidence of
Minnesota should be considered less conclusive than otherwise.

Additional Negative Binomial Runs

In Tables 33, 34, and 35 we exhibit additional negative binomial models for Minnesota and
combined data.

Table 33 shows combined data for both States with variables that are significant or reasonably close
to significant in the “best guess” spirit. For the three-leggeds, compare Table 33 with the last
column in Table 31: VCI and ND have been omitted. Both are very insignificant and ND has
unexpected sign (more driveways lead to fewer accidents). For the four-leggeds, compare Table 33
with the last column of Table 32: HI is very insignificant and has been omitted; RHRI, although
significant, has unexpected sign (the more hazardous the roadside the fewer the accidents) and has
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also been omitted. The State variable is not significant in any of these runs, but has been retained
nonetheless.

Table 34 shows Minnesota negative binomial runs where all but the most significant variables have
been omitted. The results for the Minnesota three-leggeds are quite consistent with the Minnesota
column of Table 31. For the four-leggeds either horizontal or vertical alignment can serve as
significant explanatory variables but not both. Angular deviation DEV from 90° is also strongly
significant; the fewer predicted accidents the greater the deviation. The runs in Table 34 keep only
the most significant variables. Note that SPDI is not one of them; nor is HAU (but angle is
represented by DEV).

Negative Binomial Models for Injury Accidents

We also exhibit negative binomial models for injury accidents (INJACC) in Tables 36 and 37.
These tables are comparable to Tables 31 and 32 and show that the same coefficient magnitudes
generally are to be found, although with reduced significance.

With respect to the three-legged INJACC runs, the most significant variables besides ADT are
Roadside Hazard Rating RHRI and channelization RT (in Minnesota and the Combined data). This
is similar to Table 31 where all accidents (TOTACC) are modeled.

With respect to the four-legged INJACC runs, RHRI is again significant but with unexpected sign,
and this mirrors the behavior in Table 32 and elsewhere.

Final Intersection Models

The chief idiosyncrasies found in the various models are already present in the Poisson runs (Tables
29 and 30). We list some of these:

» driveways seem to decrease accidents at three-legged intersections;
» roadside hazards seem to decrease accidents at four-legged intersections;
» amajor road right turn lane seems to increase accidents at three-legged intersections;

o the angle effect is variable from State to State and from three-legged to four-legged
intersections;

* Washington coefficients are somewhat erratic in sign and the coefficient of ADT1 in the
four-legged model is rather small relative to that of ADT2; and

» Washington models have lower R? values than the Minnesota models, and the combined
models are intermediate.
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In view of the small size of the Washington State sample (the combined models are generally
dominated by the Minnesota data), the non-random and ad hoc character of ‘the Washington
intersections (an “opportunity” sample), the lesser quality of some of the collected Washington data
(e.g., traffic and angle), and the insignificance of variables of interest (including the State variable),
we take the Minnesota models as fundamental.

In particular, we offer the models in Table 35 as our final models for three-legged and four-legged
intersections. These models are based exclusively on Minnesota data, and significant variables and
marginally significant ones are included where we have allowed greater latitude for the alignment
variables in the spirit of a “best guess” approach. In these runs the variables with unexpected signs
(ND for the three-leggeds and RHRI for the four-leggeds) have been omitted. These models are the
best we have to offer. Their shortcomings become apparent by comparing them with Tables 31 and
32, where more variables are included and both States are represented.

LOGISTIC MODELING

Logistic modeling was done in this study on the Minnesota data to determine whether the probability
of a serious accident given that an accident has occurred can be related to highway and intersection
variables. The variable INJACC counts the number of injury accidents (i.e., other than property
damage only accidents) and includes accidents with non-incapacitating injuries and possible injuries,
whereas the focus of the logistic modeling is serious accidents (fatal or injury accidents). All sites
with zero accidents were excluded.

Although the results are inconclusive, we present them here since the methodology may be of
interest.

Theory

Logistic regression is used to estimate probabilities for binary data or discrete ordinal data. In our
case two severity classes are used: serious accidents and other accidents. The probability of an
accident being severe is represented as a function of highway and intersection variables of

generalized linear type,* typically a logistic function of a linear combination of these variables.

A variable Y for each accident is defined as follows:

% See Roadside Design Guide, American Association of State Highway and
Transportation Officials, Washington, D.C., 1988; and Lau, M.Y.-K., and May, A.D., “Accident
Prediction Model Development for Unsignalized Intersections: Final Report,” University of
California at Berkeley, Institute of Transportation Studies, Report No. UCB-ITS-RR-89-12,
Berkeley, 1989.
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1 if the accident type is fatal or injury
v = 0 if the accident type is non—incapacitating,
possible injury, or property damage only

Then P, is the probability that Y has the value 1 given the value x = (xy,...,x,) of the highway
characteristics at the accident site . With the logistic function, the model takes the form

exp(B, + XBx)
1 + exp(B, + LBx)

1

This functional form guarantees that P, will always be a number between 0 and 1. Since P, is the
probability that an accident is severe (Y = 1) given the values of x, then 1 - P, is the probability that
an accident is not severe (Y = 0). The likelihood function for all the observed severities, derived
from the binomial distribution under the assumption that the accidents are independent events, is:

IB) = Mmex) "1 -mee))' ™

Here x; = (%, ..., X;) denotes the vector of highway variables at accident no.iand Y; is 1 or 0
whether accident no. 1 is serious or not. Under the assumption that the model form is correct, the
estimated coefficient vector f is the value of p = (B,, ..., B,) that maximizes 1(f).

A measure of goodness of fit used on this model is the rank correlation (available in the SAS
procedure LOGISTIC). All possible accident pairs with distinct severities are formed from the data,
and then one calculates:

total = t = the total number of pairs

concordance = nc = the number of pairs for which the model predicts higher probability of
a severe accident for the member of the pair that had the more severe accident

discordance = nd = the number of pairs for which the model predicts higher probability of a
severe accident for the member of the pair that had the less severe accident

ties =t - nc - nd = the number of pairs with same predicted probability of a severe accident .
Probabilities are grouped into intervals of length .02 and are considered equal if they lie in the same

interval. Finally one calculates
¢ = (nc + 0.5(t - nc - nd))/t.
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The statistic ¢ takes values between 0 and 1, and achieves the value .5 on average if a member of
each pair is chosen with equal probability. Thus the farther above .5 ¢ is the better the model.

Results

On the 619 Minnesota segments of this study in the time period 1985-89 there were a total of 1,694
accidents, 121 of them serious. The models that result from maximum likelihood techniques showed
no significant variables other than commercial ADT percentage T. Horizontal alignment or vertical
alignment, but not both, had positive coefficients but the P-values were insignificant (one form of
horizontal, not shown here, had a P-value of .306). One typical run yielded equation (5.18):

exp(-3.006 + 0.0417 + 0.031VMCC)
1 + exp(-3.006 + 0.041T + 0.031VMCC)

P, = (5.18)

The P-values and statistic ¢ are shown below.

TABLE 38. Logistic Model for Serious Accident Probability, Minnesota Segments

PARAMETER ESTIMATE | P-value
Intercept -3.0060 0.0001
Percent of commercial vehicles =T 0.0413 0.0310
Crests of Type I rate = VMCC ' 0.0314 0.5634
Concordance = 53.1%, Discordance = 41.6%, ¢ = 55.8%

The statistic ¢ differs from 50% by an appreciable but modest amount.

For the three-legged Minnesota intersections, from 1985 to 1989, there were 524 accidents, 34 of
them serious. Accident severity does not seem to be significantly affected by the value of the
Conflict Index CINDEX. However, as equation (5.19) shows, horizontal alignment (out to 764 feet
in each direction) tends to increase the severity, while severity is negatively influenced by vertical
alignment (The variable VCEI is a variant of VCI, going out to 764 feet rather than 250 feet). Since
there are very few serious accidents, this result contrary to expectation may reflect peculiarities in

the sample.

_ exp(-2.39 - 2.51VCEI + .075HEI)
! 1 + exp(-2.39 - 2.51VCEI + .075HEI)

(5.19)
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TABLE 39. Logistic Model for Serious Accident Probability, MN 3-Legged Intersections

PARAMETER ESTIMATE P-value
Intercept -2.39 0.0001
Crest curve rate VCEI (out to £764") -2.5099 0.03
Horizontal curvature rate HEI (out to + 764" 0.0753 0.09
Concordance = 60.4%, Discordance = 33.5%, ¢ = 63.4%

For the four-legged Minnesota intersections, from 1985 to 1989, there were 494 accidents, 58 of
them serious. The model below was developed.

exp(-2.38 + 1.75CINDEX - 0.016DEV + 0.079RHRI)

P = .
! 1 + exp(-2.38 + 1.75CINDEX - 0.016DEV + 0.079RHRI)

Alignments were not at all significant. Instead the conflict index and the angular deviation from
90° were marginally so. Roadside Hazard Rating, although not significant, was also retained.

TABLE 40. Logistic Model for Serious Accident Probability, MN 4-Legged Intersections

PARAMETER ESTIMATE | P-value
Intercept -2.38 0.0001
Conflict index CINDEX 1.75 0.10
Angle DEV -0.016 0.20
Roadside Hazard Rating RHRI 0.079 0.55
Concordance = 57.1%, Discordance = 40.3%, ¢ = 58.4%

SUMMARY

A variety of modeling techniques — Poisson, negative binomial, extended negative binomial, and
logistic — have been applied in this chapter, along with measures of overdispersion, goodness-of-fit,
and concordance. In general the Poisson models, negative binomial, and extended negative
binomial models give mutually consistent values for regression coefficients. The T, statistic
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indicates that overdispersion is present and thus that negative binomial models are to be preferred.
The logistic models are not particularly satisfactory, perhaps because of the relative infrequency of
serious accidents and the relatively greater importance of missing variables.

The segment models — our final model is in Table 27 — support the assertion that most of the
variables in the study are significant. Some variables that correlate with accidents (e.g., commercial
traffic percentage T) are omitted because they are not as significant as competing variables.
However, the chief variables — exposure, lane and shoulder width, Roadside Hazard Rating and
driveway density, and the alignment variables ~ are all represented. Differences between States
appear to be genuine and are captured by the variable STATE. When we pass to the negative
binomial and the extended negative binomial, the coefficient estimates are reapportioned somewhat
as overdispersion and localized vertical and horizontal measures make their contribution to the

variation in accident counts.

With regard to intersections, the final models are presented in Table 35. Minnesota data are taken
as fundamental because the Washington intersection data are non-random and less reliable.
Furthermore, the criteria for significance are relaxed so that “best guess” coefficients for alignment
design variables can be presented. The effects of number of driveways, Roadside Hazard Rating,
the angle variables, and channelization show notable variation between the three-legged intersections
and the four-legged. Number of driveways has unexpected sign (negative) on three-leggeds in both
States. Roadside Hazard Rating has unexpected sign (negative) on four-leggeds in both States. The
acute/obtuse angle variable HAU behaves as expected on four-leggeds but not on three-leggeds, but
another angle variable, deviation DEV from 90°, is more significant on four-leggeds. The presence
of major road turning lanes increases accidents on three-leggeds but decreases them on four-leggeds.
In the final models of Table 35 number of driveways (wrong sign) is omitted from the three-legged
intersections, while Roadside Hazard Rating (wrong sign) and right turn lanes (insignificant) are
omitted from the four-legged intersections.

Some noteworthy differences also appear between the Minnesota and Washington models, for
example, the insignificance of Roadside Hazard Rating in Minnesota segments (due perhaps in part
to less variation), the anomalous sign of lane width in Washington segments (perhaps related to
design differences), differences in the commercial traffic percentage variable T between the two
States, and insignificance of most variables on the Washington three-legged intersections.

The combined segment model (Table 27) and the Minnesota intersection models (Table 35) exhibit

the effects of the chief variables, while minimizing anomalies found in some variables and in
Washington intersection data.
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6. VALIDATION AND FURTHER ANALYSIS
This chapter is devoted to miscellaneous analytical tasks relevant to possible uses of the models:

« Validation tests are performed to measure the predictive efficacy of the leading models. The
Minnesota models are tested against Minnesota data from a later time period (1990-1993)
on the same segments and intersections. They are also tested against Washington data, and
the Washington segment model and the combined segment model are tested on Minnesota
data from 1985-89 and 1990-93.

o The relative explanatory value of different groups of variables in the final models (Tables
27 and 35) is assessed by means of the Log-Likelihood R-squared introduced in Chapter 5.

« Scaled residuals (observed accident counts minus predicted mean accident counts divided
by estimated standard error) are compared graphically with leading variables to check for
systematic trends that might contradict the assumed model form or suggest model
refinements.

VALIDATION

Validation Techniques

The chi-square statistic % provides a rough validation measure. More precisely, use is made here
of a concocted ¥, called %2, that applies to both the Poisson and the negative binomial distribution:

(.Vi - ﬁi)z
SR S Tt
V; + K@)

where
Y observed accident count at site number 1
o= predicted mean accident count at site number i (according to the model)
K = overdispersion parameter of the model
N = sample size to which the model is-applied.

A more refined approach is to compute the z-score of the concocted statistic .. If the null
hypothesis that the model is valid is true, it can be shown that the expected value of ¥ is the sample
size N and its variance is given by:
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1

Vo) = 2N(1+3K)+Y Y ——
1 + Ky)

Then the z-score of 2 is

and this statistic is approximately normal.

Also computed are the mean absolute deviation (MAD) and the mean absolute scaled deviation

(MASD):

1 N ~
MAD = "'Z =1 0 ~ Y

Masp = Ly v Vi Z Il

V7 + KO)’

These are two additional measures of the predictive power of the model.
Minnesota Models versus Later Minnesota Data

Highway Safety Information System data became available during the course of this study for the
years 1990-1993 in Minnesota. These data included accident counts, traffic, shoulder widths, lane
widths, and speeds for 392 segments (out of the 619 in the original sample), and accident, traffic,
and speed data for 365 three-legged intersections (out of the original 389) and 309 four-legged
intersections (out of the original 327). The sample sizes for the second time period are smaller
because sites with major changes (for example, segments that had changed length) or for which
accident counts were not available were omitted. The new values of the highway variables were
applied to the leading models and the predicted mean accident counts were compared with actual
accident counts to test how the models performed. Variables such as number of driveways, Roadside
Hazard Rating, and alignment were not revised for the new data sets. The values of these variables
were obtained from photologs for 1985-89 and original construction plans. Updated values were not
available, and it was assumed that few changes had occurred.
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Table 41 shows the results of applying the Minnesota models from Tables 26 and 35 to the 1990-93
Minnesota data. The first model is an extended negative binomial model for segments with an
overdispersion parameter K = .2722, the second and third models are negative binomial models with
K = 4811 and .2055, respectively. The critical value %, has been listed for comparison purposes.
The segment data fit the model quite well, while the three-legged and four-legged intersections fail
to fall within the 95% critical value. If we adopted as null hypotheses that the segments, the three-
legged intersections, and the four-legged intersections were drawn from intersections with mean
accident counts given by the models, we would reject these hypotheses for the intersections and fail
to reject for the segments.

TABLE 41. Validation of Minnesota Models with 1990-1993 Minnesota Data

Sample Sample Critical | Z-score | Mean | Mean
size size X value | of y.2 Abs. Abs.
of data N of X950 Dev. | Scaled
used in | validation MAD Dev.
modeling data MASD
MN Segment
Model 619 392 | 3046 | 439 | <194 | 117 | o071
(Table 26) ' ' ' '
MN 3-legged
Intersection | g4 365 | 4641 | 410 194 | 102 | 073
Model
(Table 35)
MN 4-legged
Imﬁfﬁgon 327 300 | 3866 | 351 205 | 128 | 085
*
(Table 35) (308%) | (343.3) ©.91) | (1.15) | (0.83)

* One outlier removed

Nonetheless, in other respects the fits are reasonably good, not only for the segments but also for the
intersections, with small mean absolute and absolute scaled deviations. The four-legged
intersections improve dramatically when one outlier is removed, an intersection with 51 accidents
in 1990-1993.

The objection may be made that accidents in the new time period are correlated with accidents in the
old time period, and that the validation sample is not independent of the sample used to derive the
model. The effect of this might be to generate predicted accident counts for the new time period
similar to those in the old time period, but with the dependency on highway variables not receiving
a genuinely independent test. Indeed, the overfitting of the segment data suggests this possibility.

131



Minnesota Models versus Washington Data

Table 42 below shows validation results when the Minnesota models of Table 41 are applied to the
Washington segments and intersections. In this case there is no danger of correlation and the
validation data serve as an independent sample.

TABLE 42. Validation of Minnesota Models with 1993-1995 Washington Data

Sample Sample Critical | Z-score | Mean Mean
size size X value | of y.2 Abs. Abs.
of data N of A osss Dev. | Scaled
used in validation MAD Dev.
modeling data MASD
MN Segment
Model 619 712 991.8 775 4.69 1.52 0.85
(Table 26) : : : :
MN 3-legged
Intersection 389 181 141.4 213 114 | 117 0.74
Model
(Table 35)
MN 4-legged
Intersection 327 90 188.0 113 522 | 268 1.13
Model
(Table 35)

Table 42 shows a marked difference between the segment and four-legged Minnesota models and
the corresponding Washington data with respect to x.>. The MAD and the MASD look somewhat
better. The three-legged model looks relatively good, but it should be recalled that this model has
the largest overdispersion parameter (K = .4811 for the three-leggeds versus K = .2722 for the
segments and K =.2055 for the four-leggeds). The large overdispersion parameter indicates more
unexplained variation than in the other models, and also has the effect of increasing the denominator
in x> and MASD.

In the case of the segments one explanation of the large z-score of ¥’ is the difference in overall
accident rate (accidents per million vehicle-miles) between Minnesota and Washington. In Table
43 a comparison is shown of three different ways of applying the Minnesota segment model to the
Washington data:
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1) the model is used as is;

ii) the predicted mean is taken to be that in i), multiplied by the ratio (1.0228/.6656) of
the accident rate (accidents per million vehicle-miles) in Washington to the accident rate in
Minnesota; or ‘

iii) the predicted mean is taken to be that in i) multiplied by that factor which gives the
maximum likelihood estimate when the predicted mean in i) is used as an offset.

TABLE 43. Validation of Adjusted MN Segment Model with 1993-1995 WA Data

Sample Sample Critical | Z-score | Mean Mean
size size X value |of x2 | Abs. Abs.
of data N of o5 Dev. [ Scaled
used in | validation MAD Dev.
modeling data MASD
MN Segment
Model
(Table 26) 619 712 991.8 775 4.69 1.52 0.85
without
adjustment
MN Segment
Model
(Table 26), 619 712 630.3 775 -1.45 2.07 0.77
mult. by
1.0228/.6656
MN Segment
Model
(Table 26) 619 712 869.8 775 2.69 1.57 0.81
mult. by
exp(.0914)

Table 43 shows that multipliers lead to better fits. An argument in favor of the maximum likelihood
multiplier, exp(.0914), is that the ratio of the overall accident rates, 1.0228/.6656 = exp(.430), does
not measure the effect of variables besides exposure observation by observation and that differences
between the two States in these other variables may already be represented in the model. Method
iii) introduces the intercept giving the maximum likelihood fit after the model has accounted for
other variables to the extent possible.

Table 43 calls attention to the important question of how a model developed for one or more States
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in some time period should be applied to other States and/or other time periods. A multiplier such
as the ratio of accident rates or the maximum likelihood intercept can be applied, or even one
tailored to minimize x> or MAD or MASD. The choice of multiplier in general depends on the
quantity being optimized. Thus, for example, to obtain a value for %2 as close as possible to zero
in Table 43, a multiplier intermediate between exp(.0914) and exp(.430) might be used.

Washington and Combined Segment Models versus Minnesota Data

Table 44, similar to Table 43, can be generated by applying a Washington State segment model to
the Minnesota data. The extended negative binomial model for Washington State from Table 26
is applied to the 1985-1989 Minnesota data with and without a multiplier in Table 44. The ratio of
accident rates, .6656/1.0228 = exp(-.430), yields the largest z-score for ¥ 2, while the maximum
likelihood intercept, exp(-.2108), yields the z-score closest to zero.

TABLE 44. Validation of Adjusted WA Segment Model with 1985-1989 MN Data

Sample Sample Critical | Z-score | Mean Mean
size size e value | of ¥/ Abs. Abs.
of data N of Y50 Dev. Scaled
used in | validation MAD Dev.
modeling data MASD
WA Segment
Model
(Table 26) 712 619 - 5132 678 -1.96 1.75 0.72
without
adjustment
WA Segment
Model
(Table 26), 712 619 900.3 678 4.93 1.66 0.88
mult. by
.6656/1.0228
WA Segment
Model
(Table 26) 712 619 645.0 678 0.47 1.65 0.78
mult. by
exp(-.2108)

The combined extended negative binomial model for segments (Table 27) can be applied to the
segment data for Minnesota and Washington individually and, as expected, yields z-scores for x>
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close to zero (.926 on Minnesota data, -.0577 on Washington data). When applied to the 1990-1993
Minnesota data (with STATE = 0) it yields the results in Table 45. The accident rate for the 1990-
1993 Minnesota segments is .5509 accidents per million vehicle-miles, whereas for the combined
Minnesota-Washington data set, used in the modeling, the rate is .8070 accidents per million vehicle-
miles.

The data used for validation in Table 45 are not independent of those used in modeling since some
of the segments are the same. Nonetheless, it is of interest to note that adjustments may be
appropriate when a model is applied to a new time period. Table 45 shows that adjustments that
increase likelihood may have variable effects on y,%, MAD, and MASD.

TABLE 45. Validation of Combined Segment Model with 1990-1993 MN Data

Sample Sample Critical | Z-score | Mean Mean
size size Y value | of g/ Abs. Abs.

of data N of Y950 Dev. Scaled
used in | validation MAD Dev.

modeling data MASD

Combined
Segment
Model

(Table 27)
without

adjustment

Combined
Segment
Model
(Table 27),
mult. by
.5509/.8070

1331 392 296.1 439 -2.09 1.20 0.71

1331 392 495.0 439 2.09 1.12 0.85

Combined.
Segment
Model
(Table 27)
mult. by
exp(.0938)

1331 392 2734 439 -2.62 1.26 0.69
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EXPLANATORY VALUE OF FINAL MODELS

One way to assess the explanatory power of models is to examine the coefficient of determination
R? and see how it changes as one adds variables to the model. In Tables 46 and 47 and Figures 6

TABLE 46. Accident Variation by Groups of Covariates, Final Segment Model

Combined Extended Negative Binomial Log-Likelihood Coefficient of

Model (Table 27) Determination(%)
Randomness 45.20
Exposure 26.81
State 2.63
Lane Width, Shoulder Width 2.33

Roadside Hazard Rating, Driveway Density 1.38

Alignment (DEG{i}, V{i}, GR{i}) 1.95
Unexplained 19.70
TOTAL 100.00

100 Unexplained

Alignment
RHR & DD
LW & SHW
State
Exposure
Randomness

80

OEOEEEE

60

40

PERCENT VARIATION EXPLAINED

20

0 T
Log-Likelihood R-squared

FIGURE 6. GRAPH OF ACCIDENT VARIATION BY GROUPS OF COVARIATES,
Final Segment Model
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and 7, this is done for three of the models — the combined segment model of Table 27, and the
Minnesota three-legged and four-legged models of Table 35. Because all of these models are of

TABLE 47. Accident Variation by Groups of Covariates, Final Intersection Models

Log-Likelihood
Minnesota Intersection Coefficient of
Models (Table 35) Determination (%)
three- four-
legged legged
Randomness 53.96 59.19
Exposure (ADT1, ADT2) 27.12 27.99
Design (All other variables) 1.78 2.06
Unexplained 17.14 10.76
TOTAL 100.00 100.00
100 - Unexplained
Design
@ Exposure
........................ ] Randomness

80

60

40

PERCENT VARIATION EXPLAINED

20

0 T T
Three-Leggeds Four-Leggeds

FIGURE 7. GRAPH OF ACCIDENT VARIATION BY GROUPS OF COVARIATES,
Final Intersection Models
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negative binomial type, we use the Log-Likelihood R-squared proposed by Fridstrem et al. (1995).
With respect to this measure, negative binomial randomness is represented by 1 - P2. The
contribution of other factors is represented by R3 for the first variable when a model with that
variable present is used, and then the increment in R2 for each additional variable as it is added to
the model. Finally the unexplained portion of variation is P3 - R3, where R3 is the R-squared value
obtained when all variables are present.

Although the Log-Likelihood R-squared is not the only way to compare explanatory values, it is a
reasonable way to do so for negative binomial models (and we presume for their extended negative
binomial counterparts). The tables and figures indicate that the portion of mean accident counts
explained by variables other than exposure and ADT is small.

CUMULATIVE SCALED RESIDUALS

Figures 8 through 15 below show cumulative scaled residual plots for the extended negative
binomial model (combined segments, Table 27) and for negative binomial models (Minnesota three-
legged and four-legged intersections, Table 35). The cumulative scaled residuals are plotted against
leading explanatory variables. For an explanatory variable x, a plot is made of j versus

E ViV '
itx;<j — — ’
V; + K@)

where j runs through the values of x. Each term, a scaled residual, should be approximately
unbiased. However, if the sum depends in some regular way on j, then the model may have missed
some systematic effects (e.g., quadratic dependency). If there is no systematic effect and the terms
are otherwise independent, the expected value of the sum is approximately zero, and its standard
deviation is approximately the square root of the number of observations for which x < j- For the
segments this means a standard deviation not in excess of v1331 = 36.5 and for the intersections
one not in excess of V389 = 19.7 (three-legged) or v327 = 18.1 (four-legged). The cumulative scaled
residuals should represent the net distance traveled after each step in a random walk that ends at the
sum of the scaled residuals for the entire data set.

For the segments (Figures 8, 9, 10, and 11) the overall sum of the scaled residuals is about -8, for
the three-legged intersections (Figures 12 and 13) the sum is about -2, and for the four-legged
intersections (Figures 14 and 15) the sum is about +1. Thus the segment graphs and the three-legged
graphs should end below the horizontal axis, while the four-legged graphs should end above.

Table 48 summarizes the residual behavior.
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The segment model overpredicts (predicted mean number of accidents higher than actual number)
at the low end of exposure. The cumulative scaled residual varies from -32 to +12.
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Overprediction occurs on segments without horizontal curves. The cumulative scaled residual varies
from -36 to +7.
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The cumulative scaled residual varies from -24 to + 22.
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FIGURE 12. CUMULATIVE SCALED RESIDUAL VERSUS ADT1,
3-Legged Intersection.

The cumulative scaled residual varies from -9 to +11 .
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The cumulative scaled residual varies from -16 to +7.
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The cumulative scaled residual varies from -4 to +12.
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4-Legged Intersections

The cumulative scaled residual varies from -8 to +8.
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TABLE 48. Cumulative Scaled Residuals versus Increasing Value of Variables,

Final Models
Highway Range of Cumulative
Variable Scaled Residual
Exposure -32to +12
1,331 Segments Degree of -36to +7
Curve H
Combined
Segment Crest Curve -13t0 +30
Model Grade Rate
(Table 27) vC
Absolute -24 to +22
Grade GR
MN 3-leggeds, ADT1 -9to +11
389 intersections
(Table 35 model) |ADT2 -16 to +7
MN 4-leggeds, ADT1 -4 to +12
327 intersections
(Table 35 model) |ADT2 -8to+8

V1331 = 36.5, V389 =~ 19.7, V327 = 18.1

Despite the indications of overprediction or underprediction in some regimes in the segment model,
which might lead one to develop separate models in different regimes (e.g., one model for low
exposure, one for medium exposure, and one for high), the graphs are generally consistent with
random walks. In particular the ranges shown in Table 48 above are reasonable. In a random walk,
as mentioned, the n-th step or observation on average will take one a distance of less than +(n)"
units from the origin. In addition it is not at all uncommon to stay on one side of zero (above or
below) for many steps in succession. Negative binomial models never predict zero values for the
dependent variable (in our case numbers of accidents). Thus at low values of highway variables
(presumed to be associated with fewer accidents), when the true number of accidents is zero, the
negative binomial predicts a positive number and hence must overpredict at least somewhat.

SUMMARY
Validation based on a chi-square statistic %2, mean absolute deviation MAD, and mean absolute
scaled deviation MASD suggests that the models have some predictive power. The Minnesota

models behave well on the later Minnesota data (Table 41): the segment model is even
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underdispersed. This does not constitute a real test, though, since the data sets are dependent so that
accidents in the later time period might be expected to correlate well with accidents on the same
segment in the earlier time period (and the latter are the basis for the model). A better test is to
validate models from one State with data from the other. On Washington data (Table 42) the
Minnesota models give small values for MAD and MASD, although the Washington four-legged
sample gives somewhat large values. The Washington segment model also gives small values of
MAD and MASD on Minnesota data (Table 44). To get a small value of y.2, one adjusts the
intercept term of the model to account for a difference in accident experience between the States.

Inspection of Tables 43 and 44 shows that the multiplier that makes . smallest for the Minnesota
segment model applied to Washington data is approximately 1.35, while the best multiplier for the
Washington segment model applied to the Minnesota data is on the order of 0.85. The product of
these numbers is approximately 1.0, as is reasonable.

As assessed by the Log-Likelihood R-squared, the explanatory power of the highway variables is
rather limited. Exposure and ADT account for about 27% of the variation. For the segments a total
of 5.7% of the variation is accounted for by other highway variables (while STATE accounts for
2.6%). For the three-legged intersections, all highway variables other than ADT account for only
1.8% (perhaps in part because of the large overdispersion parameter in the three-legged model),
while for the four-leggeds the other variables account for 2.1%. See Tables 46 and 47, and Figures
6 and 7.

Although the cumulative scaled residual graphs for the segments suggest some differences in
regimes, the graphs in Figures 8 through 15 are generally consistent with the model forms in Tables
27 and 35. Different models applied when some of the highway variables are confined to subsets
of their full range (first quartile, second quartile, etc.) might yield better fits, but if a single
overarching model is wanted for each of the three classes of data, the final models in Tables 27 and
35 are plausible candidates (with adjustments for different States and times).
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7. CONCLUSIONS

We present the final models of this study in the form of equations and make a few remarks about
their significance. Appendix 2 gives the equations in metric form.

The final models proposed in this study are the following:

I. Segments of two-lane rural roads (Table 27)

Extended Negative Binomial Model with K =.306

¥ =

EXPO x exp(0.641)

x exp(—0.0846LW - 0.0591SHW + 0.0668RHR + 0.0084DD + 0.139STATE)
x (), WH{i} exp(0.0450DEG{i}))

x (E,- WV{j} exp(0.465V{j}))
x (), WG{k} exp(0.105GR{k})

where

¥ = predicted mean number of non-intersection accidents on the segment

EXPO = traffic exposure in millions of vehicle-miles

LW = lane width in feet

SHW = average of left and right shoulder widths in feet

RHR = average Roadside Hazard Rating along segment

DD = driveway density in driveways per mile

STATE = 0 for Minnesota, 1 for Washington

DEG{i} = degree of curve in degrees per hundred feet of the i-th horizontal curve that
overlaps the segment

WH{i} = fraction of the total segment length occupied by the i-th horizontal curve

V{j} = absolute change in grade in percent per hundred feet of the j-th vertical crest curve
that overlaps the segment

WV{j} = the fraction of the total segment length occupied by the j-th vertical crest curve

GR{k} = absolute grade in percent of the k-th uniform grade section that overlaps the segment

WG{k} = fraction of the total segment length occupied by the k-th uniform grade section.

NOTE: Each set of weights WH{i}, WV{j}, and WG{k} separately must sum to 1. To ensure this,
usually it is necessary to insert one artificial horizontal curve with DEG = 0, one artificial crest with
V =0, and one artificial straightaway with GR = 0, each one having whatever weight is needed to
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make the sum equal 1.
11. Three-legged intersections of two-lane rural roads, stop-controlled on the minor road (Table

Negative Binomial Model with K = .481

A

y:

NUMBER OF YEARS x (ADTIy* x (ADT2)*™ x exp(-13.0)
x exp(0.0339HI + 0.290VCI + 0.0285SPDI)
x exp(0.173RHRI + 0.267RT + 0.0045HAU)

where the variables are:

¥ = predicted mean number of intersection or intersection-related accidents within 250 feet of

the intersection center

ADT1 = average two-way major road traffic in vehicles per day

ADT?2 = average two-way minor road traffic in vehicles per day

HI = sum of degree of curve in degrees per hundred feet for each horizontal curve on major road
any portion of which is within 250 feet of the intersection center, divided by the number of
such curves '

VCI = sum of absolute change of grade in percent per hundred feet for each crest curve
(incoming signed grade larger than outgoing signed grade) on major road any portion of
which is within 250 feet of the intersection center, divided by the number of such curves

SPDI = average posted speed in miles per hour on major road in vicinity of the intersection

RHRI = average Roadside Hazard Rating within 250 feet of intersection center along major road

RT = 0 if no right turn lane on major road, 1 if right turn lane exists on major road

HAU = angle in degrees between increasing direction of major road and minor road minus 90
degree, multiplied by 1 if minor road is to right or by -1 if minor road is to left.
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[I1. Four-legged intersections of two-lane rural roads, stop-controlled on the minor road (Table 35

Negative Binomial Model with K = .205

f =
NUMBER OF YEARS % (ADTI)S® x (ADT2)*% x exp(-10.4)
x exp(0.0449HI + 0.289VCI + 0.0187SPDI + 0.124ND - 0.0049HAU)

where the variables are:

¥ = predicted mean number of intersection or intersection-related accidents within 250 feet of
the intersection center

ADT1 = average two-way major road traffic in vehicles per day

ADT?2 = average two-way minor road traffic in vehicles per day

HI = sum of degree of curve in degrees per hundred feet for each horizontal curve on major road
any portion of which is within 250 feet of the intersection center, divided by the number of
such curves

VCI = sum of absolute change of grade in percent per hundred feet for each crest curve
(incoming signed grade larger than outgoing signed grade) on major road any portion of
which is within 250 feet of the intersection center, divided by the number of such curves

SPDI = average posted speed in miles per hour on major road in vicinity of the intersection

ND = number of driveways within 250 feet of the intersection center along major road

HAU = angle in degrees between increasing direction of major road and right leg of minor road
minus angle in degrees between increasing direction of major road and left leg of minor
road.
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These models yield the Accident Reduction Factors shown in Table 49 below. Recall that the
Accident Reduction Factor is the percentage decrease in mean predicted accident count when a
variable is increased by one unit, all other variables being held fixed. A negative value signifies that
accidents increase by that percentage when the variable is increased by one unit.

TABLE 49. Accident Reduction Factors for the Final Models

Segment Model (Table 27) 3-Legged Intersection 4-Legged Intersection
Model (Table 35) Model (Table 35)

LW +8.1%
SHW +5.7%
RHR -6.9% RHRI -18.8%
DD -0.84% ND -13.1%
DEG -4.6% HI -3.4% HI -4.6%
\Y -59.2% VCI -33.7% VCI -33.4%
GR -11.0%

HAU -0.5% HAU +.5%

The Accident Reduction Factors for DD and ND are roughly comparable. Since DD =
NDx5280+500, the coefficient 0.0084 of DD in the segment model (Table 27) translates into a
coefficient 0.0887 of ND and an Accident Reduction Factor of -9.3% for an intersection model, as
compared with -13.1% in the actual four-legged intersection model (Tables 35 and 49).

The ultimate use of models such as these is to aid the highway designer to improve highway safety
and to determine what design measures will do this most effectively. The coefficients proposed for
each of the models — in Tables 27 and 35 and in the equations above — are directly translatable into
predicted accident counts and Accident Reduction Factors. Even if the models considered here were
taken to be definitive, each coefficient has an estimated standard deviation or standard error (shown
in Tables 27 through 35), and there is no reason to believe that the estimated coefficients are known
to much greater accuracy than one standard deviation. For a normal random variable about 68% of
measured values lie within one standard deviation of the mean. In addition there are numerous
uncertainties that cannot be quantified in the highway variables. Variables such as ADT are crude
averages over time, and some variables are incorrect for unknown causes (new construction without
plans to confirm the change, data entry errors in one of the multiple data bases from which the data
are obtained, inaccuracies in location of accidents, mileposts, alignments, etc.).

One informal way to estimate the error in a coefficient is to examine alternative models and note
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how coefficients vary from model to model. As well as referring to the literature for models
obtained by other investigators, one may compare the different models in this study in Tables 21
through 37. Although there is some stability in coefficients as one passes from Poisson to negative
binomial to extended negative binomial, there is less as one passes from one State to another, or
from all accidents to injury accidents.

Of great importance for the practical utility of models such as the ones presented here is the issue
of how to adapt them to different States and regions and/or different time epochs. In general what
is needed is a multiplier that can be applied to a standard model to adjust it to a different State or
region (for example, New England versus the Great Plains) and/or a different era (1999 versus 2001-
2005), to circumstances in which drivers, vehicles, law enforcement, and demographics may differ
from those under which the standard model was developed. Engineering judgment together with
historical data from different States and eras can be used to develop multipliers. Alternatively, a
small recent sample of accidents in a region can be compared with predictions from the standard
model and an adjustment factor derived from the sample. Yet another approach is the Empirical
Bayesian one: combine past data on a particular segment or intersection with a standard model of
negative binomial type as discussed in Hauer et al. (1988).

Although the segment model developed here summarizes data from two reasonably diverse States
(and two epochs), the intersection models are based on Minnesota alone. In Table 42 they have only
partial success when applied to Washington State. Moreover, the design variables (e.g., Roadside
Hazard Rating, number of driveways, channelization, and intersection angle) behave in unexpected
ways as one moves from three-legged intersections to four-legged ones. These peculiarities, as well
as the relatively high accident rates at intersections, suggest that intersection studies should continue
as a highway safety research priority.
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APPENDIX 1 - STATISTICS ON THE MINNESOTA POPULATIONS
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Average Daily Traffic
(Minnesota two-lane rural road segments, 1985-1989)

AVERAGE NO. OF TOTAL TOTAL

DAILY TRAFFIC SEGMENTS SEGMENT LENGTH NO. OF ACCIDENTS
(miles) (non-intersection)

51-500 178 400.54 194
501-1000 563 910.34 832
1001-1500 546 619.90 875
1501-2000 511 480.53 962
2001-3000 676 597.78 1821
3001-5000 537 372.40 1551
5001-25000 297 172.21 1848
TOTAL 3,308 3,553.70 8,083

Commercial Traffic Percentage
(Minnesota two-lane rural road segments, 1985-1989)

COMMERCIAL NO. OF TOTAL TOTAL
TRAFFIC PERCENTAGE SEGMENTS SEGMENT LENGTH NO. OF ACCIDENTS
(miles) (non-intersection)
0-5.0 334 288.83 1382
5.1-10.0 1336 1308.50 3602
10.1-15.0 1053 1192.15 2054
15.1-20.0 425 513.84 799
20.1-30.0 160 250.38 246
TOTAL 3,308 3,553.70 8,083
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Shoulder Width
(Minnesota two-lane rural road segments, 1985-1989)

SHOULDER NO. OF TOTAL TOTAL
WIDTH SEGMENTS SEGMENT LENGTH NO. OF ACCIDENTS
(feet) (miles) (non-intersection)
0-3 471 830.04 1255
3-5 393 566.10 1159
5-7 522 598.39 1354
7-8 959 847.09 2623
8-10 922 696.98 1667
10-12 41 15.10 25
TOTAL 3,308 3,553.70 8,083
Lane Width

(Minnesota two-lane rural road segments, 1985-1989)

LANE NO. OF TOTAL TOTAL
WIDTH SEGMENTS SEGMENT LENGTH NO. OF ACCIDENTS
(feet) (miles) (non-intersection)

9 1 0.58 5
10 92 117.96 371
11 254 279.40 982
11.5 5 6.71 3
12 2956 3149.06 6722

TOTAL 3,308 3,553.71 8,083
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Shoulder Type

(Minnesota two-lane rural road segments, 1985-1989)

SHOULDER NO. OF TOTAL TOTAL
TYPE SEGMENTS SEGMENT LENGTH NO. OF ACCIDENTS
(miles) (non-intersection)
GRAV & DIRT SHLD 1520 2065.17 3494
COMPOSIT SHLD 227 300.44 432
PAVED SHLD 1454 1102.48 3891
TOTAL 3,201* 3,459.09 7,817*

*3,308 segments with 8,083 non-intersection accidents were studied, but the constraint that shoulder type
remain the same from left to right and throughout the time period 1985-1989 reduces these to 3,203 segments.

Of these two had no shoulders, yielding the numbers shown above.
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APPENDIX 2 - FINAL MODELS IN METRIC UNITS
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The metric versions of the final models are:

L._Segments of two-lane rural roads (Table 27 in metric form

Extended Negative Binomial Model with K = .306

~

y =
EXPO, x exp(0.165)

x exp(-0.278LW, - 0.194SHW, + 0.0668RHR + 0.0135DD, + 0.139STATE)
x (), WH{i} exp(0.0137DEG, {i}))

x (Z,- WV{j} exp(0.142V, {j}))
x (), WGk} exp(0.105GR{K))

where

¥ = predicted mean number of non-intersection accidents on the segment

EXPO,, = traffic exposure in millions of vehicle-kilometers

LW, = lane width in meters

SHW,, = average of left and right shoulder widths in meters

RHR = average Roadside Hazard Rating along segment

DD,, = driveway density in driveways per kilometer

STATE = 0 for Minnesota, 1 for Washington

DEG,,{i} = degree of curve in degrees per hundred meters of the i-th horizontal curve that
overlaps the segment

WH{i} = fraction of the total segment length occupied by the i-th horizontal curve

V.{j} = absolute change in grade in percent per hundred meters of the j-th vertical crest
curve that overlaps the segment

WV{j} = the fraction of the total segment length occupied by the j-th vertical crest curve

GR{k} = absolute grade in percent of the k-th uniform grade section that overlaps the
segment

WG{k} = fraction of the total segment length occupied by the k-th uniform grade section.

NOTE: Each set of weights WH{i}, WV {j}, and WG{k} separately must sum to 1. To ensure
this, usually it is necessary to insert one artificial horizontal curve with DEG = 0, one artificial
crest with V = 0, and one artificial straightaway with GR = 0, each one having whatever weight
is needed to make the sum equal 1.
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- intersections of two-lan I roa ontrolled on the minor road (Table

35 in metric form)

Negative Binomial Model with K = .481

}';‘ =
NUMBER OF YEARS x (ADTI)®S x (ADT2)"" x exp(-13.0)
x exp(0.0103HI, + 0.0884VCI_ + 0.0177SPDI,)

x exp(0.173RHRI + 0.267RT + 0.0045HAU)

where the variables are:

¢ = predicted mean number of intersection or intersection-related accidents within 76 meters
of intersection center

ADT]1 = average two-way major road traffic in vehicles per day

ADT?2 = average two-way minor road traffic in vehicles per day

HI_, = sum of degree of curve in degrees per hundred meters for each horizontal curve on
major road any portion of which is within 76 meters of the intersection center, divided
by the number of such curves

VCI,, = sum of absolute change of grade in percent per hundred meters for each crest curve
(incoming signed grade larger than outgoing signed grade) on major road any portion of
which is within 76 meters of the intersection center, divided by the number of such
curves

SPDI,, = average posted speed in kilometers per hour on major road in vicinity of the
intersection

RHRI = average Roadside Hazard Rating within 76 meters of intersection center along major
road

RT = 0 if no right turn lane on major road, 1 if right turn lane exists on major road

HAU = angle in degrees between increasing direction of major road and minor road minus
90 degree, multiplied by 1 if minor road is to right or by -1 if minor road is to left.
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I1. Four-legged intersecti -lane 1 roads, stop-controlled on the minor road (Table

35 in metric form)

Negative Binomial Model with K =.205

y =
NUMBER OF YEARS x (ADTI)®® x (ADT2)*® x exp(-10.4)
x exp(0.0137HI  + 0.0879VCI, + 0.0116SPDI, + 0.124ND - 0.0049HAU)

where the variables are:

9 = predicted mean number of intersection or intersection-related accidents within 76 meters
of the intersection center

ADT]1 = average two-way major road traffic in vehicles per day

ADT?2 = average two-way minor road traffic in vehicles per day

HI,, = sum of degree of curve in degrees per hundred meters for each horizontal curve on
major road any portion of which is within 76 meters of the intersection center, divided
by the number of such curves

VCI,, = sum of absolute change of grade in percent per hundred meters for each crest curve
(incoming signed grade larger than outgoing signed grade) on major road any portion of
which is within 76 meters of the intersection center, divided by the number of such
curves

SPDI,, = average posted speed in kilometers per hour on major road in vicinity of the
intersection

ND = number of driveways within 76 meters of the intersection center along major road

HAU = angle in degrees between increasing direction of major road and right leg of minor
road minus angle in degrees between increasing direction of major road and left leg
of minor road.
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