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ABSTRACT

In this report the efficiency of various dissipative mechanisms to protect structures from
pulse-type and near-source ground motions is examined. It is first shown that under such motions
the concept of equivalent linear damping has limited meaning since the transient response of a
structure is more sensitive to the nature of the dissipation mechanism, rather than to the amount of
energy dissipated per cycle. Subsequently, physically realizable cycloidal pulses are introduced,
and their resemblance to recorded near-source ground motions is illustrated. The study uncovers
the coherent component of some near-source acceleration records, and the shaking potential of
these records is examined. It is found that the response of structures with relatively low isolation
periods is substantially affected by the high frequency fluctuations that override the long duration
pulse. Therefore, the concept of seismic isolation is beneficial even for motions that contain a long
duration pulse which generates most of the unusually large recorded displacements and velocities
of near-source events. Dissipation forces of the plastic (friction) type are very efficient in reducing
displacement demands although occasionally they are responsible for substantial base shears. It is
found that the benefits of hysteretic dissipation are nearly indifferent to the level of the yield dis-
placement of the hysteretic mechanism and that they depend primarily on the level of the plastic
(friction) force. Supplemental viscous damping to hysteretic mechanisms further reduces dis-
placements in the superstructure. The study concludes that a combination of relatively low friction
and viscous forces is most attractive since base displacements are substantially reduced without

appreciably increasing base shear and superstructure accelerations.
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CHAPTER 1

INTRODUCTION

The dynamic response of a structure depends on its mechanical characteristics and the
nature of the induced excitation. Mechanical properties which are efficient to mitigate the struc-
ture’s response when subjected to certain inputs might have an undesirable effect during other
inputs. Ground motions generated from earthquakes differ from one another in magnitude, source,
characteristics, distance and direction from the rupture location and local soil conditions. The
ability of a structure to dissipate energy is central to controlling displacement demands, and vari-
ous energy dissipa{tion mechanisms have been proposed to enhance structural response (ATC,
1993). These energy dissipation mechanisms can be of various types such as viscous, rigid-plas-

tic, elastoplastic, viscoplastic, or combination of thereof.

Under seismic excitations that have relatively long durations, a structure undergoes several
cycles during the forced vibration part of the response; therefore, its response depends more on
the amount of energy that is dissipated during each cycle (area under the force-displacement loop)
than on the nature of the dissipative force that develops (viscous, friction, elastoplastic or visco-
plastic). Because of this, the dissipation properties of structures have been traditionally averaged
over a cycle of motion and expressed in term of dimensionless ratios which originate from the lin-

ear theory of structural dynamics (Clough and Penzien 1993, Chopra 1995).

During the last two decades, an ever increasing database of recorded ground motions have
demonstrated that the kinematic characteristics of the ground motion near the faults of major
earthquakes contain large displacement pulses from 0.5 m to more than 1.5 m with peak velocities
of 0.5 m/sec or higher. In some cases, the coherent pulse is distinguishable not only in the dis-
placement and velocity histories, but also in the acceleration history, which happens to be a rather
smooth signal. In other cases, acceleration histories recorded near the source contain high-fre-
quency spikes and resemble the traditional random-like signal; however, their velocity and dis-
placement histories uncover a coherent long-period pulse with some overriding high-frequency

fluctuations (Anderson et al. 1986, Campillo et al. 1989, Iwan and Chen 1994).



The challenge in providing seismic protection from such motions is the selection of
mechanical properties that will improve the response of a structure subjected to a high-frequency
spike and a low-frequency, low-acceleration pulse. Previous studies (Anderson and Bertero 1986,
Hall et al. 1995, Iwan 1997) indicated that what makes near-source ground motions particularly
destructive to some structures is not their peak ground acceleration but their long duration pulse,
which represents the incremental velocity that the above-ground mass has to reach. These indica-
tions challenged the concept of seismic isolation. This report addresses this challenge in a system-
atic way, showing that seismic isolation is an effective protection strategy against near-source

ground motions provided that the appropriate energy dissipation mechanism is provided.

In this study the effect of various dissipation mechanisms in reducing the response of seis-
mically isolated structures subjected to near-source ground motions is examined in detail. It is
first shown through a comprehensive study that during pulse-type ground motions the concept of
equivalent linear damping is no longer valid because the response is strongly transient. The
response of the structure is much more sensitive to the nature of the dissipation mechanism, than
to the amount of energy dissipated per cycle. Accordingly, damping ratio quantities used in
design, such as the effective damping coefficient, B, , should be used with caution. Subsequently,
selected near-source ground motions are presented, and their resemblance to physically realizable
cycloidal pulses is shown. A type-A cycloidal pulse approximates a forward motion; a type-B
cycloid pulse approximates a forward-and-back motion; whereas, a type-C;, pulse approximates a
recorded motion that exhibits n main pulses in its displacement history. The velocity histories of
all type-A, type-B and type-C,, pulses are differentiable signals that result in finite acceleration

values.

While the proposed cycloidal pulses capture many of the kinematic characteristics of the
displacement and velocity histories of recorded near-source ground motions, in many cases the
resulting accelerations are poor predictions of the recorded histories. This is because in many
near-source ground motions there are high frequency fluctuations that override the long duration
pulse. It is shown that the response of structures with relatively low isolation periods is affected
significantly by these high frequency fluctuations, indicating that the concept of seismic protec-
tion by lengthening the isolation period is beneficial when the appropriate type of energy dissipa-

tion is provided. The benefits of rigid-plastic or elastic-plastic behavior are nearly indifferent to



the level of the yield displacement and depend primarily on the level of the plastic (friction) force.
The report concludes that a combination of relatively low values of plastic (friction) and viscous
damping results in an attractive design since displacements are substantially reduced without

appreciably increasing base shear and superstructure accelerations.






CHAPTER 2

MODAL DAMPING RATIO AND EFFECTIVE DAMPING COEFFICIENT

In order to represent the ability of a structure or a structural component to dissipate energy
various dimensionless quantities have been proposed to express damping. This section reviews the
definitions and relations of the two most widely used ratios, that of the modal damping ratio, &,

and that of the effective damping coefficient, B, .

‘For a 1-DOF linear oscillator with mass, m, stiffness, K = mag, and viscous damping, C,
the viscous damping ratio is defined as & = C/(2mw,) . Since for a 1-DOF there is only one mode,
the first modal damping, &, , = &. Clearly, the modal damping (viscous damping ratio) has mean-

ing only when the structural system has finite inertial mass (m#0).

During a steady-state harmonic motion with amplitude, U,, and frequency, Q, the damping
constant, C, is related to the energy dissipated per cycle, W, ,with

Wp

C = 2Emo, = (1)

2
nQUO

where W, is the area under the steady-state force-displacement loop. Recognizing that the maxi-
mum strain energy stored in the oscillation during this motion is E, = %mmgug , the damping coef-

ficient, &, is

2’; = Lm_O_WL.D )
4mQ E_
When the frequency of vibration of the 1-DOF system happens to be the natural frequency of the

oscillator (resonance), then the modal damping, &, = W,/(4nE,), which is the familiar expression

presented in most books of structural and soil dynamics (Chopra 1995, Kramer 1996).

With the development of seismic protection systems and energy dissipation devices, struc-

tural engineers faced the need to quantify the energy dissipation capabilities of isolation compo-



nents with virtually no inertial mass (during component testing, the inertia forces recorded by the
load cell are very small compared to the forces originating from elasticity and dissipation). The
most popular way to quantify energy dissipation of a protective device is to impose a cyclic dis-
placement U(r) = UysinQt on the device and measure the resulting force that develops. During
such tests the energy dissipated per cycle is the area under the force displacement loop and the

effective damping coefficient, B, , of the protective device is defined as

1 Wp

Poty = 222

, 3)
T 2
KU,

where K, is the effective stiffness of the isolation device.

Consider now the 1-DOF system shown in Figure 1 (top), which consists of a rigid block
with mass m supported on an isolation system with effective stiffness X, = mo: . For this struc-

tural system, the combination of (2) and (3) gives

O
§ = é’51 = EBeff ; 4)
where o, = ,/K,/m and Q is the frequency at which the superstructure oscillates. Equation (4)
relates the modal damping of a structural system with finite mass to the effective damping coeffi-
cient, B, , of an isolation system with virtually no mass. On many occasions during earthquake
shaking the superstructure oscillates near its natural frequency (Q = o, ), and, because of equation
(4), it has become a practice to assume &~ B, . However, as will be shown in this report, despite

the fact that structures oscillates with their natural frequencies under pulse-type motions, & # B, .

Consider now the 2-DOF base isolated structure shown in Figure 1 (bottom). The isolation
frequency of the structure is o, = /K,/(m, +m), where K, is again the effective stiffness of the
isolation system. The natural frequency of the fixed base superstructure is o, = ,/K,/m . Further-
more, the isolation damping is defined as C, = 2§,(m, + m)o, and the superstructure damping is
defined as C, = 2& mw,. The 2-DOF structure shown in Figure 1 (bottom) has two modes, and the

modal frequencies and modal damping ratios are given in the following by Kelly (1997):



(Ds’gs

ug(t) — Upe—

A
v

Figure 1: Schematic of an isolated rigid block (top) and of a two degree of freedom isolated struc-
ture (bottom).
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where y = m/(m+m,) . Because of the presence of the isolation system, the participation of the
first mode is dominant, and the 2-DOF structure will primarily oscillate along its first mode.

Accordingly,

1 Wploy)

1 = = = B o) =} 7
4n  E, eff

Since the effective damping coefficient of most isolation systems is nearly frequency independent,

it has now become a practice to assume that &, = &, = B, . This relation also is no longer valid

during pulse-type excitations.



CHAPTER 3

CLOSED FORM APPROXIMATION OF NEAR-SOURCE GROUND MOTIONS

Figure 2 (left) shows the East-West components of the acceleration, velocity and displacement
histories of the September 19th, 1985 Michoacan earthquake recorded at the Caleta de Campos
station (Anderson et al. 1986). The motion resulted in a forward displacement of the order of 0.4
m. The coherent long duration pulse responsible for most of this displacement can also be distin-
guished in the velocity history, whereas the acceleration history is crowded with high frequency
spikes. Figure 2 (right) plots the acceleration, velocity and displacement histories of a type-A cyc-

loidal pulse given by the following (Jacobsen and Ayre 1958, Makris 1997):

v

" _ P
ug(t) = (x)p—2 sm(u)pt),OStSTp, (8)

- Yp Vp
ug(t) = ?——Z—cos((opt),OStSTp, 9

“p, 'p

= Ey__E g <

ug(t) 2t 7w sm((opt),O_tSTp. (10)

In constructing Figure 2 (right), the values of T, = 5.0 s and v, = 0.16 m/s were used. These are

approximations of the duration and velocity amplitude of the main pulse. Figure 2 indicates that a
simple one-sine pulse can capture some of the kinematic characteristics of the motion recorded at
the Caleta de Campos station. On the other hand, the resulting acceleration amplitude,

a, = o,v,/2=00lg, is one order of magnitude smaller than the recorded peak ground accelera-

tion.

Another example of a recorded ground motion that resulted in a forward pulse is the fault par-
allel motion recorded at the Lucerne Valley station during the June 18th, 1992 Landers earth-
quake, which is shown in Figure 3 (left). Although the displacement history results in a clean
forward pulse, the acceleration history is crowded with high-frequency spikes that reach 0.75 g.

On the right of Figure 3, the results of equations (8) to (10) are shown for the values of 7, =7.0s

and v, = 0.5 m/s, which are approximations of the pulse period and the pulse velocity amplitude
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of the recorded motion. Again, while the resulting displacement history is in very good agreement

with the record, the resulting acceleration amplitude, a, = ®,v,/2=0.045g, is one order of magni-

tude smaller than the recorded peak ground acceleration.

Figure 4 (left) shows the acceleration, velocity and displacement histories of the fault-normal
motions recorded at the El Centro Station Array #5 during the October 15th, 1979 Imperial Valley
earthquake. This motion resulted in a forward-and-back pulse with a 3.2 sec duration. In this case,
the coherent long period pulse is distinguishable not only in the displacement and velocity record,
but also in the acceleration record. Figure 4 (right) plots the acceleration, velocity and displace-

ment histories of a type-B cycloidal pulse given by Makris (1997).

i = <t<
ug(t) (Dpvpcos((a)pt),O_t__Tp, (1
{ = i <tr<
ug(t) vpsm(u)pt),O_t_Tp, .(12)
L
=2 __F <t<
ug(t) o, mpcos(u)pt),O_t_Tp. (13)

In constructing Figure 4 (right), the values T, = 3.2 sec and v, = 0.7 m/s were used as
approximate values of the pulse period and velocity amplitude of the recorded motions shown in

Figure 4 (left).

Figure 5 (left) portrays the fault-normal components of the acceleration, velocity and dis-
placement histories of the January 17th, 1994 Northridge earthquake recorded at the Rinaldi sta-
tion. This motion resulted in a forward ground displacement that recovered partially. The velocity
history has a large positive pulse and a smaller negative pulse that is responsible for the partial
recovery of the ground displacement. Had the negative velocity pulse generated the same area as
the positive velocity pulse, the ground displacement would have fully recovered. Accordingly, the
fault normal component of the Rinaldi station record is in between a forward and a forward-and-
back pulse. Figure 5 (center) shows the results of equations (8) to (10) by assuming a pulse dura-

tion 7, = 0.8 s and a velocity amplitude v, = 1.75 m/s, which are approximations of the duration

and velocity amplitude of the first main pulse shown in the record. Figure 5 (right) shows the

results of equations (11) to (13) by considering a pulse duration 7, = 1.3 sec and a velocity

12
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amplitude v, = 1.3 m/s. A similar situation prevails for the fault normal motion recorded at the

Lucerne Valley station during the June 18th, 1992 Landers earthquake, which is shown in Figure 6
(left). Again, the velocity history has a large negative pulse that is followed by a smaller positive
pulse. Had the second positive pulse generated the same area as the negative pulse, the ground dis-
placement would have fully recovered. Figure 6 (center) shows the results of equations (8) to (10)

by considering a pulse duration 7, = 3.0 sec. and a velocity amplitude v, = 1.0 m/s, which are

approximations of the duration and velocity amplitude of the first main pulse shown in the record.

Figure 6 (right) shows the results of equations (11) to (13) by considering a pulse duration T, =
5.0 sec and a velocity amplitude v, = 1.0 m/s. Trends similar to those observed in Figure 3 are

also present in Figure 6. Although the constructed displacement and velocity histories associated
with either a type-A pulse or a type-B pulse capture distinct elements of the kinematics of the
recorded motion, the resulting ground acceleration is an order of magnitude smaller than the peak

recorded value.

Not all near source records are forward or forward-and-back pulses. Figure 7 (left) portrays
the fault-normal component of the acceleration, velocity and displacement time histories recorded
at the Sylmar station during the January 17th, 1994 Northridge earthquake. The ground displace-
ment consists of two main long-period cycles, the first cycle being the largest, and the subsequent
ones decaying. These long period pulses are also distinguishable in the ground velocity history
where the amplitude of the positive pulses is larger than the amplitude of the negative pulses. Fig-
ure 8 (left) portrays the fault parallel components of the acceleration, velocity and displacement
histories recorded at the Rinaldi station during the January 17th, 1994 Northridge earthquake. The
ground displacement consists of two main long period cycles with subsequently decaying
motions. Figure 9 (left) plots the fault-normal components of the acceleration, velocity and dis-
placement time histories recorded at the Newhall station during the January 17th, 1994
Northridge earthquake. Near-fault ground motions, where the displacement history exhibits one
or more long duration cycles, are approximated with type-C pulses. An n-cycle ground displace-

ment is approximated with a type-C, pulse, which is defined as

ug(t) = mpv

p

1 ¢
cos(copt+(p), 0<t< (n +§_E)TP’ (14)

15



-(y3u1) aspnd g-2d4£1 [2pIo[o4o v pue (19)udd) asind y-odA3 [epro[oAd € “(3)a[) oxenbyues elwIoji[e) ‘SI9PURT 7661 ‘W8T Sunf oY) Suump
uone)s A9[eA SUISONT Y} J& PIPIOIAI SOLIOISTY SWT) JUSWAOR[ASIP pue £II00[2A ‘UONRII[SOJE 3y} JO sjuouodwiod feuriou Jjneq :9 3Ins1j

()1

oL

()1

0¢ St ot S
(s

02c St (o] 8 S

(s)1

ot

0c St 08 S (o]

(s /ut)’n

g adA ] asind

v @dA] asind

(s)1
(074 Sl ol =] 0
MWI
{e—-
=
="
3
p—
0
L
()
0c St Ol g 0
v v G-
—.|
S0,
og
o 3
~N
S0 =
1k
Sl
(s)1
(014 Gl (o] 8 g 0

[eWLION }Ned — plooey AsjeA auiaon

16



*(y811) asind ¢H-ad Ay [eprooko & pue (3391) oxenbyues erwiojie) O3pUYLON b661 YL] Atenuef oy)
3urmp uonels Jew[AS 9y J& PapIOdAI SSLIOISIY S JUSWIAIRISIP PuB AIIO0[AA ‘UOTIRIS[a09E Ay} JO Sjusuoduiod [euLIou Jjne, :£ 3andiq

Sl oL ()1 S 0
: : s0-
St oL
I . J
se¢c =L
s yugg = 9a 1
_ . sl
St oL ()2 S )
: ] =
- M-OI
YAVAVA 0
- S0

20—adA] asind

(s /u)’n

Sl oL (8)3 S 0
: : S'0-
I )
: : S0
$)1
St ol ) S 0_
, : G-

[EWION }ned ~— pJodaYy JewjAs

17



St oL (s)3

T

‘()y8u) asd y-ad£) [eplo[ohs e pue (339) ayenbyues eiulojire) ‘93puUYLION v661 ‘YILT Arenuef oy}
SuLmp uonels IP[eUry Sy} Je PAPIOISI SILIOISTY AW} JUSUIaoR[dSIp pue A1100[9A ‘UOTIRISEII. dY) JO sjusuodwod [offered J[ne :8 31y

S

0

T

50—

(0]
. S0
(8)1
S ol S O_,I
- 16°0—
, {0
. d le-
- s¢z = L g0
. d
h\sm.v O = A4 . . )
(s)13
S (0] 8 S Om...OI
0
- L S0

2n—adA| asind

(s/u)’n

(8)°n

g1 ot ($)1

S

0

S0-

(s)1
Sl o] S

G0

()1

St ot S

S0~

[9lfesed yneg — pioosy uonels Ipjeuly

S0

18



*(1y3ur) asynd ¢H-adA) [ep1o[o4d € pue (339]) 9enbyues erwojie)) OSpLIYLON $661 ‘UlL[ Arenuef o)
SuLmp uoness [[eYMaN Y Je papIodaI SILI0ISIY SN} JuSWaoR[dSIpP pue AJIO0[9A ‘UOTIEIS[AISE 9y JO SUauodUIod [ULIOU J[Ne,] t¢ 3ANSL]

S
oL 9 (53 ¥ 2 o
T _ : S'0-
0
: - : S0
()1
o] 9 ¥ z 0
L 1=
i 150-
0
i $GLO = 160
L S/ 60 = N
(91
o]} 9 4 2 oF
- i m0|
0
i {50

LD-odA] esing

(w)’n

(s/ut)’n

oL

8

9

(s)1

14

c

o

T

T

ot 8 9 v c

G0-

G0

1 2 I 2

N4 - fleymsN ‘O3 b6plUyUON 661

19



, _ : . 1 0
ug(t) = vpsm((opt+(p)—v sin(Q), OStS(n+2 )Tp, (15)

p (L8

v %
___r _ v tsi P I ¢
ug(t) = mpcos((opt+(p) vptsm((p)+0)pcos((p), 0StS(n+2 7t)Tp.(16)

In deriving these expressions it is required that the displacement and velocity are differentiable
signals. The value of the phase angle, ¢, is determined by requiring that the ground displacement

at the end of the pulse be zero. A type-C, pulse with frequency o, = 2n/T, has duration
T =(n+1/2)T,-20/0, = (n+1/2-9/m)T,. In order to have a zero ground displacement at the

end of a type-C,, pulse

(n+1/2-¢/mT,
j it (1)t = 0. (17)
0

Equation (17), after evaluating the integral, gives

cos[2n+ D -]+ [(2n+ 1) -2¢]sin@—cos¢p = 0. (18)
The solution of the transcendental equation given by (18) gives the value of the phase angle o.
For example, for a type-C; pulse (n = 1), ¢ = 0.0697n; whereas, for a type-C, pulse (n = 2),

¢ = 0.0410n. Figure 10 (third and fourth column) plots the acceleration, velocity and displace-

ment histories of a type-C; and a type-C, pulse.

As n increases, a type-C,, pulse tends to a harmonic steady-state excitation. Figure 10 summarizes

the acceleration, velocity and displacement shapes of a forward-pulse, a forward-and-back pulse,

a type-C; and a type-C, pulse. The displacement of a forward-and-back pulse has the same shape
as the velocity of a forward pulse. Similarly, the displacement of a type-C; pulse resembles the

shape of the velocity of a forward-and-back pulse and the shape of the acceleration of a forward
pulse. This shows that type-C pulses provide a continuous transition from cycloidal pulses to har-

monic steady-state motions.
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CHAPTER 4

MODELING OF THE DISSIPATION MECHANISMS OF PRACTICAL ISOLATION
SYSTEMS

In this study, we consider an isolated structure with a linear restoring force with stiffness,
K,, and various dissipation mechanisms which are approximated with idealized macroscopic
models. Figure 11 shows the force-displacement loops of five dissipation mechanisms: (a) viscous
model (high damping rubber bearings without or with viscous fluid dampers); (b) rigid-plastic
model (sliding bearings); (c) elastic-plastic model (lead rubber bearings); (d) viscoplastic model
(sliding bearings and viscous fluid dampers, elastomeric bearings and friction dampers, elasto-
meric bearings and controllable fluid dampers, sliding bearings and controllable fluid dampers);

(e) elastoviscoplastic model (lead rubber bearings without or with viscous dampers).

(a) vicous (b) RIGID PLASTIC (c) ELASTOPLASTIC

Figure 11: Five idealizations of energy dissipation mechanisms of practical seismic isolation sys-
tems.
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It is worth mentioning that case 2 is the limiting case of 3, where the yield displacement
becomes very small, whereas case 2 is also the limiting case of 4, where the viscous component
vanishes. Accordingly, the dissipative behavior of a sliding bearing is the limiting case of dissipa-
tive behavior of a lead rubber bearing with a very small yield displacement. The elastoviscoplastic

case 5 is the most general case, and the dissipation force can be expressed mathematically with

P(t) = Cpi (1) + K 2(1) (19)

where u, is the base displacement shown in Figure 1 (bottom), K, is some reference stiffness, u,
is the value of the yield displacement of the isolation system and z is a hysteretic dimensionless

quantity that is governed by the following equation:

2+ Y|y (0|22l =1+ Biig (D12l — Any (1) = 0 . (20)

The model given by (19) and (20) is a special case of the Bouc-Wen model (Wen 1975, 1976)
enhanced with a viscous term. In equation (20), B,v,» and A are dimensionless quantities that
control the shape of the hysteretic loop. It can be shown that when A = 1, parameter K, in (19)
becomes the pre-yielding elastic stiffness. As an example, in a lead rubber bearing, X, is the stiff-
ness of the lead core before yielding. Based on this observation, parameter A is set equal to one.

C, 1is the viscous damping coefficient of the isolation system C; = C,+C,, where

C, = 28, (m+m,)w, is the viscous damping originating from the elastomeric bearings, and

C, = 2§,(m+m,)w, is the viscous damping originating from possible additional damping devices.

For the special case of rigid viscoplastic behavior, the yield displacement u, —0 and ‘the pre-
yielding stiffness K, — e so that the product « K, — P,, which is the finite yield force. Under
these conditions, equation (19) reduces to the Bingham model of viscoplasticity (Shames and

Cozzarelli 1992),

P(1) = Cyi, (1) + P sgnliy (1)1, @D

in which P, = P, + P, , where P,, = u(m+m,)g is the yield (friction type) force originating from
the sliding bearing, and P,, is the yield force that might originate from additional damping
devices such as controllable fluid dampers. When sliding teflon bearings are used, the pre-yield

stiffness is large but finite. Accordingly, even for sliding teflon bearings, the behavior is elasto-

24



plastic with a small yield displacement («, = 0.2 mm, Mokha et al. 1988). For, lead-rubber bearing,
the elastoplastic model is also appropriate; however, the yield displacement is of the order of cen-
timeters. With reference to Figure 1b, the equation of motion of the 2-DOF system is expresses as

follows (Kelly 1997):

. . 2
Lyl |5 |00 (D) 0 O () o(r) = —| i (1) @
11| (02850010 |0 wf|u0] |0 1 ¢

where y,, = m /(m+m,;) and a(t) = P(¢)/(m +m,), in which P(¢) is the dissipation force given by
equation (19) or (21). The parametric analysis presented in this report is conducted by solving

equation (22) for various representations of the dissipative force P(z).

The response of the 2-DOF structure shown in Figure 1 (bottom), which is expressed with
(22), is computed using a state-space formulation where the state vector of the system is
y(1) = {uy(r), uy (), u (), u(t), 2(t)" . The seismic response of isolated overpasses like the one
shown in Figure 12 is computed by setting the natural frequency of the superstructure to be very

large.
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CHAPTER 5

PARAMETRIC STUDY

The formulation presented in the previous section is first used to predict the response of a 1-
DOF overcrossing shown in Figure 12. Figure 12 (top) depicts an overcrossing that is isolated at
the center bent and end-abutments. Figure 12 (bottom) depicts an overcrossing that is rigidly con-
nected to its center bent and supported on isolation bearings at the end-abutments. Typical values
of isolation periods range from T, = 2 sec or more for the top configuration, down to 7, =1 sec or

even less for the bottom configuration.

Figure 12: Schematic of a seismically isolated overpass (top) and of an overpass that is supported
on bearings at the end abutments (bottom).
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The scope of this parametric study is to provide information on the efficiency of various
combinations of dissipation mechanism to suppress the earthquake response. First, various levels
of viscous damping alone are considered. Subsequently, various levels of friction (plastic) forces
are considered where: (a) the yield displacement is very small (u, ~ 0.2 mm) and; (b) the yield dis-
placement is finite (x, = 10mm and 20 mm). This distinction is of interest in order to observe
potential differences between a “rigid” plastic and an elastic plastic model that will reflect the
behavior of a teflon sliding bearing and a lead rubber bearing respectively with the same yield
force. When viscous damping alone is considered, the levels of viscous damping in the isolation
system have beén chosen to be &, = 5%, 15% and 30%. Isolation systems with §, = 15% are com-
mon; whereas, &, = 30% is at the high end. The levels of the coefficient of friction selected in this
study are p = 6%, 9% and 18%. Values of p = 6% and 9% are typical values of friction coeffi-
cients on commercially available sliding bearings. Similar levels of yield forces can be reached
with lead rubber bearings. The value of p = 18% was selected to illustrate the effects of high-
value dry friction. A parametric study is also conducted to identify the improvement in the
response when additional viscous damping is combined with hysteretic damping that originates

from a plastic force with p = 9%.

The first column on Figure 13 shows the response of a 1-DOF overcrossing with isolation
period T, = 2 sec and viscous isolation damping &, = 15% subjected to the type-A cycloidal front
with T, = 1.0 sec and the Rinaldi station record shown in Figure 5. For the type-A pulse (first and
second row), relative displacements reach 50 cm (20 in); whereas the base shear coefficient
exceeds the value of 0.5. The second column in Figure 13 plots the response of the isolated struc-
ture where the isolation damping has been doubled by adding viscous dampers, &, = §,+§, =
30%. With a total isolation damping coefficient of &, = 30%, the base displacement reduces by
30% (35 cm) and the base shear reduces by 15%. The reason that the base shear reduces under the
presence of twice the viscous damping is because, although additional damping increases the

damping forces, it decreases displacements, resulting in smaller elastic forces.

We are now interested in computing the effective damping coefficient of the 1-DOF system
during this shaking. Under a pulse excitation with duration smaller than the natural period of a
structure, its vibration period is very close to its natural period. Indeed, the top graphs of all col-

umns of Figure 13 clearly show that the 1-DOF system completes a cycle within 2 sec = T;.
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Consequently, Q = w,, and according to equation (4), the effective damping coefficient should be
B.s= & = 15% for the response shown in the first column, and B, = &, = 30% for the response
shown in the second column. The area of the loops shown in the second row is equal to

Wp = Wp/(mg), and equation (3) allows for a direct measurement of the resulting effective damp-

ing coefficient, which is given by

B~ 1 Wpg
eff 27:(0? Dz

(23)

where D = (Ju,,;,| + |40y )72 - Equation (23) gives a value of B, =0.20 bfor the response shown in
the first column, and a value of B, = 0.37 for the response shown in the second column. These val-
ues are 30% and 20% larger than the corresponding values obtained with equation (4). The reason
for this discrepancy is that the definitions of & and B, given by equation (2) and (3) are for har-
monic-steady-state vibrations and not for transient motions, like those shown at the top of Figure

13.

The third column in Figure 13 plots the response of the isolated structure where the isola-
tion damping is only of the friction type (rigid-plastic damping). It is shown that, for this system,
(T, =2 sec); a coefficient of friction p = 18% is needed to achieve the same displacement reduc-
tion that a 30% viscous coefficient achieves. When the dissipation is due to friction only (rigid-

plastic), P(t) = pmgsgn[u,(#)], and equation (3) simplifies to

2ug 20,
B g = = : (24)
eff 2 2
oD no,D

For the loop shown in the third column of Figure 13, equation (24) gives B, = 38%, which

is approximately the same amount of effective damping coefficient that resulted from the vis-
cously damped structure. The last column in Figure 13 plots the response of the isolated structure
that combines viscous damping, &, = 15%, and friction damping that corresponds to u = 9%. This
combination of viscous and friction damping achieves the same displacement reduction that was
achieved with the two other configurations. Furthermore, equation (23) results in an eftective
damping coefficient, 8, = 38%, which is comparable to the values of B, that resulted from the

two other systems.
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Figure 13 (bottom) shows the response of the same 1-DOF system with T, = 2 sec when
excited by the Rinaldi station record. With viscous isolation damping &, = 15%, the maximum
displacement is 44 cm which is 17% less than the maximum displacement reached under a type-A
pulse front with nearly the same velocity pulse. The increase of the isolation damping from &, =
15% to &; = 30% reduced the response from 44 cm to 32.4 cm --- a 30% reduction, which is the

same amount of reduction that is achieved in the case of a pulse type-A motion.

The third column in Figure 13 plots the response of the 1-DOF system under rigid-plastic
dissipation (p = 18%). It is interesting to note that the maximum displacement is 37.4 cm, which
is more than the displacement that was reached under a type-A pulse motion (see first row in Fig-
ure 13), although now the resulting B, = 42%. Furthermore, the value of u = 18% now results in
a 5 cm larger displacement response than the response obtained with &, = 30%, and a 20% larger
base shear. Consequently, this example shows that two systems which are equivalent under one
input exhibit opposite trends under a different but similar input, and that the concept of effective

damping coefficient has little meaning since its value is strongly response-dependent.

Figure 14 shows the response of a 1-DOF system with isolation period T, = 1 sec when sub-
jected to the type-A cycloidal front with T, = 1.0 sec and the Rinaldi station record. Now the rel-
ative displacement reaches 30 cm (12 in), whereas the base shear coefficient exceeds the value of
1.2. The second column plots the response of the isolated structure, where now the viscous damp-
ing of the isolation system is &, = 30%. Again the same trends are observed, where the addition of
viscous damping reduces both displacements and base shear. The third column in Figure 14 plots
the response of the isolated structure with friction type (rigid-plastic damping) only, using the
same value of friction coefficient (u = 18%). All displacements and base shear coefficients in the
third column are larger than the corresponding values in column 2. Column 4 plots the response of
the isolated structure that combines viscous damping, &, = 15%, and friction damping that corre-

sponds to p = 9%.

The seismic performance of the rigid block equipped with various types of damping mecha-
nisms in its isolation system is summarized in Figure 15, where displacement and base shear
spectra are plotted for the fault normal component of the Rinaldi station record (left), a type-A
pulse excitation with Tﬁ = 0.8 sec (center) and a type-B pulse excitation with Tff = 1.3 sec (right),

and kinematic characteristics that approximate those of the Rinaldi station record. It is observed
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that, at the low isolation period range (i.e., T, < 2.0 sec), additional viscous damping reduces the
displacements and base shear in the most effective way. Friction dissipation alone (¢, =0, p =
18%) becomes effective in reducing displacement at large isolation periods, however, the result-
ing base shear is the largest. A combination of viscous and friction damping results in an attrac-
tive performance, since the effective reduction of displacements is accompanied by base shear
lower than that resulting from friction dissipation alone. For example, Figure 15 (left) indicates
that an isolation period T, = 3.0 sec with &, = 15% and p = 9% will result to a base displacement
of u, =33 cm and a base shear coefficient of 0.25. On the other hand, additional energy dissipa-
tion devices that will increase the damping of a 1 sec period structure from 5% to 30% will reduce
displacement to half; whereas the base shear will exceed the weight of the structure. Another
interesting observation is that the response spectra of the fault normal component of the Rinaldi
station record has a smooth shape, resembling the shape of the spectra obtained with the pulse

type-A and pulse type-B excitations.

Figure 16 plots the displacement and base shear spectra of the fault normal component of
the Rinaldi station and for three different values of yield displacements (left: u, = 0.2 mm, center:
uy = 10 mm, right: uy = 20 mm). Two values of the yield force, Fy = pW, (W is the above-the-iso-
lation system mass) have been selected (u = 6% and p = 9%). Figure 16 shows that the value of
the yield displacement has insignificant effect on the values of base displacements and base
shears. Accordingly, rigid-plastic behavior (sliding bearings) results to nearly the same response
reduction as elastic-plastic behavior (lead rubber bearings) provided that both systems have the
same yield force, F, = uW. In the absence of viscous dissipation (§, = 0), an increment of the
plastic (yield) force from 6% to 9% suppresses further resonant effects. However, under the pres-
ence of viscous force (§, = 15%), the increase of the plastic force from 6% to 9% has a minor

effect in both base displacements and base shears.

The parametric study presented herein also investigates the influence that supplemental vis-
cous damping has on the response reduction aissuming a nominal value of plastic forces. Several
recently constructed isolated buildings and bridges combine isolation bearings and fluid dampers.
For instance, the San Bernadino Medical Hospital combines high damping rubber bearings and
hydraulic fluid dampers; while, the Hayward City Hall combines friction pendulum sliders and

hydraulic fluid dampers.
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Figure 17 shows that under the Rinaldi station record an isolation system with 7, = 2 sec
and plastic dissipation only (&, = 0 and p = 9%), will experience displacement that exceeds 50
cm. An additional 15% of viscous damping reduced the displacement to 40 cm which is an addi-
tional 20% reduction. Figure 17 shows that for a longer isolation period, say 7, = 3 sec, the addi-

tional benefit from the supplemental viscous damping is marginal.

Figure 18 plots the displacement and base shear spectra of the fault normal component of
the Lucerne Valley record (left), a type-A pulse with Tﬁ = 3 sec (center) and a type-B pulse with
Tﬁ = 5 sec (right). In this case, friction dissipation alone results in the smallest displacement val-
ues; whereas, the combination of viscous and friction damping results in the smallest base shear
values. In the low range of isolation periods (7, < 2.0 sec), the spectrum from the recorded
motion is substantially different from the spectrum that results from the pulse motions, indicating
that, in the low isolation period range the response is governed by the high frequency fluctuations
that override the long duration pulse. At the high range of isolation period (7, > 2.0 sec), viscous
dissipation results in large displacements that are substantially reduced when some friction dissi-
pation is introduced. Again, a 3 sec isolation period with &, = 15% and p = 9% results in an
attractive design. Figure 19 shows the same response quantities for three different values of yield
displacements (uy = 0.2 mm, 10 mm and 20 mm). Again, rigid-plastic behavior (sliding bearings)
results to nearly the same response reduction as elastic-plastic behavior (lead rubber bearings). It
is observed that in this case, the increase of plastic forces from p = 6% to p = 9% has a noticeable
effect under the absence and presence of viscous forces. Figure 19 also indicates that pure friction
damping with p = 9% has the same effect as viscoplastic damping with p = 6% and &, = 15%.
Furthermore, the increase of viscous damping from &, = 0 to £, = 15% has less drastic effects as

the value of plastic dissipation increases.

Figures 20 and 21 illustrate the effects of the high-frequency fluctuations that override the
long duration pulse. Under the Caleta de Campos and the Lucerne Valley forward motions, the
base shear that develops in the long period structures when friction dissipation is included is
larger than the base shear resulting from viscous dissipation. In contrast, when the long duration

pulse is considered alone (right graphs), the trend is reversed.

Figure 22 plots the displacement and base shear spectra of the fault normal component of

the El Centro Array #5 record (left) and a type-B pulse with Tﬁ = 3.2 sec (right). In this case,
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viscous dissipation results not only in large displacement, but also in substantial base shear. Fric-
tion dissipation eliminates amplification due to resonance for isolation periods longer than 2 sec.
A 3 sec isolation period with &, = 15% and p = 9% again results in an attractive response, show-
ing that there is no need for an extremely long isolation period (i.e., T; =5 sec) to protect struc-
tures from near-source ground motions. Figure 23 shows similar trends to those observed in
Figure 19. The improvement of the response when viscous damping is augmented from 0% to
15% is much more dramatic when plastic forces are of the order of 6%. When plastic forces are of

the order of 9%, the improvement of adding substantial viscous damping is less noticeable.

Figure 24 plots the displacement and base shear spectra of the fault normal component of
the Sylmar record (left) and a type-C, pulse with sz =2.3 sec (right). The sensitivity of the
response on the level of yield displacement is shown on Figure 25. Trends similar to those
detected in Figure 16 are observed in this case. In the absence of viscous dissipation (§, = 0), an
increment of the plastic (yield) force from 6% to 9% suppresses further resonant effects; however,
under the presence of viscous force (&, = 15%), the increment of the plastic (yield) force from 6%
to 9% has a less drastic effect. On the other hand, when a nominal value of plastic forces, of the
order of 9% has been selected, supplemental viscous damping has a noticeable effect only at large

values of the isolation period.

Figure 26 shows that under the Sylmar record adding supplemental damping has noticeable
effects even for the level of plastic forces of the order of p = 9%. This observation indicates that
various designs can result into a meaningful isolation system. Either fluid damper should be added
to reduce displacements or larger isolators should be designed to accommodate the larger dis-
placements. In such situation, the selection of the most appropriate isolation system will be influ-

enced from economic factors.

Figure 27 confirms the beneficial effect of hysteretic dissipation to suppress displacement
and base shear when the predominant long period of the seismic input is near the isolation period
of the structure. The moderate values of plastic and viscous forces (p = 9% and &, = 15%) are
sufficient to totally suppress base displacements and base shears. The same trends are observed in
Figures 28 and 29 which also indicate that there is no need for extremely long isolation periods to

reduce appreciable base shears.
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This parametric study on the response of 1-DOF systems indicates that, under near-source
ground motion plastic dissipation forces of the order of 9% of the weight of the structure are very
beneficial in reducing displacements without increasing base shears. Displacements can be further
reduced with additional viscous damping. Furthermore, the ability to control the level of friction
forces increases the effectiveness of the isolation system under certain motions. Accordingly, the
findings of this study indicate the potential advantages that controllable fluid dampers have on

seismic protection application.

We now investigate the effect of the viscous, viscoplastic and rigid-plastic dissipation mech-
anisms on the response of the 2-DOF structure shown in Figure 1 (bottom). As an example, Figure
30 plots the base displacement, base shear, superstructure drift and total acceleration time histo-
ries of the superstructure of a 2-DOF system equipped with the dissipation mechanisms intro-
duced in the previous section. The isolation period is T, = 2.0 sec, and the superstructure period is
T, = 0.25 sec. The response of the base of the 2-DOF structure when subjected to the Rinaldi sta-
tion record is very close to the response of 1-DOF structure with the same isolation period (T, =2
sec) shown in Figure 13 (bottom). It is interesting to note that, by increasing the viscous damping
from 15% to 30%, the base displacement decreased from 43.7 cm to 32.2 cm (30%), whereas the
increase of interstory drift was less 1% and the increase in the superstructure acceleration was less
than 2%, which shows that, in this case, additional damping substantially decreased the base dis-
placement without affecting interstory drifts and superstructure accelerations. However, when
friction damping is used (p = 18%), the displacements are reduced only to 37.3 c¢cm (16%),
whereas interstory drift is increased by 45%, and superstructure acceleration is also increased by
45%. The combination of viscous (&, = 15%) and hysteretic (p = 9%) dissipation reduced base
displacements to 34.6 cm (23% reduction), whereas interstory drift increased by 27% and super-

structure acceleration increased by 30%.

The seismic performance of the 2-DOF isolated structure equipped with various types of
damping mechanisms in its isolation system is summarized in Figure 31, where displacement,
base shear, interstory drift and superstructure acceleration spectra are plotted for the fault normal
component of the Rinaldi station record (left), a type-A pulse excitation with T;f = (.8 sec (center)
and a type-B pulse excitation with Tﬁ = 1.3 sec (right). In this case, supplemental energy dissipa-

tion with viscous damping outperforms all other dissipation mechanisms. In contrast, Figure 32
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shows that, under the Sylmar motion of the Northridge earthquake, an isolation system with T, =
3 sec and a combination of viscous damping &, = 15% and friction damping p = 9% results in the
most attractive response. Similar trends are observed in Figure 33, where an isolation system with
T, = 2.2 sec and a combination of viscous damping &, = 15% and friction damping p = 9%
results in the most attractive response, since base displacements are substantially reduced without

appreciably increasing base shear and superstructure accelerations.
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1994 Northridge EQ, Rinaldi — N Type-A (TP=O.85ec, Vp=1 .75m/s) Type-B (TP=1 .3sec, Vp=1 .3m/s)
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Figure 31: Base displacement, base shear, superstructure drift and total superstructure accelera-
tion spectra of a 2-DOF isolated structure subjected to the fault normal component of the Rinaldi
station record (left), a type-A pulse (center) and a type-B pulse (right).
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1994 Northrldge EQ, Sylmar - FN CyClOIdal Pulse Type—CZ (TP=2.359C, Vp=0.6m/3)
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Figure 32: Base displacement, base shear, superstructure drift and total superstructure accelera-
tion spectra of a 2-DOF isolated structure subjected to the fault normal component of the Sylmar
station record (left) and a type-C, pulse (right).
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1994 Northridge EQ, Newhall — FN Cycloidal Pulse Type—-C2 (TP=1 .2sec, Vp=0.7m/s)
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Figure 33: Base displacement, base shear, superstructure drift and total superstructure accelera-
tion spectra of a 2-DOF isolated structure subjected to the fault normal component of the Newhall
station record (left) and a type-C, pulse (right).
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CHAPTER 6

CONCLUSIONS

The efficiency of various dissipative mechanisms to protect bridge structures from pulse-
type and near-source ground motion has been investigated in detail. It was first shown that, under
these motions, the concept of equivalent linear damping has limited meaning, since the transient
response of a structure is more sensitive to the nature of the dissipation forces than to the amount

of energy dissipated per cycle.

Physically realizable trigonometric pulses have been introduced, and their resemblance to
selected near-source ground motions was illustrated. It is found that structural response quantities
due to the recorded motions resemble the structural response quantities due to trigonometric
pulse-type motions only when the isolation period reaches high values (i.e., 7, = 3.0 sec or more).
The response of structures with relatively low isolation periods (i.e., T, < 2.0 sec) is substantially
affected by the high frequency that overrides the long-duration pulse. Therefore, the concept of
seismic isolation is beneficial even for motions that contain long-velocity and displacement
pulses. It is observed that a relatively low value of plastic (friction) damping (i.e., p = 9%)
removes any resonant effect that a long-duration pulse has on a long-period isolation system.
According to this study, there is no need for extremely long isolation periods (i.e., T, = 5.0) in
order to go further away from the long period pulse that dominates a near-source ground motion.
The study shows that the benefits of hysteretic dissipation are nearly indifferent to the level of the
yield displacement and that they depend primarily on the level of the plastic (friction) force. Con-
sequently, rigid-plastic behavior (sliding bearings) results to nearly the same response reduction
as elastic-plastic behavior (lead rubber bearings) provided that both systems have the same yield
(friction) force. The study concludes that, for isolated structures with isolation period T, =3.0sec,
a combination of viscous and friction dissipation forces is attractive, since displacements are sub-
stantially reduced without appreciably increasing base shears and superstructure accelerations.
The study makes clear that under near-source ground motion, a time domain dynamic analysis is

needed where the mechanical properties of isolation system are accounted for.
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