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Abstract
Intelligent transportation systems (ITS) include large numbers of traffic sensors that
collect enormous quantities of data. The data provided by ITS is necessary for advanced
forms of control; however, basic forms of control, primarily time-of-day (TOD) which
are prevalent in the United States do not directly rely on the data. Thus sensor datais
typically unused and discarded in this country. The sensor dataisin fact capable of
providing abundant amounts of information that can aid in the development of improved
TOD signal timing plans by providing historical data for automatic plan development and
TOD interval identification. Data mining tools are necessary to extract the information
necessary from the data to improve on timing plan development and in turn would allow
the timing plan devel opment and monitoring process to be automated rather than the
time-consuming, intuition based practice currently implemented. This project describes
research investigating the application of data mining tools, including statistical clustering
techniques, to aid in the development of traffic signal timing plans. Specifically, acase
study was conducted to illustrate that the use of hierarchical cluster analysis can be used
to automatically identify temporal interval break points, based on the data, that support
the design of atime-of-day (TOD) signal control system. The cluster analysis approach
was able to utilize a high-resolution system state definition that takes full advantage of
the extensive set of sensors deployed in atraffic signal system. Timing plans were
developed based on the clustering results, providing enhanced TOD intervals and peak
volumes, which were then tested through simulation and internal cluster validation,
which proved that the use of data mining tools for plan development is beneficial. The

results of this research indicate that advanced data mining techniques hold high potential



to provide automated techniques to assist traffic engineersin signal control system
design, development and operations, the entire process of plan development that is
currently practiced based on hand-counted volumes and single intersection TOD

intervals.
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Chapter 1. INTRODUCTION

1.1 Traffic Signal Systemsand ITS

It has been argued that traffic signal systems represent the first widespread deployment of
intelligent transportation systems (ITS). Modern signal control systems are highly
complex, relying on sensors, advanced communications networks, and sophisticated
firmware and software. Advanced forms of signal control, such as second and third
generation control, are dependant on the sensor data supplied by ITS. However, basic
forms of control such as time-of-day (TOD) do not rely on the sensor data for operation.
These basic forms of control are in fact the most widely used methods of traffic signal
control in this country due to limited funding for the Department of Transportation and
the difficulty in maintaining the sensors for support of advanced control. These signal
control systems are collecting enormous quantities of traffic flow data in an attempt to
provide information for the support and improvement of signal timing operations. Due to
limited storage resources, the lack of available analysis tools, and the fact that the sensor
data is not necessary for the support of TOD signal control, the vast mgjority of signal
control systemsin the United States do not archive detector data for an appreciable period
of time. Thisis unfortunate, especially since it is plausible to utilize the sensor data not
only for advanced forms of control, but also for the most common method of signa
control in this country, TOD. Thus, there is a need to use analysis tools that demonstrate
the value of this data, and justify the design of systems with increased storage

capabilities.



1.2 Data Mining Tools

Tools used to analyze and extract information from large sets of data are generaly
classified as “data mining” tools. This project describes research that is devising a
procedure for developing, implementing and monitoring traffic signal timing plans using
available data mining tools. The hypothesis premise of the research is that the data
collected by signal control systems can be used to improve system design and operations
for the current methods of traffic control. The data-mining tool that serves as the
foundation for the proposed procedure for signal plan developments is hierarchical
cluster analysis. It will aso be recommended that a second data-mining tool,
classification, be used for monitoring plan effectiveness, however this project will not
explore the use of classification in the maintenance of timing plansin depth. This project
offers a background on signal timing plan development, with consideration of system
state definitions, and detailing a proposed procedure for improved traffic control through
the use of hierarchical cluster analysis with a case study at a corridor in northern Virginia.
This case study shows that the sensor data provided by ITS holds valuable information
regarding the behavior of traffic, capable of automatically generating TOD intervals for
transitioning between timing plans as well as providing appropriate volume data for plan
development during these automatically generated TOD intervals. The proposed
procedure introduced in this project alows for automation of the entire signal timing plan
process, which will save time for traffic engineers and improve travel conditions for

commuters.



1.3 Existing Plan Procedures

There exist anumber of optimization tools to assist traffic engineers in developing timing
plans for a particular set of operating conditions. However, few tools exist to help the
engineer determine appropriate TOD intervals, or to monitor an existing TOD system to
ascertain if the conditions have changed sufficiently to require a new set of plans and/or
TOD intervals. Certainly, no tools exist to accomplish these tasks automatically. The
premise of thisresearch isthat using statistical clustering and classification analysesin a
data mining application has high potential to address these needs and allow for automated
procedures, while utilizing the information stored in the data for optimal signa
development and maintenance.

Clearly, the current practice of using single day, hand counted volumes to define
the state for time-of-day (TOD) plan development may be inadequate. Given that
considerably more information is available to use in defining the state of the system in
electronic form, this research uses a more complete state definition based on a more
refined form of data available from the system detectors to identify TOD intervals and
develop more appropriate timing plans.

The typical approach used to identify intervals for TOD systems is to plot
aggregate traffic volumes over the course of a day, and then use judgment in the
identification of significant changes in traffic volume at the critical intersection that
indicate a need for a different timing plan. It is important to note that the volumes used
to identify TOD intervals are bi-directional aggregate volume vaues from the critica
intersection. An example of this approach is illustrated in[Figure 3, which depicts a daily

aggregate volume plot at an intersection in Northern Virginia based on historical data.



The vertical linesin the graph show the times that the traffic engineers chose to transition
between plans, the TOD intervals. These intervals rely heavily on the traffic conditions
that exist at the critical intersection. The critical intersection is the signalized intersection
in the corridor servicing the largest traffic demand. Along this particular corridor, there
exists an AM-peak plan that operates from 06:00 — 08:30, a mid-day plan that operates
from 08:30 — 15:00, a PM-peak plan that operates from 15:00 — 19:00, and an off-peak

plan for the remainder of the day.

Figure 1. TOD Interval Identification

1.4 The Need for Improved Control

While this approach is intuitive, there are a number of areas of concern. First, the

aggregation of only volume from traffic sensors (that typically measure volume, speed,



and occupancy) in different directions (and, often, even lanes), to one aggregate volume
measurement results in the loss of considerable information regarding the characteristics
of the traffic conditions. In addition, as timing plans are developed for corridors, as
opposed to single intersections, this loss of data resolution becomes more apparent.
Finaly, the visua selection of TOD intervals may be quite difficult for inexperienced
engineers, who ultimately spend much time developing and tweaking the plans and TOD
intervals. These problems illustrate the need for automated data mining tools that take
advantage of the large quantities of data collected by ITS. The use of cluster analysis
addresses these issues and uses a more robust state definition based on historical data at
all intersections and at al movements in the development of plans and TOD intervals.
depicts the TOD intervals developed by a clustering procedure versus those
developed manually as described above. It will become clear that the clustering TOD
intervals are more robust based on the detector data rather than the one-day hand counts
practiced currently. Sensitive traffic trends are detected by the clustering algorithm that
occur over a 24-hour period and these TOD intervals developed via clustering will be

investigated in detail in Chapter 5.



Clustered TOD Intervals

Existing TOD Intervals

Figure 2. Existing TOD Intervals vs. Cluster Intervals

It is also becoming increasingly vital to provide efficient and up-to-date signal
control due to the decreasing availability of land for road expansion (6). With the
explosion of population, industry and “suburbia,” traffic conditions are becoming
increasingly congested in many spreading areas and with this growth comes the need for
more roads. However, the land is becoming less available and the zoning laws stricter,
making it extremely difficult to build new roads. The cost of building new roads is also

extremely expensive and traffic engineers are relied upon heavily to provide efficient



forms of traffic control to deal with growing traffic problems where new roads may be
highly needed but nearly impossible to construct. Thus, the TOD signal procedures that
have not changed much over the past decades need to be improved, with a more reliable

means of developing meaningful plans and monitoring those plans automatically.

1.5 Forms of Advanced Signal Control

Intelligent Transportation Systems (ITS) tend to research areas of advanced signal control
such as second and third generation control, fully adaptive traffic signal systems and even
the smart highways. However, redistically in the United States, these systems are not
ready for implementation and so less advanced systems are employed, such as time-of-
day (TOD), dueto factors like lack of funding to the transportation infrastructure (5).
This research looks at improving and refining the current means of traffic signal plan
procedures (TOD), which tend to be overlooked as areas of research. Existing literature
focuses on the improvements that can be made by implementing advanced control
methods with the resources provided by ITS. Until the more advanced methods become
feasible in this country, it appears that little interest istaken in utilizing the ITS resources
for less advanced signal development practices. This notion is reflected by the fact that
no existing literature was discovered on the use of ITS datafor enhancing TOD methods
of signal development and implementation. The Transportation Research Circular (6)
discusses research initiatives for advanced technology in traffic signal control systems
because of the need for improvement in this area. These needs are due to the steady
increase in traffic congestion, in some areas reaching crisis proportions, and the
decreasing availability of land for the use of highway and road expansion (6).

There are four categories of traffic signal control:



First Generation

1.5 Generation

Second Generation

Third Generation
TOD signa control fallsinto the first generation category, which consists of selecting a
timing plan from alibrary of stored plans, which have been devel oped off-line using a
tool such as Synchro (5). 1.5 Generation isidentical to first generation except that it has
the automated ability to add plansto the library. Second and third generation control are
advanced forms of control that implement traffic signal plansin real time based on
existing traffic conditions. Third generation differs from second generation in that the
cycle lengths and splits have the capability of variability, whereas second generation has
fixed cycle lengths and splits (5). The U.S. is one of the few advanced countriesin the
world where adaptive control is not installed. Thisis due to the increased cost of
surveillance for monitoring and maintaining the large number of detectors necessary for
supporting the use of thistype of control. Adaptive control reduces the need for timing
plan updates and it handles incidents, holiday and special events more efficiently (5).
These advanced forms of control are capable of using information about downstream
traffic to update plan parameters at the upstream signals.

Minneapolisis one of the few citiesin this country that is testing a second-
generation adaptive control signal system. The project is described in the paper, Addition
of Adaptive Control to the Minneapolis Sgnal System: Issues and Solutions (8). This
project’sam isto serve as a representative model for medium-sized North American
centrally controlled systems, which assesses costs, problems and potential gains from the

addition of such a system. This project recognizes the fact that extensive detection

inputs, beyond those installed for existing signal methods are needed to support advanced



formsof control. It isalso addressing the many other issues to consider with advanced
control. These include determining the operational status of the system, how to verify
system requirements of the new system are being met, what sort of considerations must
be met when adding a new system to an operating system, and many other issues
involved with such an advancement (8). There are many challenges to be met before

advanced forms of control are fully understood and supported affordably in this country.

1.6 Data and Data Collection

Datais collected at signalized intersections in Northern Virginia by single inductive loop
detectors. These metallic detectors are embedded in the roadway and produce a magnetic
field. The metal of a car passing over the detector interferes with the magnetic field, thus
permitting the detection of the vehicle by the detector. The single inductive loop
detectors, referred to as system detectors, are recommended in the Traffic Control
Systems Handbook to be placed 61 — 76 meters upstream from an intersection’s stop-bar
at aminimum (1). The northern Virginia system detectors are typically placed at
approximately 100 meters upstream from intersection stop-bars. The placement of
system detectors is a key consideration because lane discipline deteriorates in the vicinity
of the intersection, especially during periods of spill back, and lane-changing maneuvers
from upstream can produce significant errorsin volume and occupancy readings. A
system detector should never be placed where standing queues from the downstream
intersection typically extend. Y et the detector should be placed close enough to the
intersection to distinguish between vehicles that are using turning lanes rather than the
through movement lanes. Single loop refersto the fact that only one detector is placed

upstream from the intersection removing the capability of directly measuring speeds.
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Volumes and occupancies are directly measured and the speed is an internal calculation
formulated based on estimates of vehicle lengths and detector lengths. Thus, speed was
not used in this research.

Volume is defined as the number of vehicles that pass over the system detector in
agiven time period. Itissimply acount of the carsthat is generally expressed in vehicles
per hour (VPH) or in the case of the Northern Virginiaresearch in vehicles per 15-
minutes (VP15m). According to the Highway Capacity Manual, atypical roadway
capacity for one hour is 1900 vehicles. Occupancy is defined as the percent of time a
vehicle occupies a detector. Occupancies are reported as a percentage. Once
occupancies reach 25%, the roadway can typically be classified as saturated. Saturation
occurs when the volume to capacity ratio (V/C) is near to or greater than one.
Occupancies greater than 25% lose meaning as they can fluctuate between 25% and
100% for varying values of volume, with no particular correlation other than the volumes

aretypicaly at least greater than 600 VPH at this point.

1.7 Data Screening Tests

The data extracted from the database is cleansed prior to itsuse. Much “bad” datais
returned from the detectors. There are many possible reasons for this, such as damaged
or dead detectors. Cleansing the data allows the user to look only at reasonable data, thus
removing many outliers and observations that will skew the clustering results. Screening
rules were determined based on typical datarelationshipsin the database. For this
research, the screening rules were all used. The screening rules are as follows to remove

bad data:
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Non-zero test:
« Volume AND Occupancy AND Speed # 0

Prescreening test:

« Volume AND Occupancy AND Speed >=0
« Volume < 3100 AND Occupancy < 100

« Volume >= Occupancy

Feasible Volumes:

« IF Occupancy =00R 1 THEN Volume < 580

+ |F 1< Occupancy <= 15 THEN 1 < Volume < 1400

« IF 15 < Occupancy < 25 THEN 180 < Volume < 2000
« |F Occupancy >= 25 THEN Volume > 500

The methods the screening tests use to scrub data can be grouped into two categories,
threshold value tests and traffic flow theory tests. The ‘Non-zero Test’ uses athreshold
value test, the * Prescreening Test” uses both threshold value and traffic flow theory tests,
and the ‘ Feasible Volumes' test uses only traffic flow theory tests (18). Threshold value
tests limit data to within physically reasonable values based on characteristics of volume
and occupancy. Traffic flow theory tests restrict data to feasible combinations of volume
for agiven occupancy.

All rules were established by examining data from 5 arbitrary intersectionsin
Northern Virginiafor periods of up to one month. The screening tests were then applied
to various intersections to test the procedures. Vaues of volume for the hourly intervals
are given in vehicles per hour (VPH), the unit of measurement used in the database.
Occupancies are given as a percentage of time vehicles are located over a detector. Speed
isnot used in the traffic theory rules because it is derived from volume and occupancy, an

assumed vehicle length and an assumed detector length, producing inaccurate data.

Figure 3| [Figure 4} |[Figure 5 and [Figure 6/show how the “ Feasible Volumes® tests were
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derived from the data. Based on typical volume and occupancy relationships derived
from the 5 intersections investigated as shown in the graphs below, the numerical values

for the threshold value, data screening tests were devel oped.

Figure 3. Verification of Feasible Volumes test 1

Figure 4. Verification for Feasible Volumes test 2



Figure S. Verification for Feasible Volumes test 3

Figure 6. Verification for Feasible Volumes test 4

13
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1.8 Project Scope

This project research will introduce the use of data mining tools for timing plan
development based on system detector data. The proposed procedure will be conducted
on asubset of asingle corridor in the Northern Virginia arterial network. The corridor
studied will be a piece of the Reston Corridor, consisting of 3 coordinated intersections
and 15 system detectors. below shows the mgjority of the Reston corridor
layout taken from a Synchro file, from which the subset corridor istaken for the case
study. The timing plan development scheme will be based only on Monday through
Friday for the entire 24-hour period. The system detector datawill be acquired from
system detectors, or single inductive loops, located in select lanes throughout the
corridor. Volumes and occupancies collected from these system detectors and archived
in an Oracle Database in the Smart Travel Laboratory at the University of Virginiawill
be used to conduct this research. The Virginia Department of Transportation (VDOT)
supplies the data to the Smart Travel Laboratory (STL) at the University of Virginia,

which is aggregated to 15-minute observations.
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1.9 Project Statement

This project will contribute to the intelligent transportation systems (ITS) field by
utilizing real-time detector data through the use of data mining toolsto aid in the
development of signal timing plans and fixed time-of-day (TOD) intervalsfor traffic
signal plan implementation. The thesisis that data mining techniques, not traditionally
used for timing plan development in transportation, such as clustering, can be used to
improve the devel opment of signal timing plans and fixed time-of-day (TOD) intervals
for traffic signal plan implementations. The main objective of this project isto propose a
procedure for utilizing detector data for improved plan development by detailing the
following tasks:

» Useof data mining tools (cluster analysis) to extract information from alarge
database,

* Improve timing plans through use of data extracted from database versus the
current method of one-day volume counts,

* Improve TOD intervals using cluster analysis on detector data with refined
and expanded state definition, and

» Test clusters and plan performance through simulation and internal cluster

validation.

Chapter 2 will provide background information on the signal timing plans and
methods of current traffic control, while detailing current methods of timing plan
development. Chapter 2 will also discuss related areas of research to the topics explored
in this project. Chapter 3 will detail the problem formulation for each phase of the
research, including the selection of a clustering method, validation of the clusters
developed, timing plan development in Synchro and simulation with SimTraffic for plan

evauation. The proposed procedure will be outlined in detail in Chapter 4, fully
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describing the tools used for this research and providing guidance in following and
enhancing the procedure. Chapter 4 will provide the mgor deliverable of this project, the
proposed procedure with guidelines for following the procedure and automating the
procedure. Discussion of the results of the analysis based on a single corridor case study
and a brief analysis at asingle intersection in Northern Virginiawill be introduced in
Chapter 5. Evaluation of the proposed procedure and the applicability of this research are
discussed in Chapter 6, with emphasis on the future research needs for a more robust

procedure.
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Chapter 2. BACKGROUND

2.1 Signal Timing Plans
The operation of a coordinated signal control system on an arterial corridor, or a series of
signalized intersections operating under a common traffic signal plan, requiresatiming
plan for each signal in the corridor. A corridor-timing plan consists of four main
elements: cycle length, splits, offsets and phase sequences (1). The cyclelength isthe
time required for one complete sequence of signal phases to rotate through the green
time. The split refers to the percentage of a cycle length allocated to each of the various
phases at an intersection in asignal cycle, where phase refers to the portion of acycle
allocated to any single combination of traffic movements simultaneously receiving the
right-of-way (1). Finally, the offset is the component of the signal-timing plan that
coordinates a series of signalized intersections in a corridor or network. The offset isthe
time difference (in seconds or in percent of the cycle length) between the start of the
green indication at one signal asrelated to the start of the green indication at the
corresponding downstream signal (1).

Aside from the three main elements of a coordinated traffic signal as discussed
above, there are many other components that must be taken into account in the

development of timing signals. These components are as follows:

o Traffic Volume per lane movement  Lead/Lag

* Turn type (Protected or Permitted) * Allow Lead/Lag Optimize?
e Minimum Initial * Vehicle Extension

e Minimum Split e Minimum Gap

*  Maximum Split * Pedestrian Phase

* Tota Split « Wak Time

* Yelow Time » BusBlockages (#/hr)

* All-Red Time * Heavy Vehicles (%)
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» Growth Factor * AreaType

* Peak Hour Factor » Storage Length (ft)
* |dea Saturated Flow » Storage Lanes (#)

* LaneWidth * Right Turn on Red?

* Grade (%)

Clearly, the development of traffic signalsis highly complex, which iswhy tools like
Synchro are used (16). For thisresearch, the Synchro files developed by VDOT were
used so that the all the timing plan components listed above were already archived. The
only alterations made to the Synchro files for this research are the volumes for the
modified TOD intervals for which the timing plans are servicing. With the alteration of
the volumes, Synchro optimizes the cycle length, split and offset to best suit the timing

plan inputs.

2.2 Phase Movements

Opposing movements at an intersection are defined by phases. Phases are numerical
values (1,2,3,...8) assigned to through/right-hand-turn movements and left-hand-turn
movements. Even phase numbers are always assigned to through/right-hand-turn
movements and odd phase numbers are assigned to | eft-hand-turning movements.

B shows a sample intersection with phase assignments.



20

Figure 8. Phase Diagram

Phase numbers are always grouped together as shown in The only dynamic
element of the phase diagram is whether phases 2/5 and 1/6 lie on the east-west direction
or the north-south direction. This element is dependent on the direction of the main
throughway. Phases 2 and 6 always correspond with the main throughway. If the main
throughway liesin the east-west direction, then the phase diagram is as shown in Figure
8. If the main throughway lies in the north-south direction, then the phase diagram in

Figure 8 would have to be rotated 90 degrees to the right.

2.3 Local Detection Control

Traffic signals can be actuated, semi-actuated or pre-timed. Actuated signals are driven
by the traffic conditions sensed by the local detectors. Local detectors do not collect
volume, occupancy and speed data as do the system detectors. They are solely for the
purpose of traffic signal actuation. Fully actuated control is extremely difficult to

implement because of the difficulty and expense involved with maintaining enough
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detectors to support the control. Second and third generation control run with fully
actuated corridors. Vehiclestrigger the detector to change the green split to that phase
movement. Semi-actuation isthe form of signal control used in the Northern Virginia
arterial system. In semi-actuation, the main throughway is always given its preset green
split time, even if no vehicles are detected at the intersection. However, the side streets
will only maintain a minimum green time allotted to that phase split if vehicles are not
detected. The remaining green time that would make up the full side street split is given
back to the main throughway. If vehicles are detected on the side streets, then the
maximum green timeis given. Non-actuated control would exist at an intersection with

no local detectors and the signal would operate under fully pre-timed signal parameters.

24  TOD Plan Methodology and | ssues

The most widely used method for timing plan selection and implementation is time-of-
day, or TOD, where a pre-set plan is automatically used for a particular time interval (1).
TOD requires traffic engineers to develop signal-timing plans that are affective for
particular timeintervalsin aday. For example, an AM-peak plan that favors work-bound
commuter traffic might be used from 06:00 — 09:30. The AM-peak plan would typically
be developed using timing optimization tools such as Synchro, based on a single volume
count from the critical intersection. The volume count used for timing plan development
in Synchro is taken from the traffic engineers' hand-counts of cars during assumed peak
traffic time for the TOD interval. This single-day count is used for developing a timing
plan for the entire corridor. Therefore, one will note that the challenge in designing a
TOD system lies in identifying the appropriate time intervals for plans, and then

developing effective corridor plans to operate within each interval. Another challenge
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faced by traffic engineers is monitoring the performance of timing plans over time and
retaining up-to-date timing plans. Because of the time and effort that goes into the
current method of TOD plan development, the plans are generally left in place for many
years, with no automated form of performance feedback. The use of electronic data and
data mining tools would make automated timing plan development and maintenance
readily available. Another issue that must be overlooked with the current means of TOD

traffic contral is that variance in traffic conditions can not be accounted for and variance

over time may go overlooked until conditions become severe. [Figure 9|and Figure 10|

show a volume vs. time plot in the northbound and southbound direction for an
intersection in the Reston corridor. Volume data from March 8, 2000 until September 29,
2000 were plotted. Traffic trends remain similar over such a short period of time, but
there are erroneous days where variant traffic conditions get serviced by timing plans
constructed for “normal” conditions. With automated maintenance tools, that will be
made possible with the use of data mining tools, erroneous days and changing trends over
time can be detected and archived. This will allow for the development of theories and
rules based on traffic variance-time/event trends, thus preparing for changes in the future
before they occur. The TOD itnervals may also change over time, where data mining

tools would allow for detection of slight variations in transition times.
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Figure 9. NB Volume vs. TOD at one intersection

Figure 10. SB Volume vs. TOD at one intersection




24

25 Proposed State Definition

Time-of-day (TOD) signa control is an example of aform of system control known as
state-based control. A “state” is an abstract representation of the condition of that system
at some point intime. The defined state serves as a sufficient statistic for the condition of
the system, i.e., it contains all possible information regarding current status, propensity to
change and information necessary to evaluate the defined indices of performance for the
system (2). The concept of state-based control isto use a set of established rules or
policies to guide the selection of a control strategy for a system as the system transitions
from one state to another.

Clearly, the current practice of using aggregate volumes to define state, as
described in the previous section, may be inadequate. Given that considerably more
information is available to use in defining the state of the system, this research uses a
more compl ete state definition based on a refined form of data available from the system
detectors to identify TOD intervals.

By considering the data collected by the system detectors in as high a resolution
as possible, one can expect to better capture the nuances of the system’s dynamic
behavior. Therefore, the state definition used for this case study is a vector of volume
and occupancy measures for each directional phase movement at each intersection in the
corridor. The directional phase movements are identified by their corresponding phase
numbers, which are denoted in Figure 8. In addition, to account for the difference in
scale between volume and occupancy measures, the values were standardized using a Z-
score, (Z), which represents a dispersion or spread from the mean that each value lies and

is defined in the following equation.
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Z=X-M/o

Chapter 5 will investigate alternate input cluster variables in the ‘Sensitivity
Studies section in addition to equally weighted, standardized variables. Since volume
and occupancy represent different traffic states, where occupancy values lie on a percent
scale of 0 — 100 and volume vaues lie on a numeric scale of 0 — 1900+, the
standardization process is necessary to transfer these values to a uniform, meaningful
scale with no units (13). The possible effects of variable weighting will be discussed in
more detail in Chapter 5, where consideration of un-standardized occupancy and volumes
are taken into account. For the scope of this research, the detectors and cluster variables
were weighted equally, however future considerations should include weighting cluster
variables such as detectors and intersections to account for influence and importance of
those factors in traffic flow through the corridor. The state definition used is as follows,
with each variable number assigned according to its phase number. Not all intersections
have system detectors located at every phase, so the state definition may vary from
intersection to intersection depending on the availability of system detectors.

X(t) =(V1, 01, V2, 02, V3, 03, V4, 04, V5, O5, V6, 06, V7, 07, V8, O8),

Where X(t) = system state at time t
V1 = standardized phase 1 volume at timet (NBL)
O1 = standardized phase 1 occupancy at timet (NBL)
V2 = standardized phase 2 volume at time t (SB)
02 = standardized phase 2 occupancy at timet (SB)
V3 = standardized phase 3 volume at timet (EBL)
03 = standardized phase 3 occupancy at timet (EBL)
V4 = standardized phase 4 volume at time t (WB)
04 = standardized phase 4 occupancy at timet (WB)
V5 = standardized phase 5, volume at timet (SBL)
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05 = standardized phase 5, occupancy at timet (SBL)
V6 = standardized phase 6 volume at timet (NB)

06 = standardized phase 6 occupancy at timet (NB)
V7 = standardized phase 7 volume at timet (WBL)
07 = standardized phase 7 occupancy at timet (WBL)
V8 = standardized phase 8 volume at time't (EB)

08 = standardized phase 8 occupancy at timet (EB)

2.6 RELATED RESEARCH

Data mining tools are not widely used in transportation systems (7). In fact system
detector data collection is afairly recent advancement with the rise of ITS and has not yet
been utilized to its full capacity. Traffic may be viewed as unpredictable and
uncontrollable, but with archived data that is now available, it can be shown that trafficis
in fact predictable to a degree and control can be improved with the utilization of this
data. There are other DOT’ s that have looked into advanced forms of control such as
traffic responsive and second generation, where the system detector datais necessary to
support such control techniques, but it has not been found to be used for TOD signal
control (6). Datamining tools are useful for uncovering patterns in data and making
classifications and these notions can be highly beneficial in transportation systems.

These data mining techniques have been used in many other fields and areas to produce
similar results from many types of data sets.

2.6.1 Data Mining as an Emerging Field

Datamining is utilized in the disciplines of computer science and statistics and is making
progress in extracting information from large databases (20). It isan emerging field that

promotes the progress of data analysis. Due to the competitive nature of today’ s business
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economy, information technology has been invested in heavily to aid in the management
of effective business performance. Over the last three decades, increasingly large
amounts of critical business data have been stored electronically and thisvolume is
expected to continue to grow considerably in the future (20). Despite this wealth of data,
many companies have been unable to fully capitalize on itsvalue. Thisis because the
information implicit in the data is not easily discernable without the use of data mining
tools. Datamining tools allow businesses to leverage their data effectively and obtain
insightful information that can give them a competitive edge. It enables them to discover
previously undetected facts present in the data.

Data mining tools can provide benefits to any number of potential users. The
finance and insurance industries have long recognized these benefits, but these principles
can be applied in many areas. For example the retail/marketing sector, the banking
sector, the insurance and health care sector, the transportation sector and the list goes on
to those who can reap benefits from data mining tools (20). The following list
summarizes some of the benefits that each of these sectors can achieve (20).

Retail/Marketing

* ldentification of buying behavior patterns from customers
* Finding associations among customer demographic characteristics
* Prediction of customers responsive to mailing

Banking

» Detection of patterns of fraudulent credit card use

* ldentification of “loyal” customers

* Prediction of customersthat are likely to change credit card affiliation
» Determination of credit card spending by customer groups

* Finding hidden correlations between different financial indicators

* ldentification of stock trading rules from historical data market

Insurance/Health Care
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* Claims analysis— determination of which medical procedures are
claimed together

» Prediction of which customerswill buy new policies

* Identification of behavior patterns of risky customers

* ldentification of fraudulent behavior

Transportation

» Determination of distribution schedules among outlets

* Analysisof loading patterns

* Identification of seasona and time-of-day traffic trends

» Location of high risk incident areas

There is an extensive body of technology that exists and continues to evolve that

can be used to construct data mining functions. A number of data mining methods exist
that can be classified in four major groups: Associations, sequential patterns, classifiers
and clustering (20). In associations, a collection of items and a set of records, each of
which contain some number of items from the given collection exist for which an
association function is established which returns affinities that exist among the collection
of items. For example, these affinities can be expressed by rules such as“72% of al the
records that containitems A, B and C also contain items E and F.” With sequential
patterns, atransaction log exists, which identifies transaction and product information,
generally without customer identity. A sequential pattern function will analyze
collections of sets of products a customer buysin every purchase order. With classifiers,
there exists a set of records with anumber of attributes, a set of tags (representing classes
of records) and an assignment of atag to each record. A classification function examines
the set of tagged records and produces descriptions of the characteristics of records for

each of the classes. These class descriptions can be used to tag new records. In

clustering, there exists a set of untagged records. Since no classes are known, it isthe
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goal of acluster to produce a reasonable segmentation of the set of input records
according to some criteria. These data-mining operators can be used cooperatively or
individually. With automated techniques as those described above, businesses can utilize

the database information to discover trends and improve on current practices.

2.6.2 Cluster Analysis Applications
Cluster analysis deals with automating a commonly utilized human activity of forming

classes or groups of similar objects. The objects to be clustered could be of any origin,
from hospital patients, product brands and insect species to traffic data. Cluster analysis
has been widely used in many diverse disciplines such as biology, psychology,
archaeology, geology, marketing, information retrieval, and remote sensing (12).
Clustering in computer science and engineering has been a more recent outcome solving
many problems with pattern recognition and image processing. In thesefieldsit has been
used for things such as unsupervised learning, speech and speaker recognition, work-load
characterization, crime detection and image registration. Cluster algorithms may be
applied in many different fields to many different domains, but for all, the outcomeisa
grouping of underlying themesin a data set that may not be intuitive or easily established
without such atool.

Francois-Joseph Lapointe and Pierre Legendre performed a research project using
hierarchical cluster analysis at the University of Montreal to distinguish between different
types of single malt whiskies (17). The data consisted of Scottish produced single malt
whiskies totaling to 300 varieties. Single malts differ in nose, color, body, palate and
finish. To produce a connoisseur’s guide to Scottish malt whiskies, they had to be

distinguished base on three major questions:
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1. What are the major types of single malt whiskies that can be recognized and what are
their chief characteristics and best representatives?

2. What is the geographic component in that classification?

3. Do thevarious categories of characteristics — nose, color, body, palate and finish —
lead to the same classification?

The first and third questions will be of interest here because the whiskies will be

categorized based only on the variables; nose, color, body, palate and finish, using

hierarchical clustering. These questions can be answered with the results of cluster

anaysis. The geographic components will be used for checking the clustered

classification a posteriori and determining whether location effects the categorized

whiskies. By comparing raw data sets (canonical analysis), distance matrices (correlation

matrices) and dendrograms (consensus measures), these questions can be answered. This

processis similar to that done in this project, where groupings were found in the data and

the clusters formed were validated using methods similar to those mentioned above.

A distance matrix was constructed for the malts based on color, nose, body, palate
and finish, where each description was scored in such away that the relationships could
be represented numerically. The clustering used Ward’ s minimum variance method,
detailed in Section 3.4, to form a dendrogram for depicting the whisky clusters. A
cophenetic matrix, described in Section 3.10.1.5, was computed from this dendrogram, in
which the distances between objects is equal to the value of the fusion level where these
two object were joined to the same cluster. The distance matrix from the a priori
canonical analysis was compared to the dendrogram of the cluster analysis, where the

null hypothesistested is that the two comparisons are no more similar than randomly
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generated dendrograms with the same number of objects, random topology and random
labels would be. When the resulting classification of single malt whiskies was compared
to geographic locations, it was shown that the whiskies could not only be characterized
by physical properties, but also by distillery traditions and regions, where they are
effected by soil, water, temperature, etc. Thisresearch not only classified single malt
whiskies by defining characteristics and regions, but also characterized the whiskies
based on clustered characteristics. The performance of comparisons among raw data,
distance matrices and dendrograms was used to validate clusters.

The validation of the clusters formed in the single malt whiskey example and the
idea of forming logical groups based on data characteristics where no response variable

exists follows the idea of the research being done on volume and occupancy traffic data.
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Chapter 3. PROBLEM FORMULATION

3.1  Cluster Toolsand Algorithms

SAS, asoftware system for data analysis, was the main tool used to implement data
mining procedures, clustering in particular, in this research (10). The cluster analysis was
done with the SAS software using 15-minute volume and occupancy data obtained from
an Oracle database in the Smart Travel Laboratory. Thisdatais based on a continuous,
guantitative scale. The purpose of cluster analysisis to place objects into groups or
clusters suggested by the data, not defined a priori, such that objectsin a given cluster
tend to be similar to each other and objects in different clusters tend to be dissimilar (9).
A vast number of clustering methods have been developed in severa different fields, with
different definitions of clusters and dissimilarity among objects. The choice of clustering
algorithm depends both on the type of data available and on the particular purpose (13).
Since cluster analysisis used as a descriptive or exploratory tool unlike statistical tests,
which are used for confirmatory purposes, it is permissible to choose a clustering method
based on cluster runs from the same data set. Thus suggesting and testing the theories
introduced in this project with a clustering algorithm is sufficient in providing
information on what the data are indicating.

The majority of clustering methods in the classification literature fall into one of
two types of cluster algorithms; digoint (partitioning) or hierarchical methods (13).
Digoint clusters place each object in only one cluster, where the number of clusters, K,
have been defined a priori. Hierarchical clusters are organized so that one cluster may be
entirely contained within another cluster, but no other overlap between clustersis alowed

and the clusters are joined from n observations until only one cluster remains. SAS
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procedures for clustering are oriented toward digoint or hierarchical clusters from
coordinate data, distance data, or a correlation or covariance matrix.

For the recommended procedure, hierarchical clustering has been used, however
the optimal clustering method was not fully researched and may be further investigated
for future timing plan development procedures. Hierarchical clustering seems
advantageous to digoint clustering (13). Digoint clustering uses a k-means method
where the number of clusters to be formed must be pre-determined. The determination of
the optimal number of timing plans before the cluster analysis results in uncertainty and
error, since the number of timing plans or clustersis an unknown statistic that cannot be
firmly established prior to the cluster analysis. The digoint clustering agorithm would
have to be run several times with different values of k to retain the clustering that appears
to provide the most meaningful interpretation based on data characteristics or graphs
(13). Thus, hierarchical clustering appears to be the best choice for the purpose of
supplying the data necessary for determining the optimal number of clusters based on the
cluster analysis. Another disadvantage with digoint clustering includes the non-stability
of the clusters formed due to the choice of initial cluster seeds, which are affected by the
order in which the data are read into the computer. Because of the large number of
choices for the number of clusters and the location of the cluster seeds associated with
each cluster, this procedure may become computationally infeasible, especially with large
datasets (10). Hierarchical cluster analysis, on the other hand, results in much more
stable clusters due to the procedure implemented where each observation beginsin a
unigue cluster. Clusters are then joined based on the minimum dissimilarity measure

between clusters, until only one cluster remains.
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3.2 Introduction of Research Case Studies

Two exploratory case studies were performed to test the procedure proposed in this
project. This proposed procedure offers amethod for TOD timing plan development that
creates TOD intervals and timing plans for those intervals based on clustered system
detector data. This procedure introduces methods of timing plan development with the
capability to greatly reduce the time spent on plan devel opment, while creating better
suited TOD plansfor current traffic conditions. This process also provides a meansto
automating the plan development and maintenance process.

The first case study is performed on a series of three intersections to form a small
corridor for testing the validity and methods of the proposed procedure on a coordinated
arterial. [Figure 12]shows the lane configuration for this corridor, which is a subset of the
full Reston corridor. This subset corridor consists of New Dominion, Bluemont and
Sunset Hills, al intersecting with Reston Parkway. This small corridor will support
theories proposed for the procedure with afairly simple data set. The second case study
consists of asingle intersection at Baron Cameron and Reston Parkway. [Figure 11]shows
the lane configuration of thisintersection. Thiswill look at a simplified version of the
procedure with a small data set taken from seven months of historical data from one
intersection. The procedure will be evaluated based on single intersections supported by
the Baron Cameron and Reston Parkway intersections to draw conclusions on the

performance of the plan on single intersections.



Figure 11. Reston - Baron Cameron Intersection Layout

Figure 12. Reston - Sunset Hills, Bluemont, New Dominion Intersections Layout

35
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3.3  Hierarchical Clustering
The concept behind TOD control isthat traffic conditions during particular intervals of
the day are roughly equivalent, and therefore a single timing plan can be used effectively
throughout that interval. In other words, if traffic conditions are sampled at regular
intervals, two samples, measured during the same TOD interval will be very similar.
Cluster analysisis a statistical technique that has been devel oped to “group together”
similar cases when categories of the data are not defined apriori. Hierarchical clustering
algorithms are methods to divide a set of n observations into g groups so that the
members of the same groups are more alike than members of different groups or clusters
(3). Thus, the premise of this research isthat cluster analysis can be used to
automatically group together similar samples of traffic conditions to identify TOD
intervals for which timing plans should operate in based on similar traffic characteristics.
With Hierarchical clustering, each observation beginsin acluster by itself. The
two closest clusters are merged to form a new cluster that replaces the two old clusters.
Merging of the two closest clustersis repeated until only one cluster isleft. At each level
of the merging process, there exists one less cluster due to the joining of a cluster from
the previous level (13). The various clustering methods differ in how the distance

between two clustersis computed.

34  Cluster Methodologies

There are many clustering methods that can be implemented for a cluster analysis. These
include methods such as average linkage, Ward' s minimum variance method, centroid,

complete linkage, single linkage, and density linkage (10). In average linkage, the
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distance between two clustersis the average distance between pairs of observations, one
in each cluster. Average linkage tends to join clusters with small variances and is slightly
biased toward producing clusters with the same variance (10). In Ward’s minimum
variance method, the distance between two clustersisthe ANOVA sum of squares
between the two clusters added up over al the variables. At each generation, the within-
cluster sum of squaresis minimized over all partitions obtainable by merging two clusters
from the previous generation. Ward's method tends to join clusters with a small number
of observations and is strongly biased toward producing clusters with roughly the same
number of observations (10). It isalso very sensitive to outliers. In the centroid method,
the distance between two clustersis defined as the squared Euclidean distance between
their centroids or means. The centroid method is more robust to outliers than most other
hierarchical methods (10). In complete linkage, the distance between two clustersisthe
maximum distance between an observation in one cluster and an observation in the other
cluster. Complete linkage is strongly biased toward producing clusters with roughly
egual diameters and can be severely distorted by moderate outliers. Complete linkage
(furthest neighbor) determines the distances between clusters by the greatest distance
between any two objectsin the different clusters (10). This method isinappropriate if the
clusterstend to be elongated or of achain nature. In single linkage, the distance between
two clusters is the minimum distance between an observation in one cluster and an
observation in the other cluster. Single linkage sacrifices performance in the recovery of
compact clustersin return for the ability to detect elongated and irregular clusters. It
tends to string objects together in cluster formation (10). Density linkage encompasses

the k™-nearest neighbor method, the uniform kernel method and the Wong's hybrid
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method. Wong's hybrid clustering method uses density estimates based on preliminary
k-means or disjoint clustering. The k™-nearest neighbor method uses k™-nearest neighbor
density estimates and the uniform-kernel method uses uniform-kernel density estimates.
These density linkage methods do not apply constraints to the shapes of the clusters and,
unlike most other Hierarchical clustering methods, are capable of recovering clusters with
elongated or irregular shapes (10). Yet density linkage is less effective at recovering
compact clusters from small samples.

Studies have been done comparing the various methods of cluster analysis. Many
of the methods are biased towards finding clusters possessing certain characteristics
related to size, shape or dispersion (9), (10). For instance, Ward’ s minimum variance
method and k-means tend to find clusters with roughly the same number of observations
in each cluster. Average linkage tends to be biased towards finding clusters of equal
variance. Many clustering methods tend to detect compact, roughly hyper-spherical
clusters and are incapable of detecting clusters highly elongated or irregular shapes. The
methods with the least bias are those based on non-parametric density estimation such as

single linkage and density linkage.

3.5  Suggested Cluster Methodol ogy

The appropriate clustering method was only briefly investigated; however, based on
studies done by Milligan and cluster comparisons from the brief review, an appropriate
method was selected for use based on data characteristics and preliminary results (9).
The outputs of the centroid, Ward, K-nearest neighbors density and single linkage
methods were tested and compared, based on the data characteristics these methods

utilize and the capabilities of the methodologies. The other methods were ruled out based
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on performance observations by Milligan, such as the severe distortion of the complete
linkage method by moderate outliers and its inability to detect elongated clusters. Each

method was tested on the same data set, with five clusters being formed with each of the

methods. Cluster outputs for these analyses are shown in [Figure 13} [Figure 14| Figure 15|

and [Figure 16

The density method was ruled out due to the inability of the method to detect
clusters with large enough number of members comprising the clusters.
portrays the problem with clustering the volume, occupancy data with a density method.
Different numbers of K were chosen for the nearest neighbor value and the results did not
change. According to studies, density linkage methods do not apply constraints to the
shapes of the clusters and do not perform well at recovering compact clusters from small
samples. Since the volume, occupancy data sets used for the purpose of timing plan

development are fairly small samples, density methodologies seem to be inappropriate.
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Figure 13. Cluster vs. TOD Results for K-nearest Neighbors Method

The single linkage method has been ruled out due to itsinability to place a
‘minimum number of observations' constraint on the clusters. Thisresultsin clusters
being formed based only on afew number of observations, which could cause an
inefficient transition between timing plans due to the shortened duration in each timing
plan. SeeFigure 14 It also does not uncover compact clusters from data sets, rather it
finds highly elongated clusters. Since the volume and occupancy data are quite similar, a

method that uncovers compact clustersis preferable.
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Figure 14. Cluster vs. TOD Results for Single Linkage Method

The centroid method produces fairly good clusters. [Figure 15]illustrates this with
the intuitive TOD intervals that form the clusters. Cluster 1 can be classified as the post-
AM / post-PM period. It isbased on observations from times that range from 9:15 —
11:30 and 19:00 — 19:45. It makes sense that traffic conditions occurring at these two
times, directly after the two largest peak periods in aday, should have similar volume,
occupancy pairs. Cluster 2 represents an off-peak period ranging from 22:15 — 5:30.
Cluster 3 can be classified asapre-AM / pre-Off-peak period ranging from 5:45 — 6:45
and from 20:00 — 22:00. Again, these TOD intervals that make up cluster 3 make sense
in that similar traffic conditions occur at these alternate times. Cluster 4 coversthe AM
peak period and most of the lunch and mid-day period. The times range from 7:30 — 9:00

and approximately 11:45 —17:00. This particular data set appears to be missing
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observations from the PM peak period, a situation addressed in the * Sensitivity Analyses

section of chapter 5.

Figure 15. Cluster vs. TOD results for Centroid Method

Ward's method produces very similar results as the centroid method. SeefFigure |
16. Centroid and Ward’s methods seem more appropriate than the others for this data
because they are able to produce clusters based on a constraint for a minimum number of
observationsto exist in each cluster formed. Thisis an important constraint due to the
necessity of cluster formations with alarge enough number of observations to support a
timing plan for an appreciable period of time, to be developed for that cluster. For the
case of the volume and occupancy data, it is not necessary to choose a method that will
detect irregular or elongated clusters. It is preferable that the clusters maintain anearly
hyper-spherical shape to ensure that cases that should operate in opposing timing plans

do not get placed in the inappropriate cluster, due to the similaritiesin variables of certain
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opposing timing plans. For example, northbound and westbound volumes and
occupancies may be very similar for the AM and PM peak periods, while the main

differences lie in the southbound and eastbound variabl es.

Figure 16. Cluster vs. TOD Results for Ward's Method

The only outstanding difference between Ward' s method and the centroid method
isthat centroid is robust to outliers, whereas Ward' sis not. Thus, for the purpose of this
research, the centroid method will be used with the recommendation that further analysis
may be conducted in the future for insight into the most beneficial methodol ogy for
clustering traffic datainto timing plan intervals. Since outliers are inherent to traffic data
due to things like incidents and holidays, the cluster method should not be overly
sensitive to outliers. shows where the volume and occupancy centroids of each
cluster lie for the centroid cluster methodology. The error bars represent the standard
deviation within each cluster. The centroidsin areintuitive for their

corresponding timing plan periods. For instance, cluster 2 represents the off peak TOD



interval and the smallest volume and occupancy represent this cluster centroid. Itisclear
that the fifth cluster (C5) has a much larger occupancy mean than the other clusters. This
isan issue that has arisen in preliminary analysis with the formation of bad clusters,
discussed in the following section. Overall, this figure demonstrates that the clusters
formed by the centroid method are meaningful for TOD interval plans. Refer to the
internal cluster validation in Section 3.10.1 for further testing of the formation of clusters

under the Centroid methodol ogy.

Figure 17. Centroid Cluster Centroids and Standard Deviations
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3.6 Interpreting“Bad” Clusters

The centroid and Ward' s methods produce fairly good clusters as can be seenin
15and The times of day for which the clusters are formed from make sense
intuitively. Situations arise in cluster analysis where “un-clean” clusters may be formed

that don’t follow an intuitive TOD scheme as do the majority of the clusters formed.

Thisisapparent in Figure 15|and|Figure 16/for cluster 5, which doesn't fall into an

intuitive time interval for atiming plan. These random clusters arise in al of the
methodologies and are usually due to one or two extreme variables existing for some of
the observations. Data cleansing tests are induced to aleviate most such cases from
arising, but bad clusters can still be formed. For example cluster 5, mentioned above,
was formed based on extremely large phase 6 occupancies, in the above 50% range.
Since occupancies greater than 25% mean the roadway is saturated, it is rare to see
occupancies greater than 25%. During peak periods, occupancies typically exist around
the 20% - 25% region. The fact that these occupancies exist only on one phase during
these times may clue the traffic engineer to the fact the roadway in the phase 6 direction
just can’t handle the volume of traffic during those times and that an additional roadway
may be needed. In cases such as the above example, it would be preferable to discard
cluster 5 asatiming plan, especialy since thereis not aclean TOD interval for that
cluster. Instead, such results could be used for alerting and making recommendations to
the traffic engineers for problems on the roadway and the need for possible physical
aterations. Methods of dealing with bad clusters will be addressed in Chapter 5, for

sensitivity analyses with cluster input variables.
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3.7  Euclidean Dissimilarity Measure

With Hierarchical Cluster analysis, observed data points are grouped into clusters in a
nested sequence of clusterings such that the agorithm starts with n clusters, each
containing only one observation and joins the n clusters one a a time until only one
cluster remains. The two closest clusters or observations are joined based on the measure
of dissimilarity (d) chosen to be used, in this case the squared Euclidean distance, which
is the default measure in SAS for the centroid methodology. The squared Euclidean
distanceis asfollows:

d = Tiea,m (X = X

The dissimilarity between each new cluster formed and any other observation or cluster is
defined as the minimum distance between the two observations in the new cluster formed
and any other observation or cluster. While the clusters are formed based on the
minimized dissimilarity within clusters, the distance between clusters is maximized based
on the squared Euclidean distance between cluster centroids. A minimum number of
observations belonging to each fina cluster formation is one constraint imposed on the
cluster analysis such that clusters formed are valid based on a significant amount of
observations, thus assuming clusters are not formed based on erroneous cases. This
constraint also forces the time intervals formed by the cluster analysis to be of a
significant duration, i.e., 30 minutes or greater so that timing plans are not scattered
individually throughout the day. The time lost due to transition between timing plans is
not thoroughly investigated in this research and should be examined in future research.
However, some insights into effects on performance due to transition are evident from

simulation, which simulates over plan transition periods.
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To illustrate that Euclidean distance measure is a viable measure of dissimilarity
for the clustering procedure, a demonstration on a small data set was done. Twenty-nine
observations were chosen randomly to cover a 24-hour period. The data set had been
clustered prior to the demonstration, thus assigning each observation a cluster
membership to be used in illustrating the validity of the clusters based on the Euclidean
distance. The 29 observations came from four clusters representing an AM-peak, a Mid-
day peak, a PM-peak and an Off-peak. A dissimilarity matrix was constructed from the
standardized volume, occupancy pairs making up this small data set. The Euclidean
distance was the measure of dissimilarity between observations used to construct the
matrix. Figure 1 illustrates the Euclidean dissimilarity measure on the y-axis between
each of the four clusters, represented as four unique series on the graph, and each
observation in the data set. The 29 observations are labeled on the x-axis by their cluster
membership. The graph shows that the dissimilarity tends to be the lowest between
observations belonging to similar clusters. Observationsin clusters 1 and 3 are less than
1 unit apart from each other and clusters 4 and 6 are comprised of observations between 1
and 2 units apart. Observations between opposing clusters are between 2 and 5 units of
distance apart from each other. This is apparent in demonstrating that
Euclidean distance does cluster observations in an appropriate manner for minimizing the

within-cluster distances and maximizing the between-cluster distances.
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Figure 18. Observation dissimilarity demonstration

3.8  Determination of the Optimal Number of Clusters

It is of importance with hierarchical clustering to determine the appropriate number of
clusters, for it is this number that represents the number of timing plans to develop based
on the sensor data. In cluster anaysis, the rules that determine the optimal number of
clusters are called “ stopping rules.” Statistics for determining the number of appropriate
clusters are also numerous. Common statistics used for making such determinations
include R? values, analysis-of-variance F-tests, the determinant of the within-cluster sum
of squares matrix W/, the cubic clustering criterion (CCC), pseudo F statistic and pseudo
t? statistic (9). For the traffic signal control procedure, the CCC will be recommended
because it can be used with any of the hierarchical or digoint clustering methods. To

ensure a robust measure, the pseudo F and t° statistics will also be used in correspondence
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with the CCC. Thelevel of perfect replication from random partitions of an original data
set will be investigated as a cluster analysis stopping rule tool from more recent research
studies (14).

The R? valueis only of use when the purpose is not to uncover real clusters or
when the clustering method is average, centroid or Ward. Ordinary significance tests
such asthe ANOVA F-test are not valid for testing differences between clusters since
clustering methods attempt to maximize the separation between clusters, thus drastically
violating assumptions for normal significance testing. It cannot be assumed that the
clusters are formed based on random assignment of observations to clusters, since that
would defeat the purpose and methodologies of cluster assignment. The |W| criterion is
an extremely conservative test because the cluster proceduresin SAS attempt to minimize
the trace of W rather than the determinant. There are aternate means of determining the
number of clusters, but these are generally restricted to use with individual cluster
methods. For instance the k"™ nearest neighbor clustering method can provide
information for the number of clusters based on estimated number of modes versus k-
values.

Since the cubic clustering criterion (CCC) can be used universally with all
clustering methods and is afairly accurate measure of determining the number of
clusters, it will be recommended for use with the pseudo F and t* statistics for
determining the number of clusters. According to stopping rule studies done by Milligan
and Cooper, the CCC performed at a competitive rate, as the 6™ best, with the other 29
stopping rules tested (9). The stopping rules were tested based on prior knowledge of the

correct number of clusters. The CCC does exhibit afairly high rate of determining too
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many clusters, but it did produce a very low number of solutions with too few clusters.
The overall rate of correct determination of the true number of clusters for the CCC in
Milligan and Cooper’ s studies was 74.3%. Thiswas the sixth best overall rate of the 30
stopping rulesinvestigated. The CCC is based on the assumption that a uniform
distribution on a hyper-rectangle will be divided into clusters shaped roughly like
hypercubes (9). Inlarge samples, this assumption proves to give very accurate results. In
other cases, the approximation is generally conservative.

The pseudo F and t* statistics will also be recommended as a measure of the
appropriate number of clusters. Since SAS outputs these values for the cluster
methodol ogies suggested above as well asthe CCC, it will be advised that all three
statistics are used together to choose the number of clusters. This should increase the rate
of appropriate cluster choice that would not be achieved with using just one or the other.
In an adaptation of the SAS User’s guide (1990) and Sarle and Kuo (1993), it is
recommended to look for consensus among these three statistics (15). In other words,
local peaks of the CCC and pseudo F statistic combined with asmall t* where alarger t2
value occurs at the next cluster fusion. These criteria are most appropriate for compact or
dightly elongated clusters, preferably clusters that are roughly multivariate normal (15).
The pseudo F and t° statistic are also related to stopping rules tested by Milligan and
Cooper. Calinski and Harabasz developed the pseudo F statistic. The pseudo t? statistic
can be transformed from Duda and Hart’ stest statistic: J e(2) / J e (1) (15). According
to the stopping rule study by Milligan and Cooper, the Calinski and Harabasz rule
performed the best overall of the 30 rules tested with a 90.3% rate of the correct level of

clusters (9). The Duda and Hart statistic performed the second best in the 30-rule test
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with arate of 89.8% correct level of clusters. Both of these stopping rules tend to suggest
one too few clusters, which is where the mgjority of the mis-classification lies.
Combining the pseudo F and t* statistic with the CCC, whose main error liesin producing
too many clusters, should balance each other, providing fairly reliable determinations for

cluster number.

3.8.1 Cubic Clustering Criterion (CCC)
The cubic clustering criterion (CCC), a measure produced by the statistical software

package, SAS, is the stopping rule implored in this research in combination with the
pseudo F and t° statistics. The CCC is based on the R? value, where R? is the proportion
of variance accounted for by the clusters, and it is based on the P value, where P is an
estimate of dimensionality of the between cluster variation (9). The definition of R? is
defined as:
R?>=1- (P /T), where
« Pg=3W, = Zing X - XaegIF, Where summation is over G clusters at
G" level
L4 T = Z|nm:k| - Xa\/em?
» [[Ik[Ix Euclidean length of vector x, or the square root of the sum of
squares of elements of x
* x;=ithobservation
*  Xavej) = Mean vector for cluster C
*  Xae= Samplemean vector
« Cj=j"cluster

* G = Number of clusters at any level of hierarchy
* n=Number of observations

Based on the detailed comparative evaluation of stopping rules (14), Milligan and Cooper
concluded that aratio for between cluster variance to the within cluster variance provides

a superior index for determining the optimum number of clusters. Sarle also provides
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studies on the superior performance of the cubic clustering criterion (27). The CCC
definitions below are taken from Sarle, where it is stated that the total sample variance
along the j"™ dimension of the hyperbox is proportional to s and the within cluster
variance along the j™ dimension is proportional to ¢®>. Sarle also states that “ The CCC is
based on the assumption that clusters obtained from a uniform distribution on a hyperbox
are hypercubes of the same size. The hypercube assumption is obviously false in most
cases, but is generally conservative unless the number of clusters is very large in two or

more dimensions.” (27)

CCC = {In[(1 - E(R%)/ (1 = R®} * {(nP/2)®) / ((.001 + E(R»))"?)}, where  (27)

© ER)=1-[E" 0N +u)) + (a7 (0+ 1) / (£ *
[(n—a)®/n]* [1+(4/n)]

* n=Number of observations

* g = Number of clusters

* p=Number of variables

« 5 = Edgelength of hyperbox along the " dimension

* v =Volume of hyperbox

« v=TPus

* ¢ =Volume of hyperbox

« c=(vig)*P

* U; = Number of hypercubes along j™ dimension of the hyperbox
e u=s/c

* p* = Dimensionality between clusters, p* <

The largest CCC value represents the most stable and meaningful level of the hierarchical
cluster tree at which point the clusters are most representative of the timing plans and

TOD intervals to be devel oped based on historical traffic conditions.
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3.8.2 Pseudo F and t’ Statistics
The pseudo F and t* statistics are output in SAS when the data are coordinates or when

using the centroid, average or Ward cluster method. The F statistic for agiven level is

calculated according to the following formula (10).

Pseudo F = (((Z"[k; - Xaellf —Ps/ G —1))/ (Ps/ (n=G)) , where

» [Ik[Tx Euclidean length of vector x, or the square root of the sum of
sguares of elements of x

«  Pg=3W,, where summation is over G clustersat G" level of
hierarchy

b Wj = zigq D]]xi - xa\,e(j)D]]Z

* x;=ith observation

*  Xaej) = Mean vector for cluster C;

*  Xae= Samplemean vector

« C=j"cluster

* G =Number of clusters at any level of hierarchy

* n=Number of observations

This calculation takes into account the between and pooled within cluster sum of squares.

The following formula shows the calculation for the pseudo t? statistic (10).

> = By / (Wk + W) / (Nk + N — 2)), where

e BkL= Wu—-Wk-W_

« Nk = Number of observationsin K" cluster
« N, = Number of observationsin L" cluster
« Wi = Zinck TTK; - Xaveqo T

e x;=i" observation

*  Xaek) = Mean vector for cluster Cy

e Cc=k"cluster

The pseudo t? statistic, which can be taken from Duda and Hart's Je(2) / Je(1) stopping
rule, considers the sum of squared errors within clusters, the standard normal score, the

number of dimensions and the sample size (9). It isimportant to note that these statistics
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are not distributed as random variables since the cluster a gorithms do not assign clusters

randomly.

3.8.3 Recent Cluster Stopping Rule Studies
It has been stated, “ There are no completely satisfactory methods for determining the
number of population clusters for any type of cluster analysis (Everitt 1979, 1980;
Hartigan 1985; Bock 1985), (15). Studies have been conducted to test the validity of
clusters at different levels for determination of an appropriate hierarchical clustering
level. These stopping rules have not produced a clear-cut solution to this problem due to
the problem of ordinary significance tests failing with cluster testing. For instance
normal ANOVA tests do not hold up under the assumptions imposed because cluster
algorithms attempt to maximize the separation between clusters and the formation of
clustersis not random (15). The stopping rules recommended in this project come from
studies donein the 1980’s. This section discusses more recent stopping rule studies.

In the last decade, further research has been conducted to find the optimal method
of determination of an appropriate hierarchical level. Atlas and Overall propose a
method of evaluating higher-order cluster analyses in 1994, on cluster means from split-
sample cluster analyses to determine the number of clusters using areplication criteria
(14). Perfect replication at any particular hierarchical level isdefined as asolutionin
which asingle cluster mean from each of the preliminary analysesis grouped into each
higher-order cluster. This method was compared to the Calinski and Harabasz pseudo F
statistic, which performed the best in Milligan and Cooper’s comparison of 30 stopping
rules. Atlasand Overall discovered that both methods uncovered the correct number of

clustersfor well separated populations; however, their study investigated the use of
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overlapping clusters. Much of the work to evaluate stopping rules has involved an
unrealistic separation between clusters. The following claim was made by Atlas and
Overdl: “At present, the perfect replication criterion applied to results from a higher-
order clustering of means from severa preliminary cluster analyses appears superior in its
ability to determine the number of discriminably different underlying multivariate normal
populations. Further evaluative work is perhaps needed, and we would hope that the
replication criterion provided by higher-order cluster analysis can be included there as
well (14).” Due to the investigative nature of this research, the replication criteriawill
not be investigated thoroughly in this project but will be recommended for future
research. Sensitivity analyses in Section 5.4 address the number of clusters determined
by the pseudo F, T2 and CCC stopping rules. These rules uncover appropriate levels of
the cluster hierarchy for the purpose of signal plan development and TOD intervals for

volume and occupancy traffic data.

3.9 Cluster AnalysisInput Data

The preliminary data analysis was done on a small data set consisting of approximately
126 data points, with the final analysis being done with a data set on the order of 1000
observations to see how cluster formations are affected with different sample sizes. As
the cluster analysisis performed on larger data sets, certain concerns must be considered.
For example, clusters formed from a period of over 6 months, asis the case with the
formal data analysisin this project, may produce clusters that contain observations over
similar times of day in different clusters. This may be due to traffic variance over time

and variant conditions occurring due to holidays and events and random days. Figure 19
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shows a case where alarge data set produces these repetitive clusters.  Since the goal of
thisresearch isto base timing plans and TOD intervals on large historical data setsto

capture arealistic picture of traffic conditions, it isimportant to remedy this situation.

Figure 19. TOD Intervals with Large Data Set

One possible solution to the case described above is that different clusters can
contain different densities of observations, thus promoting the use of one cluster for
particular times of day over another even though they both may contain observations at
the same TOD. For example, in cluster 1 and 2 appear nearly repetitive, but
cluster 1 may contain 700 observations at 22:00, while cluster 2 may only contain 10
observations at that time. Thiswould suggest the use of cluster 1 at that time; however,
such an observation is impossible to make from the above graph. Thus, the suggested

procedure will be to take the mean of all volumes and occupancies at each 15-minute
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interval from the historical data set used for the cluster analysis prior to clustering. To do
this, the assumption must be made that the volumes and occupancies are normally

distributed about the mean at each 15-minute timeinterval. The following figures show

an example of avolume distribution at an individual time period. [Figure 20|and|Figure |

21 show the distribution of volumes at 7:15 over a 6-month period compared to a normal
distribution. shows the volume distributions with a normal curve and
21 shows the same volume distributions with the red bars showing how those volumes
would be distributed for a normal distribution. The normal fit to these variable
distributions according to * Expert Fit' is 95% accurate and a“Good” fit, thus validating
the averaged TOD method for cluster analysis (26). displays the statistics

associated with this volume distribution.

Figure 20. Volume Distribution with Normal Curve at 7:15
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Figure 21. Volume Distribution Compared to Normal Distribution at 7:15

Table 1. Descriptive Statistics for 7:15 Volume Distribution

All of the datafollow a normal distribution as shown in the example above. Thus,

it isviable to use the mean of the observations in the data set at each 15-minute time
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interval for cluster development to avoid situations of repetitive clusters as seenin
19. The 95" confidence intervals for the averaged volumes from the three-intersection
case study are displayed on the Volume vs. TOD plot in This shows that the
range that 95% of the historical volumes liein about the mean isfairly compact. The
largest ranges occur during the peak periods of the day. Sincetheintervalsliefairly
symmetrically about the mean, it is viable to assume an average value at each TOD isa
good representation of traffic at that time. The plot of all volumes that exist during each
TOD corresponding to this plot can be viewed in

The confidence intervals are fairly small, so the choice of timing plans may not be
influenced by the occurrence of a maximum versus a minimum volume at most times. It
is possible that during the peak periods, especialy, the occurrence of a minimum volume
may suggest the use of a pre/post-peak period plan; however, unless thiswas avery
regular occurrence (which is highly unlikely), the suggested peak plan would suffice

during the peak periods.
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Figure 22. NB Volume vs. TOD Plot with Confidence Intervals

3.10 Cluster Validation

It is extremely important to validate the cluster formations before drawing conclusions
about the behavior of the data. Y et, cluster validation is commonly overlooked for
severa reasons. It isan extremely difficult problem due to the disagreement of what
“cluster” means or what “validity” means (25). Since clustering isatool used for
discovery, rather than an end solution, it is common that inappropriate statistical models
are chosen to validate the clusters. To make a substantial contribution to data analysis, it
isessential that the clusters be validated to ensure meaningful conclusions.

Two methods for cluster validation have been implemented for evaluating the
results of the cluster analysis on the 3-intersection case study. The first method is an

internal validation criterion based on the raw data before and after cluster analysis and the
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second is an external validation method through the use classification and ssmulation. An
internal criterion assesses the fit between the structure and the data, using only the data
(11). External methods may measure performance by rating a clustering structure using
an outside tool such as simulation to assess the performance of the clusters under realistic
conditions. The clusters formed by the 3-intersection case study areillustrated in

25, from which TOD intervals are determined depending on when clusters are formed.

3.10.1 Internal Cluster Validation

Internal cluster validation should consist of two levels; validation by data and validation
by imposed structure (25). Thefirst task, validation by data, isto check the data for
clustering tendency, or in other words, to ensure the datais not spatialy random. Thisis
important because clustering algorithms will produce clustersin any data set, whether it
is completely random or contains some inherent groupings in the data. If arandom data
set gets clustered, the clusters would most likely be random themselves, holding little
meaning. Projecting the variables onto a 2-dimensional space prior to clustering will
show whether any natural groups exist inthe data. The data set can also be broken into
subsets and clustered. This should produce similar clustersif the datais not spatially
random and the clusters formed are meaningful. Another measure for cluster tendency is
the proximity matrix, which is amajor data component used to validate clusters by the
data themselves when testing for spatial randomness (25). The entriesin a data matrix
areindices of similarity, such as correlation, or dissimilarity, such as distance. The
proximity matrix can be used to see if patterns exist in space prior to the clustering to
support the assumption that the data is not random and should be clustered. The second

task will judge the success of an algorithm in imposing a structure, assuming the datais
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non-random. The following four structural criteria must be clearly defined for validation
of the clustering structure imposed on the data (25).

1. Compactness: Measure the cohesion or uniqueness of an individual cluster.

2. Isolation: Measures the distinctiveness or separation between a cluster and its
environment.

3. Globa fit: Measures the accuracy with which the structure describes
relationships between clusters, as well as the extent to which individual
clustersare valid.

4. Intrinsic dimensionality: Determines the shape of a cluster and provides
information about representing the patternsin a cluster.

A methodology for measuring these four criteriais not apparent, especially since the four
criteria are not mutually exclusive but highly inter-related. A series of techniques will be
presented to account for these criteria. Graphics for distance between opposing clusters
and distance of observations within clusters will provide insight into the compactness and
isolation of the cluster formations. The proximity matrix and the dendrogram will

measure the global fit of the cluster analysis and the intrinsic dimensionality will be

addressed by projecting the clustered data into a 2-dimensional space.

3.10.1.1 Cluster Tendency

Testing for the tendency of the datato cluster can also be viewed as the test for “complete
gpatial randomness,” amajor piece of the validity tests. For thisresearch, the principle
components of the raw data were analyzed and the data projected onto the two primary
principle components for a two-dimensional viewing of the cluster tendenciesin the raw
data. For the volume and occupancy data set from the three-intersection corridor case
study, a principal component analysis was performed in SAS on the raw data and the
projection can be viewed in The principal components or eigenvectors of the

covariance matrix define alinear projection that replaces the features in the raw data with
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uncorrelated features. The data can be projected onto the axes of the two largest
eigenvalues, thus showing whether there is any natural grouping tendency in the data or
not in atwo-dimensiona space (11). The eigenvalues represent the roots of the variance-
covariance matrix. Due to the decreasing order of variance associated with the
eigenvectors, it istypical that a summarization of the variability and covariability of the
original variables from the two largest eigenvectorsis sufficient (21). See Figure 23]for
the 2-D projection of the raw volume and occupancy data from the three-intersection case
study onto the axis of the primary principle components. From this figure the natural
tendencies of similar times-of-day to group together are shown. See [Table 2Jfor the
corresponding times associated with each graph symbol. A series of similar symbols
exist in the graph to represent an individual 15-minute interval from the time periods
listed in the table. For example the number 2 represents 02:30 — 05:00, according to
Table 2, and there areten 2'sin Figure 23. Each of the ten 2's represents a 15-minute
time slice from the period of 02:30 — 05:00. The groupings of similar numbers shows the
raw data exhibit atendency to cluster during similar times of day based on the volume

and occupancy pairs over a 24-hour period of the day.
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Table 2. Graph Symbol Representations for TOD’s from

Even before a data set is clustered, it should be determined if the data exhibit a
“cluster tendency” or a predisposition to cluster into natural groups without identifying
the groups themselves (11). Thisisan important consideration for cluster validity
because clustering algorithms will create clusters whether data are naturally grouped or
completely random, the latter resulting in meaningless clusters. Testing for cluster
tendency essentially consists of testing the raw data for spatial randomness, which would
infer the datais not appropriate for clustering. It is also possible for datato be regularly
spaced, or to exhibit mutual repulsion, which would defeat the purpose of applying a
clustering algorithm. The 3-intersection case study data set has shown to be non-random
based on the natural groupings in the data over a 24-hour period as seen in Figure 23 and
so the cluster validation process will continue to test for the validity of the cluster
structure.

A method of establishing the stability of a cluster solution, another form assuring
the datais not random, is to randomly divide the data set into sub-sets and performing a
cluster analysis on each subset separately (22). Similar solutions should be obtained from
both sets when the data is clearly structured. This technique was used successfully by

Jolliffe, et al., 1982 (23). To demonstrate this approach, a sub-set of the original data set
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from the three-intersection corridor was used for an example. The original 3-intersection
data set consisted of volume and occupancy data from 8 March — 29 September 2000,
while the subset data set consisted of data from 8 March — 1 July 2000. [Figure 24]shows
the TOD intervals formed from the cluster analysis for the full data set and

shows the TOD intervals formed from the cluster analysis from the subset of that data set.

Figure 24. TOD Intervals for Full, 3-Intersection Data Set
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Figure 25. TOD Intervals for subset of 3-Intersection Data Set

From the above charts, it is clear that both data sets created clusters distributed over
nearly exact times of the day. Both clusters produced clear TOD intervalsfor the off-
peak, AM, post-AM, Mid-Day, PM, post-PM, Evening and Pre-Off peak periods, where

the mid-day and post-PM periods exist in the same cluster for each data set.

3.10.1.2 Global Fit

Figure 26]shows the dendrogram produced for the 3-intersection cluster analysis. The
dendrogram shows the level of dissimilarity along the y-axis at which point clustersjoin.
The time-of-day associated with each initial cluster is displayed on the x-axisin a
vertical, downward format. Thetimesjoinin an intuitive manner asfar astypical TOD
traffic conditions exist. The dendrogram for the partial subset clustering is nearly the
same as that for the full, 3-intersection data set. The dendrogram can also be viewed as

an indicator for the degree to which acluster formed is“real.” A cluster can be termed
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“rea” if it forms early in the dendrogram for its size and lasts arelatively long time
before being joined into another cluster (25). The smaller the dissimilarity (y-axis
distance), the more alike observations in the cluster are. Asthe dissimilarity measure
gets longer, the clusters are more likely to contain observations less similar. Thisis
apparent in[Figure 26 where the last levels of the cluster hierarchy join smaller clusters
and the dissimilarity distance becomes elongated since clusters are being formed with all
of the observations. This dendrogram was cut at the 7™ level according to stopping rules
produced for the cluster analysis. Thered line represents the 7" level at which the
dendrogram was cut. Determining if acluster is“real” addresses the 3 point above
about determining the global fit of the cluster. From the dendrogram, it appears that the
clusters formed at the 7™ level consist of similar groupings of observations, with fairly

small dissimilarity distances.
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level

Figure 26. Distance between Clusters for 3-Intersection Data Set

3.10.1.3 Validation of Individual Clusters

The two main properties of clusters are compactness and isolation (11). A valid cluster
would be one that was “unusually” compact and isolated, where compactness refers to the
cohesion among objects within a cluster and isolation refers to the measure of separation
between separate clusters. This section addresses the isolation criterion and the
compactness criterion by visualizing these aspects of the resulting cluster analysis.

The first graphic for portraying the compactness and isolation of individual
clustersisthe distance of observations from their cluster centers and the distance of

opposing cluster centroids from each other. Both of these aspects of individual cluster
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validity are displayed in Thefirst 7 charactersin the legend represent the
distance each observation in that cluster falls from its center. The remaining 21
charactersin the legend represent the upper diagonal values of the distance between
cluster centroids for all seven clusters to portray the between cluster distances. This
display validates that the observations making up each cluster are much closer to their
own cluster centers than opposing clusters are to other clusters. This supports the
criterion that clusters must be compact and isolated. The clustersthat fall closest to each
other areintuitive. For instance, at cluster member 4, cluster 1 fallsfairly close cluster 4,
and these clusters represent the off peak and the pre-off peak periods. All of the closest
cluster centroids follow thisintuitive TOD scheme. The cluster member TOD

classifications can be found in for reference.

Figure 27. Cluster Isolation and Compactness with Distance Measures
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Another visualization aid for assessing cluster solutions, suggested by Cohen (23),
isto plot the cluster membership along the x-axis and above each cluster label, plot
variable values for that cluster. shows the mean volumes for the cluster input
variables that exist in each cluster. The error bars represent the standard deviations of
each variable in each cluster. The variables are represented by ‘V’ or ‘O’ for volume or
occupancy, a phase number and an intersection identifier, where * SH’ = Sunset Hill,
‘BLMT’ = Bluemont and ‘ND’ = New Dominion. [Figure 29 shows the same plot, except

with the occupancy means that exist in each cluster for each variable. The standard

deviations are also represented in this chart as error bars on each variable. |

shows the times of day that each of the clusters represents. The variable
values that exist in each cluster correspond to the TOD associated with each cluster. For
instance, cluster 1 contains mean volumes and occupancies with the smallest values and
this cluster represents the off peak period, while cluster 7, which contains the largest
volume and occupancy values, represents the PM period. These two figures validate the
criterion that the clusters must be unique as well as contain correlated variables. Each
cluster is comprised of acombination of volume and occupancy values of which
represent different movements at the different intersections. The volume and occupancy

differences are obvious and intuitive for the timing plans they represent.



Figure 28. Volume Means for 3-Intersection Clusters

Figure 29. Occupancy Means for 3-Intersection Clusters
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Table 3. TOD Classifications for 3-Intersection Corridor

FFigure 28|and |Figure 29|provide a visua for the cohesiveness of the variables

within each cluster and the differentiation between opposing clusters. To present an even
clearer portrayal of the separation between clusters, shows the overall mean
and standard deviation of the volume and occupancy values present in each cluster.
Again, the increasing volume and occupancy values with peak periods are apparent here.
This plot isnot as detailed since the individual movement volume and occupancy values

that make up each cluster are averaged to one value.

Figure 30. Cluster Mean Volumes vs. Occupancies for 3-Intersection Case
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The final display for cluster compactness is a demonstration of one of the cluster
variable compositions for all 7 clusters. also shows the distribution of the
variables within each cluster. The assumption can be made that the variables are
normally distributed about the mean of each cluster centroid. Thisfigure demonstrates
this trend with an example from the volume variables at the Bluemont intersection, in the
northbound direction. The cluster 2 and 5 volumes at this intersection, in the northbound
direction, aswell as clusters 3 and 6, contain similar, overlapping volume values.
However there are many more variables than just this one contributing to the formation of

these clusters, so thisis not an issue.

Figure 31. Variable Distribution within Clusters

3.10.1.4 Intrinsic Dimensionality & Isolation Criteria
The following figure follows the same idea as that of to represent the location

of the cluster in a 2-dimensional space, only in amore detailed diagram. Each of the



volume and occupancy pairs for every movement in the 3-intersection corridor are

displayed in their corresponding cluster in The projection was made on the

two primary canonical variables, derived from the cluster membership valuesin SAS.

The cluster groupings follow the same pattern as those in where similar TOD

periods are located closest. The only difference in the following graph is that each

observation making up each cluster isincluded in The numbers in this graph
represent cluster membership values, whose TOD classification can be viewed in

Thisfigure validates the isolation of the cluster formations as well as providing insight

into the shape of the clusters formed.
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3.10.1.5 Validation of Hierarchies (Global Fit)

The cophenetic correlation coefficient (CPCC) has been proposed for quantitative data
for determining if the results of ahierarchical clustering are good, in particular to validate
the hierarchies imposed by the clustering algorithm (11). The proximity between objects
i and j can be called d(i, j), and the cophenetic proximity, to be called dc(i, ), isthe level
in the dendrogram for a particular clustering method where objectsi and j are first placed
in the same cluster. The CPCC is the product-moment correlation coefficient between
the entries of these two matrices. These matrices are symmetric and so only the entries
above the main diagonals are computed. The value of CPCC is between —1 and 1, and
the closer it isto 1, the better the match between the two matrices and the better the
hierarchy fitsthe data. Appendix A contains the matrices of CPCC values for each of the
7 clustersin the 3-intersection corridor analysis. It would be expected that if the
hierarchy split at the 7" level is agood cluster fit, then the CPCC values in the matrix
should be close to 1, implying the variables in that cluster were joined at alevel
appropriate for the minimum distance of those clusters. It isimportant to recall that the
variables making up the clusters represent opposing traffic movements and so certain
movements should be less correlated than others should. For instance if the cluster to
represent the AM peak is examined, some cluster variables represent northbound
movements and some represent southbound movements. The AM peak northbound
traffic will be much heavier due to the location, south of the business area, whereas the
southbound AM traffic will be much smaller at that time. Of course the opposite
becomes true during the PM peak period. Therefore, it would be expected that |ess

correlation exist between opposing movements than like movements. This relationship
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must be considered when examining the proximity and correlation matrices. The
cophenetic correlation coefficient matrices in Appendix A follow these guidelines, in that
the expected traffic movements with heavy flow at certain times, contain CPCC values
closeto 1. Thisimpliesthe hierarchical cluster fit to the datais a good fit.

The validation methods investigated above provide the necessary insight into the
clustering tendency of the data and the overall fit of the cluster hierarchy. By showing
the stability of the cluster formations and the isolation and compactness of the clusters
formed, it follows that the clusters formed are based on real grouping tendenciesin the
data. The groupings formed also follow atraffic condition intuition for the behavior of
traffic during a 24-hour period during the week. The number of clusters that should be
formed, or the level at which to cut the tree is another important issue that will be
investigated in the * Sensitivity Analysis’ section in Chapter 5. Some external forms of
cluster validation include testing the classifications formed by the cluster analysis, as well
as simulating the formation of clusters as timing plans to test for actual performance of
the groups formed. The next section deals with rating the cluster memberships formed

with classification models.

3.10.2 Secondary Cluster Validation —- CART
Classification and Regression Trees (CART), version 3.6.3, is a classification tool that

can be used as a secondary method of cluster validation. CART is based on decision tree
technology that automatically searches for patterns and relationships and uncovers hidden
structurein data. Thisinformation can then be used for predictive modeling, whichisa

useful and important piece for the future work of this project to be discussed in Chapter
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6. Classification is appropriate since the target value, which will be introduced as the
cluster membership developed in SAS, exists as a categorical variable representing a
timing plan. Based on the input volume and occupancy variables at each detector
associated with each cluster membership value for each observation, CART will
construct a classification tree for classifying observations that can be used without cluster
memberships' to acluster or timing plan. Cross-validation is used for constructing the
classification rule in CART due to the limited size of the data sets, which consist of only
96 observations (to cover a 24-hour period). The success of the classification rule on the
cross-validated datawill supply a secondary form of cluster validation since it can be
assumed that a highly successful classification rule would imply meaningful clusters
were formed (21). This secondary validation technique was performed on the two case
study cluster outputs: the single intersection at Baron Cameron and Reston and the 3-
intersection corridor.

For both of the case studies, the classification results were superior with equal
priors. The tree was selected based on the minimum cost of the tree and the GINI method
was implored for splitting the data. In the single intersection case study at Baron
Cameron, it was determined that four clusters were optimal, so thisis the number of
levels for the target variable in CART. [Table 4]shows the cross-validation classification
table for the Baron Cameron intersection. The total correctly predicted observations by
the classification rule developed are 96.9%. Observationsin cluster 1 and 4 were
classified correctly 100% of the time, while the observationsin clusters 2 and 3 were
never classified lessthan 90%. This single intersection classification of the 96 clustered

observations implies that the data were clustered into meaningful groups by SAS.
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Table 4. CART - Cluster Validation at Baron Cameron

This secondary cluster validation technique with classification was also
performed on the 3-intersection case study. This data set also contains 96 observations
but this set was clustered with 7 clusters so the target variable for the classification
consisted of 7 levels. [Table 5]shows the cross-validated classification table for the 3-
intersection classification. The overall percent of correctly classified observations with
cross-validation was 92.7%. The clusters that performed the worst for correct
classification are those with very few observations in them, thus producing low
classification results. Only cluster 4 and 5 mis-classified more than one observation, with
cluster 4 mis-classifying 3 observations and cluster 5 mis-classifying 2 observations. The
overall classification rate for the example is good at 92.7% even with asmall sasmple size
and afairly large number of clusters. This again supports the clusters produced in SAS

asvalid by secondary validation with classification.
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Table 5. Cluster Validation at Three-Intersections

3.10.3 External Cluster Validation — Simulation

Clusters developed in the cluster analysis were also validated using ssmulation. Since the
clusters represent TOD intervals, the performance of these newly created intervals under
actual traffic conditions provides feedback as to the validity of the clustersformed. The
aim isthat the use of arefined state definition and accumulated historical data will
develop more appropriate TOD intervalsto be determined by the cluster analysis.
33'shows the measures of performance from the 3-intersection simulation. The legend is
explained below Figure 33 and can bereferred to for the Chapter 4 analysis of results as

well.
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Figure 33. SimTraffic Outputs for 3-Intersection Case Study
@ Old Plan, Old TOD — Plan developed with hand-counted volumes, implemented
during the handpicked TOD intervals based on critical intersection traffic.

g Old Plan, New TOD — Plan developed with hand-counted volumes, implemented
during newly clustered TOD intervals based on full state definition.

] New Plan, New TOD — Plan developed with database volumes from 6 months,
implemented during newly clustered TOD intervals based on full state definition.

[] New Plan, Old TOD — Plan developed with database volumes from 6 months,

implemented during newly clustered the handpicked TOD intervals based on critical
intersection traffic.

The TOD intervals represented in the legend as ‘New TOD’ were developed from the
cluster analysis. The 90" percentile volumes for these centroids were used for Synchro
timing plan development. These newly optimized plans based on cluster volume values
are represented as ‘New Plan’ inthelegend. ‘Old TOD’ represents the current TOD
intervals used by VDOT and ‘Old Plans' represent the current timing plans devel oped

from the single-day, hand counts. It isclear that the new TOD’swith the new plans
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perform better than the Old TOD’ s with the New Plans, supporting the claim that the
clustered TOD intervals perform better in simulation than those chosen be traffic
engineers with the aggregate volumes at the critical intersection. When comparing the
Old TOD’s and Old Plans with the New TOD’s and Old Plans, it is again shown that
performance is improved with the newly clustered TOD intervals operating under similar
timing plans with the old TOD intervals. The support of the simulation results for the
improvement of performance with new TOD intervals can be viewed as a secondary,
external validation that the clusters formed are logical and do provide a better form of
defining TOD intervals based on data from al intersections in the corridor. These results

will be discussed in more detail in Chapter 5.

3.11 Timing Plan Development and Simulation (Synchro/SimTraffic)

Synchro/SimTraffic is a complete software package for modeling and optimizing traffic
signal timing plans and then simulating these plans with the software, SimTraffic.
Synchro and SimTraffic have been devel oped to provide simultaneous plan development

and simulation. This software has been developed by Trafficware,

(http://www.trafficware.com)} atraffic signal software company. Synchro implements

the methods of the Highway Capacity Manual to provide intersection capacity analysis
and timing optimization where it optimizes cycle lengths, splits and offsets (16). This
eliminates the need to try multiple timing plans in search of the optimum. Synchro
optimizes to reduce delays and is the only signal software currently available that models
actuated signals. Timing plans are developed in Synchro using historical data base
volumes and output files for each timing plan are created for usein SimTraffic

simulations to test the clustered plans that corresponds with each TOD interval.


http://www.trafficware.com)/
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SimTraffic is designed to model networks of signalized and un-signalized
intersections (16). The primary purpose of SimTraffic isto check and fine tune traffic
signal operations before implementing them in the field. SimTraffic includes the vehicle
and driver performance characteristics developed by the Federal Highway Administration
for usein traffic modeling (16). SimTraffic is especially useful for analyzing complex
situations that are not easily modeled macroscopically including:

» Closely spaced intersections with blocking problems

» Closely spaced intersections with lane change problems

» The affects of signals on nearby un-signalized intersections and driveways
» The operation of intersections under heavy congestion

The following list summarizes the features modeled by SimTraffic (16):

* Pretimed Signas

* Actuated Signals

* 2-way stop intersections

* All-way Stop intersections
* Freeways
* Roadway Bends
» Large Traffic Circles
» Laneadditions and Lane Drops
* Cars, Trucks, Buses
» Pedestrians

SimTraffic is capable of ssimulating traffic conditions read in from outside files. These
files are based on data base volumes at 15-minute intervals and the simulation effectively
mimics the trend of traffic conditions according to these historical volumes. SimTraffic
isaso able to simulate transitions between timing plans by reading in the plan files
output from Synchro that correspond to the times being simulated. The transitions occur

according to the following steps (16):

1. New timing plan isloaded and cycle clock set based on time from midnight.
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2. Cycle Clock for current state is calculated based on current phase durations and
their start time.

3. Thecaculated cycle clock is compared to the target cycle clock. If the calculated
cycle clock state is ahead by less than half a cycle, the controller will attempt to
regain coordination by using shortened phases. Otherwise the controller will
attempt to regain coordination by using longer phase times.

4. The transition max-times are calculated by increasing or decreasing the phase
max green times by 17%. No green times will be shortened below the pedestrian
walk plus flashing-don’t-walk times or the minimum initial time. If shorteningis
unable to reduce the cycle length by at least 10%, the transition will occur using
longer green times.

5. Thesigna will continue to time using the shorted or longer phase times. No force
off or yield points are used.

6. At the beginning of each barrier transition, the calculated cycle clock is compared
to the actual cycle clock. When the calculated cycle clock is alittle bit behind,
the transition is complete and the signal will begin operating coordinated with the
new timing plan.

Signal transitions with pre-timed signals can be quite disruptive. It may take nearly an
entire cycle to reach the sync point, then the signal may rest on the main street phases for
up to afull cyclein addition to the normal main street green time. Thus, it isimperative
that studies be conducted for network performance at transitional points, especially since
this proposed procedure tends to portray an increased number of TOD intervals for which
transitions must occur. A major draw back with SimTraffic isthat only 19, 15-minute

intervals can be ssimulated at one time, however there are no restrictions on the number of

intersections in the network.

3.11.1 SimTraffic Outputs & Measures of Effectiveness
SimTraffic produces three main output el ements for analysis of timing plan performance.
Thefirst is a performance report where delay, travel times, fuel emissions, etc. are

reported. The second output is the queuing report, which includes the queuing
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information at each movement. Thefina output isthe signal report, which produces

signal outputs from each phase in the system. Sample output files from each of the three

reports are displayed in Figure 34} [Figure 35 and [Figure 36, The followingisalist of

Measures of Effectiveness SimTraffic providesin itsreports:

» Slowing Delay
» Stopped Delay

 Stops
*  Queue Lengths
* Speeds

» Travel Timeand Distance
* Network Throughput
* Fuel consumption and efficiency
» Exhaust Emissions
e Observed Actuated Green Times
Each of these elements are included in the three main output files mentioned above and

are discussed in full detail in the following sections.

3.11.1.1 SimTraffic Performance Report

The performance report includes measures of performance for delay, stops, speeds, travel
times, travel distances, number of vehicles and exhaust emissions. Thisisthe main
output report for use in this research for evaluating timing plan effectiveness.

shows an example performance report created by SimTraffic.
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Figure 34. SimTraffic Performance Report

Total Delay isequal to the travel time minus the time it would take the vehicle
with no other vehicles or traffic control devices (16). For each time dlice of animation
the incremental delay is determined with the following formula:

TD =dT * (spdmax - spd) / spdmax, where

The maximum speed may be less than the link speed if avehicleiswithin aturn,

TD = Tota Delay for time dlice

dT =timesdlice=0.1s

spdmax = maximum speed of vehicle
spd = actual speed
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approaching aturn, or accelerating out of aturn. Total delay also includes all time spent
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by denied entry vehicles while they are waiting to enter the network. Delay per Vehicle
is calculated by dividing the total delay by the Number of Vehicles.

The Number of Vehiclesis not afixed number because some vehiclesarein the
area analyzed before the interval begins and some are in the area after the end of the
analyzed period after the interval ends. Part of these vehicles delay is counted in prior and
subsequent intervals and thus it is not fair to count these vehicles in the vehicle count for
thisinterval. The Number of Vehiclesisthus equal to:

nVeh=nX - 0.5* nS+ 0.5* nE, where

nVeh = Number of Vehicles

nX = Vehicles Exited thisinterval

nS = Vehiclesin areaat start of interval

nE = Vehiclesin area at end of interval
Per vehicle values for a network or arterial will be higher than their intersection
components. If, for example, al vehicles are delayed at 3 intersections for 5 seconds
each, the network delay per vehicle will be 15s.

The Stopped Delay is the sum of all time slices where the vehicles are stopped or
traveling at less than 10 ft/s (3 m/s). Normally the Stopped Delay will be less than the
total delay. Stopped delay also includes all time spent by denied entry vehicles while they
are waiting to enter the network. Stop Delay/Vehiclesis calculated by dividing Stop
Delay by the Number of Vehicles.

The Total Stopsisacount of vehicle stops. Whenever avehicle's speed drops
below 10 ft/s (3 m/s) astop isadded. A vehicleis considered going again when its speed
reaches 15 ft/s (4.5 m/s). Stops/Vehiclesis calculated by dividing the number of Stops

by the Number of Vehicles.
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The Travel Distance is simply a summation of the vehicle distance traveled. This
distance includes the curve distance within intersections.

The Travel Timeisatotal of the time each vehicle was present in thisarea. The
travel time includes time spent by vehicles Denied Entry.

The Average Speed is calculated by dividing Total Distance by Total Time.
Average Speed is weighted by volume and includes stopped time and denied entry time.
The time use in calculation for Average Speed does not include time spent by denied
entry vehicles while they are waiting to enter the network. Average speed may thus be
higher than Total Time divided by Tota Distance.

Fuel Used is calculated with the fuel consumption tables. The fuel used in each
time slice is determined by the vehicle's fleet (car, truck, or bus), speed, and acceleration.
The Fuel Efficiency is calculated by dividing the Total Distance by the Fuel Used.
Emissions data are calculated with the vehicle emission tables. The vehicle's speed and
acceleration determine the emissions created in each time slice. The vehicles queued in
the denied entry number are not accounted for in the fuel used calculation and so this
value would be disproportionally smaller than MOP' s such astravel time. Thereisno
emission tables available for trucks and busses. SimTraffic assumes trucks and busses
emit exhaust at three times the rate of cars.

Vehicles Entered and Vehicles Exited is a count of how many vehicles entered
and exited thelink or areain theinterval(s). If thisisanetwork or arterial summary, the
Vehicles Entered and V ehicles Exited do not count a vehicle moving from one
intersection to the next within the arterial or network. The Entered and Exited counts for

anetwork or arteria will thus be less than the sum of the counts from each intersection.
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The Hourly Exit Rate isthe Vehicles exited at an hourly rate. If theintersection is above
capacity and the input volume is not constrained upstream, this value might be used as
the capacity for this movement

Denied Entry isacount of vehicles that are unable to enter alink due to
congestion. The report lists the number of vehicles denied entry at the start and end of
each period. Thus, to determine the number of vehicles denied entry during each time
interval, the number denied entry before must be subtracted from the number denied after
theinterval. Thisisuseful to seeif congestion is getting worse or better. Denied Entry
can also be used to determine the Network Throughput. In a congested network, lower
values of Denied Entry indicate increased throughput and vice versa. Thisisagood
determining factor for the effectiveness of timing plans. The higher the number of denied

vehiclestypically infers that those timing plans are performing worse.

3.11.1.2 SimTraffic Queuing Report

The queuing report includes information on queues and blockages encountered by the
vehiclesin the ssmulation. The Queuing and Blocking report gives information about the
maximum gueue length for each lane and the percentage of time critical points are

blocked. shows an example queuing report file output by SimTraffic.
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Gueuing and Blacking Report

Easelitw 0830/1999
Irtersection: Main Street & SB Ramp

Mowvement EE EE EE WE 5B SE ZB

Directions Senved T T R T L LT R

hlaximum Queue (ft) 310 336 20 Z7 2494 261 47

Lirk Distance (f) 531 821 362 409 483

Upstream Blk Time (%)
Queuing Penalty fweh)

Storage Bay Dist (i) 150 150
Storage Blk Time (%) 0.40 0.0
Queuing Penalty (weh) 17 1

Irtersection: Main Street & NBE Ramp

Mowement EBE EBE EE WBE WE WE HNE HE NB
Directions Served L T T T T R L LT 3]
Maximum Queue (ff) 58 52 41 29 75 b= S =] 47 108
Link Distance () 262 362 450 460 330 320

Upstream Blk Time (%)

Queuing Penalty fweh)

Storage Bay Dist(ff) 140 1460 140
Storage Blk Time (%)

Queuing Penalty (weh)

Metwoork wide Queding Penalty: 18

Figure 35. SimTraffic Queuing Report

Queues are reported individually for each lane, no summing or averaging is
performed between lanes. A vehicle is considered queued whenever it istraveling at less
than 10 ft/s (3 m/s). A vehicle will only become “queued” when it is either at the stop bar
or behind another queued vehicle. The Maximum Queue is the maximum back of queue
observed for the entire analysisinterval. Thisis asimple maximum, no averaging is
performed. The maximum queue is calculated independently for each lane. The queue
reported is the maximum queue for each individual lane, NOT the sum of all lanes
queues. SimTraffic records the maximum back of queue observed for every two-minute
period. The Average Queue is average of al the 2-minute maximum queues. Vehicles
can stop when queued and when waiting for amandatory lane change. SimTraffic triesto
determine whether the stopping is due to queuing or lane changes. In some cases
stopping for lane changes will be counted as queuing. Sometimesin SimTraffic and in

real life, the lane changes and queuing behavior are closaly interconnected.
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The Link Distanceisthe internal distance of the link from stop-bar to stop-bar.
Thisvalue will be less than the link distance defined in Synchro because it is the internal
distance after subtracting the widths of the intersections.

Upstream Block Time is the proportion of time that the upstream end of the lane
isblocked. Thereisahot spot 20ft (6 m) long placed at the top of the lane. Every time
dlice that this hot-spot is occupied by a queued vehicle counts towards the block time.

The Queuing Penalty is arough measure of how many vehicles are affected by the
blocking. The Queuing Penalty is equal to the estimated volume of the lane times the
percent of time the lane is blocked. The Queuing Penalty for a storage bay blockageis
based on the volume of the adjacent lane. If athrough lane is blocking a storage bay, the
penalty is based on the volume of turning traffic. The Queuing Penalty isaquick way to
guantify the affects of queuing. It can be used to show, for example, that Timing Plan A
has less blocking problems than Timing Plan B. Queuing Penalty is not calculated for
external links.

Storage Block Time is the proportion of time that alane is queued at the top of the
storage. There is a hot spot 20ft (6 m) long placed at the top of the storage bay. Through
lanes adjacent to storage bays are also tracked. Queuing in the through lane can block
access to the storage bay. Every time slice that this hot-spot is occupied by a queued

vehicle counts towards the block time.

3.11.1.3 SimTraffic Actuated-Signals, Observed Splits Report
The actuated signal report displays information about the actual times observed in

actuated signals (16). Thisreport can be used to show how an actuated signal will
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perform with detailed modeling. This report can be helpful to compare the affects of
adjusting gap settings, detector layouts, recalls and so on. shows an example

report.

Actuated Sighals, Ohserved Splits

EBaseline 03/50/19549
Intersection: 1: Main Strest & 5B Ramp
Fhase 1 2 4 ] g £ 12 18

Movements) ServedWBTLEBWE SBTL EBTLEBWE NBTL SETL NBTL
Maximum Green(s) 250 160 160 280 160 160 40 40
Minimum Green (5 40 40 40 40 40 40 40 40

Recall Mlin Mone MHone Min Hone Mone  Min Min
Aurg. Green (5] 220 160 160 220 180 160 40 40
g9iC Ratia 035 020 020 035 020 020 005 005
Cycles Skipped (%) o u] u] o ] o u] u]

Cycles (@ Minimum (%) 0 0 0 0 0 0 100 100
Cyoles Maxed Out(%) 100 100 100 400 400 400 400 400
Cycles with Peds (%) O 0 0 0 0 0 ] 0

Aurerage Cycle Length () 28000
Humber of Complete Cycles : 6

Figure 36. SimTraffic Actuated Signals, Observed Splits Report

Each column in the figure above represents one signal phase. Movements are the
lane groups served by this phase. Maximum Green is the maximum green time before
this phase will max out and the green time will be given to the next phase. For a
coordinated signal thisis the maximum time before the signal will yield or be forced off.
Minimums Green is the minimum green time that a phase must retain the green, even if
no vehicles are detected. In Synchro thisis called the minimum initial time. Recall isthe
recall for the phase. Thiswill be Coord for coordinated, Max for Max recall, Ped for
Pedestrian recall, Min for minimum recall, or None for no recall. Avg Greenisthe
average of al greentimes. Skipped phases do not count. Green periods that begin or end
in another interval do not count. g/C Ratio isthe observed green time to cycle length
ratio. Since there may be green time measured from cycles that fall partially outside this

interval, an adjustment isused. The formulafor g/C isasfollows:
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g/C =TotalGreen / TotalCycles * NumCycles / (NumGreens+NumSKkips)

Cycles Skipped (%) is the percentage of cycles skipped by this phase. Green periods or
permissive periods that begin or end in another interval do not count. Cycles @
Minimum (%) is the percentage of cycles that show for their minimum time. Normally
these phases have gapped out. Green periods that begin or end in another interval do not
count. Cycles Maxed Out (%) is the percentage of cyclesthat max out. Thisvalue also
includes al cyclesfor coordinated phases and phases with Max Recall. Green periods
that begin or end in another interval do not count. Cycles with Peds (%) is the percentage
of cycleswith a pedestrian call. If this phase has Pedestrian Recall all phases will have
pedestrians. Green periods that begin or end in another interval do not count. Average
Cycle Length(s) is an average of the cycle lengths modeled. For a coordinated signal, this
isthe actual cycle length. Number of Complete Cycles(s) is a count of the number of
complete cycles modeled. Partial cycles do not count, although phases from partial
cycles may count for individual phase statistics.

The outputs produced by SimTraffic can be used to analyze entire network
performance over entire TOD intervals, network performance at specific TOD intervals,
intersection performance at TOD intervals and phase movement performance at TOD
intervals. The capability for analysisis in-depth and for the scope of this study will focus
on the main elements in the performance report for comparing TOD interval and plan

effectiveness of the entire corridor.
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3.12 Chapter Summary

This chapter provides the background and sel ection of methods for the proposed
procedure. The clustering algorithms are presented with the support for the selection of
the centroid methodology for cluster analysis. Typical cluster outputs are presented with
emphasis on issues faced such as the production of “bad” clusters by the cluster
algorithm. Stopping rules are introduced and the selection of the CCC, Pseudo F and
Pseudo t* statistics are supported and detailed for selection of the appropriate number of
clusters. This chapter also summarizes some cluster validation techniques and presents
the results of these validations for the 3-intersection case study. Thefinal piece of this
chapter is adetailed report of the simulation tool implemented in this research and the

outputs available from SimTraffic.



95

Chapter 4. Proposed Procedure

Based on the research done with the Northern Virginia system detector data, a procedure
has been proposed for devel oping improved timing plans through the use of data mining
tools. Since no such procedures have been discovered for utilizing detector data being
collected by many DOT’s, a proposal has been developed for using this resource on the
most widely implemented method of timing plan development, TOD. The procedure

section outlines the tools used in this research for the procedure and the steps taken

through each stage of the process. |

depicts the proposed procedure in aflow chart format. This procedure can be
refined and improved with extended research, but is at this time introduces a method of

utilizing detector data to improve on existing methods of signal timing development.

41  Tools
Thetoolsto be used for the proposed procedure are as follows:

o Data Extractor Tool
» Developed by the Smart Travel Laboratory at the University of Virginia (2000)
«  http://smarttravellab.virginia.edu/Data%20Extractor/nome.htm|

* Microsoft Exce

» SAS Veson8
* Developed by SAS Institute, Inc.

* Synchro, Version 4
» Developed by TrafficWare

. l’\ftn'/l\/\/\/\/\/\/ trafficware rnml

» SimTraffic, Version 4
* Developed by TrafficWare

» Classification and Regression Trees (CART)


http://_________________________/
http://www.trafficware.com/
http://www.trafficware.com/

4.2  Proposed Procedure Flow Chart

[Print out separate page for thisfigurein Landscape]

Figure 37. Proposed Procedure Flow Chart
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4.3  Data Collection

The use of the Data Extractor Tool will query the Oracle database housed at the
University of Virginiain the Smart Travel Laboratory where 15-minute Volume,
Occupancy and Speed data can be retrieved from all intersections in the Northern
Virginia arterial network. The Data Extractor outputs the data to an Excel spreadsheset,
which can be used for any necessary data manipulation and for storing the data sets. The

procedure for using the Data Extractor is as follows:

» Select ‘Nova Detector Info’ from menu.
» Select ‘intersection’ or ‘corridor’ to collect data from necessary detectors.

» The Data Extractor lists all detectorsin each section and corridor with the phase
movement of each detector.

» Add the detectors or intersections of interest to the extraction list for data gathering.
e Sdect the ' Extract Data’ view from the menu.
* Setthedate and time interval for the dates of historical data collection.

»  Select weekdays, weekends or particular days for tailored data collection, for the case
presented here select weekdays.

» Select ‘continuous’ or ‘segmented’ interval for continuous 24-hour sampling or a
subset of the 24-hour period to be sampled over dates chosen, for this case select
‘continuous .

o Select al screening procedures for fully screened data. (See Help menu of Data
Extractor or Chapter 1 of thisreport for details of data screening procedures).

» Select average volumes for each phase movement to obtain an individual value for
each movement, thus eliminating the need to research the number of lanes that exist
in each movement since detectors may not exist in al lanes.

o Select “Get Data’ and select “Data Formatting — Graph Format” to return datain a
usable format in Excel.

» Save Excel output to file.
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* Inthe Excd file, insert an addition column by the Datex column for time-of-day. The
‘convert to text’ option can be used to separate the date and time in the Datex column
to only times-of-day. Thisis necessary for proper TOD identification after the cluster
anaysis.

» Average similar TOD variables to represent one mean value at each TOD for cluster
anaysis.

4.4  SASProcedurefor Cluster Analysis

The statistical software package, SAS is used for producing clusters from the data to

represent timing plans. The timing plans will exist for the time-of-day intervalsto be

specified by the cluster analysis. The hierarchical cluster procedure will be used for

cluster development.

* Import the saved Excel datafileinto SAS. Theimport datafunctionisintheFile

menu.

» Use'Procedure Cluster’ in SAS to develop clusters from the datafile. A sample code
for usein SAS can be viewed in

The ‘ Standardize' option should be used to standardize all variables to mean =
0 and astandard deviation of 1 prior to the clustering process since volume
and occupancy variableslie on adifferent scale.

The ‘NPRINT =9’ option can be used to display only the statistics for the
final 9 clusters since, due to hardware constraints, a maximum of 9 timing
plans can be produced.

The‘CCC’ option is used to display stopping statistics for use in determining
the number of clusters to produce.

The ‘PSEUDO’ option can be used to display a pseudo F and t* statistic for
aiding in the determination of the optimal number of clusters to produce.
The volume and occupancy variables at each movement at each intersection
are the input variables and should be read in as they exist in the datafile.
The*ID = TOD’ option should be used to copy the time-of-day values
associated with each cluster assignment for identification of TOD intervals.
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Table 6. SAS Cluster Procedure (Code Example)

View the CCC, Pseudo F and t? statistics from the outpuit file from the Cluster

Procedure to determine the proper number of clustersto form. The cluster level with

the first local maxima Pseudo F statistic, the largest CCC value and a small Pseudo t?

value should be the optimal number of clustersto form.

»  Thenumber of clustersto form can be determined with an expert rule. Thisrule
should be based on the fact that the CCC provides an accurate descriptor of the
appropriate number of clusters, with its inaccuracy exhibiting too many clusters as
the appropriate number. The Pseudo F and t° statistics are aso accurate with the
mis-classifications occurring with too few clusters identified as the appropriate
number. So if the maximum CCC, Pseudo F and minimum Pseudo t* do not
occur at the same level, these factors can be accounted for in the expert rule for an
automated selection of the number of clusters.

With the proper number of clusters chosen, run the Tree Procedurein SAS. A sample

of ProcTree can be viewed in [Table 7

The ‘Dock = n’ option should be used to require a minimum number of
observationsto exist for cluster formations, thus reducing the creation of
clusters with too few observations. The n variable should be chosen
according to the sample size of the data set, for thisresearch annvalue of 4 is
used.

The *Method = Centroid’ cluster method should be used for the cluster
analysis (The Ward method is also a good choice and produces very similar
results).

The ‘Nclusters = n’ option should be used, where n = the appropriate number
of clustersto be formed as decided from the output statistics of the Cluster
Procedure (CCC, Pseudo F and t?).

The ‘Copy TOD, input variables' option should be used to copy the TOD’s
and volume and occupancy values associated with each observation and
cluster.
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Table 7. SAS Tree Procedure Cluster Code

* When the clusters have been formed, the Means Procedure should be run on those
clusters to determine the descriptive statistics associated with each cluster. See[Tablg
B for asample SAS code for the ProcM eans procedure.

* Inthe File Menu, Export the data tables produced with the Tree Procedure and the
Means Procedure to an Excel Spreadsheet.

Table 8. SAS Mean Procedure Cluster Code

45  Determination of TOD Intervals
The clusters produced in SAS will be used to determine the TOD intervals for improved
timing plan development. The Excdl file that was output from the Tree Procedurein SAS
should be used to identify the TOD intervals.

* Format the‘TOD’ column to time-of-day (hh:mm).

» Graph the times-of-day on the x-axis and the cluster membership on the y-axisto
produce a graph of the TOD intervals as determined from the cluster analysis.

* Thecluster analysiswill produce patternsin the graph where the TOD intervals
exist and these transitions can be used to represent the new timing plans.



101

4.6  Synchro Timing Plan Development

The timing plans for use with the newly developed TOD plans viathe historical data will
be developed in Synchro. Volumes for each movement in each intersection for the
corridor under development must be determined. These volumes must be those that exist
for the TOD intervals developed in the cluster analysis. These volumes should also
service the densest portions of those TOD intervals. Thus the 90™ percentile volume
values from the data set are used. The output datafile from the ‘ Tree Procedure’ in SAS
can be used to determine these values existing for each cluster or timing plan. Once the
timing plans have been devel oped and optimized for each of the TOD intervals, the
timing files can be written to an Excel spreadsheet for usein SimTraffic. Thesefiles
include split, cycle length, offset and lead information. Thiswill allow the simulation to
account for transitioning between plans during the 24-hour period. The Synchro files for
Northern Virginia have been obtained from VDOT, such that all lane geometry’s and
statistics, plan statistics, driver characteristics, vehicle types, etc. have been devel oped
accurately for proper timing plan development. The following list details the timing plan

development procedure.

* A timing plan will be developed in Synchro for each cluster developed.

* Thevolumes for each timing plan are obtained from the volume values that make up
the observations contained within the cluster that represents the timing plan being
developed.

* Organize the SAS ProcTree output data set such that the datais sorted by cluster
membership.

+ Usethe ‘Percentile = (Volume data, .9)' to search for the 90™ percentile of the
volume data making up the cluster or timing plan being devel oped.
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Find the 90" percentile volume for each movement at each intersection.

This 90™ percentile value will ensure that the timing plan developed will
accommodate the heaviest traffic conditions during that time period. The Maximum
volume is not used to ensure that an erroneous case is not used.

For intersections where detectors do not exist at every movement, a turning
conversion obtained from current VDOT Synchro files must be used.

These conversion factors should eventually be validated with data collection counts
from the ' CAMVAN.’

The Northern Virginia Synchro files obtained from VDOT are being used, while only
altering the input volumes that the plans must accommodate. The existing volumesin
the Synchro files were obtained from one-day physical hand counts. Through-
movement to turning-movement conversions for all intersectionsin the Reston
corridor have been developed from the existing volumes in the Synchro files. These
conversion factors are used to infer turning movement volumes where detectors do
not exist from the through-movement lanes, where detectors always exist for the
newly developed timing plansinputs. Another method is ratio of change from known
detector data over TOD’ s for each movement.

To input these new volumes at an intersection click on that intersection and then hit

the timing window icon and the lane configurations and volumes will be visible.

* Usethisvaluein the Synchro file, multiply by the number of lanesin each
movement and multiply by 4, to represent the entire flow (VPH) for each
movement since the data being used for clustering is an average value for each
movement based on 15-minute intervals.

On the left side of the screen under “options’, make sure that the type of controller is
actuated, coordinated and make sure that the “lock timings” box is not selected.

Once the new volumes have been input, select the “ optimize” tool bar from the top
menu and optimize the splits, offsets and cycle length, for each intersection.

Optimize network cycle length and offsets for entire network.

» Ontheleft hand side of the screen the timing plan characteristics such as cycle
length, V/C ratio, intersection delay, etc. can be seen.

With the new timing plansin place for the clustered TOD intervals, the timing files
can be written to and Excel spreadsheet by selecting ‘ Data Options' from the
‘Transfer’ tool bar. Make surethe‘Timing' sheet is selected and select the location
for the timing file, which should be written in (.csv), comma delimited format.
Assign the timing plan aname in the ‘ Timing Name' section for usein SimTraffic.
Hit the ‘Write' button and the timing plan file will be available for usein SimTraffic.
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» Beforerunning SimTraffic, make sure al TOD interval timing plans are
placed in asingle Excel spreadsheet.
» Check the timing files to ensure the maximum splits match those in Synchro
aswell asthe cycle length and offset information.
» With the new timing plansin place, the ‘ Animate’ button can be selected from the
icon menu bar and the plans will be used for simulation in SimTraffic.
4.7  Validation of Timing Planswith SimTraffic
SimTraffic will be used to simulate the newly developed timing plans for the newly
developed TOD intervals. Average 15-minute volumes from each time interval during
the 24-hour period obtained from the SAS ProcTree output data set will be used to
develop the clusters to feed into the simulation for setting up the parameters for the
proper number of vehicles. These 15-minute volumes must be determined for each

movement at each intersection to account for changing traffic patterns during each TOD

interval.

4.7.1 Preparing 15-minute data tables for simulation

* Determinetimeinterva that the specific plan isimplemented.
* Organize the SAS ProcTree output datafile by cluster and then by time-of-day.

* Find the average volume for each 15-minute interval in each timing plan at each
movement.

» If detector data does not exist for all movements at the intersection, then use the
conversion factors from the Synchro files to produce the missing volumes. Or, use
original Synchro volumes for turning movements at peak TOD for each plan period,
fluctuating the value over time to match the fluctuation of the detector volumes,
available.

* Transfer these valuesto an Excel spreadsheet.

» Theintersection ID can be obtained from Synchro by highlighting the intersection
and selecting the “#” icon from the toolbar.

* Thedate column can identify the date for which the data was collected.
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* Theexcd file must be saved as a .csv file (comma delimited) for use with
SimTraffic.

4.7.2 Preparing SimTraffic Parameters

o After pressing the “Animate” icon in Synchro, you will be transferred to SimTraffic.

» Stop the simulation and select the options menu and then select “ Database Access’ to
prepare for inputting the 15-minute volumes.

» Goto“DataOptions’ and select “read Volumes from UTDF file” and find the
location of the 15-minute volume table that was created for simulation. Make sure
the data format option for .csv fileis selected.

» Select the date that appears in the 15-minute volume file.

* Inthe“DataOptions’ sheet, also select the “read Times from UTDF file” and locate
the timing file that was written from Synchro.

» Gototheintervalstab and make sure seeding is set at 0 for random seeding or select
specific numbers for the seeding when performing multiple runs.

* Insert enough intervals to represent the correct length of time that the simulation will
berunfor.

» Change the duration time to 15 minutes if that is the length of volume intervals being
read in from thefile.

» Make surethat the times correspond to those times on the excel file.

* Allow aninitiaization of the simulation by seeding for at |east three minutes without
recording, prior to the interval start time, to allow the system to fill.

» Select the appropriate timing plan 1D’ s as written from the Synchro file to coordinate
with the times being read from the volume file.

* Pressthe animate simulation icon and once the smulation is complete, go to file and
create areport. A text version of the report can be saved.

* MOF ssuch astravel time, number of stops, total delay, fuel used and travel distance
are output by SimTraffic for the entire time period as well as for each 15-minute
interval. These outputs are available for the entire corridor or for each individual
intersection and movement. Any level of analysis can be performed using the
outputs.
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48  Development of Classification Rule using CART (Future Research)

Once new timing plans have been developed based on historical data, a classification rule
can be devel oped for classifying future cases into a pre-determined timing plan.
Classification and Regression Trees (CART) isthe tool used to create the classification
rule by imploring binary splits on the data. The cluster membership value developed
with cluster analysisis used as the response variable, while the volume, occupancy pairs
are used as the input variablesin the CART model. Further research should be conducted
in this areato verify classification rules developed will handle the classification of future
traffic states. Guidelines should aso be established for number of mis-classifications

necessary for out-dated plans and/or the need to adjust TOD intervals.

* Import data from cluster outpui.

* Usecluster membership as target variable.

» Usevolume and occupancy variables as predictor variables.
» Usecross-vaidation for tree devel opment.

* Useequal priors.

4.9  Chapter Summary

The procedure detailed in this chapter directs the user through every step of the signal
plan development procedure. Figure 37 summarizes this chapter into aflow chart that
can be followed for devel oping timing plans with system detector data and data mining
tools. Thefirst three levels of Figure 37 will be automated during the summer of 2001 in
the Smart Travel Lab to be delivered to the northern Virginiasignal control group. This
will alow the TOD intervals to be determined via cluster analysis and historical detector
data with the push of abutton. Thiswill also produce the 90™ percentile volumes

associated with each cluster formation for plan development in Synchro. At this stage of
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development of the automated procedure, the tool will produce formatted, Excel filesfor
importing into Synchro and Simtraffic with al of the lane turning movement volumes
and timing plan TOD intervals necessary to produce plans and simulate them based on
the detector data. The use of classification for determination of out-dated timing plans
will be a separate study conducted in the Smart Travel Lab, with the automation of this
process existing as part of the NOV A map, which is under development in the Smart

Travel Lab. Thisisexpected for completion in the summer of 2001.
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Chapter 5. RESULTS AND ANALYSIS

51 Introduction

This chapter will investigate alternate input variables for the cluster analysis and the
effects of the input variables on the cluster outputs in the * Sensitivity Analyses — Cluster
Input Variables' section. These sensitivity analyses will suggest the form of cluster input
variables that produce the cleanest TOD clusters. Sensitivity analyses will also be
conducted for the investigation of the *minimum number of observations' constraint
imposed in the SAS cluster analysis. This section will look at the effects of imposing
such a constraint on the cluster analysis and suggest an appropriate value for this
constraint. The final sensitivity analysis conducted will investigate the selection of the
appropriate number of clusters based on the stopping rulesimplored in this research. The
levels at which to cut the cluster tree will be evaluated to verify that the stopping rules do
in fact suggest the appropriate number of clusters for formation. The analysis of the
exploratory case studies for a single intersection and a 3-intersection corridor will then be
presented. The 3-intersection corridor will be presented with full detail of the
significance of the results, while the single intersection case study will be presented for
suggesting the usefulness of this procedure at single intersections versus corridors to be
discussed in the Conclusions section. The single intersection case study will not provide
the level of detail of analysis that the corridor supplies dueto itsless significant role in

this project.
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5.2  Sensitivity Analyses— Cluster I nput Variables

One of the capabilities of cluster analysis for the development of TOD intervals and
timing plansisthat it can utilize all available datain creating timing plans for new TOD
intervals. This dataincludes volume and occupancies, which are available at lanes that
contain system detectors. Some of the sensitivity analyses done here include creating
clusters using different input variables. Standardized volumes and occupancies were
initially used as cluster input variables. However, the cluster analysis may produce better
clusters without occupancy or with it weighted |ess than volume, since occupancy really
only provides useful information from values of 0% — 25%. Values greater than 25%
may skew the resulting clusters. Occupancy greater than 25% means the roadway is
saturated. For example, it is common for occupancy of 25% to have the same meaning as
occupancy of 90%, whereas occupancy of 5% represents quite different conditions than
occupancy of 20%. The cluster analysis was done using the initial volume and
occupancy variables, which were standardized and thus equally weighted. A comparison
of results was done using only standardized volumes, standardized volumes and
occupancies, standardized volumes with occupancies converted to values < 26 to create
clusters. These three cases were then compared with the variables un-standardized to
utilize the natural weighting of the volumes and occupancies inherent in their data
representation of traffic conditions. Finally, a case was done using weighted volumes,
where the volume and occupancies were first standardized. All cluster analyses were
constrained to only producing clusters containing at least four observations and the
cluster methodol ogy imposed was the centroid method.

The clustered TOD intervals produced in this section contain some gapsin time

during the 24-hour period from which one plan transitions to the next (See[Table 9). This
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is due to the situation in which too few cases comprise a cluster or asmall time dliceis
represented by a particular cluster. For the proposed procedure and automation of the
plan development procedure, expert rules will be introduced to account for such
situations. Small clusters that cannot support the development or transition to atiming
plan will be assigned to the cluster occurring immediately before and after such an

occurrence.

5.2.1 Standardized Input Variable Cluster Analyses

Figure 38|shows a cluster analysis done with standardized volumes and occupancies at
one intersection in the Reston Corridor. [Table 9shows the TOD classifications for this
cluster analysis. Five clusters were formed, with a constraint imposed on the clusters of a
minimum of four observations existing in order for a cluster to be formed. Clusters1—-4
areintuitive as far as peak periods go. Thefifth cluster does not make sense without
looking at the data that makes up cluster 5. The reason for its formation is that the phase
6 (northbound) occupanciesin cluster 5 are all greater than 50%. All other occupancies
never get much higher than around 20%. So, the formation of cluster 5 is useless for
developing atiming plan for that particular timing period due to the randomness of the
times associated with the observations making up cluster 5. In reality, cluster 5 should
probably be part of cluster 4, or aPM period, but the occupancies seem to confuse the

clustering process here.
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Figure 38. Clustering with Standardized Volume & Occupancy

Table 9. TOD Classification for Volume & Occupancy Cluster

Figure 39shows a cluster analysis done on the same data set where only the

standardized volumes were used as input variables. The TOD classifications can be

viewed in [Table 10] The erroneous looking cluster 5 that was formed in does
not appear in since occupancies are not included. Cluster 5 in the following

cluster analysisis representative of a PM peak period that was not captured in the cluster
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anaysisin which volume and occupancy was used. The first four clustersin both
analyses capture similar TOD intervals and transitions between timing plans. Erroneous
data hurts the cluster analysis and it may not be a good idea to use the occupanciesin the
cluster analysis unless the datais further cleansed before clustering. For instance, all

occupancies greater than 25% could be assigned a value of 25% to represent saturation,

thus eliminating Situations as that in

Figure 39. Cluster Analysis with Standardized Volumes

Table 10. TOD Classification for Volume Cluster
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Figure 40|shows a cluster analysis with the standardized volume and occupancy
values, however, the occupancies have been adjusted such that all occupancies < 26. As
discussed above, since any occupancy of approximately 25% or greater represents
saturation, all saturated values were converged to 25%. This eliminates the erroneous
cluster 5, assigning it PM peak values asin[Figure 39] The TOD intervals and timing

plans can be classified as followsin|Table 11

Figure 40. Clustering with Standardized Volume & Occupancy < 26
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Table 11 . TOD classification for V, O <26 Cluster

The above demonstration shows that the standardized volume and occupancy
values may not be the optimal input variables to use for the cluster analysis. The volume
only cluster analysis and the volume with the transformed occupancies to values < 26,
result in cleaner, more refined TOD intervals. It isimportant to use the cleanest possible
data so as not to form useless clusters. shows the volume and occupancy
cluster centroids for the cluster analysis where the occupancies were transformed to
values < 26 and then all volumes and occupancies were standardized. The error barson
this chart represent the standard deviation within the clusters. Thisfigure shows that the
centroid method using the standardized volume and occupancy < 26 values, produce

clusters consistent with the TOD intervals as produced in
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Figure 41. Cluster Centroids and Standard Deviations

5.2.2 Un-Standardized Input Variable Cluster Analyses
The cluster analysis was done on the same data set for un-standardized input variables.

The resulting clusters are quite similar as those with standardized input variables. The
most significant difference is that when clustering based on volumes and occupancies, the
un-standardized cluster analysis does not produce the useless cluster 5 as above from the
phase 6 saturated volumes. Seefor the cluster output of this cluster analysis.
Thisis most likely due to the fact that when using raw data, the occupancies are not
weighted nearly as heavily as the volumes because they lie on such a smaller scale than
volume. Thus occupancies do not drive the clusters as significantly as the volumes do.
shows the TOD classifications associated with the un-standardized volume,
occupancy cluster analysis. One can see that the clusters formed relate closely to those
produced in the standardized volume, occupancy cluster analysis. The only differences

are that here, the fifth cluster represents a PM peak plan and thereis no post AM plan as
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in the standardized cluster analysis. The latter may point to the fact that not as much
resolution is achieved without standardizing variables; however, the occupancies will not

contribute so much to producing useless clusters during times of saturation.

Figure 42. Cluster with Un-Standardized Volumes and Occupancies

Table 12. TOD Classifications for Un-Standardized Vol & Occ Clusters
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The cluster analysis with the un-standardized volumes is nearly the same as the
standardized volume cluster analysis. The standardized results for the volume only
cluster analysis appear to provide cleaner TOD intervals than the un-standardized

volumes.

Figure 43. Cluster with Un-Standardized Volumes

Table 13. TOD Classification for Un-Standardized Volume Clusters
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The cluster analyses for the standardized and un-standardized volume and
occupancy < 26 analyses are also similar; however, the analysis with the standardized
variables provides more refined results with more detailed TOD intervals. The un-
standardized output appears to have too many transitions between clusters or timing plans
without a substantial amount of observations existing for some of the transitions. For
instance, there does appear to be a pre and post PM period for the un-standardized
analysis, but there aren’t a constant and substantial amount of observations comprising
those periods, making it difficult to make such a classification. Thus, it would be

recommended that standardized results provide better TOD intervals.

Figure 44. Cluster with Un-Standardized Volume and Occupancy < 26
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Table 14. TOD Classification for Un-Standardized Volume and Occupancy < 26

For the most part, the standardized results seem to be superior except in the case
where volume and occupancy are being used as input variables. To dea with such a
situation, the variables could be standardized and then weighted manually so the
occupancies do not contribute to the cluster formations as greatly. Otherwise, if
clustering based on volumes and occupancies, it may be beneficial to use un-standardized
variables to remove the emphasis from the occupancy variables. However, cluster
analysis literature also recommends standardizing input variables as general practice.
From the above analyses, it would be suggested that the standardized volume and
occupancy < 26 variables be used in the cluster analysisin the situation that saturation
occurs and large occupancies skew the results. This method responds the most
effectively to the sensitivity of the changing traffic conditions throughout the day,
especially during the mid-day period.
5.2.3 Weighted Cluster Input Variables
This section investigates the use of standardized volume and occupancy pairs, so as to
keep the state definition as refined as possible, while assigning weights to the input
variables to produce improved clusters. Though volume and occupancy pairs produce
good results when occupancies are reduced to values of 25% or less, the weighting of

volumes would eliminate the need to manipulate the occupancy datain the absense of
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data cleansing tools, while retaining that information in the state definition.
depictsthe TOD intervals created by the cluster analysis with the standardized volumes
and occupancy pairs where volume is weighted by a factor of 20. The 20 factor isa
commonly used weighting value that represents the degree of scale difference that
naturally exists between common volume and occupancy pairs (5). The TOD intervals
are exactly the same as those from the standardized volume only cluster analysis and the
un-standardized volume and occupancy < 26 cluster analysis. The TOD intervals appear

to be cleaner in than in the above mentioned analyses.

Figure 45. TOD Intervals with Standardized and Weighted Volumes and Occupancies

The sensitivity analysis done using alternate input variables for cluster formation
shows that most combinations of cluster variables produce similar results, while some

appear dightly superior to others. The worst case cluster analysis was the standardized
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volume and occupancy case. Thiswas due to the large occupancy values that don’t add
much information to the state definition, but rather clutter it with confusing information.
When using occupancies in the state definition, values greater than 25% should be
reduced to that value to reduce the possibility of meaningless cluster formations. Also,
with occupancies in the state definition, the volumes can be weighted heavier. Using
occupancies and volumes versus only volumes catches more of the sensitive changing
traffic conditions, however both provide fairly good TOD interval results. It would be
recommended from these sensitivity analyses that weighting volumes heavily or reducing
occupancies to < 26 for input variables be practiced. These methods allow for good TOD
intervals with standardized variables. Also, much literature exists supporting the
effectiveness of volumes over occupancy in classifying traffic conditions, thus supporting

conclusionary results of weighting volumes more heavily (1).

5.3  Sensitivity Analyses — Minimum Number of Observations Per Cluster

One constraint imposed on the cluster analysisis that there must be a minimum number
of observations existing in a cluster for it to form a unique cluster in the output. In SAS,
this constraint isinduced with the * Dock = n” command, where the n is the minimum
number of observations that must make up each cluster. The value of n should be
dependent on the data set sample size. The use of the ‘Dock’ command alleviates the
formation of small clusters that occur for too short atime in which it would be unsuitable
to create and implement atiming plan. This sensitivity study explores the cluster output
produced with different values of n, primarily with ‘Dock =1, 2’ versus larger values of
n. Two comparisons were done here using a 5-cluster analysis and a 6-cluster analysis.

The only negative effect of imposing the * minimum number of observations' constraint is
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that it is possible to lose some observations in the cluster analysis since if they would
have formed a smaller cluster than n, those observations would have been removed from
the cluster output. The following cluster analyses were done with the centroid cluster
methodol ogy.

The 5-cluster analysis dock comparison looks at the use of ‘Dock =4’ versus
‘Dock = 2 shows the TOD intervals formed when the cluster formations are
constrained to containing aminimum of 4 observations. [Figure 47]shows the TOD
intervals formed when the cluster formations are not constrained to containing a

minimum number of observations.

Figure 46. TOD Intervals with Minimum of 4 Observations Per Cluster
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Figure 47. TOD Intervals with a Minimum of 2 Observations Per Cluster

The cluster analysis that does not constrain the clusters to contain a substantial
amount of observations does not form very good TOD cluster intervals. The AM peak is
not distinguishable, but isincluded in the large mid-day period. Thisisdueto the
meaningless cluster formed at the fifth level, where only two observations are contained
within the cluster. Refinement of the clustersislost when not enough clusters are formed
to represent the main periods of time, as is the case in[Figure 47]where the fifth cluster
failed to represent a main time period due to the nearly unconstrained cluster formations.
The cluster formationsin represent clean, intuitive TOD intervals, with no
wasted clusters. Analyses show that the Dock command with avalue of n lessthan 4
produce results similar to those in [Figure 47|

The next example compares the cluster outputs for 6 cluster formations with
‘Dock = 1’ versus‘Dock = 4. Figure 48|represents the clusters formed from the

unconstrained case. Clearly, the clusters formed here do not hold much meaning.
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Clusters 4, 5 and 6 al represent a PM peak at different levels, thus leaving too few
clusters to represent the remaining intervals that should exist during the day. Only two
well-defined clusters exist at this point for the off peak and mid-day periods.
shows the same cluster analysis using a constraint of at least 4 observations existing in
each cluster. The clusters formed here make sense and follow an intuitive pattern.
Cluster 6 is not avery solid cluster, probably due to the fact that one too many clusters
were formed here. The number of clusters formed will be discussed in more detail in the
next section. Also, some observations from the PM period are missing in the output due
to the constraint imposed, but thisis atradeoff worth making for the formation of clean,
meaningful clusters.

The studies here show that the constraint on the clustering algorithm for
constraining the number of observations to a minimum value for a cluster to be formed is
essential. Without this constraint, the clusters tend to form levels at which only one or
two observations exist in the clusters. This commonly produced multiple levels at the
PM peak period for the data set used here, as seen in Figure 48. Thisremoves any
refinement of the remaining clusters to distinguish changing traffic trends during the
remaining periods of the day. One tradeoff that may be made with the use of this
constraint is that some of the observations are removed from the output tree. Thisis due
to the fact that the constraint for basing clusters on a certain number of observations
removes those observation from the output that do not follow the constraint. Thisis
apparent in Figure 49, where the PM peak observations are missing since they were
excluded in the output for not containing enough observations. Y et, the clusters formed

with this constraint are meaningful and catch the changing traffic conditions over the
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entire 24-hour period and so this constraint should be imposed to ensure meaningful
clusters. The tradeoff of missing observations with the use of the constraint does not

occur with all data sets.

Figure 48. TOD Intervals from Unconstrained Number of Observations Per Cluster
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Figure 49. TOD Intervals from Minimum of 4 Observations Per Cluster

54  Sensitivity Analyses— Number of Clusters

One of the most important considerations in the clustering process is the number of
clustersformed. Thisinfluencesthe TOD intervals produced which represent the timing
plans to be developed, the basis of thisresearch. Asdiscussed in Chapter 2, the cubic
clustering criterion (CCC), the pseudo F statistic (PSF) and the pseudo t? (PST2) statistic
are used for guidance in the selection of the number of clusters. This section looks at the
values of these SAS statistics and the corresponding TOD interval outputs produced
using different numbers of clusters. shows the statistics for the last ten clusters
formed. Of particular interest in this table are the CCC, PSF and PST2 statistics. The
largest absolute value for the CCC is recommended, along with the first local maxima
value of the PSF statistic and the smallest PST2 statistic. This study includes an example

from the data set consisting of standardized volume and occupancy data from 8 March —
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29 September 2000. Regardless of the values of the stopping statistics, the formation of
1, 2, 3 or more than 8 clusters will beignored. The clusters are formed for representation
of timing signal plans during a 24-hour period. Lessthan 4 clusters would not allow
enough timing plans to capture the changing traffic conditions during a day and the signal
controllers can only hold up to 9 timing plans at one time, at least one or two of which
must contain weekend traffic plans.

In [Table 15]it appears that the best choices for the number of clustersis 7 and 6
clustersis also possibly a good solution, though according to the statistics, not as optimal
as 7 clusters. Thelargest CCC value and pseudo F statistic occur at the seventh level.
The pseudo t? statistic is small, although it is a bit smaller at the eighth level, not
significantly though. Cluster level 6 statistics are not as good as level 7, however they
are good enough to consider the sixth level as an option. shows the cluster
TOD intervals produced from the sixth level cluster analysis. [Figure 52)shows the fifth
level of cluster analysis output solely for the purpose of comparison of the outputs of an

un-optimal stopping rule statistic from [Table 15

Table 15. SAS Stopping Rule Outputs
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Figure 50|shows the TOD intervals produced by the cluster analysis at the seventh
cluster level, which should represent the optimal clustering according to statistics. The
TOD intervals formed here are clean clusters that occur at intuitive times of day. There
exists aclear off peak, an AM peak, a post-AM peak, a mid-day peak, a PM peak, a post-
PM peak that returns to the mid-day peak cluster, and then two transitions during the
evening period before returning to off peak. Theintervals are refined, and the

consideration of too many transitions should be considered here.

Figure 50. Optimal Number of Clusters (7 Clusters)

showsthe TOD intervals for the sixth cluster level. The only difference
between these TOD intervals and those formed from the seventh cluster level isthat the
AM and post-AM peak have merged into one cluster. This signifies that those two timing

periods probably consisted of the most similar traffic conditions. This result shows a
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little less refinement in the production of TOD intervals, however this may not be a
significant effect for the production of timing plansif those two plans were similar

enough.

Figure 51. Optimal Number of Clusters (6 Clusters)

Figure 52|shows the cluster outputs from the fifth cluster level. From [Table 15|
these stopping rule statistics are not as optimal as those are for the sixth and seventh
cluster levels. This output is the same as that for the sixth cluster level, except that now
the AM peak is merged into the mid day peak period. Thiswould probably have a more
significant effect on signal plan development, since the AM peak period istypically an
important plan for a 24-hour period. This shows that the CCC, PSF and PST2 values are
accurate descriptors for choosing the number of clusters and the choice of number of
clusters should produce the most refined and intuitive results when following these

stopping rules.
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Figure 52. Optimal Number of Clusters (5 clusters)

5,5  SingleIntersection —Baron Cameron & Reston Parkway Case Study

The single intersection case study is from the Reston Parkway and Baron Cameron
intersection. See for the layout of thisintersection. The single intersection
case study was performed prior to the three-intersection corridor case study to ensure a
complete process with valid results on asimple case. The results are presented here to
make a recommendation for this process for single intersections as well as corridors and
to support the claims made for the proposed procedure improving corridor performance.
The analysis of the results for the single intersection is brief, due to its minor rolein this
project. shows the TOD intervals developed from acluster analysis with 4
clusters being the optimal number of clusters for this data set. [Table 16]displays the

times associated with the new TOD intervals taken from This table also shows
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the old TOD intervals, which are similar, but differ the most in the shortened periods for
the new intervals. Unigue timing plans were developed for the off peak, AM, MD and
PM periods. Thisisthe same four timing plans devel oped implemented currently by
VDOT, however the cluster analysis does transition between them more than once. This
isthe case for cluster 2, which represents apre-AM, MD and post-PM period. This
clustering across times-of-days is intuitive in that the traffic conditions represented at

these opposing times would probably assume similar traffic states.

Figure 53. TOD Intervals at Baron Cameron & Reston

Table 16. TOD Interval Classification for Baron Cameron
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The same four scenarios are examined for the single intersection case as for the 3-
intersection corridor case. These scenarios include the performance of:

Theold plans & old TOD’s
Theold plans & new TOD’s
The new plans & new TOD’s
The new plans & old TOD’s

hpOODNPRE

Figure 54]shows the simulation MOP results from the single intersection case. These
results vary from those of a multiple-intersection coordinated system in that the old
TOD’s perform significantly better than the new TOD’s. This may possibly be due to the
fact that since the TOD intervals are similar to the old ones, the increased transition
effects dominate the increase in transitions. This also demonstrates the easein
identifying TOD intervals for single intersections, since the intervals can be based solely
on that single intersection without any concern for corresponding intersectionsin the
system. Thedifficulty in TOD interval selection arises as more intersections become
involved in a coordinated system, since manual identification does not take into account
traffic conditions at every intersection and every movement. Thus the traffic engineers
rely on the critical intersection demand for TOD intervals and the remaining intersections
are not considered. It can be hypothesized that as the corridors become more
complicated with more intersections, the automation of TOD interval selection would be
increasingly significant in identification of optimal intervals. The newly developed
timing plans, however, perform significantly better than the old timing plans asis the

case for the corridor case.
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Figure 54. Simulation Outputs from Single Intersection

The single intersection case study supports the use of timing plan development with
system detector data versus hand-counted data. It also shows simplicity of selecting TOD
intervals manually at single intersections and supplies a basis to the theory that the
increasing difficulty of TOD selection is due to the increase in intersections that do not

contribute to the selection of the TOD intervalsin corridors.

5.6  ThreeIntersection Corridor Case Study Results

The three-intersection corridor case study includes the intersection of Reston Parkway
with Sunset Hills, Bluemont and New Dominion. See Figure I2|for the corridor layout of
these intersections. The clusters for this case study were validated in Chapter 4 and the
simulation results can be viewed as an external validation of the cluster formations based
on the performance on traffic conditions of the resulting clustered timing plans.
shows the TOD intervals devel oped from a cluster analysis with 7 clusters.

displays the times associated with the intervals taken from Unique timing
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plans were developed for the off peak, AM, post-AM, PM, evening and pre-Off periods.

The seventh timing plan represents the mid-day as well as the post-PM periods.

Figure 55. TOD Intervals for 3-Intersection Corridor

Table 17. TOD Interval Classifications for 3-Intersection Corridor

This case study supports the hypothesis that timing plans can be improved
through the use of data mining tools. shows the outputs of the simulation from

four scenarios. These scenarios include the performance of:
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1. Old Plan, Old TOD — Plan devel oped with hand-counted volumes,
implemented during the handpicked TOD intervals based on critical intersection
traffic.

2. Old Plan, New TOD — Plan developed with hand-counted volumes,
implemented during newly clustered TOD intervals based on full state
definition.

3. New Plan, New TOD — Plan devel oped with database volumes from 6 months,
implemented during newly clustered TOD intervals based on full state
definition.

4. New Plan, Old TOD — Plan developed with database volumes from 6 months,
implemented during newly clustered the handpicked TOD intervals based on
critical intersection traffic.

Detailed comparisons of these four scenarios follow. “Old Plans’ refers to the timing
plans developed by VDOT from the one-day, hand-counted volumes. “New Plans’ refers
to the timing plans developed in Synchro from the historical database volumes. “Old
TOD’s’ refersto the time-of-day intervals selected by VDOT engineers based on the
critical intersection and intuition. “New TOD’s’ refersto the time-of-day intervals
produced from the cluster analysis, where the newly developed intervals are based on all
intersection and movementsin the corridor for more refined intervals. These four
headings will be found in charts and analyses to follow and comprise the four scenarios
being studied.

The four main simulation outputs used to eval uate performance of opposing

timing plans are:

e Trave time

* Totd delay
* Fuel used
* Denied entry

These measures of performance are defined in detail in Section 3.11.1.1.
From Figure 58, it can be seen that the new plans & new TOD’sdo in fact

perform better, while the current plans implemented, represented by the label ‘ Old Plans,
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Old TOD’s,” perform the worst. The combination of old plans with new TOD’s and new
plans with old TOD’sfall in between the two extremes as will be discussed in the
following section. The current plans, which form the basis of comparisonsin the
analysis, are the plans developed by VDOT. These plans were recently optimized
approximately one year ago with hand-counted volumes. These plans are considered
“newly updated,” by the VDOT traffic control center in northern Virginia. Since the
northern Virginia arterial network consists of approximately 120 corridors, the Reston
Parkway corridor will not again be updated for many years. Through interviews
conducted with the traffic control engineers, it was learned that the traffic engineers
spend periods of weeks, or even monthsin re-optimizing timing plans for one corridor.
By the time this process is completed for one cycle of the all the corridors, quite afew
years may go by before the cycle can be restarted for another re-optimization of plans at

each corridor.

Figure 56. SimTraffic Outputs for Three Intersections
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The four scenarios that were simulated have been shown to display significant
amounts of variance between the scenarios. This demonstrates the significant variance
between the measures of performance for the different scenarios (old plan & old TOD,
new plan & new TOD, old plan & new TOD, new plan & old TOD). F-testswere
conducted for each of the four measures of performance: travel time, delay, fuel used and
denied entry, to measure the between-scenario variation to the variation calculated from
within each scenario. The F-statistic deals with | populations (scenarios) with arandom
sample of J observations from each one (28). The F-test isvalid under the assumptions
that the distribution of the | scenarios are normal with the same variance. The F
distribution arises from aratio in which there is one number of degrees of freedom (df)
associated with the numerator and a different df associated with the denominator. The
variable v, and v, denote the degrees of freedom associated with the numerator and
denominator respectively. For the MOP variance testing, the parameters are as follows
(28):

F =MSTr / MSE, where
MSTr = between-sample variation
MSTr=J/(1-1) % (X — (&' £’ Xy) / 1))
M SE = within-sample variation

MSE=S??+S72+....+S?%/ |
Si2= ijlJ(Xij —Xi)Z/J- 1

Vi=1-1
V2=1(J-1)
| =4 scenarios

J =6 observationsin each scenario
The null hypothesis (Ho) being tested is that the means between scenarios are equal. The

null hypothesis can be rejected if (28):
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f=> Fq’l_l’ IJ - 1) where
a=.05
Ho: li=H2=... = 4
Ha: at least two of the py’ s are different
shows the computed f, compared to Fy, | _1, 13— 1), and the p-value, which
represents the level of significance with which the null hypothesis can be regjected. As

long as the p-value remains less than the testing level of significance, .05, thenitis

assumed that the null hypothesis should be rejected.

Table 18. F-tests across 4 scenarios

From thistable, it is clear that the null hypothesis for each MOP isrejected. Thisimplies
that at least two of the scenario means are significantly different. To determine which of

the scenarios are significant from each other, paired t-testing will follow in Section 5.5.4.

5.6.1 Three-Intersection Case Study Assumptions
The assumptions made for the process of developing and simulating new timing plans are

stated in the following list.

» The system detector data accurately represents actual traffic conditions
occurring in northern Virginia, thus the simulations are based on an accurate
representation allowing for validation of the newly developed timing plans.

» Thevolume and occupancy data are normally distributed over similar times-
of-day, thus validating the averaging technique used to create one
representative value for each TOD. See[Figure 20for anormally distributed
time-dlice of data.
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* The datarepresenting each of the ssmulation MOP’ s for each ssimulation run
are normally distributed, thus validating the use of t-tests for significance
testing.

SimTraffic accurately models transition effects as experienced in the field and does not

conceal declined performance due to increase transitions.

5.6.2 Evaluation of Simulations

Refer to Section 3.11.1.1 for full detail of the measures of performance described briefly
here. The Travel Timeisatota of the time each vehicle was present in the simulation
area. Thetravel timeincludestime spent by vehicles Denied Entry. Total Delay isequal
to the travel time minus the time it would take the vehicle with no other vehicles or traffic
control devices (16). Total delay also includes all time spent by denied entry vehicles
while they are waiting to enter the network. Fuel Used is calculated with the fuel
consumption tables. The fuel used in each time slice is determined by the vehicle's fleet
(car, truck, or bus), speed, and acceleration. Denied entry is one of the most important
measures of performance because it is a measure of vehicle throughput in the system.
Denied Entry isacount of vehicles that are unable to enter alink due to congestion.
Denied Entry can aso be used to determine the Network Throughput. In a congested
network, lower values of Denied Entry indicate increased throughput and vice versa.
Thisisagood determining factor for the effectiveness of timing plans. The higher the
number of denied vehiclestypically infers that those timing plans are performing worse.
The calculations of these MOP s are fully detailed in Chapter 4. The totals of these

MOP s are afunction of the number of carsin the system for each scenario. The number
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of simulations run was evaluated to be significant at 6 runs for equalization of the number

of vehicles across scenarios; thisis explained below in Section 5.5.2.

5.6.3 Number of Simulation Runs

The current practice by VDOT for testing timing plans with simulation is to run three
simulations with different random number seeds to ensure stable results. This research
investigated the stability of running more than three smulations to ensure accurate
simulation results. The number of vehicles that enter the system is the stabilizing
variable that should equalize for each simulation scenario. T-tests were performed on the
‘Vehicles Entered’ variable to ensure the means were equal between different scenarios at
the 95" confidence level. For all of the hypothesis testing done in the analysis, it can be
assumed that the data is normally distributed about the mean. [Table 19]shows the t-test
results for the comparison of the four scenarios used to evaluate timing plan
effectiveness. The null hypothesis tested is that the means of the two samples are equal
and since the null hypothesisis not rejected for any of the scenarios, the means are
assumed to be equal, thus validating that 6 simulation runsis sufficient for producing

accurate results.

Table 19. t-test Results for Number of Simulation Runs
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5.6.4 Improvements with New Plans
The use of data mining toolsto aid in timing plan development can benefit two aspects of
the process. The first aspect is the development of new timing plans based on 90™
percentile volume data retrieved from the historical database. The procedure would
replace the current practice of hand-counting cars to develop timing plans. The second
aspect isto look at the refined TOD intervals, which are developed with cluster analysis
based on similar traffic conditions occurring over the course of aday. This method
would allow for adata driven selection of TOD intervals rather than an intuitive, human
selection based on the aggregate volumes at the critical intersection. The analysiswill be
broken down into these two parts to provide a sense of where the most gains are
achieved; through the new plans or through the new TOD intervals.

To visudize the benefits of the newly developed plans based on 90™ percentile
volumes from the database, a chart of the percent reductions from the new plans over the
old plansis displayed The old plans that these reductions are being compared
to are the currently implemented plans where the volumes were achieved through the
one-day, hand-counted process. Thefirst bar in represents the gain of the new
plan over the old plan for the old TOD intervals, while the second bar represents the gain
of the new plan over the old plan for the new TOD intervals. Both of these comparisons
are being made to show the reductions from the use of the new plans over the old plans,
while holding the TOD intervals constant. The third, dotted bar represents the gain that
would be achieved from the use of the new plan and new TOD intervals over the current

plans being implemented (the old plans and the old TOD’s).
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Figure 57. MOP Gains of New Plan over Old Plans for Old and New TOD's

All of the gains achieved for delay, travel time, fuel used and denied entry of new
plans over old plans, evaluated during the old TOD intervals are significant at the 95™
confidence level. The null hypothesis tested was that the means of the old and new plans
were equal. Thet-tests are based on 6 simulation runs and the statistics are displayed in
Table 20 Thet-test results for the new plans vs. the old plans, evaluated for the new
TOD intervals, as outlined in are displayed in These results show
that at the 95™ confidence level; delay, travel time and denied entry are significant
improvements for the new plans over the old plans; however, fuel used is not a significant
gain, with the new TOD intervals. However, with the old TOD intervals, all MOP's

improve significantly when the new plans are compared to the old plans.
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Table 20. t-test Results for New Plans vs. Old Plans Evaluated at Old TOD Intervals

Table 21. t-test Results for New Plans vs. Old Plans Evaluated at New TOD Intervals

5.6.5 Improvements with New Time-of-Day Intervals
To visualize the effects of the newly developed TOD intervals from the cluster analysis

over the old TOD intervals, the percent reductions can be viewed in Thefirst
bar represents the gain of implementing the old plans during the new TOD’ s over the old
TOD’s. Thisbar is presented in[Figure 58|for afull comparison of the scenarios;
however, it isunreadistic since the old plans would never be implemented over new TOD
intervals. If the new TOD intervals were developed, then the new volume plans would
automatically be produced in correspondence with the new TOD intervals and these
would be used together (As seen in bar three in Figure 59). The second bar represents the
gains achieved from implementing the new plans for the new TOD’ s versus the old
TOD’s. Herethetiming planisheld constant for each of the two comparisons while the
opposing TOD intervals are compared. Lesslift isachieved when only adjusting the

TOD intervals versus renewing the plan itself as displayed in The third bar
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again represents the percent gain for each of the MOP’ s of implementing both the newly
developed timing plans at the new, clustered TOD intervals over the current plans (old
plansand old TOD’s). Thisisthe case where the optimal amount of lift is achieved and
is displayed to show that a smaller proportion of gains come from using the new TOD
intervals over the old TOD intervals, while the larger proportion of lift is coming from

the new plans.

Figure S8. Percent Gains of New TOD's over Old TOD's for Old Plans & New Plans

The improvements of implementing timing plans over the new TOD intervals
versusthe old TOD intervalsis not as significant as when the newly developed plans are
also implemented. [Table 22]shows the t-test results of the significance of the
improvements for implementing the old plan during the new TOD versus the old TOD.
These results show that at the 95" confidence level, none of the MOP’s measured provide
significant amounts of improvement. This scenario is not as accurate as the TOD
comparison for the new newly developed timing plans since for the old plans, the exact

plans had not been developed for the new TOD intervals. Also, this scenariois
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unredlistic, asit would never be implemented in such a combination in the field. For the
second bar, the case where new plans were implemented over the new TOD intervals
versusthe old TOD intervals, only delay resulted in a significant improvement. Fuel
used actually provided negative gain to the new TOD intervals. These results can be
viewed in It is possible that theincrease in fuel usage for the new plans and
new TOD’sisdue to the fact that with increased throughput in the corridor, vehicles are
able to travel at higher speeds and accelerate faster. Since the fuel used is calculated
based on speed and acceleration, this may cause an increase in fuel usage. Also, the
types of vehiclesin the system effect the fuel usage calculation. It is possible that more

trucks and busses were present in the system, causing a higher fuel usage value for the

new plans and new TOD simulations. |

shows the t-test results for the third bar that is displayed in both * Percent
Gains charts. These are the improvements achieved using both the new timing plans and
the new TOD intervals versus the old timing plans and the old TOD intervals, which are
those currently implemented in the field. Thisthird bar isthe same asthat in

All of these MOP's provide significant improvements at the 95" confidence level.

Table 22. t-test Results for New TOD vs. Old TOD Intervals Evaluated by Old Plans
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Table 23. t-test Results for New TOD vs. Old TOD Intervals Evaluated by New Plans

Table 24. t-test Results for Old TOD & Old Plan vs. New TOD & New Plan

5.6.6 Time Periods where New TOD Intervals show Significant Improvements
Due to the fact that only delay provided significant improvement when implementing the

new TOD intervals over the old TOD intervals, a 24-hour breakdown shows the periods
during which significant improvements are achieved. Narrowing the confidence intervals
would have supported a significant improvement in all the MOP's, however a 95™
confidence level is preferable, so the periods of the day at which thisis achieved are
displayed in From 17:45 — 24:00, the new TOD intervals for the new plans
performed significantly better than the old TOD intervals for the new plans. From the
figure below, it is clear that a portion of the current PM peak period is significantly
improved with the clustered TOD intervals. The remainder of the day (00:00 — 17:45),
performed at similar rates of performance between the new TOD intervals and the old
TOD intervals, both with the new plans. Gains during the peak periods are critical and
the most effective since those are the times where the most difficulty is met by traffic

engineersin increasing flow through the corridor. From 17:45 — 24:00, is aso the portion
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of the day in which the mgjority of the new plan periods were developed by the cluster
analysis excluding the post-AM period. shows the clustered TOD intervals

produced for the 3-intersection corridor.

Figure 59. Periods of Significant Gains from New TOD's versus Old TOD's

The delay/vehicle over the 24-hour period is discussed on page , where the delay can
be seen to be much lower during this time period for the new TOD’ s and new Plans
versus the Old TOD’s and New Plans. The fact that the significant improvementsdo in
fact occur during the newly devel oped plan periods, supports the hypothesis that
clustering produced refined TOD intervals, better suited for traffic conditions through a
corridor.

Again, thelevel of significance for the t-tests on the new TOD’ s versus the old

TOD'slis at the |05 level. [The hull hypgthesisis that the means of these two samples are
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equal. Table 25, Table 26 and Table 27 show the results of the t-tests for comparing new

TOD’sversus old TOD’ s during the 17:45 — 24:00 period.

Table 25. PM - Post PM, t-test Results for New vs. Old TOD Intervals

Table 26. Post PM - Evening, t-test Results for New vs. Old TOD Intervals

Table 27. Evening - Pre-Off - Off, t-test Results for New vs. Old TOD Intervals

5.6.7 Volumes from Old Timing Plans vs. m
Under the assumption that the historical data b maum
conditions on the roadway, the following charts represent the volumes used in opposing

timing plans with the actual traffic conditions. Figure 60, Figure 61 and Figure 62 show

these plots for each intersection in the three-intersection corridor. The ‘UTDF
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VPHPmvmt' datalabel represents the averaged historical volumes extracted from the
database to represent actual traffic conditions. These are the volumes used in the
simulation. The‘90%, New TOD’ datalabel represents the 90" percentile volumes taken
from the clustered volumes for newly developed timing plans corresponding to the new
TOD intervals. The movement of the volumes across the 24-hour period in the following
figures shows the transitional points from plan to plan. Periods of equal volume
represent opposing times of the day that operate under the same plan. The *90%, Old
TOD’ datalabel represents the 90" percentile volumes taken from the historical database
for plan development based on the old TOD intervals, which are the same as those being
currently implemented by VDOT. The ‘Origina Volumes' label represents the volumes
used for timing plan development by VDOT, which are the current timing plans
implemented at these intersections. These TOD intervals match those from the * 90%,
Old TOD’ data since both of these lines represent transitioning through the timing plans
based on the current interval selection method. It is clear that the original volumes,
which are the hand-counted volumes for timing plan development, are much too low to
handle the traffic conditions that actually exist. Timing plans should be developed for the
high end of traffic volumes to ensure enough green time during the most congested
periods of TOD intervals. Hence the use of the 90™ percentile volumes for timing plan
development. To account for the heaviest periods under the current means of hand-
counting cars, the traffic engineers count during what they assume to be the peak 15-
minute period of atiming period. The two newly developed plans account for the high
end of traffic volumes during the timing period that plan isimplemented. These plans are

naturally better suited to handle actua traffic conditions and the TOD intervals are
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tailored to the changing traffic trends. A one-day hand count for timing plan

development is not areliable measure asis clear from the charts below.

Figure 60. Timing Plan Volumes versus Actual Volumes at Sunset Hills

Figure 61. Timing Plan Volumes versus Actual volumes at Bluemont
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Figure 62. Timing Plan Volumes versus Actual Volumes at Bluemont

Another conclusion that can be drawn from these volume figures deals with the
selection of TOD intervals. At the three intersections representing the corridor, the above
figures show that different volumes occur at opposing intersections at similar times of
day. For this case study, the largest volumes occur at Sunset Hills (the critical
intersection in the Reston Corridor) in the 9000 VPHPmvt range, while the smallest
volumes occur at Bluemont in the 5000 VPHPmvt range. These opposing volumes occur
during the same peak periods, with the maximum volumes shifting only dlightly in time.
Of course the peak volume shift would become more severe as the size of the corridor
were increased. The current method of TOD interval development is based on the critical
intersection alone, since that is the intersection servicing the maximum amount of traffic.
The number of vehicles, occurring at cascading times through the corridor, including all
turning movements and directions cannot be taken into account with manual TOD

interval selection. These charts show that traffic does follow different patterns at



151

coordinated intersections, even those right next to each other and it may be beneficial to

consider all intersections versus one in the selection of TOD intervals.

5.6.8 Gains of New Plan versus Current Plans
Any of the combinations of the newly developed timing plans and/or TOD intervals will

increase performance in asignalized corridor. This section looks at the comparison of
these combinations of new timing plans to the original plans, which are those being used
currently with the old plans and old TOD’s. [Figure 63|shows the percent gains achieved
from the three combinations of new scenarios over the current timing plans. As stated
above, the ‘new plan and new TOD’ combination provides the most gain for
performance. The second bar shows the gains for developing new plansin combination
with the old TOD intervals and still, the gains here are significant. The third bar
represents the old plans implemented in combination with the new TOD’s. Here, gains
are still achieved, however they are only significant at certain times of the day. The new
TOD selection procedure is beneficial whether significant improvements are achieved or
not, in that the choice of TOD intervals can be automated and is based on historical data

from all intersections, not just the critical intersection.
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Figure 63. Percent Gains for New Plans over Original Plans

5.6.9 Putting It All Together

The following figures show the MOP' s and gains in amore meaningful form. The costs
were converted from total cost for all vehicles per day to cost per vehicle per year. This
shows the gains for each vehicle achieved over the course of ayear. These numbers hold
much more meaning and can easily be considered for savings over alifetime of
commuting to and from work. [Figure 64]shows the simulation output comparisons for
the four plan scenariosto portray the yearly cost per vehicle associated with each
scenario. [Figure 65]shows the yearly gains per vehicle for each of the combinations of
new timing plans versus the currently implemented plans. Thisfigure confirms the
significance of adopting the new plans & new TOD’s, for the impact on one vehicleis
impressively improved over the current performance. For instance in one year, 3.16

hours per vehicle are saved under the new timing plan with the new TOD interval.
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Assuming a 30-year commute for ajob, this equates to 94.8 hours saved, almost three

days over thelifetime of that vehicle’'s commute!

Figure 64. MOP's at 3-Intersection Corridor based on Per Vehicle Per Year

Figure 65. Yearly Gains of New Plans over Original Plans
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5.6.10 Plan Performance Over 24-Hour Period
The delay/vehicle plot over the 24-hour period that was simulated shows the periods of
the day where the most improvements were achieved from the new plans. The
transitional time lines for the old TOD intervals and the new TOD intervals are included
in the Delay/Vehicle plotsin The top line shows the TOD intervals for the
new TOD plans, and the bottom transitional line represents the original TOD intervals
currently implemented in northern Virginia. The new plan and new TOD scenario
performs better than the old plan and old TOD plan at all times during the 24-hour
period, however the most significant gains appear to be achieved during peak periods,
i.e., the AM, MD, PM and evening periods. The new plans and the old TOD’ s perform
similarly to the new plans and new TOD’ s except during the post-PM and evening
periods, where the new plans and old TOD’ s perform much worse. Thisis probably due
to the fact that traffic conditions most likely remain too heavy to support the off peak

plan during the evening.
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Figure 66. Delay/Vehicle over 24-Hour Period at 3-Intersections

5.6.11 Emissions of Timing Plans
The fuel and emission parameters control the rate at which vehicles consume fuel or emit

exhaust. ‘Fuel Used’ was one of the MOP' s evaluated in the above analysis. Herethe
emission parameters will be investigated to supply a performance measure of significant
importance not only to commuters and traffic engineers, but also to larger concerns such
asthe environment. The emission values are based on the Federal Highway
Administration Research and are dependant on the vehicle types, speed and
acceleration/decel eration of the vehicles emitting exhaust. The three exhaust emissions
in are carbon monoxide (CO), hydrocarbons (HC) and nitrogen-oxides (NO,).
The emissions produced when the old timing plans and old TOD’ s are implemented are
the greatest, with the least emissions occurring when the new plans and new TOD’s are

implemented.
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5.6.11.1 Carbon Monoxide

Carbon monoxide (CO) is a colorless, odorless, poisonous gas (24). It isapublic health
problem because it enters the bloodstream through the lungs and forms
carboxyhemoglobin, a compound that inhibits the blood's capacity to carry oxygen to
organs and tissues. Infants, elderly persons, and individuals with respiratory diseases are
also particularly sensitive. Carbon monoxide can affect healthy individuals, impairing
exercise capacity, visua perception, manual dexterity, learning functions, and ability to
perform complex tasks. In 1992, carbon monoxide levels exceeded the Federa air quality
standard in 20 U.S. cities, home to more than 14 million people (24). Nationwide, two-
thirds of the carbon monoxide emissions come from transportation sources, with the
largest contribution coming from highway motor vehicles. In urban areas, the motor
vehicle contribution to carbon monoxide pollution can exceed 90 percent. Carbon
monoxide results from incomplete combustion of fuel and is emitted directly from

vehicle tailpipes (24).

5.6.11.2 HydroCarbons

Hydrocarbon emissions result when fuel moleculesin the engine do not burn or burn only
partialy (24). Hydrocarbons react in the presence of nitrogen oxides and sunlight to form
ground-level ozone, amajor component of smog. Ozone irritates the eyes, damages the
lungs, and aggravates respiratory problems. It is our most widespread and intractable
urban air pollution problem. A number of exhaust hydrocarbons are al so toxic, with the

potential to cause cancer.
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5.6.11.3 Nitrogen Oxides

Under the high pressure and temperature conditions in an engine, nitrogen and oxygen
atomsin the air react to form various nitrogen oxides, collectively known as NOx (24).
Nitrogen oxides, like hydrocarbons, are precursors to the formation of ozone. Nitrogen
Oxide emissions are a concern because they contribute to the formation of acid rain and,
either directly or through the creation of ozone, lead to harmful effects on human health
(24). According to estimates made by the U.S. Environmental Protection Agency (EPA),
highway vehicles accounted for 35 percent of the 22 million tons of NO, emissionsin the

United Statesin 1995 (24).

Figure 67. Emissions for 3-Intersection Corridor Plans

shows the grams of emissions saved per day by using each of the new

timing plans versus the old timing plans and old TOD’s. The decrease in exhaust
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emissions for improved timing plans would greatly be reduced over time. The following
section compares the national emissions averages to those resulting from the 3-

intersection corridor simulation.

Figure 68. Emissions Saved for 3-Intersections Corridor over Current Plan

5.6.12 Average Emissions for an ""Average" Passenger Car

According to the Environmental Protection Agency, the average exhaust emissions from
an “average” passenger car arelisted in These averages are compared to those
resulting from the 3-intersection simulation in According to the 1997 averages
for emissions by the EPA, al of the timing plans, even the old one, do well. Thereisa
dlight reduction, mainly in the Carbon Monoxide emissions for the new plans and new
TOD’s. Thesefigures are only approximate, due to the many assumptions imposed on

both the EPA values and the simulation values and are only to be used for guidance.
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Assumptions may include type of vehicle and size. Also the number of vehicles
accelerating and deccelerating in the simulation may vary significantly from those

making up EPA’ s average.

Table 28. EPA Emissions for an ""Average" Passenger Car vs. Plan Emissions

Figure 69. Emissions (g/mile/veh) for EPA vs. Plan Averages

5.6.13 Three-Intersection Corridor Conclusions
The above case study supports the use of data mining tools for timing plan development

on coordinated intersections. It has been shown that the use of system detector data for
plan development versus the single-day, hand counts produce significantly improved

timing plans. This method allows for much more stable volume counts since the numbers
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can be taken from a historical period where variant days and traffic conditions won’t be
asinfluential on the volumes for plan development. The current method of counting cars
is not reliable due to the fact that humans count cars, and for one day in which the
assumption is made that traffic conditions will be “normal.” It is nearly impossible to
predict when traffic conditions will be “normal” or when exactly during a peak period,
traffic will reach its peak. These are assumptions and educated guesses made by the
traffic engineers prior to making the hand-counts. Using system detector data alleviates
these issues.

The second outcome of the use of data mining toolsis the production of TOD
intervals based on volumes and occupancies at al intersectionsin the corridor. These
intervals are more refined to the traffic conditions occurring throughout the corridor,
whereas the current method of TOD interval selection is based primarily on aggregate, bi-
directional volumes occurring at the critical intersection. For the use of the new TOD
intervals with the new timing plans, only delay improved significantly when evaluated
over the entire 24-hour day. However, after breaking down the 24-hour period, further
anaysis showed that significant improvement in the new TOD interval selection through
cluster analysis did in fact provide significant improvements over certain periods of the
day. These periods consisted of the majority of the newly developed TOD plan periods,
supporting the success of clustering in developing meaningful timing plans and plan
periods. Since there was no decline in performance across the MOP' s evaluated for new
plans and/or new TOD’s, thus supporting the use of cluster analysisfor plan
development, a fully automated tool to perform this processis achievable. Thistool

would allow timing plans to be developed based directly on the detector data, thus
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alleviating the need to choose the intervals manually through intuition, and lessening the
burden on traffic engineers job by aso alleviating the need for manual volume countsin

the field for plan development.



162

Chapter 6. Conclusions: Evaluation & Applicability

6.1 Research Contributions

The major deliverables of this project are the proposed procedure (Chapter 4) and the

application of data mining toolsto areal-world problem. The proposed procedure

directly benefits transportation engineering, while the application of cluster analysisas a

basis for real-time control the systems engineering field. From the proposed procedure,

the timing plan devel opment and maintenance process can be replicated and automated.

The use of data mining tools will add numerous benefits to the signal timing plan

development process, especially on coordinated arterials and to the commuters using the

signalized roadways. Specific benefits are summarized in the following list.

Capability to automate timing plan development process (alleviate need for counting
cars manually and avoiding issue of guessing when “normal” traffic conditions
occur).

Utilize actual datato develop more accurate timing plans and alleviating the
possibility of basing the plans on avariant day.

Utilize actual datato develop more accurate and refined TOD intervals based on all
intersections and movements in corridor rather than bi-directional movements at
critical intersection.

Develop TOD intervals and timing plans based on more refined state definition,
including occupancy and volume versus just volume data.

Provide feedback for lane storage and configuration problems (turning bay lengths,
the need for more lanes, etc.)

Reduce delays, travel times, fuel used and increase the network throughput of
corridors.

Reduce harmful emissionsin the environment.

Reduce time and experience necessary by traffic engineersto develop useful timing
plansand TOD intervals.

Capability to provide up-to-date feedback of timing plan performance with ability to
automate recommendations (updated timing plans): To be investigated further in
future research.
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This project contributes to systems engineering by demonstrating the use of clustering
asabasisfor rea-time control. The use of the systems analysis process to atraffic
control problem faced by traffic engineers, where the end product supports the ability to
develop and maintain timing plansin rea-time, is a valuable resource for systems
engineering. The procedures proposed in this project provide a basis for real-time control
that can be applied to many problems consisting of similar parameters; i.e., the collection
of real-time data describing the state of a system as it changes through time. A vauable
demonstration of systems engineering tools and methodol ogies to an everyday issue,
resulting in areal-time, decision support system and development tool, portrays the
impact and vital role of systems engineering to other fields.

This project follows a Gibson methodology (29) to reach the end product, where the
problem in need of a solution istwo-fold: The broad picture being the improvement of
traffic movement through arterial networks and the immediate issue being the extraction
of meaningful information from a large database to address the traffic movement issue.
The identification of the problem at hand resulted in goals and alternatives to address the
data and traffic issues. The goals set forth here were to implement data mining tools that
would organize the information contained in the data to support traffic control tools for
improved efficiency. The alternatives to reach the goal included aternate data mining
tools and algorithms. The format of the volume and occupancy data and the scope of he
current means of traffic control resulted in the selection of the best alternative solution:
hierarchical, centroid cluster analysis. This aternative was selected based on clustering
research studies and analysis on sample data sets. The selection of this solution for data

organization was tested with cluster validation techniques to ensure the solution of cluster
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anaysis for meaningful data interpretation wasvalid. Cluster validation was a vital step
in the systems analysis approach to solving a problem. Often a solution is proposed and
untested under the assumption the solution isvalid and optimal (29). This project
includes the systems analysis approach, which showed that hierarchical cluster analysis
does create meaningful clusters from the data and so the information extracted from the
database can be implemented as avalid tool for signal development.

The result of athorough systems approach to problem solving is shown here to
improve traffic performance through corridors with the ability to support automated tools
for plan development and maintenance. The underlying application of data mining tools
to traffic datain this project can be used as a guide for the development of similar real -
time, automated control tools. This demonstration of systems engineering tools and
analysisto areal-world problem is a valuable contribution to the systems engineering

field.

6.2 Usability of Procedure
The usefulness and usability of the proposed procedure must be considered for
effectiveness. The primary user group considered here isthe VDOT northern Virginia
traffic signal control group. It wasthis center that supplied the data for this research and
who benefit first-hand from these research investigations. The signal control method to
improve upon introduced here is the time-of-day (TOD) method signal control. Since
thisisthe primary technique supported throughout the country, this procedure could be

adapted and utilized by any DOT that retrieves system detector data. System detectors
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are becoming increasingly widespread and the full capability of utilizing such data has
not yet been fully realized, especially for the basic forms of signal control such as TOD.

The procedure alows for fully automated plan development and maintenance
tools, however, further research should be continued to reach this stage. The proposed
procedure here supports the use of detector data for improved timing plan development at
single intersections, where it has been shown that performance improves significantly
when timing plans are developed from historical data. This project has also supported the
claim that corridors do experience an increase in performance with the clustered TOD
intervals;, however, these improvements are not as significant as those experienced by the
data base timing plan development. Even in the case that there would be no changein the
performance of the system with the newly developed timing plan and TOD intervals,
since it would not degrade the performance, the procedure could still be utilized for
automation of the signal development and maintenance procedure. The procedureis
useful for all casesinthat it allowsfor TOD intervals to be selected automatically based
on traffic data versus engineers' intuitions for corridors. These intervals are aso based
on individual volume and occupancy values collected continuously over the period of
multiple days to better represent actual traffic conditions. Finaly, this proposed
procedure introduces a method of data mining for maintenance and feedback of signal
performance over time to better alert the need for change and updating timing plans.
However, this area was not fully supported due to the scope of this research and should
be investigated in the future.

This procedure could benefit many traffic engineers that deal with traffic signal

control through signalized intersections. It not only speeds up the timing plan
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development process and TOD interval selection process, basing it on historical data, but
it aso allows for improved timing plans to be developed at single intersections for

improved performance, without the need to manually count cars.

6.3 Simulation as Realistic Representation

The simulation outputs presented here are the main support of the effectiveness of the
proposed procedure, so it isimportant to consider how accurately these results represent
actual traffic conditions. SimTraffic accounts for conditions such as driver behavior
characteristics (aggressive, etc.), types of vehicles (trucks versus cars), road type and
grade, etc. Conditions that would not be accountable for would be things such as weather
and incidents. But these types of conditions may exist in the data used to drive the
simulation. This presents the ability to model traffic conditions as accurately as possible
in that actual 15-minute volumes can be fed into the simulation for recording the outputs
of the timing plan effectiveness for such traffic conditions. The simulations can be run
repetitively using alternate random number seeds for representing a dynamic simulation.
SimTraffic is also capable of simulating during periods of transition between timing plans
to account for transition effects on performance. Overal, the ssmulation isafairly
accurate display of actual traffic conditions, especialy with the detailed input available
for setting up the roadways and driver characteristics (16). The simulation may be a
better representation if occupancies could also be considered in the ssmulation as well as
volumes, but since these values are correlated it is not essential. Calibration of the
simulation tool using actual counts collected at the intersections would also provide a

better-supported representation of actual traffic conditions.
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6.4 Future Research

Due to the exploratory nature of this project, there remains much research to be done
before the optimal tool can be created for timing plan development and maintenance. A
procedure has been proposed for the enhancement of signal timing plans through the use
of system detector data. The purpose hereisto show that detector data can be utilized to
simplify the timing plan development process, as well asto allow a means for constant
feedback on timing plans performance. The use of detector data also alows for the
timing plans to be better prepared to handle actual traffic conditions based on the
historical data base of traffic trends. The areas that need further investigation are as

follows:

» Theeffects of increased transitions on corridor performance
» Detailed analysis supporting the optimal clustering methodol ogy

» ldentification and performance of reduced state space (Select intersections,
detector, etc.)

* Appropriate timeto extract data from the database for timing plan
development (Accounting for variance in traffic conditions over time)

* Waeighting the cluster input variables for optimal results (Importance of
intersections, detectors, etc.)

» Appropriate smulation tool for monitoring timing plan performance

» Detalled analysis of ssmulation performance outputs (Queue length, v/c ratio,
MOP s at individual intersections, etc.)

» Verification of detector data and turning lane conversion factors with the
SmartTravelVan

» Classification asatool for plan maintenance
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* Investigation of replication criteriafor determination of the appropriate
number of clusters

* Investigate lift achieved from hand-picking a greater number of TOD intervals
for comparison of lift achieved by cluster analysis

6.4.1 Cluster Methodology Analysis

The cluster methodologies were only briefly investigated to propose a sufficient method
for clustering volume and occupancy data. The centroid cluster methodology was
proposed here, however an in-depth investigation into all of the possible methodol ogies
would be appropriate before proposing afinalized procedure. Each methodology should
be evaluated based on dissimilarity metrics and performance on different sized data sets.
The performance of these cluster methodol ogies should be evaluated using internal
cluster validation. The evaluation for this procedureis brief, but sufficient for

exploratory research.

6.4.2 Transition Effects on Corridor Performance
Transitioning between timing plansis an extremely complex event for signal plan
development. There are aternate methods for a controller to transition between plans and
much research has been done on the best method of transition. The simulation package
used for this research only transitions from plan to plan in one way that smTraffic
utilizes as discussed in Chapter 2. However, there are multiple ways for atransition to
occur and so simulation packages that can compare these alternate methods should be
investigated. Also, the procedure introduced here typically constructs more plans per

day, often transitioning from an existing plan to another and back. Thisincreased
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transition may in fact impede the performance of traffic control due to the setbacks that
may arisein traffic flow during transitional times. Brief transition effects can be
observed from comparing the outputs of the performance of the same timing plans
operating under the original TOD intervals and the clustered TOD intervals. Since there
were more TOD intervals created by clustering, the outputs of this simulation may
provide some insight as to how severe the increased number of transitions are to
performance. However, it is essential that the effect of transitions be thoroughly
investigated, with a suggestion for the number of transitions acceptable before

performance deteriorates.

6.4.3 Reduced State Space
A major advantage of using detector data and data mining tools to develop timing plans

and TOD intervalsis that the rawest form of the data can be used, i.e., volume and
occupancy at each system detector for each intersection from al historical data. It may
not be necessary to use such a detailed state space in developing clusters. It should be
determined what the optimal state space is with the least amount of variablesinvolved.
Thiswill simplify the state space, which in turn will speed up the analysis. For instance,
small intersections may not contribute to the clusters or timing plans and thus could be
excluded from the analysis without any loss of TOD interval and plan resolution. Inthis
research abrief analysis was done on cluster development with the use of only volume
values versus volume and occupancy values. It was found that using both volume and
occupancy provided better-tailored plans for traffic conditions; however, there may exist

intersections and/or phases that do not contribute significantly to the analysis and should
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be removed. Classification would be one form of determining variable importance once

the clusters have been devel oped.

6.4.4 Historical Data Period
The period of time for which historical datais extracted from the database for cluster

anaysis and timing plan development may also be crucial to accurate results. Thereisa
point when going too far back in time to collect detector data will deteriorate the results.
With years of data available, it may be tempting to construct an overly detailed analysis.
Traffic varies over time and an approximate historical cut-off for data collection should
be determined such that the results are not influenced by out-dated traffic trends. An
investigation into the variance in traffic over time and the significance of these changes
for timing plansis recommended. Thisanalysis should take into account seasonal trends
and the development of alternate plans for different seasons where traffic conditions vary
significantly. The forecasting of traffic conditions based on historical trends can aso be

investigated to further enhance the plan maintenance portion of this research.

6.4.5 Weighting of Cluster Input Variables
An extremely important consideration is the weighting of input variables for cluster

anaysis. Thisinformation can be determined with the effectiveness of areduced state
gpace. A process such as classification will provide variable importance scores, which
can be used to determine appropriate weights as the input variables contribute to the
cluster analysis. For instance, it may be beneficia to weight the detectors at the critical

intersection more heavily than those at a much smaller intersection so the clusters will be
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affected by the more important intersection in the corridor. The volumes and
occupancies may also need to be weighted differently. This result was shown briefly in
the analysis of the un-standardized volumes and occupancies and the single case in which
standardized volumes were wel ghted more heavily than the standardized occupancies.
Both of these methods weight volume over occupancy asis natural from the raw data
since occupancy values are much smaller than volumes. The brief analysis done here
shows that in fact the clusters are cleaner and more appropriate when more weight is
given to the volume, although it should be determined if thisis a significant improvement

or not.

6.4.6 Simulation Tool
SimTraffic was used to run simulations for this research primarily because that is the tool

used by VDOT. Since the data here has been provided by VDOT and thisresearch isto
benefit the work done at the northern Virginiatraffic signal control center, the procedure
introduced here is catering to a specific user and the timing plan development process
should mimic the current means. However, timing plan development in Synchro can be
used in correlation with other simulation tools such as Corsim and Transyt 7-F.
SimTraffic provided the ability to simulate over aternate timing plans to address
transition times as well as the ability to simulate based on an off-line 15-minute volume
file straight from the database for simulation parameters. This allows for realistic results
based on actual traffic conditions. Another benefit to SimTraffic isthat the number of
intersection allowable by the software is extremely large (> 100) and so intricate

networks can me modeled. SimTraffic only allows 19 intervals (15-minute intervals) to
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be simulated at atime, resulting in atedious process. There has aso been the release of

the newest version of SimTraffic, version 5.0, which may provide further advantages for
simulating timing plans. The strengths and weaknesses of Corsim and Transyt 7-F were
not thoroughly investigated and may enhance the simulation process for future analyses.

This may be an important consideration for further analysis into timing plan performance.

6.4.7 Simulation Outputs (MOP’s)
The measures of performance (MOP's) provided by SimTraffic are numerous. The

anaysisin this project only examines outputs for the entire corridor and for the full day.
Future analysis should include comparisons of plan performance during different times of
the day and at individual intersections. Thiswill allow for the critical timeintervals and
intersections to be identified to better understand where the timing plans are the weakest.
Results can also be compared on a movement or phase basis, looking into which direction
traffic suffers at different times of the day under the aternate timing plans. There are
also numerous outputs from SimTraffic not used in this project such as queue lengths and
timing plan measures of effectiveness. There are many forms to display and dissect the
simulation outputs, which may provide further insight into the conditions experienced

under alternate timing plans.

6.4.8 Verification of Detector Data with the SmartTravelVan
The Smart Travel Laboratory and Virginia Research Council own a SmartTravelVan,

which acts as a mobile video detection system. This can be placed at any intersection for

traffic data collection. The accuracy of the detector data can be evaluated with the
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SmartTravel Van dataresults. Also, since no system detectors exist on many of the
turning lane movements, the SmartTravel Van can be used to collect this datafor more
appropriate turning movement data. Thiswill greatly aid in the cluster development and
simulation of the timing plans, since the turning movements where system detectors do
not exist must be approximated based on data collected by VDOT. These collections can
also be used to calibrate the simulation parameters for accurate timing plans and

simulations.

6.4.9 Classification as a tool for plan maintenance
CART was introduced in Chapter 3 asatool for cluster validation. The analysisfrom

such an output can be taken one step further to provide a feedback mechanism for traffic
engineers. Thetrees produced by the classification of the clustered data provide splitting
rules for which proved to perform well ( > 90% for both single intersections and
corridors). Thiswould allow automation of the performance of the newly clustered and
implemented timing plans by monitoring each current 15-minute traffic state that occurs
and classifying it into the correct cluster or timing plan. This procedure would not have
to be used with clustered data, but could be used on the current method, where the
assigned timing plan becomes the target variable by which the classification ruleis
formed from the corresponding input variables. This notion extends the idea of the use of
data mining tools for the enhancement of traffic signal maintenance and would alert
traffic engineers of the need to update timing plans or adjust the TOD intervals. Thisisa
major component of automated timing plan tools and should be investigated asto its

ability to correctly identify outdated plans.
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6.4.10 Investigation of replication criteria
Recent studies by Atlas and Overall (14) have investigated stopping rules that uncover

cluster levels appropriate for overlapping clusters. This may be useful for the traffic data,
since the volume and occupancy pairs over a 24-hour period do not form completely
distinct groups prior to clustering. It isrecommended that studies be conducted with the
replication criteriafor higher-order clustering on split-sample means and compared to the
results of the pseudo F, T2 and CCC stopping rules, which have shown in this research to

perform well for determination of TOD intervals and timing plans.

6.4.11 Hand-pick increased number of TOD Intervals
An interesting study would be to handpick the TOD intervals and plan transition times for

a 24-hour period based on the number of clusters recommended (7 TOD intervalsin the
3-intersection case study). These intuition-based TOD intervals could be simulated and
the performance results achieved from these handpicked intervals compared to those
resulting from the cluster analysis. Thelevel of improvement in MOP's can be analyzed
by the use of clustered TOD intervalsfor 7 clusters versus handpicking 7 TOD intervals.
It is possible that a significant amount of performance improvement results from the
addition of the number of plansimplemented and an analysis should be conducted on the
value of the clustered selection of plans and intervals. However, the cluster analysis
would still be valuable to determine the number of intervals and plans that should be

sl ected based on traffic data.

6.5 Research Discoveries
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Discoveries have been made in lieu of the research done here that were not initially
anticipated. One find isthat clusters can aert traffic engineers of critical conditions that
arisein certain situations. For instance, if enough saturation is experienced by any
movement in an intersection, the occupancies would likely form a cluster for that
situation, which my not necessarily be taken care of with an additional timing plan dueto
the severity of the situation. Thiswould alert the traffic engineers of the need for
extended or additional turning bays or alternate lane configurations to better support
existing traffic demand.

Another important discovery isthat the input variables for the cluster analysis
should weight volume heavier than occupancy. The variables should also be
standardized to produce the cleanest TOD intervals from the clusters. The two
recommended formats for cluster variables is either standardized volumes and
occupancies, with volumes weight by afactor of 20, or standardized volumes and
occupancies with occupancies reduced to values of < 26. Of course for insight into the
need to alter lane configurations or saturated movements problems, the occupancies
should be left untouched. However, for plan development, it is necessary to alleviate the
formation of random clusters not represented by a particular time-of-day.

The project also recommends from the sensitivity studies, that a minimum number
of observations should exist in each cluster and should be applied to the cluster
algorithm. This produces substantial clusters that exist for sufficient times, in order to be
supported by an entire timing plan. Otherwise, clusters may be devel oped based on one
or two erroneous observations that cannot be supported by atiming plan and thus take

away from the refinement of the remaining clusters during the 24-hour period.
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Finally, it was discovered that TOD interval selection does become increasingly
difficult in a corridor versus asingle intersection. Thus the cluster procedureis highly
recommended, as corridors become increasingly large and complex for the identification
of TOD intervals. Single intersections are easily defined with appropriate TOD intervals
by traffic engineers, however the single-day, hand-counts at single intersections and
corridorsis an out-dated procedure and should be replaced by the use of historical data

for plan development.
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Appendix A — 3-Intersection Corridor CPCC Matrices for 7 Clusters
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(4ELAT  WEELAT  OGBLMT WiEHD (PG VHND (TR
0.49134 ©.90940 O_97EEE 0.94PSF  1.00000 0. 85098 0.HE504
L E ] L1 2 €, 0@ 4. 0681 0, @04 0, G303
O.F3E4 @ EI01E 0. PEFED  O.F1450 0.85098 1 .00008 0.99%38
0, e00m 0, B350 &, 0836 0,0030 0, 00 ¢, 0001
0. FEI9F 0.6206% O 7ESES O0.7I2Z6 O0.86509 ©0.99938 1 .00000
L0 0,037 &, DaFs 0, 00ER 000 L1t
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Cluster 2

W | by | WEEH U2EH PASH LHSH WESH UEEH FHEH IHSH VEHLAT
WELH 100030 O.3313F O0.PEYRS Q. 38048 0. 34252 0.72643 0.53464 0. 4B015% 0. HZEHI
WEEH £ 0nE L E o, 8409 @, 0Ena E LT 0. 0041 o.a113 €, 0001
OEEH O.919F  1.00000 9. 3FHEE 049141 O 42BF9 0.BPGETEY 0. ELEST  9.590%3 0. F9L0E
OESH €, 0001 0. 514 o, @z &, 0256 @, 00R 0. 000 R €, 0001
(AR ] 0. P08 0 3TEEE 1. 00003 9, 0300% 0 20516 0.GFSED 0. 20097 -0, 03756 -0, 00704
LHEH 0, 1434  ©0,0514 f.0001 @, 1350 00017 01438 0.EPAZ  0.GFA0
O45H 0,385 0.49141 0, 9F0IF 0, 00000 O, F4FI4  0.GTEST 0, 27473 =0, 06449 =0, 001077
0O45H o, 0454 o_gDI? G TN o, PRIV o_0olE 0_1TES4 0. 4493 [ L
WESH 0,475 04787 0, FFG5IE 0, 24704 1. 00000 O.GPTOE  0,EFAFE O 4FTOT 0, 30RIA
YELH Q.080d 0_025%h R 1] [ Lo Eele L 4 0Dl 1 b . 11+8
nesH O_TPE43 O.BERSEY 0.57565 O 5TEST O _RPTO4 1 000 3. SFA0S 4, FOUES 0 435K7
O&EH O LT | [0 B a.pony TS [P0 T-T B 0. 003 0. #9339 [ FHE
vahH 0_%3464 O.ELEST O.FPEHYE 0. 27479 O _BUIME O .5380L |.0300F & HFFIS: O .EEEHE
WG @, 0041 o pneE L E 1 o, IEL4 L -1 | @, 0030 €, 00l [T L]
OeEH O.4H815  O.590%F —0.0975E -0, 06449 O 42F0F  0.2098L  O.BFFSL 1. 00000 . FHOO4
O&EH @, 0113 o, ol L K o, 7483 &, 0F63 o, #2939 L, 0E] i, 0001
UAILAT O.0FRE3 0.7TI5R0 -0.09764 -0 00077 G.30810 0.43%E2 O0.CGGGERG 0. 7E0D4 1. 00000
UFRLAT &, 0o ] O.EPHEE 0,957 O, 007 0,023 0. 00 T

OFLAT O.7083 0.79ET O,0406@ O, 19504 @ 50ETE 042809 O.E0E34 4.7IZ09 O, 00540
OFHLAT £ DDl £ (Dl 0. gnas 0. 3FTE 0, D30 Lo Ed o | & Q] ik | o g
WAHRLAT O.?F7464 0.35791 O, 3EIEE O . 5I71F -0, VATET  O.FAGRT =0,0F09) -0, 0BIET @, 07FAI
WARLAT 0. 1EL5b 0. 0EEH 0. k45 . DL F 3. 3496 b b&f2 0_905H . a4 p.E3YF
O4BLAT =0_FIIEA =0_ 33104 O, 1¥7FE @ 15117 =0_19F8% =0_.F0450 O, 092F1 o, 132301 =0, 07329
OHELAT =2 5 L] .87 TFL H.E13% 34516 @, 3362 0. 1285 06474 0. 51086 . TIG4
VEHLAT =0_24381 =0_0%411 .0F18x Q. 005%63 O 53590 =0_1%439 O0.2463F5 O 1E99F =-0.18B3%
VEOLHAT o, 2enn 0. THey h.ET43 o, 9778 &, 08440 @.4410 0. 143 HH I &, 3468
OEHLAT =0 40310 -0.ZIRE2 0. FEBEE Q. PTAHD O 2F091 -0.1H0F0 -0.03545 -0, 18556 -0 49374
OEBLAT &,0371 0. P30 L EEF o, PR3 [ i @, 1644 0. PEay 0, 3540 &, 0000
WENO =0, 1935 =0.01522 0. 20035 O.PE008 O 69460 015060 0.Z5700 9.00007 -0,28407
VEMD o, 3347 D_94d 0. ISET 0, 1900 £, DEg] 0 4534 n_1955% 0.96R1 3, 1510
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Cluster 2 (Con't.)
— ] L e SR g T Sed =T E IEF EET Ead R
Garishle OFOLAT  U4OLAT  O40LAT  UEOLAT  OGOCAT WEHD (iTE WiHD (kD
FEEH o.roRdl 0. EZT4E4 -0.EJNGE -0.F43H] -0.40F10 0. 19325 -D.01283F O.EF514  0.BLITE
FEEH <. 0mnl 0. 1E5E 0. 2449 0. 2ED 0_0ETI o_3342 05335 o_ngn] o_ogEng
DEGH 6. FI0F1 6, 357001 =0,00014 -0,05411 =0, FIFGF -0,01588 0,06510 0, G060F @, GFTI6
IK2EH <. 000l 0. 0ELE [ Tt o.rEpy L2 0. o0 0. rean € .00 o.ogn
r4EH 0.0MEEE O0.3A9EE O0.1007E O©.¢30EE O.FEEES ©.FHXAS -0, 1GEEY -0.07E03 ©.09404
rEH 0. BE95 0. 04485 [ Y 0.AT4% 0. 144F 01567 0. 4071 0. 7RG 0. G408
EH 0195084 0.51FI2 0,067 0.0056F 0, 2P400 0, 26008 -0, FIG0G 0, 0FEER o, BE1OR
MEH 0. 3ZTE . 0ehT D.4%18 - 01851 o.190 o.EIIER 0. EFEZ 01836
PEEH 0. 50678 =0 18727 =0, 019FA5 ©.50959¢ ©. 77091 O .&94E0 @, E5370 O, F4ILT O, FEFHI
WEGH o.007¢ 08,0405 0.035F o.0048 01717 c.0000  0.000F 0. PFO9  0.10%4
P6EH 0. 42819 0. 0HEEY -0.30450 -0.01543% 0. VHIT® 0. 15060 -0.@0516 O©.Z5300 0. F0OETA
MEEH 0. 0ES3 0. EETE 0. 1225 0. 4413 03644 0_4534 09796 0. 1% o_1196
RGH 6. G0ED4 -6, 623001 0,00F20 0, P4EDT -0, 00545 6, BGTOA 6, 50400 6, 44TE4 &, 4RIGD
WBEH €. 0000 . 9068 0. 4T .24 o HEDT 0.1%565 o.oend n.opaz 0.0FEs
xBEH 0.71#A% -0 0EEET O0.013F30 O.16397 -0.1B556 O.00B0F7 ©.E0408 O©.5EF38 0. 48009
REH . 0dol . 7524 0. 5106 0. 3987 o a541 o9&l 0. 0%0E 0. 0819 o olia
VEHLAT 0. 80548 0,07TO1 -0,07F29 -0, 10835 -0, 40274 -0, 0407 0, 14504 0, TIOT 0, 64506
FEHLHT <. 0pal . EIHT 0. TVE4 0. 68 [T [ o151 0.46FE €000 00003
EPRLAT 1.0080% O . FA81F 0. 017423 O, 011529 =0,867F37 O, 015507 @ . I2376 O . 8032R &, 743AI
DEOLAT 0,458  0.0847  0.5EEF  0.FE00 04075 0,000 «.0000 ¢, 0000
MEHLNT O.EPEEIE 1.00909 O.B1%10 -0 93408 0.ZIIET 0.9EFIEE -D.F1TOZ 0.517M1  0.56HE
MEBLHT 0. 1453 0. 0adE 0. BEEd 02453 0_Ta8 01071 0 0as5T 0. 0aEe
D4OLAT 0, 17483 0, G1511  1,00000 0,00F0F O, FFEDT 0,00356 0, 10GEG 0, 17004 @, 10909
[4ELAT 0.1847  0.000E 0.EE4F  0.PE4Y  0.G4ER 0.49E0  0.3939 0. 48EL
FEHLHT D 11529 =0, 03408 O DAFOE 0. 00003F O TATEZ O 24377 O.E4AI01 O, HEEE &.11EBER
PERLAT 0. 5609 0. AERE 0. REaF . 0E0l .00l 0. 003 0 .RERAE 0. 5674
DEELAT  -0.0720% ©0.2300F 0,2PFO7 0.FOTEE 1.00800 O, VPERD 0,FG0O] -0,0EF54 O, 0GE40
INGHLHT Q. TENE L2453 0. 2e43 £.0g0] £.ngn) 0. 20EE 0. ¥5ED o.r4E1
PEHD 0. 15587 O, 0R9E& O.09356 O.84377 O.77EPT 1.00000 ©,SAGF0 O, 03613 O, 1001HO
EHD 0.437%  0.7FI8  0.G425  <.0001 ¢ 0001 0.001F  0.0500  0.G134
Var | el le WESH o2EH UHH MBH WEEH Oe3H WHEH 0&HH VEBLAT
DGHD -0, 12833 0.05510 -0, 1GE20 0. 23006 0. GGATO -0, 00G1E O.GWMEE 0, E0408 0_145%4
DERD [ L 0. 7E49 0. 4071 o.2318 &, OdE 0.a7aE @, 30l 00308 o.46Th
WHRD BS54 0.69R0E -0 DFE0E  0.0FHEE 0. 24353 Q. .ZFLE00 0. 44red  9.5HTUE OOS3IHES
VRKD LT | L L] 0., TDED 0. EFRZ o, FF0q 0. 1521 &, 52 00815 i, B0d]
DHRD D.ELFIE O.BFMASE D.00404  0L.2ETHZ  0.EEEE] Q. 30EF O 4Z1EH O 4HO0R  O.EALDE
DAKD 0.080F  b.0001  O0.F408 0. 1836 0,054 0,109 0, GFER 00013 @,6083
CLUSTER = 2
Vo | ol e OZRILNT WIELAT HHLNT YBHLAT FEHLNT WEND RO WEND LIHND
DGHD 8, 92806 -0, 20762 6, 1063 0.G4101 0,F5A%1 o, SOERG 1.08080 &, 10808 0.08052
DGHD a.1a1n 0. 10 0. 4980 00003 3. 206H 0.0 3 0.BITE 0. 3620
U D O.80326  0.BIT44 0, 17004 0. 0BGRE -0 0664 0.00613 010080 1, 00808 095380
VHRED <.l L L 0. 3939 0. EEBE LS | 0. HSH® 3.E1TE 4,00l
LI 04281 0LbsdRE DO N1UEEY DL 1TREE DLOBRID @ DDIHe  OD.D@HEE 9. FLEHE 1. 00090

DARD oL 0D 0. 0uER . 4865 05624 ., THE] 0.EN34 ¥, 96F0 L |



Cluster 3
— _ S .

Var jable WESH UZ2EH EH M EH VESH [EEH WrHEH DiHEH
WFSH 100030 Q.33 0. 57900 0. 75833 O_703IA3 0.53109 0.549FF O, 94557
WEEH £ nm O.rFn o.41Fs @, 0006 0.075E £ .00 €. a0al
OFEH 0._9E&%H 1.00003 0. &FXEEE 0.JAFFH9D D 5739 0. 42006 O0.5179% o0 9527F7F
OEEH £ 0a0 0. o, 2FEs @, 02 #1740 £ L0001 €L 00l
WahH 0.52901 O.EPEEE 1 .03000 0. FSEEE 0 P2US0R 000527 O0.EMITE 0. E0212
Wi @07 0. 0252 o, S0 2 &, 3518 L b 0. 0202 o, e303
OHEH .28 0. 3TEG 0. TROBE 000000 O 3546 0.F0B5L 0. 34450 0. 34037
048H [ 0. #AFS 0. EdF &, 3019 0. 5154 0.FTET 0, Frae
WiEEH 0. 703E3 0,.5797% 0, 2%50& O, JF54E& 1. 00000 0.@5440 O, 7438F O, GEGRH0
YESH Q.01 0k D_4E? n.F501E g.3013 Lo il s | 0_0ss (Ul ]
O&ESH 053109 042085 O,005FT O, 20BLS O 05448 1.00030 0.54415 o, 514018
OEsH Lo o_1#40 0. SHF D B.5%15%4 3, D=y Lo | . HFE
WESH D_94376F 0.3173% 0.6F97E 9.3445%3 O _T438R 0.54415 | . 00003 & 977HE
WEtH LT £ nE [N R 0. 2FET [ -1 LM TE ] €. a0aln
OEsEH 09455 0. 95277 0.&6021E O0.3403F oO_BEED] D.5141H 0.3F786 1. DD
OEEH £, 0a0 £ 00E [N HE K] i ] @ 0078 [ . 00a1

UFHLAT 0. 90085 0.2I50F 0.4%90F 0. 4FRIE O HB494 O.T4ASE]  0.9349F 0. 8%A00
VHEBLAT &, 086 0, 0ET 0. ARG o, FEES &, 0ae 0,054 i L iR
OFLAT O.69433 0.G408T 0. 45348 0. 57FET 0.07433 0.@07ID 0. .T4FIF  0.FIOGN
OFRLAT L 0. 0247 0. 13RE 0, 0518 &, panR? oS 0. 0se 0, 30RS
WAELAT 0. 42067 0.4021F O, 36684 =0, 15100 =0, FEFTID =0.FCEF4 0, 3ITOE5 0. 41507
YAHLAT Q. 1733 n_1174 . FanT 0. EBITS 3. 4ThE 03952 n_2P45 (L
O4HLAT 049058 04200 O,29139 -0, 06370 0, VASAR? O.F136F O0,.50083 O.4435F
[HMELAT Q. 1hh0 D_1FEr 0. FhEl . 2441 [ | 0. _hE® Lri [ | . 1a8F
YERLAT D 49676 0.55%PE0 0.3F98E =0, 73065 =0_094723 =0_75%44%5 0. 39483 0.43374
UEBLAT @, 1908 0. 0623 0. FISn .4 708 @. 7ol a.4240 0. @040 0. 1589
OEHLAT D_A4235%H 0.48%43 0.3015%3 -2 . 24873 -0 04842 -0 20714 OQ.IMHFE 0.40525%
OGOLAT 2. 1630 @, 1096 0. ol o, 4 FHE @, TEOE 9. 655G 0. Fe4n o, 1ona
UENO O 4699 0.52084 0. 32MUE -0, 22P0E6 -0 12060 -0.F90EH O.3561F O.392ET
WEND @, 123 o, 077 0, FOET o, 4 FES &, FoRa o, 3576 0. 2559 0, FORT
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VEBELHT

0. 90xA%
€. el

0. H3508
. ag07

0. 49902
o, 0306

LS FH
o, IERA

o, 0B404
O, 0001

6. 74561
0. Dah4

0.934497
£.0001

o H30D
a0

LB
0. BFEI
¥, 0002

o, 1akd4
0. 7564

o, 40165
. 1956

0. 17E0S
0. 6963

oonERT
o, FE0D

0. 0a54T
o, TEA



Cluster 3 (Con't.)

Wi i aly | = D2HLAT
WFEH 0. 9433
WEEH N
OF5H 0. BADEY
EGH 0. 0247
WALH 0. 45240
UEET CE
D45H 0. 67267
n45H o, 051
WESH 0. 07423
WERH o, 0DE?
NESH 0. BOTEa
OEsH @.0alh
WERH 0. T4Te?
VEGH 0. 0062
OEEH n.r1E61
DEGH . 0805
UIHLAT 0. 87533
VHILAT CGET
DEOLAT 1. (ra@eg
NZHLAT

WAELAT =0, 11554
WIHLAT o, FEOE
M4ELAT 0, FAZ60
[MELAT 0. 46k%
VERLAT =0 21374
VEBLAT 0. 505H
LERHLAT =0 240124
DEGLAT 0. 4500
VEND -0, 2483
WMD) o, 4364
Wer i ab I w25
=l 0. PEIDZ
KD 0.3
LIBKD 0, 43951
1F: 1l 0. I5ee
(1N o, 46753
[N o, ITHES
Wiar falals OFBLAT
OGHD -0, 43258
DEKD 0. 1603
WHKD -0, 2056
VKD 04368
[NE-1 0l =0, 2324
(] 0. 3558

HAHLAT

0. 4P0ET
0. 1F23

D.AHZIZ
G.1124

0. 26634
0. 2467

=0. 16190
0. RATS

=0, F27TD
0. 4TER

=0, F¥RA#q
0. 3992

0.3THES
0. 2246

041507
a. 1797

0. 10024
0. 754

=0 11558
0. 7706

1. @00y
0, TIET
0. 0DEL

0. THADE
00025

0. r48ar
0.0050

0. F4a7E
0. 0050
05

o.3rana
-

0. 54815
2. DE50

0. 50AESs
o, 0905

HLHT

0. 7930
@00

0. BhSiE
@ .0000

LU R
@000

[HELAT

0, 43098
o105

. A4Z11E
B ATEY

0.29139
L ]

=0 DEAT
0. B4

o, 1E58E
0.5631

o, 2130F
0.506F

0, S098F
0. 004

0. a5E
o.14e7

0 .4016%
0. 1956

o 2FREe
0. 4665

o, PG
0. e0ES

I, DFDd
o, 3TATE
0. x24T

0. 31203
0. e

0. 3EH00
0. F964
5N

0, EIITS
0. 4666

0, 35124
0. Fe2a

0, 33454
0. 3034

[BLAT

0,2V Ga
0. F004

0. 354490
0. 2039

0. A0EEZE
0. 1gve

WEELAT DEELHT
o 439676 047390
G 108 @ 1630
2. 55FH0 0 48543
00623 8. 1906
032908 0300159
0, 2358 @, 3404
=0, 2065 -0 . 24871
0.4708 &, 4356
=0, 03423 =0, 00842
0. Froe &, TEOXY
=0, 25445 =0 7874
0. 4248 &, dehh
@, 39483 037378
0.2040  0.2240
. 42374 0. 4A0F2S
0. iG08 @, 1800
I L P
0.EFEI B, TEED
=@ 20 -0 24004
0. 5058 &, 4500
@, 78402 0.74397
0, DRs &, D50
@ ATETS 0. 34F00
0.2 . 2Fb4
I.000pd 0. 95503
£ 0001

2.495503 100000

C.e000
099580 004533
L0001 g, 0000
O VRSN
=0_FH04 2 -0, B3
L T -
=0 149102 =0, F330%
= A ] n_3La9
=0 077G =0, 22145
o, 5355 0. F0H3
CLUSTER = 3

VEHLHT O&EEL AT
0. 3400 0. 90634
€00k <L
050930 0.8630%
£ 0001 0. 2003
0. 363 0,807
£.0001 0. 0002

WEHD

0.45971
o123

0.52884
a.07

0. 324956
@, 10ET

=0 . F2EGG
. 4861

=0 . 12050
0. TDEY

=0.F915R/
0. 45Fh

0.35E17
9. 2558

0. FYERT
9. 3067

L T
8,767

=0 . 24833
0. 4364

. rearn
0 005D

0. 3200
02964

0. 39580
£ .00

054534
£ 0o

1. 00000

OEE

=0_4H4 74
doiiez

=0 . FRAST
2. 2106

=0 43073
G, 1raR

VEHD

0. 95162
AL

L
€00l

o.3114Y4
£ .00

0, FR103
0376

Ul
0. ZE4d

0. 2327
0. 4666

=0, 20042
03773

=0, JF7IS
0_RET

=0, 40474
LU

0, ITANE
0. 5004

U
o450

-0 11166
o.raav

=0 43250
0. 1IR3

o, Faael
o_o0Z1

o, FTHER
0_JHM

o, 34400
0

0, 30E34
0

0. 95152
0080
wasH

L B T
0. 5004

o, 35111
0. ZFRUN

@, 38133
0. 3P4E

RN

1. 09000
0 A54RE
L]

0. 9ET13
€. 00010
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WPHNL [EML
. 43951 0. 40753
0.1528 0. 180%
0. 54815 0. .503E%
G.9658  0.0005
0.35124 0.32454
0. 2623 0, 3034
=0 04102 -0 17176
0.E628  0,5335
=0, 29005 =0, 32145
0. 3533 &, 3083
=0, ARIGT =0, 47070
0. Z108 @ 1ra2
G 351010 @.31133
0. 2631 0. 2246
O 4F240 0. JB5A0
.iB04 0 2161
0.0EHOE  0.02E8%
08335 0, 9F08
=0 24056 -0 BOETH
04368 0, 3558
@, 06518 @877
0. 0003 o, xR
@, 3%49¢ 0, 4066
0. z0d3 0. 1B
F.90930 ©.91E33
<. ool <000l
P HESDS 0. HE
0.0003  0.0002
2. 90323 @.91149
oL 00l o000l
O65H  VEELAT
0_240Fh =0, 10 1h&
°.4510  0.FEIT
043240 0, 0ER0E
0. 1604 0. BHS
0.5 0. 0FF05
o, #1E] 0.370a
W HRD AN
0. 35422 0.96119
4 00R] Ll
1.00000 0. .9965%%
=l ]|
0.94sEL 1. 000600
.00
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Cluster 4

Vo jab | e WESH iF2= ] w4EH LM5H WESH UE5H W UHSH  VEELAT

WEEH 100000 O.300FE O.3F64F Q0. HOFHY O 42136 0.56433 0.BEE3M  0.EEIEZ4 0. H0FH]

WEGH O.0001 0.000%  0.0F4  2.000F 0 10E4 01050  0.0044  0.00564
OEtH O.9H0EE  1.00000 0. 21839 9.FSFR4 D.9AV44 0.512EBY 0.B3AEF 0. 63132 0. HSHEN
OE5H 0. 000 0.003%  0.0505  @.0008  0.2331 0.1E63  0.0304 0,000
WM 0. 03647 0. 3182 1. 00000 9 B43ER O.TENID 0 006 0. 20486 040144 0. FI0LO
WediH 0.0013 00035 0.0156  &,0469 03337 0.3935% 0.3FR1 00736
O 0. 00307 0. 75054 0,8402F 0.00000 0. 55434 01652 047553 0, 52501 09,7051
O48H 0. 0FH 00505 0. 056 ¥, 1366 0. TEE] o_FHOT 0. F255 0. 0768
WESH 0920136 0.33744 0, FEIVD &, 55404 100000 O.RIIGE  O,TTATE O, FEOIZ 0, 09021%
WEhH ALk o.oDig 0.3 0. 1366 01444 o_odar o.4r3 0. 0hS
O&HH 05433 O.51P83 O, 3B05F O, 1E83%F O_E1DGAE  1.00000 O.46EP47 0,3334F 0. E3339
O&6H o 1864 023 0.FEEF 0.TEED @ 1444 0261 0.3EBE 0. 1EEN
WahH O_BEFI4 O.BJ3FF 0.3B486 O0.47558 O FFIME O AEE4A2 1.00000 O 93483 O . H0244
WiEGH @ 1060 01263 .30 0.20MF @.030F 92061 L0001 0.0054
(EsH 066224 0.B3123 040144 0. 52500 O FEQIE  0.F0342  0.99489 1.00000 0. HS4TE
OiEGH @, 19044 0. 1284 0.FFEN 0, 2FE5F 8,047 9. 3826 < .000) o, DO6S

VAILAT O.902@1 0. @5081 0. .FI0%e 9.F0L1D O 902G 0.6I930 0. 90244 0. 0B4FE 1.00000
WERLAT G.0054 0.001F 0.073E 0,07RE &, 0055 0, 1231 0.0054 0,005

OAGLAT 092310 0. 90841 0,F4EE4 0. BE69F 0. 95831 0.57774 0. 80083 O.0@201 0, 098300
OFELAT o, 0030 0.0 E 0553 0. DEHE >, 0210 n.1743 o.ooTl 0. 008HS £ DDl

WARLAT =0, F08FR =0, 10507 =0,2F199 =0 5Z118 0001713 =0.03744 =0, 13907 =0, 18094 =0, B37H0
WAHLAT 2. 6510 0. HEFE n.BIER 0. Z303 . 9504 0. rEEY 0.rezEr o.EYFE . E0MG

[D4ELAT =0 43175 =0 43HE] =0 55290 -0 4AEFE0 -0 36154 0.30003 =0, 10549 -0, 17094 =0, 19472
(HELAT 03234 00249 0.1980 0. 2@A2 0.4208  0.5106  0.BRI9  0.Fi40  0.E6FGT

WEHLAT 04258 0.56B6%1 0.3705F" 9. 10300 0 LE3MI 0 .FHEIO 0. VHZIE 0. 13EEQ 0. J1rHE
WEDLAT o.3409  0.1843  0.413F  o.@004 0. EEMD O 0.0974 0645 0.TTFTE 04870

OE8LAT 0.F1353 0.83024 0.6F4%4 0. .489%4 O FSI0E 0.Z649H 042736 040371 0.57FEE3
OEHLAT 6,076 0.0206  0.0965 O.Z648 &, 0517 9.5658 0.338F 0.F56Z  0.0754

WiEND O.08106 0.207F3 0.26606 9.05105 -0.00700 -0.01233 -0, 44463 -0 . 46728 -0, 20001
WEND o, e 0.R5%48 0.579F o921 &, 9868 o.97el o_3174 0. 7904 0. 6R43



Cluster 4 (Con't.)
— ey - - e e LE - Bl el "™ T WE
Uarisble OZOLMT  U4BLAT  O4OLMT  GGOLAT  OGOLAT UEND DGR WD (T
VfH B, 92310 =0, PORFR =0, 43175 042578 071393 0, 0RI05 013435 6,80008 065943
WEEH [N ERE L) 0. Eh4n [ RcH L ] 0.0y .0f 1k 0. HeE3 @ nonEnz 0. 1067
D25 &, 90841 =0,105067 -0, 4T061 6.56651 0. 03084 6. 20779 O0.PEGID &, EREPS  0.74083
2EH [IEes | 0. B2P6 [ Fl b 0.1849 . 2 0.6548 2.5624 o_nnas o.@hF2
L0 &, T4RG4 -0, 22199 -6, 56200 0.07057 067454 0. 2EEIE  0.08B47 &, 74003 0.GEEED
WEH 0553 0.E3E3 0. 1980 o.4132 ¥ . F3ES 0.5z & . 5057 0_0EES @, 1357
45H 0BRSS -0, 5F110 -0, 46921 0. 11300 0. 48954 0. 05105 -0 0F540 0, 44479 0. 27036
MHEH 0. 08RE L5 ik 0. FBER 0BG o, FE48 0. 9121 3, I5ET 0_aNrE 0, Z455
WhiH 985020 0LO0NFNYd 036154 O 543 0. 50106 -0 .0DFHE 0. 1033F 9. BHIZ 0.r313h
WEEH 0. 0bD L Pl ] L 0. .2ETS L g 0. 98RE 3, EP45 0. 08RE &, 0AEA
DEEH D5 -0.13749  0.30113  0.38230 0. 26ATH -0 .00129F O 014E4 O . FHEFE 0.170ZH
MRSH 0.1743 &, 7GR 0.5116 ©.3374 0.5658 0.97A1 9,374 05308 8, 7149
WHEH 0o, 890089 -0, 12307 -0, 010549 0. 18298 O0.427T3F6 ~-0.44463 -0 ANGTH O .54FIE O0_ANEAT
sH 0.0871 8,787 0,818 06345 0,389  0.3074 0, 35E)  0.F0F4 8,350
DAREH 0O BAFAN =0, 18084 =0, 17094 0. 13280 041371 =0 46728 -0 44840 & 53935 0 _ 40777
nogH o.000%  0.6370  0.7140  ©O.FFF5 0,056 02904 0. JED 0.ENIS 0, 3630
UARLAT 0, 90389 =0.F3TH0 =0, 19477 O0.F1796 O.57PRE3 =0, FO0IA] =0 17947 @& EREIZ 0 48717
VEILAT £.0000  0.6076  O.EFST 04871 0.1754  0.BE43  0.700)  0.199% 0, 25ED
D26 AT I, 80808 =0, 16939 =8, PRR13 O 41653 O BE7IE =8, 11576 =0 0BIBR & 7RS0T 0.RIIS0
O2ELAT O.B1% 0.BE4A0 03526 0.08FS 0. BB G.ENI0 0.04L1 8, 0266
VADLAT =6, 10839 §.00000 620750 042393 0.PE000 &, JPTOE  0.GEBE 6,217 0.44443
VBELAT . HIh4 . B5h3 0.33%" . 5hEF n.Arer . 2442 D_BRFD . 31F7
D40LAT -6, #6613 0, 20750 1,00000 0.07051 -0 236D 6, 010462 000774 -0, ERER -0 67730
[HELAT 0. SEAD 0. E55T o.Fi4r J.E15TF 0.¥ras 3. 3639 o_1E21 @ IT4T
VGELAT &, 41663 042993 ©,17061 1.00000 O BF401 0. F4996 0. FENEP 040939 0. G969
VEELHAT [ 0, 3357 L E L | 00522 &, =E3 0_2ELD L+ E |
DEELAT 0. EHFHE 0L 2EHD0 -0 EUERE DLEMDD 1. 000D O BSZFYF OLBENIZEE 9. FBELE 0L rLR2E0
DEELAT 0. 0ETS o, 5587 . EI15T ool 0.17a3 o, 1431 00458 o, 0500
W ERID =0 11%6 O0.32rM96 O0.1346E 0.7M4396 0. 572F9 1.00003 045655 @.9930% 0O.183%0
WRRID 0. b4E 0. 47TET [ 0,057 2 o, 1753 o, 3067 0_AEFT 8, 8937
Var i ol e WESH D2EH WAEH O4EH WEEH Oe3H WHEH OE3H VZ2ELAT
DGO 01425 0, PEGI0 0, 3047 -0, 08540 010097  0.00404 -0 S1GFD -0, 44840 -0, 17042
DERD o.rral 0.565329 0. 5087 0. 89567 . B24% n.9748 0. FhZ3 n_3anzs 0. ol
KD o, 800130 0,05625 O, 74100 044470 0, 09412 0, Z0EFI 054030 0, S1MI5  0.G5G61D
WHRD 0. 0303 o.0139 0. 05E% 0.3nre ¥ . 0BG 0. 5300 . 2074 oDoENS 2. 103h
KD O, B5993 0, 74000 06220 0. FFAIG 079195 007008 041047 040777 049717
[NHRID [ =1 0.0hF2 . 13bF 0. 505 [ D143 @ Fhdl I 2. Z2hied
CLUSTER = 4

War |l 1 OFELAT WELAT O-IBLHAT WEBLAT FEBLHT WEMD DERD WEMD DERD
DGHD -5, 0B20E  O0.GOUE] 601774 0. TEEU2  G.E13FE o, 9EEGS 1. 00080 &, Z0FIF 0. 09GEE
DERD o.HalE 0. Ea42 0. 9699 0.0p433 LB LU L 05398 0. 3TER
VIR o, TESOT 0, 23176 -0, 62659 040939 075350 0.00905 O.PEEIE 100008 O.0708
HRID [ | n.E1TD .13 0. EES 0. 0-5H n.BEFRT 2.5396 [T Dk
KD &, BIA50  0,44440 -0, 57709 0. 5PICO 0.75EB0 &, 10I5e 0. 09GEL &, 97800 1.08080
[HRD 0. 1EBE °.31FT e b L E | @ ¥L0H L @ FFEH 0090z

186
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Cluster 5

=TTy W2EH LZ5H VAEH [MEH WESH O&EH VHEH CHEH  WPELAT
W2EH I, 0@p08 & G58ET O, 53305 0. .30062 O 6GEITT G 15ESE O, 086721 O.5GTED 6, 987ES
WPEH 00008  0.00AG 0,050  0.000% O 4AT1 <0000 00047 o 0000
O2EH @, E506T 1.00000 017038 G.0FFTED O 24008 0.209381 o0.32400 O.14B01 0. 2FTOE
0280 0, F00E 0.4372 @, 7246 (VI ] @, 1736 o, 1305 o, 500 o, 1 @66
WAEH O.53905% 017030 1.00000 O_HHEFG 0.5F549 -0_010E1 0.EE11F O_S1814 0. 55734
R AR [ L] @ 4372 L LT ] - 0. G006 @.0113 0. eohT
CI4EH 033107 O0_07FER 0, BEPPO 1. 00000 O, 3B04F -0_ 10548 0 45501 0_4PESE 0 4FFH1
O4EH [ ] @.f216 £ m0al T ] . 630 o.alBn .03 [ EL]
WESH o, 6EIT0 0. 34000 O, 5F545 O FAO4F 1, 00000 O FOEER O, TIPES 043539 O.6I6R94
WEEH 0.0002  0.1123  0.0100  0.0733 Q00RO €. 0001 0.037E 0. 0002
OBEH @, 15255 0. %9381 =0, 000G0 -0 10%40 O, 60008 §.00080 o, 63700 -0 12572 603107
O&EH o487 @, 1736 0.8R1T o, R3F0 0, F0PD 0, B394 0. 56TE 0, BR43
WREH .oBeFE 0. 3481 0.GE1IT G 40531 0. TEERS O 0.027H 1. 000086 O.G0SED 0. 0451
WEEH oL 00N @, 1305 0,006 @006 L 000 o, 0954 o, 0T L @00
CREH B.SEFEE 014811 0.S1814 0 4PESE 0. 43599 -0_1¥SF2 0. ES5H9 1 _00000 0.ESFA3
OBEH 0. a7 2. 5a0n w2113 [ S [ H I @. 5676 0. e007F 0. @ea7
UFRLHT 090775 O 9PTSE  0,55734 0_4PPE] 0, 69694 0_09157 0. 9451F O_ESTEE 1. 00000
WEBLAT .m0l . 1266 0.e0sT [ EEE] 0. a0 [ EE €. a0 o, 0neF

OFELAT @, 63967 O0.34F73 O,PR0PS 0. V553E O, 54870 0. IGFIE O, E1F3F 043385 oG BIIPS
OFELHT 0.0007 01033  0.PA03 04739 0.00E7 046001 0.0016  0.03BE  ¢.o00]
WAELAT @, TEEST 0. 500F3 O.0800E G 07035 0. 48632 O.FITIH 0.GIETE 0. .50GRD 6. TEROF
WRLAT oL H00n @005 0.EBES o, TATT 0, ¥IHE o, 2TES 0,018 L) oL, B0
O4BLAT o 84908 0. 53A2FF 0.2I2BE G.ITER O SEAT O.2EE0 0.Te2OT 0. 0BAGE O.TRGRIS
O4ELAT oL 00N @, oo 0. 3309 o419 o, S0 [ - H ] 0, enE o, 00E L @0l
UEHLHT 0. 90E04  0_BEIE1 043371 O_S4FAE 071490 011754 0. 91845 0_BSEEY 094313
WEBLAT €L 0al @, 0826 [HETE @143 0. @001 [ £ .00 [ Ee T €L @an
O&RLHT B.77558 O0_B019F 0, 3EAPI  0_99900 0,74945 O_PESE3 0. TEIST 0_55937 0, 86340
O&ELAT C.0001  0.1614  0.0HAE  0.10136 <. 0001 0.RRI1 0 <. 0001 00055 @000
WERD o, 5367 041070 O, 39216 0. FONNO O, TERLE O IVETT O,65740 O.GETEL 0, 9FTII
VEND £.0001 0,051 0.0R4? 0,127 <0001 0.4044 . 0001 00004 .01
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Cluster 5 (Con't.)
Uarishle 0OHILAT  W4BLHT D4BLHT  UVGBLWT  OGEBLNT [T DGHD VD 08D
WEGH 0. GH0ET  0.TOEY]  0.B4908 0.90604 O.FTESE  0.9006F 0.GPESE O.TEFTO 0.GOTAS
VEEH 0.008F 0. 0001 0800 ¢, 0000 0000 c.0000  0.0004 o 0000 8,003
0E5H 6, 34270 0.5002) 0.5333F 0.069G1 6.08106 &.4i070 0.B4TID 0.4PEi0  0.PDIGG
OFEH 0. 1053 ooonsl LN 1a]: 2] o, DEPE @, IE14 0.0516 0. ?ER 0. 0436 o, PETH
VagH o,F50F3 0,00886 O.F1FFE 0.43371 0. 06BE3 O, 33P0 O.01608 0.07R13 0.00585
W4HH 0. 2303 0. E8EH o324 @ DEFHT 0. Dp3E 0. 0E4Z 0_59¥9 L] 0. 9796
048H 0, 15506 0.07085 0.I7ES1 O0.34746 0. 33900 O, 30110 009915 0.06939 0.00618
LH&EH D434 oorars o414 @ 1043 0.1 1dE 0. IBEF 0. hEL LA o495y
WEHH 0. 54870 O0.4HEI? O0.56037 O0O_T1490 0. 745345 O, 7RSO 0. E5H45 O_5LET1  0_573IES
VESH 0.006F  0.00BE  0.0054  0.0000  £.0000  C.0000  0.0006  0.00508  ©0.003F
LELH Q. 162k 0.Z3F3F5 0 .216R0 Do1010%4  0.ZELIE Q0 1FHST 0.43E40 0. ZHEIS 0. JUYERH
DESH 0.4681  0.2755  8.0F00  9,590F  0.FE10 0.4144  0.0993  0.1024 98,0630
UESH 0.61032 0.E12F0 0.F02OF 0.01845 O0.FRIGT 0.09340 0.60103 0.EIIED  0.GISE4
VESH 0.0006  0.0009 &, 080F £, 0001 o 0000 o 0001  O0.0034 0.001F 0, 0084
DEGH o, 43085 0.50630 0.50906 0.G5EED 0.G5007 0.GETOS  0.40098 0.5I41E 0.47950
OEHH 0. 038R o onEr LR &, 00T 0, 0055 0. 0004 n.o1v4e o.o1F o, 0F0E
UFELAT 0. 81123 0.7PR0F O.79EIS O0.94313 0. 06346 8, 9F7IT O0.ETIET  0.7ISZ] 0.Glo04
WIHLAT € . 0d] £ 0Dl £ .00 £ 0501 LA L] | €. 0001 L) £ 0] 0. 003D
OFALAT I, o0y 0.7147F8 O0.73457 ©O.73R0T 0. 77945 O,.75445 O,.5M08F O0.6EAEES 0.53714
OFELNT L £.0001 <0l L] | .00l o.alod 0. o0nd 0. 00HE
H4HLHAT . 71428 1.00030 O.FHIEY O_HIBA4 O TFEIS] 0. HFIDF O.TRIEE 037733 O_BITI4
U481 T 0. 008i PO T I T T T T ST T R - I T T I 1111
LHMHLNAT 0. 4% 0.9H1BS  1.00000 O_HEIGD O©.F3b5%1 Q.906H0 0.MME36 0.55355 0.7 F5h%
D4BLAT C.0081 0. 0081 0001 8000 c.0081 c 0081 o 0000« 0801
VEBLMT  0.73607 0.83644 0.00IG0  1.00000 ©.09303 0. 99GIT 0.TOOUL  O.@GATY 0. TV3AT
VEELHT CL0081 0 0081 L0000 0001 L0001 o 0081 o 0001 i, 0800
DEOLAT  o,77045 0.76351 0.79654 0.09393 1.00008 o0, 89041 0.79511 0.@13967 0.751540
OERLAT L] LA i1 LAl | £, 0001 C.pool €. 0pa & 0Dk & .0001
WEHD 0, 75445  0.BTI00  0.90630 0.99517 0. 09341 1, 00000 O.BI93F  0.30208 0.B010%
WEMD € .00 £ 0] £ .00 £.0001 <.o00l €. 0 £.0hR] £ .000]
Uar iable WEEH DEEH W4EH D5H VESH OESH WEEEH O8EH  VZBLAT
DBHD 0. GPEGE  0.24713 0. 10600 009019 0_GSE45 043340 0.B0103 040002 ©.63187
DEND o.0b14 0. 7556 0.5979 ¥, E525 o, D006 0,033 00034 00174 o.001?
UEND . 7TETM & 4FEI0 0. OTEIZ 0.0ERE3 O.55ETF1 O.FHBIT O.BAZRE 3 .S141F &, TISE]
T C.0000  0.0436 0,720 6.TRA 0,000 o, 18B4 00012 0000231 ¢.008
DAND 9, 50745 @, 2FI66  0,006E0 000610 O.GTORS 0. JOZGE  0.GISG4 0 .4THE0  ©.61004
DAND 0. 03 o.78TH 0.3736 @.977T o, 0oar 0. 0EIE 0.00R4 0.0F0R 0. 00
CLUBTER = %

Wiar hdils iz OFHLAT VHLNT OHBLAT VEBLAT DEBELAT WEND OEMD WEND [FHRD
OENI . 500BE O.FEIBE O.T4A2EE O.TEZEL O0.TA511 O.BI3AE 1.000D & 25339 O 3E4ED
DBHD o.0008 .08l o, @081 ¢, 8001 <, 00081 <. 0840 T T
WD o, G00AS 8, 97790 0, 95155 0. 0EATT 0 00067 0. 90208 0,@5I0D 1, 00000 O, 90475
WHND 0. 0poa .00 .00 .00 £.0000 L0000 .00l €. 00w
LEND 0.53714 Q. BIF34 D FFLSL O O0.FTAET O.TS153 OLB010S  O.BEAH3 @.3040h 1. D00d0
DAND 0,008 c.0001 £, G081 ¢, 0061 g, 0000 c. 0000 < 0800 ¢ 0601
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Cluster 6
W | by | WEEH U2EH PASH LHSH WESH UEEH FHEH IHSH VEHLAT
WELH 1.00000 O .B0%F4 O0.Fl46E 2.7 0014 D_14634 O0.BH30HF 0.5215%3 0. 4108HF oO.f4B49D
WEEH 0. #0R0 h.11a% I EAE] @, 7EE 9.1597 0. ¥ o.4104 o, ak0a
OEEH 0.B0%24  1.00000 Q.4FH0F 9.FZFET O HEEFT O.BGE9IE 0.410ZF Q. EFA0E 019126
OESH @, 2030 0. TS o, ia @, 0415 @, 0246 0.4192 0, 14978 &, TIGEG
(AR ] Q.r1466 O.47003 1.00008 9. 00003 G .IEN40 Q.FFTVET 0. 92095 9. 03203 o.04020
WaEH @, 1S 0. 3375 o, o087 o, 4814 0, DERR 0. 0By 0, =300 ¥, 0FR7
O45H . ro0l4 0,7EFRE 0, 90103F 0, 00000 O, GAS0% 0,303 O, 84000 O, 96214 8, GTEG
0O45H o 1714 D_1oig 0. e0aT 3, 1659 o_pore? 0_03E3 0.a133 o, 1407
WESH o, 14634 0.8FETI] 0, 36143 O, 64505 1. 00000 O,.74EF5 O0,3I6F7T4 0, TEILE =0, 09553
YELH Q. faEx on_.-lhy o_4d04 0. 153 o_naEd n_4r33 0. ob%Z .85
nesH O_F5306H O.ERAIB O.FFTET 0. 930608 O_T4EAS 1. 00DG O, THAEF O, B4E54 0. SEGHD
O&EH @ 1587 0. 0246 0. rhRE [T @, 0883 0. 064E 0. e3a% [
vahH D_L2153 G 410F2 0.92%85 4. BH410 D _FEFTr4 0. FHAER | .00y Q. HIFZd O _HI4A14
WG @, FRrh a.q1aE LI o, 8F63 @, 473 [ T o, @401 &, 8406
OeEH G.41082 O.ET40E 0. .BI20F 0. 90F14 4O THILE O B4GES4  0.21920 1. 00008 O 4F308
O&EH o, 4104 o, 14F0 0, 05 o, @1aa [ 0,035 o, 0891 o, 3549

VAILAT O.r4600 0. 010126 0. B408% 0. 6VLIS -0.00563 0.GG0E0 0. 01404 042308 1.00000
WERLAT . 0&B0  O.TIER  O.03EF 0, 0407 @, 8571 02470 0.0486 0, 3943

OAGLAT 047531 0.95821 0,.50041 &.74708 O.07ELE  0.91853 0541801 6, FSEEI  0,.BI7EL
OFELAT o, 3407 0. 0Fs 0.F0ED (Ul >, 0212 0. 0036 n.FETT 0. 045 . ETH3

WARLAT 074836 0.44873 O, 04698 &, F2F7H4 0. 00041 O0.19604 =0, VGODT =0,060F3 0,.13087
WAHLAT Q.08 LU T o.ran 0. EB43 .93 Lo 1] D.fEE 0.3048 0. F IS

[D4ELAT 033438 0.308E3 0. 4604 O EEE4S O _910EE 0.BT0A3 0.53197 0.¥TI5Q 0, 1FFATV
(HELAT . 51F  o.0iZ2 0 .F0EE 01305 00016 0.0241 0.2FFE 0.0FE4 0BT

WEHLAT O.0EQH O.FHEEE 0.011000 O . 4F¥HE O_HEOH4A O.BYOIH O.ZHHED 0. 51178 -0 14207
WEDLAT o.0ie0 0.062F  Q.FESE  0.3ME 0.0E2FF  9.123 06207 0.E04 0.T7E0D

OE8LAT 053406 0.FBEI4  0.FRUHE Q. 9109F O FARHE 0. SHINE 082037 0. .B4H6E 0. 55EET
OEHLAT 6.2751 0.0BFT  0.07EE  0.00115% &, 0537  &.0005 0.0452 0.03FE&  0.2496

WiEND =0 207 0. B -0 1EIZE 0. 14206 0. 00835 034640 -0, 11496 0, ATIGE -0, 67519
WEND [ L Fat 0.17ES D.7Th7E [ T &, 03T o500 0_B?E3 0.4E5%E o, 2324
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oasH  VEELAT

0. 58239 -0, 33526
0.#252  0.5160

g.43130 @.08120
0, 3937 @, 0303

8, 44476 0.06515
0. ZIGE 0. 0FR1

T IETE

0.BFE  0.7HA

I.og008 @, 33347
¥, DFES

8. 05347 1. 00000

Cluster 6 (Con't.)
S — ————
War | ol e OFEHLAT WBELAT MELAT WEHLAT FEHLHT WEMD NERD WENMD [NHRID
VREGH 047530 0, TADEE 0, 33438 006000 053406 -0, 20709 005175 0, BOFIE  0.05314
W2EH o_3407 o.DATI 0.51T1 o.9no 0. 2751 0.E325 B.3274 o_ongl 0. 0032
EEH 9.95920 0.A4ESY D U0ETY 0L FHEHZ 0. fEBEI4 L BEHD DL rZEEY 9. 5E0d] 042640
MEEH 0. 0hRL oL ETEI . onER 0. DERZ o, MEET 0. 17ES &, 1046 0_2ER4 L cE |
EH 050531 014688 D.4ERMD 0UITF1e 0L PSHEE -0 IEFER 0. 1F60h 9. FAEUT 009641
W4EH 0. 30FD o, Tanl [ 1 ) 0. R#LF [T 0.7573 &, 7are ETE o, e57q
DHIEH 0. ™76 0.2FTE 0.6BBAS 0. 4F3HE 0.91037 0. 14FHE O_4B0E3d Q. TIFHE O_EEHIY
na5H 00875 6,ER49 01805 0.8949  8.0115  0.7EFF 83577 0.10P1 &, 0387
WEEH 0, BTERS =0.0D141 ©.95106E O.BEE4 O.7IAFF Q. .B3BA5 0 90F7TA 0, I2E4T  O0_04844
WGGH o.021Z  6,8379  o.0016 00277 6.0937 00371  8.8030 00157  6,9274
DEEH o, 91893 0.196014 O.87043 O.E90IE O0.9810F O.34643 050034 &, 74305 O.RIAIS
DGSH 0.0006 0, F096 0,084 ©0.1F91  e.0005 o580 0,308 00306 0,077
VASH B, 54000 =0, 1&017 ©,53197 O FSAR] 0 BF0F7 =0, 011496 0.0I9FR &, 7RIPT 0.RV5I0
VaSH 0.FETT 0.FEIB DLPFFA 0.EROT 0,045  0.BFEF  0.%01 01957 0, 0400
i &, 75228 =0, 06083 &, 77150 6. 51078 O, 84056 &, 37IE6 O0.GEFIN  6,40038 0. 44478
HEH 0. 084% L 1h- 1 Q.0rE4 02 2. 033%6 0. 4EhE [ 443 o.d3dE 9,20
VEILAT 8, 21725 0, 19137 0, 18207 -0, 14207 0, 55087 -0, 57519 -0.036FF o, @0IEe 0.0E515
VZELAT . EFY3 0.T1EL . B4 0. rEe3 . 2496 0.2FE4 2. 5180 0_DEDE .02E]
OZELAT 1.00000 0,19000 O, 90297 0.90500 O DEFFE O.BEI41  O.GEOTD 0, SEUEE 0. 41GEE
DZELAT o.7T1E4 0. 00 LMD 0. 200 n.1509 . 132 0_2E0F o.4109
WHELAT @, 1Heel  1.000en 0 0dEY -0 00203 -0 0LEdE OL1BLIH 9 4ESEE 0.h%1 0
4ELHAT o_TIE4 0. 89417 o.BBD3 3. 550 o.aene &, ThA5 0 _AB0E 0. FhEd
[HELAT 0 9HEST 003919 100000 O0.90240 0. HS00E Q. FAEFE  O.FOLEY 941240 0_d0U44
DHEBELAT [ EeliE ] o,.5412 ooz ¥, F3F0 0. 0348 L B 0. 4IRS o, 5580
WEBLHAT 0. EAS0D =-0.079® 0. 9140 T.00000 O.70EZ3d 0. .B3ES O_TOHET 2. 1HEHT -0_0N1EY
VRRLAT 0.0091 b, BAO3 0,011 o 1168 00406 @, 1145 0. 704 & SR
DEBLHAT O EAFPE O0.0PTE] O.B%008 O.TOERE 1.000&0 O.ZFPE1S O ATFI? 0. E9231 O0_G4418
DGH_AT o.0F08  6,8580  0.08F0  0.0068 65200 8,377 0.1ERT 8,643
YERD O, ER340 =0.05932 O, .TIETE O.B30E5 O0.3FE19 ). 00E03 O A5304 =0, FEE44 =0_3F974
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