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INTRODUCTION

Traffic condition forecasting is the process of estimating future traffic

conditions based on current and archived data.  Real-time forecasting is

becoming an important tool in Intelligent Transportation Systems (ITS).  This type

of forecasting allows ITS to enact control and management strategies that are

"one step ahead" rather than "one step behind" the onset of traffic conditions

(Williams and Smith, 1999).  For example, an ITS traffic management system

can take measures to anticipate congestion rather than reacting to congestion

once it is present.  Real-time forecasting has benefits to many research fields

including route guidance, incident management, public transportation operation,

and traveler information (Perrin and Martin, 1998).

The most common traffic conditions that are forecasted on a real-time

basis are flow rate and travel time.  The specific traffic condition that the

University of Virginia’s Smart Travel Laboratory is attempting to forecast in this

research effort is incident duration, a relatively new area of research for

transportation forecasting. To date, there has been limited research into models

that can predict how long a certain incident will affect traffic.

It has been said that the target audiences of predictive traffic information

are commuters and motorists on business (Al-Deek, et al., 1999).  Motor carriers

fit nicely in this category, as their business is to provide transportation services.

Incident duration forecasts will be extremely important to motor carriers and thus

will be a useful tool for FleetForward, a traveler information system for motor

carrier operations.  Knowing how long an incident will affect traffic allows motor
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carrier dispatchers and drivers to more intelligently schedule and route

shipments.

FLEETFORWARD

FleetForward is an operational test designed to demonstrate the impact of

real-time traffic information on commercial vehicle operations, such as

dispatching and routing. The test was initiated in 1997 by the American Trucking

Association (ATA) Foundation as a public-private partnership involving 14

government agencies, private technology firms, and representatives of the motor

carrier industry.  FleetForward incorporates real-time traffic data from

SmartRoute’s SmarTraveler system and the I-95 Corridor Coalition’s Information

Exchange Network (IEN) with a traditional, “static” routing and scheduling tool.

The difference between these two traffic data sources lies in their

respective scopes.  SmartRoutes provides relatively high-resolution metropolitan

traffic data for a number of cities along Interstate 95, including Washington,

Boston, Philadelphia, and New York.  The data includes the location of highway

incidents such as accidents and work zones, along with link travel times for many

arterial roads.  On the other hand, the IEN data has a larger scope.  The I-95

Corridor Coalition consists of state and transportation agencies along the I-95

corridor from Virginia to Maine.  The IEN serves as a mechanism for states in the

Coalition to share information about major, corridor-level, incidents.  Therefore,

archival data from the IEN contains major highway incidents along the entire

length of I-95.
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IEN Data Quality

The IEN incident database contains a large amount of data major

incidents that occurred in the I-95 corridor from 1997 - 1999.  When a traffic

incident is reported to the IEN, the agency sends a report marked NEW.  When

the incident has ended the same agency sends a report marked CLOSE.  All of

the incident characteristics are included in the NEW report, but not the CLOSE

report.  In terms of analyzing past incidents, the sole function of the CLOSE

report is to calculate the duration of the incident.  Thus, an incident in the

database can not be used for analyzing duration without the presence of a NEW

and CLOSE report. Table 1 above shows that of the 8166 incidents in the IEN

database, only 7235 incidents are available for analysis due to the lack of both a

NEW and CLOSE report.

Table 1.  Summary of incident reports from IEN database.

Year Total Incidents Incidents
Without a NEW
report

Incidents
Without a CLOSE
report

1997 5441 109 517
1998 2623 66 142
1999 102 0 97
1997 – 1999 8166 175 756

There are some interesting trends in the IEN database in terms of the time

and location of the highway incidents.  The number of incidents reported for each

month is shown in Figure 1.
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Figure 1.  The number of reported incidents by month.

This shows an interesting trend in the occurrence of incidents in the IEN

database.  The cause for the general decline in the number of incidents is

unknown and raises questions about the completeness of the IEN database.  A

second trend is the location of the traffic incidents.  Figure 2 shows the

percentage of total incidents that occurred in each state.
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Figure 2.  The breakdown of all incidents from 1997-1999 by state.

Figure 2 shows that over half of the reported incidents occurred in the

New York and New Jersey section of the I-95 Corridor.  It is unclear if this

dominance is due to more actual incidents or more reported incidents due to

other factors such as the number of NY/NJ agencies, duplicate incident reports,

or reporting of minor incidents that would not be reported by other agencies.
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database contains estimated duration entries such as “01/01/1900 00:00:00,”

“04/09/1900 00:00:00,” “8.33333333 E –02,” and 0.0625.  It appears that there

was no standard procedure for entering the estimated duration in an IEN report

and thus the data does not provide any useful information for our incident

analysis.

Overall, there are some questions regarding the quality of the IEN incident

data.  We have no reason to doubt the data on incident characteristics such as

the incident type, location, time, and lane closure.  The main question is the

accuracy of the incident duration since this calculation requires two separate

reports to be sent from the same agency.  Considering that a number of incidents

were never closed leads us to believe that other incidents might not have been

closed at the appropriate time in the IEN database.

Delivery Techniques

An important aspect of FleetForward is the two different delivery

approaches of real-time traffic data to motor carriers.  One delivery technique is

using the Internet to reach the motor carriers.  FleetForward has developed a

webpage that displays real-time traffic data for a number of metropolitan areas

and the entire I-95 corridor.  The webpage displays a map with color-coded

highway segments based on their level of congestion (see Figure 3).
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Figure 3.  Screenshot from the FleetForward webpage.

This approach is graphical and allows for easy interpretation of areas of

congestion.  Many motor carrier dispatchers also use existing software packages

to efficiently manage their fleet.  These programs have large street databases

that are used to calculate the most appropriate route from origin to destination.

FleetForward has extended an existing software package in order to incorporate

real-time traffic data into routing decisions.

A key limitation of the FleetForward system that is incorporated into the

routing/scheduling software is how highway incidents are handled by the routing

procedure.  If an incident has occurred on a particular road, the incident is

marked on the map and that particular link is disqualified from routing

consideration.  The negative impact of this approach is that the link with the
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incident may be unnecessarily removed from consideration.  For example,

consider the case when the software is used to find the best route from Boston to

New York City.  A dispatcher runs the algorithm while a portion of I-95 has

reported an accident.  The software would then reroute the motor carrier off of

the interstate and around the incident.  However, this does not take into account

the fact that the driver may not reach that segment for another several hours, and

the accident may be cleared by that point with traffic flow returning to normal.

What is needed in this case is the expected duration of the highway incident to

facilitate effective routing and dispatching decisions.

In summary, FleetForward has proven successful as the first operational

test to merge multiple traffic data sources and deliver an information stream via

web-based traffic maps and integrated routing and dispatching software to motor

carriers for the purpose of improving fleet management decision support.

Participating motor carriers identified numerous benefits to their operations from

FleetForward including improved on-time performance, greater customer and

driver satisfaction.  They also indicated several enhancements that would

increase the value of FleetForward as a management tool, including the ability to

predict incident duration.  The remainder of this report focuses on the research

effort to develop an incident duration forecasting capability.
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INCIDENT DURATION FORECASTING

As seen above, incident duration forecasting is needed in order to improve

the usefulness of advanced commercial vehicle operations tools, such as

FleetForward.  In our research effort, we attempted to use a large archived

database of past highway incidents to find patterns and relations that would allow

for the forecasting of current incident duration.  The IEN database used by

FleetForward was utilized in the research effort.  The following characteristics for

each incident were used in evaluating forecasting models.

•  A unique ID Number for each incident

•  The type of highway incident (accident, construction, debris, etc.)

•  The time and date of the incident

•  The incident duration

•  The location of the incident (state)

•  The number of lanes closed during the incident

These characteristics can be used as independent variables to define the

state of an incident for forecasting duration.  There are many methods and

models that can be used to forecast duration.

Past techniques used to predict incident duration have ranged from

statistical to heuristic approaches.  Standard regression models have the

advantage of being easily understood, but tend to oversimplify the representation

of an incident (Nam and Mannering, 2000).  Probabilistic approaches such as

lognormal distributions and analysis of variance have been used with success to
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analyze incident duration (Nam and Mannering, 2000).  A new approach to

statistically evaluate the factors that tend to influence incident duration is hazard-

based models, a technique that has been used in the past to analyze traveler

activity behavior, automobile ownership, and traffic queuing (Nam and

Mannering, 2000).

Nonparametric Regression

The forecasting approach explored in this research for use in

FleetForward is nonparametric regression.  Nonparametric regression is a

forecasting technique that requires no strict assumptions regarding a functional

relationship between dependent and independent variables.  Unlike traditional

regression models that define a relationship for all ranges of dependent

variables, nonparametric regression focuses on a specific area, or neighborhood,

of past system states that are similar to the current system state.  The past

instances in this neighborhood are then combined (usually a weighted average)

to predict the dependent variable value. This method relies heavily on a having a

wide range of quality data to make predictions (Smith, et al., 2000).

The key to an effective nonparametric model is effectively defining a

neighborhood of past instances.  The two most popular approaches are kernel

and nearest neighbor (Altman, 1992). A kernel neighborhood is defined as

having a constant bandwidth on the independent variable space (Smith, et al.,

2000), centered on the current state under investigation.  A nearest neighbor

neighborhood is defined as having a constant number of data points that includes
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those “nearest” to the current system state.  The main difference between these

two approaches is that the nearest neighbor guarantees that a prediction is

made, while a kernel neighborhood may not be able to find any past similar

instances within the predefined bandwidth.

As the name implies, in order to define “near” neighbors, an appropriate

distance metric in the state space must be defined.  Often an appropriate choice

is Euclidean distance.  This is most applicable to systems with numerical inputs

and outputs.  Other distances metrics can use weighted distances in the system

state space (Smith, et al., 2000).  The choice of the distance function depends on

the nature of the data and the experiences of the developers.

Once a neighborhood has been defined, a prediction is generated.  The

most common prediction generation approach is to use the average of the

dependent variables for the selected neighbors.  Another popular method is

weighted average, where nearer neighbors are given a larger weight in the

prediction.  This area of nonparametric regression is rapidly expanding with an

array of new methods being tested (Smith, et al., 2000).

RESULTS

For this project, a simple nonparametric regression algorithm was

developed that used an unweighted average of a kernel neighborhood.  The

independent variables used in the experiment are listed in Table 2.  The IEN

incident database was randomly split into incidents for model development and

testing.  For a wide range of kernel sizes, there were 1085 incidents from 1997 to



14

1999 tested.  The two main measures of effectiveness were the mean absolute

percent error (MAPE) and the number of predictions made by the model.  Since

this experiment used a kernel neighborhood, it was possible that a small kernel

would result in the model being unable to find any past incidents within that

neighborhood size.  The MAPE is simply the mean of the percent errors for the

1085 test incidents for a given kernel.  The percent error in this case is defined

as the ratio of difference between the predicted and actual incident duration and

the actual duration.

Table 2.  Independent variables used in nonparametric regression model.

Independent Variable Possible Values
Accident Debris in Road
Disabled Vehicle Hazardous Material

(HAZMAT)

Type of Incident

Truck Incident
AM Peak Mid-dayTime of Day
PM Peak Off-hour

Day of Week Weekday Weekend
Virginia D.C.
Maryland Delaware
Pennsylvania New Jersey
New York Connecticut
Rhode Island Massachusetts

Location

New Hampshire Maine
No lanes < 50% of LanesPercent of Lanes

Closed > 50% of Lanes All Lanes

An examination of the table above reveals that there are 27 possible

incident characteristics.  The single dependent variable for use in the model is

the duration of the incident.  We decided to combine 27 characteristics into a

single independent variable to be used in the nonparametric regression.  To do
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this each of the 27 characteristics was represented as a binary code to indicate

their presence or absence from a particular incident.  Then a penalty constant

was assigned for each variable.  Thus, each incident was given a penalty

function that was the product of the binary matrix and the penalty constant

matrix, as follows:

where Y = total penalty of incident

Xi = 1 if variable is present, 0 if not

Ci = penalty for the ith independent variable

The penalty constants that were used are presented in Table 3.

∑=
i

ii CXY
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TABLE 3.  Penalty values of forecasting variables.

Independ
ent
Variable
(binary)

Penalty
Variable

Value

Accident X1 C1 20
Debris in Road X2 C2 40
Disabled Vehicle X3 C3 60
HAZMAT X4 C4 80

Type of Incident

Truck Incident X5 C5 100
AM Peak X6 C6 0.01
Mid-day X7 C7 0.02
PM Peak X8 C8 0.03

Time of Day

Off-hour X9 C9 0.04
Weekday X10 C10 0.05Day of Week
Weekend X11 C11 0.06
Virginia X12 C12 1
D.C. X13 C13 2
Maryland X14 C14 3
Delaware X15 C15 4
Pennsylvania X16 C16 5
New Jersey X17 C17 6
New York X18 C18 7
Connecticut X19 C19 8
Rhode Island X20 C20 9
Massachusetts X21 C21 10
New Hampshire X22 C22 11

State

Maine X23 C23 12
None X24 C24 0.1
< Half X25 C25 0.2
> Half X26 C26 0.3

Percent of Lanes Closed

All X27 C27 0.4

The purpose of the penalty constants is to assist in defining the

neighborhood of an incident.  The large values given to the incident type variable

constrain the neighborhood search to only include one type of incident.  This is

logical, as it is misleading to compare a disabled vehicle incident with a major
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highway accident.  The state variables also have large values for the reason that

state agencies differ in their approach to clearing incidents. Also, the state

variables are arranged in the order that I-95 travels through the Northeast.  So a

neighborhood that includes other states will include neighboring states first.

The choice of an appropriate kernel size was guided by an empirical

approach.  For this experiment we tested a wide range of kernel sizes, from very

small kernels that forced exact matches of the independent variables to large

kernels where all past incidents were considered in the neighborhood.  Figure 4

shows a range of kernel sizes where the best results were found.  This chart

shows the MAPE (between 100% and 120% error) and the number of predictions

returned for a given kernel.  A general trend is that the percent error of the

prediction decreases rapidly to a lower limit and then steadily increases as the

kernel size increases.
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Figure 4.  Results from nonparametric regression model.

CONCLUSIONS

The results illustrated in Figure 4 show that the predictions of incident

duration from this model differ from the actual incident duration by an average of

over 100%.  This error is unacceptably large for a forecasting model to be used

in the field.  While the research team has identified a number of areas to improve

the implementation of the nonparametric regression approach, this is not likely

the driving factor.  It is likely that this error is primarily attributable to the database

used, and specifically the choice of independent forecasting variables.

The IEN database contains a significant amount of data describing each

traffic incident.  This data is very important to support communication among

transportation agencies, but may not be suited for an archived database being
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used for incident forecasting.  The independent variables used in this experiment

were time of day, day of week, incident type, location, and lane closure.  The

time of day and day of week are useful variables to define where the incident

occurred in the normal cycle of daily traffic.  The location variable with the state

where the incident occurred was chosen to represent the types of assistance

given to an incident.  It is possible that all states along the I-95 Corridor have

similar response plans to highway incidents and the same personnel and

procedures are used.  A more representative variable for forecasting would be

the specific assistance given to the incident, such as towing, pushing vehicle off

road, fire department or police response, medical attention, or other types of

assistance.  The lane closure variable was chosen to show the severity of the

incident.  More preferable variables include the number of vehicles involved,

personal injuries, presence of trucks, damage to roadway, and other incident

severity characteristics.

From a statistical standpoint, the independent variables used in this

experiment may not be significant to incident duration.  Table 4 provides statistics

for the IEN database in terms of a single characteristic.  This table shows that

when all of the incidents are broken down by time of day, each category has a

similar average duration and standard deviation.  The variable that shows the

largest range of duration for each possible value is the incident type, an expected

independent variable for any incident forecasting model.  It can be argued that

the incident type should not be used as an independent variable, but that the

different incident types should be clustered.  For example, this would avoid
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defining the neighborhood of an accident with a past instance of a disabled

vehicle incident.
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Table 4.  Statistical summary of some common incident characteristics.

Variable Value Number of
Data

Points

Sample
Duration

Mean

Sample
Duration
Standard
Deviation

AM Peak 605 75.9 53.7
Midday 902 74.8 53.8
PM Peak 818 70 51.7

Time of Day

Off-hour 473 75.6 52.8
Weekday 2474 73.1 52.4Day of Week
Weekend 324 78.9 57.1
Accident 156 74 53.6
Accident, Hazmat 26 88.3 53.7
Accident, Lane Closed 1033 60.6 43.2
Accident, Multi Vehicle 33 66.8 44.2
Accident, Road Closed 351 85.4 54.2
Debris In Road 46 69.6 49
Disabled Vehicle 112 44.2 35.4
Jack Knifed TT 20 87.9 54.5
Misplaced Truck 36 92 53.1
Overturned TT 78 120 53.1

Type of
Incident

Overturned Vehicle 64 71.2 48.9
0 1350 70.5 53.6
25 55 74.7 54.6
33 205 67.5 50.9
50 224 66.2 46.1
66 129 73.1 53.8
75 4 84.1 21.2

Percent of
Lanes
Closed

100 825 82.7 53.4
Connecticut 130 70.5 49.7
District of Columbia 2 52.6 5.74
Delaware 39 88 57.7
Maine 25 50.1 46.4
Maryland 177 73.7 56.7
Massachusetts 193 78.8 51.1
New Hampshire 6 35.2 30.3
New Jersey 638 86.2 57
New York 916 66 48.8
Pennsylvania 567 69.5 51.8
Rhode Island 11 82.4 68.1

Location of
Incident

Virginia 95 88.8 53.7
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The statistical summary of the independent variables also shows a large

standard deviation in duration for most incident characteristics.  Note that in

many cases, the standard deviation is nearly equal to the mean.  The scattered

nature of the data points is reflected in the poor percent errors for this forecasting

model.

This research effort illustrates that incident duration models are of great

importance to improving advanced motor carrier information systems, such as

FleetForward.  However, it also demonstrates that the development of an

accurate incident forecasting model is quite challenging.  In particular, there is a

need to collect data with more descriptive incident characteristics to be used for

future duration forecasting development efforts
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