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Abstract
Freeway congestion is a major and costly problem in many U.S. metropolitan

areas.  From a traveler’s perspective, congestion has costs in terms of longer travel times
and lost productivity.  From the traffic manager’s perspective, congestion causes a
freeway to operate inefficiently and below capacity.  There are also environmental costs
associated with congestion such as increased pollution and noise. Researchers have
estimated that “non-recurring” congestion due to freeway incidents such as accidents,
disabled vehicles, and weather events accounts for one-half to three-fourths of the total
congestion on metropolitan freeways in this country.

The objective of this study is to develop a forecasting model that can predict the
clearance time of a freeway accident.  This can aid traffic managers in making decisions
regarding the appropriate response to freeway incidents.  Three models were investigated
in this paper; a stochastic model, nonparametric regression model, and classification tree
model.  The stochastic model was not applied to forecasting future accidents due to the
lack of a probabilistic distribution to fit the clearance time data.  The Weibull and
lognormal distributions have been applied to incident duration in the past, but were not
applicable to the accident clearance time data used in this study.  The other two models
were developed but suffered from poor performance in predicting the clearance time of
future accidents.  However, the classification tree model appears to be well suited for
forecasting the phases of incident duration given a database of incidents with reliable and
informative characteristics.
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Chapter 1: Introduction

1.1 Project Definition
Freeway congestion is a major and costly problem in many U.S. metropolitan

areas.  From a traveler’s perspective, congestion has costs in terms of longer travel times
and lost productivity.  From the traffic manager’s perspective, congestion causes a
freeway to operate inefficiently and below capacity.  There are also environmental costs
associated with congestion such as increased pollution and noise.  The type of congestion
most people are familiar with is the “recurring” congestion patterns of rush hour.  Traffic
managers and politicians have been fighting this congestion for many years through the
use of High-Occupancy Vehicle (HOV) lanes, ride-sharing programs, transit incentives,
and ramp metering.  However, the “non-recurring” congestion due to unpredictable
incidents and events warrants immediate response.  The actions taken by traffic managers
require a full understanding of the nature and tendencies of freeway incidents.

1.2 Problem Rationale
Past researchers have estimated that “non-recurring” congestion due to freeway

incidents such as accidents, disabled vehicles, and weather events accounts for one-half
to three-fourths of the total congestion on metropolitan freeways in this country
(Giuliano, 1989).  Thus, the specific field of Incident Management has become an
important component of traffic management.  Incident Management involves the steps of
clearing traffic incidents quickly and then minimizing the congestion effects on the traffic
flow.  Clearing an incident quickly involves managerial support among agencies, clear
guidelines for action, and immediate identification of the incident.  Minimizing the
incident congestion involves the use of traveler information systems such as dynamic
message signs and advisory radio, reversible direction lanes, and vehicle re-routing.
Ideally, these techniques should be employed as soon as possible instead of waiting for
the congestion to begin.  The difficult task, from a traffic manager’s perspective, is
estimating the duration of the incident to help decide on the appropriate course of action.

This situation can be illustrated with an example.  A traffic manager observes a
freeway accident near a major interchange that has resulted in the closure of one lane.
The manager knows that if the queue of stopped vehicles reaches the major interchange,
they will need to activate the variable message signs to alert motorists on both roadways
about the stopped traffic at the interchange.  Queuing models are in place currently that
predict queue characteristics based on demand flows, speeds, and available capacity.
However, the queue length depends on the length of time that the incident is active and
the capacity is reduced by the one lane closure.  In this case, if the manager can anticipate
the clearance time of the accident, they can determine the length of the queue and make a
decision on the activation of variable message signs.

At the start of a freeway incident, traffic managers have an impression on the
nature of the incident.  These people have constant interaction with traffic incidents and
may be able to use past experiences to predict the duration of the current incident.  Only a
few studies have been undertaken to provide a quantitative model to support the
managers’ projection based on personal experience.
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1.3 Project Purpose and Scope
The goal of this project is to develop methods to forecast the clearance time of a

freeway accident based on its characteristics.  The accident data to support model
development will come from the Smart Travel Lab at the University of Virginia.  The
Smart Travel Lab receives traffic data from VDOT’s Smart Traffic Center in Virginia
Beach, VA.  It is anticipated that the forecasting models will be applicable to any freeway
system.

It should be stressed that this project will attempt to forecast accident clearance
time, which is the length of time that emergency and other personnel are present on the
freeway.  It is assumed that the clearance time is a good indication of the total duration of
an incident.  The importance of understanding incident duration is that is a major factor in
determining queues, delay, and other non-recurring congestion effects.

1.4 Report Overview
The remainder of this report is composed of the following chapters:

•  Chapter 2 – a review of past research on forecasting phases of incident duration
•  Chapter 2 – an overview of the different forecasting techniques used in this project
•  Chapter 3 – the experimental setup of the project including data collection
•  Chapters 4, 5, 6 – an evaluation of the three forecasting models
•  Chapter 7 – the project conclusions and contributions to transportation engineering
•  Chapter 7 - recommendations and suggested future research
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Chapter 2: Review of Relevant Literature

2.1 Freeway Traffic Incidents
A freeway incident is defined as any planned or unplanned event that effects the

traffic flow on the roadway (Sethi, et al., 1994).  Some examples of freeway incidents
include accidents and crashes, disabled or abandoned vehicles, vehicle fires, weather
events, road debris, construction, etc.  The Highway Capacity Manual (TRB, 1994) states
that incidents

! Disrupt the level of service being provided,
! Reduce capacity radically, and
! Present hazards to motorists, particularly those directly involved.

Incidents reduce the level of service by lowering speeds (Giuliano, 1989).  Other
motorists slow down to allow emergency vehicles to respond, avoid debris and vehicles,
and also to “rubberneck” or look at the incident.  Capacity is also reduced during
incidents due to lane closures or impediments.  One study claims that a single lane
blockage on a three lane roadway reduces capacity by fifty percent (TRB, 1994).
Additionally, it should not be overlooked that freeway incidents do result in fatalities,
personal injuries, and property damage.

The duration of an incident is composed of four important and distinct
components; detection, response, clearance, and recovery (TRB, 1994) as shown in
Figure 2-1.

Detection Response Clearance Recovery

Traffic Flow
Restored to
Normal

Incident
Cleared

Incident
Response

Incident
Detected

Incident
Occurred

Figure 2-1: The 4 phases of a freeway incident over time.

•  Detection Phase - the period of time between the occurrence of the incident
and detection by the traffic managers, police, or freeway response team.
Included in this phase is the verification of the incident as severe enough to
warrant a response.

•  Response Phase - the period of time between the detection of an incident and
the arrival of emergency or response vehicles.

•  Clearance Phase - the period of time when responding agencies treat victims,
close lanes, and eventually remove vehicles and debris.
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•  Recovery Phase - the period of time after the clearance of an incident for the
traffic flow to return to normal conditions.

Together the four phases represent the total duration of the incident or the period of time
from the occurrence of an incident to the return of normal traffic flow conditions.

Even though research has dissected incident duration into these four phases, it is
possible for an incident to not exhibit all of the phases.  For example, an incident may not
have a response phase if police or response teams discover the incident while patrolling
the area.  Likewise, if an incident is observed occurring on a surveillance camera, there
will not be a detection phase.  Also, for minor incidents that have short detection,
response, and clearance phases there might not be an effect on traffic flow and no
noticeable recovery phase.  Finally, it would appear that the clearance phase would
always be present, but some minor incident may not necessitate emergency vehicles or
police and can treated by the people involved without assistance.

2.2 Past Research on Incident Duration Prediction
There has been research in the past looking into predictive techniques applied to

incident duration.  The results from these studies have been mixed and comparisons
between different methods are difficult due to data issues.  Almost each study uses a
different source of incident data with different descriptive variables and reporting
techniques.  Some studies suffer from a small sample size, and others from inaccurate
data or data with missing values.

2.2.1 Probabilistic Distributions
A simple method to predict incident duration is to model the duration value as a

random variable and attempt to fit a probability density function to the data.  From this
distribution, the traffic manager has an idea on the mean and variance of incident
duration.  Another useful piece of information is the ability to say there is an x
probability of the incident lasting over y minutes.

In 1987, Golob et al. analyzed freeway accidents that involved trucks.  The data
used in the analysis was 332 freeway and 193 ramp accidents around Los Angeles,
California over a two-year period.  The authors theorized that an incident is comprised of
the sequential phases listed in the previous section, but added that the length of each
phase is influenced by the length of the preceding phases (Golob, et al., 1987).  From this
hypothesis, they were able to theorize that the total duration of an incident is modeled
according to a lognormal distribution.  Kolmogorov-Smirnov tests of the truck data
supported the lognormal distribution of all incidents and each specific incident type
(Golob, et al., 1987).  Lacking in the analysis was a test of the assumption that each
incident phase is time-dependent on the previous phases.  This assumption could not be
tested since the incident data only contained the total duration of the incident.

Other research studies by Giuliano in 1989, Garib et al. in 1997, and Sullivan in
1997 have supported the use of a lognormal distribution to describe freeway incident
duration.  Jones et al. used a similar distribution, the log-logistic distribution, in 1991 to a
specific data set from the Seattle area.  Nam and Mannering in 2000 found that the
Weibull distribution could also be used to describe some incident data.  The common
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theme among all three of these distributions is a shift to the left that shows a larger
proportion of short-duration incidents (see Figure 2-2).
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Figure 2-2: General shape of a lognormal probability distribution.

Recent research by Ozbay and Kachroo in 1999 went one step further in terms of
the probabilistic distribution of freeway incidents.  Using 650 incidents from Northern
Virginia over a one-year period, it was found that the incident duration had a shape
similar to a lognormal distribution, but was rejected by several statistical significance
tests.  However, they found that if the set of incidents is divided into subsets of incidents
that have the same type and similar severity a normal distribution of duration is found.
This conclusion supports the theory that the duration of similar incidents are random
variables.

2.2.2 Linear Regression Models
Another simple prediction model is a linear regression function.  In terms of

incident duration, the regression usually has a number of binary variables that represent
certain incident characteristics.  A 1991 unpublished paper from Northwestern University
(Ozbay and Kachroo, 1999) studies incident clearance data of 121 incidents from the
Chicago area and found 9 statistically significant variables: heavy wrecker (WRECKER),
assistance from other response agencies (OTHER), sand/salt pavement operations
(SAND), number of heavy vehicles involved (NTRUCK), heavy loading (HEAVY),
liquid or uncovered broken loadings in heavy vehicles (NONCON), severe injuries in
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vehicles (SEVINJ), freeway facility damage caused by incident (RDSIDE), and extreme
weather conditions (WX).  Two other variables were deemed useful but not statistically
significant: response time (RESP) and incident report (HAR).  The regression model
developed has the form

Clearance Time = 14.03 + 35.57(HEAVY) + 16.47(WX) + 18.84(SAND) – 2.31(HAR) +
0.69(RESP) + 27.97(OTHER) + 35.81(RDSIDE) + 18.44(NTRUCK) +
32.76(NONCON) + 22.90(SEVINJ) + 8.34(WRECKER)

Ozbay and Kachroo do not report on the validity of this regression model, such as r-
squared values, or any testing techniques.

In 1997, Garib et al. also developed a linear regression model to predict incident
duration.  The analysis consisted on 205 incidents over a two-month period from
Oakland, California, and found six significant variables: number of lanes affected (X1),
number of vehicles involved (X2), binary variable for truck involvement (X5), binary
variable for time of day (X6), natural logarithm of the police response time (X7), and a
binary variable for weather conditions (X8).  The log-based regression model is given by

Log(Duration) = 0.87 + 0.027 X1 X2 + 0.2 X5 – 0.17 X6 + 0.68 X7 – 0.24 X8

The adjusted R-square value of this regression model is 0.81 (Garib, et al., 1997).  The
authors make the conclusion that the model is thus 81% accurate at predicting incident
duration without performing any tests on incidents not used to develop the model.

2.2.3 Conditional Probabilities
Another use of probability in incident duration is to develop conditional

probabilities.  Traffic managers may be interested in the probability of an incident lasting
30 minutes given that it has already been active for 15 minutes, or similar cases.  Most
research has focused on unconditional probabilities such as the probability of an incident
lasting exactly 30 minutes.  Jones et al. reported on conditional probabilities in 1991.
Nam and Mannering followed up on the concept by applying hazard-based models
developed in the biometrics and industrial engineering fields to incident duration.
Hazard-based models also use conditional probabilities to find the likelihood that an
incident will end in the next short time period given its continuing duration (Nam and
Mannering, 2000).  The use of conditional probabilities is based on the theory developed
by Golob et al. in 1987 that each incident phase is influenced by the length of previous
phases of the incident.  To date, these types of models have been used to find the accident
characteristics that have the greatest influence on incident duration instead of explicitly
forecasting the duration for empirical testing purposes.

2.2.4 Time Sequential Models
A 1995 paper by Khattak et al. makes the statement that most incident duration

prediction models have no operational value since they require knowledge about all
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incident variables.  In the field, accident information is acquired sequentially and this
progression should be reflected in the model.

To develop the time sequential model, the authors identified ten distinct stages of
the incident duration based on the availability of information (Khattak, et al., 1995).  The
length of time for each stage differs for each incident, but it is truncated after a maximum
of 10 minutes.  Each stage has a separate truncated regression model, and the models
progressively add more variables.  The time sequential model was not tested or validated
in the study due to a small sample size of 109 freeway accidents.  This study intends to
demonstrate the methodology of time sequential models rather than show its performance
in traffic operations (Khattak, et al., 1995).  It does not appear that this model approach
was ever applied to a large sample size or used in any future study on forecasting incident
duration.

2.2.5 Decision Trees
All of the methods of incident duration prediction discussed so far have had a

probabilistic basis.  This may be preferable in many cases because you can add
confidence intervals or other probabilities to the forecasted output.  For example, a model
could tell a traffic operator that the current incident will last 20 minutes with a 95%
confidence level.  However, if these models do not produce accurate results, it is of no
use to the operator to know that an incident will last 20 minutes with a 60% confidence
level.  In this case new models and methods for duration prediction are needed that can
identify patterns in data without an underlying probabilistic distribution.

One such pattern-recognition model that has recently been applied to incident
duration prediction is a decision tree.  A specific type of decision tree, a classification
tree, will be discussed thoroughly in the next section.  In 1999, Ozbay and Kachroo used
decision trees to predict incident clearance times in the Northern Virginia region.  Their
published work describes a comprehensive study in a step-by-step manner to show all of
the data collection and analysis processes.  After collecting a large sample of incident
data, the authors followed a series of trial prediction methods with poor results.  They
first tried linear regression techniques with a low R-square value (about 0.35), and then
found the duration values did not follow either a lognormal or log-logistic distribution
(Ozbay and Kachroo, 1999).  The next step was to develop a decision tree similar to the
construction of the classification and regression trees (CART) developed by Breiman et
al. and will be defined later in this chapter

Before constructing the decision tree, Ozbay and Kachroo first determined the
significant independent variables using ANOVA tests of the data.  Some types of
incidents, such as HAZMAT and weather related incidents, the number of samples in the
database was too small to make any conclusion on the variables’ importance.  Thus, these
variables were also excluded from the construction of the decision tree.  It should also be
noted that the intended output of the model is an average duration of past incidents that
are similar to the current.  Other outputs could be a range of possible durations or a
minimum and maximum duration value.

A portion of the final decision tree is included in Figure 2-3 (Ozbay and Kachroo,
1999).
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Disabled
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Mean: 83 min.

Mean: 27 min.
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Mean: 60 min.
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Mean: 45 min.
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Figure 2-3: Decision tree for incident clearance time prediction (Ozbay and
Kachroo, 1999).

The decision tree above is the main tree where the first decision is based on incident type.
For example, in the above tree an incident where the type is unknown is immediately
given a mean duration of 45 minutes.  A disabled truck is assumed to have a clearance
time with a mean of 60 minutes.  But, if more information is available about the use of a
wrecker the prediction is refined to 32 minutes for no wrecker or 76 minutes for a
wrecker.  The decision tree can handle differing levels of information knowledge about
the current incident.

Ozbay and Kachroo tested the decision tree and found a satisfactory performance
where 44 out of 77 test incidents were predicted with less than 10 minutes of prediction
error.  One important finding was that there were a number of outliers that had a large
difference between actual and predicted durations.  These outliers have the potential to
skew some performances of measure like the Mean Absolute Error (MSE) that average
the difference in actual and predicted durations for all test incidents.
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2.3 New Forecasting Techniques
The following sections will describe two fairly new forecasting techniques that

will be used for this project.  The techniques are classification tress and nonparametric
regression.

2.4 Classification Trees
A classification tree is a type of decision tree that represents of a number of

yes/no questions that sort object into distinct classes.  The difference between a
classification tree and a decision tree similar to the one described above is that the
classification tree assigns a class instead of a deterministic value.  When a mechanic is
inspecting a car to find why it doesn’t run they progress through a checklist of different
parts to inspect.  The result of each question leads the mechanic down a different path.  If
the checklist were plotted as a number of nodes and links, a classification tree would be
formed (see Figure 2-4).

Are spark
plugs
functioning?

Vehicle
miles >
200,000?

Are all fluid
levels ok? Replace spark plugs

Refill engine fluids

Sell car Send back to manufacture

Yes
No

No

Yes

Yes

No

Figure 2-4: Example of a mechanic’s classification tree.
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The goal of a classification tree is to take a set of objects with characteristics or
measurements and find a systematic method of assigning the objects to a number of
distinct classes.  This systematic method of splitting a sample into two sub-samples is
referred to as a classifier (or classification rule), and the combination of numerous
classifiers forms a classification tree (Breiman, et al., 1984).

Data is the most important key to constructing a classifier (Breiman, et al., 1984).
As seen in the example above, the mechanic’s checklist is based on past experience with
similar vehicles and problems.  The data used in a classifier can have either numerical or
categorical variables.  An example of a numerical variable would be the number of miles
on the vehicle, while a categorical variable would be the type of engine in the vehicle.
The ability to find patterns in both numerical and categorical variables makes decision
trees very useful for modeling real-world processes like diagnostic problems (Park,
1995).

To date, there has been no published study on the use of classification trees to
forecast incident duration.  Ozbay and Kachroo have shown that decision trees are a
promising technique that needs to be developed further.  Classification trees have the
advantage of sorting classes of incident duration that can be defined by the user.  In
addition, the categorical output may be better suited for the categorical inputs that are
used in describing the nature of a freeway incident.

2.4.1 Tree Construction
This section deals specifically with binary tree structured classifiers, which

consist of simple yes or no splitting decisions.  The classifier splits a sample into two
descendant subsets.  A classification tree is formed by repeated splits of descendant
samples (Breiman, et al., 1984).  For a binary tree structure, the splitting rule is of the
nature, “Is x = y?” with a path for objects where this statement is true and another path
for a false statement.  At some point a tree must stop splitting and terminal subsets (or
nodes) are declared.  Each terminal subset is the assigned to a distinct class and it is
possible for two or more subsets to belong to the same class (Breiman, et al., 1984). See
Figure 2-5 for the structure of a classification tree.
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Figure 2-5: Classification tree structure.

The construction of a classification tree is dependent on three processes (Breiman,
et al., 1984):
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•  The selection of the splitting criteria,
•  The decision to declare a terminal node or continue splitting, and
•  The assignment of each terminal node to a class.

2.4.2 Classification and Regression Tree (CART) Software
The CART software program is based on the decision tree methodology

developed by Breiman, Friedman, Olshen, and Stone in 1984.  The software program
incorporates a binary-recursive portioning algorithm, where parent nodes are always split
into two child nodes and each child node is considered a future parent node if it is
determined that a split is needed (Salford Systems, 2000).  One key feature of the CART
program is that the classifiers are nonparametric and thus do not require a prior
knowledge about the probabilistic distribution of the underlying data (Salford Systems,
2000).

The first problem in constructing a classification tree is the method to determine
the splits that will divide the parent node data into two smaller samples.  CART is based
on the fundamental idea that each split should be selected so that the data in each
descendant subset are “purer” than the data in the parent node (Breiman, et al., 1984).
This measure of impurity is based on the proportion of cases in the node belonging to
each class.  Node impurity is largest when all classes are equally mixed together and
smallest when the node contains only one class (Breiman, et al., 1984).  Consider a parent
node t, which contains data belonging to J number of classes.  The proportions for each
class in the node are given by

p(j | t) where j = 1, 2,…, J and Σ p(j | t) = 1 for all j

Based on the Gini diversity index, the impurity function i(t) for node t is given by

∑−=
j

tjpti )|(1)( 2

Thus, consider a parent node t that uses splitting rule δ to split into two nodes tL and tR,
where pR and pL are the respective proportions of cases from the parent node in each sub-
sample.  The original impurity of the parent node is given by i(t), and the impurity for the
two new nodes by i(tL) and i(tR).  The decrease in impurity of this split δ is given by

∆i(δ, t) = i(t) - pL i(tL) – pR i(tR)

When selecting a node split it is important to note that there are a definite number
of possible splits of the data (Breiman, et al., 1984).  Thus, CART uses a brute force
method that examines each possible split for each possible variable.  Using the impurity
function discussed above, the split with the largest decrease in impurity is chosen for that
node.  The assumption is that the impurity will never increase from a split.  If the
impurity can not be decreased, then a terminal node is declared and that portion of the
tree stops growing.  The class assigned to the terminal node is based on which class
became “purer” from the final split.  It should be noted that using the Gini rule for class
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assignment is different from the plurality rule.  Thus, it is possible that a terminal node
will be assigned one class, when there is a higher proportion of another class in the node.

The conclusion of Breiman et al. was that the properties of the final classification
tree are insensitive to the specific splitting rule used in development.  A much more
criterion is the pruning method, used to determine the best size tree to use.  CART
constructs the largest possible tree such that the impurity of all terminal nodes can not be
decreased.  Pruning involves taking the large tree and recombining splits into parent
nodes (Cios, et al., 1998).  The pruning moves upward and produces a decreasing
sequence of sub-trees.  The sub-trees are then tested for their predictive accuracy using a
separate test data set or cross-validation techniques (testing techniques will be discussed
later).  The sub-tree that has the lowest misclassification rate of the test data is selected as
the optimal classification tree for that data (Breiman, et al., 1984).  Pruning is widely
accepted in the construction of classification trees as one method to avoid overfitting a
test data set (Cios, et al., 1998).  Overfitting is the phenomena where a process of fitting a
model or method to a data set goes too far and attempts to define or explain every
instance in the data set.

Since classification trees are data-dependent, there must be adequate testing of the
tree with data not used to develop the classifiers.  CART uses two testing procedures:
learning samples and cross validation (Salford Systems, 2000).  When there is a large
data set to develop a tree, the sample can be divided into learning and testing sub-
samples.  CART uses the learning sample to develop potential trees during the pruning
process, while the testing sample is used to compare the tree performance and select the
optimal tree.  When there is a small data sample available, CART uses cross validation
for testing.  In this process the data set is divided into ten equal samples.  Nine of the
samples are then used as a learning sample, with the remaining one used as a testing
sample.  This process of growing a tree and testing continues until each sample has been
used for testing.  The results from these 10 trees are then combined to form error rates for
trees of each possible size (Salford Systems, 2000).  The optimal testing situation would
be to use a learning and testing sample, and CART has historically performed about 10 to
15 percent better using testing samples than cross validation (Salford Systems, 2000).

2.5 Non-parametric Regression
Nonparametric regression is a forecasting technique that has been used in the past

for predicting traffic flows in the short-term.  The technique has provided positive results
and is considered a viable choice for traffic condition forecasting for freeway
management systems, and is especially important when there are difficulties developing
parametric models (Smith, et al., 2001).  The basis of nonparametric regression is to
make current decisions based on past, similar experience.  Thus, it relies heavily on data
describing the relationship between dependent and independent variables.  The basic
approach is to locate the state of the current system (as defined by the independent
variables) in a neighborhood of past, similar states.  Once a neighborhood is defined, the
past cases in the neighborhood are used to estimate the value of the current dependent
variable (Smith, et al., 2001).

To date, there has been no published study of the use of nonparametric regression
for predicting incident duration.  For such an application, the system state of an incident
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can be described using a number of independent variables such as time of day and the
number of vehicles involved.  The dependent variable and forecasting output would be
the duration of the incident.  One attractive feature of nonparametric regression as a
forecasting tool is that the knowledge of the relationship is in the data instead of the
model (Smith, et al., 2001)

The key to the effective use of nonparametric regression is defining an
appropriate neighborhood and then generating a forecast based on the cases within the
given neighborhood.

2.5.1 Neighborhood Definition
The accuracy of nonparametric regression is dependent directly on the quality of

the neighborhood and its ability to include similar cases (Smith, et al., 2001).  The two
basic approaches to defining neighborhoods are kernel and nearest neighbor (Altman,
1992).  Kernel neighborhoods have a constant bandwidth, and thus occupy a specific
range on the independent variable space (Smith, et al., 2001).  Nearest neighbor
neighborhoods are defined as containing a constant number of past cases.  This is
commonly referred to as k-nearest neighbor (KNN) nonparametric regression, where k is
the number of past cases used to define the neighborhood (Smith, et al., 2001).  The two
methods of neighborhood definition are best seen on a graph.  Figures 2-6 and 2-7 show a
sample of data points with corresponding independent and dependent variable values.  In
this example the problem is how to define a neighborhood for an independent variable
value of 35 (dashed line).  Figure 2-6 uses a kernel size of 6 to return a neighborhood of
16 data points.  Figure 2-7 uses a nearest neighbor approach with k=8 to return a
neighborhood of 8 data points.



Forecasting the Clearance Time of Freeway Accidents 15

0

2

4

6

8

10

12

0 10 20 30 40 50 60

Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

Kernel = 6

Figure 2-6: Example of a kernel neighborhood of size 6.

0

2

4

6

8

10

12

0 10 20 30 40 50 60

Independent Variable

D
ep

en
de

nt
 V

ar
ia

bl
e

k = 8 Neighbors



Forecasting the Clearance Time of Freeway Accidents 16

Figure 2-7: Example of a nearest neighbor neighborhood (k=8).

An issue with neighbor definition is how to measure the distance between cases in
the database.  The basic method is to use the Euclidean distance to measure proximity.
This method is applicable for a single numerical independent variable.  When more than
one independent variable is present, it may be beneficial to add weight factors to each
variable to determine the total distance.  Assigning weight factors to rank variables is
heuristic in nature and requires careful consideration by the model developer (Smith, et
al., 2001).  A similar situation is present when independent variables are categorical as
opposed to numerical in value.

2.5.2 Forecast Generation
Once a neighborhood of past cases has been defined, it is necessary to generate a

prediction based on those neighbors.  A straightforward method is to compute a simple
average of the dependent variable values of the cases in the neighborhood.  The weakness
of this approach is that it ignores the distance metric information developed in the
neighborhood creation (Smith, et al., 2001).  A more appropriate approach may be to
weigh the average so that past cases nearer to the current case should have more
importance in generating the forecast.  Other approaches involve linear regression of the
dependent values of the cases in the neighborhood, and other weighting techniques.  As
with neighborhood definition, forecast generation has many possible approaches and the
final choice of a technique should be thoroughly tested and evaluated.

2.6 Summary
The purpose of this chapter was to investigate past attempts at forecasting incident

duration and present new methods that will be developed in this project.  The next
chapter will present the structure of the project and information on the data to be used for
model development and testing.
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Chapter 3: Research Framework

3.1 Methodology
The main goal of this study is to investigate models to forecast the clearance time

of freeway accidents.  The two main methods that will be discussed in depth are
nonparametric regression and classification trees.  Below is the methodology to construct
and evaluate the forecasting methods.

•  Collect accident data from a specific freeway or freeway system for an
extended time period.

•  Clean data by removing entries with missing or unrealistic values.
•  Identify potential independent variables and determine their significance to

accident clearance time.
•  Select appropriate forecasting models for evaluation.
•  Apply forecasting models to the accident data to predict the clearance time.
•  Evaluate the performance of each forecasting.
•  Make recommendations on the use of the developed models for forecasting

accident clearance time.

3.2 Data Source
The majority of the forecasting models studied in the previous sections have had

an empirical rather than theoretical basis for model development.  Having a large sample
of past accidents with reliable information is the most important key to producing
accurate predictions.

The accident data used in this project was obtained from the Smart Travel Lab
located at the University of Virginia in Charlottesville, Virginia.  The Smart Travel Lab
was created through a partnership of the Virginia Department of Transportation (VDOT)
and the Department of Civil Engineering at U.Va.  The Lab is a state-of-the-art facility
for research and education in the field of Intelligent Transportation Systems (ITS).  The
Lab maintains a number of direct data connections with VDOT facilities around the state.
One such VDOT facility that shares data with the Lab is the Hampton Roads Smart
Traffic Center (HRSTC) in Virginia Beach, Virginia.  The HRSTC is a freeway
management system that monitors traffic in the Norfolk and Virginia Beach region using
203 detector stations and 38 surveillance cameras.  This area encompasses the I-64 and I-
264 corridors (see Figure 3-1).
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Figure 3-1: Map of the Hampton Roads region of Virginia.

The HRSTC also serves as the headquarters for the Freeway Incident Response Team
(FIRT) that patrols the freeways and assists motorists and emergency vehicles.  The
Smart Travel Lab receives video, station data, and incident data directly from the
HRSTC.

The Hampton Roads Incident Database is maintained by the operators and
personnel at the HRSTC.  This includes the persons monitoring the freeway cameras and
other devices and the supervisors.  Freeway incidents are identified by the operators
watching the cameras, the incident response team on the freeways, state police radio,
phone calls from motorists, and other sources.  The incident is then manually entered into
a database using a graphical user interface program at the HRSTC.  All of the information
is entered by hand into the database.  The database began collecting incidents in January
of 1997 and is still in use today with all new entries being sent to the Smart Travel Lab.
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3.3 Database Structure
The actual incident database in the Lab is built on 5 different tables.  Each unique

incident recorded at the HRSTC is given a unique ID number (named the TMS call
number) that is used to join the tables in the database.  The structure of the database is
shown in Figure 3-2.

TMS_Call_Number
Type

hr.inc_assist TMS_Call_Number
Begin
Duration
Type
Weather
Detection_Source
Description

hr.incident

TMS_Call_Number
Road
Direction
Lane
Location

hr.inc_roadway

TMS_Call_Number
Make
Model
Color
Tow_Company
State

hr.inc_automobile

TMS_Call_Number
Name

hr.inc_agency

Location
Roadway
City
Description
Camera

hr_inc_location

Figure 3-2: Structure of incident database tables.
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3.3.1 Incident Table
The main table in the database is the incident table (hr.incident).  This table

contains important information on the beginning time and date of the incident along with
the ending time and date.  A single entry in the start and end fields contains both the date
and time together, such as MM/DD/YYYY HH24:MI.  The duration of the incident is
defined as the distance between the start and end times.

The type of incident is also recorded in this table.  The options for the incident
type are

•  Abandoned – an unoccupied vehicle left on the freeway shoulder
•  Accident – a crash involving one or more vehicles
•  Bridge – any type of incident that occurs on a bridge
•  Condition Change – action taken by traffic manager
•  Debris – material on the freeway affecting travel
•  Disabled – an occupied vehicle that has broken down in a travel lane or

shoulder lane
•  Other
•  TEOC – a severe weather advisory
•  Tunnel – any type of incident that occurs in a tunnel
•  VMS Change – action taken by traffic manager to provide traveler

information by variable message signs (VMS)
TEOC refers to VDOT’s Transportation Emergency Operations Center, a statewide
coordinating unit that informs VDOT agencies and the public on significant weather
conditions that may affect traffic conditions (VDOT, 2000).  These TEOC entries only
represent about 2 percent of the total entries in the database.

The next field in the table is the weather.  The person entering the incident into
the database has the choices of

•  Clear,
•  Cloudy,
•  Cold / Ice,
•  Cool,
•  Fog,
•  Fog / Rain,
•  Hail,
•  Hot / Humid,
•  Natural Disaster,
•  Rain,
•  Sleet,
•  Snow, and
•  Warm.

This field is subjective from the operators’ perspective and is often left blank during data
entry.

The next field is the detection source.  This is the manner in which the traffic
manager was informed of the incident.  Some of the possible detection methods are

•  FIRT (Freeway Incident Response Team),
•  HRSTC Cameras,



Forecasting the Clearance Time of Freeway Accidents 21

•  Virginia State Police (VSP) Radio,
•  Bridge Personnel,
•  Phone Calls,
•  TEOC, and
•  VDOT Personnel

In the database there are a total of over 1000 unique entries for this field.  Sometimes a
specific police officer or camera operator is called by name in the field.  Also, sometimes
the camera number is recorded.  Again, sometimes the entry person leaves this field
blank.

The final field in the incident table is a text description of the incident.  This field
is considered optional and is only used by the operator to provide additional useful
information that was not included in the other entries.  Often, this description field is used
to provide police codes on the specific type of incident, or the presence of personal
injuries.  Also, the database only stores a certain number of characters for this field, but
the operator can enter as long a description as needed.  Thus, some description entries are
cut off in mid sentence and some information is not stored in the database.  Overall, it is
not possible to search this field for information due to the inconsistent nature of the
entries.

3.3.2 Agency Table
This table (hr.inc_agency) lists the specific agencies that responded to the scene

during the course of the incident.  The entries are listed in alphabetical order in the
database, so it is not clear which agency was the first on-scene.  The amount of time each
agency was on-scene is also not reported.  This table is connected to the main incident
table through the unique TMS call number.  Some of the most frequently recorded
responding agencies are

•  Emergency Medical Services (EMS),
•  Fire Department,
•  FIRT (Freeway Incident Response Team),
•  Hazardous Material Team,
•  Local Police,
•  Virginia State Police (VSP), and
•  VDOT.

Overall, there are over 100 unique entries for the responding agency.  In some cases the
actual city is listed instead of local police.  Other entries are unidentifiable or include
specific names of police officers or FIRT personnel.

3.3.3 Assist Table
The next table in the incident database is the assist table (hr.inc_assist).  This table

lists the specific assistance given by the FIRT team on–scene or the traffic operators back
at the HRSTC.  Some of the most frequently recorded entries for the assistance are

•  Call AAA for vehicle assistance,
•  Call local tow truck,
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•  Call taxi,
•  Change flat tire,
•  Fill vehicle with gasoline,
•  Extinguish vehicle fire,
•  Traffic control around scene,
•  Remove road debris,
•  Push vehicle to shoulder,
•  Activate Variable Message Signs (VMS), and
•  Activate Highway Advisory Radio (HAR).

This field also suffers from many different entries, over 1000 unique entries are in the
database.  Many of these entries are similar, but each operator has their own personal
phrases or spellings that they use to enter the assistance.  It should be noted that the
assistance listed applies to only FIRT and the HRSTC and not the other responding
agencies such as EMS or police.

3.3.4 Automobile Table
This table (hr.inc_automobile) lists the specific automobiles that were involved in

the incident.  Two fields record the make and model of each vehicle.  In some cases, a
tractor-trailer is listed as the vehicle make, but in other cases the truck is listed by the
specific make and model such as a Volvo 5100.  This situation is also present for other
types of vehicles such as motorcycles, buses, and emergency equipment.  The license
plate number and originating state are recorded at the HRSTC, but the plate number is
stripped when the data is passed along to the Smart Travel Lab.  Also included in this
table is the towing company that was used for each vehicle.  Again, the entries in the
automobile table are joined to the main incident table through the unique TMS call
number.

3.3.5 Roadway Table
This table (hr.inc_roadway) is concerned with the location of the incident as

opposed to the incident characteristics.  However, the location entries in this table are
joined to the incident characteristics in the main incident table through the unique TMS
call number.  The first field in the table is the specific road or interstate where the
incident occurred.  The choices for this entry are

•  I-64,
•  I-264 (recently renamed from Route 44),
•  I-464,
•  I-564,
•  I-664,
•  Off-highway, and
•  Bridge/Tunnel.

The interstates are straightforward, but the others are not.  In the Hampton Roads area,
there are two river interstate river crossings; the Hampton Roads Bridge Tunnel (HRBT),
and the Monitor Merrimac Memorial Bridge Tunnel (MMMBT).  The HRBT is used by
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I-64, while the MMMBT is serviced by I-664.  However, if an incident occurs on either
of these systems the road entry is only given as bridge/tunnel.  Thus, it is impossible to
differentiate between incidents on the HRBT and MMMBT.  The off-highway entry is
unclear, but probably refers to incidents that occurred on major arterial roads in the
region that interchange with the interstates, and thus may cause back-ups on some of the
interstate exit ramps.  It should also be noted that the road entry does not say whether the
incident occurred on the main lanes or HOV lanes on the road.

The road direction is also given in this table to differentiate between the two
opposing travel lanes.  The lane field states which travel lanes are affected by the
incident.  In this field, some entries state the lanes by name (left and center lanes) or by
lane number (1 and 2) depending on the method preferred by the operator.  In addition,
the lane field includes shoulder lanes, ramps, and reversible lanes.  The lane field is the
place where main lines are differentiated from HOV lanes.

Perhaps the most important field in this table is the specific location of the
incident.  The HRSTC has defined specific sections of the interstates as different zones,
using names such as W64-01 (see Appendix D for a complete map).  The east and west
part of the zone name does not refer to the direction of travel, but rather if the zone is
located east or west of the large I-64/I-264 interchange in Norfolk.  The zone boundaries
are the interchanges along the roadway, so a location zone may be 1 to 2 miles in length
and refer to both directions of travel.  This is the most specific location of an incident that
is available in the incident database.

3.3.6 Location Table
The location table is the only table in the incident database that is not joined to the

main table through the unique TMS call number.  This table instead is joined to the
roadway table through the unique location zone name.  The table lists some important
information about each location zone.  The road and corresponding city of the location is
given in two fields.  The text description field gives the name of the two interchanges that
bound the location.  The final field is for the HRSTC and tells which traffic cameras are
located within the zone.

3.4 Data Collection
The Incident Database from the Smart Travel Lab includes all types of incidents

from January of 1997 and is updated daily.  This project uses accident data up to the end
of December 2000, which gives a total of 7,396 unique freeway accidents.

3.4.1 Data Reduction
As with any project that includes a large amount of data, the first step in analysis

is to determine which data is of use to the project.  This involves reducing the data by
eliminating useless data.  A number of accidents had missing values in the database,
especially in the automobile and weather fields, and were thus removed from the
analysis.  The focus of this project is on freeway accidents, so any other accidents were
removed.  Some entries in the incident database listed an ‘off-highway’ entry in the
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roadway field, and were excluded from the analysis.  Other accidents were removed due
to errors in the duration.  Accidents that have a zero or negative value of duration are
assumed to be entry errors by the HRSTC.  Also, accidents with a duration greater than
12 hours were assumed to be operation error and removed from the analysis data.  The 12
hour cutoff was used because it includes the case where the operator incorrectly enters
the AM or PM part of the time.

After data reduction, there are 6,828 accidents that are assumed to be valid in
terms of the clearance time and characteristics.  This population of accidents is divided
into learning and testing samples.  The accidents in the learning sample will be used for
model development and calibration, while the testing sample accidents will be used to
evaluate the performance of the forecasting model.  The testing sample is comprised of
one-quarter of the accident population or 1707 accidents.  Thus, the learning sample
consists of 5121 accidents.  It should be noted that the accidents for the testing sample
were chosen chronologically rather than randomly.  The testing sample represents the
most recent accidents of the total population.  Normally, a random sample of the total
population is used for the testing sample.  However, the goal of the forecasting models
used in this study is to predict the clearance time of future accidents using knowledge
from past accidents.  For this reason, a chronological division was used for the learning
and testing samples.

3.5 Potential Independent Variables
The goal of a forecasting model is to emulate a relationship between the

dependent and independent variables.  For this example, the dependent variable is the
duration of the accident.  Numerous independent variables are possible from the large
amount of data recorded in the incident database for each accident.  Table 3-1 gives a
summary of the independent variables considered for the forecasting models.  All of the
independent variables are categorical with 2 or 3 possible values.
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Table 3-1: Potential model independent variables.

Variable Name Value
Time of Day PEAK 1 = Peak (6-8am, 4-6pm)

0 = Off-peak
Day of the
Week

WEEKDAY 1 = Weekday
0 = WeekendPhysical Weather WEATHER 1 = Normal (Clear, Cloudy, Cool,
Hot/Humid, Warm)
0 = Adverse (Cold/Ice, Fog, Natural
Disaster, Rain, Sleet, Snow)

EMS
Response

EMS 1 = Yes
0 = No

Fire
Response

FIRE 1 = Yes
0 = No

FIRT
Response

FIRT 1 = Yes
0 = No

Hazardous
Material
Agency

HAZMAT 1 = Yes
0 = No

Police
Response

POLICE 1 = Yes
0 = No

VDOT
Response

VDOT 1 = Yes
0 = No

Response

Tow Truck
Response

TOW 1 = Yes
0 = No

Number of
Vehicles

NUMVEH 1 = Single Vehicle
2 = Two Vehicles
3 = Three or More Vehicles

Truck
Involvement

TRUCK 1 = Yes
0 = NoVehicle

Passenger
Bus
Involvement

BUS 1 = Yes
0 = No

3.5.1 Physical Independent Variables
The physical independent variables describe the nature of the accident in terms of

time and place.  The first independent variable is the accident time of day.  This variable
has possible values of peak and off-peak.  In this case, the peak hours are defined as 6am
to 8am inclusive and 4pm to 6pm inclusive.  Thus, off-peak hours are 8:01am to 3:59pm
and 6:01pm to 5:59am.  These peak hours were chosen because they correspond to the
hours of operation for the High Occupancy Vehicle (HOV) reversible lanes that run along
the median of I-64 in the region.  The next variable is the day of the week.  This variable
has possible values of weekday (Monday to Friday) or weekend (Saturday and Sunday).
For both the time of day and day of week, the variable value is based on the start time of



Forecasting the Clearance Time of Freeway Accidents 26

the accident regardless of the duration.  A final physical variable is the weather, which
takes on values of normal or adverse.  Adverse weather is defined as fog, rain, ice, snow,
sleet, or natural disaster.  Normal weather includes all other conditions.

3.5.2 Vehicle Independent Variables
The vehicle independent variables attempt to provide information about the

number and types of vehicles involved in the accident.  The number of vehicles variable
has three different values; single vehicle, two vehicles, and three or more vehicles.  A
number of other variables were used to reflect the types of vehicles involved in the
accident.  The involvement of a truck or tractor-trailer will give the truck variable a yes
value.  Similarly, the involvement of a passenger bus will give the bus variable a yes
value.  The assumption is that the accident only involved passenger automobiles unless
otherwise noted by the truck and bus variables.

3.5.3 Accident Response Independent Variables
Another important independent variable related to accident clearance time is

which emergency agencies responded to the scene.  These variables give some sense of
the severity of the accident.  Binary variables were used to note the response of EMS,
Fire Department, FIRT, Hazardous Material Agency, Police (local and state), Virginia
Department of Transportation (VDOT) personnel, and tow-trucks.  It should be noted that
there are no variables to distinguish the response order or time of the above agencies.

3.6 ANOVA Significance Test
The above independent variables were identified from the available accident

data.  It is possible that some of the independent variables are not significant with regards
to affecting accident clearance time.  For example, some of the variables may have an
influence on other factors than clearance time such as accident frequency, accident
severity, and accident detection time.  Thus, it was necessary to perform statistical
significance tests on the independent variables using ANOVA for the proposed
dependent variable of accident clearance time.

Analysis of variance (ANOVA) refers to a collection of experimental situations
and statistical procedures for the analysis of quantitative responses from experimental
units (Devore, 1995).  A single-factor ANOVA table analyzes data from two or more
population samples where one factor is used to differentiate between the populations.
The null hypothesis being tested is given below (Devore, 1995).

Ho: µ1 = µ2 = … = µI
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Versus the alternative hypothesis

Ha: at least two of the µI’s are different

Where
I = the number of samples being compared
µ1 = the mean of sample 1 when a single factor is applied to population
µI = the mean of sample I when a single factor is applied to population

This ANOVA is easily able to handle samples with different sample sizes.  The major
assumption with single-factor ANOVA is that each sample of the population is normally
distributed with the same variance (Devore, 1995).  However, Ozbay and Kachroo used
ANOVA tables successfully to test variable significance and even found a normal
distribution for incident duration.  As data sets of incidents were divided into smaller data
sets so that the incidents were all of the same severity and nature, a normal distribution
trend was found and confirmed by statistical tests (Ozbay and Kachroo, 1999).  Thus, the
ANOVA assumption appears to be valid.

For this project, an ANOVA table was applied to each independent variable.  For
example, for the time of day independent variable, the single factor used was peak versus
off-peak.  The total population of accidents was divided into two samples, peak accidents
and off-peak accidents.  Each sample has a sample mean and sample variance.  The
ANOVA test compared the two samples to determine if the underlying mean of each
sample was the same (null hypothesis) or significantly different (alternative hypothesis).
The output of the ANOVA table is a p-value, which is the smallest level of significance
(α) at which the null hypothesis (that the two sample means are the same) can be rejected
(Devore, 1995).  Common levels of significance are 0.05 and 0.01.  If the p-value is less
than or equal to the level of significance, the null hypothesis is rejected and we can say
that the two samples have different means and the independent variable is significant in
terms of clearance time.  Thus, the clearance time of an accident is assumed to be
dependent on all significant variables.

The ANOVA table was applied to each independent variable and the
corresponding p-values are given below.  The full ANOVA results for each independent
variable are given in Appendix A.

Table 3-2: Independent variable significance test results.

Independent Variable ANOVA p-value
PEAK 2.30 x10-5

WEEKDAY 7.83 x10-6

WEATHER 0.235
EMS 1.49 x10-66

FIRE 1.31 x10-60

FIRT 0.958
HAZMAT 6.21 x10-28

POLICE 2.70 x10-31

VDOT 2.18 x10-11
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NUMVEH 1.41 x10-44

TRUCK 1.95 x10-19

BUS 0.0440
TOW 1.80 x10-181

The ANOVA analysis shows that all of the independent variables are significant except
for weather and FIRT response.  The bus involvement variable is significant at a 0.05
level, but not a 0.01 level.  This borderline independent variable was included in the
forecasting models none the less, because it intuitively appears to have a significant
impact on accident clearance time.  With a passenger bus, there is the probability of
numerous victims and a relatively large vehicle to evacuate the accident scene.

3.7 Model Selection
The next step in the experimental framework is to select potential models for

forecasting accident clearance time.  There is a wide range of forecasting techniques that
may be applicable to accident clearance time.  This study will focus on three different
forecasting models.

The first model to be evaluated is a stochastic model using probability density
functions to describe clearance time.  Bast research on incident duration has shown that
the duration of an incident can be modeled as a random variable using a lognormal or
Weibull distribution.  The second forecasting model is a nonparametric regression model.
Nonparametric regression techniques have been used successfully to forecast other traffic
conditions such as flow.  The final forecasting model is a classification tree model.  This
model was chosen based on promising research performed recently using decision trees
to predict incident clearance times.  The next three chapter will outline the development
of the three forecasting models and investigate the performance of the each model.
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Chapter 4: Stochastic Model

4.1 Model Background
Many events in nature are assumed to behave in some random manner.  Even

though the events are random, there may be tendencies and trends in the behavior of the
events that can be used to describe the system as a whole.  A stochastic model attempts to
describe the randomness of the events (Higgins and Keller-McNulty, 1995).  For
example, flipping a coin produces two possible results in showing heads or tails.  A
single event of flipping the coin is not dependent on any factors, so there is a random
outcome of heads or tails.  However, over a long period of time and many trials, it is
expected that the proportion of heads outcomes will be 50 percent.  This is a simple
example of a stochastic model of the random event of flipping a coin.

4.2 Probability Density Functions
One method to describe the behavior of a random event is through a probability

density function.  The probability distribution shows how probability density is
distributed across the possible values of a random variable (Higgins and Keller-McNulty,
1995).  The equation to describe continuous random variables for a specific distribution
are referred to as a probability density functions

Past research on incident duration has shown that the duration tends to show a
Weibull or lognormal probabilistic distribution.  One major deficiency with a number of
these results is the relatively small sample size used to test different probability density
functions. If such distributions are applicable, it may be stated that accident duration can
be modeled as a random variable with a known distribution.

A random variable is said to have a Weibull distribution if the probability density
function of the random variable is given by (Devore, 1995).
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where x is the value of the random variable, α is a shape parameter, and β is a scale
parameter.

Likewise, a random variable is said to have a lognormal distribution if the log of
the variable has a normal distribution.  The probability density function of a lognormal
distribution is given by (Devore, 1995).
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where x is the value of the random variable, µ is a scale parameter, and σ is a shape
parameter.
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4.2.1 Goodness-of-fit Test
The assumption from past theoretical and quantitative research is that the Weibull

or lognormal distributions can describe incident duration.  In this project there is a large
sample to verify or disprove this assumption using statistical goodness-of-fit tests (Ang
and Tang, 1975).  One common goodness-of-fit test that will be applied to the above
probability density functions is the chi-square test.

The chi-square test compares the observed interval frequencies with the
theoretical frequencies for the distribution to be tested (Ang and Tang, 1975).  The test
statistic is given as
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where k is the number of intervals, ni is the observed frequency for the ith interval, and ei
is the theoretical frequency of the ith interval.  The test statistic, χ2, will approach the chi-
square distribution χf

2 with f=k-1 degrees of freedom (Ang and Tang, 1975).  The critical
value of the χf

2 distribution at the cumulative probability of 1-α is given by c1-α,f where α
is referred to as the level of significance (Ang and Tang, 1975).  Thus, the assumed
distribution is an acceptable fit at the α significance level if χ2 is less than c1-α, f.
Otherwise, the assumed theoretical distribution is not supported by the observed data
(Ang and Tang, 1975).

4.3 Model Development
This chapter discusses a collection of different stochastic models for a certain

accident characteristic.  Two factors were tested to develop the models, accident severity
and time of day.  In addition a stochastic model was developed for all accidents
regardless of the severity and time of day.  The distributions that are emphasized in the
analysis are the Weibull and lognormal distributions.  The ExpertFit program was used to
select the optimal probability density function parameters for 30 possible distributions
(Law, 2001).  It is worth noting that either the lognormal or Weibull distribution was the
best fitting distribution for each case.  Once the stochastic models were developed, the
chi-square goodness-of-fit test was used to evaluate the fit of the probabilistic
distribution.

4.3.1 Model for All Accidents
The simplest stochastic model for this project is one that models any accident,

regardless of the accident characteristics.  Figure 4-1 shows a histogram of the clearance
time of all accidents.
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Figure 4-1: Clearance time histogram for all accidents.

This graph shows a definite left-shifted tendency towards accidents with smaller
clearance times.  The ExpertFit program identified the Weibull distribution as the best
candidate distribution.  The parameters for the Weibull and lognormal probability density
functions are given in Table 4-1.

Table 4-1: Distribution parameters for all accidents.

Weibull Distribution Lognormal Distribution
ββββ αααα µµµµ σσσσ

43.3 1.33 3.34 0.968

Overlaying the two probability density functions on the original histogram gives a
comparison between the two distributions.
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Figure 4-2: Histogram and distribution overlay for all accidents.

It appears from the graph that the Weibull distribution is a better fit for the clearance time
data.  The chi-square test was used to test the assumption that the accident data follows
the Weibull and lognormal distributions.
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Table 4-2: Chi-square test for all accidents.

Number of samples, N 6,828
Number of Intervals 40
Degrees of Freedom 39
Weibull Test Statistic, χχχχ2 612.996
Lognormal Test Statistic, χχχχ2 2,005.369

Significance
Level

αααα

Critical Value
c1-αααα,f

Accept Weibull
distribution?

Accept
Lognormal

distribution?
0.25 44.539 No No
0.15 48.126 No No
0.10 50.660 No No
0.05 54.572 No No
0.01 62.428 No No

The chi-square results show that both the Weibull and lognormal stochastic models do
not adequately describe the clearance time values for all accidents.  The next step was to
introduce accident severity into the stochastic model.

4.3.2 Model for Accident Severity
This stochastic model attempts to fit a probabilistic density function to three

different subcategories of accidents; single vehicle, two vehicle, and three or more
vehicle accidents.  The same procedure outlined for all accidents was used for these
models.  First, histograms were prepared for each category of accident severity.
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Figure 4-3: Clearance time histogram for single vehicle accidents.

Figure 4-4: Clearance time histogram for two vehicle accidents.
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Figure 4-5: Clearance time histogram for three or more vehicle accidents.

ExpertFit evaluated a large number of probabilistic distributions and found that the
Weibull distribution was the best fit for all three of the histograms above.  The
parameters for the Weibull and lognormal distributions are given below.

Table 4-3: Distribution parameters for single vehicle accidents.

Weibull Distribution Lognormal Distribution
ββββ αααα µµµµ σσσσ

44.8 1.30 3.37 0.980
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Table 4-4: Distribution parameters for two vehicle accidents.

Weibull Distribution Lognormal Distribution
ββββ αααα µµµµ σσσσ

36.6 1.27 3.15 1.00

Table 4-5: Distribution parameters for three or more vehicle accidents.

Weibull Distribution Lognormal Distribution
ββββ αααα µµµµ σσσσ

53.5 1.72 3.64 0.779

For a visual comparison, the two distributions are overlaid on the histograms created
above.

Figure 4-6: Histogram and distribution overlay for single vehicle accidents.
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Figure 4-7: Histogram and distribution overlay for two vehicle accidents.

Figure 4-8: Histogram and distribution overlay for three or more vehicle accidents.
Using the distribution parameters the models were tested using the chi-square test.

Table 4-6: Chi-square test for single vehicle accidents.
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Number of samples, N 2,716
Number of Intervals 40
Degrees of Freedom 39
Weibull Test Statistic, χχχχ2 381.290
Lognormal Test Statistic, χχχχ2 992.365

Significance
Level

αααα

Critical Value
c1-αααα,f

Accept Weibull
distribution?

Accept
Lognormal

distribution?
0.25 44.539 No No
0.15 48.126 No No
0.10 50.660 No No
0.05 54.572 No No
0.01 62.428 No No
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Table 4-7: Chi-square test for two vehicle accidents.

Number of samples, N 2,687
Number of Intervals 40
Degrees of Freedom 39
Weibull Test Statistic, χχχχ2 336.044
Lognormal Test Statistic, χχχχ2 780.317

Significance
Level

αααα

Critical Value
c1-αααα,f

Accept Weibull
distribution?

Accept
Lognormal

distribution?
0.25 44.539 No No
0.15 48.126 No No
0.10 50.660 No No
0.05 54.572 No No
0.01 62.428 No No

Table 4-8: Chi-square test for three or more vehicle accidents.

Number of samples, N 1,425
Number of Intervals 40
Degrees of Freedom 39
Weibull Test Statistic, χχχχ2 116.305
Lognormal Test Statistic, χχχχ2 353.947

Significance
Level

αααα

Critical Value
c1-αααα,f

Accept Weibull
distribution?

Accept
Lognormal

distribution?
0.25 44.539 No No
0.15 48.126 No No
0.10 50.660 No No
0.05 54.572 No No
0.01 62.428 No No

Again, these chi-square results show that accident data does not support the Weibull or
lognormal distributions for the three models.  A full range of significance levels were
tested and for each case, the data overwhelmingly rejected the assumption of the
probabilistic distribution.

4.3.3 Model for Accident Time of Day
This stochastic model attempts to fit probabilistic distributions to accident

clearance time based on the time of day.  Three different categories of accidents were
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used; peak period weekday, off-peak period weekday, and weekend accidents.  The
histograms for the clearance times of each category are given below.

Figure 4-9: Clearance time histogram of peak weekday accidents.

Figure 4-10: Clearance time histogram of off-peak weekday accidents.
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Figure 4-11: Clearance time histogram of weekend accidents.

Again, ExpertFit evaluated a number of different distributions and selected the Weibull
distribution as the best candidate distribution for the three clearance time samples.  The
distribution parameters for the Weibull and lognormal distributions are given below.

Table 4-9: Distribution parameters for peak weekday accidents.

Weibull Distribution Lognormal Distribution
ββββ αααα µµµµ σσσσ

40.4 1.34 3.26 0.973

Table 4-10: Distribution parameters for off-peak weekday accidents.

Weibull Distribution Lognormal Distribution
ββββ αααα µµµµ σσσσ

43.3 1.32 3.34 0.958

Table 4-11: Distribution parameters for weekend accidents.

Weibull Distribution Lognormal Distribution
ββββ αααα µµµµ σσσσ

46.7 1.37 3.42 0.976
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For a visual comparison, the two distributions are overlaid on the histograms created
above.

Figure 4-12: Histogram and distribution overlay for peak weekday accidents.

Figure 4-13: Histogram and distribution overlay for off-peak weekday accidents.
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Figure 4-14: Histogram and distribution overlay for weekend accidents.

Using these distribution parameters the models were tested using the chi-square test.
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Table 4-12: Chi-square test for peak weekday accidents.

Number of samples, N 1,797
Number of Intervals 40
Degrees of Freedom 39
Weibull Test Statistic, χχχχ2 195.810
Lognormal Test Statistic, χχχχ2 494.130

Significance
Level

αααα

Critical Value
c1-αααα,f

Accept Weibull
distribution?

Accept
Lognormal

distribution?
0.25 44.539 No No
0.15 48.126 No No
0.10 50.660 No No
0.05 54.572 No No
0.01 62.428 No No

Table 4-13: Chi-square test for off-peak weekday accidents.

Number of samples, N 3,384
Number of Intervals 40
Degrees of Freedom 39
Weibull Test Statistic, χχχχ2 337.631
Lognormal Test Statistic, χχχχ2 874.770

Significance
Level

αααα

Critical Value
c1-αααα,f

Accept Weibull
distribution?

Accept
Lognormal

distribution?
0.25 44.539 No No
0.15 48.126 No No
0.10 50.660 No No
0.05 54.572 No No
0.01 62.428 No No
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Table 4-14: Chi-square test for weekend accidents.

Number of samples, N 1,647
Number of Intervals 40
Degrees of Freedom 39
Weibull Test Statistic, χχχχ2 227.706
Lognormal Test Statistic, χχχχ2 676.910

Significance
Level

αααα

Critical Value
c1-αααα,f

Accept Weibull
distribution?

Accept
Lognormal

distribution?
0.25 44.539 No No
0.15 48.126 No No
0.10 50.660 No No
0.05 54.572 No No
0.01 62.428 No No

As with the previous stochastic models, the Weibull and lognormal distributions are
rejected based on the available clearance time data.

4.4 Summary
In this chapter accident clearance time data was used to produce a number of

stochastic models.  Unfortunately, no stochastic models were applied to future accident
scenarios due to the inability to accurately fit any probabilistic distribution to the accident
data.  It is possible that some of the variance in accident clearance time may be explained
by more specific accident characteristics.  The next chapter investigates two deterministic
models that incorporate independent variables gathered from accident characteristics in
the incident database.



Forecasting the Clearance Time of Freeway Accidents 46

Chapter 5: Nonparametric Regression Model

5.1 Model Development
The second forecasting model developed for this study was a nonparametric

regression model. This model attempts to emulate a deterministic relationship between
the accident characteristics and the clearance time.  The nonparametric regression model
was presented in general terms in Section 2.4.  This chapter will give the specific model
characteristics that were developed for this project.

5.1.1 Neighborhood Definition
This nonparametric regression model defines neighborhoods based on a constant

sample size.  This is referred to a k-nearest-neighbor (KNN) nonparametric regression
technique, where k is the number of samples in the neighborhood.  The optimal value of k
will be found through the empirical testing of numerous values, based on the model
measures of effectiveness that will be discussed in a later section.

5.1.2 Distance Metric
The neighborhood is determined by selecting the k number of past accidents that

are closest to the current accident.  This requires some measure of “closeness’ to find the
distance between two accidents.  The state of the accident depends on the model
independent variables, so these variables were used in the distance metric.  A summary of
these independent variables is given below in Table 5-1.

Table 5-1: Nonparametric regression independent variables.

Variable Name Wx Value
PEAK A 3.43 1 = Peak (6-8am, 4-6pm)

0 = Off-peak
WEEKDAY B 3.90 1 = Weekday

0 = Weekend
EMS C 16.07 1 = Yes

0 = No
FIRE D 15.28 1 = Yes

0 = No
HAZMAT E 97.27 1 = Yes

0 = No
POLICE F 9.17 1 = Yes

0 = No
VDOT G 24.78 1 = Yes

0 = No
TOW H 20.83 1 = Yes

0 = No
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NUMVEH I WI
12 = 7.44

WI
13 = 6.39

WI
23 = 13.83

1 = Single Vehicle
2 = Two Vehicles
3 = Three or More Vehicles

TRUCK J 16.10 1 = Yes
0 = No

BUS K 11.01 1 = Yes
0 = No

Since the independent variables are categorical, it was not possible to use the euclidean
distance to measure distance.  A new distance metric was developed that is based on the
number of matching independent variables between the two accidents.  The distance is
increased for each non-matching variable.  The unique feature of the distance metric for
this model is that each mismatch is given a different weight factor for each independent
variable.  The weight factors for each variable are given in the Wx field in the table
above. The values for the weight factors were calculated from the absolute difference in
means of the two samples used in the ANOVA table for that particular independent
variable.  For example, for the ANOVA table the accident population was divided into a
peak accident sample and a non-peak accident sample.  The absolute difference between
the mean of these two samples was 3.43 minutes, so this was used as the value of WA.

The distance metric between two accidents is given by

Distance = WA |A1 – A2| + WB |B1 – B2| + WC |C1 - C2| + WD |D1 – D2| +
WE |E1 – E2| + WF |F1 – F2| + WG |G1 – G2| + WH |H1 – H2| + WJ |J1 – J2| +
WK |K1 – K2| + WI

*

Given A1 = the value of the PEAK variable for the current accident
A2 = the value of the PEAK variable for the past accident
B1 = the value of the WEEKDAY variable for the current accident
B2 = the value of the WEEKDAY variable for the past accident
etc.
WA = the weight factor for the PEAK variable
WB = the weight factor for the WEEKDAY variable
etc.

Where WI
* = WI

12 if (I1 = 1 and I2 = 2) or (I1 = 2 and I2 = 1)
WI

* = WI
13 if (I1 = 1 and I2 = 3) or (I1 = 3 and I2 = 1)

WI
* = WI

23 if (I1 = 2 and I2 = 3) or (I1 = 3 and I2 = 2)

In the distance equation, the terms |A1 – A2|, |B1 – B2|, and such determine if the two
accidents have equal values for a single independent variable.  The terms take on a value
of 0 if the two values match and 1 if they do not match.

The distance metric is best understood through an example to find the distance
between two accidents.  The accident characteristics are given below.

Table 5-2: Example of distance metric.
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Characteristic Accident 1
(Current Accident)

Accident 2
(Past Accident)

Time of day 7:30 am (A1 = 1) 4:15 pm (A2 = 1)
Day of week Wednesday (B1 = 1) Sunday (B2 = 0)
EMS response? Yes (C1 = 1) No (C2 = 0)
Fire Department response? No (D1 = 0) No (D2 = 0)
HAZMAT Agency response? No (E1 = 0) No (E2 = 0)
Police Department response? Yes (F1 = 1) Yes (F2 = 1)
VDOT response? No (G1 = 0) No (G2 = 0)
Tow-truck response? Yes (H1 = 1) Yes (H2 = 1)
Number of vehicles 1 (I1 = 1) 2 (I2 = 2)
Truck involvement? No (J1 = 0) No (J2 = 0)
Bus involvement? No (K1 = 0) No (K2 = 0)

This example involved finding the distance between a single vehicle accident with
injuries and a 2-vehicle accident without injuries.  Using the values from the above table
and the weight factors in Table 6-1 the distance metric becomes

Distance = 3.43|1-1| + 3.90|1-0| + 16.07|1-0| + 15.28|0-0| + 97.27|0-0| + 9.17|1-1|
+ 9.17|1-1| + 24.78|0-0| + 20.83|1-1| + 16.10|0-0| + 11.01|0-0| + 7.44

Distance = 27.41

This value is a numerical representation of the distance between the categorical values of
the two accidents.

This approach to the distance metric is new. The use of categorical independent
variables necessitates a creative solution for a model that requires a numerical distance
metric.  An alternate approach would be to disregard the weight factors and the distance
metric would be the number of mismatch variables between the two accidents.  It was
assumed that a more realistic approach would be to add weight factors to show that some
variables tend to have a greater effect on accident clearance time.

5.1.3 Forecast Generation
This nonparametric model uses a straight average of the clearance time of each

accident in the neighborhood.  However, this average is stripped of the decimal places so
the model outputs an integer value.  This approach does not give special consideration to
past accidents that are “closer” to the current accident.  The basic assumption is that each
past accident in the neighborhood is considered of equal importance in predicting the
clearance time of the current accident.

5.2 Model Algorithm
The basic function of the nonparametric regression model is to compare a current

accident with each accident in a historical database to define a neighborhood.  This is
outline in the pseudo-code shown below
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procedure Nonparametric Regression
begin

select neighborhood size k
read current accident
evaluate all independent variables of current accident
repeat

read past accident from historical database
evaluate all independent variables of past accident
calculate distance between current and past accidents

until all accidents in historical database are compared
sort list of past accidents by increasing distance from current accident
calculate prediction from average duration of first k accidents in list

end

Figure 5-1: Pseudo-code for nonparametric regression procedure.

This procedure will output the expected clearance time for a current accident.  For this
project, we need to test the nonparametric regression model to find the optimal
neighborhood size.  This procedure is outlined below and makes use of the learning and
testing samples that were developed from the accident population.
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procedure Nonparametric Regression Testing
begin

repeat
select neighborhood size k
repeat

read the current accident from the testing sample
evaluate all independent variables of current accident
repeat

read past accident from learning sample
evaluate all independent variables of past accident
calculate distance between current and past accidents

until all accidents in learning sample are compared
sort list of past accidents by increasing distance from current

accident
calculate prediction from average duration of first k accidents in

list
until all accidents from the testing sample are used
increment k

until all neighborhood sizes have been tested
end

Figure 5-2: Pseudo-code for nonparametric regression testing procedure

The actual testing model was developed in Microsoft’s EXCEL spreadsheet program.
The testing and learning samples were recorded on separate worksheets with all of the
corresponding independent variable values.  The Visual Basic programming language
was used to perform the analysis and output the results.  The complete programming code
for the nonparametric regression model is included in Appendix B.

5.3 Measures of Effectiveness
There are numerous methods to determine the accuracy or effectiveness of the

nonparametric regression model.  First and foremost, every accident from the testing
sample will have a predicted clearance time in addition to the actual clearance time that
was recorded in the incident database.  The difference between the predicted and actual
duration is defined as the prediction error and is given in minutes.  The value of the
prediction error will positive for an overestimated duration, zero for an exact prediction,
and negative for underestimated duration.  Since each accident in the testing sample will
have a prediction error, the main measure of effectiveness is the mean absolute prediction
error (MAPE), or the average of all the prediction errors in the testing sample.

N

TATP
MAPE

N

i
ii∑ −

=
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Where N = the total number of test accidents
TPi = the predicted clearance time for the ith test accident
TAi = the actual clearance time for the ith test accident

Some secondary measures of effectiveness are also related to the prediction error
of the test accidents.  It is useful to know the percentage of predictions that were within a
certain tolerance of their actual clearance times.  These tolerances used include 5, 10, 15,
30 and 60 minutes.  For example, the percentage of clearance times that were predicted
within 10 minutes of the actual time is found by counting the number of absolute
predictions errors for the test sample that were less than or equal to 10 minutes.  This
number is then divided by the total number of test accidents to find the percentage.

Due to the nature of the nonparametric regression model, each of these measures
of effectiveness must be found for a wide range of neighborhood sizes.  The measures
will be used to select an appropriate or best performing neighborhood size.

5.4 Selection of Neighborhood Size
Nonparametric regression is a unique forecasting technique in that the model

parameter values are determined through empirical testing of the model. Fortunately, the
model algorithm used in this project is simple and fast enough to test a large range of
neighborhood size values.

A number of different measures of effectiveness were defined in the above
section.  Because this analysis uses numerous measures, the final neighborhood size
selected may not be the optimal value for each measure.  Thus, the selection of a
neighborhood size is subjective and based on the recommendation of the model
developer.

The nonparametric regression model was run for the 1707 accidents in the test
sample for a wide range of neighborhood sizes and the measures of effectiveness were
evaluated.  It should be noted that a naïve forecast was used for a neighborhood size of
zero.  The naïve forecast gave every test accident the same predicted clearance time from
the mean clearance time of the learning sample accidents.  Figure 5-3 below shows the
mean absolute error of the 1707 test accidents for a given neighborhood size.  The
complete results for all neighborhood sizes and all measures of effectiveness are given in
Appendix C.
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Figure 5-3: Mean absolute prediction error for range of neighborhood sizes.

This chart shows that the mean prediction error decreases for increasing neighborhood
sizes.  The prediction error also appears to reach a minimum around a neighborhood size
of 30 and continues asymptotically around 20.2 minutes for the range of neighborhood
sizes.  It should be noted that the prediction error encompasses a small range from 20.3
minutes to 25.5 minutes.  Selecting the best neighborhood size from this measure is
difficult due to the small difference between neighborhood sizes of 30 and greater.

Figures 5-4 shows the results of the secondary measures of effectiveness, the
number of test accidents predictions that were within a specific threshold of the actual
clearance time.  From this perspective it appears that the performance is almost
insensitive to neighborhood size, and show an asymptote that begins around a size of 30
neighbors.  Figures 5-5 through 5-9 are zoomed in for a specific tolerance value.
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Figure 5-5: Number of prediction errors less than or equal to 5 minutes.
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Figure 5-6: Number of prediction errors less than or equal to 10 minutes.
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Figure 5-7: Number of prediction errors less than or equal to 15 minutes.
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Figure 5-8: Number of prediction errors less than or equal to 30 minutes.
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Figure 5-9: Number of prediction errors less than or equal to 60 minutes.

The charts shown above reveal a number of different features about the neighborhood
size.  First, the maximum value for each prediction error tolerance is reached at a
different neighborhood size.  Thus, the question arises as to the relative importance of
having prediction errors with each tolerance.  Is it more important to have the predicted
accident clearance time be within 5 or 60 minutes of the actual clearance time?
Obviously, the smaller error tolerances are more important to traffic managers and the
charts of smaller prediction error tolerances should have more weight.

Also, with the exception of the 5 minute tolerance the number of prediction errors
less than the tolerance increases with increasing neighborhood size and levels off at some
point.  This gives the impression that larger neighborhood sizes give better results in
terms of the measures of effectiveness used in this project.  This may be because the
effect of past accidents with extremely large or small clearance times are absorbed by the
average of a large number of samples.

There is some support in the above charts for a small neighborhood size.  The
neighborhood size of 3 represents a local optimum value on a number of measures of
effectiveness.  For prediction tolerances of 5, 10, 15, and 30 minutes, the number of test
accidents increases initially up to a neighborhood size of 3 and then drops dramatically
before eventually surpassing the value for the neighborhood size of 3.  This local
optimum is more pronounced for the smaller prediction tolerances.  This suggests that a
neighborhood size of 3 performs significantly better than the other smaller neighborhood
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sizes.  The only problem with such a small neighborhood size is that some important past
accidents may be excluded from consideration.

The final recommendation for the neighborhood size to be used in the
nonparametric regression model is 30 neighbors.  This size is approximately the point at
which the mean prediction error starts to level off, and also shows good performance with
the number of predictions within the 5, 10, and 15-minute tolerances. Smaller
neighborhood sizes are preferable because it forces the model to find past accidents that
are more similar to the current accident.  With larger neighborhood sizes, each prediction
is the average of a large number of past clearance times and thus each prediction is
progressing towards a common value.  Thirty neighbors include enough pertinent past
accidents to hopefully cancel out the effect of any outliers during the straight average
forecast generation.

5.4 Model Results
From the previous section, the neighborhood size of 30 neighbors was selected as

the most appropriate value for this nonparametric regression model.  The model results
for the 1707 accidents in the test sample for the measures of effectiveness are given
below in Table 5-2.

Table 5-3: Nonparametric Regression Model Results.

Performance Measure Value Percent of
Test Accidents

Mean Prediction Error 20.4 minutes
Prediction Error ≤ 5 minutes 308 18.0%
Prediction Error ≤ 10 minutes 568 33.3%
Prediction Error ≤ 15 minutes 846 49.6%
Prediction Error ≤ 30 minutes 1432 83.9%
Prediction Error ≤ 60 minutes 1639 96.0%
Number of Overestimated Predictions 914 53.6%
Number of Underestimated Predictions 765 44.8%

Overall, this model averages over 20 minutes of error between the predicted and
actual clearance times.  Slightly less than half of the predicted clearance times were
within 15 minutes of the actual time.  The model also tends to overestimate the clearance
time the majority of the time.  This indicates that there may be some outliers with large
clearance times that are influencing the predicted time.

5.5 Result Summary
Overall, the results from the nonparametric regression model are not encouraging.

The model has a very large average error that in most cases is larger than the model
prediction value.  Considering the small percentage of test accidents with prediction
errors less than 5 and 10 minutes, it does not appear that this model is applicable for use
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in an existing incident management system.  The next step in the methodology is to try
another forecasting model.  The classification tree model described in the next section has
a different approach to clearance time prediction that may provide for better model
performance.
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Chapter 6: Classification Tree Model

6.1 Model Development
The second forecasting model that was developed for this project was a

classification tree model.  Classification trees were introduced in Section 2.3 in general
terms.  This model differs dramatically from the nonparametric regression is many ways.
First, the nonparametric regression model is mathematical, in that clearance time
forecasts are calculated from the clearance time average of selected past accidents.  The
classification tree model is more of a sorting tool based on accident characteristics.  The
clearance time forecasts are assigned instead of mathematically calculated.  Also, unlike
the nonparametric regression model the classification tree model does not require special
modifications for categorical variables.  This model does not explicitly compare two
accidents and thus a distance metric is not required.

This model uses the same categorical independent variables that were used for the
nonparametric regression model and shown in Table 5-1.  The dependent variable is
again the accident clearance time, but for this model the clearance time is a categorical
value.  The different values of the clearance time are short, medium, and long.  A short
clearance time is defined as 1-15 minutes, medium is 16-30 minutes, and long is 31 or
greater minutes.  These class divisions are based on practical experience from the
HRSTC.  The traffic managers prefer to categorize freeway incidents based on these
classifications.  The assumption from the traffic managers’ standpoint is that any accident
with a clearance time greater than 30 minutes is considered seriously detrimental to
traffic operations.

The CART software program was used to develop the classification tree model.
CART constructs classification using a brute force method.  For each level of the tree
where a decision node is present, CART considers each independent variable as the
splitting criteria.  The one split that provides the best results is selected for that decision
node.  This process continues until the largest possible tree has been created.  Each new
split creates a new classification tree that is a candidate for the optimal tree.  Next, CART
uses a pruning technique to determine this optimal tree.  Starting from the largest tree, the
testing sample is run through the classification tree to find the prediction accuracy.  This
continues for each smaller tree until the tree with the best prediction accuracy is found.
This tree growing and pruning technique assures that the best possible splits and size are
found.

6.2 Measures of Effectiveness
The main measure of effectiveness with the nonparametric regression model was

the prediction error.  For the classification tree, the predicted and actual clearance times
are classes, so the prediction error is either a correct or incorrect prediction.  Thus, the
primary measure of effectiveness will be the percentage of test accidents where the
clearance time was predicted correctly, termed the prediction accuracy.  This prediction
performance is used by CART to evaluate the potential classification trees, so the optimal
tree is guaranteed to have the greatest prediction accuracy.
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There are also some secondary measures of effectiveness related to the prediction
accuracy.  Accidents with long clearance times are most important to traffic managers, so
another measure of effectiveness is the percentage of long clearance times that were
predicted correctly.  Likewise, it is important not to overestimate a short clearance time
accident, so the prediction accuracy of short clearance time accidents will also be
investigated.

6.3 Model Results
The optimal classification tree model from the CART methodology is shown

below in Figure 6-1.
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Figure 6-1: Classification tree model diagram.
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The classification tree follows a path from top to bottom.  Thus, the first step in
predicting the clearance time of a current accident is to determine if a tow-truck was
called or not.  The appropriate path is followed to lead to the next decision.  Eventually,
the path will reach a termination node, at which time the current accident is assigned to a
clearance time class or short, medium, or long.

One feature of the classification tree model is that not all of the independent
variables are used.  This may seem counter-intuitive since the independent variables were
previously tested for their significance, and now the classification tree seems to decide
that additional independent variables are not significant.  The reason is that the ANOVA
table tested the significance of the variable in terms of the means (real numbers) of the
two samples.  However, the classification tree is concerned with differentiating the class
of the clearance time.  Thus, the independent variables used in the classification tree
model are significant in their affect on the class of the accident clearance time.

Another important note is that the classification tree model does not follow a
chronological progression.  The tree does not represent a series of events, but rather a
series of decisions on past knowledge.  The presence of a two-truck is the first decision in
the tree but at the accident scene is one of the last decisions to be made.  However, a tow-
truck response has the greatest effect on the clearance time and thus deserves to be the
most important decision in the classification tree.  Since the tree does not follow a
chronological progress, it is best to have all of the accident information before making a
complete prediction on the clearance time.

6.3.1 Prediction Accuracy
The performance of this classification tree model is shown in Table 6-1.
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Table 6-1: Classification tree model prediction accuracy.

Predicted Class
Actual Class Cases % Correct Short Medium Long
Short 361 76.73 277 41 43
Medium 324 19.14 170 62 92
Long 1022 64.48 235 128 659

Total 1707 58.47 682 231 794

The model was tested using the test sample of accidents.  The rows in Table 6-1 represent
the different classes of clearance time that make up the test sample.  The last three
columns of the table show how the model predicted the classes.  For example, the test
sample contained 361 accidents with short clearance times.  Of these accidents, 277 were
predicted to be short, 41 to be medium, and 43 to be long.  The model was only able to
correctly predict the class of 277 of the 361 short accidents, or 76.73%.  The main
measure of prediction accuracy is the total accuracy for all of the test accidents.  The
table shows that only 58.47% of the test accidents inputted into the model resulted in
correct clearance time predictions.

It is interesting to note that the model would perform better if all accidents were
assigned long clearance times.  Since accidents with long clearance times make up 60%
(1022 of 1707) of the total accidents in the test sample, the classification tree model
would improve to 60% accuracy.  Since the model attempts to find a relationship between
the accident characteristics and clearance time, this fact insinuates that the relationship
may be weak and accident clearance time is an independent event.

These results show that the classification tree model performed best at accurately
predicting short clearance times, and to a lesser extent the long clearance times.
However, the model was ineffective at predicting medium clearance times (19%
accuracy).  The model appears to favor the two extremes of the clearance time classes in
predictions.  Table 6-1 shows that of the 1707 clearance time predictions made, 682
(40%) of these predictions were for the short class and 794 (46%) were for the long class.
This means that the model only made medium clearance time predictions for 231 (14%)
of the accidents. It is also possible that the characteristics that make an accident have a
medium clearance time are not reflected in the independent variables used in the model.

It is also important to note that a misclassification makes no statement about the
prediction error in terms of minutes.  The classification model only predicts classes of
clearance time.  It is possible for accidents that have clearance times near the class
boundaries (15 and 30 minutes) to have similar characteristics as accidents in both
classes.  In essence, an accident could have a short clearance time of 15 minutes, but the
model would predict it have a medium clearance time (16-30 minutes) because it has
similar features as most of the medium clearance time accidents in the database.  This
misclassification would not be severe if the prediction accuracy was measured in terms of
minutes instead of classes.
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6.4 Result Summary
The results from the classification model are not promising.  They also do not

show a marked performance improvement from the nonparametric regression models,
despite the radically different approach to predicting accident clearance time.  Overall,
the classification tree model is only correct in predicting accident clearance time 58% of
the time.  This accuracy is not enough for a traffic manager to recommend this model for
implementation into an operational incident management system.
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Chapter 7: Conclusion

7.1 Project Conclusions
Predicting the duration an incident is one of the most important steps of

the freeway incident management process (Ozbay and Kachroo, 1999).  This project has
attempted to predict accident clearance time, since clearance time is a major factor in the
total incident duration.  Using a large sample size of past freeway accidents, different
models were evaluated and tested.  None of the forecasting models produced results that
were accurate enough to warrant implementation in an operational incident management
system.  The reason for the poor performance can be attributed to the choice of
forecasting models and/or the quality of the accident data.

It is the conclusion of the author that the shortcomings of the accident data had
the greatest contribution to the poor performance of the forecasting models.  Both
nonparametric regression and classification trees are proven forecasting techniques that
have been applied successfully to traffic management systems.  However, with unreliable
input data even the best forecasting models will still output unreliable information.  This
is the case with the accident data that was collected from the Hampton Roads Smart
Traffic Center for this project.

Some information on the data quality is seen upon examining the results of the
classification tree model.  For example, consider the accidents with short clearance times
as recorded in the database that were predicted to have long clearance times.  One of
these accidents is a three-car accident with personal injuries as reported in the text
description in the database along with responding agencies of state police, EMS, FIRT,
and fire department.  The reported clearance time of this accident was 9 minutes in the
database, which seems to be inaccurate and shorter than possible.  There are other
examples of specific accidents with clearance times that do not appear to match the
accident characteristics.  The recommendations for improving the accident data are
included in the following section.

7.2 Recommendations

7.2.1 Forecasting Models
This paper presented two different forecasting models with different approaches

to predicting accident clearance time.  Although, both models performed unsatisfactorily
with a test database, the classification tree model stands out as being a better choice for
an incident management system.

First of all the classification tree model is easy to understand and comprehend
how a prediction is made.  The series of yes/no decisions are simple and can avoid any
ambiguities.  The flow of the decision may not follow a chronological path, but it does
mimic the thought pattern that traffic managers have used to predict accident clearance
time based on past experience.  The tree also reveals which accident characteristics are
most important to understanding the expected clearance time.  This gives traffic
managers information on which areas of clearing an accident can be improved to
decrease the total clearance time.
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Another advantage of the classification tree model is the speed of outputting a
prediction.  The nonparametric regression model takes a current accident and compares it
to every other accident in the historical database of past accidents.  For large growing
databases this has the potential to be a time consuming process.  On the other hand, the
classification tree model was constructed using past accidents, but it does not require
access to the past accidents to make a prediction.  Of course, from time to time the model
should be reconstructed to reflect the addition of more accidents, but this can be done off-
line without interfering with the model process.  Overall, the classification tree model
adopted for a computer prediction program is just a series of if/then statements that can
be processed very quickly for even the most complicated tree structures.

The final feature of classification tree models that makes them advantageous to
traffic managers is the output type.  This model predicts a class or range of values instead
of a single numerical value.  In most cases, ranges of expected clearance time have more
meaning than a single time.

7.2.2 Incident Databases
The accident data used in this study was suspected to have some inconsistencies

in terms of how the data was collected and recorded.  Most of these issues only come to
light when examining the incident database as a historical collection of past accidents to
be used for analysis purposes.

The incident data used in this study had an intended audience of traffic managers
currently tracking the progress of the accident.  A large amount of information was
included in the text description (and not in other data fields) for other operators to read.
Also, some of the fields did not have consistent entries, but the information is
understandable when read in person.  In general, a historical database is not read by a
person, but rather searched for specific keywords by a computer.  Thus, a historical
database should conform to a non-human audience.

7.2.3 Data Entry Procedure
The first recommendation for the incident database maintained by the Hampton

Roads Smart Traffic Center (HRSTC) is the elimination of the text description field.
This field often contained the only information about personal injuries, but a computer
can not search for all instances of personal injuries in the database for a few reasons.
First, computers can not read sentences and have to search for patterns of letters.  Second,
there are numerous means to note a personal injuries in a sentence using abbreviations,
incorrect spellings and other methods (P.I., PI, p.i., pi, Pers. Inj., 1 PI, at least 2 personal
injur., personel injurys, etc.).  The easiest way to note a personal injury is to have a
separate data field where the value in that field is the number of injuries.  This eliminates
any confusion on the part of the computer that is searching the historical database.

The second recommendation is that each data field contains only one piece of
information.  This may result in a larger database memory due to an increased number of
fields, but it makes computer queries more effective.  The field that notes the lanes
affected by the accident contains entries in the form of a list with each entry separated by
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a comma.  Another method of designing the database would be to include a separate field
for each lane where the operator enters a 1 if that lane is included in the accident.

The key to an effective historical database is consistent and easy to discern data
entries.  This may include adding more fields, drop down lists to select entries, and clear
instructions for the traffic operators who record accident information.  For example, the
fields in the database that record the detection source and responding agencies have over
1000 and 100 unique entries respectively.  However, these unique entries only represent
about 15 unique agencies.  This makes the field have a much more limited use in any
forecasting model.

7.2.4 Needed Accident Information
There were numerous potential independent variables that were lacking from the

model development because the information was not available in the database.  Some of
these may have significant impacts on the clearance time of an accident.

•  The number of lanes blocked due to the accident,
•  The number of personal injuries, and
•  The number of vehicles responding from each agency.

The more information recorded the better the possibility to create important independent
variables for the forecasting models.

7.2.5 Incident Duration
The HRSTC incident database recorded only the clearance time for an accident.

A more important value is the total duration of the incident.  This is the length of time
from the first occurrence of the incident to the time when traffic conditions return to
normal.  The total incident duration is an important input for predicting traffic delay on
queues on the freeway.

In some cases it is not possible to record the time of the total incident duration.
For example, the HRSTC incident database is a record of activity by the incident
response team and thus only measures clearance time.  No matter which incident phase is
recorded, there must be a clear definition and guidelines to insure consistency among
each incident.

Along these same lines, the length of time recorded needs to be accurate.  In some
cases an incident entry in the database in started, but not completed until some time after
the incident has expired.  When examining past events from a historical database, there
needs to be confidence in the data entries that they are correct and without error.  This is
applied to all entries in addition to the phase duration.

7.3 Future Research
It is convenient to fit accident clearance time to a known probabilistic

distribution.  If accident clearance time is a random variable with known distributions, it
is easy to model the expected value of future accidents.  However, this paper has not
proven that accident clearance time behaves like a random variable and conforms to
convenient probabilistic distribution.  One reason for the inability to fit a probabilistic
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distribution to the accident data is the goodness-of-fit statistical fit used for the stochastic
model.  All goodness-of-fit tests such as the chi-square test may not be accurate for
extremely large sample sizes (Law, 2001).  Further research is needed on goodness-of-fit
tests to determine the validity of this statement and other possible statistical tests for large
sample data.

Nonparametric regression models should not be considered irrelevant for use in
forecasting phases of incident duration, based on my recommendation for classification
trees models in incident management systems.  More research is needed on methods to
define the distance metric based on categorical variables.  It is possible that other
weighting techniques may be more appropriate.  Also, for some extremely large database,
the best method may be to only search for exact matches in the database.  Research is
also needed to determine the best forecast generation approaches, and identify other
possibilities than the simple straight average approach used in this project.

The application of classification tree models would also benefit from future
research.  The model results may be sensitive to the number and size of the classes used
to classify accident clearance time.  However, it is important to remember the audience of
the forecasting models and avoid extremely small or large classes that have no meaning
for transportation managers.

7.5 Summary
The output of a forecasting model is only as good as the data used to develop the

model.  For that reason, if the HRSTC wishes to develop an accurate incident duration
prediction program, they should consider changes to their method of recording incident
information.  Overall, the database needs to be structured to allow for easy computer
queries without the need for human interpretation.  This will not impede their current use
for the incident database, which is to inform other operators about a current accident.
What it will require is more attention to details of the incident and consistent data entry.
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Appendix A: ANOVA Significance Test Results

Time of Day (Peak)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

Peak=1 2079 77823 37.4329 786.8568
Peak=0 4749 194074 40.86629 1021.251

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 17045.46 1 17045.46 17.94456 2.3E-05 3.842814
Within Groups 6483988 6826 949.8958

Total 6501034 6827

Day of the Week (Weekday)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

Weekday=1 5181 201439 38.88033 928.537
Weekday=0 1647 70458 42.7796 1015.924

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 19001.14 1 19001.14 20.00943 7.83E-06 3.842814
Within Groups 6482033 6826 949.6093

Total 6501034 6827
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Weather

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

Weather=1 5430 215005 39.59576 995.1114
Weather=0 1398 56892 40.69528 785.4189

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 1344.05 1 1344.05 1.411527 0.234844 3.842814
Within Groups 6499690 6826 952.196

Total 6501034 6827

EMS Response (EMS)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

EMS=1 1331 70224 52.76033 1285.827
EMS=0 5497 201673 36.68783 821.3385

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 276807.1 1 276807.1 303.5695 1.49E-66 3.842814
Within Groups 6224227 6826 911.841

Total 6501034 6827
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FIRE Response (FIRE)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

FIRE=1 1343 69964 52.09531 1246.241
FIRE=0 5485 201933 36.8155 834.5546

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 251880.9 1 251880.9 275.1315 1.31E-60 3.842814
Within Groups 6249153 6826 915.4927

Total 6501034 6827

FIRT Response (FIRT)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

FIRT=1 6735 268178 39.81856 955.9196
FIRT=0 93 3719 39.98925 694.2281

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 2.67258 1 2.67258 0.002806 0.957755 3.842814
Within Groups 6501031 6826 952.3925

Total 6501034 6827
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HAZMAT Response (HAZMAT)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

HAZMAT=1 12 1643 136.9167 15323.17
HAZMAT=0 6816 270254 39.64994 912.5677

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 113330.3 1 113330.3 121.1065 6.21E-28 3.842814
Within Groups 6387704 6826 935.7902

Total 6501034 6827

Police Response (POLICE)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

POLICE=1 4551 195146 42.87981 1015.957
POLICE=0 2277 76751 33.70707 769.216

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 127695.1 1 127695.1 136.7645 2.7E-31 3.842814
Within Groups 6373339 6826 933.6857

Total 6501034 6827



Forecasting the Clearance Time of Freeway Accidents 74

VDOT Response (VDOT)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

VDOT=1 70 4504 64.34286 5682.576
VDOT=0 6758 267393 39.56688 897.796

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 42528.9 1 42528.9 44.94884 2.18E-11 3.842814
Within Groups 6458505 6826 946.1625

Total 6501034 6827

Number of Vehicles (NUMVEH)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

NUMVEH=1 2716 112480 41.41384 1148.235
NUMVEH=2 2687 91294 33.97618 761.2258
NUMVEH=3 1425 68123 47.80561 807.1553

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 189533.5 2 94766.74 102.4769 1.41E-44 2.997048
Within Groups 6311500 6825 924.762

Total 6501034 6827
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Truck Involvement (TRUCK)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

TRUCK=1 311 17164 55.18971 2727.999
TRUCK=0 6517 254733 39.08746 856.1065

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 76963.99 1 76963.99 81.77934 1.95E-19 3.842814
Within Groups 6424070 6826 941.1178

Total 6501034 6827

Passenger Bus Involvement (BUS)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

BUS=1 32 1625 50.78125 1235.854
BUS=0 6796 270272 39.76928 950.5313

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 3862.248 1 3862.248 4.05772 0.044009 3.842814
Within Groups 6497172 6826 951.8271

Total 6501034 6827
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Tow Truck Called (TOW)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance

TOW=1 3386 170380 50.31896 937.9337
TOW=0 3442 101517 29.49361 751.4851

6828

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 740268.1 1 740268.1 877.1524 1.8E-181 3.842814
Within Groups 5760766 6826 843.9446

Total 6501034 6827
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Appendix B: Visual Basic Code for Nonparametric Regression
Model

'Name:          Nonparametric Regression Model
'Author:        Kevin W. Smith
'               Department of Civil Engineering
'               University of Virginia
'Last Update:   March 15, 2001

'Language:      Visual Basic for Applications
'Application:   Microsoft EXCEL

'This is the code for the nonparametric regression model outlined
'in the paper. The learning sample accidents are loaded in Sheet2,
'while the testing sample accidents are loaded in Sheet1. Sheet3
'is used to perform the sorting procedures and for temporary
'storage of the output. This program predicts the duration of a
'set of test accidents, given a specific neighborhood size.

'Variable Declaration
Option Explicit
'The learning and testing samples will be copied into array
'variables for faster access during run time.
Public LearnArray(5200, 12) As Integer
Public TestArray(1800, 12) As Integer
'Dummy and place holder variables
Public i, j, k, q As Integer
Public distance, nsum As Long
Public nsize, npredict As Integer

'This subroutine is the main subroutine that calls the functions
'and other subroutines. It houses the basic structure of the model.
Public Sub NPR_Main()
    'call the subroutine to load the learn and test sample data
    NPR_LoadData
    'cycle through each test accidents
    For i = 1 To 1707
        'cycle through each learn accident
        For j = 1 To 5121
            'call the subroutine to calculate the distance between
            'the current test accident and current learn accident
            NPR_Distance
            'record the distance and duration of the current
            'learn accident to the temp sheet
            Sheet3.Cells(j + 1, 1) = distance
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            Sheet3.Cells(j + 1, 2) = LearnArray(j, 1)
        'move to the next learn accident
        Next j
        'sort all learn accidents in order of increasing distance
        'to the current test accident
        Sheet3.Range("A2:B5122").Sort Key1:=Rows(1), _
                Order1:=xlAscending, Orientation:=xlSortColumns
        'call the subroutine to find the neighborhood of learn
        'accidents and make a prediction
        NPR_Neighborhood
        'clear the sorted list on the temp sheet
        Sheet3.Range("A2:B5122").Clear
        'record the prediction on the test sheet
        Sheet1.Cells(i + 1, 25) = npredict
        'display results to track run time progression
        Sheet3.Cells(1, 4) = i
        Sheet3.Cells(1, 5) = npredict
    'move to the next test accident
    Next i
End Sub

'This subroutine calculates the distance between two accidents based
'on their independent variable values. If the two accidents have
'different values for an independent variable, a penalty is added to
'the distance. "Distance" variable is the sum of all penalties.
Public Sub NPR_Distance()
    'reset the dummy distance variable each time
    distance = 0
    'calculation for PEAK variable
    If TestArray(i, 2) <> LearnArray(j, 2) Then
        'if unequal add penalty
        distance = distance + 3.43
    End If
    'calculation for the WEEKDAY variable
    If TestArray(i, 3) <> LearnArray(j, 3) Then
        'if unequal add penalty
        distance = distance + 3.9
    End If
    'calculation for the EMS variable
    If TestArray(i, 4) <> LearnArray(j, 4) Then
        'if unequal add penalty
        distance = distance + 16.07
    End If
    'calculation for the FIRE variable
    If TestArray(i, 5) <> LearnArray(j, 5) Then
        'if unequal add penalty
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        distance = distance + 15.28
    End If
    'calculation for the HAZMAT variable
    If TestArray(i, 6) <> LearnArray(j, 6) Then
        'if unequal add penalty
        distance = distance + 97.27
    End If
    'calculation for the POLICE variable
    If TestArray(i, 7) <> LearnArray(j, 7) Then
        'if unequal add penalty
        distance = distance + 9.17
    End If
    'calculation for the VDOT variable
    If TestArray(i, 8) <> LearnArray(j, 8) Then
        'if unequal add penalty
        distance = distance + 24.78
    End If
    'calculation for the NUMVEH variable with
    'three possible values
    If TestArray(i, 9) <> LearnArray(j, 9) Then
        'if unequal add penalty
        If TestArray(i, 9) = 1 Then
            If LearnArray(j, 9) = 2 Then
                distance = distance + 7.44
            Else
                distance = distance + 6.39
            End If
        ElseIf TestArray(i, 9) = 2 Then
            If LearnArray(j, 9) = 1 Then
                distance = distance + 7.44
            Else
                distance = distance + 13.83
            End If
        ElseIf TestArray(i, 9) = 3 Then
            If LearnArray(j, 9) = 1 Then
                distance = distance + 6.39
            Else
                distance = distance + 13.83
            End If
        End If
    End If
    'calculation for the TRUCK variable
    If TestArray(i, 10) <> LearnArray(j, 10) Then
        'if unequal add penalty
        distance = distance + 16.1
    End If
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    'calculation for the BUS variable
    If TestArray(i, 11) <> LearnArray(j, 11) Then
        'if unequal add penalty
        distance = distance + 11.01
    End If
    'calculation for the TOW variable
    If TestArray(i, 12) <> LearnArray(j, 12) Then
        'if unequal add penalty
        distance = distance + 20.83
    End If
End Sub

'This subroutine defines the neighborhood of learn accidents for the
'current test accident. The neighborhood size is defined in this
'subroutine and needs to be updated manually for each trial run. This
'subroutine also generates a forecast using a simple average of the
'duration of each learn accident in the neighborhood.
Public Sub NPR_Neighborhood()
    'define the neighborhood size for all test accidents
    nsize = 65
    'reset the dummy variable
    nsum = 0
    'from the list of learn accidents sorted by distance, select the
    'first "nsize" accidents and sum the duration values
    For k = 1 To nsize
        nsum = nsum + Sheet3.Cells(k + 1, 2)
    Next k
    'generate forecast using simple average of learn accidents in the
    'neighborhood from above
    npredict = Int(nsum / nsize)
End Sub

'This subroutine loads the dependent and independent variables of
'the learn and test accidents into array variables. This allows
'faster access to the values during run time.
Public Sub NPR_LoadData()
    For q = 1 To 5121                   'load each learning incident
        LearnArray(q, 1) = Sheet2.Cells(q + 1, 2)    'load duration
        LearnArray(q, 2) = Sheet2.Cells(q + 1, 6)    'load peak
        LearnArray(q, 3) = Sheet2.Cells(q + 1, 8)    'load weekday
        LearnArray(q, 4) = Sheet2.Cells(q + 1, 11)   'load ems
        LearnArray(q, 5) = Sheet2.Cells(q + 1, 12)   'load fire
        LearnArray(q, 6) = Sheet2.Cells(q + 1, 14)   'load hazmat
        LearnArray(q, 7) = Sheet2.Cells(q + 1, 15)   'load police
        LearnArray(q, 8) = Sheet2.Cells(q + 1, 16)   'load vdot
        LearnArray(q, 9) = Sheet2.Cells(q + 1, 18)   'load numveh



Forecasting the Clearance Time of Freeway Accidents 81

        LearnArray(q, 10) = Sheet2.Cells(q + 1, 19)  'load truck
        LearnArray(q, 11) = Sheet2.Cells(q + 1, 20)  'load bus
        LearnArray(q, 12) = Sheet2.Cells(q + 1, 21)  'load tow
    Next q
    For q = 1 To 1707                   'load each testing incident
        TestArray(q, 1) = Sheet1.Cells(q + 1, 2)    'load duration
        TestArray(q, 2) = Sheet1.Cells(q + 1, 6)    'load peak
        TestArray(q, 3) = Sheet1.Cells(q + 1, 8)    'load weekday
        TestArray(q, 4) = Sheet1.Cells(q + 1, 11)   'load ems
        TestArray(q, 5) = Sheet1.Cells(q + 1, 12)   'load fire
        TestArray(q, 6) = Sheet1.Cells(q + 1, 14)   'load hazmat
        TestArray(q, 7) = Sheet1.Cells(q + 1, 15)   'load police
        TestArray(q, 8) = Sheet1.Cells(q + 1, 16)   'load vdot
        TestArray(q, 9) = Sheet1.Cells(q + 1, 18)   'load numveh
        TestArray(q, 10) = Sheet1.Cells(q + 1, 19)  'load truck
        TestArray(q, 11) = Sheet1.Cells(q + 1, 20)  'load bus
        TestArray(q, 12) = Sheet1.Cells(q + 1, 21)  'load tow
    Next q
End Sub
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Appendix C: Nonparametric Regression Model Results for all
Neighborhood Sizes
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0 23.390744 758 924 25 268 477 696 1232 1636
1 25.51318102 934 749 24 267 493 726 1191 1588
2 23.89806678 851 830 26 293 523 757 1242 1607
3 22.79906268 844 834 29 318 558 779 1314 1615
4 22.85354423 831 849 27 295 517 744 1305 1621
5 22.45869947 854 829 24 271 522 770 1318 1621
6 22.14762742 853 826 28 270 525 777 1338 1631
7 21.87932045 836 845 26 289 531 795 1352 1629
8 21.81898067 830 861 16 293 537 786 1352 1624
9 21.76918571 825 861 21 286 538 802 1369 1628

10 21.86233158 818 867 22 283 532 800 1351 1626
11 21.87639133 803 884 20 273 523 799 1359 1630
12 21.67603984 806 877 24 275 536 802 1372 1631
13 21.69244288 810 880 17 280 542 798 1371 1633
14 21.59929701 812 878 17 284 535 796 1376 1633
15 21.52489748 804 885 18 286 539 799 1374 1636
16 21.41300527 801 880 26 284 529 796 1378 1638
17 21.38664323 787 892 28 285 539 794 1376 1637
18 21.02460457 776 903 28 288 548 819 1392 1637
19 20.92560047 779 900 28 288 556 834 1391 1636
20 20.85940246 769 904 34 289 556 827 1393 1640
21 20.76918571 768 902 37 292 563 830 1403 1638
22 20.68892794 774 902 31 305 561 830 1410 1639
23 20.6016403 771 904 32 302 563 830 1414 1637
24 20.52138254 773 905 29 305 568 842 1421 1637
25 20.52196837 769 910 28 303 572 836 1427 1637
26 20.50790861 771 908 28 310 571 847 1423 1637
27 20.4897481 780 896 31 323 572 841 1425 1638
28 20.51611013 775 901 31 319 582 833 1429 1639
29 20.456942 765 912 30 308 571 839 1433 1639
30 20.4340949 765 914 28 308 568 846 1432 1639
31 20.35559461 760 913 34 309 581 847 1429 1640
32 20.36203866 771 908 28 296 581 845 1429 1640
33 20.35852373 772 908 27 301 575 855 1428 1640
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34 20.32044523 765 904 38 299 574 848 1429 1640
35 20.33919156 770 912 25 290 577 847 1431 1638
36 20.28705331 770 910 27 299 585 858 1426 1638
37 20.28412419 762 912 33 303 581 854 1431 1639
38 20.27885179 769 910 28 297 586 861 1427 1640
39 20.27006444 768 911 28 300 580 850 1427 1640
40 20.26303456 767 906 34 301 584 856 1427 1641
41 20.27475103 765 908 34 295 580 849 1428 1641
42 20.24780316 775 901 31 300 590 848 1431 1640
43 20.27123609 783 896 28 301 584 849 1431 1640
44 20.28471002 777 900 30 303 587 848 1434 1640
45 20.26537786 775 907 25 302 582 854 1433 1639
46 20.25717633 771 905 31 303 590 850 1430 1639
47 20.25073228 776 906 25 302 591 858 1426 1639
48 20.27475103 773 907 27 299 585 848 1430 1639
49 20.25659051 775 906 26 299 590 852 1428 1638
50 20.23022847 774 896 37 297 594 852 1432 1638
51 20.22202695 775 907 25 305 583 851 1435 1639
52 20.19566491 773 901 33 306 583 853 1434 1639
53 20.20503808 774 903 30 302 586 851 1441 1640
54 20.20445226 772 902 33 309 584 853 1438 1639
55 20.22554189 774 901 32 302 581 847 1437 1639
56 20.19214997 776 900 31 299 588 854 1441 1639
57 20.2056239 780 890 37 299 588 852 1436 1638
58 20.22964265 776 893 38 294 588 848 1437 1638
59 20.22144112 780 889 38 298 591 848 1436 1639
60 20.25014646 774 900 33 300 581 845 1434 1640
61 20.24545987 779 900 28 302 579 848 1433 1640
62 20.26420621 779 899 29 301 588 852 1432 1640
63 20.21792619 778 896 33 299 597 858 1433 1640
64 20.20913884 776 890 41 300 590 853 1432 1640
65 20.19859402 784 888 35 297 592 856 1436 1640
66 20.21792619 784 892 31 302 593 863 1438 1640
67 20.2513181 782 897 28 302 589 858 1436 1640
68 20.25834798 782 894 31 303 592 861 1435 1640
69 20.26244874 785 890 32 305 587 853 1438 1640
70 20.26069127 790 893 24 311 583 850 1443 1640
71 20.28705331 778 890 39 313 588 847 1443 1640
72 20.27357938 783 891 33 313 590 851 1443 1640
73 20.27768014 780 894 33 312 586 848 1444 1640
74 20.29759813 780 892 35 314 582 847 1444 1640
75 20.2741652 781 894 32 313 586 848 1447 1640
76 20.24838899 782 893 32 314 589 847 1449 1640
77 20.24956063 787 895 25 314 590 847 1446 1640
78 20.23140012 784 896 27 313 589 852 1446 1640
79 20.20445226 788 898 21 310 588 856 1447 1640
80 20.21441125 784 901 22 311 587 851 1443 1640
81 20.21909783 778 904 25 314 584 852 1438 1641
82 20.22026948 780 898 29 319 589 846 1438 1640
83 20.25307557 777 901 29 315 585 846 1437 1640
84 20.26186292 778 901 28 314 584 845 1434 1640
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85 20.25659051 770 904 33 315 589 845 1435 1640
86 20.26069127 769 903 35 310 585 843 1442 1640
87 20.25717633 771 900 36 312 586 838 1445 1640
88 20.28060926 768 905 34 313 586 835 1445 1640
89 20.25483304 770 900 37 314 585 834 1446 1640
90 20.25248975 768 911 28 317 581 838 1449 1640
91 20.19156415 773 903 31 314 583 843 1449 1640
92 20.19507909 767 902 38 309 583 843 1449 1640
93 20.19214997 770 901 36 308 585 843 1447 1640
94 20.21558289 764 904 39 307 582 839 1445 1640
95 20.20503808 764 907 36 307 577 841 1444 1640
96 20.18746339 773 899 35 314 585 839 1447 1640
97 20.17574692 775 898 34 314 587 844 1437 1640
98 20.22144112 766 908 33 309 579 842 1442 1640
99 20.19097832 770 905 32 308 584 846 1438 1640

100 20.17984769 769 909 29 307 584 844 1438 1640
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Appendix D: Map of HRSTC Location Zones
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