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1. INTRODUCTION 
 
 
 
Automobile noise is one of the most annoying environmental noise problems since the 
number of automobiles has increased dramatically for the last few decades.  It is now 
known that tire/road noise is a major contributor to exterior automobile noise [1-5] and 
establishes the background noise level in many environments: the other types of noise 
generated by an automobile, such as engine noise, muffler noise, aerodynamic noise, and 
so on, can be relatively easily controlled since various noise control techniques directed 
at them have been successfully developed.  Thus, the reduction of tire/road noise source 
would result in a reduction of environmental stress and improvement in quality of life.  
To control tire/road noise, tire noise mechanisms must first be identified.  Numerous 
mechanisms have already been identified [6-20], but it is still difficult to decide which 
ones are the most significant in terms of tire noise generation.  Therefore, it is 
worthwhile to review here the various tire noise mechanisms reported in the literature.  
 
 
    

1.1 Tire Noise Mechanisms 
Noise can be generated by fluid flow, such as a whistle, or from a vibrating surface such 
as a drum: the former is referred to as an aeroacoustic noise mechanism and the latter as a 
structural noise mechanism [12,21].  The same categorization can be applied to the tire 
noise problem.  Note also that tire noise can be amplified by acoustical resonances or 
acoustical impedance matching.  Thus, acoustical amplification mechanisms will also be 
considered here. 
 
 
 

1.1.1 Aeroacoustic Noise Mechanisms 
Aerodynamic noise and air-pumping noise belong to this category.  The former is the 
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noise associated with the turbulent airflow around tire: it can be ignored when the speed 
of the automobile is within a typical operation speed range [13,14].  Air-pumping noise 
is generated by the tread pattern acting like a “suction cup” that is applied to and then 
removed from a smooth surface.  That is, air in the “air pockets” within the tire tread 
pattern or road surface is compressed or leaks away at the leading edge of the contact 
patch, and then is expanded or sucked into the pockets at the trailing edge.  It is known 
that air-pumping noise is significant at the frequency range 1 kHz to 6 kHz and that it can 
be reduced by removing the air pockets from the tire tread pattern [15].  In the case of a 
“well-designed” tire, whose tread patterns are well “ventilated”, and for “normal” road 
surfaces, which are not very smooth and do not have many air pockets, air-pumping noise 
may be insignificant. 
 
 
 

1.1.2 Structural Noise Mechanisms 
Noise generated by the tire vibration is referred to as structural noise.  Tire carcass 
vibration is one of important tire noise source: i.e., a tire’s tread block hits the road 
surface, and then the underlying reinforcing belts vibrate owing to the force transmitted 
through the tread block, resulting in sound radiation from the vibrating tire surface.  
Local deformation of tread blocks near the contact patch also generates structural noise; 
for example, when the tread block of a tire is compressed at the leading edge and then 
released at the trailing edges.  Note also that friction phenomena near the contact patch 
area generate noise that is usually referred to as “squeal”.  It is know that squeal can be 
reduced by changing tire’s rubber compounds and road microtexture: i.e., the friction 
coefficient between the tire/road interface should be as high as possible [16,17]. 
 
 
 

1.1.3 Acoustical Amplification Mechanisms 
Groove patterns in the shape of a line or curve can be considered as pipes in the contact 
patch region resulting in “pipe resonance” [12].  For the purpose of designing a quiet 
tire, such a groove pattern should be avoided.  Note also that the pipe length and the 
boundary condition (e.g., open or closed condition) at the ends of the pipe can be 
controlled to prevent undesirable noise components from being amplified by the pipe 
resonance. 
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 Tire noise can also be amplified by the tire’s acoustic cavity (i.e., the interior of 
the tire) at specific frequencies determined by the cavity geometry.  This mechanism can 
be referred to as “cavity resonance” [18,19]. 

Finally, the horn shape consisting of the road surface and the treadband near the 
contact patch area can effectively radiate sound as a result of impedance matching: this 
phenomenon is referred to as the “horn effect” [20]. 
 
 
 

1.2 Problem Approach 
Among the numerous tire noise mechanisms described above, tire carcass vibration has 
been extensively investigated as a primary noise source [22-35].  Once the 
characteristics of tire vibration are identified, the vibration response for an input force 
that may be used to model cavity resonance or tire/road interaction can be calculated: the 
cavity resonance can be considered as an acoustical pressure acting on the inner surface 
of a tire and the tire/road interaction as point-forces or a distributed force acting at the 
contact patch area.  Note that tire tread pattern and road surface roughness mainly 
control the tire/road interaction force.   

The vibration response can then be used as the input of a sound radiation analysis: 
horn effects can also be considered by simulating the road surface as an acoustical 
impedance boundary condition (normally as a rigid boundary condition). 
 
 
 

1.3 Overview 
Nearfield Acoustical Holography (NAH) is a useful tool for identifying sound sources 
since it allows sound fields represented by acoustical pressure, velocity, or intensity to be 
visualized in three-dimensional spaces.  The NAH procedure was here applied to a 
rolling tire for the purpose of identifying dominant tire noise sources (see Chap. 2).  A 
compensation procedure for source non-stationarity in multi-reference, scan-based NAH 
was introduced and applied to the rolling tire experiment yielding enhanced acoustical 
images in narrow frequency bands.  An optimal virtual reference procedure was also 
introduced and used to separate total sound fields into several partial fields, each 
associated with sidewall, or leading or trailing edges near the contact patch area. 
 The subject of Chap. 3 is the measurement of stationary tire vibration.  In the 
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experiment to be described here, a tire was driven radially at a point on its treadband by 
using a small shaker.  Measurements of the resulting radial treadband vibration were 
then made around the treadband circumference using a laser Doppler velocimeter.  Then, 
both non-parametric and parametric wave number decomposition techniques were 
applied to the experimental data.  From the wave number domain representation of 
stationary tire vibration, the low frequency, flexural wave characteristics resulting in 
efficient sound radiation are observed.  It is also shown that there exist fast, in-plane 
waves that are potentially significant sound radiators at high frequencies. 
 In an attempt to understand the experimental results shown in Chap. 3 in details, 
the tire treadband was modeled as a ring-like, circular cylindrical shell with air pressure 
acting on its interior surface: this work is described in Chap. 4.  The model makes 
allowance for general boundary conditions at the lateral edges of the ring, and the 
sidewall of the tire is modeled as a distribution of springs and dampers.  Both analytical 
and finite element methods were applied to obtain the vibration response.  This shell 
model was found to explain the propagation characteristics of the waveguide modes that 
are visible in the experimental results.  In addition to the simple circular cylindrical shell 
model, a full FE model having a cross-sectional shape almost identical to that of a real 
tire was analyzed.  Although the major vibration characteristics of a tire could be 
reproduced by using the simple model, the full FE model can provide detailed 
information that is useful for sound radiation analysis. 

Since a tire can be modeled as a lossy waveguide in which decaying waves 
propagate in the circumferential direction, it may be computationally efficient to analyze 
tire vibration by using hybrid, two-dimensional finite elements: i.e., the cross-section of a 
tire is approximated by two-dimensional finite elements, while a wave-like solution is 
assumed in the circumferential direction.  In particular, the hybrid, 2-D element model 
for high frequency analysis may be very useful since a full, 3-D element model requires 
both a large number of finite elements and significant computational resources.  In Chap. 
5, a hybrid finite element formulation based on composite shell theory is described.  The 
inflation pressure acting on the inner surface was included in the model.  The full FE 
model described in Chap. 4 was also analyzed by using the hybrid, 2-D finite elements 
and the resulting dispersion relations were compared with those obtained by using a full, 
3-D finite elements.   
  To identify the effects of tire rotation on wave propagation, the rotation of a shell 
about a fixed axis that simulates the axle of a car is considered in Chap. 6.  The 
equations of motion of a rotating circular cylindrical shell were derived in a fixed 
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reference frame.  From those equations, the analytical vibration response was obtained 
assuming wave solutions.  It is shown that at typical rotational speeds, a stationary 
analysis of the circular cylindrical shell model of a tire treadband could be used to 
approximately predict the characteristics of the rotating tire treadband after a simple 
kinematic compensation is performed.  Finally, conclusions are presented in Chap. 7. 
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2. NEARFIELD ACOUSTICAL HOLOGRAPHY APPLIED TO A ROLLING TIRE 
 
 
 
In this chapter, the application of a multi-reference, scan-based Nearfield Acoustical 
Holography (NAH) procedure to a rolling tire for the purpose of identifying dominant tire 
noise sources is described.  A compensation procedure for source non-stationarity was 
introduced and applied to the rolling tire experiment yielding enhanced acoustical images 
in narrow frequency bands.  An optimal virtual reference procedure is also described in 
this chapter.  That procedure was used to decompose the total sound field radiated by the 
composite sound source of the rolling tire into physically meaningful partial sound fields. 
 
 
 

2.1 Compensation for Source Non-Stationarity 
Multi-reference, scan-based Nearfield Acoustical Holography is a useful measurement 
tool that can be applied when an insufficient number of microphones is available to make 
measurements on a complete hologram surface simultaneously.  The scan-based 
procedure can be used to construct a complete hologram by joining together sub-
holograms captured using a relatively small, roving scan array and a fixed reference 
array.  For the procedure to be successful, the source levels must remain stationary for 
the time taken to record the complete hologram: that is unlikely to be the case in practice, 
however.  Usually, the reference signal levels measured during each scan differ from 
each other with the result that spatial noise is added to the hologram.  A procedure to 
suppress the effects of source level, and hence reference level, variations is proposed here.  
The procedure is based on a formulation that explicitly features the acoustical transfer 
functions between the sources and both the reference and scanning, field 
microphones.  When it is assumed that source level changes do not affect the sources’ 
directivity, a non-stationarity compensation procedure can be derived that is based on 
measured transfer functions between the reference and field microphones.  It has been 
verified both experimentally and in numerical simulations that the proposed procedure 
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can help suppress spatially distributed noise caused by the type of source level non-
stationarity that is characteristic of realistic sources.  
 
 
 

2.1.1 Introduction 
Nearfield Acoustical Holography (NAH) is a useful tool for identifying noise sources and 
reconstructing sound fields in a three-dimensional space [36].  The holographic 
projection and reconstruction process is based on a phase-coherent, spatial wave field 
transformation that in turn requires the sound field on the hologram aperture to be fully 
coherent.  However, in many practical cases, the sound field is created by a combination 
of incoherent or partially coherent sources with the result that the sound field at the 
hologram aperture is only partially spatially correlated. 

When the sound field represents the superposition of fields radiated by incoherent 
or partially coherent sources, the total measured field must be decomposed into a set of 
spatially coherent partial fields (which are themselves mutually incoherent) before 
application of the holographic process to each of the partial fields in turn [40].  The 
projected partial fields are then added quadratically on the reconstruction surface to give 
the quadratic properties of the total field (e.g., sound power passing through the hologram 
aperture).  When performing partial field decomposition, reference signals that are 
linearly related to source signals must be used instead of the “source” signals themselves, 
since in the case of most mechanical and flow noise sources, those signals cannot be 
directly measured.  The number of fixed-location reference transducers must be equal to 
or greater than the number of incoherent sources to effect the partial field decomposition 
and to ensure that the quadratic sum of the partial fields accurately represents the 
quadratic properties of the total field.   

Multi-reference, scan-based NAH as described above was introduced by Hald 
[40]: that procedure is referred to as Spatial Transformation of Sound Fields (STSF).  
The latter procedure is based on the use of spectral matrix relations linking the reference 
and field signals and makes use of principal reference signals identified using Singular 
Value Decomposition (SVD).  The STSF procedure can be used to construct a complete 
hologram by joining together sub-holograms measured on each scan sector by using a 
relatively small scan array, provided only that the sound sources are stationary during the 
complete measurement: i.e., the measured reference spectra should be consistent from 
scan to scan.  However, in practice, source levels vary during a measurement. 
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The effect of field level variation from scan to scan is to add spatially distributed 
noise to the hologram.  That spatial noise can be reduced to some extent by using long 
averaging times, and by the application of low pass, wave number filtering to eliminate 
high spatial frequencies resulting from discontinuities at the edges of the sub-holograms.  
However the latter procedure cannot effectively eliminate spurious low wave number 
components that are generated when the scan array is relatively large in at least one 
dimension.   

To develop a procedure for suppressing source non-stationarity effects, a detailed 
consideration of the signal and system relations between source, reference, and field data 
is required [39].  Based on such an investigation, a method to compensate for source 
non-stationarity is introduced here.  The procedure is based on identifying the acoustical 
transfer functions that should be calculated on a scan-by-scan basis and the cross-spectral 
matrices that should be averaged across all the scans. 
 
 
 

2.1.2 General Approach to Multi-Reference, Scan-Based NAH 
The theory of NAH is based on the use of the Kirchhoff-Helmholtz integral equation to 
describe the sound field in a volume that encloses the sound sources [36].  The 
holographic projection and reconstruction procedure can be expressed in matrix form as 
[40]:  

 yHy yy′=′ , (2.1) 

where y and y′ represent the temporally Fourier transformed acoustic fields, e.g., pressure 
or velocity, on the hologram and reconstruction surfaces, respectively.  The matrix Hy′y 
represents the NAH projection procedure relating the sound field on the hologram surface 
to that on the reconstruction surface.  Equation (2.1) can be applied most directly to 
coherent sound fields.  However, when data is measured over portions of the hologram 
aperture in sequence, it is necessary to use reference transducers to provide phase 
references.  In the latter case, it is convenient to begin from a statistical description of 
the sound field, in which case the holographic procedure can be expressed as [40], 

 { } { } HHHH EE yyyyyyyyyyyy HSHHyyHyyS ′′′′′′ ==′′= , (2.2) 

where E denotes the expectation operator, the superscript H denotes the Hermitian 
transpose, and Syy and Sy′y′ are the cross-spectral matrices on the hologram and 
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reconstruction surfaces, respectively.  The reconstructed fields, in the magnitude sense, 
are then the diagonal terms of the cross-spectral matrix on the reconstruction surface.  
Since the cross-spectral matrices in Eq. (2.2) comprise the auto- and cross-spectra formed 
amongst the complete set of field signals on the hologram or reconstruction surfaces, the 
measurement and calculation of the cross-spectral matrices can be very time consuming 
given that a measurement may involve hundreds or thousands of field points.  To 
simplify the hologram measurement and attendant calculation of the spectral matrices, a 
multi-reference method was developed [40,41]. 

When the sound field is generated by a finite number of sources, the field signals 
can be expressed as a linear combination of a set of reference signals when the number of 
reference signals is equal to or larger than the number of sources and when the reference 
signals span the complete source signal space.  In that case, the hologram cross-spectral 
matrix can be calculated indirectly when both the cross-spectral matrix of a suitable set of 
reference signals and the cross-spectra between the reference and field signals are known 
[40].  Once the complete hologram cross-spectral matrix is estimated using a multi-
reference method, the hologram cross-spectral matrix must be decomposed into a set of 
coherent, but mutually incoherent, partial fields before the holographic projections can be 
performed: either SVD or partial coherence procedures may be used for that purpose 
[39,41].  Note that the partial fields are not unique and that their natures depend on both 
the decomposition procedure used and the reference microphone locations with respect to 
the sources.  In general, the decomposed partial fields do not coincide with the physical 
partial fields radiated by the independent noise sources: the identified partial fields can 
themselves, however, be expressed as linear combinations of the physical partial fields. 

As well as reducing the time taken to measure and compute the cross-spectral 
matrices, the multi-reference method has the advantage that it makes it possible to use a 
reduced set of scan microphones to measure the sound field on sectors of the hologram 
surface in sequence when the field can be assumed stationary.  That is, the field signals 
are gathered step-by-step using a scanning microphone array that is smaller than the 
hologram aperture.  During such a measurement, the location of the reference 
transducers must be fixed in space with respect to the various sources. 
 
 
 

2.1.3 Source and Signal Relations 
Here, the “source” signals are considered to be mutually uncorrelated signals that 
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represent distinct physical source mechanisms.  Next, assume that the total sound field 
generated by the collection of physical sound sources is completely sensed by a set of 
reference transducers: i.e., it is assumed that the number of references is equal to or larger 
than the number of sound sources and that one or more of the reference transducers 
measures a signal linearly related to each of the component sources.  The reference and 
sound field signals can then be expressed as a linear combination of the source signals 
multiplied by appropriate acoustical transfer functions. 

As an example, the sound field radiated by two independent sources operating 
simultaneously can be represented by the system model illustrated in Fig. 2.1 [39].  In 
Fig. 2.1, gij represents the transfer function between source j and reference i, gyj denotes 
the transfer function between source j and a field point, and hyi denotes the transfer 
function between reference i and the field point.  Note that when representing the 
system in terms of source signals and transfer functions, the transfer functions, gij and gyj, 
depend both on the geometry of the source and field point arrangement, and on the 
radiation characteristics of the sources: e.g., their directivity.  Here it is assumed that the 
physical sources’ radiation characteristics are not affected by source level fluctuations, 
and therefore remain constant through an entire holographic measurement: i.e., the 
transfer function gij and gyj are assumed to be the same during each scan. 

For the general case of N incoherent sources and M references where M ≥ N, the 
reference signals can be expressed in vector-matrix form as [39], 
 sGr rs= , (2.3) 
where r and s are the M by 1 reference signal vector and the N by 1 source signal vector, 
respectively, and Grs is the M by N transfer function matrix that relates the source and 
reference signals.  The field signals on the hologram surface can also be represented as 
the product of a transfer function matrix and the source signal vector: i.e., 

 sGy ys= , (2.4) 

where y is the field signal vector on the hologram surface and Gys is the transfer function 
matrix relating the source and field signals.   From Eqs. (2.3) and (2.4), the cross-
spectral matrix relating the reference and field signals can be expressed as 

 { } HHE ysssrsry GSGryS == , (2.5) 

where Sry is the cross-spectral matrix between the reference and field signals and Sss is 
the source signal cross-spectral matrix which, under the conditions prescribed above, is 
diagonal (the diagonal components being the auto-spectra of the source signals).  By 
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using Eq. (2.3), the reference spectral matrix can be also written as 

 { } HHE rsssrsrr GSGrrS == , (2.6) 

where Srr is the reference cross-spectral matrix.  Note that any source level variation 
appearing in the source auto-spectra on the right-hand side of Eq. (2.6) translates directly 
into variation of the reference cross-spectral matrix through the transfer function matrix, 
Grs.  
 
 
 

2.1.4 Description of Multi-Reference NAH 
The field signals on the hologram surface can be expressed as a linear combination of the 
reference signals multiplied by appropriate transfer functions: i.e., 

 rHy yr= , (2.7) 

where r is the reference signal vector, and Hyr is the transfer matrix that relates the 
reference and field signals on the hologram surface.  By multiplying each side of Eq. 
(2.7) by rH and then finding the expectation of the result, an equation for the latter 
transfer function matrix can be obtained: i.e., 

 , (2.8) 1H −= rrryyr SSH

where the inverse of the reference cross-spectral matrix represents a generalized inverse 
to accommodate situations in which the reference cross-spectral matrix is rank-deficient.  
Similarly, the cross-spectral matrix on the hologram surface can be expressed as 

 ryyryy SHS = . (2.9) 

By substituting Eq. (2.8) into Eq. (2.9), the hologram cross-spectral matrix can be 
estimated by using the reference cross-spectral matrix in combination with the cross-
spectral matrix relating the reference and field signals on the hologram surface: i.e., 

 . (2.10) ryrrryyy SSSS 1H −=

Note that the cross-spectral matrix can be decomposed into an infinite variety of 
incoherent partial fields subject only to the condition that Syy = YYH, where Y represents 
a partial field matrix.  From Eqs. (2.8) and (2.10), the partial field matrix, Y, can then be 
represented as [39] 
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 . (2.11) 2/12/1H
rryrrrry SHSSY == −

The SVD and partial coherence methods have been used for calculation of the partial 
field decomposition given in Eq. (2.11).  Note that each column of the matrix, Y, 
represents a partial field vector.  In the SVD method, the reference cross-spectral matrix 
is decomposed by using SVD and thus the partial fields can be represented as 

 , (2.12) 2/12/1H USHUSSY yrry == −

where U is the unitary matrix and S is the diagonal matrix of singular values.  The 
partial coherence method is based on the use of LU decomposition [60] to separate the 
reference cross-spectral matrix into two parts, and in that case the partial fields are 
written as 

  2HSY yr== , (2.13) /12/11H LDDLry
−−

where L is lower triangular matrix and D is the diagonal matrix with pivots.  The SVD 
procedure has been used in the experiments presented in this chapter. 
 
 
 

2.1.5 Non-Stationarity Compensation 
By substituting Eqs. (2.5) and (2.6) into Eq. (2.8), the transfer function matrix relating the 
reference and field signals can be expressed in terms of the source matrix and the 
associated transfer matrix: i.e., 

 ( ) 11HH1H −−− === rsysrsssrsrsssysrrryyr GGGSGGSGSSH .  (2.14) 

Note that the source cross-spectral matrix cancels out in this calculation and thus the 
transfer matrix between the reference and field signals is independent of source level 
variation since the transfer matrices between the source and reference and field signals 
are themselves assumed to be independent of source level.  Under these conditions, the 
reference cross-spectral matrix varies in direct proportion to the source level non-
stationarity, as shown in Eq. (2.6), from one scan sector to the next, but the transfer 
function matrix appropriate for each scan is consistent even when the source levels vary.  

Based on the above considerations, the partial field matrix, Eq. (2.11), can finally 
be written in modified form as 
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 , (2.15) 2/1
(avg)

1
(step)

H
(step)

2/1
(avg)(step), ,,,, rrrrryrryr SSSSHY −==

where the subscripts (step) and (avg) denote spectral matrix estimates calculated during 
each scan and averaged over all the scans, respectively.  The partial field decomposition 
represented by Eq. (2.15) thus combines transfer functions estimated during each scan 
with reference information averaged over the complete measurement set to create a 
consistent set of partial fields.  Given the above assumptions, non-stationary effects 
should be suppressed in partial fields calculated using Eq. (2.15).  
 
 
 

2.2 Partial Field Decomposition by Using Optimally-Located Virtual References 
It has been shown previously that the multiple reference and field signals recorded during 
a scanning acoustical holography measurement can be used to decompose the total 
measured sound field radiated by a composite sound source into mutually incoherent 
partial fields.  To obtain physically meaningful partial fields, i.e., fields closely related 
to particular component sources, the reference microphones should be positioned as close 
as possible to the component physical sources that together comprise the complete source.  
However, it is not always possible either to identify the optimal reference microphone 
locations prior to performing a holographic measurement, or to place reference 
microphones at those optimal locations, even if known, owing to physical constraints.  
Here, post-processing procedures are described that make it possible both to identify the 
optimal reference microphone locations and to place virtual references at those locations 
after performing a holographic measurement.  The optimal reference microphone 
locations are defined to be those at which the Multiple Signal Classification (MUSIC) 
power is maximized in a three-dimensional space reconstructed by holographic projection.  
The acoustic pressure signals at the locations thus identified can then be used as optimal 
“virtual” reference signals.  It is shown through an experiment and numerical simulation 
that the optimal virtual reference signals can be successfully used to identify physically 
meaningful partial sound fields particularly when used in conjunction with partial 
coherence decomposition procedures. 
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2.2.1 Introduction 
For the NAH procedure to be successful in its simplest form, the measured sound field 
must be spatially phase-coherent.  Such a spatially phase-coherent sound field can be 
obtained by capturing the sound pressure on the entire measurement surface 
simultaneously.  However, the latter measurement requires the use of many field 
microphones, perhaps hundreds or thousands, which may not always be practical.  
When the sound field generated by a single coherent source is stationary, however, a 
relatively small number of scan microphones can be used in combination with a fixed-
location reference microphone to sample data on portions of the hologram surface 
sequentially.  The reference spectral data can then be combined with the transfer 
functions linking the references and the field points on the hologram surface to create a 
complex pressure distribution on the latter surface which may then be projected as 
desired. 

A multi-reference procedure referred to as Spatial Transformation of Sound Fields 
(STSF), was introduced by Hald to accommodate situations in which the sound field is 
generated by a composite source comprising more than one mutually-incoherent source 
[40].  The latter procedure, described in terms of a reference cross-spectral matrix and a 
cross-spectral matrix linking the reference and field signals, is based on using singular 
value decomposition (SVD) to separate the total sound field into a set of phase-coherent 
partial fields that are incoherent with each other.  The partial fields can then be 
independently projected and added together to yield the quadratic properties of the sound 
field on the reconstruction surfaces of interest.  Note that in this procedure the 
characteristics of the partial fields depend on the reference microphone locations with 
respect to the component sources, and thus the partial field decomposition is not unique.  
As a result, the partial fields determined in this way cannot usually be associated with 
particular component sources. 

Since the introduction of STSF, a number of investigations have focused on 
separating the total sound field into individual partial sound fields that can be associated 
with meaningful physical sources: e.g., in case of a running automobile, flow noise, 
engine noise, tire noise, etc.  As an alternative to the SVD procedure, Hallman and 
Bolton [41] suggested the application of partial coherence decomposition (PCD), based 
on Gauss elimination [60], to separate the partial fields.  Kwon and Bolton [39] 
compared the performance of the SVD and PCD methods; they also introduced the use of 
the multiple signal classification (MUSIC) algorithm [61] for the selection of the best 
references from amongst many candidates positioned around a composite sound source.  
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It was shown that the reference microphones should be positioned close to the individual 
physical sources if physically meaningful partial sound fields were to be obtained.  
However, in practice, the location of the most prominent sources is sometimes not known 
prior to performing a holographic measurement.  There are also cases in which it is 
impossible to place references at the desired locations even when those locations are 
known: for example, when a reference microphone placed close to a physical source 
might itself induce flow noise or when the desired locations are otherwise inaccessible 
for practical reasons.   

Thus, to facilitate the decomposition of a sound field into physically meaningful 
components, it would be desirable to be able to place “virtual” references at optimal 
locations after performing a holographic measurement made using a set of sufficient, but 
non-optimally located references.  

A virtual reference procedure was first described by Nam and Kim [56]: it was 
based on a vector representation [57] of the sound field combined with a knowledge of 
various point-to-point transfer functions both measured and estimated by using 
holographic projections.  First note that in their procedure it is assumed that the number 
of “real” and “virtual” references used first to measure, and then to post-process the data, 
is the same.  However, when a holographic measurement is performed, it may be 
desirable to use a larger number of real references than virtual references to ensure that 
the total sound field is captured completely and to reduce noise effects.  Nam and Kim 
also concluded that virtual references should be located at positions on the source surface 
where the amplitude of an acoustical property of interest, such as the pressure, particle 
velocity, or active intensity, was a maximum.  Through numerical simulations it was 
shown that by positioning the virtual references appropriately on the source surface the 
sound field could be decomposed into physically meaningful partial fields, particularly 
when PCD was performed.   

Here, the partial field decomposition procedure based on the use of virtual 
references introduced by Nam and Kim is re-derived in an alternative form, based on the 
use of signal cross-spectral matrices and transfer functions, with the intent of developing 
a procedure that is compatible with conventional multi-reference NAH techniques [40].  
The procedure to be described here also makes it possible to use a larger number of real 
than virtual references as would usually be the case in practice.  Here, an optimization 
procedure combined with the MUSIC algorithm was used to help identify the optimal 
reference locations.  The optimal reference locations were identified by searching for 
the positions in three-dimensional space at which the MUSIC power was locally 
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maximized.  By using the proposed procedure, it was possible to identify optimal 
reference positions in terms of both the projection surface location and the location on the 
projection surface; in contrast, by simply maximizing the amplitude of a particular 
acoustical property, e.g., pressure, only the virtual reference location on a projected 
surface can be identified.  It is shown here, through both experiment and numerical 
simulation, that the optimal virtual reference procedure can yield improved estimates of 
the physical partial sound fields. 
 
 
 

2.2.2 Projection in Multi-Reference NAH 
When the total sound field generated by a composite source comprising a finite number 
of uncorrelated physical sources is completely sensed by a set of reference transducers 
(i.e., the number of references is equal to or larger than the number of uncorrelated 
sources and each uncorrelated source is sensed by at least one reference transducer), the 
field signals on the hologram surface can be expressed in the frequency domain as a 
linear combination of reference signals multiplied by appropriate acoustical transfer 
functions as shown in Eq. (2.7): i.e., 

 , (2.16a) 
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where yi represents the i-th field signal on the hologram surface (i = 1, 2, ⋅⋅⋅, N, and N is 
the total number of measurement points on the hologram aperture), rj denotes the j-th 
reference signal (j = 1, 2, ⋅⋅⋅, M, M ≥ 1, and M is the total number of reference 
microphones), and hij denotes the transfer function between the j-th reference and i-th 
field signal.  Equation (2.16a) can be expressed in compact vector-matrix form as, 

 rHy yr= , (2.16b) 

where y and r are the N by 1 field signal vector and the M by 1 reference signal vector, 
respectively, and Hyr is the N by M transfer function matrix that relates the reference and 
field signals.   When the holographic measurement is made using a scanning procedure 
in which data over portions of the hologram aperture are captured sequentially, it is 
convenient to describe the sound field statistically.  In the latter case, Eq. (2.16b) can be 
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modified by multiplying it by the Hermitian transpose of the reference vector and then 
evaluating the ensemble average to give: 

 { } { } rryryrryyr SHrrHyrSS ==== HHH EE , (2.17) 

where E denotes the expectation operator, the superscript H denotes the Hermitian 
transpose, Sry is the cross-spectral matrix between the reference and field signals, and Srr 
is the reference cross-spectral matrix.  Here it is assumed that the number of incoherent 
sources is K ≤ M: the number of incoherent sources in any particular case can, in 
principle, be determined by counting the number of significant singular values when the 
reference cross-spectral matrix is decomposed by using SVD [55].  In the latter case, it 
is desirable to decompose the reference cross-spectral matrix by using SVD.  The 
reference cross-spectral matrix, Srr, can then be represented as the product of a diagonal 
matrix whose elements are the singular values, and a unitary matrix whose column 
vectors are the eigenvectors of Srr(Srr)H.  When the singular values associated with the 
noise subspace are small enough to be ignored, the reference cross-spectral matrix can be 
approximated as comprising only the first K singular values and eigenvectors: i.e., 
 , (2.18) HVVΛSrr =
where V is an M by K matrix whose m-th column is the column vector of the unitary 
matrix and Λ is the K by K diagonal matrix whose m-th diagonal element is the m-th 
singular value.  By substituting Eq. (2.18) into Eq. (2.17), the transfer matrix relating the 
reference and field signals can be expressed as 

 . (2.19) H1H1H VVΛSSSH ryrrryyr
−− ==

From Eq. (2.16b), the cross-spectral matrix of the field signals on the hologram surface 
can be estimated by using the reference cross-spectral matrix in Eq. (2.18): i.e., 

 . (2.20) HHH
yryryrrryryy HVVΛHHSHS ==

The cross-spectral matrix of field signals on the hologram surface can then be 
decomposed to represent a set of incoherent partial fields subject only to the condition 
that Syy = YYH, where each column of the matrix, Y, represents a partial field vector: e.g., 

 , (2.21) 2/12/1 ΛHVΛHY ylyr ==

where Λ1/2 is the principal reference signal matrix and Hyl is the transfer matrix between 
the principal reference signal matrix and the partial field matrix (Hyl = HyrV).  The 
acoustical field on any reconstruction surface can then be expressed as, 
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 , (2.22) 2/12/12/1 ΛHΛHHVΛHHYHY lyylyyyryyyy ′′′′ ====′

where Y′ is the partial field matrix on the reconstruction surface and Hy′l represents the 
transfer matrix between the principal reference signals and the partial field signals on the 
reconstruction surface.  The matrix Hy′y is composed of the transfer functions that relate 
the field signals on the hologram and reconstruction surfaces, and it represents the NAH 
projection procedure including the spatial Fourier transform (in the planar case) and the 
propagation operation: the latter procedure also incorporates the effects of discretization, 
windowing, spatial filtering, zero-padding, etc. [36,40].  Note that in practice, the matrix 
Hyr appearing in Eq. (2.22) should be calculated from the cross-spectral matrices, Syr,(step) 
and Srr,(step), measured during each individual scan, by using Eqs. (2.18) and (2.19), while 
V and Λ are calculated from the reference cross-spectral matrix, Srr,(avg), averaged over all 
the scans, in order to suppress spatial noise caused by source non-stationarity (as noted 
earlier in this chapter).  Finally note that each column of Hy′l corresponds to the NAH 
projection of the corresponding column of Hyl.  The cross-spectral matrix of the field 
signals on a reconstruction surface can then be calculated from Eq. (2.22) as 

 . (2.23) HH
lylyyy ΛHHYYS ′′′′ =′′=

 
 
 

2.2.3 Virtual Reference Procedure 
Virtual references can, in principle, be placed anywhere within the three-dimensional 
space covered by the NAH projection.  By making use of the partial field signal 
matrices evaluated on the reconstruction surfaces, as in Eq. (2.22), the virtual reference 
signal matrix can be expressed as 
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where X is the K by K virtual reference signal matrix.  In Eq. (2.24), cm represents the N 
by 1 reference selection vector: when the m-th virtual reference is positioned at the i-th 
field position on the reconstruction surface, all elements of cm are zeros except for the 
element at the i-th row, which is itself unity.  Note that the matrix Y′m in Eq. (2.24) 
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represents the partial field signal matrix for the reconstruction surface on which the m-th 
virtual reference is placed, and that the vector, cm, denotes the m-th virtual reference 
location on the m-th reconstruction surface.  Thus, the location of the m-th 
reconstruction surface in combination with the vector, cm, determines the location of the 
m-th virtual reference in a three-dimensional space.  The cross-spectral matrices 
between the virtual reference signals, and between the virtual reference and the field 
signals on the hologram surface, can then be obtained from Eqs. (2.21) and (2.24): i.e., 
 , (2.25) HH

xlxlxx ΛHHXXS ==

and 

 , (2.26) HH
ylxlxy ΛHHXYS ==

where Sxx is the virtual reference cross-spectral matrix and Sxy is the cross-spectral matrix 
between the virtual reference and field signals on the hologram surface. 

Recall that under ideal circumstances, the physical reference microphones should 
be placed at the locations of physical, uncorrelated sources.  In practice it may not be 
possible to position real reference microphones at those points.   

It has been shown previously that the MUSIC algorithm can be combined with the 
SVD procedure to guide the selection of the best “real” reference microphones from 
amongst a large number of real microphones positioned around a noise source [39].  
Since the MUSIC algorithm can be used to find the locations of sources in a three-
dimensional space [61], the latter procedure has here been modified to identify the 
optimal virtual reference locations: the optimal locations are here identified as the points 
in a three-dimensional space at which the MUSIC power, defined below, is maximized. 

When the cross-spectral matrix of the field signals on a reconstruction surface, i.e., 
Sy′y′ in Eq. (2.23), is decomposed by using the SVD procedure (Sy′y′ = W∑WH), the 
unitary matrix, W, can be expressed in terms of the eigenvectors of Sy′y′(Sy′y′)H: i.e., W = 
[w1 w2 ⋅⋅⋅ wN], where wn is the n-th eigenvector associated with the n-th singular value.  
Since the number of incoherent sources is K, the noise subspace, Rnoise, can be defined in 
terms of the noise-related eigenvectors, wn (n = K+1 to N), as 

 . (2.27) ∑
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=
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The MUSIC power is then defined in terms of Rnoise as 

 
uRu noise

HMUSIC
1

=P , (2.28) 

where u is the trial vector.  Since the signal subspace spanned by wn (n = 1 to K) is 
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orthogonal to the noise subspace represented by Rnoise, the MUSIC power should be 
infinite when u = wn (n = 1 to K).   

Assume, for example, that a vector representing a source at the n-th discrete point 
of the reconstruction surface can be approximated as the trial vector,  

 , (2.29) T]00100[ LL=nu

where the n-th element of un is one and the other N-1 elements are zeros.  In that case, 
the MUSIC power associated with the trial vector, un, would be very large.   

After calculating the MUSIC powers associated with all possible trial vectors, u = 
un (n = 1 to N), a map of the MUSIC power on a two-dimensional reconstruction surface 
can be obtained by reshaping the MUSIC power vector into a matrix whose elements 
represent the MUSIC power at a point on a two-dimensional surface.  A three-
dimensional MUSIC power image can then be obtained by repeating the latter operations 
on other projection surfaces in sequence.  Since the MUSIC power at source locations is 
large, the optimal virtual reference locations are those where the MUSIC power is 
maximized locally.  The virtual reference signals at those optimal locations can then be 
obtained from Eq. (2.24) since the reference locations that are identified by performing 
the optimal search are expressed in terms of the reconstruction surface locations and the 
reference selection vectors that appear in the latter equation.   

The trial vector defined in Eq. (2.29) closely represents the sound field generated 
by a monopole source.  It is thus likely that the maximum MUSIC power procedure as 
described here will identify the locations of monopole-like sources.  Other trial vectors 
may be more appropriate for identifying the locations of more complicated sources, e.g., 
panel modes, but here attention is limited to trial vectors of the type defined in Eq. (2.29). 

Consider next two monopole sources that are spatially separated but which are 
coherent: the MUSIC power criterion as defined above would identify sources at both 
locations.  However, in this case there is only one coherent source mechanism: i.e., the 
number of incoherent sources is smaller than number of local MUSIC power maxima.  
In the latter case, virtual references should first be placed at all local MUSIC power 
maxima.  Based on the virtual reference cross-spectral matrix, Eq. (2.25), the coherence 
between virtual references i and j can be calculated: i.e., 

 
jjii

ij
ij SS

S
⋅

=
2

2 ||
γ , (2.30) 

where Sii and Sjj are the auto-spectra of the virtual references i and j, respectively, and Sij 
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is the cross-spectrum between the virtual references i and j.  If the coherence between 
the signals at two candidate source locations is nearly unity, the sources at those two 
locations are coherent.  The virtual reference at the location at which the MUSIC power 
is smaller should then be removed.  
 
 
 

2.2.4 Partial Sound Field Decomposition 
Once the optimal virtual reference locations are identified, the virtual reference signals at 
those positions can be obtained from Eq. (2.24).  In addition, the cross-spectral matrices 
between the virtual reference signals, and between the virtual reference and field signals 
on the hologram surface, can then be calculated from Eqs. (2.25) and (2.26).  The cross-
spectral matrix of the field signals on the hologram surface can be expressed in terms of 
the latter cross-spectral matrices: i.e., 

 . (2.31) xyxxxyyy SSSS 1H −=

The cross-spectral matrix of field signals in Eq. (2.31) can be decomposed into a partial 
field matrix, Yx, based on the “virtual” reference signals subject only to the condition that 
Syy = Yx(Yx)H: i.e., 

 , (2.32) 2/1H −= xxxyx SSY

where each column of Yx represents a partial field vector: the first column represents the 
first partial field vector, the second column represents the second partial field vector, and 
so on.  Since the decomposition in Eq. (2.32) is not unique (since the square root inverse 
of the reference cross-spectral matrix is not uniquely determined), it is desirable to 
estimate “good” partial fields. 

The SVD and PCD procedures have been widely used to perform the partial field 
decomposition expressed in Eq. (2.32) [39].  In the SVD method, the virtual reference 
cross-spectral matrix is represented as Sxx = USUH, where U is the unitary matrix and S is 
the diagonal matrix of singular values.  The partial fields can thus be represented as 

 . (2.33) 2/1H
SVD ,

−= USSY xyx

The PCD procedure is based on the use of LU decomposition, obtained from the Gauss 
elimination process [60], to separate the reference cross-spectral matrix into two 
matrices: i.e., Sxx = LDLH, where L is the lower triangular matrix whose diagonal 
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elements are unity and D is the diagonal matrix.  In the latter case the partial fields are 
written as 

 . (2.34) 2/11HH
PCD ,

−−
= DLSY xyx

When the partial decomposition is based instead on the use of real reference signals, the 
cross-spectral matrices in Eqs. (2.33) and (2.34) should be calculated using the real rather 
than the virtual reference signals: i.e., Srr and Sry instead of Sxx and Sxy.  Note that when 
performing a partial coherence decomposition, the number of real references should be 
equal to the number of incoherent sources.  When the virtual reference procedure is used, 
surplus references can be discarded before performing the partial field decomposition. 
 
 
 

2.3 Holography Measurements on a Rolling Tire 
An experiment using two loudspeakers driven separately by independent random noise 
sources and a corresponding numerical simulation which used two monopoles simulating 
the loudspeakers were described in Refs. [38,62].  It was shown through both the 
experiment and numerical simulation that the compensation procedure described in Eq. 
(2.15) reduces the spatial noise resulting from source non-stationarity even when the 
standard deviation of the source levels was approximately 1 dB: i.e., even when the 
sources were “reasonably” stationary [38].   

The latter experiment and simulation data were also analyzed by using the 
proposed virtual reference procedure.  It was shown that the optimal virtual reference 
procedure results in partial fields that are very similar to the “real” partial fields 
associated with individual physical sources regardless of the locations of the real 
references; however, the partial fields decomposed by using the real reference signals 
directly were found to be physically meaningful only when the references were located 
very close to the actual sources [62].  It was also found that using the set of virtual 
references located at the maximum MUSIC power locations resulted in more accurate 
estimates of the physically meaningful partial fields than were obtained using any other 
set of virtual references (e.g., on the source plane) or even a set of “good” real references 
[62]. 

Here, the compensation procedure described above was applied to the holographic 
measurement of a rolling tire.  The latter experimental data were also analyzed by using 
the optimal virtual reference procedure to separate sound radiation from the leading and 
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trailing edges and the sidewall of the rolling tire.   
Figure 2.2 shows a photograph of the experimental setup for the rolling tire.  A 

corresponding illustration of the setup is shown in Fig. 2.3.  A tire mounted on a car was 
driven by a roller: the tire was rotating in the counterclockwise direction corresponding to 
an automobile speed of 21 mph.  An 8 by 8 square microphone array with a spacing of 
10 cm was used to scan the hologram aperture shown in Fig. 2.3.  The location of the 
hologram surface was z = 5 cm when the origin of the z-axis was on the sidewall of tire 
(i.e., the source plane is located at z = 0).  Once a scan was completed, the microphone 
array was shifted laterally or vertically by 5 cm to complete the measurement with a 
sampling space of 5 cm.  Since the hologram aperture comprised 32 by 16 points to be 
measured and the size of the scanning microphone array was 8 by 8, 8 scans (4 scans in 
the x-direction and 2 scans in the y-direction) and the associated measurements were 
performed.  During the scanning, 8 reference microphones were fixed around the tire as 
shown in Figs. 2.2 and 2.3.  Windshields were applied to reference microphones 2 and 3 
to suppress flow noise.  During each scan, the data record length was 2048 points at a 
sampling rate of 4096 Hz and 50 linear averages were performed when estimating the 
various spectra; during the latter operations a 1024 point overlap was used and a Hanning 
window was applied to each record.  Here, the measured data were processed up to 1.6 
kHz.  Note that the sampling space of 5 cm is small enough to capture an acoustic image 
in the frequency range of interest since the wavelength at 1.6 kHz is approximately 20 cm 
(to avoid spatial aliasing, the sampling space must be smaller than half of the minimum 
wavelength).  Note also that the size of the hologram aperture is large enough that the 
acoustic pressure at its edges can be assumed to be zero.  
 
 
 

2.4 Results and Discussion 
The singular values of the measured reference cross-spectral matrix averaged over all 
scans are shown in Fig. 2.4.  It can be seen that the first singular value is significantly 
larger than the second singular value at most frequencies.  Since the number of 
incoherent sources can, in principle, be determined by counting the number of significant 
singular values [55], it can be concluded that only one incoherent source is dominant.  
However, at some frequencies, e.g., 216 Hz, the first two singular values are significantly 
larger than the others values and they are very close to each other (the difference is 
approximately 2 dB at 216 Hz): i.e., at those frequencies, two incoherent sources are 
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significant.  Here, the measured data at 216 Hz was chosen to demonstrate the non-
stationary compensation effects and the decomposed partial fields obtained by using the 
optimal virtual reference procedure: the results are shown in Figs. 2.5 to 2.10. 

The sound pressure fields, decomposed by using real references combined with 
the SVD procedure on the hologram surface at 216 Hz are shown in Figs. 2.5 and 2.6: the 
results in Fig. 2.5 were obtained without source non-stationarity compensation, while the 
compensation was applied to the results in Fig. 2.6.  By comparing Fig. 2.5(a) and Fig. 
2.6(a) (or Fig. 2.5(b) and Fig. 2.6(b)), it can be seen that a spatial distortion in the shape 
of the microphone array is not visible when the non-stationarity compensation is applied. 

In Fig. 2.7, the MUSIC power vector at 216 Hz is plotted on the z = 0 plane: the 
vector in Fig. 2.7(a) was reshaped into a matrix whose i, j-th element represents the i, j-th 
measurement point on the x-y plane as shown in Fig. 2.7(b).  Two source locations can 
be identified from the positions of the local maxima of the MUSIC power: those locations 
correspond to vector indices, n = 15 and n = 19.  Note that the two locations are close to 
the contact patch region. 

The MUSIC power at 216 Hz was then calculated on projection planes from z = -
0.1 to 0.1 m as shown in Fig. 2.8(a).  The MUSIC powers at n = 15 and n = 19, i.e., at 
the two source locations as identified from the results of Fig. 2.7, are plotted as a function 
of z in Fig. 2.8(b).  Note that the two plots in Fig. 2.8(b) are cross-sectional views of Fig. 
2.8(a) when n = 15 and n = 19.  Local maxima of the MUSIC power were found at z = -
0.091 m for n = 15 and z = -0.025 m for n = 19.  These locations lie behind the nominal 
source plane at z = 0 m, and these perhaps coincide with the acoustical centers of the 
actual sources. 

Since data on the x-y plane are available only at the discrete measurement points, 
an interpolation should, in principle, be performed to obtain continuous data on the 
reconstruction plane.  To avoid the complexities introduced by an interpolation function, 
however, it is here assumed that a virtual reference may only be placed at a discrete 
measurement point.  In the latter case the virtual reference locations on the x-y plane did 
not change with small variations of z-location (e.g., see Fig 2.8(a)) since the x-y 
resolution as determined by the distance between the discrete measurement points was 
relatively coarse compared with the resolution in z-direction.  Thus, the locations of 
virtual references in the x-y plane were first determined from the maxima of MUSIC 
power on the z = 0 surface: e.g., see Fig. 2.7(b).  The optimal reference locations were 
then identified as those points at which the MUSIC power was maximized as a function 
of z at the corresponding location in the x-y plane: e.g., see Fig. 2.8(b). 
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The partial pressure fields shown in Fig. 2.9 were obtained by using real 
references, while those in Fig. 2.10 were obtained by using optimal virtual references.  
Note that the partial pressure fields in Fig. 2.9 are identical with the partial fields in Fig. 
2.6 and that the total pressure fields in Figs. 2.9(c) and 2.10(c) were calculated as the 
quadratic summation of the two pressure fields.  The partial fields obtained by using real 
references cannot be interpreted clearly in terms of the physical sources (see Fig. 2.9).  
However, it can be seen that the partial pressure fields decomposed by using virtual 
references can be associated with the physically meaningful sources (see Fig. 2.10): the 
first partial pressure field decomposed by using the virtual references can be associated 
with the sound radiating from the sidewall near the contact patch area, and the second 
field can be associated with the sound radiating from the treadband (in particular, from 
the trailing edge of the horn shape formed between the tire treadband and the ground).  
Note that the total fields shown in both Figs. 2.9(c) and 2.10(c) are identical even though 
the individual partial fields are decomposed by using different sets of references.  

The auto-spectrum averaged over all the reference microphones is shown in Fig 
2.11: the frequency range is from 0 to 1200 Hz in Fig. 2.11(a), while in Fig. 2.11(b) it is 
zoomed from 0 to 200 Hz.  Here, harmonic peaks that are close to each other at an 
approximate interval of 6 Hz are associated with the period of tire revolution. 

The reconstructed pressure, particle velocity, active intensity, and reactive 
intensity on the source plane (i.e., z = 0) are shown in Figs. 2.12 to 2.18: the latter three 
properties are in z-direction.  Frequencies were here chosen at various peaks in the 
reference spectrum (see Fig. 2.11).  Note that the active sound intensity has generally 
both positive and negative values in the x-y plane although the total radiated power, 
calculated from the summation of active sound intensity multiplied by the associated area, 
is positive.  At very low frequencies (48 and 86 Hz) in Figs. 2.12 and 2.13, it can be 
seen that the motion of the tire sidewall is distinctive (see particle velocity in the z-
direction labeled (b)).  The sound radiation, represented here by active intensity, is also 
significant from the sidewall, but the maximum sound radiation is from the region close 
to the contact patch.  From Figs. 2.14 to 2.17, the modal response of the tire is clearly 
visible in the particle velocity fields: the circumferential mode number, n, is equal to 2, 3, 
4, and 5 at 102, 128, 156, and 183 Hz, respectively.  Regardless of the modal response, 
most sound radiation is again from the contact patch region.  Finally, it can be seen from 
the reconstructed sound fields at 1053 Hz in Fig. 2.18, showing representative high 
frequency behavior, only the contact patch region is important in terms of both vibration 
response and sound radiation. 
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2.5 Conclusions 
In this chapter, multi-reference, scan-based NAH has been formulated using a 
mathematical description that explicitly features the acoustic transfer function between 
the references and the field points.  Based upon the present description, a procedure to 
compensate for source non-stationarity was proposed.  In addition, a post-processing 
procedure has been described that makes it possible to identify virtual reference signals 
that can be used to identify physically meaningful partial fields after performing a 
holographic measurement based on a non-optimal, but sufficient, reference set.  It was 
shown through a rolling tire experiment that the proposed compensation procedure 
reduces the spatial noise resulting from source non-stationarity and that the proposed 
optimal reference procedure can be used to separate the sound radiation from the sidewall 
and the horn region.  It was also shown that the NAH procedure along with the 
compensation procedure for source non-stationarity successfully visualized the vibration 
response and sound radiation of the rolling tire.  At low frequencies, modal response of 
the tire was visible; however, most sound radiation is from the region close to contact 
patch at both low and high frequencies. 
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Figure 2.1: Geometrical relations between sources, references, and field points and the 
associated transfer functions. 



 28

 
 
 
 
 
 
 
 

 
Figure 2.2: Photograph of experimental setup: tire (that is driven by a roller), reference 

microphones, and scanning microphone array are shown. 
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Figure 2.3: Sketch of experimental setup used for holographic measurements on rolling 
tire. 
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Figure 2.4: Singular value spectra of reference cross-spectral matrix: (a) from 0 to 1600 
Hz, and (b) zoomed from 0 to 300 Hz. 
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Figure 2.5: Partial pressure fields on hologram surface at 216 Hz without source non-

stationary compensation (decomposed by using real references combined 
with SVD procedure): (a) 1st partial field and (b) 2nd partial field. 
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Figure 2.6: Partial pressure fields on hologram surface at 216 Hz with source non-
stationary compensation (decomposed by using real references combined 
with SVD procedure): (a) 1st partial field and (b) 2nd partial field. 
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Figure 2.7: Music power at 216 Hz on the source plane (z = 0 m): (a) represented by the 
function of position index, n (maxima at n = 15 and 19) and (b) mapped on x-
y plane at 216 Hz. 
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Figure 2.8: Music power at 216 Hz: (a) as a function of n = 1 to 288 and z = -0.1 to 0.1 m, 
and (b) plotted from z = -0.1 to 0.1 m when n = 15 (MAX(PMUSIC) = 1.3386 
at z = -0.0818 m) and when n = 19 (MAX(PMUSIC) = 1.0414 at z = -0.0904 m). 
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Figure 2.9: Partial pressure fields on hologram surface at 216 Hz decomposed by using 

real references combined with SVD procedure: (a) 1st partial pressure field, 
(b) 2nd partial pressure field, and (c) total pressure field (i.e., quadratic 
summation of the two partial fields). 
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Figure 2.10: Partial pressure fields on hologram surface at 216 Hz decomposed by using 

optimal virtual references combined with SVD procedure: (a) 1st partial 
pressure field, (b) 2nd partial pressure field, and (c) total pressure field (i.e., 
quadratic summation of the two partial fields). 
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Figure 2.11: Auto-spectrum averaged over all reference microphones (21 mph): (a) from 0 
to 1200 Hz and (b) zoomed from 0 to 200 Hz. 
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Figure 2.12: Projected sound fields on source plane (z = 0) at 48 Hz: (a) acoustic pressure, 

(b) particle velocity in z-direction, (c) active sound intensity in z-direction, 
and (d) reactive sound intensity in z-direction. 
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Figure 2.13: Projected sound fields on source plane (z = 0) at 86 Hz: (a) acoustic pressure, 

(b) particle velocity in z-direction, (c) active sound intensity in z-direction, 
and (d) reactive sound intensity in z-direction. 
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Figure 2.14: Projected sound fields on source plane (z = 0) at 102 Hz: (a) acoustic 

pressure, (b) particle velocity in z-direction, (c) active sound intensity in z-
direction, and (d) reactive sound intensity in z-direction. 
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Figure 2.15: Projected sound fields on source plane (z = 0) at 128 Hz: (a) acoustic 

pressure, (b) particle velocity in z-direction, (c) active sound intensity in z-
direction, and (d) reactive sound intensity in z-direction. 
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Figure 2.16: Projected sound fields on source plane (z = 0) at 156 Hz: (a) acoustic 

pressure, (b) particle velocity in z-direction, (c) active sound intensity in z-
direction, and (d) reactive sound intensity in z-direction. 
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Figure 2.17: Projected sound fields on source plane (z = 0) at 183 Hz: (a) acoustic 
pressure, (b) particle velocity in z-direction, (c) active sound intensity in z-
direction, and (d) reactive sound intensity in z-direction. 
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Figure 2.18: Projected sound fields on source plane (z = 0) at 1053 Hz: (a) acoustic 

pressure, (b) particle velocity in z-direction, (c) active sound intensity in z-
direction, and (d) reactive sound intensity in z-direction. 
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3. MEASUREMENT OF STATIONARY TIRE VIBRATION 
 
 
 
In the last chapter, techniques for visualizing the sound field radiated by a tire were 
described.  In this chapter, procedures for visualizing and characterizing the vibration of 
stationary tires are considered.  In particular, the use of both non-parametric and 
parametric wave number decomposition techniques to characterize tire vibration is 
described.  When a tire was driven radially at a point on its treadband, measurements of 
the resulting radial treadband vibration were made around the treadband circumference 
by using a laser Doppler velocimeter.  By performing a circumferential wave number 
decomposition of the space-frequency data, the propagation characteristics of the 
waveguide modes that contributed to the response of a tire could be visualized.  
However, to obtain quantitative estimates of the real and imaginary dispersion relations 
for each of these modes, an iterative Prony series approach has been used: techniques for 
using the iterative Prony procedure successfully are described in detail, particularly with 
regard to model order selection and the identification of parameter starting values.  By 
curve-fitting to the resulting data, it is possible to obtain estimates of wave velocity and 
attenuation rate on a mode-by-mode basis. 
 
 
 

3.1 Introduction 
It is now well known that tire/road interaction noise can contribute significantly to 
passenger vehicle passby noise levels.  As a result, tire/road interaction noise has been 
the subject of many investigations.  In this chapter, tire vibration and its relation to 
sound radiation are the primary focus.  In particular, in the work to be described here, 
wave number decomposition techniques [21,42] have been applied to the experimental 
analysis of the vibration of a stationary tire. 
 In the experiments to be described here, a stationary tire was driven radially at a 
point on its treadband by using a small shaker.  Measurements of the resulting radial 
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treadband vibration were then made around the treadband circumference by using a laser 
Doppler velocimeter.  By a direct inspection of the resulting space-frequency data, it 
was possible to identify the frequency ranges in which the tire responded either modally 
or non-modally.  However, by performing a circumferential wave number 
decomposition of the space-frequency data, it was in addition possible to identify the 
wave types that contributed significantly to the vibration response of the tire in the 
frequency range considered here [43].  The results to be presented below suggest that 
the vibration response of a typical passenger car tire below 1 kHz is controlled by a small 
number of relatively slowly propagating waveguide modes that are primarily associated 
with flexural motion of the treadband, and a faster mode associated with extension of the 
treadband.  Each of these modes can be associated with a particular cross-sectional 
mode shape, and thus it was concluded that tires could be effectively modeled as 
waveguides.   

Emphasis was also placed on estimating quantitative information about the 
propagating tire modes: in particular their wave speeds and attenuation rates.  Previously, 
non-parametric, i.e., FFT-based, circumferential wave number decomposition techniques 
were used to characterize tire vibration.  But in that case the spatial Fourier transform 
yields only the real part of the dispersion relation, which then allows only the wave speed 
to be inferred.  In addition, spatial transform procedures may suffer from poor resolution 
in the wave number domain.  These various concerns have been addressed in the present 
work in which complex wave numbers were identified by fitting a Prony series, i.e., a 
sum of complex exponentials, to the spatial data.  By doing so, it is possible to obtain 
complex dispersion relations and then the corresponding wave speeds and the spatial 
decay rates by curve fitting.  Here, the conventional Prony method [44-47] has been 
supplemented by the application of an iterative Prony method [48-50]: the conventional 
Prony series method has been used to provide starting values for the iterative procedure.  
In this way, optimal performance in terms of estimation error and convergence speed is 
guaranteed and the propagating wave properties are identified precisely and quickly.  In 
particular, “true” system modes can be easily distinguished from those associated with 
noise.   
 
 
 

3.2 Experiments on a Stationary Tire 
Figure 3.1 shows the measurement set-up that was used to measure the radial treadband 
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vibration.  A Firestone P215/70R14 M+S tire was used in these measurements, and it 
was placed horizontally on a tire balancer as shown.  The treadband was forced radially 
by a mini-shaker acting through a circular copper plate that had a diameter of 3.3 cm and 
which was bonded directly to the tire treadband.  A PCB 208A03 force transducer was 
mounted to the copper plate and was connected through a stinger to the Brüel and Kjaer 
810 mini-shaker that was mounted on an adjustable frame.  That frame was itself 
attached to the wheel so that it could be rotated together with the tire.  A counter weight 
was attached to the tire balancer to balance the weight of the drive arrangement. 

The output of a random noise generator was passed through a Wavetek 852 
bandpass filter and a QSC Model 1080 power amplifier before being delivered to the 
mini-shaker.  The radial velocity of the treadband was measured along the 
circumference of the tire over the frequency range from 100 Hz to 1000 Hz by using a 
Polytec OFV-040 laser vibrometer and OFV 3000 controller.  The responses from the 
force transducer and laser vibrometer were delivered to a Brüel and Kjaer 2032 signal 
analyzer after the former signal was amplified using a PCB 480D09 charge amplifier.  A 
Matlab computer program was used to control the signal analyzer and to record all the 
necessary information.   

The experiment was performed by driving the tire at the center of the treadband 
and measuring the velocities at two hundred and six equally spaced measurement 
locations along the center line of the treadband.  As shown Fig. 3.2, small pieces of 
reflective tape were placed on the measurement points to ensure a good signal-to-noise 
ratio.  To demonstrate the effect of inflation pressure, measurements were made at both 
20 psi and 40 psi inflation pressures using air to inflate the tire. 
 
 
 

3.3 Spatial Fourier Transform 
The complete data set resulting from each measurement (i.e., radial velocity normalized 
by the input force versus frequency) was arranged in matrix form for further analysis.  
The normalized radial velocity in each set was further normalized with respect to drive-
point velocity at each frequency.  Data at three frequencies are shown in Fig. 3.3 and 
complete space-frequency data sets at two inflation pressures are shown in Fig. 3.4.  
Note that the magnitude of the normalized velocity is plotted in a decibel scale, and that 
the circumferential angle θ = 0 deg. corresponds to the drive point.   

To present the experimental results in the wave number domain, the normalized 
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radial velocity at each frequency can be expressed as  
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where v(p,q) is the measured velocity at the p-th frequency and q-th circumferential 
position, N is the total number of measurement points along the center of treadband, ∆s is 
the spatial sampling interval, km is the m-th circumferential wave number given by km = 
2πm/(N∆s), V(p,m) is the amplitude of velocity in the wave number domain at the p-th 
frequency, and m-th circumferential wave number, and j is the unit complex number.  
Note that each component of V represents a disturbance propagating around the tire at a 
rate controlled by the circumferential wave number.  Equation (3.1) represents the 
inverse discrete Fourier transform and thus V(p,m) can be calculated from the forward 
discrete Fourier transform: i.e., 
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Frequency-wave number decompositions, i.e., plots of |V(p,m)| versus frequency 
and circumferential mode number, at two inflation pressures are shown in decibel form in 
Fig. 3.5 (the circumferential mode number is obtained by multiplying together the 
circumferential wave number and the radius of the tire.). The various curving tracks are 
associated with disturbances propagating around the circumference of the tire.  Note 
also that standing circumferential modes appears as bright spots in this form of plot.  
The group speed of propagating disturbances can be calculated as: 
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Lines corresponding to various group speeds have been superimposed on Fig. 3.5. 
The normal acceleration as a function of cross-sectional position (see Fig. 3.6) 

was measured at one circumferential position (θ = 45 deg.) by using a roving 
accelerometer: results at two frequencies are shown in Fig. 3.7.  Note that the 0 cm 
position corresponds to one rim, and 41 cm corresponds to the other.  The width of the 
treadband itself was approximately 18 cm so that the “shoulders” of the tire were near the 
10 cm and 30 cm positions. 
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3.4 Prony Series Identification 
 
 
 

3.4.1 Introduction 
When a complex wave number is used to represent a spatially attenuated wave such as 
the measured data shown in Fig. 3.3, its imaginary part accounts for the spatial 
attenuation.  Thus, it is appropriate to identify the spatially attenuated wave by using a 
series of complex exponential functions whose exponents are themselves complex.  This 
exponential series identification method, the Prony method, is very well known [44-47].  
In the conventional implementation of the Prony method, a relatively large number of 
exponential terms (i.e., a large model order) is used so as to include roots that are 
necessary to model measurement noise.  Because the bias error of the wave number 
estimate due to measurement noise decreases as the model order is increased, the model 
order must be as large as possible.  To distinguish “true” roots from noise-related roots, 
Braun and Ram [46] have proposed a perturbation method that requires an in-depth 
understanding of the movement range associated with each type of root. 

Here the iterative Prony method proposed by Therrien and Velasco [48] was used 
instead.  This procedure can be used to find a Prony series representation of the spatial 
data that minimizes an estimation error norm.  Therefore, without large bias error, it can 
be used to identify Prony parameters with slightly lager model order than the number of 
true roots.  There are two concerns associated with this iterative scheme, however. The 
first concern is how to determine the model order.  The second concern is that the error 
norm itself is not a quadratic function; all quadratic functions possess a unique optimal 
point where the value of the error norm is the local as well as the global minimum so that 
in that case the iterative optimization method would always yields the optimal solution 
regardless of the starting point.  To resolve the former concern, a singular value 
decomposition procedure was used: this procedure is well established for the 
conventional Prony method [46,47] and can be also applied in conjunction with the 
iterative method to estimate an appropriate model order.  To resolve the second concern, 
it is necessary to select parameter starting values close to their optimal values to 
guarantee an optimal solution regardless of error norm definition.  In the present case, 
parameter starting values were selected from amongst the solutions of the conventional 
Prony method.  The convergence characteristics of the iterative procedure were 
guaranteed in this way. 
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3.4.2 Iterative Prony Method 
The discrete and finite sized data set measured at the N equally spaced points can be 
approximated by a complex exponential series written in matrix form: i.e., 
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where f(xn) is the measured data at the n-th measurement location, xn (n = 1, 2, …, N), M 
is the model order, cm is the m-th complex amplitude, km is the m-th complex wave 
number, and e is the estimation error.  Here, the m-th complex wave number, km, has 
both a real part (βm) that represents the propagation factor and an imaginary part (αm) that 
represents the spatial attenuation factor.  Eq. (3.4) can be expressed in matrix form: i.e., 
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or, in more compact form, 
 eRcf −=  (3.6) 
where rm = exp(ikm∆x), ∆x is the sampling interval, and the last vector term is the 
estimation error.  Note that fn = f(xn) and en = e(xn) in Eqs. (3.5) and (3.6).  In the 
iterative procedure, the complex wave numbers and their complex amplitudes are found 
by an optimization scheme, essentially a steepest decent method, which has the effect of 
minimizing the error norm defined as 
 . (3.7) eeH=Ε
Once r = [r1 r2 … rM]T is found separately from c by applying the numerical optimization 
scheme, the optimal value of c can be calculated analytically from Eqs. (3.6) and (3.7) 
provided that r is a constant vector.  Thus, the unknowns r and c are separately updated 
under the assumption that one of them is constant in turn at each iteration step [48]: i.e., r 
is updated using the steepest decent method assuming c is constant; then c is calculated 
based on this new r.  These steps are repeated until a convergence criterion is satisfied. 
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3.4.3 Determination of Model Order and Starting Point 
Consider first the conventional Prony method.  The equation for the wave numbers can 
be separated from Eq. (3.6) (when there is no estimation error) by utilizing a 
characteristic equation defined as 

  (3.8) 0
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of which the roots are rm = exp(ikm∆x) (m=1, 2, …, M) [44].  The coefficients of the 
characteristic equation, am, can be calculated from 
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When the roots of Eq. (3.8) are known, the values of the wave amplitudes can be 
obtained from Eqs. (3.6) and (3.7) analytically, thus providing candidate starting values 
for the iterative procedure.  It is first necessary, however, to estimate the model order, 
which in turn determines the number of starting values required.  The model order can 
be determined by examining the singular values of the coefficient matrix in Eq. (3.9): the 
model order is then equal to or larger than the number of significant singular values (i.e., 
the rank of the coefficient matrix).  The final parameter starting values are selected from 
amongst the solutions of the conventional method.  When a dominant wave component 
is removed from the exponential series, the residual error should be large.  Thus, the 
starting values are chosen to include only the wave components that make the error norm 
significantly large when one of them is removed from the Prony series. 
 
 
 

Results and Discussion 
 
 
 

3.5.1 Spatial Response 
The normalized magnitude of the radial treadband velocity is plotted in Figs. 3.3 and 3.4 
for two cases: (a) tire inflation 20 psi and (b) tire inflation 40 psi.  These results can be 
used to explain the circumferential modal behavior and the spatial attenuation determined 
by the amount of the decrease of the amplitude envelope per unit circumferential length. 
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Consider first the spatial responses in Fig. 3.3.  At 100 Hz, it is obvious that 
there is not much spatial attenuation although there is significant spatial attenuation at 
both 500 and 1000 Hz.  It is also clear that circumferential standing wave modes are 
formed at 100 Hz: i.e., n = 3, since there are 6 nodes, for the 20 psi tire and n = 2 for the 
40 psi tire.  This indicates that the phase speed at 100 Hz in the 40 psi tire is faster than 
that in the 20 psi one.  The last observations from Fig. 3.3 are that the spatial attenuation 
at the higher frequency is larger than that at lower frequency and that it is more 
significant in the tire with lower pressure at the same frequency.  

Similar phenomena can be observed in Fig. 3.4 where the complete space-
frequency data sets are shown.  Note that the circumferentially modal nature of the tire 
response is evident below 700 Hz in the 20 psi case and below 800 Hz in the 40 psi case.  
At higher frequencies, the treadband vibration decays to negligible levels in less than 
one-half of the tread circumference.  Thus at high frequencies, waves propagate freely 
away from the drive point, while at lower frequencies oppositely directed 
circumferentially propagating waves interfere with each other to create standing wave 
patterns around the tire circumference.  Additionally, there are some frequencies, such 
as approximately 280 Hz, 420 Hz, and 550 Hz in Fig. 3.4(a) and 300 Hz, 500 Hz, and 700 
Hz in Fig. 3.4(b), where the characteristics of the spatial response change rapidly: the 
waves near one of these frequencies are attenuated very quickly.  This frequency is 
traditionally called the “cut-on” frequency: i.e., the frequency at which a specific wave 
mode starts to propagate along the tire. 
 
 
 

3.5.2 Non-Parametric Dispersion Relations 
Consider the wave number domain results: see Fig. 3.5.  First, the wave number-
frequency domain results are nearly symmetrical with respect to the zero wave number 
axis, indicating that waves propagate equally in the positive and negative circumferential 
directions.  Second, each of the curving trajectories in the wave number-frequency 
domain indicates the existence of a single, circumferentially propagating wave type.  
Each of these waves is associated with a particular mode shape of the treadband cross-
section, as illustrated schematically in Fig. 3.8, which will be explained in detail in the 
following section.  Four propagating modes cut on below 700 Hz, and the cut-on 
frequencies increase with inflation pressure: see Fig. 3.5.  This behavior is characteristic 
of wave guide-like flexural modes.  Note that owing to the inflation-dependent cut-on 
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frequencies of these flexural modes, it is probable that stiffness in this case is largely 
provided by the treadband tension resulting from the inflation pressure, although some 
trajectory curvature attributable to the flexural stiffness of the treadband is visible at 
higher frequencies.  Each trajectory approaches asymptotically a line of approximately 
constant slope in the wave number-frequency domain (indicated by the superimposed 
dotted black lines in Fig. 3.5): the slope of that line gives the group speed of the modes.  
At 20 psi, the group speed of the membrane modes is approximately 60 m/s, while at 40 
psi, the group speed is approximately 80 m/s (an increase approximately proportional to 
the square root of the inflation pressure, as would be expected for membrane waves).   

A faster wave cuts on in the vicinity of 600 Hz (indicated by the line at 120 m/s).  
The relatively high speed of this propagational mode appears to be related to an extension 
of the entire carcass: i.e., this mode cuts on at n = 0, thus causing the whole tire to expand 
and contract.  Owing to its much higher group speed, and to the fact that this mode at 
cut on causes a net volume displacement of air, this mode is probably a relatively 
effective sound radiator that would be expected to dominate the radiated sound field at 
600 Hz and above.  
 
 
 

3.5.3 Cross-Sectional Mode Shapes 
The results in Fig. 3.7 show the representative cross-sectional mode shapes associated 
with the first and second trajectories in the low frequency region in Fig. 3.5.  Note that 
154 Hz is a frequency at which the first trajectory that cuts on at approximately 50 Hz is 
dominant, and that the second trajectory cutting-on at approximately 250 Hz is 
predominant at 356 Hz in Fig. 3.5.   The cross-sectional mode at 154 Hz has nodes at 
10 cm and 30 cm; i.e., at the tire shoulder.  Thus, this cross-sectional mode is m = 3, 
which indicates that the first trajectory in Fig. 5 is associated with the cross-sectional 
mode m=3.  Similarly, it can be concluded that the second trajectory is associated with 
m = 5.  These conclusions are illustrated in Fig. 3.8 where each line is associated with its 
cross-sectional mode number. 
 
 
 

3.5.4 Parametric Dispersion Relations  
When the wave number transform technique is applied to the measured data, only the real 
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part of the dispersion relation is obtained, as shown in Fig. 3.5.  That information allows 
the wave speed to be inferred, but not the corresponding attenuation characteristics.  
Further, because of the exponentially decaying characteristic of each wave component, 
each of the latter has a finite bandwidth in the wave number domain at a specific 
frequency, thus sometimes making it difficult to identify peak locations in the frequency-
wave number domain.  The resolution in wave number is also limited by the total length 
of the measured data. 

These various concerns have been resolved by fitting a Prony series to the spatial 
data as explained in Section 3.4.  The results of the Prony series identification at three 
frequencies are shown together with the measured data in Fig. 3.9.  It is apparent that 
the measured data is well represented by the Prony series.  The real and imaginary wave 
numbers obtained from the Prony series identification at each frequency are plotted 
separately in Fig. 3.10.  The brightness of the result at each frequency represents the 
magnitude of the complex amplitude associated with that frequency-wave number 
combination: thus the dominant mode at any frequency may be identified.  The most 
interesting feature in Fig. 3.10 is the behavior near the cut-on frequency of the higher 
modes.  For example, near the cut-on frequency of the second mode (approximately 300 
Hz), the first mode begins to be significantly attenuated and the second mode “cuts on” 
when it has a large imaginary wave number: i.e., the second mode is initially nearly 
evanescent.  As the frequency increases, the imaginary wave number of the first mode 
increases and that of the second mode decreases and the dominant mode shifts from the 
first to the second mode.   

By fitting the dispersion curves of the first and second modes with polynomials, 
analytical expressions for the dispersion characteristics of these modes were obtained.  
By using these polynomial expressions, the wave speeds and spatial attenuations per 
wavelength then can be calculated: the former from the dispersion curves in the real wave 
number domain and the latter from those in the imaginary domain.  Both results are 
shown in Fig. 3.11.  As expected, the phase velocity of each mode approaches an 
asymptotic limit from above as the frequency increases, while the group speed increases 
towards the same limit from below.  It can also be seen that the attenuation per 
wavelength approaches a maximum near the modal cut on frequency. 
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3.6 Conclusions 
Here tire treadband vibration has been measured and studied by using wave number 
decomposition techniques at frequencies below 1000 Hz.  It is has been shown from 
measured, non-parametric dispersion relations that, below 1000 Hz, the carcass vibration 
is controlled by no more than six propagating waves and that each of these waves is 
associated with a particular cross-sectional mode shape.  These waves fall into two 
groups: flexural waves and extensional waves, the former propagating significantly more 
slowly than the latter.  Thus, it can be concluded that tires can be effectively modeled as 
waveguides.  It was also pointed out that the first effective sound radiation from the 
carcass probably occurs at around 600 Hz with the cut-on of the first extensional mode.  
Whereas the spatial Fourier transform yielded only real and banded wave number 
estimates with limited resolution, the Prony series procedure described here can be used 
to decompose the measured data into a small number of exponential terms (including an 
exponential decay factor).  The Prony series results can then be used to estimate the 
velocity and spatial rate of attenuation of each mode that contributes significantly to the 
tire vibration. 
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Figure 3.1: Sketch of experimental setup used for the measurement of stationary tire 
vibration. 
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Figure 3.2: Photograph showing retro-reflective tape applied to tire treadband. 
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Figure 3.3: Magnitude of radial velocity (normalized with respect to drive-point velocity) 
versus circumferential position at three frequencies: , 100 Hz; − − − −, 
500 Hz; ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅, 1000 Hz: (a) Inflation pressure 20 psi and (b) Inflation 
pressure 40 psi. 
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Figure 3.4: Magnitude of radial velocity (normalized with respect to the largest drive-

point velocity within each data set) versus circumferential position and 
frequency: (a) Inflation pressure 20 psi and (b) Inflation pressure 40 psi. 
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Figure 3.5: Magnitude of radial velocity (normalized with respect to largest value within 

each data set) versus frequency and circumferential mode number: (a) 
Inflation pressure 20 psi; − − − −, group speed 60 ms-1; , group speed 
120 ms-1 and (b) Inflation pressure 40 psi; − − − −, group speed 80 ms-1; 
, group speed 120 ms-1. 
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Figure 3.6: Sketch of cross-sectional measurement positions. 
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Figure 3.7: Acceleration level normal to surface (with respect to arbitrary reference) 
versus cross-sectional position, measured at a circumferential position 45 deg. 
from the drive-point: , 154 Hz; - - - - -, 356 Hz. 
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Figure 3.8: Summary of stationary tire dynamic response when point-driven at the center 
of treadband. 
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Figure 3.9: Results of Prony series identification applied to the experimental data at two 
frequencies: solid line with dots - measured data and solid line without dots - 
Prony results: (a) 200 Hz and (b) 800 Hz. 
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Figure 3.10: Parametric dispersion relations obtained by Prony series identification: (a) 
Real wave number and (b) Imaginary wave number. 
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Figure 3.11: Results obtained from polynomial curve fittings of parametric dispersion 
relations: (a) Phase and group velocities (dotted line - phase velocity and 
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4. MODELING OF TIRE VIBRATION 
 
 
 
A stationary tire was driven radially at a point on its treadband and measurements of the 
resulting radial treadband vibration were made around the treadband circumference by 
using a laser Doppler velocimeter.  By performing a circumferential wave number 
decomposition of the measured space-frequency data, the wave propagation 
characteristics were visualized.  In an attempt to understand these experimental results 
in details, the tire treadband was modeled as a ring-like, circular cylindrical shell with air 
pressure acting on its interior surface.  The model makes allowance for general 
boundary conditions at the lateral edges of the ring, and the sidewall of the tire is 
modeled as a distribution of springs and dampers.  Both analytical and finite element 
methods were applied to obtain the vibration response.  This shell model was found to 
explain the propagation characteristics of the waveguide modes that are visible in the 
experimental results.  In particular, the low frequency, flexural wave characteristics 
associated with finite curvature and resulting in efficient radiation of sound were well 
reproduced.  Fast in-plane waves that are potentially significant sound radiators at high 
frequencies were also well reproduced by this model: the excitation of these modes 
results from wave coupling within the curved shell.  Finally, a full FE model in which 
the shape is the similar to a “real” tire was analyzed for the purpose of comparison with 
the simple circular cylindrical shell model.  The latter model can be used to generate 
input data for sound radiation predictions.     
 
 
 

4.1 Introduction 
In Chap. 3, it was shown that wave number transform techniques can be used to 
characterize both tire dynamics and their potential for radiating sound.  Here the 
objective was to describe simple analytical and numerical models of tire treadbands that 
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nonetheless reproduce the significant features of measured tire dispersion relations.  
Thus the present work represents a first attempt to relate tire design parameters to the 
major features of their associated dispersion relations.  It is hoped that this approach will 
ultimately lead to the identification of tire designs that result in minimum sound radiation 
in particular frequency ranges of interest. 

Previously Kropp [29] modeled a treadband as a 2-D circular ring; however, the 
higher wave modes, associated with displacement variations across the width of the 
treadband were not considered.  Recently, Pinnington and Briscoe [51] introduced a flat, 
thick plate model that accounted for the cut-on of the higher cross-sectional modes as 
well as the effects of shear deformation and rotary inertia.  However, this model was not 
able to account for curvature effects at low frequencies where the radius of curvature is 
comparable to the wavelength.  Here the emphasis was placed on modeling the 
treadband as a circular cylindrical shell that has finite width and curvature.  First, an 
analytical model is described in which the treadband is modeled as a simply supported, 
circular cylindrical shell.  This model was used to identify the types of waves that can 
propagate in circular structures, to illustrate the effect of inflation pressure on wave speed, 
and to verify the performance of a finite element (FE) model.  The latter model was in 
turn used to model the effect of finite sidewall stiffness and orthotropy resulting from 
fiber-reinforcement of the treadband.  The inflation pressure acting on the inside surface 
of the treadband was also considered in both the analytical and FE models.  It has been 
found that the FE model reproduces the major features of tire dispersion curves: e.g., the 
appearance of tensioned membrane-like flexural modes at low frequencies, and secondly 
the cut-on at the tire’s circumferential ring frequency of a fast mode that is primarily 
associated with extensional motion of the treadband.  Finally, a full model that has the 
same cross-sectional shape as a real slick tire was modeled with shell elements.  
Inflation pressure was also applied on the inside surface of the model. 
 
 
 

4.2 Analytical Model of Tire Treadband 
Here the treadband of a tire was modeled as a circular cylindrical shell as shown in Fig. 
4.1.  The effects of inflation pressure were allowed for by modeling the resultant in-
plane residual stresses.  When a real tire is inflated, it deforms from its original shape 
and the deformation results in a spatial variation of residual stresses within the tire.  
When forced externally, the tire then vibrates around the statically deformed shape.  



 69

Here it was assumed that the static deformation due to inflation pressure could be 
ignored: thus the residual stresses were assumed to be uniformly distributed within the 
treadband, and the tire was assumed to vibrate around its uninflated shape.  Under these 
assumptions, the residual circumferential stress acting normal to the treadband cross-
sectional area can be easily calculated on the basis of static force equilibrium.  Although 
the residual stress in the x-direction is not directly related to the action of the inflation 
pressure in this rigid body model, the inflation pressure acting on a tire’s sidewalls results 
in x-direction residual stresses that balance the force acting between the sidewall and rim.   

The vibration of the treadband has been modeled by using Love’s shell equations 
including the effects of in-plane residual stresses as given by Soedel [52].  When shear 
deformation, rotary inertia and non-linear effects are neglected, the governing equations 
become 
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where u is the displacement in the direction indicated by the subscript, Nij and Qij (i, j = x, 
φ, r) are resultant in-plane and shear forces (see Appendix B), respectively, the 
superscript r denotes residual force, and q is the external force applied in the direction 
indicated by the subscript.  In addition, ρ is the density of the treadband, h is its 
thickness, λ is the damping constant, and a is the tire radius.  When the static 
deformation due to inflation pressure is ignored, the residual circumferential force can be 
expressed as 

 , (4.4) apN r =θθ

where p is the inflation pressure.  Simple support boundary conditions were invoked at 
both edges of the treadband.  A set of assumed displacements that satisfy the simply 
supported boundary condition, that is the product of spatially sinusoidal functions in the x 
and θ directions, is used to perform a modal analysis of this system [52]: i.e., 
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where ωmn is the natural frequency of the (m,n) mode and the constant phase angle, θ0, is 
0 or π/2.  The forced harmonic response was then represented by the linear 
superposition of modes, with the appropriate modal coefficients being determined by 
applying the point force.  Damping was modeled by adding modal damping ratios, and 
they were assumed to be proportional to the natural frequencies of each mode.   

The analytical solution served principally to verify the performance of the FE 
model described next, which was then used to represent more realistic configurations: 
e.g., resilient support at the treadband edges and orthotropic material properties. 
 
  
 

4.3 Finite Element Model of Tire Treadband 
The model described above was reproduced in FE form (implemented in ANSYS Version 
5.6.).  However, in this case the residual stress and the initial displacement were 
calculated by performing an initial static analysis.  The FE mesh and location of the 
applied force are shown in Fig. 4.2.  Note that the FE model represents a quarter of the 
complete circular cylindrical shell.  Since the point force is applied at the centerline of 
treadband, symmetry conditions can be applied at the z = 0 and y = 0 planes to improve 
computational efficiency.  Element type SHELL63 was used to represent the treadband. 

After verifying the accuracy of the FE model by comparing its predictions with 
the analytical solution, the simple support boundary condition at the treadband edges was 
replaced by a distributed radial stiffness and damping.  That is, the nodal points at the 
treadband edges were connected by springs and dampers to stationary ground points that 
can be imagined to be points on the wheel rim.  The radial springs and dampers 
represent a simplified sidewall model. 

Commercial tires usually feature reinforcing fibers supported within a rubber 
matrix within the treadband to increase the tire’s strength.  The fiber acts to increases the 
stiffness in the fiber direction without altering the stiffness in the transverse direction.  
Thus if the composite treadband is to be modeled as an equivalent bulk material, the latter 
should be assumed to be orthotropic.  This orthotropic property was included in the 
present FE model: the fiber direction was assumed to be in the θ-direction, and thus the 
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Young’s modulus in the θ-direction is larger than that in the z-direction.  
 
 
 

4.4 Full Tire FE Model 
For the purpose of obtaining the vibration response of the sidewall, a full tire FE model in 
which the cross-sectional shape and effective material properties are similar to those of a 
real, slick tire, is considered here.  Fig. 4.3 shows the cross-sectional shape of a real tire.  
To model the geometry of the real tire, the position and thickness of the sampling points 
that are approximately located at the center of the cross-sectional area as shown in Fig. 
4.3 were first measured.  Then polynomial curve fitting was applied to these data: the 
order of the polynomial was 7 for the curve fitting to the sampled center positions, 0 for 
the thickness of the treadband, and 4 for the thickness of the sidewall.  The results of the 
curve fitting along with the sampled center position and thickness are shown in Fig. 4.4.  
Note that the thickness of the treadband was assumed to be constant as shown in Fig. 
4.4(b): the interface between the treadband and sidewall is approximately located at θ = 
45°.  The resulting coefficients of the polynomials are shown in Table 4.1.  Based on 
the polynomial curve fits, a full FE model was generated (see Fig 4.5.): the nodes of the 
FE model were placed on the curve fitted to the sampled center points and the thickness 
at each node was calculated from the curve fitting to the sampled thickness.  Note that 
the full FE model represents a quarter of the complete tire as in the case of the circular 
cylindrical shell model.  The material parameters used for the circular cylindrical shell 
model (see Table 4.2) were also used for the treadband of the full FE model.  In addition, 
the material properties of the sidewall are shown in Table 4.3.  Note that the x-direction 
is the transverse direction that is orthogonal to the circumferential direction (or θ-
direction) and that is tangential to the tire surface. 
 
 
 

4.5 Results and Discussion 
The material parameters used for the calculations of both analytical and FE circular 
cylindrical shell model are listed in Table 4.2.  These properties were adapted from the 
work of Kropp [29] and Pinnington and Briscoe [51] or were estimated based on physical 
reasoning or direct measurement.  

The analytical dispersion relations obtained from Eqs. (4.1) to (4.3) in the absence 
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of external forcing and damping are plotted in Fig. 4.6.  Note that there exist three 
natural frequencies for each circumferential mode shape: the three modes are associated 
with the primarily flexural, shear, and longitudinal motion in order of increasing 
frequency.  The cross-sectional mode associated with each trajectory is denoted by m = 
1, etc. in Fig. 4.6(a).  Lines corresponding to the asymptotic transverse shear and quasi-
longitudinal wave phase speeds calculated for an equivalent plate are shown in Figure 
4.6(b) where it can be seen that the modal trajectories associated with each of the latter 
two waves approach the corresponding asymptote at frequencies sufficiently high that the 
radius of curvature of the shell is very large compared to a wavelength.  By comparing 
Figs. 4.6(a) and 4.6(b), it can be observed that inflation pressure and sidewall tension 
primarily affect the propagation of the flexural waves: the former has the effect of 
increasing the wave speed (i.e., increasing the slope of the model trajectories) while the 
latter increases the modal cut-on frequencies.  These observations are consistent with 
the results of earlier experiments (see Chap. 3.).  

The forced solutions for the simply supported edge case that were calculated by 
using the analytical and FE models are plotted in Fig. 4.7.  The two results are identical 
except for minor differences resulting from differences in the damping models in the two 
cases.  Hence, it was confirmed that in the case of the analytical model the residual 
stresses can be calculated by applying static force equilibrium and that the effects of 
initial static deformation shape can be ignored.  The results of Fig. 4.7 also confirmed 
that the FE model functioned properly.  By comparison with the analytical dispersion 
relations shown in Fig. 4.6(b), it can be seen that only odd cross-sectional modes are 
excited in this case since the radial point force was applied at the center of treadband.  
Further, it can be seen that neither the shear nor longitudinal waves are significantly 
excited in the simply supported edge configuration. 

Figure 4.8 shows the forced FE response when the springs and dampers were 
applied to the edges of the treadband.  To calculate the results shown in Fig. 4.8(a), 
isotropic material properties were assumed while the orthotropic results are shown in Fig. 
4.8(b).  The dispersion curves for the equivalent tensioned membrane and for the 
asymptotic quasi-longitudinal wave are also shown in these figures.  It can be seen that 
at low frequencies the treadband behaves like a tensioned membrane (i.e., the first 
flexural root is approximately non-dispersive at low frequencies.).  At higher 
frequencies, the root shows the curvature characteristic of flexural waves propagating in a 
stiff plate.  Thus at low frequencies flexural wave propagation is largely controlled by 
inflation pressure, while at higher frequencies the flexural stiffness of the treadband 
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becomes more significant.  Note that the second flexural mode which cuts-on near 500 
Hz shows a negative group speed (i.e., a negative slope) in the orthotropic case: this 
feature has also been observed in earlier experiments.  By comparison with the simply 
supported case, the cut-on frequencies are reduced since the resilient boundary conditions 
reduce the effective stiffness in the radial direction.  Note, however that the cut-on 
frequencies of the higher order flexural modes are higher here than those observed in real 
tires, since in the latter case the cut-on frequency is controlled by the rim-to-rim distance, 
while in the present case the cut-on frequencies are determined primarily by the 
treadband width.   

 It can also be seen in Fig. 4.8 that the fast wave cutting-on near 400 Hz is 
asymptotically similar to a quasi-longitudinal wave.  In the isotropic case, the ring 
frequency in the circumferential direction is fr = 356 Hz, while in the orthotropic case, fr 
= 411 Hz.  As indicated in Table 4.2, the Young’s modulus is larger in the x-direction in 
the latter case than in the isotropic case.  This difference results in the increased wave 
speed in the θ-direction in the orthotropic case (resulting in the increased slope of the 
various roots.).  Note that the fast longitudinal mode can potentially radiate sound 
efficiently owing to its relatively high phase speed and because it is associated with a 
significantly large zero wave number component (i.e., the breathing mode of the tire) 
whereas the zero wave number components of the flexural modes are suppressed in the 
spring supported case (as observed in Chap. 3).  Longitudinal modes of the type 
discussed here cannot be excited when a normal force is applied to a plate since all the 
wave types are uncoupled in that case.  However, it is relatively easy to excite the 
longitudinal wave in a circular cylindrical shell since radial motion and in-plane motion 
in the θ-direction are coupled to each other by the effects of finite curvature.  
Figure 4.9 shows the dispersion relations obtained from the FE forced response of the full 
model.  The major characteristics of the circular cylindrical shell model shown in Fig. 
4.8(b) can be also observed in Fig. 4.9 although cut-on frequencies and asymptotic wave 
speeds are not exactly identical: tensioned membrane behavior at low frequencies, 
negative group speed of the second flexural wave, and longitudinal wave cutting-on can 
be seen in Fig. 4.9.  Note that the total mass of the full FE model is heavier than that of 
the circular cylindrical shell model because the full FE model has additional sidewall 
mass.  Thus, due to mass effects the asymptotic wave speeds in the results of the full 
model (Fig. 4.9(a)) are slower than those in the results of the circular cylindrical model 
(Fig. 4.8(b)), and the cut-on frequencies in Fig. 4.9(a) are lower than those in Fig. 4.8(b).  
For the purpose of verifying the mass effects in the full model, the density of the 
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treadband and sidewall were reduced by 400 kg/m3 and 300 kg/m3, respectively, and the 
results are shown in Fig. 4.9(b).  By comparison of Figs. 4.9(a) and 4.9(b), it can be seen 
that the total mass controls the asymptotic wave speed and cut-on frequency. 
 
 
 

4.6 Conclusion 
It has been shown here that circular cylindrical shell models successfully reproduce the 
major features of tire dispersion relations.  It was shown, for example, that increasing 
the inflation pressure increases the speeds and cut-on frequencies of flexural wave modes.  
Furthermore, when a distributed radial stiffness is applied to the treadband edges (to 
model the tire’s sidewall), the shell model predicts the existence of the two wave types 
that are known to contribute significantly to tire dynamic response: flexural wave modes 
and a fast extensional wave mode that cuts-on at the circumferential ring frequency.  
The latter wave type, in particular, has the potential to radiate sound effectively owing to 
its relatively high phase speed.  It was also observed that fiber reinforcement of the 
treadband, and the resulting orthotropic stiffness properties of the treadband, can account 
for the existence of modes having negative group speeds at small wave numbers.  
Finally, it has been shown that the full tire model also reproduces the major 
characteristics of measured tire dispersion relations.  Because the full model has a 
sidewall, its vibration response can potentially be used as the input of a BEM sound 
radiation prediction. 
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Table 4.1: Coefficients of polynomial curve fittings used for full tire FE model. 

 Center position Thickness 
θ7 -0.00149850814719 NA 
θ6 -0.04025769477963 NA 
θ5 +0.17418736177842 NA 
θ4 -0.16478582814991 -0.08774538233321 
θ3 -0.11313933180690 +0.16979310241424 
θ2 +0.16604421979686 -0.08284637359125 
θ1 +0.02962997925038 -0.00207482792958 
θ0 +0.08701014435462 +0.01096996817256 
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Table 4.2: List of parameters used for stationary tire treadband models. 

Young’s Modulus (Isotropic Material) E = 4.9×108 N/m2 
Young’s Moduli (Orthotropic Material) Ex = 3.2×108 N/m2, Eθ = 7.5×108 N/m2 
Shear Modulus Gxθ = 5.0×107 N/m2 
Density ρt = 1200 kg/m3 
Poisson’s Ratio νxθ = 0.45 
Modal Damping Ratio ξ = 0.05 
Thickness h = 0.008 m 
Radius a = 0.32 m 
Width L = 0.16 m 
Inflation Pressure p = 206910 Pa (p = 30 psi) 
Sidewall Tension Nr

xx= 2×104 N/m 
Spring Constant of Sidewall ksidewall = 197.95 N/m2 
Damping Constant of Sidewall csidewall = 1.00 Ns/m2 
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Table 4.3: Material properties of the sidewall used for the full FE model. 

Young’s Moduli (Orthotropic Material) Ex = 3.2×108 N/m2, Eθ = 7.5×108 N/m2 
Shear Modulus Gxθ = 1.5×106 N/m2 
Density ρs = 800 kg/m3 
Poisson’s Ratio νxθ = 0.45 
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Figure 4.1: Treadband modeled as circular cylindrical shell with simply supported 
boundary conditions at the treadband edges. 
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Figure 4.2: Finite Element model of circular cylindrical shell. 
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Figure 4.3: Cross-sectional shape of real tire: sampled points are located approximately 
at the center of the cross-sectional area. 
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Figure 4.4: Polynomial curve fittings of sampled center position and thickness: dots - 
sampled data and sold line - polynomial curve fits: (a) Center position and 
(b) Thickness. 
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Figure 4.5: Mesh of full FE model and applied point force. 
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Figure 4.6: Analytical dispersion relations for a simply supported circular cylindrical 
shell: × - flexural wave, � - shear wave, and * - longitudinal wave: (a) p = 0 
Pa and Nr

xx = 0 N/m and (b) p = 206910 Pa and Nr
xx = 20000 N/m, dashed 

line - asymptotic quasi-longitudinal wave, and solid line - asymptotic 
transverse shear wave. 
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Figure 4.7: Forced responses for the simply supported circular cylindrical shell with p = 
206910 Pa and Nr

xx = 20000 N/m: (a) Analytical result and (b) Finite element 
simulation. 
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Figure 4.8: Dispersion relations for circular cylindrical shell supported by springs and 
dampers along the edges of treadband, dashed line - asymptotic longitudinal 
wave, and solid line - dispersion curve of equivalent tensioned membrane: (a) 
Isotropic material and (b) Orthotropic material. 
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Figure 4.9: Dispersion relations for full FE model: (a) ρt (density of treadband) = 1200 
kg/m3 and ρs (density of sidewall) = 800 kg/m3, and (b) ρt = 800 kg/m3 and ρs 
= 500 kg/m3.
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5. HYBRID TWO-DIMENSIONAL FINITE ELEMENT METHOD 
 
 
 
It has been shown experimentally that the vibration of a tire in the region near the contact 
patch can be represented by a set of decaying waves, each associated with a particular 
cross-sectional mode.  Thus, a tire can be modeled as a lossy waveguide in which 
decaying waves propagate in the circumferential direction.  It may therefore be 
computationally efficient to analyze tire vibration, especially in the region close to the 
contact patch, by using a hybrid finite element model in which the cross-section of a tire 
is approximated by two-dimensional finite elements while a wave-like solution is 
assumed in the circumferential direction.  Here, a hybrid finite element was formulated 
based on composite shell theory: in particular, a circular conical shell element was 
formulated.  The inflation pressure acting on the inner surface was included in the 
model by considering both residual stresses and non-linear terms in the strain-
displacement relations.  The dispersion relations for the tire model obtained by using the 
hybrid FE model were compared with those obtained from a three-dimensional FE model.  
It has been shown that the FE analysis made using the hybrid two-dimensional finite 
elements yields results in close agreement with a three-dimensional model. 
 
 
 

5.1 Introduction 
In Chapter 3, it was shown that the wave propagation characteristics of a tire could be 
visualized by performing a circumferential wave number transform of the measured 
space-frequency data.  In an attempt to understand these experimental results in detail, 
the tire treadband was modeled as a circular cylindrical shell with air pressure acting on 
its interior surface (see Chap. 4).  The shell model was found to be capable of 
representing the principal wave propagation characteristics of a tire: i.e., the vibrational 
response of a tire can be expressed as a superposition of decaying waves, each associated 
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with a particular cross-sectional mode shape.  Thus, it was concluded that a tire can be 
modeled as a lossy waveguide. 

When a FE model of a tire is used to analyze tire vibration at high frequencies, the 
size of the elements must be small and the tire’s cross-section should be modeled in detail 
since the vibrational wavelengths may be comparable to the thickness of the tire.  In 
consequence, a 3-D finite element model for high frequency analysis may require both a 
large modeling effort and significant computational resources.   

Since tires behave like constant cross-section waveguides, it would be 
computationally efficient to analyze tire vibration by using hybrid, 2-D FE models: i.e., 
the cross-section of a tire is approximated by finite elements while a wave-like solution is 
assumed in the circumferential direction.  Note that the hybrid, 2-D FE models of the 
type to be described here can also be used to investigate the dynamic behavior of any 
structure whose cross-sectional shape and material properties can be assumed to be 
constant with respect to the circumferential direction (e.g., tire, disc, or bell) or the axial 
direction (e.g., plate, straight ventilation duct, or aircraft fuselage). 

Previously, Cheung described a hybrid, 2-D FE formulation based on the use of 
strip elements: interpolation functions were prescribed in the cross-sectional direction 
along with analytical mode shapes in the axial direction [63].  Richards analyzed the 
vibrational response of a tire coupled with an internal acoustical cavity by applying 
hybrid 2-D finite elements to both the tire and acoustical cavity [64].  In his case, the 
tire was modeled as a membrane: i.e., treadband flexural stiffness was not accounted for.  
In addition, Brockman et al. [65] estimated tire critical speeds by using a hybrid 2-D FE 
model.  They used solid elements in cylindrical coordinates and accounted for the tire’s 
rotation in the circumferential direction; inflation pressure was also considered by 
including initial stresses and non-linear stains in their formulation.  Nilsson and 
Finnveden [66] calculated the input point mobility of a tire by using a hybrid 2-D FE 
model based on orthotropic, pre-stressed conical shell elements. 

Here, a hybrid 2-D finite element for a circular, conical shell is described.  The 
radius of curvature in the cross-sectional direction within an element was assumed to be 
infinite.  However, in the circumferential direction the radius of curvature was 
considered to be finite.  When the initial static stresses in a shell element are assumed to 
be much larger than the dynamic stresses associated with vibration, the non-linear strain 
energy terms represented by the multiplication of initial stresses and non-linear strains 
cannot be neglected [65,52].  Thus, the hybrid, 2-D finite shell element presented here 
includes non-linear strains to accommodate the latter situation.  In addition, multi-
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layered, thin shell elements (referred to as composite shell elements) with constant 
thickness in the cross-sectional direction were also incorporated.  A linear thickness 
variation in the cross-sectional direction has also been implemented for a single layered 
shell element.  Finally, allowance was made for both external point forces applied at a 
node and distributed forces exerted on an element.  

As a first step in the application of the hybrid 2-D finite element, a tire was 
modeled by using orthotropic, circular conical shell finite elements.  Natural frequencies 
and the associated mode shapes were calculated for both uninflated and inflated cases.  
Forced responses were then obtained by combining the modes extracted from the natural 
vibration analysis.  Modal damping was included in the latter procedure.  A 3-D FE 
model that had the same geometry and material properties as the hybrid 2-D model was 
also analyzed for the purpose of comparison. 
 
 
 

5.2 Finite Element Formulation 
 
 
 

5.2.1 Strain-Displacement Relations 
Figure 5.1 shows a sketch of a circular conical shell finite element that has two nodal 
lines.  Here we define the local element coordinates, x1, as the cross-sectional direction, 
x2, as the circumferential direction, and x3, as the normal direction to the shell surface.  
Since the radius of curvature in the x1-direction is assumed to be infinite, i.e., R1 = ∞, the 
Lamé parameter in the x1-direction is A1 = 1 [52].  The radius of curvature and Lamé 
parameter in the x2-direction, as illustrated in Fig. 5.1, are 

 φ
θ

tan
cos 12 xaR +=  (5.1) 

and 
 φsin12 xaA += , (5.2) 
respectively.  Note that when the radius of curvature in the x2-direction is infinite, i.e., 
R2 = ∞ and A2 = 1, a strip element is obtained. 

It is assumed that vibrational displacements of the shell element can be 
approximated by interpolation functions in the x1-direction and represented by an 
analytical solution in the x2-direction.  Then, the displacement vector u = [u1 u2 u3]T of 
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the element can be expressed as 
 ),()(),,( 2121 xtxtxx yχu = , (5.3) 
where χ is the matrix of interpolation functions (see Appendix D), y is the nodal 
displacement vector, and t is the time.  The nodal displacement vector is defined as y = 
[u11 u12 u21 u22 u31 β11 u32 β12]T, where unm is the translational displacement in the xn-
direction at the m-th node and βnm is the rotational displacement in the xn-direction at the 
m-th node.  Note that an element has two nodes and that each node has four nodal 
displacements (three translational displacements and one rotational displacement) that are 
functions of t and x2.   

When the shear deformation of the shell is assumed to be negligible, strain can be 
separated into membrane and bending strains, and those strains can be directly related to 
displacements (see Appendix A).  By substituting Eq. (5.3) into the strain-displacement 
relations, strains can be associated with the nodal displacement vector: i.e., 

 L+
∂
∂

+
∂
∂

+= 2
2

2

2
2

10 xx
yEyEyEe , (5.4) 

where e is the strain vector, e = [ε0
11 ε0

22 ε0
12 κ11 κ22 κ12]T, ε0

mn is the membrane strain, 
and κmn is the bending strain.  Note that the strain vector is separated in terms of 
independent variables: i.e., the matrices, E0, E1, E2, which are functions of x1, and the 
derivatives of the nodal displacements which are functions of x2 and t.  Note also that 
the strain vector can be separated into two parts, i.e., e = el + en, where the first part 
represents the linear strain vector and the second the non-linear strain vector: the first 
three terms on the right-hand side of Eq. (5.4) represent the linear strain-displacement 
relations.   
 
 
 

5.2.2 Energy Expressions 
In a composite shell, the resultant forces obtained by integrating the stresses in the 
thickness direction (i.e., the x3-direction) can be related to the strains by 
 CeR = , (5.5) 
where R = [N11 N22 N12 M11 M22 M12]T: i.e., the resultant force vector whose elements are 
expressed as 

 , ∫
−

=
2/

2/
3

h

h
mnmn dxN σ
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and 

 , ∫
−

=
2/

2/
33

h

h
mnmn dxxM σ

where σmn is the stress in the xn-direction acting on the xm-surface and h is the thickness 
of the shell.  When there are initial stresses, the resultant forces can be expressed as the 
sum of the initial resultant forces and the dynamic resultant forces: i.e., R = R0+R′, 
where the first term, R0, is the resultant force vector which results from the initial stresses, 
and the second term, R′, is the dynamic resultant force vector which is associated with 
the shell motion.  

 The potential energy stored in the element can be expressed in terms of the strain 
and resultant force vectors: i.e., 

 ∫ ∫ ∫=
t x x

dtdxdxAAU
1 2

2121
T

2
1 Re . (5.6) 

When the non-linear strains are much smaller than the linear strains (el >> en) and the 
initial resultant forces are much larger than the dynamic resultant forces (R0 >> R′), the 
potential energy represented in Eq. (5.6) can be approximated as U ≅ Ul + Un, where Ul 
and Un are associated with linear and non-linear strains, respectively: i.e., 

 ∫ ∫ ∫=
t x x

lll dtdxdxAAU
1 2

2121
T

2
1 Cee  (5.7) 

and 

 ∫ ∫ ∫=
t x x

nn dtdxdxAAU
1 2

2121
0T

2
1 Re . (5.8) 

The kinetic energy can be expressed as 

  ∫ ∫ ∫=
t x x

dtdxdxAAhT
1 2

2121
TT

2
1 yχχy &&ρ ,  (5.9) 

where ρ is the density.  Finally, the work performed by external distributed forces is 

  (5.10) ∫ ∫ ∫=
t x x

q dtdxdxAAW
1 2

2121
TT Qχy

and the work performed by external point forces is 

 , (5.11) ∫ ∫ ∫=
t x x

f dtdxAAW
1 2

221
TT Fχy

where Q and F are the external distributed and point force vectors, respectively. 
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5.2.3 Element Equations 

The element equations can be obtained by taking a small variation of the nodal 
displacements in the energy expression: i.e., 

 ( ) 0=−−−+ fqnl WWTUUδ . (5.12) 

By substituting Eqs. (5.7) to (5.11) into Eq. (5.12), the system equation for one element 
can be derived as 

 eie

m
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QFFyMyKyK ++=
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where Km is the 8 by 8 m-th stiffness matrix (the superscript, “0” denotes that the 
stiffness matrix is associated with the initial stresses), M is the 8 by 8 mass matrix, Fi and 
Fe are the 8 by 1 internal and external (Fe = [F11 F12 F21 F22 F31 F41 F32 F42]T) nodal force 
vectors, respectively, and Qe is the 8 by 1 distributed force vector (Qe = [Q11 Q12 Q21 Q22 
Q31 Q41 Q32 Q42]T).  Those various quantities are expressed as: 
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where qm is the distributed force in the xm-direction.  Note that in Eqs. (5.23) to (5.26), it 
is assumed that there are four external point forces applied to the element; i.e., N11, N12, 
N13, and M11.   

When more than one element is used to represent a system, a global system 
equation can be assembled from the individual element equations by applying conditions 
of displacement continuity and force balance at each node.  Note that during the latter 
procedure, the internal force vectors that appear in Eq. (5.13) cancel out. 
 
 
 

5.2.4 Solution Procedure 
Once the global system equation is obtained, boundary conditions should be applied.  To 
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obtain the initial stresses, the static equation, which does not include the mass matrix and 
the stiffness matrices associated with initial stresses, should first be solved under the 
appropriate static forcing condition to yield the static displacements.  Then the resulting 
static displacements can be used to obtain the initial resultant forces by using Eq. (5.5) 
combined with Eq. (5.4).  Based on those forces, the stiffness matrices associated with 
the initial stresses can be calculated by using Eqs. (5.19) to (5.21).    

In a dynamic analysis, the natural frequencies and modes are first obtained from 
the global system equation without external forces.  Note that the natural vibration 
response must satisfy the condition of circular symmetry.  Thus, the natural modes can 
be represented as 
 )exp()(),,( 2121 tiinxxtxx mnmnmn ω+−= Uu , (5.29) 
where x2 is the circumferential direction and n is the circumferential mode number, which 
can be an arbitrary integer.  By substituting Eq. (5.29) into the global system equation, 
an eigenvalue problem is formulated: i.e., 
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where the upper bar on the matrices indicates the global system matrices.  The harmonic, 
forced response can then be represented by modal superposition as 

 ∑∑ +−=
m n

mnmn tiinxtxx )exp(),,( 221 ωη Uu , (5.31) 

where the modal coefficient, ηmn, is 
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ξ is the modal damping ratio,  

 ∫ +=
π

λ

2

0
22

H )exp()(1 dxinxf ee
mn
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mn QFU , (5.33) 

and 

 . (5.34) mnmnmn MUUH=λ

 
 
 

5.3 Tire Model 
Both the tire treadband model (i.e., the circular cylindrical shell model) and the full FE 
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model described in Chap. 4 were analyzed by using hybrid, 2-D finite elements.  The 
results obtained by using the hybrid, 2-D FE model were then compared with those 
obtained by using the analytical model and the 3-D FE model.  

Figure 5.2 shows the circular cylindrical shell models: the 3-D FE model is 
shown in Fig. 5.2(a) (see also Fig. 4.2), while the corresponding hybrid, 2-D FE is shown 
in Fig. 5.2(b).  Note that in the 2-D FE model, both the translational displacement in the 
x1-direction and the rotational displacement in the x2-direction at the node 13 were 
assumed to be zero to satisfy symmetric boundary conditions. 

Figure 5.3 shows the cross-sectional geometry of a tire.  The cross-sectional 
center points and thicknesses of an uninflated tire were measured at 42 points across a 
cross-section.  Then the two sets of measured data were curve-fitted and 37 points were 
re-sampled from the resulting curves as shown in Fig. 5.3.  Note that nodes 12 to 26 
were used to define the treadband elements and nodes 1 to 12 and 26 to 37 were used to 
represent the sidewall elements.  Note also that the treadband thickness is assumed to be 
constant (see Fig. 5.3(b)).   

Based on the cross-sectional geometry, the tire was modeled by using both 2-D 
finite elements and 3-D finite elements: i.e., the 2-D FE model consisted of 36 elements 
(37 nodes) while 36×90 elements (90 elements around the half circle) was used for the 3-
D FE model (see Fig. 5.4).  Note that the 3-D FE model was implemented in ANSYS 
Version 6.0 and element type SHELL63 was used.  Note also that only the upper half 
tire was modeled in the 3-D FE model since symmetric boundary conditions were applied.  
Different sets of orthotropic material properties were used for the treadband and sidewall 
as shown in Table 5.1: they were adapted from the literature [29], were based on physical 
reasoning, or were obtained by direct measurement of tires.  All translational 
displacements at the edges of the sidewalls (i.e., at the bead) were constrained to be zero.  
An inflation pressure of 207 kPa (20 psi) was applied to the inside surface in the static 
analysis, and a point force at the center of the treadband was applied for the dynamic 
analysis. 
 
 
 

5.4 Results and Discussion 
Figure 5.5 shows the forced responses, represented in the wave number domain, of an 
isotropic, circular cylindrical shell obtained by using the analytical model, the 3-D FE 
model, and the 2-D FE model: the parameters of the treadband are shown in Table 5.2.  
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It can be seen that the results shown in Fig. 5.5 are nearly identical, although in the 
analytical result, the cut-on frequency (approximately 1 kHz) of the second flexural wave 
mode is higher than that of the corresponding cut-on frequency in the other results.  It 
can also be seen that the result obtained by using the 3-D model with SHELL63 elements 
is very close to that obtained by using the 2-D FE model in terms of asymptotic wave 
speeds and cut-on frequencies. 

Next, an orthotropic, circular cylindrical shell was analyzed by using both the 3-
D ANSYS model and a 2-D FE model: parameters used for the orthotropic treadband are 
shown in Table 5.2.  The resulting forced responses are shown in Fig. 5.6.  For the 
ANSYS 3-D models, three element types were selected: i.e., SHELL63, SHELL 181, and 
SHELL99.  Note that the second and third element types can be used to analyze layered 
(or composite) shells.  It can be seen that the result of the 3-D FE model using the 
SHELL63 element agrees closely with the result of the 2-D FE model (see Figs. 5.6(a) 
and 5.6(d)).  However, the 3-D FE models implemented by using SHELL181 and 
SHELL99 elements are more flexible than the 2-D FE model since their asymptotic wave 
speeds are slower than those of the 2-D FE model and the cut-on frequencies are lower.   

A composite, circular cylindrical shell was also analyzed by using both the 2-D 
FE model and 3-D FE model implemented by using SHELL99 elements.  Three layers 
having the thicknesses 0.002 m, 0.003 m, and 0.003 m (from the interior to exterior layer, 
respectively) were considered here.  Each layer was specified to have the same material 
properties as those used for the orthotropic treadband as shown in Table 5.3: however, it 
was laminated at a different layer angle measured from the axial direction, i.e., to the x1-
direction, of the material (i.e., the direction of Young’s modulus 1).  The layer angles 
were 90°, 30°, and -30° (from the interior to the exterior layer, respectively).  Figure 5.7 
shows the resulting forced responses in the wave number domain.  It can be seen that 
the asymptotic wave speeds in the result obtained by using SHELL99 elements are 
slower than those obtained by using 2-D FE elements and that the cut-on frequencies of 
the SHELL99 result are lower than those of the 2-D FE result: however, regardless of 
those differences, the pattern of the dispersion curves are very similar.  Note that the 
differences between the two results can be accounted for by reference to the analogous 
behavior shown in the results for the orthotropic, circular cylindrical shell model (see Fig. 
5.6).   

The natural frequencies, fmn = ωmn/2π, obtained by using the 2-D FE model of the 
full tire are shown in Fig. 5.8 as a function of circumferential mode number, n: Fig. 5.8(a) 
shows the results without inflation pressure while Fig. 5.8(b) is for the case with inflation 
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pressure.  Note that each point in the frequency-circumferential mode number plane is 
associated with a particular wave type and cross-sectional mode shape [33,34].  Thus, 
the first index, m, in the natural frequency, fmn, denotes both the wave type and cross-
sectional mode shape, while the second index, n, denotes the circumferential mode 
number.  It can be seen that when inflation pressure is applied, the first flexural wave, 
i.e., the trajectory having the lowest natural frequencies for all circumferential mode 
numbers behaves like a membrane wave: i.e., the points associated with this wave type 
“straighten out” when the inflation pressure is applied [33,34]. 

Forced responses in the frequency-circumferential mode number domain are 
shown in Figs. 5.9 and 5.10: the results in Fig. 5.9 were obtained by using the 3-D FE 
model while the results in Fig. 5.10 were obtained by using the hybrid, 2-D FE model.  
To obtain these results, vibrational velocities around the tire circumference at the 
treadband center points were first calculated by using the FE models and the resulting 
velocity data, represented in the spatial domain at each frequency, were then decomposed 
into wave number components, kθ = n/R, where R is the radius of the tire circumference, 
by using spatial Fourier transforms.  Note that the circumferential phase speed of a 
particular trajectory is represented by the ratio of angular natural frequency to 
circumferential wave number (ωmn/kθ).  By comparing Figs. 5.9(a) and 5.9(b) (or Figs. 
5.10(a) and 5.10(b)), the circumferential phase speeds of, in particular, the flexural wave 
types, increase when the inflation pressure is applied [33,34].  It can also be seen that 
the results obtained by using the hybrid, 2-D FE model are nearly identical to those 
obtained by using the 3-D FE model (compare Figs. 5.9(a) and 5.10(a) or Figs. 5.9(b) and 
5.10(b)).  
 
 
 

5.5 Conclusions 
In this chapter, a hybrid 2-D finite element for a composite shell was formulated by using 
the variational principle.  For the purpose of validating the hybrid 2-D finite element, 
both a tire treadband and a full tire were analyzed by using both the hybrid, 2-D FE and 
3-D FE models.  The FE analysis made by using the hybrid 2-D finite elements yields 
results in close agreement with the three-dimensional model although the hybrid 2-D FE 
model features a very small number of finite elements.  Furthermore, since the hybrid 2-
D FE model uses an exact solution in the circumferential direction, it may yield more 
accurate solutions. 
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Table 5.1: List of material properties used for full tire model. 

 Sidewall Treadband 
Young’s Moduli E1 = 1.0×108 Pa 

E2 = 6.0×107 Pa 
E1 = 3.2×108 Pa 
E2 = 7.5×108 Pa 

Shear Modulus G12 = 2.0×106 Pa G12 = 6.0×107 Pa 
Poisson’s Ratio v12 = 0.45 v12 = 0.45 
Density 800 kg/m3 1200 kg/m3 
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Table 5.2: List of parameters used for isotropic, circular cylindrical shell model. 

 Treadband 
Young’s Modulus E = 4.8×108 Pa 
Poisson’s Ratio v12 = 0.45 
Thickness h = 0.008 m 
Density ρ = 1200 kg/m3 
Radius a = 0.32 m 
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Table 5.3: List of parameters used for orthotropic, circular cylindrical shell model. 
 Treadband 
Young’s Moduli E1 = 3.2×108 Pa 

E2 = 7.5×108 Pa 
Shear Modulus G12 = 5.0×107 Pa 
Poisson’s Ratio v12 = 0.45 
Density ρ = 1200 kg/m3 
Radius a = 0.32 m 
Thickness h = 0.008 m 
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Figure 5.1: Sketch of circular conical shell element. 
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Figure 5.2: Circular cylindrical shell model: (a) 3-D FE model implemented in ANSYS 
(a quarter of the complete model is used) and (b) nodes used for hybrid, 2-D 
FE model (half of the complete model is used since symmetric boundary 
conditions are applied at node 13). 
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Figure 5.3: Cross-sectional geometry of tire: (a) center points of tire cross-section and (b) 
thickness. 
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Figure 5.4: 3-D FE model of tire. 
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Figure 5.5: Isotropic, circular cylindrical shell model with the inflation pressure of 20 
psi: (a) Analytical model, (b) 3-D FE model implemented in ANSYS with 
SHELL63 elements, (c) 3-D FE model implemented in ANSYS with 
SHELL181 elements, and (d) 2-D FE model. 
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Figure 5.6: Orthotropic, circular cylindrical shell model with the inflation pressure of 20 
psi: (a) ANSYS FE model with SHELL63, (b) ANSYS FE model with 
SHELL181, (c) ANSYS FE model with SHELL99, and (d) 2-D FE model. 
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Figure 5.7: Composite, circular cylindrical shell model with the inflation pressure of 20 
psi: (a) ANSYS FE model (SHELL99) and (b) 2-D FE model. 
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Figure 5.8: Natural frequencies and circumferential mode numbers obtained by using 
hybrid, 2-D FE model of full tire: (a) without inflation and (b) with inflation. 
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Figure 5.9: Forced response of 3-D FE model of full tire: (a) without inflation and (b) 
with inflation. 
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Figure 5.10: Forced response of hybrid, 2-D FE model of full tire: (a) without inflation 
and (b) with inflation. 
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6. EFFECTS OF ROTATION 
 
 
 
For the purpose of understanding the effects of rotation on wave propagation within a 
tire’s treadband, the vibration of an inflated, circular cylindrical shell, rotating about a 
fixed axis has been considered here.  The equations of motion of the rotating shell are 
formulated in a fixed reference frame (i.e., Eulerian coordinates).  By assuming wave-
like solutions for the free vibration case, the natural frequencies and corresponding wave-
like basis functions can then be obtained.  A natural frequency selection procedure is 
introduced that can be used to associate each of the basis functions with a single natural 
frequency.  The basis functions are then superimposed to represent the forced response 
of the system when driven by a point harmonic force at a fixed location in the reference 
frame.  By using the procedure described here, the coefficients of the basis functions can 
be obtained directly by solving an uncoupled ordinary differential equation.  Finally, the 
resulting forced responses are presented in both the spatial and wave number domains, 
and the wave number spectrum of the rotating shell is compared with that of a stationary 
shell.  Based on the results presented here, it is suggested that at typical rotational 
speeds it may be possible to use a stationary tire analysis to predict the characteristics of a 
rotating tire after performing a simple kinematic compensation.   
 
 
 

6.1 Introduction 
Chapters 3 to 5 dealt with the stationary-tire dispersion relations that characterize a tire’s 
dynamics and its potential for sound radiation.  In Chap. 3, both an experimental 
measurement procedure and a wave number decomposition technique for analyzing the 
radial vibration of a tire were described.  In Chaps. 4 and 5, analytical and numerical 
models of tire treadbands that were found to reproduce the significant features of 
measured tire dispersion relations were described.  The objective of the work described 
in this chapter was to extend the earlier analytical model to illustrate the effects of 
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rotation on a tire’s dispersion relations.  For this purpose, a tire treadband has been 
modeled as a simply supported, rotating circular cylindrical shell.  Both inflation 
pressure and rotational stiffening were accounted for in the model. 
 
 
 

6.2 Background 
In a rotating shell, a moving particle whose motion is described in local coordinates that 
rotate with the shell is subject to Coriolis acceleration.  As a result, the circumferential 
phase speeds of the pair of positive- and negative-going waves in the local coordinates 
differ from each other (when the shell is stationary, they are identical regardless of the 
wave propagation direction).  The latter difference is also observed when the shell 
motion is described in fixed reference coordinates (i.e., Eulerian coordinates), since, in 
addition to the effects of Coriolis acceleration, the circumferential phase speed of the 
positive-going wave increases by the rotation speed, while that of the corresponding 
negative-going wave decreases by the same amount.  Since the natural frequency 
associated with a particular circumferentially-propagating wave can be related to both the 
circumferential wave number and the circumferential phase speed, the natural frequency 
associated with the positive-going wave in the rotating shell is different from that 
associated with the corresponding negative-going wave.  Consequently, a single natural 
frequency that in the stationary shell case is associated with a pair of positive- and 
negative-going waves splits into two natural frequencies when the shell rotates.  That is, 
in the stationary shell, the positive- and negative-going waves interfere with each other at 
a single natural frequency to yield a circumferential standing wave pattern (i.e., a mode 
shape); however, in the rotating case, a standing wave pattern cannot be generated at a 
single natural frequency.   

When a rotating shell is analyzed by using a circumferential mode shape 
represented by a circumferential sine or cosine function, the pair of natural frequencies 
associated with that mode shape can be found; however, the natural frequencies cannot be 
associated with a particular circumferentially-propagating wave direction.  Since the set 
of mode shapes represented by the circumferential sine and cosine functions is a 
complete set, as is the set of wave-like basis functions represented by the circumferential 
complex exponential functions (i.e., positive- and negative-going waves), the forced 
response can be represented with equal accuracy by the superposition of either the mode 
shapes or complex exponential functions.  However, the modal solution procedure 
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requires one to solve the complete system differential equations to determine the modal 
coefficients since a pair of circumferential sine and cosine mode shapes share two natural 
frequencies (i.e., the modal coefficients are coupled with each other) [53,69,70].  Note 
that the circumferential mode number, n, must be an integer due to circular periodicity; 
thus, to obtain a complete set of circumferential sine and cosine functions, n should range 
from zero to positive infinity, while a complete set of circumferential complex 
exponential functions is obtained by allowing n to range from negative to positive infinity 
[68]. 

Padovan obtained the complete set of natural frequencies and corresponding mode 
shapes for rotating, prestressed circular cylindrical shells [68].  By using those natural 
modes, Huang and Soedel obtained the forced response of a rotating ring, a special case 
of a rotating circular cylindrical shell (i.e., no spatial variation was allowed in the axial 
direction) [69,70].  Note that a ring model can be used to analyze the vibrational 
characteristics of a rotating tire; however, such a model cannot account for the effects of 
the cross-sectional modes (in the axial direction).  Note also that Kropp has modeled a 
stationary tire as a stationary ring [29]. 

Forced solutions for the case of a rotating, prestressed circular cylindrical shell 
were previously obtained by Huang and Soedel [53].  They expressed their forced 
responses in terms of sinusoidal and cosinusoidal modes; however, only circumferential 
sine or cosine functions were used to represent the forced responses, and the n = 0 
circumferential mode (i.e., the breathing mode), that can be important in terms of sound 
radiation, was not considered.  Unless the shell’s motion is represented as a sum of both 
circumferential sine and cosine functions, including the n = 0 circumferential mode, 
spatial phase information in the circumferential direction cannot be represented 
accurately.  Note, however, that in two earlier papers dealing with rotating rings, Huang 
and Soedel used a complete set of modes [69,70]. 

In the past, the equations of motion and the solutions for rotating shells were 
mainly formulated in a local coordinate system [53,68-70].  However, that type of 
formulation creates difficulties when applying a sinusoidal point force at a fixed point to 
simulate a contact patch excitation of a rotating tire since, in the local frame, the response 
is Doppler shifted.  In contrast, a system described in fixed reference coordinates, as 
here, responds at the frequency of the input force.     

Another approach to representing the effects of tire rotation was followed by 
Vinesse and Nicollet, who modeled a tire as a two-dimensional membrane [28].  They 
derived the equations of motion in a fixed reference frame, and obtained continuous 
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dispersion curves, each associated with a particular cross-sectional mode shape, by using 
a wave-like solution (expressed in terms of a continuously varying circumferential wave 
number).  They also obtained an approximate forced response, which was expressed as a 
function of time and circumferential position (but not as a function of cross-sectional 
position), for the case of a rotating point force.  In their work, however, effects of 
flexural stiffness and circumferential curvature were neglected, and in-plane motion was 
not allowed. 

Here, it was decided to express the equations of motion for the case of a rotating, 
inflated circular cylindrical shell in fixed reference coordinates since the forced response 
in fixed reference coordinates can be used directly to perform a sound radiation analysis.  
A wave-like basis solution, which comprises a mode shape in the cross-sectional 
direction (i.e., the axial direction) and a wave-like solution in the circumferential 
direction, was then used to obtain the complete sets of natural frequencies and 
corresponding basis functions (the cross-sectional mode shape is represented by sine and 
cosine functions, and the circumferential wave-like solution is expressed by a complex 
exponential function).  Here, a natural frequency selection procedure that can be used to 
associate each wave-like basis function with a single natural frequency is proposed.  By 
the superposition of the basis functions, the forced response of the system can be 
obtained when the system is driven by a point harmonic force at a fixed location in the 
reference frame.  Since a single basis function is associated with only one natural 
frequency, a basis function coefficient can be found by solving a single ordinary 
differential equation.  In addition, the wave number decomposition procedure [33] has 
been applied to the resulting forced responses, thus allowing the dispersion relations for a 
rotating shell to be represented from the viewpoint of a fixed observer so that they can be 
easily compared with the dispersion relations for a stationary shell. 
 
 
 

6.3 Analytical Model of Rotating Tire Treadband 
Figure 6.1 shows a cylindrical shell model of a tire treadband: the shell is assumed to 
rotate about a fixed axis coincident with the origin of the reference coordinate system.  
Note that the local coordinate system, attached to the treadband, rotates with the 
treadband and that the reference coordinate system is fixed.  In the present analysis, the 
effects of inflation pressure and rotational stiffening were accounted for through resultant 
in-plane residual stresses.  However, static deformation of the shell due to either 
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inflation or rotation was neglected: i.e., the treadband was assumed to vibrate around its 
static, uninflated shape.   

When shear deformation, rotary inertia, and non-linear effects are neglected, a set 
of equations describing the three-dimensional motion of the shell can be derived in local 
coordinates [52].  Those equations can be transformed into the reference coordinate 
system by application of Reynolds’ theorem: i.e., 
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where u is the displacement in the direction indicated by the subscript, Nij and Qij (i, j = x, 
φ, r) are the resultant in-plane and shear forces (see Appendix C), respectively, the 
superscript, r, denotes residual force, and q is the external force applied in the direction 
indicated by the subscript.  In addition, ρ is the density of the treadband, h is its 
thickness, λ is the damping constant, and a is the tire radius.  In Eq. (6.7), the 
circumferential resultant, in-plane force is related to inflation pressure and rotational 
speed by 
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 , (6.8) 22ΩhaapN r ρφφ +=

where p is the inflation pressure [52].   
The linear operators, Li (i = x,φ, r), are associated with the system’s stiffness and 

thus Eqs. (6.7) and (6.8) indicate how inflation pressure and rotation affect the 
treadband’s stiffness.  When the magnitudes of the two terms on the right hand side of 
Eq. (6.8) are compared, it can be concluded that stiffening effects associated with rotation 
may be ignored compared to the stiffening effect of inflation pressure at speeds typical of 
those experienced by a car tire running at normal speeds, at least for the model 
considered here.  The latter result will be demonstrated by calculation later. 
 
 
 

6.4 Natural Vibration 
Simple support conditions were considered to apply constraints in the radial and 
circumferential, but not the x-direction, at the treadband edges.  In that case, a set of 
displacements satisfying those boundary conditions, i.e., sinusoidal or cosinusoidal 
functions in the x-direction, as appropriate, can be identified [52,53].  That set must also 
be periodic in the circumferential direction.  Based upon these various conditions, the 
set of displacements were assumed to have the wave-like forms     
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where the coefficients A, B and C are assumed to be real.  By substituting Eqs. (6.9) to 
(6.11) into Eqs. (6.2) to (6.4), and setting the input force and damping to zero, a matrix 
equation similar to that defining an eigenvalue problem can be obtained: i.e., 
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In Eq. (6.12), the stiffness terms, kij (i,j=1,2,3), are associated with the linear operators, Li 
(i = x,φ, r), and they are given in Eqs. (6.14) to (6.19), where K is the membrane stiffness, 
D is the bending stiffness, and ν is the Poisson’s ratio.  Here, the membrane stiffness is 
K = Eh/(1-ν2) and the bending stiffness is D = Eh3/[12(1-ν2)], where E is the Young’s 
modulus.  Further, in Eq. (6.13) the left hand side is the natural frequency in local 
coordinates while the first term on the right hand side is the natural frequency in the 
reference coordinate system.  For future reference, Eq. (6.13) will be referred to as the 
“kinematic relation”.   

The characteristic equation obtained from Eq. (6.12) is sixth order: i.e., there are 
six natural frequencies associated with the (m,n)th wave-like solution.  However, the six 
local natural frequencies, of the negative-going, i.e., (m,-n) wave-like solutions, where n 
> 0, each have the same magnitude but opposite sign of those of the positive-going (m,n) 
wave-like solutions.  Thus, when a local natural frequency is defined to be positive, the 
sign convention used in the assumed displacements (see Eqs. (6.9) to (6.11)) means that a 
positive n denotes a positive-going wave and a negative n a negative-going wave.  Thus, 
for each positive or negative n, the three positive local natural frequencies are chosen and 
the negative natural frequencies are discarded.  There are then only three distinct local 
natural frequencies associated with each (m,n) wave mode, whether n > 0 or n < 0.  Each 
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of those frequencies is primarily associated with a particular wave type: i.e., flexural, 
longitudinal, or shear [34].  Note that the two local natural frequencies associated with 
the pair of wave-like basis functions propagating in opposite circumferential directions 
are different even in the local frame owing to the effects of Coriolis acceleration, as will 
be shown later: this phenomenon is referred to as “bifurcation” [68]. 

The natural frequencies for all possible combinations of m and n (for both positive 
and negative n) can be found by numerically solving the characteristic equation derived 
analytically from Eq. (6.12).  By applying the sign convention described above, the 
three distinct natural frequencies associated with each n can then be identified.  The 
associated vectors represented by [Amnl Bmnl Cmnl]T, where the index l (l = 1 to 3) denotes 
the three natural frequencies for each n, can also be derived by using Eq. (6.12): i.e., the 
three sets of vectors can be calculated by substituting each of the natural frequencies in 
sequence into Eq. (6.12).  As a result, a single natural frequency, ωmnl, can be associated 
with a particular wave-like basis vector function represented by 
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Forced Vibration 
The forced response can be then expressed as a superposition of the basis functions given 
in Eq. (6.20): i.e., 
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and 
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Note that for the purpose of compactness, the index, mnl is replaced by k in the following 
equations.  The weighting function (i.e., the coefficient of the basis function), ηk(t), can 
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be calculated by substituting Eqs. (6.21) to (6.23) into Eqs. (6.2) to (6.4) and then 
applying Eqs. (6.12) and (6.13) with damping and forcing terms included.  The result is  
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where 
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Equation (6.24) may then be solved to give ηk(t) for arbitrary temporal input forces.  
Note that the modal damping constant, λk, in Eq. (6.24) is here expressed in terms of a 
constant modal damping ratio, ξ, and the natural frequency, ωk, as  
 kk hξωρλ 2= . (6.28) 
Note also that the coefficient of the basis function can be found directly by solving the 
ordinary differential equation, Eq. (6.24).  

Next, consider a harmonic point force applied in the radial direction at a fixed 
point while the forces in the other directions are assumed to be zero (i.e., qx = 0 and qφ = 
0).  This radial force applied at the center of the treadband simulates a contact patch 
excitation of a rotating tire and it can be expressed as 
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where f0 is the constant amplitude of the force and δ is the Dirac delta function.  Given a 
harmonic force as expressed in Eq. (6.29), the k-th response function, ηk(t), can also be 
expressed in harmonic exponential form: i.e., 
 )exp()( tiXt kk ωη = , (6.30) 
where Xk is the amplitude of the k-th basis function.  By substituting Eqs. (6.29) and 
(6.30) into Eqs. (6.24) to (6.28), the amplitude is obtained as 
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6.6 Results And Discussion 

The tire treadband parameters used for the calculation presented here are listed in Table 
6.1: they were adapted from the literature [29], were based on physical reasoning, or were 
obtained by direct measurement of tires.   

Figure 6.2 shows the dispersion relations obtained by solving the system 
characteristic equation for each combination of m and n; the dispersion relations are 
therefore defined at a set of discrete points.   Note that the x-axis of Fig. 6.2 et seq. is 
the circumferential wave number, kφ, which is related to the circumferential mode number, 
n, by kφ = n/a.  In Fig. 6.2, each trajectory of the dispersion relation is associated with a 
particular cross-sectional mode index: i.e., m = 1, etc. as shown in Fig. 6.2(a).   

For each combination of m and n, there are three natural frequencies associated 
primarily with flexural, shear, and longitudinal motions in order of increasing frequency 
[34].  The stationary dispersion relations are plotted in Fig. 6.2(a).  In Fig. 6.2(b), the 
local natural frequencies are plotted when the rotation speed was set to the artificially 
large value of Ω = 500 rad/s to exaggerate the effects of rotation: a more typical range for 
automotive applications is from Ω = 0 to Ω = 100 rad/s.  By comparison of Fig. 6.2(b) 
with Fig. 6.2(a), two phenomena can be observed.  First, it can be seen that the speed of 
the flexural waves is increased by rotational stiffening (i.e., the slope of the flexural 
modal trajectories is increased.).  In contrast, the change of the speeds of the shear and 
longitudinal waves is essentially negligible.  Secondly, on close examination, it can be 
seen that rotation causes the dispersion curves to be very slightly asymmetrical with 
respect to the zero wave number axis: this is the so-called “bifurcation” effect.  The 
latter asymmetry means that the speeds of waves propagating in opposite circumferential 
directions with the same wavelengths are different even when observed in the local 
coordinate system.  However, the present results indicate that this effect is negligible for 
the model considered here under normal circumstances (see Fig. 6.2(c)).  Results in 
local coordinates for a more typical rotational speed, Ω = 100 rad/s, are plotted in Fig. 
6.2(c).  By comparison with the Ω = 0 results in Fig. 6.2(a), it can be seen that the 
stiffening due to rotation is not very significant in this case, as explained earlier in 
connection with Eq. (6.8).   

Finally, the dispersion relations in the reference frame are plotted in Fig. 6.2(d), 
also for Ω = 100 rad/s.  Note that the latter results were obtained from those of Fig. 
6.2(c) by applying the kinematic relation, Eq. (6.13).  In Fig. 6.2(d), the asymmetry 
resulting from the kinematic effect of tire rotation is very clear in contrast with the 
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bifurcation effect in local coordinates (Fig. 6.2(c)). 
 For the purpose of validating the modeling and solution procedures, the 
stationary model (Ω = 0) was reproduced by using a FE model [34].  The corresponding 
wave number-transformed forced solutions (presented as radial velocity magnitude) for a 
radial point force on the treadband centerline calculated using FE and analytical 
procedures are plotted in Fig. 6.3.  The two results are identical for practical purposes.  
 The spatial distributions of the centerline radial velocities for a fixed-location 
radial point force applied on the shell centerline are plotted at selected frequencies in the 
reference frame in Fig. 6.4, and the complete set of results, along with the corresponding 
circumferentially wave number-transformed results are shown in Fig. 6.5.  Note that 
zero deg. in Figs. 6.4 and 6.5(a) indicates the drive point.  One interesting aspect of 
these results is that clear stationary wave patterns (with respect to the fixed frame) appear 
even under rotation.  In a sense, the stationary waves are strengthened by damping, 
since the latter causes the dispersion trajectories to be broader, thus making it more likely 
that there will be wave components propagating in opposite directions with the same 
wavelength at the same frequency.  It can also be seen in Fig. 6.4 that the rate of decay 
with distance increases as the damping ratio is increased (compare Figs. 6.4(a) and 
6.4(b)) and that the effect of damping increases with frequency.  Thus, at high 
frequencies the response becomes similar to a free-field response as the damping is 
increased: e.g., at f = 3200 Hz, ξ = 0.05, the response level drops by approximately 40 dB 
by half-way around the treadband.  The latter result is consistent with measurements 
made on stationary tires [33,43].  Further, a comparison of the responses in the positive- 
and negative-φ regions of Fig. 6.4 (i.e., in the upstream and downstream directions, 
respectively) shows that the levels are generally higher in the downstream direction.  
The latter effect becomes clearer as the rotational speed increases (compare Figs. 6.4(b) 
and 6.4(c)).  These various effects can also be seen in Fig. 6.5(a).  In the higher 
frequency region of Fig. 6.5(a) it is also clear that several wave modes, each having 
different wavelengths, contribute significantly to the response simultaneously.  The 
latter is also clear in the wave number-transformed results shown in Fig. 6.5(b).  It can 
also be seen that the even cross-sectional modes (i.e., m = 2,4,6,⋅⋅⋅) are absent from the 
results of Fig. 6.5(b) (compare with Fig. 6.2(d)) since the point force was applied at the 
center of treadband.  Also note that the trajectories in Fig. 6.5(b) are continuous (not 
discrete, as in Fig. 6.2), in part because of the effect of damping.  The asymmetry of the 
trajectory slopes in Fig. 6.5(b) also indicates that waves travel more quickly downstream 
(kφ > 0) than upstream, as expected.   
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Finally, the input point mobility, iωur/qr, associated with the negative- and 
positive-going wave components is shown in Fig. 6.6.  The results were calculated by 
summing Eq. (6.23) separately over positive and negative n, and assigning half of the n = 
0 component to each summation.  The mobility associated with the positive-going (i.e., 
downstream) components is generally larger than that associated with the negative-going 
components (except near the cut-on frequencies of progressively higher order cross-
sectional modes) which is consistent with the relative magnitudes of the responses in the 
up- and downstream sections shown in Fig. 6.4.  The sequence of small peaks in the 
mobility from approximately 400 Hz to 900 Hz (most clearly visible in the positive-going 
result) are related to the circumferential modes associated with the first cross-sectional 
mode (m = 1).  The contributions of individual modes are not easily visible in the 
frequency ranges above the cut-on frequencies of the m = 3 and m = 5 cross-sectional 
modes (near 1000 Hz and 2600 Hz, respectively).  The latter observation is also 
consistent with measured results for tires [43]. 

Since both the rotational stiffness and bifurcation effects are essentially negligible 
under the conditions considered here, it is possible to map the stationary forced response 
(Fig. 6.3(b)) onto the rotational response by using Eq. (6.13) when the local natural 
frequency is assumed to be the natural frequency of the stationary tire.  In the latter case, 
Eq. (6.13) can be modified to compensate for rotational effects in the wave number-
frequency domain: i.e., 

 Ω+=
π
φ

2
ak

ff s , (6.32) 

where f and fs are the rotation-compensated and stationary tire natural frequencies, 
respectively. 
 For the purpose of validating Eq. (6.32), parametric representations of the 
dispersion relations were obtained first by applying the Prony series procedure described 
in Refs. [33,49]: the resulting real wave numbers are overlaid on the previous results 
(Figs. 6.3(b) and 6.5(b)) in Fig. 6.7.  It can be seen that the real wave numbers thus 
identified lie on the local maxima of the dispersion relations obtained by application of 
the spatial Fourier transform.  The stationary real wave numbers of Fig. 6.7(a) were then 
modified by applying Eq. (6.32) to compensate for rotational effects: the results are 
shown in Fig. 6.8 along with the direct results for the rotational case.  It can be seen that 
the compensated stationary dispersion relations are essentially identical with those of the 
rotational case. 
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6.7 Conclusion 
In the work described here, the treadband of a tire was modeled as an inflated, rotating 
circular cylindrical shell in order to identify the effects of rotation.  A wave-based 
solution procedure was used to obtain analytical solutions for both free and forced 
vibration cases.  In particular, it was shown that a natural frequency selection procedure 
described here could be used to select the natural frequencies based on circumferentially-
propagating wave characteristics in the rotating shell.  Additionally, the forced solutions 
were obtained by the superposition of wave-like basis functions: in the latter procedure, 
the superposition coefficient could be determined by solving an uncoupled ordinary 
differential equation.   

The results presented here show that rotation has two principal effects: stiffening 
of the treadband and kinematic “tilting” of the dispersion curves.  It was found, however, 
that the rotational stiffening effect was not significant compared with the effect of 
inflation pressure, for the model considered here, at typical rotational speeds.  In 
contrast, the kinematic tilting effect was found to be significant.  Thus, it was concluded 
that a linear function, Eq. (6.32), could be used to adjust stationary shell dispersion 
curves for the effects of rotation: the latter curves may then be used to analyze the 
potential of a rotating tire to radiate sound. 
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Table 6.1: Parameters for tire treadband. 

Young’s Modulus E = 4.8×108 N/m2 
Density ρ = 1200 kg/m3 
Thickness h = 0.008 m 
Poisson’s ratio v = 0.45 
Radius a = 0.32 m 
Width L = 0.16 m 
Damping ratio ξ = 0.05 
Inflation pressure p = 206910 Pa (p = 30 psi) 
Sidewall tension Nr

xx = 2×104 N/m 
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Figure 6.1: Model of tire treadband: a circular cylindrical shell with simply-supported 
edges. 
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Figure 6.2: Dispersion relations derived from characteristic equation: • - flexural wave, × 
- shear wave, and + - longitudinal wave: (a) Ω = 0, (b) natural frequencies in 
local coordinates when Ω = 500 rad/s, (c) natural frequencies in local 
coordinates when Ω = 100 rad/s, and (d) natural frequencies in reference 
coordinates when Ω = 100 rad/s. 
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Figure 6.3: Comparison of analytical forced response (radial velocity) with FE 
simulation when Ω = 0 rad/s and ξ = 0.05: (a) FE simulation and (b) 
analytical solution. 
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Figure 6.4: Forced responses at 512 Hz (solid line), 1600 Hz (dashed line), and 3200 Hz 

(dotted line): (a) Ω = 100 rad/s and ξ = 0.02, (b) Ω = 100 rad/s and ξ = 0.05, 
and (c) Ω = 500 rad/s and ξ = 0.05. 
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Figure 6.5: Forced response when Ω = 100 rad/s and ξ = 0.05: (a) magnitude of vibration 
(radial velocity) at treadband center and (b) dispersion relation obtained by 
circumferential wave number transform. 
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Figure 6.6: Input point mobility, iωur/qr.  Solid line indicates modal summation of 
positive-going wave components (n > 0) and half of n = 0 component, and 
dashed line indicates negative-going wave components (n < 0) and half of n 
= 0 component: (a) real part and (b) imaginary part. 
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Figure 6.7: Real wave numbers (• and +) obtained from Prony series identification when 
ξ = 0.05: (a) stationary case (Ω = 0 rad/s) and (b) rotating case (Ω = 100 
rad/s). 
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Figure 6.8: Compensation of stationary dispersions relations by using Eq. (32): • - 
stationary case, + - rotational case, and ο - compensated case.  
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7. CONCLUSIONS 
 
 
 
Multi-reference, scan-based NAH procedure was applied to a rolling tire: it has been 
shown that sound radiation originates close to the contact patch of the tire.  These 
measurements were enabled by several new technologies.  In particular, a compensation 
procedure for source non-stationarity was introduced and applied to the rolling tire 
experiment resulting in enhanced acoustical images in narrow frequency bands.  In 
addition, a post-processing procedure was developed that makes it possible both to 
identify optimal reference microphone locations and to place virtual references at those 
locations.  The latter procedure was successfully applied to separate sound radiation 
from the contact patch leading and trailing edges and the sidewall of the rolling tire.   

Tire treadband vibration has been measured and studied by using wave 
decomposition techniques at frequencies below 1000 Hz.  It has been concluded that 
tires can be effectively modeled as waveguides since the carcass vibration is controlled 
by no more than six propagating waves.  It was also pointed out that a fast extensional 
wave mode that cuts-on at the circumferential ring frequency has the potential to radiate 
sound effectively owing to its relatively high phase speed. 

For the purpose of identifying tire design parameters that can control tire vibration 
characteristics, circular cylindrical shell models and full tire models have been considered.  
These models were analyzed by using both 3-D finite elements and 2-D finite elements: a 
two-dimensional finite element method was developed to model a tire at low 
computational cost.  It has been shown that by using the 2-D finite elements, both 
inflation pressure and composite material properties can be considered.  It was also 
found that the tire models considered here successfully reproduce the major features of 
the experimental tire dispersion relations.  Furthermore, two wave types that are known 
to contribute significantly to tire dynamic response could be identified in the tire models: 
flexural wave modes and a fast extensional wave mode that cuts-on at the circumferential 
ring frequency.  It was also observed that fiber reinforcement of the treadband can 
account for the existence of modes having negative group speeds at small wave numbers.   



 135

Finally, the treadband of a tire was modeled as a rotating circular cylindrical shell 
in order to identify the effects of rotation.  It has been shown that rotation has two 
principal effects: stiffening of the treadband and “tilting” of the dispersion curves.  It has 
been found, however, that the rotational stiffening effect was not significant compared 
with the stiffening effect of inflation pressure at typical rotational speeds.  In contrast, 
the kinematic tilting effect was found to be significant.   Thus, it was concluded that a 
linear function could be used to adjust the stationary dispersion curve which could then 
be used to analyze the potential of a rotating tire to radiate sound. 

In the future, rotation effects should also be implemented in the 2-D finite 
elements.  The coupling effects between acoustical responses in the cavity of a tire and 
vibrational responses of the tire will also be considered.  Based on the vibrational 
responses obtained from the coupled problem ananlysis, sound radiation from a tire can 
then be analyzed by using a boundary element method.
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Appendix A 
Expressions for the strains of thin shells are derived in Ref. [43] and they are presented 
here for completeness.  They can be separated in terms of membrane strains and 
bending strains: i.e., 
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the bending strains are 
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and the rotational displacements are 
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and 
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where Am and Rm are the radius of curvature and Lamé parameter, respectively, in the xm-
direction.  The quadratic, non-linear terms at the end of the membrane strain expressions 
are presented for the purpose of accommodating the case in which large initial stresses 
are present.   
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Appendix B 
Expressions for the normal and shear forces are derived in Ref. [43] and they are 
presented here for completeness.  The in-plane forces are expressed as 
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The shear forces are represented in terms of moments: i.e., 
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where the moments can be expressed in terms of curvatures as 
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and where the curvatures are expressed in terms of rotation angles as 
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Appendix C 
Expressions for the normal and shear forces in local coordinates were derived in Ref. [43].  
They can also be used in Eqs. (6.5) to (6.7) described in the reference frame when the 
circumferential angle, θ, in local coordinates is replaced by the circumferential angle, φ, 
in global coordinates.  Then the in-plane forces are expressed as 
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The shear forces are represented in terms of moments: i.e., 
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where the moments can be expressed in terms of curvatures as 
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In Eqs. (C6) to (C8), the curvatures are expressed in terms of rotation angles as 
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Appendix D 
In the hybrid, 2-D FE formulation, the in-plane displacements, u1 and u2, are 
approximated by using linear polynomials (i.e., Lagrange linear interpolation functions 
[67]) while the surface normal displacement, u3, was represented by cubic polynomials 
(i.e., Hermite cubic interpolation functions [67]) which are normally used for the finite 
element formulation of an Euler-Bernoulli beam: i.e., 
 121211111 uuu χχ += , (C1) 
 222221212 uuu χχ += , (C2) 
and 
 12423232114131313 βχχβχχ +++= uuu . (C3) 
By using a linear coordinate transform, the x1-axis (x1 = 0 to L) can be mapped onto the 
ζ-axis (ζ = -1 to 1): i.e., 

   12
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L
ζ . (C4) 

Since the two nodes of an element are located at ζ = -1 and ζ = 1, as shown in Fig. 5.1, 
the interpolation functions are [67] 
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By substituting Eq. (C4) into Eqs. (C5) to (C12), the interpolation functions can be 
represented in terms of x1.
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