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The ever increasing size of datasets used for data mining and machine learning applications has 
placed a renewed emphasis on algorithm performance and processing strategies.  This research 
addresses algorithms for ranking variables in a dataset, as well as for ranking values of a specific 
variable. We propose two new techniques, called Max Gain (MG) and Sum Max Gain Ratio 
(SMGR), which are well-correlated with existing techniques, yet are much more intuitive.  MG 
and SMGR were developed for the public safety domain using categorical traffic accident data.  
Unlike the typical abstract statistical techniques for ranking variables and values, the proposed 
techniques can be motivated as useful intuitive metrics for non-statistician practitioners in a 
particular domain.  Additionally, the developed techniques are generally more efficient than the 
more traditional statistical approaches
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Section 1 
Introduction 

 
 
Motivation 
 
Data mining is the exploration and analysis of a large dataset in order to discover knowledge and 
rules.   Data mining has been very successful as a technique for deriving new information in a 
variety of domains (Berry & Linoff, 1997).  Data mining is typically conceptualized as a three-
part process: preprocessing, learning (or training) and post-processing. 
 
In the last decade, data that serves as a target for data mining has grown explosively. Data has 
been growing increasingly larger in both the number of rows (i.e., records) and columns (i.e., 
variables).  The quality of data affects the success of data mining on a given learning task. If 
information is irrelevant or noisy, then knowledge discovery during training time can be 
ineffective (Hall & Smith, 1999). Variable selection is a process of keeping only useful variables 
and removing irrelevant and noisy information. It is always used as a data mining preprocessing 
step, particularly for high-dimensional data. 

 
Variable selection can be used to select subsets of variables in terms of predictive power.  Since 
variable selection effectively ranks set of variables according to importance, it may be referred to 
as variable ranking. There is also an analogous notion of value ranking, which refers to the idea 
of ranking the values of a particular variable in terms of their relative importance.  In this 
research, we examine existing techniques for both variable and value ranking, and we propose 
new techniques in both categories.  Our techniques were developed from traffic accident data 
utilized by public safety officials searching for efficient mechanisms to identify, develop and 
deploy appropriate countermeasures and enforcement regiments to lower traffic accident 
occurrences.  We show that our proposed techniques give similar results to existing techniques, 
yet are conceptually simpler, and therefore of greater value to a practitioner using data mining in 
a particular domain.  In particular, the proposed techniques are metrics that are meaningful to a 
practitioner beyond just their statistical implications.  Because our proposed techniques are also 
relatively efficient, they can be used efficiently as conceptually simple substitutes for the more 
traditional and complex statistical approaches. 

 
As a further investigation of the efficiency of our proposed techniques, we examine their 
performance under competing storage models.  We show that when data are stored in column-
major order, the performance of our proposed techniques is quite favorable.  While column-
major order is generally inappropriate for transactional systems, it has been shown to be superior 
to row-major order for non-transactional, statistical analysis systems that utilize categorical data 
(Parrish et al., 2005).  Our proposed techniques confirm these results and further support the idea 
of using column-major storage for systems that support data mining. 
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Value and Variable ranking 
 
Variable selection attempts to find a variable subset that describes the data for a learning task as 
good as or better than the original dataset.   We note first that, historically, there has been an 
evolution in the terminology used to describe variable selection.  Traditionally, attributes 
correspond to the columns in a database table. The process of selecting certain attributes or a 
smaller set of attributes to provide faster builds is called attribute selection. Over time, the 
terminology has evolved to also call this process variable selection and feature selection. Dating 
back to at least as early as the 1970’s, feature selection (Fukunaga, 1970; Andrews, 1971) has 
been commonly used. More recently, some literature uses attribute selection (Baim, 1988; 
Caruana & Freitag, 1994; Pappa, Freitas, & Kaestner, 2002; Hall & Holmes, 2003) or variable 
selection (Viallefont, 2001; Foster & Stine, 2004). In 2001, the Neural and Information 
Processing Systems workshop on Variable and Feature Selection used both of the terms variable 
and feature selection.   In this work, we use the variable selection in place of feature selection or 
attribute selection. Figure 1 illustrates the role of variable selection in the data mining process. 
 

 
 

Figure 1-1. The data mining process 
 
In data mining, variable selection generally falls into two categories (Kohavi, John, & Pfleger, 
1994; Mladenic & Grobelnik, 1999):  
 

 The filter model and 
 The wrapper model.  

 
The filter model selects a variable subset independently without involving any learning 
algorithm that will use the selected variables. The wrapper model selects a variable subset using 
the evaluation function based on the predetermined learning algorithm. This type of wrapper 
approach generally produces a better variable subset but tends to consume a lot of resources. 
When the number of variables is very large, filtering is generally the preferred approach. 
As noted above, one filter model technique is commonly referred to as variable ranking (Kohavi 
& John, 1997; Guyon & Elisseeff, 2003).  Variable ranking is a data mining preprocessing step 
where variables are selected independently of the learning algorithm that will use the selected 
variables. The procedure of variable ranking is to score each variable according to a particular 
method; the best k variables will then be selected. For example, using a given method, rank the 
10 best variables in predicting alcohol related traffic accidents.  The advantage of variable 
ranking is that it requires only the computation of scores of each variable individually and 
sorting the scores (Guyon & Elisseeff, 2003; Stoppiglia et al., 2003). 
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Also as noted above, value ranking is closely akin to variable ranking.  For categorical data, a 
variable may take on one of a fixed set of possible values.  For example, a variable labeled 
gender may take on values of “Male,” “Female,” or “Unknown.”  Value ranking is the process of 
determining what values of a variable are most important or contribute most significantly to the 
variable selection process.  For example, if the variable “Gender” is ranked significant in 
predicting alcohol related accidents, the value “Male” can be seen as the most important 
contributor in “Gender” being ranked. 
 
Our approach in this research is to examine existing value and variable ranking techniques.  We 
then propose new techniques that represent metrics that have intuitive utility to a practitioner, 
comparing our proposed techniques to the existing ones in terms of (a) consistency with the 
existing techniques and (b) performance.  We show that the proposed techniques correlate well 
with the existing techniques, with favorable performance as well.   
 
Value and variable ranking are statistical approaches that examine one or a small number of 
attributes that describe a record.  Traditionally, these attributes are considered to be the columns 
in a two dimensional table with each record being a row in the table.  Previous results indicate 
that statistical operations such as frequency and cross-tabulations are more efficient when the 
underlying data is stored and processed in column-major order (i.e., with each column stored 
contiguously on the disk) (Parrish et al., 2005). This is contrary to the vast majority of 
contemporary database systems that process their data in row-major order (i.e., with each row 
stored contiguously on the disk). In particular, rows are often inserted or deleted as a unit and 
updates tend to be row-oriented. Statistical processing which may be concerned with only a few 
attributes (columns) benefits from column-major order.  Our results in evaluating Max Gain 
(MG), a new value ranking technique that we propose, and Sum Max Gain Ratio (SMGR), a new 
variable ranking technique that we propose, continue to support this research. 
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Section 2 
The Problem Domain 

 
 

Traffic Accident Analysis 
 
The particular problem domain addressed in this study is the analysis of automobile traffic 
accident data.  Given the appropriate tools and data, variable ranking allows traffic safety 
professionals to develop and adopt countermeasures to reduce the volume and severity of traffic 
accidents (Parrish et al., 2003).  The University of Alabama has developed a software system 
called CARE (Critical Analysis Reporting Environment) for the analysis of traffic crash data. 
CARE provides a tool that allows transportation safety engineers and policy makers to analyze 
the data collected from traffic accident records.  
 
CARE has been applied to traffic crash records from a number of states.  The Alabama statewide 
crash database in CARE has records (rows) that contain 228 categorical variables (column); each 
variable contains attribute values varying from 2 to more than 600. CARE’s analysis domain is 
restricted to categorical data, represented by nominal, ordinal and interval based variables. 
Nominal variables have attribute values that have no natural order to them (e.g., pavement 
conditions – wet, dry, icy, etc.). Ordinal variables do have a natural order (e.g., number of 
injured, day of the week). Interval variables are created from intervals on a contiguous scale 
(e.g., age of driver – 16-20, 20-25, 25-35, etc.). 
 
The current system provides the users with filters to perform data analysis on particular subsets 
of the data that are of interest.  Filters are defined by Boolean expressions over the variables in 
the database.  A record satisfying a filter’s Boolean expression is a member of the filter subset, 
while a record not satisfying the filter’s Boolean expression is excluded from the filter subset.  
Common filters for crash data are filters for crashes within specific counties, filters defining 
crashes related to alcohol, filters defining crashes involving pedestrians, etc.   
 
In terms of our variable ranking techniques, the filter represents the target variable for learning 
with two values: “0” and “1.”  In particular, “0” corresponds to the records not satisfying the 
filter’s Boolean expression, while “1” corresponds to the records satisfying the Boolean 
expression.  Filters provide an effective conceptual framework for our value and variable ranking 
techniques in that they define two subsets: a control subset and an experimental subset.  The idea 
that a filter defines an experimental group that is compared with a control group is fundamental 
to the value and variable ranking techniques discussed here.  For example, in our traffic crash 
domain, an “alcohol” filter defines the subset of crashes where alcohol is involved.   Our value 
and variable ranking techniques compare the alcohol crashes (experimental group) with all other 
crashes (control group) to conclude which values and variables are most important. 
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Section 3 
Value Ranking  

 
 
Value Ranking Fundamentals 
 
Value ranking is the process of assigning a weight or score to a value based on the value’s 
occurrence in the subset of interest (experimental subset) when compared to the comparison 
subset (control subset).  Value ranking is described using the following notation.  When 
considering a training dataset that has n input variables and one target variable, the input 
variables are noted as Vk (k = 1,…,n). For a particular variable Vk and each value i of variable 
Vk, a score S(Vk,i) of value i of the variable Vk is derived according to a particular value ranking 
method computed from a corresponding contingency table described as follows. It is assumed 
that a higher score of a value indicates a more valuable value than those with lower scores. For 
ranking purposes, these values are sorted in descending order of S(Vk,i).  
 
Let the value of the target variable be “1” (i.e., experimental subset) or “0” (i.e., control subset), 
and the values of input variable Vk be Vk,0, …, Vk,r-1.  Then a contingency table (frequency table) 
showing the responses of subjects to one variable as a function of another variable (Stockburger, 
1996; Zembowicz & Zytkow, 1996) can be built up as described in Table 3-1. 
 

Table 3-1.  A contingency table of variable Vk and target variable 
    

Target Variable 
Input Variable Vk 0 1 

Row Totals 

Vk,0 f0,0(F0,0) f0,1(F0,1) f0,*

… … …  
Vk,r-1 fr-1,0(Fr-1,0) fr-1,1(Fr-1,1) fr-1,*

Column Totals f*,0 f*,1 m 

 
Where fi,j is the frequency for which the value of the variable Vk is i and the value of the target 

variable is j, , 
∑
−

=

=
1

0
,*,

r

i
jij ff

1,0,,* iii fff += , m
ff

F ij
ji

,**,
,

×
=

, i=0, 1, 2, …, r-1, j = 0 and 1, and m 
is the total number of records. 
 
Existing Value Ranking Methods 
 
The following sections describe existing value ranking techniques including Statistical 
Significance Z Value (SSZ) (Howell, 2001; Richards, 2002; Parrish et al., 2003), Confidence 
(CF) (Agrawal, Imielinski, & Swami, 1993), Support (SP) Agrawal, Imielinski, & Swami, 1993) 
and Improvement (IM) (Berry & Linoff, 1997). 
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Statistical Significance Z Value (SSZ)   
 
To determine statistical significance of a particular value, a standard statistical significance Z 
test of proportions is performed. Any value with a difference in proportions which is significant 
at the 2 percent alpha level (the critical value is 2.33 or -2.33) is considered to be statistically 
significant, this also indicates that we can consider the likelihood that there is a difference in the 
population to be 98 percent (Parrish et al., 2003). The mathematical definition of Statistical 
Significance Z Value is described as follows (Howell, 2001; Richards, 2002). Eq: 
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where 

 is the number of values of variable Vk. The Statistical Significance Z Value considers the 
alue’s occurrence in both full dataset and in separate datasets (experimental subset and control 
ubset), it also considers the contribution of the sample size.  
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onfidence (CF) and Support (SP)  

he problem of mining association rules has been introduced previously (Srikant & Agrawal, 
995). Given a dataset and a filter (Y), we need rank attribute value (X) of a particular variable. 
he mining association rule can be X Y. For example, Friday  Alcohol where “Friday” is one 
ttribute value of variable “Day of Week” and “Alcohol” is the filter. The intuitive meaning of 
uch a rule is that records in the dataset which contain X tend to also contain Y (Agrawal, 
mielinski, & Swami, 1993). The Confidence of the rule is the number of records where X and Y 
ccurred together divided by the total number of records where X occurred. High confidence 

plies a strong relationship between X and Y.  The formula is described as: 

1,0,
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, )
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i
ik ff

f
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  Eqn. 3-2 

he Support of the rule is the number of records where X and Y happened together, divided by 
e total number of records. The formula is described as: 
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Eqn. 3-3

here r is the number of values of variable Vk. 
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Improvement (IM)  
 
Given an if-then rule (Kautardzic, 2001), such as: 
 

if (a special value occurs, called condition)  
 
then  
 
(experimental subset occurs, called result),  
 

a measure called Improvement indicates how much better a rule is at predicting the result than 
just assuming the result in the entire dataset without considering anything. Improvement is 
defined as the confidence of the rule divided by the support of the result. The mathematical 
definition of Improvement is given by the following formula: 
 

)/(

)/(
) 1

0 1,
1

0 0,
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0 1,
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=

−

=
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iii
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Eqn. 3-4

 
where r is the number of values of variable Vk. When Improvement is greater than 1, the value is 
better at predicting the result than random chance, otherwise the prediction is worse.  
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Section 4 
New Value Ranking Methods 

 
 

New Value Ranking Techniques 
 
As detailed above, value ranking is the process of assigning a weight or score to a value based on 
its occurrence in the experimental subset under investigation when compared to the control 
subset.  We propose three value ranking techniques:  Over-Representation (OR), MG, and Max-
Max Gain (MMG).   
 
Over-Representation (OR) 
 
Over-Representation is a simple extension of a frequency distribution. The degree of Over-
Representation for a particular value is the value’s occurrence in the experimental subset (the 
subset of interest) divided by the value’s occurrence in the control subset (the subset for the 
comparison purpose) (Parrish et al., 2003). To calculate the degree of Over-Representation for a 
particular value one must first determine the value’s occurrence in both the experimental class 
and control class (computed as percentage) and then divide these two values. It is possible to 
derive the Over-Represented values from a contingency table. Suppose variable Vk has value i, 
the Over-Representation of value i can be obtained by: 

∑
∑

−

=

−

==
1

0 0,0,

1

0 1,1,

/

/
)

r

j ji

r

j ji

ff

ff
,( ikVOR

 

Eqn. 4-1

where r is the number of values of variable Vk. Consider an example from the traffic safety 
domain.  Suppose that 50 percent of the alcohol crashes occur on rural roadways, while only 25 
percent of the non-alcohol crashes occur on rural roadways. Therefore, the degree of Over-
Representation of alcohol crashes on rural roadways is 50 percent /25 percent = 2. Put simply, 
alcohol accidents are Over-Represented on rural roadways by a factor of 2. If the degree of 
Over-Representation is greater than 1, the value is an Over-Represented value. In the traffic 
safety domain, Over-Representation often indicates problems that need to be addressed through 
countermeasures (i.e., safety devices, sobriety checks, etc).   As a simple ratio, OR is obviously a 
very intuitive quantity to a practitioner. 
 
Max Gain (MG) 
 
One important question a safety professional might ask is: What is the potential benefit from a 
proposed countermeasure? The answer to this question is that in the best case a countermeasure 
will reduce crashes to its expected value. It is unlikely to reduce crashes to a level less than what 
is found in the control group. A metric termed Max Gain (Parrish et al., 2003; Wang, Parrish, & 
Chen, 2003) is used to express the number of cases that could be reduced if the subset frequency 
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(experimental subset) was reduced to its expected value (control subset). Max Gain can be 
defined by the value’s occurrence in the experimental subset minus the experimental subset 
frequency times the probability the control class occurred. The formula is described as: 

∑
∑
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×−=
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Eqn. 4-2

where r is the number of values of variable Vk. Max Gain is a powerful metric when designing 
countermeasures. If a choice must be made between two countermeasures, the countermeasure 
with higher Max Gain value has the higher potential benefit. If a particular value of a variable is 
Over-Represented, the value has positive Max Gain, otherwise the value has negative Max Gain.  
 
Consider an example from traffic safety domain: Analysis indicates that “OFF ROADWAY” 
accidents demonstrate the highest Max Gain in an experimental subset. The Max Gain of “OFF 
ROADWAY” can be computed by: 3680 – 7743 * (18029 / 124883) = 2562.165. Table 4-1 
shows the Max Gain of each attribute value for the variable “EVENT LOCATION”. 
 

Table 4-1.  An example of Max Gain 

V016: EVENT LOCATION Experimental 
 Subset 

Control 
Subset OR MG 

OFF ROADWAY 3680 18029 3.292 2562.165 
MEDIAN 89 940 1.527 30.718 
PRIVATE ROAD/PROPERTY 46 293 2.532 27.833 
DRIVEWAY 10 50 3.226 6.9 
INTERSECTION 1028 30641 0.541 -871.804 
ON ROADWAY 2890 74930 0.622 -1755.81 
Totals 7743 124883   

 
Max Gain is a metric that can be quoted by practitioners in the domain of interest.  For example, 
in traffic safety, Max Gain is the reduction potential when a “countermeasure” achieves its 
highest potential.  For the example given in Table 4-1, “Rumble Strips” are a countermeasure 
often used to reduce the number of “OFF ROADWAY” accidents. Assuming 100% success with 
Rumble Strips, the “OFF ROADWAY” crashes can be reduced by a total of 2562. One cannot 
expect a reduction that exceeds the Max Gain.  Effectively, Max Gain then becomes an upper 
bound on crash reduction potential within this domain.  Because Max Gain can be used in such 
an intuitive fashion, it becomes a very practical metric – much more practical than some of the 
more abstract statistical metrics, such as Confidence, Support and Statistical Significance Z 
value. 
 
Max-Max Gain (MMG) 
 
Max Gain shows the potential benefit of implementing a countermeasure. After applying the 
countermeasure, the experimental subset frequency is reduced and the control subset frequency 
is increased.  A recalculation of Max Gain would then produce a different ordering based on 
these changed values.  The reordering in Max Gain would then highlight another value.   A 
traffic safety professional might ask: What is the potential reduction in accident numbers if I 
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continue to focus my countermeasures on the original problem value?  Max-Max Gain is a 
proposed measure to rank values based on that question.   
 
Consider the attribute value of OFF ROADWAY which demonstrates the highest Max Gain in 
the above example. These particular accidents account for 3,680 crashes and demonstrate a Max 
Gain of 2,562.  For this example, a countermeasure to reduce the OFF ROADWAY accidents to 
the same percentage as the control group would leave 1,118 “OFF ROADWAY” accidents in the 
experimental subset.  A further calculation of Max Gain as described above would then identify 
another value (for example “Intersection”) as having the highest Max Gain.  Instead of 
investigation or adopting a new countermeasure for the newly identified value, the traffic safety 
professional might be more interested in determining the maximum possible benefit of 
concentrating effort on the originally identified problem (OFF ROADWAY in this example).  
Max-Max Gain does this by repeatedly calculating and summing Max Gain for a value until the 
potential gain becomes less than 1.0. Table 4-2 shows the steps to compute the Max-Max Gain 
of attribute value OFF ROADWAY for variable “EVENT LOCATION”.  
 

Table 4-2.  An example of Max-Max Gain 
Step Subset  

Freq. 
Subset  
Total Other Freq. Other Total Max Gain 

1 3680 7743 18029 124883 2562.17 

2 1117.83 5180.83 20591.17 127445.17 280.77 

3 837.06 4900.06 20871.94 127725.94 36.33 

4 800.73 4863.73 20908.27 127762.27 4.78 

5 795.95 4858.95 20913.05 127767.05 0.63 

MMG 2562.17 + 280.77 + 36.33 + 4.78 + 0.63 = 2884.68 

 
Max-Max Gain can be calculated for all values of a variable providing the traffic safety engineer 
insight into the most important value that might be addressed by a countermeasure.  In this 
regard, MMG provides the same benefits to the practitioner as MG. 
 
Results Using New Value Ranking Methods 
 
This research proposes three new value ranking methods, OR, MG and MMG.  We choose to 
evaluate only MG and MMG here; OR’s contribution is principally to support the other two 
methods.  To compare the performance of MG and MMG to the other ranking methods, we used 
the Alabama accident dataset for the year 2000.  The dataset contains 132,626 records and 228 
variables. The target variables were selected by applying the filters of Injury, Interstate, Alcohol, 
and Fatality.  The corresponding occurrence percentage is 21.92%, 8.996%, 5.38% and 0.4853%, 
respectively. For each filter, the experimental class (those accidents indicated by the filter) was 
represented by a 1 and the control class (the remaining accidents) was represented by a 0. 
 
Pearson’s Correlation With Existing Methods 
 
Since the strength of the linear association between two methods is quantified by the correlation 
coefficient, we use Pearson’s correlation coefficient to test if there exits a relationship between 
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MG, MMG and the other methods.  Since MG and MMG are conceptually simple, a strong or 
moderate correlation with an existing method would mean that MG and MMG could effectively 
substitute for that method.   
 
Table 4-3 shows the number of variables and the strength of Pearson’s correlation between each 
technique to Max Gain that will be used for value ranking.  As described in Table 4-3, MG is 
strongly correlated to MMG and SSZ, since they have the most number of variables that are 
strongly correlated to MG. Similar results occur for MMG, as MMG is also strongly correlated 
to SSZ. Since MG and MMG are conceptually simple and are strongly correlated to SSZ, MG 
and MMG could effectively substitute for SSZ, with a likelihood of higher intuitive utility by a 
domain practitioner. 
 

Table 4-3.  Number of variables correlated to MG 
Number of variables Correlated based on 

Pearson’s R Value 
Ranking 

Strong Moderate Weak 

MMG 175 48 1 
SSZ 173 50 1 
CF 24 70 131 
SP 32 133 60 
IM 23 70 131 

 
Running Time Efficiency Compared With Existing Techniques 
 
Table 4-4 shows the average run time cost over one thousand experiments for each value ranking 
method, using the Alabama crash dataset for the year 2000.  For each experiment, we rank the 
attribute value for each variable and obtain a run time cost. Table 4-4 shows that MG and CF are 
the most efficient methods. MMG is not efficient since it needs to repeat to compute Max Gain. 
 

Table 4-4.  Comparison of run times for  
different value ranking techniques (in milliseconds) 

Filter Value 
Ranking Injury Interstate Alcohol Fatality 

OR 0.8348 0.8 1.875 0.7782 
MG 0.675 0.6814 0.9782 0.6938 
MMG 1.775 2.1532 2.2032 1.0218 
SSZ 0.8188 0.8126 1.8344 0.8124 
CF 0.6782 0.6874 0.9532 0.675 
SP 1.572 1.5812 1.6124 1.5814 
IM 1.7906 1.8032 7.7094 1.7908 
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Section 5 
Variable Ranking 

 
 

The Variable Ranking Problem 
 
The problem of variable ranking can be described in the notation provided by Guyon and 
Elisseeff (2003). We consider a training dataset with m records {xt; yt} (t = 1,…,m), each record 
consists of n input variables xt,k (k = 1,…,n) and one target variable yt. The input variables are 
noted as Vk (k = 1,…,n). Then we get a score S(Vk) of each variable Vi according to a particular 
variable ranking method computed from the corresponding contingency table. We assume that a 
higher score of a variable indicates a valuable variable and that the input variables are 
independent of each other. The variables are then sorted in decreasing order of S(Vk) allowing us 
to select the top most x variables of interest.  
 
We can construct the contingency table for each variable Vk (k = 1, …, n) as described in section 
3. Various variable ranking methods have been proposed. In the following, we present the 
ranking methods we applied.  
 
Existing variable ranking methods 
 
The following sections describe existing variable ranking methods including Chi-squared (CHI) 
(Lehmann, 1959; Hawley, 1996; Leonrd, 2000), Correlation Coefficient (CC) (Golub et al., 
1999; Furey et al., 2000; Slonim et al., 2000; Guyon, Weston, Barnhill, & Vapnik, 2002), 
Information Gain (IG) (Mitchell, 1997, Yang & Pedersen, 1997) and Gain Ratio (GR) (Grimaldi, 
Cunningham, & Kokaram, 2003). The limitation of these methods will be discussed in section 6. 
 
Chi-squared (CHI) 
 
The Chi-squared test (Lehmann, 1959; Hawley, 1996; Leonard, 2000) is one of the most widely 
used statistical tests. It can be used to test if there is ‘no association’ between two categorical 
variables. ‘No association’ means that for an individual, the response for one variable is not 
affected in any way by the response for another variable. This implies the two variables are 
independent. The Chi-squared measure can be used to find the variables that have significant 
Over-Representation (association) in regard to the target variable.  
 
The Chi-squared test can be calculated from a contingency table (Yang & Pedersen, 1997; 
Forman, 2003). The Chi-squared value can be obtained by the equation below: 
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Eqn. 5-1
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where k is the variable number (k=1,…,n), and r is the number of values of the variable. 
 
Correlation Coefficient (CC) 
 
If one variable’s expression in one class is quite different from its expression in the other, and 
there is little variation between the two classes, then the variable is predictive. So we want a 
variable selection method that favors variables where the range of the expression vector is large, 
but where most of that variation is due to the class distribution (Slonim et al., 2000). A measure 
of correlation scores the importance of each variable independently of the other variables by 
comparing that variable’s correlation to the target variable (Weston, Elisseeff, Scholkopf, & 
Tipping, 2003). 
 
Let the value of the target variable be “1” (i.e., experimental class) or “0” (i.e., control class). For 
each variable Vk, we calculate the mean µk,1 of the experimental class (µk,0 of the control class) 
and standard deviation σk,1 of the experimental class (σk,0 of the control class). Therefore we 
calculate a score: 
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Eqn. 5-2

 
which measures relative class separation. A large value of CC(Vk) indicates a strong correlation 
between input variable and class distribution (Golub et al., 1999; Furey et al., 2000; Slonim et 
al., 2000; Guyon, Weston, Barnhill, & Vapnik, 2002). We then simply take the variables with the 
highest CC(Vk) scores as our top variables. The correlation score is closely related to the Fisher 
criterion score (Bishop, 1995; Pavlidis, Weston, Cai, & Grundy, 2002; Weston et al., 2003). 
 
Information Gain (IG) 
 
Entropy measures the impurity of a set of data (Mitchell, 1997). If there is, at most, one class 
present, entropy is the lowest. And if the proportions of all present classes are equal, entropy is 
highest.  Information Gain is a measure based on entropy. Information Gain measures the 
decrease of the weighted average impurity of the partitions, compared with the impurity of the 
complete set of data. Yang and Pederson (1997) reported Information Gain and Chi-squared test 
performed best in their multi-class benchmarks. Information Gain has a generalized form for 
nominal valued attributes (Forman, 2003). The Information Gain value can be obtained from the 
contingency table: 
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, k is the variable number (k=1,…,n), r is the number of 
values of the variable, and m is the total number of records. 
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Gain Ratio (GR) 
 
Unfortunately, Information Gain is biased in favor of variables with more values.  That is, if one 
variable has a greater numbers of values, it will appear to gain more information than those with 
fewer values, even if they are actually no more informative. Information Gain’s bias is 
symmetrical toward variables with more values. Gain Ratio (GR) overcomes this problem by 
introducing an extra term. There are two methods to compute GR; the first method computes GR 
by: 

r
VIG k )(

) =VGR k( , Eqn. 5-4
where r is the number of values of variable Vk. 
The second method computes GR (Grimaldi, Cunningham, & Kokaram, 2003) by: 

Eqn. 5-5,
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where k is the variable number (k=1,…,n), r is the number of values of the variable, and m is the 
total number of records. Since the SP term can be zero in some special cases, the authors in 
(Grimaldi, Cunningham, & Kokaram, 2003) define:  
 

GR(Vk) = IG(Vk) if SP(Vk) = 0. Eqn. 5-6
In our study, we used the second method because it gives us more information about 
the distribution of accidents. 
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Section 6 
A New Variable Ranking Method 

 
 

Sum Max Gain Ratio (SMGR) 
 
The above variable ranking methods compute the score of each variable based on all the attribute 
values of a particular variable. This implies every attribute value has the same impact on a 
particular variable. We propose a new variable ranking method called Sum Max Gain Ratio 
(SMGR) (Wang, Parrish, Smith, & Vrbsky, 2005) that computes the score based on only a 
portion of the attribute values for a particular variable. In section 4, we introduced how to 
compute Max Gain. Those attribute values that have positive Max Gain will be Over-
Represented.   
 
Sum Max Gain (SMG) is the total number of cases that would be reduced if the subset frequency 
were reduced to its expected value for the attribute values that are Over-Represented (i.e., those 
values that have a Max Gain > 0).  That is, SMG is the sum of all positive Max Gain values for a 
particular variable.   More formally: 

Eqn. 6-10)()() ,
1

0 , >=∑ −

= ik
r

i ikk VMGifVMGV(SMG  
where r is the number of values of variable Vk. As an example, Table 6-1 shows the distribution 
by “Day of Week” for alcohol accidents in Alabama’s Mobile County for the year 2000.  
Saturday and Sunday exhibit the positive Max Gains. The Sum Max Gain of variable of Day of 
Week (V008) will be:  SMG (V008) = 1031.824 + 760.082 = 1791.906. 
 

Table 6-1.  Frequency table of variable of “Day of Week” 
V008: Day of Week Subset 

Freq. 
Other 
Freq. 

Over 
Rep. Max Gain 

Saturday 2012 15837 2.053 1031.824 

Sunday 1474 11535 2.065 760.082 

Friday 1275 22868 0.901 -140.335 

Tuesday 737 17750 0.671 -361.574 

Thursday 872 19954 0.706 -362.983 

Wednesday 693 18092 0.619 -426.741 

Monday 667 18860 0.571 -500.274 

 
One problem with SMG is its bias in favor of variables with fewer values. By dividing by the 
total number of cases in the subset frequency (experimental class), it is possible to factor out this 
issue.  In particular, Sum Max Gain Ratio (SMGR) is the ratio of the number of cases that could 
potentially be reduced by an effective countermeasure (SMG) to the total number of cases 
associated with the Over-Represented values (i.e., those cases where the Max Gain > 0).  That is: 
 

Eqn. 6-2
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where r is the number of values of variable Vk. The SMG of variable “Day of Week” was 
computed from the above example to be 1791.906 (1031.824 + 760.082). Saturday and Sunday 
have positive Max Gain, and these two attribute values are Over-Represented. The total number 
of cases associated with the Over-Represented values will be 3486 (the sum of 2012 and 1474).  
The SMGR will be 0.514 (1791.906 / 3486 = 0.514).  
 
SMGR is always in the range of 0 to 1 because SMG is always less than the corresponding 
subset frequency. A high score of SMGR is indicative of a valuable variable with a high degree 
of relevance to the filter subset (experimental group).   When presented in decreasing SMGR 
order, the most relevant variables are at the top. 
 
Results Using SMGR 
 
To compare the performance of SMGR to the other ranking methods, we used the Alabama 
Mobile County accident dataset for the year 2000.  The target variables were selected by 
applying the filters of Injury, Interstate, Alcohol, and Fatality, respectively. 
 
The following sections compare the Pearson’s correlation between SMGR and existing variable 
ranking methods, the run time performance, predictive ability. 
 
Pearson’s Correlation With Existing Methods 
 
Since the strength of the linear association between two methods is quantified by the correlation 
coefficient, we use Pearson’s correlation coefficient to test if there exits a relationship between 
Sum Max Gain Ratio and any other method.  Since SMGR is conceptually simple, a strong 
correlation with an existing method would mean that SMGR could effectively substitute for that 
method. 
 
Table 6-2 shows the Pearson’s correlation coefficient between SMGR and the other variable 
ranking methods. SMGR is correlated to CHI, IG and GR. Table 6-3 shows the complexity of 
each method. For complexity comparison, n is the number of variables and m is the number of 
attribute values. SMGR may be preferable to other variable ranking methods because of its 
conceptual simplicity and less complexity. 
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Table 6-2.  Pearson’s correlation, SMGR and other methods 
Filter Variable 

Ranking  Injury Interstate Alcohol Fatality 

SMG weak moderate strong weak 

CHI moderate moderate strong moderate 

CC weak weak weak weak 

IG moderate moderate strong moderate 

GR moderate moderate moderate moderate 

 
Table 6-3.  Complexity analysis 

Method Complexity 

SMGR O(n � m / 2) 

SMG O(n � m / 2) 

CHI O(n � m) 

CC O(n � 2m) 

IG O(n � m) 

GR O(n � m) 

 
Running Time Comparison 
 
SMGR is efficient since it computes a variable score based on the Over-Represented attribute 
values, while other methods compute a variable score based on all attribute values. To illustrate 
this, we ran experiments on a real-world traffic dataset. The results are given in Table 6-4. 
 

Table 6-4.  Comparison of run times for different variable ranking techniques (in milliseconds) 
Filter 

Variable 
Ranking Injury Interstate Alcohol Fatality 

SMGR 1.542 1.504 1.465 1.407 

SMG 1.560 1.498 1.484 1.413 

CHI 2.834 2.851 2.769 2.840 

CC 5.563 5.520 5.446 5.523 

IG 5.296 4.990 4.336 3.491 

GR 9.366 8.940 8.343 7.497 

 
Table 6-4 shows the average run time cost over one thousand experiments. Each experiment uses 
the same dataset and variable ranking method. For each experiment, we rank variables and get a 
run time cost. From Table 6-4, we can see the average run time cost of SMGR and SMG is the 
lowest, while the running costs of CHI, CC, IG and GR are higher. The dataset examines 
contained 228 variables and each variable has attribute values ranging from 2 to 560.  For this 
dataset, the execution time is relatively small for all tested approaches (less than 10 ms).  
However, the savings in execution cost (50%) of SMGR to the second closest approach will have 
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significant implications for large datasets with tens or hundreds of thousands of variables, and 
when the attribute value of a variable is diverse. 
 
Classification 
 
In order to evaluate how our method of variable ranking affected classification, we employed the 
well known classification algorithm C4.5 (Quinlan, 1993) on the traffic accident data.  We used 
C4.5 as an induction algorithm to evaluate the error rate on selected variables for each variable 
ranking method. C4.5 is an algorithm for inducing classification rules in the form of a decision 
tree from a given dataset.  Nodes in a decision tree correspond to features and the leaves of the 
tree correspond to classes. The branches in a decision tree correspond to their association rule. 
 
C4.5 was applied to the datasets filtered through the different variable ranking methods. We used 
the Injury filter as described above to define the target variable.  The top 25 best variables were 
selected through different variable ranking methods. Table 6-5 shows the error rate and the size 
of the decision tree for each variable ranking method. 
 

Table 6-5.  Results for the C4.5 algorithm 
Method Error rate Size of the tree 

(# of nodes) 
SMGR 0.7% 32 

SMG 1.0% 81 

CHI 0.9% 159 

CC 7.2% 13070 

IG 0.9% 159 

GR 0.7% 32 

 
As seen in the experimental results, SMGR, CHI, IG and GR did not significantly change the 
generalization performance and these methods performed much better than CC. Table 6-5 also 
shows how variable ranking methods affects the size of the trees (the number of nodes in a tree) 
induced by C4.5. Smaller trees allow a better understanding of the decision tree. The size of the 
resulting tree generated by SMGR and GR showed a decrease from the maximum of 14438 
nodes to 32 nodes, accompanied by a slight improvement in accuracy. To summarize, SMG and 
SMGR perform better than CHI, CC and IG. 
 

 18



 
 

Section 7 
Using column-major storage to improve variable selection performance 

 
 

Motivation 
 
The increasingly large datasets available for data mining and machine learning tasks are placing 
a premium on algorithm performance.  One critical item that impacts the performance of these 
algorithms is the approach taken for storing and processing the data elements.  Typical 
applications, including machine learning applications, tend to store their data in row-major order 
(Parrish et al., 2005).  This row-centric nature of storage is consistent with the needs of typical 
applications. In particular, rows are often inserted or deleted as a unit and updates tend to be 
row-oriented. This approach, while efficient for row-centric applications, may not be the most 
efficient for certain column-centric applications. In particular, many statistical analysis 
computations and variable selection approaches are column-centric.  
  
In this section we measure the impact on processing time for row-major and column-major 
storage.  For both approaches, we assume all of the data is stored in a single file.  (We refer the 
reader to an analysis of the impact on disk I/O of column-major versus row-major storage.)  The 
processing time advantage provided by column-major order is that column-centric statistical 
computations can be computed on-the-fly as all data for each column is read consecutively.  This 
differs from the row-major order in which all of the data must be read before any statistical 
computations can be completed.   We next examine the performance tradeoffs between row-
major order and column-major order in the context of variable and value ranking. 
 
Results Under Value Ranking 
 
In order to empirically test disk storage for value ranking, we ran experiments on the Alabama 
Mobile County dataset for the year 2000. We compute the average run time performance for the 
different value ranking techniques, including SSZ, CF, SP, IM, MG and MMG, under the same 
disk storage configuration. Figure 7-1 shows the average run time performance for these value 
ranking techniques.  The chart compares row-major order versus column-major order for a 
varying number of columns. As seen in Figure 7-1, column-major order provided faster 
empirical performance for the value ranking techniques.  
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Figure 7-1.  Average value ranking performance, column-major versus row-major 
 
Results under variable ranking 
 
To compare the performance of row-major order and column-major order in the context of 
variable ranking, we used the Alabama Mobile County accident dataset for the year 2000.  The 
dataset contains 14,218 records (i.e., rows) and 228 variables (i.e., columns). The target variable 
was selected by applying the filter of Injury. The experimental class (those accidents indicated 
by the filter) was represented by a “1” and the control class (the remaining accidents) was 
represented by a “0.” To facilitate generating datasets with varying numbers of rows and 
columns, and to assist in creating row-major and column-major storage options, the original 
dataset from the CARE application was transferred to Microsoft Excel for manipulation.  The 
manipulated datasets were stored from Microsoft Excel as ASCII files.  The variable selection 
algorithms were developed in C++ and manipulated the datasets in the ASCII files. 
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For each particular variable selection approach on each different dataset, we run one experiment 
and get a run time cost. One thousand of the same experiments were run to obtain an average run 
time cost. Figure 7-2 and Figure 7-3 illustrate the performance differences between the row-
major order and column-major order storage methods in the context of SMGR by utilizing 
specific values for the dataset size, number of rows, number of columns, etc.  The figures show 
the average run time cost in seconds, for a varying number of data values accessed.  
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Figure 7-2. Performance comparison, row-major versus column-major, fixed number of rows, SMGR. 

 
Figure 7-2 illustrates the number of seconds to perform the variable selection of SMGR for a 
varying number of columns but a constant number of rows. The figure illustrates the results for 
14,218 records (i.e., rows). The diagonal lines illustrate the run time cost for variable selection 
using the row-major and column-major methods. The run time ranges from 1.415 to 86.3 
seconds using row-major order, while the run time ranges from 1.356 to 66.1 seconds using 
column-major order. As illustrated in Figure 3, after approximately one thousand columns, the 
run time cost of row-major order processing increases faster than the column order processing.  

 21



In this experiment, column order processing outperforms row order regardless of the selection 
algorithm used.   
 
Figure 7-3 illustrates the number of seconds to perform variable selection with a varying number 
of rows but a constant of columns.  
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Figure 7-3. Performance comparison, row-major versus column-major, fixed columns, SMGR 

 
Figure 7-3 illustrates the result for 217 columns (i.e., variables). The plot illustrates the run time 
cost to do variable selection using both row-major and column-major methods.   As illustrated in 
the figure, the run time cost is almost the same using row order and column order until up to 
approximately 14,000 rows in the dataset. From that point, the run time cost for the row order 
increases slightly faster than using the column order. 
 
Table 7-1 provides the relative performance of the different selection algorithms for row-major 
datasets for a range of column sizes.  For row-major order, Chi-squared (CHI) consistently 
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performed the worst. No individual approach distinguished itself as best in row-major order. 
Table 7-2 gives the relative performance of the different selection algorithms for column-major 
datasets for a range of column sizes.  Under column-major order, Information Gain (IG) was 
consistently the worst performer while Sum Max Gain Ratio (SMGR) was consistently the top 
performer. 
 

Table 7-1.  Variable selection, row-major order 
Performance Number of 

 columns Best Worst 

217 SMGR CHI 

1085 CC CHI 

2170 CC CHI 

3255 GR CHI 

4340 SMGR CHI 

5425 GR CHI 

6510 GR CHI 

7595 IG CHI 

8680 CC CHI 

9765 CC CHI 

10850 SMGR CHI 

 
Table 7-2.  Variable selection, column-major order 

Performance Number of 
columns Best Worst 

217 CHI IG 

1085 SMGR IG 

2170 SMGR IG 

3255 SMGR IG 

4340 SMGR IG 

5425 SMGR IG 

6510 SMGR IG 

7595 SMGR IG 

8680 SMGR IG 

9765 SMGR IG 

10850 SMGR IG 

 
This research has shown that column-major order performs better than row-major order in the 
context of heuristic variable selection. Chi-squared performs the worst when using row-major 
order and Sum Max Gain Ratio performs the best when using column-major order. 
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Section 8 
Integration with CARE 

 
 

Improved Query Interface 
 
A primary goal of the CARE application is the ability to provide traffic safety professionals with 
quick, intuitive and easy to use interface to the rich traffic accident data.  The incorporation of 
the identified variable and value ranking algorithms into the CARE application could provide 
traffic safety professionals with another tool to assist in identifying causal factors and evaluating 
deployed counter measures.  Figure 8-1 shows an initial prototype for incorporating these data 
mining techniques into CARE. 
 

 

1 
Dataset 

3 
Selecting Value  
Ranking Method 

5 
Variable Ranking 

Table 

2 
Filter 

4 
Select Variable 
Ranking Method 

6 
Value Ranking 

Table 

 
  

Figure 8-1. Alcohol related filter, rank by SMGR 
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Figure 8-1 shows the ranking of variables using the alcohol filter for the year 2000 Alabama 
Accident Dataset.  Table 8-1 describes the highlighted boxes in the diagram: 
 

Table 8-1.  Description of featured elements in Figure 8-1 
 

Box Description 
1 The dataset selected 
2 The filter selected 
3 The value ranking method to be used 
4 The variable ranking method to be used for sorting the table 
5 The variable ranking table sorted by the appropriate method 

6 Values for the selected variable sorted by the appropriate value ranking 
method 

 
 
Table 8-2 summarizes the top five variables selected by SMGR as shown in Figure 8-1. 
 

Table 8-2.  Summary of top five variables from Figure 8-1 
  

Ranking Variable Label Description 

1 V0036 Test Results Driver C Indicates the results for the 
Blood Alcohol Test given.  

2 V0065 Citation Charged, Vehicle C Indicates that a citation was 
given to the causal driver 

3 V0035 Type Test Given Driver C Indicates the type of test given 
the causal driver 

4 V0130 Citation Charged, Vehicle 2 Indicates that a citation was 
given a second vehicle 

5 V0021 Number Fatalities Indicates the number of 
fatalities in the accident 

 
 

The value ranking (indicate by box 6 in Figure 8-1) is for a single variable.  For the case in 
Figure 8-1, the value ranking is for variable V0036 as indicated by the black triangle ( ) next to 
the variable in the variable ranking table.  For this case, the value "0.10 – 0.199" was the most 
over-represented value for the variable "Test Results, Driver C." 
 
For comparison purposes, Figure 8-2 shows the screen when using CC as the variable ranking 
method using the same dataset and filter as Figure 8-1.  Table 8-3 provides a summary of the top 
five variables from Figure 8-2.  
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Figure 8-2. Alcohol related filter, rank by CC 
 
 

Table 8-3.  Summary of top five variables from Figure 8-2 
   

Ranking Variable Label Description 
1 V0003 Month The month the accident occurred  

2 V0006 Week The week of the accident beginning with January 1 – January 7 as Week 
1 

3 V0004 Date of Month The date of the month the accident occurred ( between 1 and 31) 

4 V0126 Dir of travel 
Vehicle 2 

Indicates the direction of travel for a second vehicle involved in the 
accident.  (North, South, East, West, Unknown) 

5 V0008 Day of Week The day of the week of the accident. 
 

For further comparison, Figure 8-3 shows the screen when using CHI as the variable ranking 
method using the same dataset and filter as used in Figure 8-1 and Figure 8-2.  Table 8-4 
provides a summary of the top five variables from Figure 8-3. 
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Figure 8-3. Alcohol related filter, rank by CHI 
 

Table 8-4.  Summary of top five variables from Figure 8-3 
 

Ranking Variable Label Description 

1 V0035 Test Results  
Driver C Indicates the results for the Blood Alcohol Test given.  

2 V0036 Citation Charged,  
Vehicle C Indicates that a citation was given to the causal driver 

3 V0032 Condition, Driver C Indicates the officer's assessment of the causal drivers condition to 
include apparently asleep, ill, fatigued, etc. 

4 V0007 Time Time of day of the accident 

5 V0034 Safety Equipment,  
Driver C 

Indicates the officer’s assessment of the type of safety equipment 
available and used by the causal driver.  This includes lap and shoulder 
belts and air bags.  
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Section 9 
Conclusions 

 
 

In this research, we have presented a value ranking method called Max Gain (MG).  MG is a 
very intuitive method, in that it serves as a metric that has definitive meaning to a practitioner, 
particularly within the traffic safety domain discussed here.  In particular, MG gives the 
maximum potential for reduction in crashes, given the application of a countermeasure designed 
to reduce crashes.  Thus, MG allows the practitioner to make resource tradeoffs among 
countermeasures, based on real numbers. 
 
MG is not only useful as a metric, but is also useful as a value ranking method.  In particular, 
MG is strongly correlated with SSZ and outperforms most of the previous value ranking 
techniques, making it a conceptually simpler proxy for SSZ.  It is also moderately correlated 
with SP, making it a potential proxy for SP as well. 
 
We also present a variable ranking method called Sum Max Gain Ratio (SMGR).  SMGR is 
derived from MG and uses Over-Represented attribute values as the primary contributing factor 
in variable ranking.  The experiments have shown SMGR performs well at variable ranking with 
less run time cost than more traditional approaches, such as Chi-squared and Information Gain.  
In certain cases, it was empirically shown to provide a faster run time with similar variable 
rankings. The findings suggest that SMGR is more sensitive to the number of variables 
(columns) than to the number of records (rows).   
 
In addition, we examined the performance tradeoffs between row-major order and column-major 
order in the context of heuristic variable selection. The research has shown that column-major 
order performs better than row-major order in the context of heuristic variable selection and 
value ranking.  
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