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ABSTRACT 

Accurate prediction of pavement performance is critical to pavement management 

agencies.  Reliable and accurate predictions of pavement infrastructure performance can save 

significant amounts of money for pavement infrastructure management agencies through better 

planning, maintenance, and rehabilitation activities.  Pavement infrastructure deterioration is a 

dynamic, complicated, and stochastic process with its outcome as the aggregated impact from 

various factors such as traffic loading, environmental condition, structural capacities, and some 

unobserved factors.  However, existing performance prediction models are still constrained by 

inadequate consideration of the dynamic and stochastic characteristics of pavement infrastructure 

deterioration.  

  

The goal of this research is to develop a probabilistic and adaptive methodological 

framework that is capable of capturing the dynamic and stochastic nature of pavement 

deterioration processes.  The ordered probit model and the sequential logit model as probabilistic 

models are proposed to directly predict the performance of pavements in terms of their condition 

states by relating the performance to the structural, traffic, and environmental variables.  The 

proposed probabilistic models were pilot-tested with pavement performance data collected 

during the AASHO Road Test, yielding good prediction results.  In addition, these models were 

further enhanced as mechanistic-empirical models and compared with existing performance 

models.  The comparison results show that the proposed models yield better predictions than the 

previously developed models in terms of prediction accuracy.  Then, a structural state space 

model is proposed to characterize the dynamic nature of pavement deterioration.  The proposed 

structural model has the capability of adaptively updating the performance model with new 

inspection data by taking advantage of a polynomial trend filter and the Kalman filter algorithm.  

The results from a simulation case study indicate that the adaptive algorithm is robust and 

responsive to structural deviations of the pavement deterioration process.  Therefore, it is 

concluded that the proposed probabilistic and adaptive methodological framework is reliable and 

robust to accurately predict pavement performance. 
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EXECUTIVE SUMMARY 

 
Pavement performance modeling is an essential component of pavement management 

systems.  The prediction results of performance models are important inputs to scheduling 

maintenance and rehabilitation actions.  If pavement performance models provide accurate and 

reliable prediction results, they can save pavement management agencies significant amounts of 

money through better planning, maintenance, and rehabilitation activities.   

 

Pavement infrastructure deterioration is a dynamic, complicated, and stochastic process 

with its outcome as the aggregated impact from various factors such as traffic loading, 

environmental condition, structural capacities, and some unobserved factors.  In the last four 

decades, tremendous research has been conducted to model this deterioration process.  Based on 

the nature of these performance models, they can be classified into either 

deterministic/probabilistic models or static/dynamic models.  Although existing performance 

models can characterize certain nature of pavement deterioration process, they are still 

constrained by inadequate consideration of both the dynamic and stochastic characteristics of 

pavement deterioration.   

 

The goal of this research is to develop a probabilistic and adaptive methodological 

framework that enables to characterize the dynamic and probabilistic nature of pavement 

deterioration processes.  In order to capture the probabilistic nature, the ordered probit model and 

the sequential logit model are proposed to directly predict the probabilities with which pavement 

sections deteriorate to each condition state.  In addition, the proposed model has the capability of 

characterizing the latent propensity of pavement deterioration by relating the performance to the 

structural, traffic, and environmental variables.  The proposed probabilistic models are calibrated 

and validated respectively with randomly selected 80% and 20% of pavement performance data 

collected during the AASHO Road Test.  The validation results show that the developed 

probabilistic models yield accurate predictions.  Those proposed probabilistic models are further 

improved as mechanistic-empirical models to extend the inference space of the developed 

probabilistic models by incorporating primary response variables of pavements as explanatory 

variables.  Then, all of developed probabilistic models are compared with selected existing 
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probabilistic models (Markov Chain models and duration model) based on the accurate predicted 

proportion, root mean square error, and chi-squared goodness-of-fit test.  The comparison results 

indicate that the proposed models can produce the most reliable and accurate predictions. 

 

The dynamic nature is characterized using a structural state space model to adaptively 

update the performance model on the basis of historical performance data and the new inspection 

data.  The proposed model employs a polynomial trend filter to recursively estimate and predict 

the possible structural deviations from a prior estimated original trend of pavement deterioration 

by means of the Kalman Filter algorithm.  In addition, the proposed method can be easily 

integrated into the current pavement performance models.  The simulation case study indicates 

that the structural state space model is responsive to significant structural deviations of the 

pavement deterioration process.  Given these results, it is evident that the structural state space 

model is both effective and robust in describing the dynamic pavement deterioration process.   

 

Therefore, conclusions are made as follows: 1) the stochastic and dynamic nature of 

pavement deterioration processes can be effectively characterized with an integrated framework 

of probabilistic and adaptive models; 2) the developed empirical and mechanistic-empirical 

probabilistic models are able to directly predict the probabilities of pavement condition states 

and characterize the stochastic nature of pavement performance; 3) the proposed adaptive 

algorithm is effective and robust for updating the developed probabilistic models with new 

observations under most of the pavement deterioration scenarios; and 4) although the 

methodological framework is developed and tested for pavement deterioration, it can be 

implemented and extended to describe the performance of other transportation infrastructure 

facilities.   
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CHAPTER 1 INTRODUCTION AND OBJECTIVE 

Highway transportation systems are designed and built to transport goods and people 

safely, comfortably, and efficiently.  Since the construction of the interstate highway system in 

the U. S. was completed in the early 1990s, the federal-aid highway program has experienced a 

significant transition from its original focus on building the highway system to preserving or 

improving the highway infrastructure (FHWA, 1999).  With the continuously increasing traffic 

demand and the higher expectation of highway users in terms of comfort, convenience, safety, 

and security, the Federal Highway Administration (FHWA) has to provide a tremendous amount 

of money to maintain and expand the national transportation system.  From 1992 to 1997, $155 

billion was authorized by the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) 

and invested in the national surface transportation systems to have a "transportation system that 

is economically efficient and environmentally sound.”(ISTEA, 1991)  Following the ISTEA, 

another $218 billion was funded by the Transportation Equity Action of 2000 for the 21st 

Century (TEA-21) from 1998 to 2003 (FHWA, 2002).   

Although tremendous amounts of money have been spent on the highway system, 

highway agencies are still constrained by the availability of funds as well as the demand for 

funds spent on highway projects (FHWA, 1998).  To maximize the benefits and minimize the 

overall costs of maintaining or preserving the highway transportation system, pavement 

management systems (PMSs) have been proposed and implemented to help highway agencies 

cost-effectively manage their pavements from planning, design, construction, and in-service 

evaluation, to maintenance and rehabilitation (M&R).  At the network level, PMSs are used for 

identifying the optimum strategies of M&R planning or project prioritization based on the 

aggregate data, while corrective actions for individual pavement sections are recommended 

based on the detailed individual section data at the project level.  The benefit of implementing 

PMSs has been proved by many state Departments of Transportation (DOTs).  For example, by 

implementing its pavement management system, the Arizona Department of Transportation 
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saved $14 million in its first year of implementation (fiscal year 1980-1981) and $100 million in 

the first four fiscal years (Golabi et al., 1982; Kulkarni, 1984). 

The effectiveness of M&R planning or project prioritization in the PMSs depends on the 

accuracy of the predicted future performance and observed current condition of a pavement.  If 

the deterioration models used by the highway agencies in determining the M&R policies cannot 

sufficiently represent the actual deterioration process, the planned M&R strategies might be far 

from optimal (Durango and Madanat, 2002).  Therefore, performance measurement and 

deterioration models are essential components of the PMSs.   

1.1 Background in Modeling Pavement Performance  

In order to measure and model pavement performance, it is necessary to clearly define 

pavement performance.  According to the American Association of State Highway Officials 

(AASHO), pavement performance is defined as the serviceability trend of the pavement over a 

design period of time, where serviceability indicates the ability of the pavement to serve the 

demand of the traffic in the existing condition (AASHO, 1962).  In other words, pavement 

performance can be obtained by observing or predicting the serviceability of a pavement from its 

initial service time to the desired evaluation time.  Usually, pavement condition can be evaluated 

according to four aspects or evaluation measurements: roughness, surface distress, structural 

capacity, and skid resistance.  Various indices have been developed to measure pavement 

performance in terms of either these individual aspects or a combination of them (Zhang et al., 

1993).  For example, the functional performance index, such as the Present Serviceability Index 

(PSI) and the International Roughness Index (IRI), is normally used to characterize the ride 

quality of a pavement, whereas the structural performance index, such as the structural number 

(SN), is employed to quantify the structural capacity.  In this project report, the discussions are 

focused on using the PSI as the performance measurement of pavement sections.   

Theoretically, the deterioration process of a pavement is the result of various factors 

affecting the mechanistic characteristics of pavements, such as traffic, environment, material 

properties, and the degree of maintenance.  At the same time, pavement performance is also 

impacted by other latent factors which are difficult to observe (Madanat et al., 1995).  Therefore, 
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the uncertain characteristics or randomness in pavement deterioration processes are often 

observed.  Furthermore, uncertainty can also arise from the inspection errors and inability to 

model the true deterioration process (Madanat, 1993).  In other words, pavement deterioration is 

a complicated stochastic process.  In addition, the deterioration rate of pavement sections is not 

constant but varying with time, indicating it is a dynamic process.   

In the past decades, researchers have developed various infrastructure deterioration 

models varying from simple linear regression models to complicated Markov Chain models by 

using empirical, mechanistic, or mechanistic-empirical approaches.  However, these models are 

limited in two aspects.  First, the traditional deterministic models are inadequate to model the 

uncertainties associated with pavement deterioration processes.  Although various stochastic 

models, such as Markov Chain models, have been developed to capture the stochastic 

characteristics, these stochastic models suffer from such limitations as the assumption that 

pavement deterioration is a stationary process.  Second, most of the traditional performance 

models do not consider pavement deterioration as a dynamic process.  In other words, most of 

the previous performance models are static in nature.  Moreover, these models focus on 

developing deterioration models based on historical data, where updating the developed models 

with new inspection data is generally neglected.   

In order to address these two issues discussed in the previous section, further research 

should be conducted to develop a probabilistic and adaptive approach to characterizing the 

stochastic and dynamic nature associated with pavement deterioration processes.   

1.2 Research Goal and Objectives 

The goal of this research is to develop a probabilistic and adaptive framework for 

modeling the deterioration process of pavements.  The proposed framework should be able to 

capture the stochastic and dynamic nature of pavement deterioration processes by relating 

pavement performance to its causal variables in a probabilistic manner, taking advantage of new 

inspection data to further improve the prediction accuracy.   

To achieve this goal, the following objectives are expected to be accomplished under this 

research: 
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1) The first objective is to develop probabilistic performance models for predicting 

the performance of flexible pavements.  The developed models should incorporate 

the impact of relevant factors such as the environment, structural capacity, and 

traffic loading.  These models should be able to capture the stochastic nature of the 

deterioration process of flexible pavements by directly predicting the probability of 

each condition state.  In addition, the proposed models should be validated with a 

data set that is not used for calibrating these models.   

2) The second objective is to take the impact of M&R into consideration using a 

mechanistic-empirical approach.  This mechanistic-empirical approach employs 

primary responses (stress or strain) of pavement sections and connects them with 

pavement performance through the regression analysis.     

3) The third objective is to develop an adaptive method to update the developed 

models with the new inspection data.  The adaptive method should be compatible 

with the proposed performance models in terms of integration.  Several scenarios 

should be tested to evaluate the effectiveness and robustness of the adaptive 

method.   

1.3 Research Contributions 

This research will benefit pavement management agencies through the provision of an 

improved approach to pavement performance predictions.  Contributions of this research include:  

1) The development of a probabilistic and adaptive framework describing the 

stochastic and dynamic characteristics of pavement deterioration processes; the 

framework can be expanded to model the deterioration of other civil infrastructure 

systems;  

2) The development, calibration, and validation of ordered probit models and 

sequential logit models, using the AASHO Road Test data, to predict the 

probabilities with pavement condition states, where the probabilities are related to 

causal variables; 
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3) The development of mechanistic-empirical models to extrapolate the models out of 

the range of the AASHO Road Test by incorporating the primary responses of 

pavement sections into explanatory variables; and 

4) The development of an adaptive method to improve the prediction accuracy of the 

pavement performance by taking new inspection data into consideration, where a 

structural state space model is employed to identify any structural deviations from 

the original trend. 

1.4 Project report Layout 

This chapter briefly introduces the concepts of pavement management and pavement 

performance, as well as the goals and contributions of the project report. 

Chapter 2 focuses on reviewing the literature of modeling the performance of 

transportation infrastructures.  In this chapter, previous works are classified into different 

categories based on the nature of these models.  For each category, the advantages and 

disadvantages are discussed and summarized.   

The nature of the pavement deterioration process is discussed in Chapter 3, where more 

detailed information is provided to demonstrate the reasons underlying the stochastic and 

dynamic nature of pavement deterioration.  This is followed by a description of the proposed 

framework which captures those characteristics and illustrates the whole research procedure. 

Chapter 4 describes the methodologies of the proposed probabilistic performance models.  

First, this chapter discusses discrtization schemes of defining pavement condition states.  Then, 

the theoretical background and the parameter estimation of the ordered probit model are given.  

Next, the sequential logit model is also described as a paralleled approach to the ordered probit 

model for capturing the stochastic nature of pavement deterioration.  The procedure for 

estimating the parameters of the sequential logit model is discussed in this chapter.   

In order to demonstrate the application of the proposed probabilistic models with real 

data, Chapter 5 presents a case study of implementing these probabilistic models with the 

AASHO Road Test data.  The model specifications and validation results are presented first.  
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Then, the mechanistic-empirical approach is taken to incorporate the primary response variables 

of pavements as part of the explanatory variables in order to extend the model specification 

beyond the testing conditions of the AASHO Road Test.   

Chapter 6 compares the developed probabilistic models in Chapter 5 with the Markov 

Chain models and a duration model developed with the same data set.  After presenting the 

theoretical background of developing the transition probability matrixes (TPMs) of Markov 

Chain models and the duration model, the comparison criteria are established.  The comparison 

results show that the proposed probabilistic models are better than the duration model and the 

Markov Chain models in terms of their prediction accuracy and goodness-of-fit.   

The theoretical background of the adaptive model is presented in Chapter 7.  This chapter 

begins with the discussion of representing the pavement structural deviations by a polynomial 

function.  Then, the transition and measurement equations are formulated.  The modeling 

structure and estimation process using the Kalman Filter are also explained in this chapter.   

Chapter 8 presents the application of the adaptive model proposed in Chapter 7 with 

simulated case.  Three scenarios are designed to represent the possible phenomena in pavement 

deterioration processes.  Then, the prediction results are given and discussed.  This chapter 

concludes that the adaptive model is feasible and responsive to significant structural deviations.   

Chapter 9 summarizes the research effort and presents the conclusions.  Future works are 

also recommended in this chapter. 
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CHAPTER 2 LITERATURE REVIEW 

This chapter briefly reviews the background of pavement performance models.  The 

literature related to modeling pavement performance is classified into different categories based 

on their nature.  The main characteristics of these models are also discussed in this chapter. 

2.1 Background 

The FHWA required the DOT of each state to develop their own PMSs to manage their 

transportation network by 1993 (Zhang et al., 1993).  The reason for this requirement arose from 

the increasing deterioration rate of the developed transportation infrastructure network.  

Generally, a newly constructed pavement deteriorates very slowly in its first ten to fifteen years 

of the design life, then deteriorates very fast if timely maintenance is not applied.  The 

accelerated deterioration required a 45 percent funding increase in the 1980s and 1990s 

(Paterson, 1987).  On the other hand, the legislative bodies required highway agencies to be more 

efficient and accountable for spending taxpayers’ money.  As a set of tools and methods for 

effectively managing the transportation infrastructure, a PMS was developed to satisfy the 

requirements of not only the legislative bodies but also public agencies.  In order to illustrate 

different levels of users, a hierarchical structure of the PMSs has been proposed in Figure 2.1 

(Haas et al., 1994).  The hierarchical structure consists of three levels.  The first level is an 

administrative level at which the funds are allocated among different categories of the 

transportation infrastructure.  At the network level, pavement management agencies determine 

the M&R strategies, identify the corresponding locations, and schedule the M&R activities.  

Based on the optimum prioritization results, they assign the funds to their transportation 

networks.  The detailed M&R treatments are dealt with at the project level.   
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Figure 2.1 Hierarchical Structure of PMSs 

Regardless at which level, the goal of a PMS is to help highway agencies provide high-

quality and cost-effective service to highway users.  A PMS includes three components (USDOT 

and FHWA, 1999):  

 Data collection and management 

 Analysis 

 Feedback and update 

Data and information play important roles in the system, because good management systems 

should be reliable built on information.  The collected condition data can be used to evaluate the 

real-life performance of pavements, to predict the deterioration rate of the road network and the 

effectiveness of maintenance actions, and to further prioritize the projects cost-effectively based 

on the current state, projected trends, economic growth, and available resources.  All these 

comprise the analytical core of the PMSs.  After the implementation of M&R actions, monitoring 

the performance of the systems cannot be ignored in order to update the system analysis.  The 

three components can be further extended to a generic pavement management process shown in 

Figure 2.2. 

From Figure 2.2, it can be easily seen that performance modeling as an input to the 

decision-making process plays a vital role in a PMS.  The quality of the performance models 

directly influences whether the optimal M&R strategies can be attained or not.  In the past 

decades, a wide variety of pavement performance models have been developed to serve as the 
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foundation of pavement management.  Major characteristics of these models are discussed in the 

following sections. 
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Performance Modeling 

Monitoring 

Implementation 

Decision-Making 

Development of Alternatives Policies 

Budgets 

Goals 

Fe
ed

ba
ck

 

 

Figure 2.2 Generic Pavement Management Process (CSI, 2002) 

2.2 Modeling Approaches of Pavement Performance Models 

Based on modeling approaches, pavement deterioration models can be classified into 

three groups: mechanistic, empirical, and mechanistic-empirical.  Historically, pavement 

behavior was studied using the mechanistic approach based on the physical principles such as the 

soil mechanistic theory, mechanical property of pavement materials under load, and multilayer 

structural analysis techniques.  Most of these studies were conducted under limited experimental 

conditions.  Therefore, they need to be validated and calibrated to the full range of real situations 

before implementing the developed mechanistic models.  In addition, most of these models are 

still simple and only represent the material or structural responses in limited situations.  Even 

though the mechanistic approach is regarded as the best to characterize the deterioration process, 

the development of reliable and acceptable mechanistic models is still at its early stage and 

requires a significant amount of time and effort for continuous studies. 
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The empirical approach employs statistical techniques to explain pavement deterioration 

with its explanatory variables.  Although this approach has the capability to link the pavement 

performance with their causal variables, the explanatory variables taken are only based on their 

availability and statistic values.  Consequently, this approach suffers from the limitations 

associated with the scope and range of the available data.   

The mechanistic-empirical approach is the combination of the above two approaches.  

The mechanistic approach assists in determining pavement responses, structuring the explanatory 

variables and functional forms of empirical models.  The final relationship between the response 

variables and pavement performance is developed with the statistical techniques adopted in the 

empirical approach.  The coherent combination utilizes the advantages of both approaches and is 

expected to attain better performance models than the empirical approach only.   

As a matter of fact, there is no absolute line between the mechanistic approach and the 

empirical approach, since all mechanistically based models involve elements of empiricism 

while empirical models also reflect some mechanistic principles.  Consequently, the 

extrapolation capabilities of empirical models should not be underestimated; alternatively, the 

ability of the mechanistic models to extrapolate should not be overestimated (Nestorov et al., 

1999).  In practice, both empirical and mechanic models have been used in various developments 

and implementations of modeling pavement performance, although empirical and mechanistic-

empirical approaches have been commonly used. 

In most of the earlier studies, pavement performance models were developed with the 

empirical approach despite its limitations, including the pavement design method proposed by 

the American Association of State Highway and Transportation Officials (AASHTO) in 1993 

(AASHTO, 1993).  Currently, there is an increasing trend to develop mechanistic-empirical 

models such as the Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement 

Structures by the AASHTO Joint Task Force on Pavements and National Cooperative Highway 

Research Program (NCHRP) (TRB, 2005).  In order to better summarize the previous work, a 

further classification of the literature is discussed as follows. 
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2.3 Deterministic Models vs. Probabilistic Models 

Based on the prediction results of performance models, they can be classified as either 

deterministic or probabilistic.  For the deterministic models, the future condition of a pavement 

section is predicted as the exact serviceability value or pavement condition index with the past 

information of the pavement.  On the other hand, the probabilistic models predict the 

performance of a pavement by giving the probability with which the pavement would fall into a 

particular condition state, describing the possible pavement conditions of the random process 

(Durango, 2002). 

Most of the pavement performance models developed in the early stages of pavement 

research are deterministic (Haas and Hudson, 1982).  Currently, deterministic pavement 

performance models, such as the AASHTO regression performance model and various S-shaped 

curves, are still widely used.  Based on the AASHO Road Test data, the initial pavement 

performance equation was developed to predict the loss of the serviceability by capturing the 

comprehensive effects of applied traffic loadings, material characteristics, and environmental 

conditions (AASHO, 1962).  In order to accommodate the impact of the routine maintenance 

actions, the S-shaped curve which provides more accurate long-term prediction was proposed to 

reduce the deterioration rates at the end of pavement design period (Garcia-Aiaz and Riggians, 

1984).  However, such models are unable to effectively accommodate measurement errors and 

unobserved factors.  As a consequence, the prediction error could go as high as 1 unit of the PSI 

value by using the AASHTO performance equation (Prozzi, 2001).   

As part of the effort to improve such models, other regression models (Paterson, 1987; 

Prozzi, 2001) were proposed to consider more explanatory variables, such as pavement strength 

over different subgrades, environmental conditions, and maintenance actions, and different 

model structures based on the filed data.  Paterson (Paterson, 1987) developed a number of 

incremental empirical model specifications at different levels of complexity to explain the real 

physical phenomena of pavement deterioration.  The concepts of the incremental models are 

illustrated in Figure 2.3.  At time 1t , pavement condition is 1C  and the interest of engineers is to 

know the pavement condition 2C  at time 2t .  The changes in pavement condition can be easily 

expressed in terms of a small period of time tΔ , since they are normally used in managing and 
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planning pavements.  The time t  can also be represented by the accumulated traffic.  The reason 

for selecting the incremental or derivative type models is that these models do not require the 

original information of pavement condition and are developed based on the physical process of 

deterioration.   

 

Figure 2.3 Illustration of Incremental Deterioration Models  

Prozzi (Prozzi, 2001) has recently developed a mechanistic-empirical pavement 

performance model by using a two-step approach.  An initial incremental nonlinear pavement 

performance model was developed based on the AASHO Road Test data by using the random-

effects estimation methods.  Then, with the integration of the joint estimation method, the bias of 

the parameter estimation in the prediction model was corrected by incorporating the in-service 

pavement data sets.   

Although these models can provide good prediction results by considering the effects of 

the heterogeneity in the data sets or the maintenance activities, their deterministic prediction 

results are still used and hence they are not used to capture the inherent uncertainty in the process 

of pavement deterioration.  In other words, despite the various efforts in improving the accuracy 

of deterministic models, these models are still constrained by the fact that they cannot effectively 

take the stochastic nature associated with pavement performance into consideration. 
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In the meanwhile, many probabilistic or stochastic models have been developed in order 

to characterize the uncertain characteristics of pavement deterioration processes.  These 

previously developed probabilistic models can be summarized into three categories: econometric 

models, Markov Chain models, and reliability analysis.  Each category covers a range of more 

specific applications.  For example, Markov Chain models include homogeneous and non-

homogeneous Markov Chain models.  The details of the classification are illustrated in Figure 

2.4.  

In the last decade, econometric models were widely used to correlate the pavement 

distresses with their explanatory variables.  Madanat et al. proposed a joint discrete-continuous 

model in 1995 to characterize the appearance of cracking and the propagation process of those 

cracks, where the binary logit model was used to determine whether the cracking appeared, and 

then a continuous model was developed to model the propagation process.  The explanatory 

variables in the model include the structural number (SN) of the pavements, the thickness of the 

surface layer, and the number of wheel passes per unit strength of pavement (Madanat et al., 

1995).  Other econometric models were proposed to develop the Markov Chain models.   

Another popular category of performance models is the Markov Chain.  Golabi et al. 

proved the effectiveness of using the Markov Chain method in the 1980s by developing Markov 

Chain performance models in the state of Arizona (Golabi et al., 1982).  In those Markov Chain 

models, the discretization of the continuous variable was undertaken based on different schemes 

because not much detailed information is needed at the network level of management (Madanat 

et al., 1995).  Two types of Markov processes have been proposed according to different 

assumptions.  The first is homogeneous Markov Chain process which assumes that the present 

condition state is only related to the previous state or the impact variables are constant during the 

analysis period (Golabi et al., 1983).  In other words, the Markov Chain model has no memory of 

the entire past.  On the other hand, the non-homogeneous Markov Chain models characterize the 

changes of the pavement deterioration rates over time.  The Markov Chain models can be 

developed using the state-based or time-based models.  The state-based models quantify the 

transition probabilities from one condition state to another in a predefined period of time, while 

the time-based models estimate the probability distributions of time it takes to change from one 

condition state to another (Mishalani et al., 2002).   
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Figure 2.4 Classifications of Probabilistic Models 

14

 



   
 

15 

The state-based models are widely developed in practice, because they require less 

frequency of data collection.  The core of the state-based Markov Chain models is the 

development of TPMs.  Research methods, varying from the simplest proportion method (Wang 

et al., 1994) and the expected-value method (Jiang et al., 1987; Butt et al., 1987) to the 

complicated econometric techniques (Madanat, 1995), were used to develop the TPMs.  The 

simplest approach used for developing a homogeneous Markov Chain model is a proportion 

method used by Wang et al. in 1994, which directly calculated the transition probabilities from 

one condition state to another (Wang et al., 1994).  However, the prediction results of the 

homogeneous Markov Chain process are questionable, since the deterioration rate is not constant 

in the whole deterioration process (Butt et al., 1987).  Therefore, non-homogeneous Markov 

Chain model is more proper to model this deterioration process.   

The widely used non-homogeneous Markov Chain models were developed using the 

expected-value method in the 1980s.  The expected-value method segments the pavements into 

different groups and then minimizes the differences between the expected values calculated 

using the TPMs and those obtained from the regression model with time as its explanatory 

variable (Jiang et al., 1987; Butt et al., 1987).   

Another way of developing the state-based non-homogeneous Markov Chain model is the 

simulation approach which assumes design variables to follow different statistical distributions.  

The Monte Carlo simulation technique was used to produce the probability vectors representing 

the transition from one condition state to another, consisting of the TPMs.  The calculated TPMs 

of pavement deterioration process determine the time-related non-homogeneous Markov Chain 

processes (Li et al., 1996).  This simulation method can save a significant amount of money and 

effort compared with the previously discussed proportion and expected-value methods, because 

the collection of multi-year performance data is not required.   

However, the above discussed methods cannot directly consider the impact of pavement 

types, environmental factors, traffic loading, and other relevant factors.  The improved 

econometric methods such as ordered probit model, Poisson model, and random-effects probit 

models are proposed to connect the relevant explanatory variables to the transition probabilities 

(Madanat et al., 1995; Carnahan et al., 1987; Jiang et al., 1989; and Madanat et al., 1997).  These 
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models employed the statistical techniques to develop the relationship between the explanatory 

variables and dependent variables, providing more accurate prediction results than the previously 

discussed methods (Madanat et al., 1995).  However, variables such as traffic and facility age 

could cause the TPMs to vary with time, resulting in the non-homogeneous facility deterioration 

process.  Therefore, it is difficult to use these TPMs as the input to a stochastic Markov decision-

making process, since most of the decision-making models are developed with the assumption 

that the deterioration process is stationary (Durango and Madanat, 2002).   

The time-based models are considered as alternatives to develop the Markov Chain 

models.  The time-based models focus on estimating the probability distributions of the time 

taken to transit from one condition state to another using the duration models (DeStefano and 

Grivas, 1998; Mauch and Madanat, 2001; and Mishalani and Madanat, 2002).  Therefore, they 

also belong to the category of reliability models.  These duration models can account for the 

censoring problems associated with data collection in the parameter estimation process.  The 

hazard rate defined as a transition rate out of a certain state can be assumed to be a function of 

explanatory variables.  Based on the assumption of the hazard rates, the duration models are 

further classified as: parametric duration models, semi-parametric duration models (Cox 

proportional hazard models), or nonparametric duration models.  Most of parametric models 

assume that the hazard rates follow the Weibull distribution (Prozzi and Madanat, 2000; Vandem 

et al., 1997).  They can characterize the nonlinear accumulated hazard rates.  The estimated 

parameters of the Weibull distribution can be used to test whether the homogeneous Markov 

assumption is valid or not.  But the Weilbull distribution assumption for the hazard rates in these 

parametric duration models is questionable because of the lack of explanations of the underlying 

assumption.  Both Cox proportional hazard models and nonparametric models were proposed to 

theoretically solve the problems stemming from the predefined distributions for the baseline 

hazard (Mauch and Madanat, 2001; DeStefano and Grivas, 1998).  Although the Cox proportion 

hazard model relaxes the parametric assumption of hazard specification and also considers the 

impact of the covariates, the baseline hazard cannot be estimated using a partial likelihood 

estimator (Cox, 1972).  The nonparametric duration model is attractive because of its simplicity 

and accuracy in estimating hazard rates, but it cannot relate the dependent variable to the relevant 

explanatory variables.  For the efficiency of the models, Meyer reported that the nonparametric 

estimation does not suffer from substantial loss of efficiency even for situations where 



   
 

17 

parametric models are appropriate (Meyer, 1987).  Therefore, it is recommended that the test of 

the nonparametric hazard baseline be performed before conducting any parametric analysis with 

duration data. 

The time-based and state-based modeling methods are complementary in the sense that 

the state-duration probability density function used to calculate the transition probabilities can be 

estimated using a time-based model.  The selection of the modeling approach primarily depends 

on the nature of the available data.  The time-based model requires accurate observations of 

performance data spanning the whole deterioration period.  If the measurements are not made 

frequently in short time windows, the measurement errors would result in the inaccurate time-

based models (Mauch and Madanat, 2001).  In reality, the data set satisfying these strict 

requirements is not easy to obtain.  Therefore, these time-based models are not commonly used 

in practice.  

To overcome the limitations associated with the previous models, one possible solution is 

to directly predict the pavement condition states by using a probabilistic approach.  This 

approach can accommodate the stochastic characteristics of pavement performance and can also 

link the causal variables to pavement performance regardless whether the deterioration process is 

homogenous or not.   

The third way of developing pavement performance model is based on reliability 

concepts.  This method was widely used in the relative early time to determine the designed layer 

thickness of flexible pavements.  Bourdeau considered the uncertainties and random factors in 

the pavement deterioration process by adopting the Shook and Finn design equation which is a 

function of two random variables (the expected traffic loads and the California Bearing Ratio 

(CBR)) (Bourdeau, 1990).  A second-order, second moment function of the Shook and Finn 

design equation was developed based on the Taylor expansion for analyzing the reliability of the 

design equation.  Another way of controlling the reliability is the simulation method which 

attracted the interest of many researchers.  Easa et al. employed a Monte Carlo simulation 

method to calculate the joint probabilities of the low-temperature and thermal-fatigue cracking 

(Easa et al., 1996).  Moavebzadeh controlled the designed thickness of pavements using primary 

responses which are influenced by variables with predefined statistical distributions.  For 
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example, the traffic load is assumed to follow the Poisson distribution (Moavenzadeh, 1976).  

George and Husain also proposed a simulation method to address the reliability of pavement 

thickness design (George and Husain, 1986).  Although these simulation methods can achieve 

the goal of analyzing pavement design, they are time-consuming and cannot explain the 

pavement deterioration process explicitly.  Other technologies such as the method of moments 

were implemented recently to analyze the reliability as an alternative approach to the Monte 

Carlo simulation method (Damnjanovic and Zhang, 2005). 

2.4 Static Models vs. Dynamic Models 

Performance models can also be summarized into static models and dynamic models.  

Typical examples of static models are regression models, in which the parameters of these 

regression models are estimated based on point estimations.  In these regression models, 

measurement errors and unobserved factors are represented with an error term.  The dependent 

variable of regression models relies only on explanatory variables.  In this case, the research 

emphasis on regression modeling has traditionally been on the development of relationships 

between the explanatory variables and independent variable based on historical data.  As a result, 

the changes in estimated values of the model parameters over time might be neglected, making 

the estimated regression model less reliable, especially when the deterioration process is 

dynamic.   

Furthermore, updating developed regression models with new inspection data is 

frequently neglected.  Although some researchers have used newly collected data to refine the 

estimation of their model parameters (Cheetham, 1998; Gharaibeh and Darter, 2002), these 

approaches taken have been generally to re-estimate the regression models by including the 

newly collected data in the original data set using the same point estimation procedure.  The 

nature of parameter estimation prevents such adaptive methods from being effectively used for 

modeling a deterioration process with dynamic characteristics, since the present pavement 

condition is very important in the prediction process.  To be more specific, the prior knowledge 

of pavement deterioration history may only contribute little to the prediction if the deterioration 

process is random.  In addition, decision-makers in the highway agencies also pay more attention 

to the current pavement condition rather than the historical information (Carnahan, 1988).   
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Another approach for updating model parameters is Bayesian statistics which adjust 

beliefs based on the changing evidence in terms of uncertainty (Bernardo and Smith, 1994).  The 

advantage of Bayesian statistics is that it does not require a significant amount of prior 

knowledge of the deterioration process.  In addition, Bayesian statistics represent the certainty 

associated with the process with probabilities (West and Harrison, 1997).  Given the advantages 

of the Bayesian statistics, researchers have applied Bayesian method to refine the parameters of 

infrastructure deterioration models in the last decade (Lu and Madanat, 1994; Hajek and 

Bradbury, 1996).  Lu and Madanat refined the parameters of a bridge logistic model using the 

Bayesian approach, helping reduce the inherent uncertainty in the prediction (Lu and Madanat, 

1994).  Hajek and Bradbury incorporated the experts’ opinion as the prior belief into the 

modeling process, and updated the prior model using the Bayesian statistical approach to 

improve the conventional performance models (Hajek and Bradbury, 1996).  Durango and 

Madanat updated the weights for infrastructure deterioration rates by using Bayes’ law to 

improve the representation of facility deterioration (Durango-Cohen and Madanat, 2002).  

Although earlier research studies have successfully addressed the issue in updating the 

parameters of the performance models, they are limited by the inadequate consideration of the 

dynamic and stochastic nature of the transportation deterioration process, especially when the 

inspection is conducted with short-time intervals or on a real-time basis with sensing 

technologies.   

In contrast to the static models discussed above, a dynamic model is aimed at modeling a 

process which changes with the passage of time.  Since knowledge of the infrastructure 

deterioration mechanism is incomplete, the process of infrastructure deterioration may not be 

predicted in an exact manner.  These facts explained the difficulty of developing pure 

mechanistic models for the infrastructure deterioration process.  As a matter of fact, even if the 

mechanistic approach can explain the physical laws of pavement infrastructure deterioration, 

inherent uncertainties within the deterioration process cannot be completely determined.  The 

reason for this is that such uncertainties stem from uncontrollable and unpredictable disturbances 

(Maybeck and Peter, 1979).  The development of dynamic models can help improve our 

understanding of the infrastructure deterioration process and further help management personnel 

in making better decisions (West and Harrison, 1997).   
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As a typical dynamic model, the Box and Jenkins time series model is widely used to 

characterize a dynamic process.  Such time series models have been used to predict pavement 

cracking, roughness, and traffic properties (Lu, et al., 1992; Okutani and Stephanedes, 1984; 

Ashok and Ben-Akiva, 2000).  Generally, one of the popularly used Box and Jenkins time series 

models is the autoregressive (AR) model.  AR models are appropriate for predicting stationary 

processes with constant means and variances.  However, AR models fail when the dynamic 

process experiences significant changes at critical time points, as these changes indicate that the 

process has deviated from its previous trend, fundamentally violating the stationary assumption 

of AR models.  In order to improve traditional AR models, Lu et al. developed an adaptive 

algorithm with the ability to adjust its structure for capturing these deviations (Lu, et al., 1992).  

Although the developed algorithm can characterize the nonstationary property of the pavement 

deterioration process, the proposed algorithm is restricted by the requirement to determine the 

order of the adaptive processor and the parameters related to the length of the adjustment step.  

An inappropriate determination of these parameters would make the algorithm unstable or 

difficult to converge.  Ashok and Ben-Akiva calibrated a 4th-order AR model to predict the real-

time origin and destination demand by using the Kalman Filter (Ashok and Ben-Akiva, 2000).  

Since the developed 4th-order AR model was based only on the historical data of the dependent 

variable, the historic peculiarities might suggest totally inappropriate models.  That is to say, 

mathematical expressions of these time series models are formulated without substantial 

foundation regarding the physics of the system except for observed data (West and Harrison, 

1997).  Thus, the reliability of such models is questionable to some degree.  Even if these models 

include the explanatory variables, there is no guarantee of their accuracy.  Furthermore, these 

time series models employed a transfer function to absorb trends and seasonal components as 

well as the noise component by appropriately differencing the data.  To be more specific, 

differencing converts each element of a time series into its difference by subtracting from its k th 

previous or after element (Box and Jenkins, 1976).  This differencing results in highlighting the 

noise and perplexing a meaningful explanation for the time series models.  Moreover, the 

differencing may not successfully remove the abrupt changes in a nonstationary process.   

Pavement deterioration is a dynamic process where infrastructure performance is affected 

by the structural characteristics, environmental conditions, and traffic loadings.  Therefore, a 

dynamic model is more appropriate than existing static regression models for predicting the 
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conditions of transportation infrastructure.  However, a pure time series model is essentially 

unreliable in that it statistically describes situations without explaining the physical principles of 

the process by linking independent variables to explanatory variables.  On the other hand, 

regression models do not provide adequate consideration of measurement errors.   

2.5 Summary 

The literature review reveals that although numerous performance models are available 

for describing the pavement deterioration process, they suffer from the limitations of 

inadequately capturing the stochastic and dynamic nature of pavement deterioration process.  In 

order to overcome the shortcomings of these models, a comprehensive and adaptive framework 

should be developed to characterize the stochastic and dynamic nature of pavement deterioration 

process.   
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CHAPTER 3 METHODOLOGICAL FRAMEWORK 

The background of pavement performance models has been reviewed in Chapter 2.  This 

chapter is devoted to identify and analyze the reasons causing the stochastic and dynamic nature 

of pavement deterioration.  Furthermore, a methodological framework is proposed to capture 

such deterioration characteristics in order to overcome the shortcomings associated with previous 

models in this chapter. 

3.1 Background 

The performance of pavements can be evaluated from four aspects: skid resistance, 

surface distress, structural capacity, and roughness (Zhang et al., 1993).  The skid resistance is 

defined as the developed force when a tire slides along the pavement surface to evaluate the 

safety which the pavement provides to users (Highway Research Board, 1972).  If the skid 

resistance is inadequate, the accident rate attributed to the skid resistance increases.  Surface 

distress includes “any indications of poor or unfavorable pavement performance or signs of 

impending failure; any unsatisfactory performance of a pavement short of failure” (HRB, 1970).  

Different types of surface distress of flexible pavements can be grouped into three categories: 

fracture, distortion, and disintegration.  Surface distress is related to both roughness and 

structural integrity.  Structural capacity is defined as the ability of a pavement to carry traffic 

loadings.  The structural capacity of flexible pavements can be represented by the structural 

number of a pavement section.  Roughness represents irregularities or unevenness of the 

pavement surface.  The concept of roughness is often considered to be inversely proportional to 

the ride quality, indicating the level of comfort for road users and the smoothness of pavement 

surface.  As an important evaluation aspect, roughness affects not only the ride quality but also 

vehicle operating costs, fuel consumption, and maintenance costs (UMTRI, 1998). 

The pavement performance concept was initially developed during the AASHO Road 

Test (Carey and Irick, 1960).  Since pavement performance is defined as the serviceability trend 

of a pavement over the designed period of time, the serviceability for each time point needs to be 
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measured in order to achieve the trend.  As a result, the present serviceability was proposed to 

represent the ability of a pavement to serve high-speed, high-volume, mixed traffic in its existing 

condition.  To attain the present serviceability, the individual present serviceability, ranging from 

0 representing the very poor condition to 5 representing the very good condition, was proposed 

to represent the individual rating of present serviceability of a pavement section.  Individuals 

with different views and attitudes were chosen to form a panel representing road users.  After the 

panel members were taught these serviceability concepts and basic rules, they were taken to the 

filed to make their own ratings about the ride quality of pavement sections.  Figure 3.1 shows the 

form they used for evaluation.  These individual present serviceability ratings were averaged to 

obtain the Present Serviceability Rating (PSR).  In order to avoid the subjective nature of the 

PSR, the correlation between the PSR and the objective measurements of cracking, slop 

variances, rut depths, and patching were established to attain the PSI so that the subjective PSR 

could be predicted with the objective measurement of distress and roughness.  Although the rut 

depth, cracking, and patching were included as some of physical measurements, the roughness 

was the most significant factor of the PSI prediction (AASHO, 1962). 

 

Figure 3.1 Individual Present Serviceability Rating Form (AASHO, 1962) 

It should be pointed out that even though the performance-serviceability concept was 

developed during the AASHO Road Test, it still serves as the basic concept in the AASHTO 

pavement design method that is currently used by most of the state DOTs. 
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3.2 Probabilistic Concepts 

In general, the deterioration process of pavements is a result of various factors affecting 

the mechanistic characteristics of the pavement, such as traffic, environment, construction, age, 

and the degree of maintenance.  Indeed, these factors result in cracking, excessive deformation of 

pavements, and disintegration of pavement material.  For example, the cracking of pavement is 

the result of excessive loading, fatigue, thermal changes, moisture damage, slippage, or 

contraction of materials.  Because of its complexity, the deterioration process is associated with 

uncertainty and variability.  How to capture the uncertainty and variability characteristics of 

pavement deterioration becomes a critical issue. 

In order to model the uncertainty and variability, the underlying reason of the uncertainty 

and variability must be clearly understood.  The variability refers to variations of pavement 

performance at different locations.  The variation is related to the different materials, structural 

properties, traffic loadings, and climate (Sun, 2001).  These variations can be analyzed using the 

statistical techniques.  The uncertainties of pavement performance come from three aspects.  The 

first aspect is the measurement errors which can cause a high degree of prediction uncertainty.  

These measurement errors are caused by technological limitations, data processing errors, 

environmental impacts, data interpretation errors, and other errors related to the nature of 

measurement.  These errors interact with each other leading to the measurement bias and random 

errors.  Even though some measurement biases can be removed by calibrating measuring 

equipment, analyzing correlation, or analyzing variance or covariance, the random errors cannot 

be corrected but characterized using the statistical techniques (Humplick, 1992).  The second 

aspect of the uncertainty is the inherent randomness of pavement deterioration processes.  The 

inherent randomness has been observed in the AASHO Road Test by measuring the performance 

of two identical pavement sections after applying the same traffic loading.  The experimental 

results indicate that even two identical pavement sections had different performance trends, 

given the identical traffic loadings and environmental conditions.  The third aspect is the 

inability to model the true deterioration process, because pavement performance is also impacted 

by other latent factors which are difficult to observe.  Such uncertainty can be quantified by 

using the standard errors of predictions calculated by the performance models (Madanat, 1993). 



   
 

26 

In order to capture the uncertainty and variability associated with pavement deterioration, 

abundant research has been conducted.  As discussed in Chapter 2, the performance models can 

be classified into deterministic models and probabilistic models.  For the deterministic models, 

the prediction results are single numbers of pavement performance.  Most regression models are 

considered as deterministic, although the regression models are comprised of a deterministic 

relationship and a disturbance term.  The reason is that the disturbance term in the regression 

models are not used in practice.   

Figure 3.2 illustrates the conceptual prediction results from the deterministic models and 

probabilistic models.  The solid line indicates the deterministic prediction results calculated only 

using the deterministic relationship which explains the observed phenomena.  However, 

pavement deterioration is not a deterministic process.  The deterministic prediction cannot avoid 

causing the prediction errors because the deterministic relationship cannot fully explain the 

influence of every factor on pavement performance.  If the disturbance term of the regression 

models is used in the prediction process, the predicted results are associated with certain 

confidence intervals.  Since the disturbances are normally assumed to follow a normal 

distribution with zero mean and constant variances, the prediction results of the regression 

models also follow certain distributions.  Therefore, the solid line in Figure 3.2 illustrates the 

expected prediction results of the regression models.  If the actual pavement conditions are also 

distributed normally, they are distributed symmetrically about the expected prediction results 

shown as a bell curve in Figure 3.2.  In this sense, the probability of pavement conditions falling 

into a certain confidence interval can be easily calculated.  As a popular probabilistic method of 

modeling performance, Markov Chain methods discretize the pavement condition index into 

different states and then calculate the probability of falling into each condition state.  In Figure 

3.2, the five dashed lines represent the boundaries of the five condition states.  Developing 

accurate TPMs is a difficult task that requires a significant amount of data, time, and effort.  

Furthermore, the developed Markov Chain models based on the non-homogeneous assumptions 

may complicate the Markov decision-making process and even make it difficult to solve.   
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Figure 3.2 Illustrations of Deterministic Models and Probabilistic Models 

To overcome the limitations associated with these previous models, a possible solution is 

to directly predict the pavement condition states using a probabilistic approach.  The modeling 

process can be illustrated in Figure 3.3.  This approach can accommodate the stochastic 

characteristics of pavement performance and can also link the causal variables to pavement 

performance.   

 Current 
State TPM 

Future  
State 

Probabilistic  
Model 

 

Figure 3.3 Illustration of the Proposed Probabilistic Model 



   
 

28 

3.3 Dynamic Concepts 

Pavement conditions change over time as the result of observed relevant factors and 

unobserved disturbances.  Therefore, the pavement deterioration process is a dynamic process.  

In previous studies, the static performance models are developed based on the available data.  

For example, a prediction conducted using the regression is illustrated in Figure 3.4.  The dashed 

line labeled A represents the expected pavement conditions over time.  The vertical lines with 

upper and lower bars represent the confidence intervals of prediction which increases with the 

time.  The actual deterioration process is represented with a solid line labeled B.  It appears that 

the pavement performance model overestimates the pavement performance.  The overestimation 

would lead to insufficient M&R actions, since the prediction results of performance models are 

the input to decision-making of M&R treatments (Durango, 2002).   

 

A 
B 

 

Figure 3.4 Predicted and Actual Deterioration Process 

This overestimation is related to three issues.  First, since the knowledge of the 

mechanism of pavement deterioration is incomplete, the properties exhibited by the process may 

change in an unpredicted manner.  Although engineers have developed various mathematical 
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models to represent this deterioration process, no mathematical models can be considered perfect 

since such models can only explain some aspects of the deterioration process interested by 

engineers.  Second, even if mathematical models can provide the physical structure of the 

pavement deterioration process, parameters of the mathematical models cannot be determined 

absolutely because of uncertain and time-varying properties associated with the process.  This 

time-varying characteristic stems from the varying relevant factors such as traffic and 

environment, whose values change over time and are impacted by unknown disturbances (Ljung 

and Soderstrom, 1983).  Third, obtaining information which includes all possible relevant 

variables impacting the deterioration process is difficult, because of the limitations in 

measurement technologies and the lack of knowledge, causing most of the available data 

incomplete or noise-corrupted.  As a result, the quality of pavement performance models cannot 

be controlled without properly dealing with the noise and incompleteness of the available data 

(Maybeck and Peter, 1979).  In order to deal with the time-varying parameters of the 

mathematical models and incompleteness of the available data, a dynamic modeling approach 

should be used to express and model the behavior of the pavement section over time.   

The most important aspect of the dynamic models to be dealt with is time-varying 

parameters.  In some cases, the model parameters or even model structures change with time, 

which makes the defined model structures or parameters appropriate only locally or in a certain 

period of time.  Therefore, it is necessary to update the corresponding parameters over time when 

new observed data are available (West and Harrison, 1997).  The updating of the model 

parameters is critical, since most of PMSs determine their M&R actions mostly based on the 

most currently observed and predicted pavement conditions (Carnahan, 1988).  Figure 3.5 

illustrates the difference between the static and dynamic models.  The solid line indicates an 

original performance model which is obtained from some historical data or experts’ opinions.  

When the new data are available up to time 1t , it is easy to notice that the real trend of pavement 

deterioration indicates better performance than the predicted.  In order to correct the 

underestimation of pavement performance, the model parameters need to be updated to minimize 

the prediction errors.  Similarly, when the observed data from time 1t  to time 2t  are available, the 

updated trend signified by the dotted line cannot effectively represent the pavement deterioration 

trend.  Therefore, the dotted trend needs to be adjusted to achieve better prediction results.   
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Figure 3.5 Illustrations of Static Models and Dynamic Models 

Bayesian statistics and time series models have been used to model the dynamic 

deterioration process.  The core of these approaches is a batch or recursive parameter estimation 

process designed to minimize prediction errors using algorithms by searching for optimal 

estimates of past, present, and even future states.  The batch parameter estimation process, also 

called offline estimation, separates the data collection and parameter estimation, while the 

recursive process as the online estimation infers the parameter estimation at the same time as the 

data collection (Ljung and Soderstrom, 1983).  These recursive parameter updating methods 

require less data storage space than the classical batch estimation methods; and the performance 

of dynamic models is improved through this recursive updating process.    

Since the regression models are estimated based on the point estimation, no dynamic 

characteristics are reflected.  The time series models generally describe situations statistically, 

without relating them to explanatory variables.  Historic peculiarities are likely to suggest totally 

inappropriate models (West and Harrison, 1997).  In addition, previous researchers did not 
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conduct adequate studies on incorporating new inspected data into the modeling process to 

improve the performance models.  Therefore, a comprehensive and adaptive methodology is 

proposed to characterize the dynamic nature of the pavement deterioration process.  The 

proposed methodology is responsive to dynamic changes and can be easily integrated with the 

previously developed performance models.  

3.4 Development of a Research Framework 

In order to capture the stochastic and dynamic characteristics of pavement deterioration, 

probabilistic models and structural state space models are proposed.  The overall framework of 

this research is presented in Figure 3.6.  First, the AASHO Road Test data set to be used for the 

research is identified.  Second, observations of flexible pavements are extracted from the 

AASHO Road Test data set; the variables which affect the flexible pavement performance are 

recognized and defined.  Third, the ordered probit model is proposed in order to capture the 

stochastic nature of pavement deterioration.  The model specifications are estimated through the 

maximum likelihood estimation method based on 80 percent of the data set used for modeling, 

while validation of the estimated model specifications is conducted using the remaining 20 

percent of the data.  Fourth, the sequential logit model is formulated, estimated and validated 

using the same data sets.  Fifth, an adaptive structural state space model approach is proposed to 

include the regular condition curve calculated from the ordered probit model, the structural 

deviations from the regular condition curve, and random fluctuation.  Sixth, the polynomial trend 

model as the core of the adaptive model is developed to model the structural deviations.  

Seventh, a state space model is formulated based on the polynomial trend models.  Eighth, the 

state space model is recursively estimated by the Kalman Filter algorithm with the simulated data 

based on the prior estimated original trend and the adaptive model structure.  The performance of 

pavements can be predicted using the adaptively estimated structural state space model.   
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Figure 3.6 Major Components of the Methodological Framework
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3.5 Summary 

This chapter has presented the reasons causing the probabilistic and dynamic nature of pavement 

deterioration and proposed a comprehensive methodological framework to characterize such 

characteristics.  Under this framework, the key components are the development of the ordered 

probit model, the sequential logit model, and the adaptive algorithm.  The details of these 

components are discussed in the following chapters. 
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CHAPTER 4 METHODOLOGIES OF PROBABILISTIC MODELS  

In order to capture the probabilistic and dynamic nature of pavement deterioration, a 

comprehensive methodological framework has been proposed in Chapter 3, where mathematic 

models are integrated into the framework coherently.  In this chapter, the theoretical background 

for the two models, the ordered probit model and the sequential logit model, are discussed in 

detail.   

4.1 Establishment of Pavement Condition States 

As defined in Chapter 2, probabilistic models are developed to calculate the probabilities 

with which a pavement deteriorates into its condition states.  Therefore, the definition of 

pavement condition states is essential for probabilistic models.  Pavement condition states can be 

defined from either discrete measurements or continuous measurements.  The discrete 

measurements represent the relative ratings of measured pavement conditions using a scale from 

0 to k (Madanat et al., 1995).  In this case, the condition states can be easily established 

corresponding to the scale itself.  For the continuous measurements of pavement conditions, the 

condition states can be established by discretizing continuous condition ratings, such as the 

Pavement Condition Index (PCI) or PSI, based on a selected discretizing scheme.  To be more 

specific, the discretization is to divide the continuous condition ratings into intervals which 

correspond to different condition states.  For example, the PCI ranging from 0 to 100 was evenly 

discretized into 10 condition states illustrated in Table 4.1 (Butt et al., 1987).  The discretization 

of such a continuous pavement condition index is because the discrete condition states of the 

pavements are commonly used for planning M&R activities at the network level (Golabi et al., 

1982).  Through this discretization process, the calculation complexity of planning M&R 

strategies can be reduced. 
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Table 4.1 Pavement Condition State Classification (Butt et al., 1987) 

PCI Range Condition State State Classification 

91-100 10 Excellent 

81-90 9 . 

71-80 8 . 

61-70 7 . 

51-60 6 . 

41-50 5 . 

31-40 4 . 

21-30 3 . 

10-20 2 . 

0-11 1 Failed 

Since both the ordered probit model and the sequential logit model are employed to 

characterize the probabilistic process of pavement deterioration under the developed framework, 

pavement condition states must be established in order for the models to represent pavement 

condition probabilistically.  Based on the discretization strategies discussed in the previous 

paragraph, the pavement condition indicator can be any one the engineers are interested to use.  

Let nC  represent the pavement condition state for pavement section n , where nC  can be any 

condition state from 0 to K .  0 represents the excellent pavement condition state, while K  
represents the failed pavement condition state.  Once the condition states are established, the 

methodologies of the probabilistic models can be described. 

4.2 Methodology Based on the Ordered Probit Model 

The ordered probit model is widely used in the social sciences to model unobserved 

characteristics of each individual.  The ordered probit model is based on the hypothesis that a 

single continuous variable exists and can be used to capture the latent propensity of the 

individual’s choice (Mekelvery and Zavoina, 1975).  Using the same hypothesis, the ordered 

probit model in this project report is employed to construct a discrete pavement performance 

model in which the observed pavement condition state is assumed to be related to the latent 
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pavement performance propensity.  The discrete performance model predicts pavement condition 

states as a function of traffic loading, environmental conditions, and structural factors.   

4.2.1 Description of the Model Structure 

Let nC   as the dependent variable represent the pavement condition state for pavement 

section n  and an underlying response variable nU  be a measure of the latent deterioration 

propensity for pavement section n .  nU  is assumed as a continuous variable varying from ∞−  

to ∞+ .  The observed pavement condition state k  is a reflection of the latent variable.  nU  is 

specified to be a summation of a deterministic function of explanatory variables.  In this case, the 

structure of the ordered-response model can be described as: 
'

n n nU Xβ ε= +    ( 1,2, , )n N= L  (4.1) 

where  nU  is the underlying response variable;  

nX is a set of explanatory variables;  

β  is the estimated parameter; and   

nε is the error term.  

The above equation cannot be directly estimated, since nU  is not observable.  But the 

observable state k  that pavement section n  falls in can be used to estimate the parameters in the 

model.   

As such, nC  is governed by kΨ , the threshold values of the underlying response variable 

nU .  If the latent variable falls between the thresholds kΨ  and 1k −Ψ , then the nC  falls into the 

corresponding state k .  In this regard, the thresholds separate the continuous underlying 

response variable nU  into different states.  That is: 

1,n k n kC k if and only if U−= Ψ < ≤ Ψ    ),,1,0( Kk L=  (4.2) 

If Equation 4.1 is substituted into Equation 4.2, then  
' '

1,n k n kC k if and only if X Xβ ε β−= Ψ − < ≤ Ψ −  (4.3) 
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Since the underlying response variable nU  is estimated, nε  is assumed to follow a 

standard normal distribution with the mean 0 and the standard deviation 1.  Then nkC  is defined 

as: 

kstateinfallsUifC nnk 1= , for ),,2,1( Nn L=  and ),,1,0( Kk L=  (4.4) 

otherwiseCnk 0= , for ),,2,1( Nn L=  and ),,1,0( Kk L=  (4.5) 

The probability for pavement section n  to be in the condition state k  can be obtained by 

calculating the area of the probability density function of the latent variable nU  between kΨ  and 

1+Ψk . 

)()()1( '
1

'
nknknk XXCP ββ −ΨΦ−−ΨΦ== −  (4.6) 

where Φ  is the standard normal cumulative distribution.   

4.2.2 Maximum Likelihood Parameter Estimation of the Model 

Based on the above equations, the maximum likelihood estimation procedure is used to 

estimate the parameter β  and threshold kΨ .  The likelihood function is  

∏∏
= =

− −ΨΦ−−ΨΦ=
N

n

K

k

C
nknk

nkXXL
1 1

'
1

' )]()([ ββ  (4.7) 

In order to facilitate the calculation process, the logarithm is used to transform the 

likelihood function into a linear form.  Thus, the log-likelihood function can be expressed as:  

* ' '
1

1 1
log log[ ( ) ( )]

N K

nk k n k n
n k

L L C X Xβ β−
= =

= = Φ Ψ − − Φ Ψ −∑∑  (4.8) 

The unknown parameters can be estimated by maximizing the log-likelihood function 

subject to the constraint 1 2 10 K −≤ Ψ ≤ Ψ ≤ ≤ ΨL .  To obtain the estimates of the unknown 

parameters, the partial derivatives of Equation 4.8 are taken with respect to the unknown 

parameters.  Then, the partial derivatives of the log-likelihood function are set to zero and solved 

for the unknown parameters.  Once the parameter β  and the threshold kΨ  are estimated, the 

probability for the pavement to be in each state can be obtained by calculating the areas under 
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the normal distribution curve as illustrated in Figure 4.2.  The shaded area in Figure 4.2 

represents the probability of the pavement fall into pavement condition state k . 

 

'
1k nXβ−Ψ − '

k nXβΨ −  

Figure 4.2 Probabilities of the Ordered Probit Model in Each Condition State 

The mathematic formulation is shown in the following equations: 

)()0( '
nn XCP β−Φ==  (4.9) 

)()()1( ''
1 nnn XXCP ββ −Φ−−ΨΦ==  (4.10) 

)()()2( '
1

'
2 nnn XXCP ββ −ΨΦ−−ΨΦ==  (4.11) 

…… 
'

1( ) 1 ( )n K nP C K Xβ−= = − Φ Ψ −  (4.12) 

4.2.3 Goodness-of-Fit of the Model 

In order to evaluate the developed model, three criteria are used to evaluate the goodness-

of-fit of the model.  A standard measure of fit for the estimation sample is the adjusted likelihood 

ratio index 2ρ  value (Windmeijer, 1995), defined as: 

)(
)ˆ(12

CL
ML −−= βρ  (4.13) 

where  )ˆ(βL  is the log-likelihood function value at convergence; 

)(CL  is the log-likelihood function value at sample percentages; and 

M  is the number of the parameters including the thresholds estimated in the model. 
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The 2ρ , analogous to adjusted 2R  indicating how well the model explains the available 

data, lies between zero and one.  Theoretically, the greater the 2ρ , the better the model fits the 

estimation data.  However, studies have indicated that the 2ρ  value usually is not high 

(Daganzo, 1982).  The reason is that it is almost impossible to obtain a perfect model since the 

log-likelihood function is substantially different from zero in most cases.  Furthermore, the 2ρ  

cannot be treated as the same as the adjusted 2R  which was defined by analyzing the residuals 

and testing correctness of models.  In other words, the 2ρ  is just an indicator of the fitness to 

data other than the model correctness.  As a result, the adjusted log-likelihood index is 

commonly used for comparing different model specifications, although it is called the indicator 

of the goodness-of-fit.   

In addition, the model can be also verified using the validation data set.  At the aggregate 

level, the root mean square error (RMSE) which was derived from the average state probability 

proposed by Daganzo can be employed to compare the average predicted and actual percentages 

at each condition state (Daganzo, 1979).  At the disaggregate level, the average-percentage-of-

correct-prediction can be used as another criterion to evaluate the developed model.  The 

average-percentage-of-correct-prediction is based on the maximum utility assumption that the 

condition state with the highest probability is set as the pavement condition state.  The value of 

the average-percentage-of-correct-prediction lies between zero and one.  Generally, it is assumed 

that the larger the percentage, the higher probability the model can provide the accurate 

prediction.  The average-percentage-of-correct-prediction is calculated by using the following 

formula (Bhat and Pulugurta, 1998): 

∑∑−=
n k

nknk PNP ˆ1 δ  (4.14) 

where  P  is the average-percentage-of-correct-prediction; 

N is the number of observations in the validation data set;  

nkδ  is a dummy variable signifying whether pavement section n  fall in state k ; and 

nkP̂  is the predicted probability of pavement section n  deteriorating to state k . 
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Although Equation 4.14 is not based on its original definition, the calculation results of 

Equation 4.14 coincide with those of its original definition (Horowitz, 1982).  Therefore, 

Equation 4.14 is usually used to calculate the average-percentage-of-correct-prediction for 

simplicity. 

4.3 Methodology Based on the Sequential Logit Model 

Besides the ordered probit model, the sequential logit model is another approach to 

probabilistically predict the pavement deterioration process.  The sequential logit method is 

usually used to depict the multi-response behavior with a sequential process in the social fields, 

such as predicting automobile ownership (Chu, 2002), determining employment stability (Kahn 

and Morimune, 1979), and analyzing automobile demand (Cragg and Uhler, 1970).  This 

approach assumes that pavements would deteriorate in a sequential series instead of order.  The 

ordered assumption makes the condition state into which pavements deteriorate to be determined 

by the successive partition of the real line, whereas the sequential assumption determines the 

condition state through a series of independent binary response models in which a pavement 

section deteriorates to the condition state with a higher utility (Bhat and Pulugurta, 1998).  

Another difference between the ordered probit model and the sequential logit model is the 

distribution assumption of the error terms of the response models.  Since the normal distribution 

assumed in the Probit models does not have a closed form causing the difficulty of calculating 

the probabilities when integrating the probability density function, a distribution which is similar 

to the normal one and convenient to analyze was selected as an alternative.  The selected 

distribution is the logistic distribution which is almost equivalent to the normal distribution 

except for its heavier tails.  Thus, when the error term is assumed to be logistically distributed, 

the corresponding model is called logit model. (Ben-Akiva and Lerman, 1985) 

4.3.1 Description of the Model Structure 

Similar to the Markov process, the sequential logit model allows a pavement section to 

either stay in the current condition state or deteriorate to a worse state.  In other words, a 

pavement section arrives at its current condition state by a sequential process, where the 

pavement sections begin to deteriorate from the condition state 0.  Then, some of them 
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deteriorate to condition states worse than condition state 0, others may stay in condition state 0.  

Among those sections deteriorated to the condition states worse than condition state 0, some of 

them may stay in condition state 1, while others continue to deteriorate to the condition states 

worse than condition state 1.  The process keeps going on until the worst condition state K  is 

reached.  As such, the pavement deterioration process is considered as a series process of binary 

responses which is illustrated by Figure 4.3. 

 

Figure 4.3 Structure of the Sequential Logit Model 

Additionally, the sequential probabilities are analogous to the transition probabilities of 

the Markov process to some extent.  Based on the sequential assumption, the deterioration of a 

certain pavement section in different condition states is dependent on its previous condition.  

Therefore, the transition probability of each binary response can be modeled using the sequence 

of the conditional probabilities as shown from Equation 4.15 to Equation 4.18, where condition 

state nC  for pavement section n  is defined as the same as what has been defined in the ordered 

probit model. 

)|0()(0 nnn XCpXq ==  (4.15) 
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),1|1()(1 nnnn XCCpXq ≥==  (4.16) 

),2|2()(2 nnnn XCCpXq ≥==  (4.17)  

……  

( ) ( | , )K n n n nq X p C K C K X= = ≥  (4.18) 

The transition probability of each binary response can be estimated using a latent 

function, in which the propensity of pavement deterioration is explained by its explanatory 

variables.  The utility function is represented as follows: 
'

in i in inU Xβ ε= +  (4.19) 

where inX  is the set of the independent variables for binary response i ;  

i  indicates the pair of binary responses represented by 0 to K  correspondingly; 

iβ  is the corresponding parameters; and 

inε is the error term. 

The probability of pavement section n  staying in condition state k  is obtained by the 

following equation of the corresponding pair of binary response i , where i k= : 
'

'

exp( )( )
1 exp( )

i in
i in

i in

Xq X
X

β
β

=
+

 (4.20) 

4.3.2 Maximum Likelihood Parameter Estimation of the Models 

The parameters of the sequential logit model can be estimated by maximizing the 

likelihood function of each dichotomous case repeatedly (Amemiya, 1975).  This parameter 

estimation process is based on the assumption that the utility function associated with any binary 

response is independent of any other utility functions in the sequential deterioration process, 

which facilitates the parameter estimation process by treating each binary response 

independently (Small, 1987).  During the estimation process, the first estimation uses all of the 

observations because all of the pavement sections deteriorate from the “Very Good” condition 

state.  For the subsequent binary responses, the observations are only limited to those pavement 

sections whose conditions are in the “Good” pavement condition state or worse.  The estimation 

procedure is repeated for the remaining binary responses.   
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In order to estimate the parameters, the error term inε  in each binary model is assumed to 

be independent identically distributed with logistic distributions.  The pavement sections fall into 

condition state k  if the latent variable inU  is positive and 0 otherwise.  Hence,  

1 0
0 0

in
ni

in

if U
C

f U
>⎧

= ⎨ ≤⎩
 

Based on the independent assumption across observations, the likelihood function is: 

1' '

1

[1 ( )] ( )ni ni

N
C C

i in i in
n

L X Xβ β−

=

= − Λ Λ∏  (4.21) 

where Λ  is the accumulated probability of the logistic distribution.   

The corresponding log-likelihood function is: 

* ' '

1
log [(1 ) log(1 ( )) log ( )]

N

ni i in ni i in
n

L L C X C Xβ β
=

= = − − Λ + Λ∑  (4.22) 

To obtain the estimates of the unknown parameters, the partial derivatives of Equation 

4.22 are taken with respect to the unknown parameters.  Then, the partial derivative of the log-

likelihood function is set to zero and solved for the unknown parameters. 

Once the parameters of the utility function for each dichotomous case are estimated, the 

probability of each condition state can be calculated by the production of the probabilities of the 

corresponding sequential binary models.   

0 0 0( 0) ( )n nP C q X= =  (4.23) 

1 1 1 0 0( 1) ( )(1 ( ))n n nP C q X q X= = −  (4.24) 

2 2 2 1 1 0 0( 2) ( )(1 ( ))(1 ( ))n n n nP C q X q X q X= = − −  (4.25) 

……  

1 1 1 1 0 0( ) 1 ( )( (1 ( )(1 ( ))K n K K n n nP C K q X q X q X− −= = − − −L  (4.26) 

The probabilities kq  are analogous to the transition probabilities of the Markov process 

to some degree.  Some transitions between the condition states are excluded (Kahn and 

Morimune, 1979).  For example, the transitions from the poor condition state to the good 

condition state are ruled out.  That restriction is consistent with the realistic pavement 
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deterioration process without the interruption of M&R treatments.  In this case, the transition 

probability for pavement section n  is defined as the probability of transitioning from one state to 

another in one time unit.  The TPM is the matrix consisting of the transition probabilities defined 

as ijP .   

( ( ) | ( 1) )ij n nP P C t j C t i= = − =      ( , 0,1, 2, , )i j K= L  

where ( )nC t  and ( 1)nC t −  indicate the condition states of pavement section n  at  time t  and 

time 1t − ; and 

ijP  indicates the transition probability from condition state i  to condition state j . 

The ijP  can be calculated based on Equation 4.27.  If the probability of every possible 

transition is estimated, the TPM of a Markov Chain is developed.  

1

(1 )

0

j

k j
k i

ij i

q q i j

P q i j
i j

−

=

⎧
− × <⎪

⎪⎪= =⎨
⎪ >⎪
⎪⎩

∏
       ( , 0,1, 2, , )i j K= L  (4.27) 

After developing the sequential logit model, three criteria: the adjusted likelihood ratio 

index 2ρ  value defined by Equation 4.13, RMSE, and the average-percentage-of-correct-

prediction defined by Equation 4.14 are also used to evaluate the goodness-of-fit of the 

developed models.   

4.4 Summary 

This chapter presents the methodology of utilizing an ordered probit model and a 

sequential logit model to characterize the stochastic characteristic of pavement deterioration by 

directly predicting pavement condition states.  The ordered probit model is able to capture the 

uncertain nature of pavement deterioration, while the causal variables are linked to the condition 

states.  The methodology of a sequential logit model mimics the pavement deterioration process.  

With this methodology, the time independent assumption for the pavement deterioration is 

eliminated by taking the impact of the previous condition states into account in terms of a 
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sequential series, while the causal variables are also linked to the condition states.  The 

application of the proposed methods is illustrated in the next chapter with case study examples.   
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CHAPTER 5 CASE STUDY OF PROBABILISTIC MODELS USING 

AASHO ROAD TEST DATA 

As discussed in Chapter 4, the ordered probit model and the sequential logit model are 

used as the foundation of the probabilistic models.  In order to demonstrate and evaluate the 

applicability of these proposed methodologies, a case study focused on applying the models with 

real data is presented in this chapter.   

5.1 Selection of Case Study Data Set 

The selection of appropriate data is important to a case study.  Potential sources of data 

for applying these proposed probabilistic models range from the in-service pavement 

performance data (such as, the Long-Term Pavement Performance (LTPP) study, sponsored by 

FHWA) to the accelerated pavement tests data such as the AASHO Road Test data.  In order to 

select the best data set for the case study, certain criteria were used to evaluate its 

appropriateness.  These criteria are: 

1) The data set should span the whole pavement deterioration process (i.e., from its 

brand new condition to its failure); 

2) The data set should include the complete and detailed traffic information;  

3) The data set should cover different pavement structural capacities; and 

4) The data set should be recognized as being reliable by researchers. 

Based on these criteria, the LTPP data and the AASHO Road Test data are the most 

promising data sets.  Although the LTPP data set is more recent than the AASHO Road Test 

data, it cannot provide the complete and detailed traffic loading information.  Since the purpose 

of this project report is to model pavement performance, complete and detailed traffic data is 

essential as the lack of these traffic data would make the development of performance models 
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impossible.  As a result, the AASHO Road Test data was selected for the case study, because it 

satisfies all the criteria; in addition, it is still the most reliable and fully controlled database in 

terms of the accurate traffic information.   

5.2 AASHO Road Test 

The AASHO Road Test was carried out in Ottawa, Illinois in the late 1950s (AASHO 

1962).  The purpose of the AASHO Road Test was to study the performance of flexible and rigid 

pavements under different combinations of pavement structures and traffic loadings.  The 

location was selected based on the soil condition and climate zone which could represent most 

areas of the northern U. S.  In this regard, the subgrade materials and the climate zone were 

fixed.  Consequently, the experimental results cannot be used to evaluate the effects of subgrade 

materials and environment conditions different from those in the test without making appropriate 

adjustments.  In the AASHO Road Test, the total number of flexible pavement sections was 332.  

No major maintenance was performed during the test period.  All of the flexible pavement 

sections were three-layered structures.  Among those layers, the surface thickness varied from 

25.4 mm to 152.4mm(1 to 6 inches) with increments of 25.4mm (1 inch), the base thickness, 0 to 

228.6mm( 0 to 9 inches) with increments of 76.2 mm (3 inches), and the subbase thickness, 0 to 

406.4 mm (0 to 16 inches) with increments of 101.6 mm (4 inches).   

The tested pavements consisted of 6 loops.  The traffic was applied on loop 2 to loop 6.  

In each loop, there was a four-lane divided highway, where each lane included different sections 

of 30.5mm (100 feet) in length.  The traffic applied on each lane had the same axle configuration 

and the magnitude of loading.  The speed of traffic was kept at 56 km/h (35mph).  Table 5.1 

shows the traffic loading configurations applied to each loop and each lane.  From Table 5.1, it is 

easy to observe that different lanes and loops provided different traffic loadings.  The traffic 

configurations included single axles and tandem axles.  Twelve different combinations of axle 

configurations and magnitudes of loading were used in the test.  The front axle load was not 

considered as the traffic loading in most of the cases except for lane 1 in loop 2 (AASHO, 1962).   

In order to facilitate the case study, the effects of traffic loading have been standardized.  

The various axle loads were converted to the Equivalent Single Axle Load (ESAL) which is 
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defined as the standard axle load based on the damage criteria (Huang, 1993).  The AASHTO 

load equivalent factors (LEFs) were used to carry out the conversion.  The axle load and the 

corresponding LEFs are listed in Table 5.1.  Finally, only the ESAL is considered as the traffic-

related variable.   

Table 5.1 Axle Arrangements and Axle Load Configurations in the AASHO Road Test 

Front Axle Load Axle 
Loop Lane 

Axle 

Configuration Weight (KN) LEF Weight (KN) LEF 

2 1 1-1 8.9  0.00018 8.9  0.00018

2 2 1-1 8.9  0.00018 26.7  0.01043

3 1 1-1-1 17.8  0.00209 53.4  0.189 

3 2 1-2-2 26.7  0.01043 106.8  0.26 

4 1 1-1-1 26.7  0.01043 80.1  1 

4 2 1-2-2 40.1 0.0562 142.4  0.857 

5 1 1-1-1 26.7  0.01043 99.7  2.18 

5 2 1-2-2 40.1  0.0562 178.0  2.08 

6 1 1-1-1 40.1  0.0562 133.5  6.97 

6 2 1-2-2 53.4  0.189 213.6  4.17 

During the course of the experiment carried out from November 1958 to December 1960, 

the accumulated traffic and the corresponding PSI were recorded once every two weeks.  Each 

record consists of the section inventory, layer thicknesses, the type of the base layer, PSI, the 

accumulated traffic trips, the index day for executing the measurement, and so on.  As a result, 

11,296 observations were obtained by pooling all of the observations together.   

5.3 Establishment of the Pavement Condition States 

Since pavement deterioration is the combined result of traffic loading, structural capacity, 

environmental factors, and other unobserved factors, all of these factors should be considered 

when modeling pavement deterioration.  In order to capture the uncertainty of pavement 

deterioration, the continuous PSI is discretized into pavement condition states as discussed in 
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Chapter 4.  The scheme of discretizing the continuous PSI values stems from the initial method 

of developing PSI, where a 0-to-5 scale is used with 0 representing the very poor condition, and 

5 the excellent condition.  During the course of examining the measurement errors, it was found 

that the standard deviation of the ratings ranges from 0 to 0.5 with an average of 0.2 (Huang, 

1993).  Therefore, the PSI is evenly discretized into five condition states.  Once the discrete 

pavement condition states are established, the ordered probit model and the sequential logit 

model can be applied. 

If nC  represents the pavement condition states, it can be defined as follows: 

PoorVery
Poor
Fair
Good

GoodVery

PSI
PSI
PSI
PSI
PSI

Cn

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<≤
<≤
<≤
<≤
≤≤

=

104
213
322
431
540

 

in which nC  can take the values from 0 to 4, depending on the condition of the pavement 

section.  Although the real pavement condition may not deteriorate to state 3 and state 4 while 

the pavement is in service because of the applied M&R as remedies, the pavement performance 

model should be able to predict the complete deterioration process of the pavement.  The 

percentages of each state in the AASHO Road Test are shown in Figure 5.1.  As revealed by 

Figure 5.1, more than 50 percent of the pavement sections fall into the “Very Good” or “Good” 

condition.  Around 20 percent of the sections fall into the “Fair” condition.  The rest 10 percent 

of them fall into the worse conditions.  Generally, the “Poor” and “Very Poor” conditions mean 

that the pavement has already failed. 
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Figure 5.1 Sample Proportions of the Calibration Data Set 

5.4 Preliminary Results of the Ordered Probit Model 

To avoid using the same set of data for model calibration and validation, the total 11,296 

observations were split into two parts through a random selection process.  The first part of the 

randomly selected 9,099 observations was used to calibrate the model.  The remaining 2,197 

observations were used to validate the developed model.  Figure 5.2 shows the proportion of the 

data points used in the calibration and validation processes.   
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Figure 5.2 Calibration vs. Validation Data Set from the AASHO Road Test 

Before estimating the pavement performance model, it is very helpful to introduce some 

prior knowledge of the pavement deterioration.  Intuitively, the traffic-related variable has an 

impact on the pavement performance, so the traffic-related variable ESAL was included in the 

model.  The structural capacity is related to the thickness of each layer.  Generally speaking, the 

higher the structural capacity, the lower the pavement deterioration rate is.  In this case, the 

thickness of each layer was used to represent the structural capacity.  Environmental factors also 

affect the performance.  For example, even if there is no traffic loading applied on the pavement, 

there is still loss of serviceability with time.  This phenomenon is because of the impact of 

temperature and moisture.  However, since all of the pavement sections in the AASHO Road 

Test were in the same location, it is hard to capture the exact effects of different temperature and 

moisture in different climate zones.  As a result, the impact of the spring season was used to 

represent the effects of the temperature and moisture.  More specifically, a year was divided into 

the spring period and the non-spring period based on the AASHO road test report.  The spring 

season covers the period from the middle of February to the beginning of June (AASHO, 1962).  

A dummy variable of the spring seasonal factor is defined based on this division.  The dummy 

variable was assigned 1 if it was the spring, and 0 otherwise.  Observations showed that the 

freeze-thaw cycles caused significant changes in the serviceability in the spring when comparing 

with other seasons.  The reason is that the subgrade is stronger in the winter but much weaker in 

9,099 

2,197 
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the spring.  In summary, nX  in Equation 5.1 consists of the surface thickness ( sD ), base 

thickness ( bD ), ESAL ( ESALT ), and the spring seasonal factor ( S ).  Therefore, the explanatory 

variables are defined as a vector },,,,1{ STDDX ESALbsn = .  Their corresponding parameters are 

defined as another vector },,,,{ 43210 ββββββ = .  Then three thresholds are defined as 

1 2 30 ≤ Ψ ≤ Ψ ≤ Ψ .  The ordered response model can be written as: 

0 1 2 3 4n s b ESAL nU D D T Sβ β β β β ε= + + + + +  (5.1) 

And the probability in each state can be calculated as follows: 

)()0( '
nn XCP β−Φ==  (5.2) 

)()()1( ''
1 nnn XXCP ββ −Φ−−ΨΦ==  (5.3) 

)()()2( '
1

'
2 nnn XXCP ββ −ΨΦ−−ΨΦ==  (5.4) 

' '
3 2( 3) ( ) ( )n n nP C X Xβ β= = Φ Ψ − − Φ Ψ −  (5.5) 

'
3( 4) 1 ( )n nP C Xβ= = − Φ Ψ −  (5.6) 

With the defined response variable nC  and the set of the explanatory variables nX , the 

ordered probit model is estimated with the LIMDEP (Greene, 1998) as the analysis software.  

The estimation results are summarized in Table 5.2.  All of the estimated parameters shown in 

Table 5.2 are statistically significant at the 0.05 significance level.   

As revealed in Table 5.2, all of the signs for parameters are consistent with prior 

expectations.  Among those layer thicknesses, the most important factor impacting the pavement 

performance is the surface thickness.  Based on the above model, the negative sign of the surface 

thickness means that the increase of the surface thickness increases the probability of the 

pavement staying in very good performance condition.  Similarly, the negative sign of base 

thickness also implies that a thicker base layer can decrease the degree of the pavement damage.  

However, based on the magnitude of coefficients, its impact on deterioration is not as large as the 

surface thickness.  Another observation worth noting is that both layer thicknesses have negative 

coefficients in the model.  This result is expected since both of them contribute to the structural 

capacity of the pavement.   
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Table 5.2 Parameter Estimation for Ordered Probit Model 

Variables Parameters of 
Variables 

Standard 
Error t-statistics 

Constant 1.19379 0.0454795 26.249 

sD  -0.10967 0.0102503 -10.700 

bD  -0.01859 0.00460553 -4.035 

ESALT  3.00657e-007 9.08601e-009 33.090 
S   0.05729 0.0270157 2.121 

1Ψ  1.67585 0.0198802 84.297 

2Ψ  2.66006 0.0262598 101.298 

3Ψ  3.76197 0.0571374 65.841 
Statistic Summary 
L(C)=-10332.91 
L(B)=-9765.08 

2ρ =0.0543 

The traffic variable contributes to increasing the degree of the pavement condition 

deterioration, given its positive sign.  When the pavement approaches the end of its design life, 

the overall condition gets worse.  The positive sign of the spring seasonal factor means the 

pavement sections are more likely to be deteriorated in the spring than in the other seasons.  The 

reason is that the pavement becomes much weaker in the spring than in the winter because of the 

excessive water from the melting of ice in the spring-thaw period when the probability of severe 

pavement damage is high, especially with the passing of heavy duty trucks. 

As discussed in the previous section, 2,197 observations were used to validate the 

developed model. The probabilities in each condition state for all of the observations in the 

validation data set were averaged in order to obtain the aggregate probabilities or percentages for 

the corresponding condition state.  In order to examine the accuracy of the prediction, the 

observed frequency and the average percentage for each condition state in the validation data set 

were calculated.  Table 5.3 shows the predicted and observed percentages falling into each 

condition state in the validation data set.  As shown in Table 5.3, the maximum difference 

between the predicted proportions and the observed proportions is 1.85 percent.  Therefore, the 

predicted value is very close to the observed value for each of the condition states in the 
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validation data set, given that the validation data set is completely separated from the estimation 

data.   

Table 5.3 Descriptive Statistics on Each State in the Validation Data Set 

Condition 
State 

Observed 
Frequency 

Observed 
Percentage (%) 

Predicted 
Percentage (%) 

Difference 
(%) 

0 421 19.16 18.60 -0.56 
1 1,217 55.36 56.80 1.44 
2 450 20.48 18.63 -1.85 
3 96 4.37 5.24 0.87 
4 13 0.59 0.72 0.13 

In addition to the validation results, several other statistical parameters were used to 

evaluate the model.  From Table 5.2, the adjusted likelihood ratio index 2ρ  is small.  The reason 

for this small value is related to the variances of deterioration in the data set.  Additionally, the 

unavailability of some explanatory variables in the data set could be another reason.  But given 

that the adjusted likelihood ratio index 2ρ  cannot indicate the correctness of the prediction, the 

model should be further tested by checking other goodness-of-fit indicators such as the RMSE 

values.  

In order to further verify the developed model, the average-percentage-of-correct-

prediction P  at the disaggregate level is calculated by using the previously explained Equation 

4.14.  The calculated P  value is 0.5325.  At the same time, the calculated RMSE at the 

aggregate level is 1.15 percent.  The average-percentage-of-correct-prediction at the disaggregate 

level seems relatively low, since it is based on the maximum utility assumption.  In this case, the 

stochastic problem is transferred back to the deterministic problem, causing the relatively lower 

average-percentage-of-correct-prediction.  As a matter of fact, it is misleading only to compare 

the predicted condition state based on the highest probability with the observed pavement 

condition (Horowitz, 1982).  However, the prediction error at the disaggregate level can be 

averaged out at the aggregate level.  Consequently, the RMSE at the aggregate level is 0.26 

percent which indicates a very small difference between the predicted pavement condition states 

and the actual condition states.  Therefore, the ordered probit model can be used as a reliable tool 
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to predict the probabilities of the pavement condition states.  That advantage benefits the 

pavement prediction because of the uncertainty nature in the pavement deterioration process.   

5.5 Preliminary Results of the Sequential Logit Model 

The AASHO Road Test data is also used to calibrate and validate the sequential logit 

model.  The explanatory variables are defined as the same as the ordered probit model, 

consisting of the surface thickness ( sD ), base thickness ( bD ), subbase thickness ( sbD ), ESAL 

( ESALT ), and the spring seasonal factor ( S ).  Similar to the calibration and validation process of 

developing the ordered probit model, the same 9,099 observations are used to calibrate the 

sequential logit model, while the remaining 2,197 observations are used to validate the 

developed sequential logit model.  The model specification is given in Table 5.4. 

As revealed by Table 5.4, the binary model of the “Very Good” pavement condition state 

includes all of the explanatory variables.  But the rest of the binary logit models do not include 

all of them.  Furthermore, the same explanatory variable in the different binary logit models may 

have signs opposite to expectation.  This situation is probably caused by the parameter 

estimation process, since the subsequent binary logit model is determined conditionally on its 

previous conditions.  For example, the binary logit model for the pavement condition state 

“Good” is estimated using the data set in which all of the pavement sections have the pavement 

condition state worse than “Very Good”.  Therefore, it is not easy to make straightforward 

explanations only based on the signs and magnitudes of the parameters, especially in the 

subsequent binary logit models.  But the interpretation for the parameters of the binary logit 

model in the “Very Good” condition state is possible, since the binary logit model is not 

dependent on any previous condition states.   
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Table 5.4 Sequential Logit Model Specifications of the Pavement Performance 

 Very Good Good Fair Poor 

Variable Coefficient (t 
statistics) 

Standard 
Error 

Coefficient (t 
statistics) 

Standard 
Error 

Coefficient (t 
statistics) 

Standard 
Error 

Coefficient (t 
statistics) 

Standard
Error 

Constant -2.8709 
(-26.1950) 0.1096 0.7516 

(-8.5220) 0.0882 2.2027 
(10.9735) 0.2007 3.7721 

(4.6224) 0.8160 

sD  0.3395 
(11.7795) 0.0288 0.1626 

(6.4230) 0.0253 -0.0862 
(-1.7668) 0.0488 -0.5049 

(-2.9249) 0.1726 

bD  0.1020 
(8.9806) 0.0114 _________ _________ _________ _______ _________ ________

sbD  0.0895 
(11.0503) 0.0081 -0.0203 

(-2.9213) 0.0070 -0.0846 
(-5.8211) 0.0.0145 0.1005 

(1.9312) 0.05204 

ESALT  -2.83E-06 
(-27.530) 1.19E-07 -3.72E-07 

(-18.3988) 2.02 E-08 1.01E-07 
(3.02812) 3.33E-08 _________ ________

S  -0.2471 
(-3.7879) 0.0652 _________ _________ _________ _______ _________ ________

Sample 
Size 1720 5095 1768 478 

L(c) -4411.340 -4565.548 -1220.3380 -135.6889 
L(B) -3624.357 -4322.292 -1197.0040 -130.6791 
Rho-
squared 0.1770 0.0524 0.0158 0.0148 
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The explanation of each variable is similar to that in the ordered probit model.  Moreover, 

it is also noticed that the traffic-related variable ESAL is not significant in the binary logit 

models of the “Fair” and “Poor” condition states.  The reason might be that the pavement 

sections in the above two states are near failure or have already failed; therefore, the increase of 

the ESAL would not contribute to any significant change in the pavement deterioration 

propensity.  The goodness-of-fit parameters discussed in Chapter 4 are also used to evaluate the 

developed sequential logit model.  The adjusted likelihood ratio index 2ρ  for the first binary 

response is large relative to the rest of the four binary responses, although all of them are not 

absolutely high.   

As discussed briefly earlier, 2,197 observations are used to validate the developed model.  

Table 5.5 shows the validation results of the sequential binary logit models.  The predicted 

values are very close to the observed.  The maximum prediction error is 4.12 percent.  The 

RMSE is 2.42 percent.  Both of the numbers indicate that the aggregate predictions are very 

close to the actual observations.   

Table 5.5 Validation Results for Transition Probabilities in Each Binary Case 

Condition 
State 

Observed 
Frequency 

Observed 
Percentage (%)

Predicted 
Percentage (%) 

Difference 
(%) 

0 421 19.16 18.62 0.54 
1≥  1217 68.52 70.26 -1.74 
2≥  450 80.50 77.52 2.98 
3≥  96 88.07 92.20 -4.12 
4≥  13 1 1 0 

Table 5.6 shows the observed and predicted proportions of each condition state in the 

validation data set.  As can be seen, the aggregate predicted proportions are also close to the 

actual observed proportions.  The maximum prediction error is about 1.78 percent.  At the same 

time, the prediction error increases when conditions deteriorate from “Very Good” to “Fair”.  

This increase is related to the error propagation caused by the production process.  Furthermore, 

the prediction error could be related to the estimation bias resulting from the independent 

assumption of the parameter estimation method of the sequential binary responses.  The 

independent assumption causes the bias of the parameter estimation because of the heterogeneity 
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of the observations.  For example, the unobserved characteristics in the data set used to estimate 

the probability 0q  may be different from those in the data set used to estimate the probability 1q .  

The extent of bias is related to the correlation between those unobserved characteristics (Kahn 

and Morimune, 1979).  The average-percentage-of-correct-prediction P  at the disaggregate 

level is 0.5972, calculated using the previously explained Equation 4.14.  The calculated RMSE 

in this validation process is 1.18 percent.  Therefore, the sequential logit model also 

demonstrates good prediction accuracy.     

Table 5.6 Validation Results for Probability in Each Condition State 

Condition 
State 

Observed 
Frequency 

Observed 
Percentage (%) 

Predicted 
Percentage (%) 

Difference 
(%) 

0 421 19.16 18.62 0.54 
1 1217 55.39 57.18 -1.78 
2 450 20.48 18.76 1.72 
3 96 4.37 5.02 -0.65 
4 13 0.59 0.39 0.20 

Since the probability of condition state is developed based on previous condition states, 

the TPM can be easily estimated with the developed sequential model using Equation 4.27.   

Figure 5.3 demonstrates the probability changes of a pavement section for all of the 

condition states over time.  In this case, the means of the explanatory variables are used in these 

developed models to determine probability trends.  As can be seen, the probability of the “Very 

Good” condition state steeply falls when more and more traffic is applied on the pavement, then 

the probability remains steady after the volume of the traffic approaches a certain value.  This is 

because traffic loading significantly contributes to damaging the excellent pavement condition.  

As a result, the probability of staying in the “Very Good” condition state decreases over time.  

The probability curve of staying in the “Good” condition state begins with an increase trend until 

it reaches its peak and then falls off.  That trend makes the probability curve look like an 

uncompleted bell.  The other three probability curves keep increasing but with different slopes 

when the traffic increases.  These trends illustrated by Figure 5.3 assist pavement management 

personnel in directly providing the probabilities in each pavement condition state given a 

combination of the explanatory variables.  These probabilities can also be explained as the 
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reliability progression of a pavement section with time or even further extended to the reliability-

based analysis.  Thus, the decision-makers of pavement management can more effectively 

allocate limited resources to achieve the maximal benefits. 
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Figure 5.3 Probability Changes of Five Pavement Condition States over Traffic 

5.6 Development of Mechanistic-Empirical Models 

All of the previously developed models in this chapter are based on the empirical 

approach.  They are limited by local environmental conditions, materials, pavement types, and 

vehicle characteristics in the AASHO Road Test.  The developed relationships are only valid for 

the test situation and cannot be applied to other situations without appropriate adjustments.  In 

addition, since no major maintenances were applied on the pavement sections during the 

AASHO Road Test, the impact of M&R treatments cannot be accommodated with these 

relationships.   

5.6.1 Identification of Primary Response Variables 

In order to extend the inference space of the AASHO Road Test beyond its original 

testing conditions, a mechanistic-empirical approach is taken to relate the mechanical responses 
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of a pavement such as stress and strain to its performance.  This mechanistic-empirical approach 

has been used in research studies such as the recently developed Guide for Mechanistic-

Empirical Design of New and Rehabilitated Pavement Structures (TRB, 2005), British pavement 

design method (Lister and Powell, 1987), and the evaluation of the AASHTO LEFs for changing 

traffic characteristics (Kawa, 2000). 

Based on the previous research, three primary responses are normally used in analyzing 

pavement performance:  

1) Surface deflection; 

2) Horizontal tensile strain at the bottom of the surface layer; and 

3) Vertical compressive strain at the top of subgrade. 

Figure 5.4 illustrates the primary responses of a flexible pavement.   

  

tε - Tensile Strain

cε  - Compressive Strain

13.1”

δ  - Deflection 

AC Layer 

Base Layer 

Subgrade 

DUAL TIRES

 

Figure 5.4 Critical Primary Responses in Flexible Pavement Structure 
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Once these responses are accumulated to their limits, structural damage of pavement 

occurs.  The accumulated damage history represents pavement performance, since pavement 

performance is a time-related concept.  Therefore, these three primary responses variables are 

able to represent the mechanistic processes of pavement deterioration. 

5.6.2 Development of Mechanistic-Empirical Models 

The statistical technique used to develop mechanistic-empirical models is the same as the 

empirical models except for the inclusion of these primary response variables as part of the 

explanatory variables.  The whole development process consists of the five steps: 1) identify a 

computer program to calculate the primary responses; 2) obtain the parameters required by the 

selected program; 3) calculate the primary responses; 4) estimate the model specification using 

the statistical program Limdep; and 5) evaluate the developed models. 

Normally, the primary responses analysis of the flexible pavement is based on the elastic 

layer theory which assumes the static, uniform, and circular load pattern.  Research conducted by 

Lister shows that this load assumption causes only less than two percent of errors comparing 

with the realistic load (Lister, 1967).  Therefore, the elastic assumption is acceptable in this 

research.  Based on the elastic layer theory, the primary responses of a flexible pavement can be 

calculated using different computer programs.  Among commonly used computer programs such 

as KENLAYER, ELSYM5, and Abaqus, the results provided by KENLAYER and ELSYM5 are 

almost the same, whereas Abaqus produces relatively lower responses when using a pavement 

structured with a 6-inch thick AC layer and a 10-inch thick base layer (Kawa, 2000).  Since 

Abaqus is more complicated to use, KENLAYER was chosen to calculate the primary responses 

for this research. 

Once the computer grogram is selected for the calculation, the parameters have to be 

determined.  The magnitude and specification of the traffic loading are illustrated in Table 5.1.  

Material moduli of elasticity for flexible pavement sections are determined from a report written 

by Irick (Irick, 1991).  The Poisson’s ratio is obtained based on the material characteristics of 

experiments.  Table 5.7 gives the values of these parameters. 
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Table 5.7 Poisson’s Ratios and Material Characteristics 

Layer Modulus (psi) Poisson’s Ratio

AC 742,500 0.3 
Base 20,400 0.35 
Subbase 17,000 0.4 
Subgrade 10,700 0.45 

Another important parameter is the tire contact area.  Normally, the contact tire pressure 

is assumed to be uniformly distributed and equal to the actual tire pressure.  Based on the circle 

contact area assumption of KENLAYER, the radius of the contact area was calculated according 

to the following formula: 

π/cAR =  (5.7) 

where cA  can be obtained by dividing the load on each tire with the tire pressure.  Figure 5.5 

illustrates the actual contact area and the approximated equivalent circular contact area.   

 

R 

 

Figure 5.5 Dimension of Tire Contact Area (Huang, 1993) 

After determining these parameters, the primary responses were calculated using 

KENLAYER.  Since the methodologies of developing the ordered probit model and the 

sequential logit model are tested as being valid based on their prediction capability, the same 

modeling procedure was employed to develop the mechanistic-empirical models.  The 

explanatory variables include the SN, magnitude of axle load ( L ), deflection of the pavement 

surface (δ ), horizontal tensile strain at the bottom of the surface layer ( tε ), compressive strain at 

the top of the subgrade ( cε ), accumulated traffic loadings ( n ), and the spring seasonal factor 

( sD ).  The data set used to estimate the parameters of the ordered probit model was the same 

calibration data set including 9,099 observations.  The final model specification for the 
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mechanistic-empirical ordered probit model is shown in Table 5.8 after estimation by the 

Limdep.   

Table 5.8 Mechanistic-Empirical Model Specification of the Ordered Probit Model 

Variables Parameters of  
Variables 

Standard 
Error t-statistics 

Constant -0.2766 0.04511 -6.1307 
n  2.58E-06 5.57E-08 46.2665 
L  9.36E-06 7.98E-07 11.7269 

sD  0.12925 0.02438 5.30062 
tε   2142.91 175.696 12.1966 
1Ψ  1.76354 0.01888 93.4214 
2Ψ  2.79993 0.02476 113.106 
3Ψ  3.87989 0.05169 75.0577 

Statistic Summary 
L(C)=-12898.54 
L(B)=-11838.87 

2ρ =0.0816 

Similarly, the mechanistic-empirical sequential logit method was also developed using 

the Limdep.  The final model specification is shown in Table 5.9.   
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Table 5.9 Mechanistic-Empirical Model Specification of Sequential Logit Methodology 

 Very Good Good Fair Poor 

Variable Coefficient (t 
statistics) 

Standard 
Error 

Coefficient (t 
statistics)  

Standard 
Error 

Coefficient (t 
statistics) 

Standard 
Error 

Coefficient (t 
statistics) 

Standard 
Error 

tanCons t  -0.4630 
(-3.5953) 

0.1288 3.3472 
(22.7912) 

0.1469 2.4645 
(9.7727) 

0.2522 -2.8924 
(-61.5526) 

0.0470 

SN  0.3942 
(9.9532) 

0.0396 0.1690 
(4.4205) 

0.0382 _________ _______ _________ _______ 

L  -2.91 510−×  
(-9.0167) 

3.22 610−×  -2.92 510−×  (-
9.8722) 

2.96 610−×  -2.29 510−×  
(-5.6362) 

4.06 610−×  _________ _______ 

n  -7.47 610−×  
(-26.6546) 

2.81 710−×  -3.79 610−×  
(-25.0706) 

1.51 710−×  _________ _______ _________ _______ 

sD  -0.2691 
(-4.1826) 

0.0643 -0.1644  
(-2.6231) 

0.0627 _________ _______ _________ _______ 

tε  -2070.56 
(-4.5426) 

455.814 -5788.7  
(-12.9538) 

446.874 -2212.73 
(-2.5390) 

871.484 _________ _______ 

Sample 
Size 

1720 5095 1768 478 

L(c) -4411.340 -4565.548 -1220.338 -1873.554 
L(B) -3773.220 -4092.074 -1199.047 -1873.554 
Rho-
squared 0.1435 0.1026 0.0158 

0.0000 
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Table 5.10 illustrates the goodness-of-fit of the developed mechanistic-empirical models.  

It is not difficult to find that the predicted and the observed results are very close.  The RMSEs 

of the ordered probit model and the sequential logit model are 0.83 and 0.70 percent respectively.  

Both of the goodness-of-fit parameters indicate that the mechanistic-empirical models are 

acceptable.     

Table 5.10 Validation Results for Probabilities Calculated using Mechanistic-Empirical 
Models in Each Condition State 

Predicted Proportion (%) Condition 
State 

Observed 
Frequency 

Observed 
Proportion 

(%) Ordered 
Probit 

Sequential 
Logit 

0 421 19.16 19.00 18.98 
1 1217 55.39 56.30 56.11 
2 450 20.48 19.04 19.35 
3 96 4.37 5.07 5.15 
4 13 0.59 0.58 0.38 

5.7 Summary 

This chapter presents the calibration and validation results of the ordered probit models 

and the sequential logit models using the AASHO Road Test data.  The calibrated ordered probit 

model demonstrates that the methodology is able to provide reliable prediction of pavement 

condition states regardless of whether deterioration process is homogenous or not.  Furthermore, 

directly predicting the probabilities of the pavement condition states is effective for depicting the 

stochastic deterioration process, as the methodology eliminates the need for the TPMs.  The 

validation results of sequential logit model also indicate that it can yield reliable prediction of 

pavement condition states by means of the production of a sequence of binary logit probabilities.  

During this process, the transition probabilities between any two condition states can be easily 

calculated by considering the conditional probabilities in the sequential series.  This process 

makes the estimation of the TPM more straightforward in comparison with other methods.  Then, 

the ordered probit model and the sequential logit model are extended using the mechanistic-

empirical approach to incorporate primary response variables into explanatory variables.  The 

validation results also show good prediction accuracy of these mechanistic-empirical models.   
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CHAPTER 6 COMPARISON OF PROPOSED PROBABILISTIC 

MODELS AND EXISTING PROBABILISTIC MODELS 

As presented in Chapter 5, the ordered probit models and the sequential logit models 

have the ability to yield good prediction results.  However, the performance of these two models 

in comparison with other probabilistic models is still unknown.  Therefore, this chapter is 

devoted to select widely accepted probabilistic models and compare them with the developed 

ordered probit models and sequential logit models, using the same AASHO Road Test data set.   

6.1 Selection of Existing Probabilistic Models for Comparison 

Currently, the homogeneous (Wang et al., 1994), or non-homogeneous Markov Chains 

(Jiang et al., 1987; Butt et al., 1987), and the duration models (Prozzi and Madant, 2000) are 

considered as accepted probabilistic models of modeling pavement performance based on the 

literature review in Chapter 2.  These three methods are selected as alternative models of the 

developed probabilistic models.  Since the ordered probit models and the sequential logit models 

were developed based on the AASHO Road Test data, it is also taken as the data set for the 

comparisons.  For these selected models, although the duration model (Prozzi and Madant, 2000) 

was developed based on the AASHO Road Test, there is no Markov Chain models developed 

with the same data set.  Therefore, the homogenous and non-homogeneous Markov Chain 

models need to be developed in order to make comparisons.   

6.2 Developing TPMs for Markov Chain Models 

The Markov Chain models have been proved as an effective tool to characterize the 

pavement deterioration process since 1982 (Goliba, 1982).  As discussed in Chapter 2, the key to 

a Markov Chain model is the development of the TPM.  Currently, two approaches are employed 

to develop TPMs.  The first approach, which is the simplest one, directly calculates the transition 

probabilities based on the time independent assumption.  The transition probability from state i  
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to state j  is calculated using the proportion of pavement sections deteriorated from state i  to 

state j , which is shown in Equation 6.1 (Wang et al., 1994): 

ij
ij

i

m
p

m
=  (6.1) 

where  ijp  is the transition probability from state i  to state j ; 

ijm  is the total number of pavement sections whose condition states change from state i  

to state j ; and 

im  is the total number of pavement sections whose initial condition states are i . 

The second method of developing TPMs is the expected-value method which is able to 

estimate the TPMs of both the homogeneous and non-homogeneous Markov Chain models.  For 

the non-homogeneous Markov Chain models, pavement sections are arranged into different 

groups based on their attributes to remove the non-homogeneous property associated with their 

relative variables.  Then, the linear regression model of condition ratings is estimated for each 

group as (Madanat et al., 1995): 

nnn tY εββ ++= 21  (6.2) 

where nY  is the PSI of pavement section n ; 

nt  is the age of pavement section n ; 

21, ββ  are parameters to be estimated; and  

nε  is the random error term. 

The TPM is estimated for each group by minimizing the distance between the expected 

value of the pavement condition predicted by the linear model and the theoretical expected value 

derived from the Markov Chain model.  The mathematical representation of the minimization of 

the distance between the two expected values is as follows: 
1

ˆ ( , )
T

t
t

Min W Y E t p
τ

τ

+Δ −

=

= −∑  (6.3) 

Subject to: 10 ≤≤ ijp ; kji L,2,1, =  
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where  ),( ptE  is the expected value of pavement condition at age t  as a function of Markov 

transition probabilities; 

 tŶ  is the average condition rating for pavement sections in a group at age t ; 

 τ  is the earliest age observed in the group under consideration; and 

TΔ  is the number of years in the group of pavement sections under consideration. 

This method estimates TPMs of each group by treating them as a homogeneous process.  

Under this assumption, the probabilities falling into certain condition states are calculated.  

Although other econometric methods have been used for developing non-homogeneous TPMs 

(Madanat et al., 1995), they are relatively complicated to develop and are difficult to compare 

because of the violation of the Markov time-independent assumption. 

6.3 Duration Model 

The duration model was developed to model the failure times of pavement sections by 

Prozzi and Madanat in 2000 (Prozzi and Madanat, 2000).  The duration model considers the 

variability of failure times and the unobserved failure events in pavement failure experiments by 

representing the failure times with probability density functions other than deterministic values.   

This method is similar to modeling a process with the unit of measurement on the time 

axis.  In this case, the traffic loading is equivalent to the measurement time indicating the life of 

pavements.  Hazard rate nλ  of pavement section n  is defined as a function of explanatory 

variables shown in Equation 6.4.  The parameter θ  is estimated using the maximum likelihood 

estimation method which addresses the censored problems associated with the collected data.  

The researchers selected a Weibull distribution to represent failure times. 

exp( )i i iXλ θ= −  (6.4) 

The Weibull hazard function representing failure times is shown in Equation 6.5.  The 

hazard rate can increase or decrease depended on the value of parameter p .  If p  approaches to 
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1, the deterioration process can be modeled using a Markov Chain process.  That is to say, the 

deterioration process is not related to time and vice versa. 
1( ) ( ) pt p tλ λ λ −=  (6.5) 

After conducting the analysis based on the AASHO Road Test data, the final model 

format was estimated shown by Equation 6.6.   
5.28 6.68 2.62

2
3.03

1 2

10 ( 1)[ ]
( )

D LE
L L

ρ +=
+

 (6.6) 

where ρ  is the ESAL required to produce a damage level defined as failure; 

D  is the structural number of the pavement sections; 

1L  is the axle load in kips; and 

2L  is the dummy variable (equals to 1 for single axles; equals to 2 for tandem axles). 

Since Equation 6.6 can only calculate the number of ESAL load repetitions to failure, 

Equation 6.7 is used to relate it to pavement condition index PSI.  It is worthy of mentioning that 

Equation 6.7 and 6.8 were developed by the AASHO (AASHO, 1965) other than Prozzi and 

Madanat.  Therefore, it may cause the calculation inconsistency in the validation process.   

4.5 3.0 WPSI
β

ρ
⎛ ⎞= − ×⎜ ⎟
⎝ ⎠

 (6.7)  

where 
3.23

1 2
5.19 3.23

2

0.08( )0.4
( 1)

L L
D L

β += +
+

 (6.8) 

W  represents the current observed traffic loading. 

6.4 Determination of Comparison Criteria 

In order to compare different probabilistic models, different criteria are identified.  The 

most straightforward criterion is to compare the predicted proportions with the observed ones.  

The second criterion is the RMSE between the observed pavement conditions and the expected 

values which are defined as the weighted average of each condition state.  During that process, 

the mean of each condition state is taken as the representative value of this condition state 

because of the even discretization scheme and the physical meaning of the PSI.  The RMSE is 
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obtained by calculating the root mean square between the observed and expected pavement 

conditions.   

The third criterion is the chi-squared goodness-of-fit test which is used for measuring the 

closeness of the predicted and the observed values (Jiang et al., 1987).  The chi-squared value is 

calculated by: 

2
2

1

( )N
n n

n n

R E
E

χ
=

−=∑  (6.9) 

where k  is the number of observations; 

   nR  is recorded value of the n th observation; 

   nE  is expected value of the n th observation; and 

   2χ  has a chi-square distribution with 1k −  degree of freedom. 

6.5 Comparison Procedure and Evaluation of Results 

The methodologies of homogeneous and non-homogeneous Markov Chains and the 

duration model are described in Chapter 6.  This section presents comparison procedure and 

comparison results.  The whole procedure is illustrated in Figure 6.1.  First, the AASHO Road 

Test data set is selected as the data to conduct this analysis as discussed in Chapter 6.  Then, two 

Markov Chain models are calibrated to make predictions in the same way as the other three 

developed probabilistic models did.  Next, three criteria are implemented to compare these five 

models.  Finally, conclusions are made based on the comparison results.   
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Figure 6.1 Flowchart for Conducting the Comparison 

In order to make the Markov Chain models consistent with the probit and logit model, the 

same calibration data set is used to calibrate these models; and the same validation data set is 

used to make comparisons.  The homogeneous Markov Chain model is developed based on the 

calibration data set.  The TPM is estimated using Equation 6.1 and shown in Table 6.1.  Once the 

TPM is developed, the Markov Chain model is used to predict the probabilities of each condition 

state based on the validation data set.  The final calculation results are given in Table 6.3.  

Table 6.1 Transition Probability Matrix 

Condition State 0 1 2 3 4 

0 0.7164 0.279 0.0038 0.0005 0 
1 0 0.9157 0.0801 0.0036 0.0007 
2 0 0 0.9046 0.0921 0.0032 
3 0 0 0 0.9533 0.0467 
4 0 0 0 0 1 

Then, the expected-value method is used to develop the TPMs of the non-homogeneous 

Markov Chain model.  In order to better estimate the transition probabilities, pavement sections 

subject to similar traffic loadings are classified into one group.  Since pavement sections located 

on the same loop and the same lane were loaded with the same traffic during the AASHO Road 

Test, the pavement sections are arranged into 10 groups.  Then, for each group, the regression 

model is developed based on the calibration data set.  The regression results are illustrated in 
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Table 6.2.  As it can be seen, the 2R  values are small, indicating that the developed models do 

not explain the dependent variable PSI very well.  The reason behind this phenomenon is that, in 

addition to time, there are other variables that contribute to the pavement deterioration as well, 

meaning the current 10 groups should be further stratified to remove the non-homogeneity of the 

explanatory variables.  This leads to the limitations of the expected-value method. 

Table 6.2 Regression Model of Each Group 

Group Regression Function R Square 
Loop 2 Lane 1 y = 0.0002x2 - 0.018x + 3.7471 0.1179 
Loop 2 Lane 2 y = 6E-05x2 - 0.0225x + 3.6934 0.289 
Loop 3 Lane 1 y = -5E-05x2 - 0.0173x + 3.7783 0.2641 
Loop 3 Lane 2 y = -0.0073x + 3.5871 0.0528 
Loop 4 Lane 1 y = -0.0231x + 3.9955 0.3416 
Loop 4 Lane 2 y = -0.0241x + 3.9014 0.3172 
Loop 5 Lane 1 y = -0.0207x + 3.8739 0.229 
Loop 5 Lane 2 y = -0.0226x + 3.6791 0.2495 
Loop 6 Lane 1 y = -0.0282x + 3.9088 0.3306 
Loop 6 Lane 2 y = -0.0251x + 3.8602 0.2531 

An optimal algorithm is employed to find the optimal solutions for the TPM in each 

group.  It is worthy of mentioning that the transition probabilities are highly dependent on their 

initial values, since the objective function with respect to decision variables is not convex or 

concave over the feasible regions.  After developing the TPMs, the non-homogenous Markov 

Chain models are used to predict the probabilities with each condition state based on the 

validation data set.  The final results are shown in Table 6.3. 

The duration model developed by Prozzi and Madanat is used to calculate the number of 

load repetitions to failure for the validation data set.  Equation 6.7 is used to calculate PSIs.  The 

prediction results are also shown in Table 6.3. 

Finally, the developed ordered probit models and the sequential logit models using both 

empirical and mechanistic-empirical approaches are used as the bases for this comparison.  Their 

proportional prediction results are also shown in Table 6.3.   
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As discussed in Chapter 6, the accuracy of the proportional prediction is the first 

comparison criterion.  By examining the results of Table 6.3, it is clear that the predicted 

proportions of the ordered probit model and the sequential logit model and their mechanistic-

empirical models are very close to the actual observed values.  But the predicted values from 

both homogeneous and non-homogeneous Markov Chain models as well as the duration model 

do not match very well with the observed ones.  This comparison indicates that the ordered 

probit model and the sequential logit model and their mechanistic-empirical models are better 

than the other three models. 

Table 6.3 Comparison of Different Probabilistic Methods 

Methodology Very Good Good Fair Poor Very Poor 

Homogeneous Markov 
Chain 0.0659 0.2543 0.1754 0.2415 0.2632 

Non-homogeneous 
Markov Chain 0.0975 0.7241 0.1187 0.0279 0.0313 

Duration Model 0.3368 0.1507 0.0869 0.0655 0.3600 

Empirical 0.1903 0.5643 0.1874 0.0524 0.0056 Ordered 
Probit 
Model M-E 0.1900 0.5630 0.1904 0.0507 0.0058 

Empirical 0.1862 0.5718 0.1876 0.0502 0.0039 Sequential 
Logit 
Model M-E 0.1898 0.5611 0.1935 0.0515 0.0038 

Observed Frequency 0.1916 0.5536 0.2048 0.0437 0.0059 
Note: M-E represents Mechanistic-Empirical 

Another criterion for conducting the comparison is the RMSE of the expected and 

observed pavement conditions.  By assuming the mean of each condition state as the 

representative value of that state, the expected value is computed using the weighted average of 

these condition states.  All RMSEs are showed in Table 6.4.  It indicates that the homogeneous 

Markov Chain has poor ability to predict pavement performance in this case study.  Furthermore, 

this table also shows that the non-homogenous Markov Chain model can produce much better 

predictions than the homogeneous Markov Chain model.  The RMSE for the duration model is 

1.9643, higher than that for both the ordered probit models and the sequential logit models.  The 

ordered probit model produces the lowest RMSE.  Table 6.4 also shows that the RMSEs of the 
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empirical and mechanistic-empirical ordered probit models are smaller than those of the 

sequential logit models.  The reason for this result is given in Chapter 5.   

Table 6.4 Comparisons of RMSE and Chi-Square 

Methodology RMSE 2χ  

Homogeneous Markov Chain 2.1300 2221.972 
Non-homogeneous Markov Chain 0.6752 489.649 
Duration Model 1.9643 5427.18 

Empirical 0.6249 7.214 
Ordered Probit Model 

Mechanistic-Empirical (M-E) 0.6265 4.883 
Empirical 0.78339 9.191 

Sequential Logit Model 
Mechanistic-Empirical (M-E) 0.8088 6.885 

The third criterion is the chi-squared goodness-of-fit test.  Given the 0.95 confidence 

level, the critical value of the chi-square is 9.488 with 4 degree of freedom.  That is to say, the 

homogeneous Markov Chain, the non-homogeneous Markov Chain, and the duration model are 

not significant in terms of the goodness-of-fit test, while the developed ordered probit and 

sequential logit models are significant.  Among these ordered probit and sequential logit models, 

the mechanistic-empirical ordered probit model has the smallest chi-square value and the chi-

square value of the empirical ordered probit model is close to the chi-square value of the 

mechanistic-empirical sequential logit model.  That indicates the sequential logit models and the 

ordered probit models have good goodness-of-fit, although the chi-square value of the empirical 

sequential logit model is relatively high.  Such results are anticipated because the mechanistic-

empirical ordered probit models and sequential logit models link the primary response variables 

with the pavement performance and furthermore the latent variables are used to represent the 

propensity for pavement deterioration.   

6.6 Summary  

This chapter presents the comparison of five probabilistic models based on a common 

data set.  The comparison results indicate that the ordered probit models and the sequential logit 

models are able to yield better prediction results than the other three probabilistic models 

according to the comparison criteria.  However, the ordered probit models and the sequential 



 

76 

logit models are static; they cannot handle the dynamic nature of pavement deterioration.  

Therefore, an adaptive algorithm needs to be proposed to improve the prediction accuracy by 

taking new inspection data into consideration.   
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CHAPTER 7 ADAPTIVE PERFORMANCE MODEL 

As discussed in Chapter 2, pavement deterioration is a complicated, stochastic, and 

dynamic process.  The stochastic nature has been characterized using the probabilistic models.  

However, the probabilistic models cannot take the dynamic nature of pavement deterioration into 

consideration.  This chapter is to present the methodology of a structural state space model which 

allows the prediction of pavement deterioration to be adaptively updated with both historical 

pavement performance data and new inspection data.   

7.1 Model Structure of Structural State Space Model 

The basic structural model was proposed in the late 1960s.  This structural model was set 

up in terms of components which can be interpreted explicitly.  The explicit model structure 

allows the model to directly describe the abrupt changes of the time series through a dynamic 

linear model representation.  Generally, these abrupt changes of nonstationary processes cannot 

be removed by differencing or transforming the data with the Box and Jenkins time series.   

The essence of the structural approach is that the observations are regarded as being made 

up of an underlying level component and an irregular component.  The underlying level 

component can be further decomposed into a trend component and a seasonal component.  The 

trend component represents the long-run movements or global trends in the series, while the 

seasonal component repeats itself more or less every year.  For the pavement deterioration 

process, the seasonal pattern cannot be clearly identified in the available data sets such as the 

AASHO Road Test data, especially when the data is collected through accelerated testing.  As a 

result, the seasonal component is not separately considered in this project report.  The global 

trend can be represented by a perform model which is estimated with the least-square or other 

parameter estimation methods.  On the other hand, the irregular component defined as a local 

trend may change its directions with time, indicating that pavement deterioration should not 

count only for a global trend which is defined by the regression models (Harvey, 1996).  

Therefore, a structural deviation is proposed to capture the discrepancy of the pavement 
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deterioration from its global trend.  Consequently, the pavement deterioration process is 

decomposed into three components as follows: 

True Trend = Original Trend + Structural Deviations + Random Fluctuations 

The original trend representing the global trend is considered as prior belief which can be 

obtained using the existing deterioration models.  The structural deviations regarded as the local 

trend characterize the discrepancies based on the new available information.  The random 

fluctuations describe the random disturbances or noise.  Among these three components, how to 

model the structural deviations is the core of the structural model.  

The structural deviations designed to capture the deviations of the pavement deterioration 

from the original trend can be modeled using a polynomial trend function.  The polynomial trend 

function facilitates the formulation of a linear or quasi-linear state space form which normally 

consists of a transition equation and a measurement equation.  Once the transition equation and 

measurement equation are formulated in a linear or quasi-linear state space form, various 

algorithms can be used to estimate the state vector, with Kalman Filter being the most popularly 

used algorithm.  The development of the transition and measurement equations and the 

implementation of the Kalman Filter algorithm are further explained in the following sections. 

7.2 Transition Equation 

The original trend rtP~  of the pavement deterioration can be estimated by using the 

regression model based on the historical data set.  For example, the original trend of the 

pavement deterioration process can be obtained by using the regression model based on the 

AASHO Road Test data.  The observed trend rtP  of the deterioration process is modeled as a 

liner combination of the original trend, the structural deviation, and the random disturbance.  The 

mathematic formula is shown in Equation 7.1: 

ttrtrt PP εμ ++= ~  (7.1) 

where  rtP  is the observed trend of the deterioration process; 

rtP~  is the original trend of the deterioration process; 
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tμ  is the structural deviation of the deterioration process; and 

tε  is the random disturbance. 

In Equation 7.1, the random disturbance term tε  is assumed to follow a normal 

distribution with zero mean.  The core of developing the structural state space model is a 

polynomial trend model describing the structural deviations from the original trend based on 

following assumptions (West and Harrison, 1997): 

Assumption 1 (Polynomial Trend): Structural deviations at time ξ+t  can be 

represented by an m th-order polynomial function of ξ , given that the higher orders are assumed 

to be zero.  The structural deviation from the original trend at time ξ+t  is represented in 

Equation 7.2: 
m

mt bbbb ξξξμ ξ ++++=+ L2
210  (7.2) 

where m  is the maximum order of a polynomial model. 

Based on the Taylor’s theorem, the smooth function of ξμ +t  can be expanded about the 

point tμ  with Equation 7.3: 

2
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ξ ξμ μ ξμ μ μ+ = + + + +L  (7.3) 

Where 
( )' '', , ,
m

t t tμ μ μL  are the first, second, L , and thm -order derivative of the structural 

deviation tμ . Comparing Equations 7.2 and 7.3, it is easy to find that the polynomial coefficient 

for each derivative of tμ  in the original functional form can be obtained directly by Equation 

7.4: 
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p

μ=  (7.4) 

where p  is the order of derivative for the structural deviation tμ , normally p m≤ . 

The corresponding matrix representation for a p th-order derivative of the structural 

deviation tμ  can be generalized as Equation 7.5: 
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Using Equation 7.5, a third-order polynomial trend model t ξμ +  can be formulated with its 

third-order derivatives as Equation 7.6: 
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Assumption 2 (Evolution Process): The change of derivative tμ  can be described as 

Equation 7.7: 
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where )( p
tw  follows a normal distribution. 

That is to say, the changes of the pavement performance deviations from the time interval 

t  to ξ+t  are contributed by the increment due to a local Taylor series expansion term plus an 

evolution noise term. 

Therefore, the transition equation can be represented as Equation 7.8: 
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The complete transition equation can be written as Equation 7.9: 

tttt wxAx +=+1  (7.9) 

where ''''''' ),,,( ttttt μμμμ=x  and ''''''' ),,,( ttttt wwww=w  
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In order to obtain the prediction of performance at time t ξ+ , the structural deviation 

must be calculated based on the information at the current time.  Then, the original trend of the 

polynomial deterioration can be substituted into the initial model structure according to Equation 

7.10: 
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t

m

s
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trt s
PEPPE μξμμμ ξξξξ ∑

=
++++ +=+=  (7.10) 

It is important to point out that, during this process, the reliable estimate of the original 

deterioration trend is also important, because the structural deviations are defined as the 

deviations from the original deterioration trend.   

7.3 Measurement Equation 

The measurement equation is used to represent the relationship between observed 

variables and the defined states.  The measured variables can be represented by Equation 7.11: 

trtt vPMP +=  (7.11) 

where  tv  is the measurement noise with normal distribution of zero mean;  

tMP  is the measured trend value of the pavement deterioration process. 

Relating the measurements to the state variables defined previously, Equation 7.11 is 

rewritten as Equation 7.12: 
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It can be further transformed as Equation 7.13: 
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Then, the measurement equation can be written as Equation 7.14: 

tttt vxHz +=  (7.14) 

where  r
rttt PMP ξ+−= ~z ; 
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ttt v+= εv ; 

tH  is 1, , ,
!

m

m
ξξ⎛ ⎞

⎜ ⎟
⎝ ⎠

L . 

In the above equations, the final measurement error combines the random noise and the 

measurement error. 

7.4 Kalman Filter Estimation 

Once the linear or quasi-linear state space model is developed, the Kalman Filter 

algorithm is used to estimate its state vector.  The Kalman Filter algorithm proposed by Rudolf 

Kalman in 1960 is a recursive procedure of optimally estimating the state vector based on 

available information at time t .  The Kalman Filter estimation process is analogous to the 

process of the feedback control in the sense that the filter estimates the state vector at time t  and 

then obtains the feedback based on noise measurements.  The feedback process is also known as 

a predict-correct process, consisting of the measurement update equations called “predict” and 

the time update equations called “correct”.  The time update equations are responsible for 

propagating the current state and error covariance to attain the prior estimates in the next time 

step.  The measurement update equations are responsible for improving a posteriori estimate by 

incorporating a new measurement into the prior estimate.  The Kalman Filter estimation process 

is shown in Figure 7.1 (Welch and Bishop, 2004).   

 
Figure 7.1 Kalman Filter Estimation Algorithm Flowchart  

Time Update 
(Prediction) 

Measurement Update 
(Correct) 
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The assumption for the Kalman Filter estimation algorithm is that tv  and tw  are 

uncorrelated white noises following normal distributions: ),0(~ tt N Vv  and ),0(~ tt N Ww , 

where tV  and tW  are covariance matrices of measurement noise and process noise respectively.  

The Kalman Filter algorithm is used to estimate the states.  The Kalman Filter estimation 

algorithm is based on the Bayes’ rule where prior estimate tx̂  is related to prior measurement tz  

in terms of minimizing estimation errors.  During this process, the estimated state error 

covariance is defined by tQ  as ])ˆ)(ˆ[( '
ttttt E xxxxQ −−= .  The detailed Kalman Filter 

algorithm is illustrated as follows (Ljung and Soderstrom, 1983):  

Step 1: (Initialization) Set up initial estimates of 0Q  and 0x .   

Step 2: (Time Update Equations) Propagate the means and covariance estimates from 

state t  to t ξ+ : 

ˆ t t tξ+ =x A x  (7.15) 

t ξ+ = +'
tQ A Q A W  (7.16) 

Step 3: (Measurement Update Equations) After receiving the new measurement, the 

weighting function is updated as: 
1( )t t t t tξ ξ ξ

−
+ + += +' '

t tK Q H H Q H V  (7.17) 

The posterior means and covariance are updated as: 

( )t t t t t tξ ξ ξ+ + += + +x x K z H x  (7.18) 

( )t t t tξ+ = −Q I K H Q  (7.19) 

where I  is an identity matrix. 

Step 4: (Estimation of the New State Variables) Calculate the new estimate for the state 

of the pavement deterioration processes based on the new estimation. 

ˆ[ ]r r
rt rt t t rt tP E P Pξ ξ ξ ξ ξμ ε μ+ + + + += + + = +% %  (7.20) 

In this case, the proposed algorithm only requires prior mean and covariance statistics 

other than the historical data series.  This makes the computation more efficient, especially when 

prediction intervals are short.   
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During this process, one issue that deserves special attention is the selection of the order 

of the polynomial trend model.  Generally, a smooth curve requires the lower order, although the 

higher order of the polynomial trend models are recommended in order to capture the non-

linearity in the structural changes.  In practice, the order of the polynomial trend models is rarely 

found to be higher than three (West and Harrison, 1997).  In order to evaluate the accuracy of the 

predictions from polynomial trend models, the RMSE is used as a quantitative criterion for the 

predicted values in Equation 7.21.    

2

1

( )
T

rt t
t

P MP
RMSE

T
=

−
=
∑

 (7.21) 

where t  is the index for the observation time interval, Tt ,,2,1 L= . 

7.5 Summary 

This chapter presents the theoretical background of the adaptive algorithm.  The proposed 

method decomposes the dynamic processes into three components: the original trend, structural 

deviation, and the random fluctuation.  The polynomial trend models are proposed to 

approximate the structural deviations from the original trend.  After formulating a linear state 

space model, the Kalman Filter algorithm is employed to estimate the condition states of the 

deterioration process.  During that process, the proposed method can be easily integrated with the 

current pavement performance regression models under a coherent framework.  In order to know 

whether the proposed methodology is applicable or not, a case study using the real data needs to 

be conducted. 
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CHAPTER 8 CASE STUDY OF ADAPTIVE PERFORMANCE MODEL 

The methodology of the adaptive algorithm has been presented in the last chapter.  The 

proposed model employs a polynomial trend filter to recursively estimate and predicts the 

possible structural deviations from the prior estimated original trend of the pavement 

deterioration by means of the Kalman Filter algorithm.  In order to evaluate the feasibility and 

robustness of the proposed method, a case study is conducted to demonstrate its applicability.  

The details of the case study are discussed in this chapter. 

8.1 Simulated Data 

The proposed state space model presented in Chapter 7 is used for adaptively modeling 

the process of pavement deterioration.  The proposed model is expected to be robust under 

disruptions caused by special events such as maintenance actions and environmental factors.  In 

order to demonstrate the feasibility of the proposed methodology, simulation experiments were 

conducted to illustrate the application of the developed methodology to the prediction of the 

pavement performance.   

The data set used to conduct the analysis consists of the historical data set and the 

simulated data set.  The elements of the combined data set are illustrated in Figure 8.1.  The 

historical data is the AASHO Road Test data collected during the AASHO Road Test.  The 

AASHO Road Test data was used to calculate the original trend of the structural state space 

model.  To be more specific, the utility function of the ordered probit model developed in 

Chapter 5 was used to calculate the original trend.  The developed relationship is shown in 

Equation 8.1.   

71.19379 0.10967 0.01859 3.00657 10 0.05729n s b ESALU D D T S−= − − + × +  (8.1) 

Based on the developed utility function, individual probability with which the pavement would 

fall into each condition state was calculated.  For example, the probability for the condition state 
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“Good” can be calculated by using Equation 8.2, where Φ  is the standard normal cumulative 

distribution.   

7

7

( 1) [1.67585 (1.19379 0.10967 0.01859

3.00657 10 0.05729 )] (1.19379

0.10967 0.01859 3.00657 10 0.05729 )

n s b

ESAL

s b ESAL

P C D D

T S

D D T S

−

−

= = Φ − − − +

× + − Φ

− − + × +

 (8.2) 

 Systematic 
deviations 

Measurement 
errors 

Original  
trend 

Measurement 
values 

System 
errors  

Figure 8.1 Illustration of Data Composition 

The original trend rtP~  for each condition state was obtained by aggregating the individual 

probability nP  together at each inspection time point.  Among those five state probability curves, 

the probability curve of condition state 2 representing the “Good” pavement condition was 

selected to illustrate the feasibility of the developed method.  The calculated original trend is 

illustrated in Figure 8.2. 

If there are no abrupt changes or measurement errors, the ordered probit model is 

sufficient to provide an accurate estimation of future pavement deterioration.  However, if some 

abrupt changes caused by the environmental factors or unobserved factors occur, the non-

adaptive model may not be able to effectively reflect these changes.  In this case, the structural 

state space model can be employed to address the abrupt changes by considering them as 

structural deviations.  Given that the ordered probit model is used to define the original trend rtP~ , 

the proposed structural state space model should be implemented to update the changes of the 

probabilities in the “Good” condition state.  Once the original trend rtP~  is established, the 
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structural deviations tμ  can be approximated by a polynomial trend model.  The observed trend 

rtP  of the pavement deterioration process is modeled by a linear combination of the original 

trend, the structural deviation, and the random disturbance shown in Equation 7.1.   

Another data set used in this case study is the simulated data for testing the validity of the 

models.  The reason for using a simulated data set is that the measurement variances in the 

proposed state space model cannot be accurately obtained from the AASHO Road Test data.  

During the AASHO Road Test, some measurements were made by people based on their 

subjective judgments.  For instance, the PSI was based on the perception of road users about the 

ride quality of the pavement sections (Huang, 1993).  Although the relationship between the PSIs 

and the objective measurements was developed by using regression analysis, it is still difficult to 

clearly define the statistical characteristics of the measurement errors, which could mislead the 

assessment of the effectiveness and robustness of the proposed structural state space model.  

Moreover, the system variance is also difficult to directly quantify.  However, with simulated 

data, where measurement and system errors can be precisely controlled, the effectiveness of the 

proposed algorithm can be effectively tested.   

Once the original trend rtP~  for “Good” condition state is determined, the simulation 

method can be implemented to generate the random measurement errors with predefined 

distribution parameters.  The measurements used for testing the structural state space model are 

created by combining the original trend obtained from the AASHO Road Test data and simulated 

measurement and system errors.  With the obtained measurements of probability changes in the 

“Good” condition state, the structural state space model can be applied to estimate these changes 

by employing a transition equation, a measurement equation, and the Kalman Filter algorithm.   

8.2 Scenario Analyses 

In order to take different phenomena of pavement deterioration into account, three 

scenarios were designed to illustrate the feasibility and robustness of the proposed method: 1) 

estimate the condition states when the controlled measurement errors are inherent in the 

deterioration process; 2) estimate the condition states when the deterioration process has 

systematic mean deviations but without measurement errors; and 3) estimate the condition states 
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when the deterioration process is embedded with both systematic mean deviations and random 

measurement errors.  The three scenarios are shown in Table 8.1. 

Table 8.1 Demonstration of Predefined Three Scenarios  

Scenarios Systematic Mean Deviations Measurement Errors 

Scenario I   X 
Scenario II X   
Scenario III X X 

 

8.2.1 Scenario I 

For the first scenario, the proposed approach is to estimate the condition states when the 

deterioration process is embedded only with random measurement errors.  As explained in the 

previous section, data used in this scenario is the simulated data obtained by employing a data 

simulator to generate measurement errors normally distributed with a mean of zero and different 

levels of standard deviations.  The measurements are then obtained by combining the original 

trend and the simulated measurement errors.  Once those measurements are generated, the 

structural state space model is implemented to predict the probability of state 2 in which the 

predictions are set to start from index day 37.   

Figure 8.2 and Figure 8.3 demonstrate the probabilities predicted by the polynomial trend 

models with measurement errors defined by the normal distributions with standard deviation of 

0.2 and 0.05 respectively.   
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Figure 8.2 Comparison of Predictions for Data Embedded with Normally Distributed 
Random Errors Defined by ~ (0,0.20)t Nε               

By comparing Figure 8.2 and Figure 8.3, it is not difficult to see that smaller standard 

deviations of the measurement errors make the predicted values closer to the measured values 

than to the original trend, showing the property of the Kalman Filter algorithm.  That is to say, 

when the standard deviation of the measurement errors is large, the Kalman Filter algorithm 

tends to weight more on the prior estimation than when the standard deviations of measurement 

errors are small before it approaches to the steady state.  In addition, when the 0th-order is 

employed in the polynomial trend model, the state space model is equal to the random walk plus 

noise.   

)2.0,0(~ Ntε  

Prediction starts here
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Figure 8.3 Comparison of Predictions for Data Embedded with Normally Distributed 

Random Errors Defined by ~ (0,0.05)t Nε   

8.2.2 Scenario II 

For the second scenario, the simulated data is designed to represent a significant shift 

between the observed trend and the original trend, aiming at examining the ability of the 

proposed approach to identify the abrupt system deviations.  In this scenario, only the abrupt 

upward or downward deviations are presented.  To be more specific, a 0.1 upward deviation of 

the probability curve was imposed on index day 11.  Then, a 0.15 downward deviation was 

observed on index day 21.  Similar to the first scenario, the predictions were also set to start from 

index day 37.  The prediction results are illustrated in Figure 8.4.   

)05.0,0(~ Ntε  

Prediction starts here 
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Figure 8.4 Comparison of Predictions for Data without Random Errors but with 

Systematical Mean Shifts 

Figure 8.4 shows that the proposed model can adaptively identify the mean deviations of 

the probability curve when such deviations occur.  In addition, the prediction results are fairly 

close to the measured values.   

8.2.3 Scenario III 

The third scenario is the extension of the second scenario.  The simulated data was 

generated by combining random measurement errors and the systematic derivations which have 

been created in the first and second scenarios.  The purpose of designing this scenario is to 

investigate the ability of the developed approach to recognize the systematic mean derivations 

from the random measurement errors.  Figure 8.5 shows the estimation results where predictions 

were made from index day 37.   

By examining Figure 8.5, it is clear that the structural state space model can effectively 

differentiate the abrupt upward and downward mean changes from the measurement errors.  In 

Mean Shift 0.1 

Mean Shift 0.25 

Prediction starts here 
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contrast, the regression predictions without adaptive update still yield fixed prediction values 

which are significantly different from the real deterioration process.   
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Figure 8.5 Comparison of Predictions for Data with Random Errors tε  and Systematical 

Mean Shifts  

In order to compare the prediction accuracy of the proposed structural state space model 

with the original trend curve, the RMSEs from the structural state space models and the 

regression estimation are presented in Figure 8.6.  Figure 8.6 shows that the state space model 

can yield better predictions than the prior original trend estimation.  In Figure 8.6, the largest 

prediction errors occur on index days 10 and 20.  The relatively large errors are caused by the 

lagged responses of the model and the abrupt system deviations.  After each abrupt point, the 

structural state space model can adaptively adjust itself to yield better predictions.   

)01.0,0(~ Ntε  
Systematic Mean Shift: 0.1, 0.25 

Prediction starts here 
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Figure 8.6 RMSE Comparison between Structural State Space Predictions and Non-

Adaptive Predictions  

In order to quantify the effects of the order on the polynomial trend models, the RMSEs 

are presented in Table 8.2.  In terms of the RMSEs, the accuracy of the prediction is acceptable 

for all models, since the largest RMSE corresponding to the polynomial trend models is only 

0.07087.  Table 8.2 also indicates that the non-adaptive model has much larger RMSEs than the 

adaptive models in scenario II and III, although it has relatively smaller RMSEs than the 

adaptive models in scenario I.  Additionally, in the random measurement error situation, the 

lower order polynomial model is better than the higher order model.  However, in the mean-shift 

scenario, the higher order polynomial model is better than the lower order one.  If real-time 

information is available, higher order polynomial trend models are always recommended in order 

to capture the possible structural deviations (Zhou and Mahmassani, 2004).  Therefore, it is not 

concluded that the higher order of the polynomial function can produce better predictions.  The 

selection of the order is depended on the characteristics of the available data and engineers’ 

judgments.  Table 8.2 also indicates that the differences among different polynomial trend 

models are very small.  Such small differences imply that a low order polynomial trend model is 

acceptable for this case study.   

Prediction starts here 
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Table 8.2 RMSE Comparisons of the Four Polynomial Trend Models  

Scenarios 0th-order 1st -order 2nd -order 3rd -order 
Non-adaptive 

Prediction 

Scenario I  

)05.0,0(~ Ntε  
0.06107 0.07094 0.07002 0.07087 0.05916 

Scenario II 0.03601 0.03608 0.03614 0.03598 0.12748 

Scenario III 0.05764 0.04475 0.04021 0.03925 0.12798 

In summary, the three scenarios represent three possible situations in the pavement 

deterioration process.  The prediction results for the three scenarios indicate that the proposed 

state space model is capable of capturing the time-varying trends of the deterioration process to 

give better predictions.   

8.3 Summary 

This chapter presents a structural state space model to adaptively model the dynamic 

characteristics of pavement deterioration processes.  The case study indicates that the structural 

state space model can provide effective and robust predictions for both the deterioration 

processes associated with random measurement errors and those with significant structural 

changes.  Based on the RMSEs, the proposed structural model yields better predictions than the 

prior regression model.  In addition, the proposed method can be easily integrated with any 

existing infrastructure deterioration models.  Given these preliminary results, it can be concluded 

that the structural state space model is effective and robust for describing the dynamic process of 

pavement deterioration.   
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CHAPTER 9 SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS 

This chapter briefly summarizes the research process and findings.  Then, major 

conclusions are presented.  Recommendations for future research are also included in this 

chapter. 

9.1 Summary 

The purpose of this research is to develop a comprehensive framework for modeling the 

deterioration process of pavements, in order to assist engineers and administrators in effectively 

managing pavements through better performance prediction.  As discussed in Chapter 2, most of 

previous work in pavement performance models are either limited by their inadequate 

consideration of the stochastic nature of pavement deterioration or restricted by complications 

arising from the non-homogeneous assumptions, especially for Markov Chain models.  In 

addition, most of previously developed models are static and unable to update the parameters of 

the developed pavement deterioration models when newly collected data is available.  This 

research is aimed at capturing the stochastic and dynamic nature of pavement deterioration by 

overcoming these shortcomings of previously developed models.   

Under this comprehensive framework, the ordered probit models and the sequential logit 

models are developed, calibrated, and validated using the AASHO Road Test data.  Then an 

adaptive method is proposed to improve the prediction accuracy of pavement performance by 

taking newly inspected data into consideration, where a structural state space model is employed 

to identify any structural deviations which are then approximated with a polynomial trend 

function.  This proposed state space model structure has the ability to integrate the developed 

probabilistic models with the structural deviations.  The case study results based on the simulated 

data confirm the effectiveness and robustness of the structural state space model.   
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9.2 Conclusions 

Conclusions drawn from this study are as follows: 

1) The stochastic and dynamic nature of pavement deterioration processes can be 

effectively characterized with an integrated framework of probabilistic and adaptive models.  

The proposed framework can also be expanded to model the deterioration of other civil 

infrastructure systems;  

2) Based on the validation results, it is clear that the ordered probit models and sequential 

logit models are able to directly predict the probabilities of pavement condition states and 

characterize the stochastic nature of pavement performance.  With the proposed methodologies, 

uncertainties of pavement performance are also captured by linking the causal variables with the 

pavement condition states.  More importantly, the developed models are able to yield good 

predictions without the time-consuming process of developing the transition probability 

matrixes, especially for the nonstationary deterioration processes.  

3) The developed mechanistic-empirical models incorporate the primary response 

variables into the model specifications, extending the inference space of the pavement 

performance models beyond the original range of the AASHO Road Test data.   

4) The proposed adaptive method employs a state space model format to characterize the 

structural deviations from the original trend predicted from the proposed probabilistic models 

and estimates the parameters of the state space model using the Kalman Filter algorithm.  The 

results of the case study indicate that the proposed adaptive algorithm is effective and robust for 

updating the developed probabilistic models with new observations under most of the pavement 

deterioration scenarios.   

5) Although the methodological framework is developed and tested for pavement 

deterioration, it can be implemented and extended to describe the performance of other 

transportation infrastructure facilities.   
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9.3 Recommendations for Future Research  

The proposed methods capture the stochastic and dynamic nature of pavement 

deterioration and have the ability to better predict the pavement performance compared with 

other methods, but some limitations still exist and should be further researched. Key 

recommendations for future research are discussed as follows: 

1) The data source used in this project report is the AASHO Road Test data which does 

not include any information on the impact of maintenance and rehabilitation actions, as no major 

maintenance and rehabilitation was applied during the testing period.  Although the mechanistic-

empirical method is used to link the primary responses with the pavement performance to 

increase the inference space of the AASHO Road Test, the impact of maintenance and 

rehabilitation actions needs to be further studied with a data set including maintenance and 

rehabilitation effects on pavement sections.  Furthermore, more explanatory variables, such as 

temperature and moisture, need to be included in the probabilistic model structure, if the 

proposed methodologies are applied to in-service pavement data sets because of their 

uncontrollability and variability.   

2) For the adaptive part, a case study using a real data set needs to be conducted to further 

evaluate its stability and robustness.  The parameters of the original trend developed from the 

historical data can also be updated to better explain the underlying reasons of the complicated 

deterioration processes.  In addition, the proposed adaptive algorithm is only based on the linear 

assumption.  The extended Kalman Filter or the neural network can be employed to further 

analyze nonlinear situations. 

3) Finally, the current probabilistic models are a linear combination of explanatory 

variables.  This combination is not based on the physical principles of pavement deterioration.  

As a result, the model structure cannot avoid limitations arising from its specification form.  The 

model specification form needs to be further studied based on physical principles using certain 

methods such as experimentation or dimensional analysis.  The dimensional analysis method can 

identify a minimal set of parameters and their relationships using the dimensionless groups, 

making engineers better visualize the deterioration processes.  In addition, the dimensionless 

groups can also reflect the physical similarity if they are constant.   
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