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OVERVIEW

This is the final report pertaining to the research study “Develop-
ment and Testing of Incident Detection Algorithms." This study entailed
an empirical, data analytic approach based on data obtained from the Los
Angeles and Minneapolis freeway surveillance systems. Results include
new incident detection algorithms with significantly improved performance,
algorithms for detecting malfunctioning sensors and an algorithm for de-
tecting the lane location of an incident. This report is in four volumes,
whose contents are briefly described as follows:

Volume 1: Summary of Results - This volume provides a brief discussion
of the role and nature of electronic incident detection systems, and a
surmary of the research methodology and results obtained in this study.

Volume 2: Research Methodology and Detailed Results - This volume provides
a thorough description of the methodolegical tools and a detailed discus-
sion of analyses pertaining to algorithm development and testings The
binary decision tree structure is introduced as a basis for algorithms.

An optimization procedure is identified for automating the calibration of
algorithms. Ten incident detection algorithms are introduced and compared.
Effects of geometrics, sensor configuration, and frequency of algorithm
execution are addressed and corresponding modifications to algorithms are
jdentified. These analyses were performed entirely on data taken from the
Los Angeles system. Finally, comparative evaluations were performed using
data from the Minneapolis system, including tests pertaining to snowy-
weather. Additional study was made of malfunctioning sensors and the lane
location of incidents. '

Volume 3: User Guidelines -In this volume, the research results are used
as a basis for developing guidelines to users for implementing the sensor
malfunction, incident detection, and incident lane location algorithms.

Procedures for calibration of algorithms, and for modifications pertaining

to geometrics, sensor configuration and frequency of algorithm tests are
described.

Volume 4: Program Documentation for Evaluation, Calibration and Implemen-
tation - This volume contains documentation for computer programs which are
necessary for evaluation, calibration and implementation of the incident
detection algorithms. These include NTREE and CTREE, needed for implemen-
tation.  In addition, four routines. pertaining to time series analyses are

“included. When using Volume 4, it is particulary helpful to also have
Volume 3. '

XX



1. INTRODUCTION

This is the second of four volumes constituting the Fina] Report
of the research study "Development and Testing of Incident Detection
‘A1gorithms," sponsored by the Federal Highway Administration. ‘

The purpose of this research effort was to develop and evaluate
computer algorithms which can, from surveillance data, detect the pres-
ence of traffic incidents, e.g., disabled vehicles in the travelled
lanes. This volume delineates the methodology used in the research and
provides details of the analyses which have led to recommended algorithms
and practices. ‘ :

The development of incident detection algorithms undertaken in this
research effort is constrained by the nature of the data which are
available for processing. While more detailed forms of the data were
available for this study, the aggregated forms--occupancy and volumel--
typically used in present freeway surveillance systemsZ have been found
to provide a satisfactory basis for incident detection algorithms.

Certain incidents in the traffic stream generate patterns in sur-
veillance data that differ from most patterns occurring in incident-free
traffic. It is this difference in patterns that is exploited by the al- .
gorithms we have developed. ’ '

) Consider the two patterns of occupancy data displayed in Tables 1

and 2. Both tables contain entries each of which is the average occu-
pancy, expressed as a percentage, during the one-minute time interval end-
ing at-the time indicated. For example, in Table 1, 15 is the one-minute
average occupancy of station 21 during the minute ending at 705. This
table illustrates an incident; Table 2 illustrates heavy traffic conditions
which are incident-free.

In Table 1, the pattern is seen to include a difference in occupancy
values between stations 25 and 26 beginning at 718 which is considerably
larger than differences observed elsewhere in the pattern. This feature
or function of surveillance data has been found to be useful in incident
detection algorithms. However, we have found no single feature which is,
by itself, sufficient to define an algorithm with acceptable performance.
In the case of the feature described above, incident-free, but heavy

]Definitions of these variables are provided in Section 2.

2H.J. Payne, D.N. Goodwin, -and M.D. Teener, "Evaluation of Existing
Incident Detection Algorithms," Report No. FHWA-RD-75-39, February 1975,
prepared for the Federal Highway Administration (PB No. 241-883/AS).



Table 1. Occupancy values for incident data set 74b51501,
~ Santa Monica eastbound.

/

Entries are one-minute occupancies. Incident occurred at 7:15:40
between stations 25 (upstream) and 26 (downstream),

Direction of Travel

Stations . T
Time 21 22 23 24 - 25 26 27

' 705 5 17 15 16 16 17 15
706 15 18 13 13 15 16 15
707 6 16 15 15 15 15 14
708 14 17 17 15 17 15 15
709 5 17 17 16 16 15 16
710 16 18 18 19 15 15 14
711 17 17 19 17 16 16 15
712 18 19 15 17 18 15 15
713 15 19 17 16+ 20 18 20
714 16 17 17 17 18 18 25
715 18 19 18 16 17 20 2]
716 18 17 17 18 19 15 23
717 17 21 17 19 21 14 17
718 14 20 19 17 43 10 19
719 15 21 20 30 33 10 1
720 14 18 18 47 32 10 13
721 14 16 34 30 29 9 1
722 16 14 30 38 37 12 10 :
723 .15 19 21 37 32 10 10
726 15 27 20 46 33 1 9
725 17 37 27 35 36 11 1
726 25 32 43 30 32 12 M
727 26 20 26 33 40 11 12
728 46 20 20 42 44 12 10
729 37 38 20 4 30 15 1
730 27 42 28 41 25 14 14
731 26 32 37 30 27 14 14
732 - 34 25 29 29 37 1N 12
733 30 22 33 43 27 14 12
734 28 35 37 '32 24 13 13
735 26 44 38 32 22 12 12
736 35 28 28 29 22 14 13
737 54 33 27 30 29 12 14
738 35 42 23, 29 30 12 13
739 - 30 37 21 41 29 13 13
740 49 31 24 36 40 14 13

S/

]Data sets are described in Sections 5 and 7.

2



/

Table 2. Occupancy values for incident-free data set 74090454,
San Diego southbound.

Entries are one-minute occupancies.
Direction of Travel

: Stations S -
Tind\, 32 31 300 29 28 27 2

710 15 20 20 18 22 26 22
711 13 21 19 18- 222 28 26
712 16 19 20 19 21 32 26
713 13 18- 16 . 18 30 25 25
714 14 22 17 18 25 23 24
715 14° 20 20 26 44 29 26
716 14 18 18 25 34 26 24
717 13 21 19 36 26 2] 25
718 14 24 21 48 29 25 2
719 16 26 32 28 31 26 25
720 21 24 47 19 26 [39 @ 23
721 14 26 32 27 26 21 22
722 14 52 32 22 29 19 23
723 14 27 23 20 [50] 18 24
724 13 26 21 21 30 22 26
725 24 21 22 23 26 24 .
726 39 20 23 38 23 28 23
727 23 21 29 22 30 23
728 26 24 43 28 23 23 25
729 31 26 26 .29 22 30 23
730 30 " 22 35 22 24 23
731 31 41 21 30 17 26 24
732 37 29 27 26 23 18 26
733 26 35 22 37 22 24
734 53 22 31 21 29 26 26
735 48 21 32 21 25 22 23
736 29 28 33 39 21 24 23
737 37 33 28 26 22 30 27
738 38 29 44 2 20 23 24
739 40 25 38 2] 21 20 27
740 53 . 23 43 19 30 23 . 24
741 37 47 46 22 36 26 - 23
742 4 30 42 23 38 28 26
743 38 26 38 21" 31 22 25
744 56 24 29 33 . 29 23 22
745 64 25 24 38 27 27 24




traffic patterns can also be seen to include large differences in occu-
pancy values between adjacent stations. In Table 2 such large differ-
ences are observed at 723 between stations 28 and 27, at 725 between
stations 29 and 28, and at many other times and places. In this pattern, -
the large differences in occupancy values are associated with the passage
"of a compression or shock wave in a direction counter to the direction of
travel. Boxes isolate particularly large occupancy values assoc1ated

with one such shock wave.

This and other features of these patterns serve ‘to (imperfectly)
distinguish between incident and incident-free conditions. The algo-
rithms that are discussed here involve the use of several features which,
in combination, distinguish more clearly between incident and incident-
free conditions than algorithms based on any one feature. Three steps
in the development of good multiple-feature algorithms are:

(1) -the identification of features which tend to take on different
values under incident and incident-free conditions.

(2) - the identification of effective combinations of features.
(3) the calibration of thresholds.

. Our investigations have indicated that simple features based upon
occupancy data are consistently among the most useful features that we
have examined. More complex features,_e.g., those based upon exponen-
tial smoothing and traffic correlation! have not been found to lead to
algorithms with superior performance As a consequence all but one of
the algorithms that we discuss in detail here are based ent1re1y on
functions of occupancy.

As a convenient approaCh for combining features, we have adopted a
genera]ization of the structure of the California algorithm, illustrated
in Figure 1. The essential characteristic of this algorithm is the se-
quence of binary decisions, each of which involves the compar1son of a
feature to a threshold. Our generalized structure is that of a binary
decision tree, which involves a tree-like arrangement of binary de-
cisions. This subject is discussed in Section 3.

It can be seen that algorithms based on a binary decision tree struc-
ture will involve, in addition to several features, several thresholds.
The process of calibrating thresholds requires a careful statement of
measures of performance for an incident detection algorithm and the use
of a substantial quantity of data pertaining to both incident and incident-
free conditions. The methodology we have deve]oped for ca11brat1on is
described in Section 4.

]See Section 3,
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In addition to using algorithms to detect the occurrence of an inci-
dent, it is desirable to have them signal the continuation and termina-
tion of the incident. This could be achieved by us1ng two algorithms,
one to detect the occurrence and the second to detect ‘the termination.
Functioning of the second algorithm, of course, is conditional upon a
“signal from the first algorithm; that is, one looks for termination only

after an incident has been detected.

We have found that accommodation of this desideratum can be n1ce1y
achieved by associating a state with the traff1c condition for each
station. For example, let

State ' Designéte

0. 'Incident-free conditions
1 , Incident has occurred

2 ~ Incident is continuing

The state '1' would be set at the time that an incident was de-
tected. Subsequently, the state for that station would be set equal to
2 until the termination algorithm indicated an. end to the incident. A
revised California algorithm with a state feature is illustrated in
Figure 2. Note that the algorithm assigns a state which is indicated by
the number in the box to which the feature comparison leads. This state
is saved and used in the subsequent test for that station.

For example, suppose we take

Ty = 8

T2 = ,50

3 = .]5

T, = .50 ;

(The first three values are those most generally used in Los Angeles.)

For station 25 in Tab]e 1, we get the following states from the algo-
rithm:

‘ , j . L

Time State !

715
716
717
718
719
720

NN =000

729
730

oM
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which is interpreted to mean that the incident is detected at 718 and a -
termination signal is produced at 730. ‘

The algorithm of Figure 2 is an example of a binary decision tree
with a state, a structure we have adopted for virtually all of our algo-
rithm development. A discussion of this subject is presented in
Section 3. ' h

At this point, we would 1ike to note other capabilities which an al-
gorithm structured as a binary decision tree with a state may have. Ob-
serve in Tables 1 and 2 that the differences in occupancy values persist
in the incident pattern but do not always persist in the incident-free,

“heavy traffic pattern. We can achieve improved discrimination then by
requiring that the difference in occupancy values (e.g., as measured by

. OCCRDF) persists for two consecutive tests. To do this, we define states
as follows: , ‘ :

" State . Designates
0 Incident-free conditions

1 . Tentative incident
2 Incident has occurred
3 Incident is continuing

A refined California algorithm embodying this device is illustrated in
Figure 3. With this algorithm and the thresholds specified earlier, the
sequence of states déterminqd for station 25 in Table 1 is

Time = State

715
716
717
718
719
720
721

WWMN -0 O

729 ‘ 3
730 0

The sequence of states determined for station 28 in Table 2 is
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Time State

720 0
721 0
722 0
723 1
724 0

Note that, as compared to the algorithm of Figure 2 which does not in-
volve a check for persistence, the time of detection is delayed by one
minute and the false indication of an incident for station 28 is elimi-.
nated. Not all such false indications are eliminated, however, as can
be seen by examining Table 2 for station 32 over the interval 733-735.

Our development of incident detection algorithms was carried out with
the use of data obtained from the Los Angeles area, representing 118 in-
cidents and an average of 18 hours of incident-free conditions for each of
144 sensor stations. These developments are described in Sections 5 and
6. In Section 5, a series of algorithms are introduced that are designed
to provide increasingly better discrimination in traffic patterns, i.e.,
better algorithm performance. These developments were guided by close
" examination of algorithm performance to reveal consistent sources of false
alarms, which we then attempted to eliminate by refining the algorithm ‘
structure. The result of these developments is the identification of
several new incident detection algorithms with considerably improved per-
formance relative to that for algorithms previously identified. ‘

Implementation of an incident detection algorithm requires attention
to a number of issues which were the subject of limited studies reported
in Section 6. These issues include parameters of the surveillance system
(i.e., the configuration of sensors), the frequency of algorithm execu-
tions, adjustments for certain geometric conditions, and related algo-
rithms for the detection of malfunctioning surveillance hardware and the
identification of the lane of an incident. Results pertaining to these
issues can be summarized as follows: ‘

® Full count stations at one-half mile intervals yield better
performance, i.e., fewer false alarms while detecting the
same fraction of incidents, than partial count stations at
one-half mile intervals or full count stations at one-mile
intervals.

¢ Modifications to the algorithms we have identified to make
tests for incident conditions at other than one-minute
intervals are easily made; such modifications have minor
effects on algorithm performance.

® A procedure of adjusting algorithms to-accommodate
anomalous geometric conditions has been defined but its
efficacy is in doubt.

10



e Candidate algorithms for detecting malfunctioning sensors
are defined, with elements of these algorithms being associ-
ated with spec1f1c types of malfunctions.

e A lane 1dent1f1cat1on algorithm has bteen identified wh1ch
is both simple and quite effective.

As all of our algorithm developments were carried out with data from
a2 single. freeway surveillance system, there .can be a question of the uni-
versality of the results. To address this, several of the more promising
algorithms that were developed were evaluated using data from the freeway
- surveillance system in the Minneapolis area. These data pertain to 36 in-
cidents and approximately 15 hours of incident-free conditions for each of
72 sensor stations. Both clear weather and snowy weather conditions were
involved. The general conclusions to be drawn from the d1scuss1on of
Section 7 is that

e performance of a given algorithm will differ between facilities

e the algorithms we have developed provide a satisfactory range
of performance for systems both with and without TV survei]]ance

e use of thresholds determined by calibration on the Los Angeles
data base provides satisfactory performance, but significantly
better performance is obtained by calibration on data from the
implementing facility

e it is not necessary to use different thresholds for different
weather conditions. :

This report is concluded with a discussion in Section 8 of areas of
research which we feel merit further attention. These areas are the de-.
tection of incidents in light traffic, the use of lane-specific occupancy
data, and further study of the effects of sensor configuration.

11






‘2. PATTERNS IN TRAFFIC DATA

The development of -incident detection algorithms undertaken in this
research effort is constrained by the nature of the data that are avail-
~able for processing. The purpose of this section is to delineate the
nature of available data and to describe typical patterns in these data
that pertain to both incident and incident-free conditions.

In the course of developing and evaluating incident detection al-
gorithms, we have discovered that certain types of patterns in the traf-
fic data appear repeatedly and we have developed an understanding of
.traffic conditions which provides rational explanations for the appear-
ance of such patterns. In this section we describe and rationalize
these patterns so that the directions we took in algorithm development
can be more easily understood.

The freeway surveillance data available for this study are typical
of data generally available in freeway surveillance systems for the pur-
pose of incident detection. The sensors which were the source of the
data are induction Toops with associated electronics. Good descriptions
of this and_other hardware available for freeway surveillance are given
by Everall.l Characteristics of present freeway surveillance systems in
the Uni%ed States are described in the first interim report of this re-
search. ‘

While data made available for this study from Los Angeles were in
the form of records pertaining to each activation and deactivation of in-
dividual loop detectors, our developments were based entirely on aggre-
gated forms of these data typically used in freeway software systems--
specifically, occupancy and volume. Occupancy is defined as the: mean
activation time computed over a specified interval of time (e.g., twenty
seconds, thirty seconds, or one minute) and is generally expressed as a
percentage. For purposes of incident detection, occupancies computed as
averages over all lanes at a given location were used exclusively. Lane-
specific occupancies were used in lane identification and techniques for
detecting malfunctioning detectors. Volume is defined as the number of
vehicle crossings of a loop in a specified interval of time (e.g., twenty
seconds, thirty seconds, or one minute) and is generally expressed as ve-
hicles per lane per hour. These aggregated forms of the data can be con-
veniently displayed in tabular form, as in Table 1. We will find

]P. Everall, "Urban Freeway Surveillance and Control: The: State of
the Art," U.S. Department of Transportation, Federal Highway Administra-
tion, June 1973, (Available through U.,S. Government Printing Office,
Stock Number 5001-00058). ‘

2H.J. Payne, D.N. Goodwin, and M.D. Teener, "Evaluation of Existing
Incident Detection Algorithms," Report No. FHWA-RD-75-39, February 1975,
prepared for the Federal Highway Administration (PB No. 241-883/AS).
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repeated use of tabular forms in this report to 1dent1fy and d1scuss pat-
terns in traffic data.

2.1 INCIDENT PATTERNS

Depending upon the nafure of an incident and upon the traffic con-
ditions prevailing at the time, the pattern that develops in traff1c data
in the presence of that 1nc1dent may be one of five types. / .

The first type is the most distinctive in that it is most easily
discriminated from patterns assoc1ated with incident-free conditions.
This pattern occurs when the ‘capacity at the incident site is less than
the volume of oncoming traffic so that a queue develops upstream of the
incident site. Simultaneously, a region of light traffic develops down-
stream of the incident site. An example of this pattern is illustrated
by the occupancy data of Table 1, pertaining to incident data set no.
74051501, This pattern is c]earest when traffic is freely flowing prior
to the incident as is the case here.

- The second type occurs when the prevailing traffic condition is
freely flowing but the impact of the incident is less severe, for ex-
ample, as might result from a lane blockage which yields a capacity at
the site of the incident which is greater than the volume of oncoming
traffic. Table 3, for data set 74032203, illustrates the situation.
This situation is more difficult to distinguish from certain incident-
free patterns and, therefore, may not result in a detection.

The third type of pattern occurs, again, in freely flowing traffic
but the impact of the incident is not noticeable in the traffic data.
This may occur when the incident is a disabled vehicle in the median.
Incident detection algorithms cannot be expected to detect 1nc1dents of
this sort.

The fourth pattern is one which occurs in heavy traffic where the
capacity at the incident site is less than the volume of traffic down-
stream of the site. This difference leads, generally, to a clearance in
the region downstream of the incident. An example of this is illustrated
in Table 4 for incident data set 74032901. Here the traffic pattern
evolves rather slowly so that a distinguishable pattern develops only
after several minutes. Obviously, a very severe incident with several
lanes blocked would result in rapid development of the pattern but the
more typical situation is that illustrated by this table.

The fifth pattern occurs in heavy traffic in which the capacity at
the site of the incident is not less than the downstream volume. The
effects are then localized and are not noticeable in the traffic data.
Incident detection algorithms cannot be expected to detect incidents of
this sort.

14



2.2 . PATTERNS IN INCIDENT-FREE TRAFFIC THAT TEND TO PRODUCE‘FALSE‘ALARMS

Four types of patterns occur under incident-free conditions which
are similar to incident patterns and therefore tend to produce-false
alarms, The first of these is that related to malfunctioning detectors,
. a subject we address in Section 6. ‘

The second arises in heavy traffic in which individual vehicles ex-
perience significant speed variations. This phenomenon shows up in ‘traf-
fic data in the form of compression waves that propagate in a direction
counter to the flow of traffic. Several such waves can be seen in the
occupancy data of Table 2, An examination of these data reveals signi-
ficant station-to-station differences in occupancies of the same magni-
tude as seen in patterns related to incidents. This pattern is the most
significant contributor to false alarms for algorithms identified prior
to ogr development (at least as measured with respect to the Los Angeles
data). ‘ '

-~ The third type of pattern is associated with abnormal geometrics,
for example, that which is found at freeway-to-freeway interchanges. One
geometric situation which is particularly troublesome for algorithms in
the Los Angeles area is depicted in Figure 4. The volume of traffic at
station 31 is split between traffic proceeding northbound on the San
Diego freeway and that using the connectors to the Santa Monica freeway.
A frequent consequence is that the volume per lane at station 32 is less
than the volume per Tane at station 31 and a resultant difference in oc-
cupancies, as illustrated in Table 5 for data set no. 74042368, ‘

The fourth pattern is associated with bottlenecks, for example, at
locations with a substantial volume of on-ramp traffic. These bottle-
neck locations are such that the total demand exceeds the capacity of
the freeway. The result is a pattern as illustrated in Table 6 for
data set no. 74090462, Note the discontinuity between stations 18 and 19
until 730 and between stations 19 and 20 thereafter.

2.3 CONSEQUENCES FOR ALGORITHM DEVELOPMENT

It should be evident from this discussion that effective incident de-
tection algorithms require more than an identification of a discontinuity
in the traffic data--there are numerous such occurrences in incident-free
data. The algorithms we have developed explicitly account for the differ-
ences in the detailed nature of the discontinuities found in the traffic
stream under incident and incident-free conditions. Our developments have
led to algorithms that can always detect the first incident pattern and
can sometimes detect the second and fourth incident patterns. At the same
time, certain algorithms have been developed that are invulnerable to com-
pression waves.

A means for largely eliminating the false alarms due to geometric
anomalies has been identified and is discussed in more detail in
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Table 3. OccUpancy data for incident data set 74032203,
: Santa Monica eastbound.

Entries are one-minute occupancies. Incident occurred at 18:16 between
stations 23 (upstream) and 24 (downstream). :

Direotipn of Travel
: \\\\ Stations

>

Tme\, 19 2 21 22 u 2 -
1810 n 8 10 9 10 /
81 10 10 8 9 8
1812 11 .10 9 10 9
1813 . 10 11 9 10 8
1814 10 10 10 11 8
18156 10 10 10 8 10

1816 9 10 8 11

1817 1 9 8 10

1818 11 12 10

1819 12 11 12 1
1

8
| 1
1820 7 8 9 1
1821 N9 7 7
1822 12 13 9 9
- 1823 11 9 10 1
1824 9 12 10 10
1825 10 11T 10 11
1826 8 10
1827 8 8 1
1828 10 9
1829 9 9
1830 9 N
1831 9 8 1

1832 10 12
1833 10 8.
1834 1 10
1835 11 10

OMNMNMMNOWOWONIONO WO WWO 00~ 00~~~
—
xo&omwto—-—'ooooocnoomooootouoomoo‘\x\loooouotommuoooto@ooLOLo
f

- —_—
OWOWOWNOVWOOWEPEONOWWOOWONWIWOOMO-~D

1836 9 12 1 1
1837 10 9 1
1838 ~ 9 9 1 1 1
1839 9 12 1 1 1
1840 10 9 1 27 1
1841 11 8. - 22 1 1

- 1842 10 9 21 1 1
1843 10 10 1 19 11
1844 9 10 1 18 10
1845 10 6 23 11 10
1846 11 13 18 11 10
1847 8 8 1 1 7 "9 11
1848 11 11 11 8 7
1849 7 N 1 10 8 10 9
1850 9 8 10 10 8 8
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Table 4. Occupancy daté‘for incident data Set 74032901,
- Santa Monica westbound. '

Entries are one-minute occupancies. Incident occurred at 17:27 between
stations 27 (upstream) and 26 (downstream).

Direction of Traye]

Stations |
_TimeN, 28 27 26 25 24

1720 25 30 27 22 17
1721 25 40 28 21" 19
1722 18 38 -25 24 16
1723 18 35 27 20 20
1724 39 33 .27 22 29
1725 43 31 28 34 20
1726 25 36 ' 28 34 18
1727 22 34 26 22 15 .
1728 24 35 29 21 16"
1729 19 31 4 21 15
1730 12 40 28 20 19
1731 22 43 21 22 16
1732 15 44 17 24 19
1733 18 4] 9 24 20
1736 36 45 9 23 21
1735 29 45 10 20 21
1736 49 43 10 12 19
1737 3 40 10 12. 19
1738 29 36 9 12 14
1739 30 39 9 11 15
1740 30 3 8 1 15
1741 39 40 10 11 12
1742 49 40 4 10 10
1743 29 43 13 8 7
1744 3 35 13 13 10
1745 25 31 14 14 12
1746 40 27 13 15 13
1747 39 19 13 15 12
1748 39 21 12 14 15 .
1749 22 38 16 12 14
1750 19 29 14 .15 11
1751 15. 28 14 14 13
1752 19 30 15 16 12
1753 15 37 18 15 15
1754 m 20 18 18 13
1755 15 27 15 19 - 14
1756 4 25 15 15 14
1757 4 29 .15 18 18
1758 1M 26 15 16 18
1759 10 28 13 16 18
1800 6 14 15 15 24
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DIRECTION OF TRAVEL

=i

N

000 d

Station 31

Connector to
Santa Monica Freeway

Figure 4. Schematic of the geometry at a freeway-to-
freeway interchange in Los Angeles--San Diego
freeway northbound to the Santa Monica freeway.

18



Table 5. Occupancy data for incident-free data set 74042368,
‘ San Diego northbound.

Entries are for one-minute occupancies.

Direction of Travel

Stations - : »
_TimeN, 28 29 30 31 32

1640 - 10 14 16 17 15
1641 4 14 13 26 17
1642 15 14 16 18 12
1643 14 16 15 23 11
1644 6 14 18 . 14 1
1645 12 17 16 17 1
1646 13 13 18 14 12
1647 14 13 12 15 12
1648 12 17 16 9 9
1649 13 11 14 16 9
1650 14 16 14 11 1
1651 12 16 16 15 7
1652 13 11 16 16 10
1653 15- 16 14 13 . 1
1654 13 17 16 13 10
1655 13 14 18 16 9
1656 18 15 .15 18 9
1657 14 18 15 12 12
1658 18 17 18 16 . 12
1659 14 17 19 16 10
1700 14 14 16 16 13
1701 17 17 15 12 11
1702 21 20 15 15 11
1703 15 24 18 15 9
1704 13 25 17 16 9
1705 18 24 18 15 10
1706 16 23 19 17 10
1707 20 22 20 18 M
1708 15 21 20 19 12
1709 20 19 20 20 14
1710 18 21 19 18 N
1711 18 21 20 18 10
1712 15 19 21 2 14
1713- 19 22 17 18 12
1714 18 25 22 17 13
1715 6 27 19 17 13
1716 15 24 19 19 ' 14
| 1717 11 18 19 16 13
/ 1718 17 16 16 15 10
1719 15 20 16 16 11
1720 13 17 19 15 9
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- Table 6. Occupancy data.for incident-free data set 74090462,
Santa Monica eastbound.

Entries are for one-minute occupancies.

Direction of Travel

\ tations
;£££ég> 15 16 17 18 ] 20

710 15 14 12 24
m 17 13 27 . 28
712 16 14 25 26
713 16 17 28 28
714 17 28 31 28
715 17 31 48 25

19
19
7
15
16
16
16
17
17
17
22
16
18
19
19
19
18
19
17
19
18
19
18
732 21 30 35 22 25 26
34
30
33
37
39
38
38
37
33
36
35
40
32
27
23
24
21
22



Section 6. However, the proB]em of bottleneck patterns still remains in
the algorithms we have developed.

Incidents in Tight traffic aHe not generally detected by the algo-
rithms we have developed. Tignor! has investigated the application of
single-exponential smoothing to detection in this regime. Another poten-
tially effective means for detecting such incidents involves the use of
traffic correlation and is discussed in Section 3 and Appendix A.

1S C. Tignor, "0pefat1ona1 Analysis and Improvements for Freeway
Moving-Merge Systems," Ph.D. dissertation, University of Michigan, Depart-
ment of Civil Engineering, 1974.
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3. STRUCTURES FOR INCIDENT DETECTION ALGORITHMS

In the simplest possible form, an incident detection algorithm con-
sists of a comparison of the value of some function of the traffic data

(a feature) to a threshold, with an .incident being indicated if the value

S

- search Board, Record 495 (1974), 1-11,

is larger than the threshold, for example. Previous incident detection
algorithm developments were almost entirely of this sort,152:3,4 In de-
veloping such algorithms, a variety of complex functions of the traffic
data based upon time-series analysis techniques have been used. The
first portion of this section is devoted to a discussion of features,
including those based upon (double) exponential smoothing and traffic
correlation. : ,

We have found, however, that no algorithm which is based upon any
single feature thus far identified gives satisfactory performance.
Ratﬁer, performance in the range necessary for operational use has come
with the development of algorithms that use several features. The parti--
cular structure we have adopted for combining several features is the
binary decision with a state, which we describe in Section 3.2.

3.1 FEATURES

Features which we have used in defining incident detection algorithms
can be categorized as simple features and time-series features.

3.1.1 Simple Features

The variables, occupancy and volume, upon which all the features are
based are defined as follows: ' -

occ(i,o,t) the one-minute occupancy, expressed as a percent,
‘ at station i, averaged across all lanes.

]A.R. Cook, “The Detection of Capacity Reducing Incidents on an Urban
Freeway using Traffic Stream Measurements," Ph.D. dissertation, Univer-
sity of Michigan, Department of Civil Engineering, 1972.

2A.R. Cook and D.E. Cleveland, "The Detection of Freeway Capacity-
Reducing Incidents by Traffic-Stream Measurements,” Transportation Re-

3K.G. Courage and M. Levin, "A Freeway Corridor Survei11ance‘Inforh
mation and Control System," Texas Transportation Institute, Research
Report 488-8, December 1968. ,

4H.J. Payne, D.N. Goodwin, and M.D. Teener, "Evaluation of Existing
Incident Detection Algorithms," Report No. FHWA-RD-75-39, February 1975,
prepared for the Federal Highway Administration (PB No. 241-883/ AS).

H Preceding page bluﬂ}
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0CC(i,j,t)  the one-minute occupancy, expressed as a percent,
at station i, lane j, for j>1.

VoL (i,0,t) the one-minute count, expressed as vehicles per
. lane per hour, at.station i, and averaged across

all lanes.
VOL(i,j,t) ~ the one-minute count, expreésed as vehicles per

lane per hour, at station i, lane j, j>1.

For example, using Figure 5 to illustrate, 0CC(1,2,t) is the occupancy in
lane 2 of station 1; 0CC(2,0,t) is occupancy averaged across all lanes at
station 2. Our convention will be that station i is the upstream station
and station i+1 is the downstream station. The number of lanes at.sta-
tion i is denoted by N(i). ‘ ' ‘

In the evaluation of algorithms available at the initiation of this
study reported in our first interim report,1'eighteen simple features
were identified, Based upon the results of that evaluation, we have
limited our attention to the occupancy and volume variables and those de-
fined in Table 7. Only those simple features which are based upon
occupancy and/or volume averaged over all lanes at a station were used
in incident detection algorithms. Lane specific features are used in
algorithms for detecting malfunctioning sensors and for locating the lane
of an incident. Note the convention that an initial 'D' in a feature name
indicates that downstream data are involved, e.g., DOCC(i,t) is the occu-
pancy at the station downstream of station i. :

T ' L

The feature DOCCTD appears in the California Algorithm. The time lag
used in this feature, here two minutes, was 20 seconds in the original
California Algorithm. Experience in Los Angeles led to the change to the
two minute lag. ,

3.1.2 Time-Series Fgatdres

Of the simple features defined above, only DOCCTD and SPDTDF (defined
in Table 7) involve values of the traffic variables at more than one in-
stant. The remaining simple features thus provide measures of the traffic
pattern at one instant of time (actually, averaged over one minute). One
characteristic of incident-generated traffic patterns is the typically
abrupt development of a discontinuity in the traffic stream, particularly, _
e.g., as quantified by occupancy. Time-series techniques provide a basis
for detecting such temporal discontinuities in occupancy, volume, in fact,
in any of the simple features we have defined. The general idea is that
the time series of the values of a feature can be used to forecast a

]H;J. Payne et aJ;, Ibid.
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DIRECTION OF TRAVEL

Station 1, N(1) Lanes ‘ Station 2, N(2) Lanes

Figure 5. Lane sensor notation.
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Table 7. Definitions of simple features.

Feature Description ' Definition

DOCC(i,t)]' Downstream occupancy 0CC(i+1,0,t)

OCCDF(i,t)  Spatial difference in 0CC(i,0,t) - OCC(i+1,0,t)
occupancies :

OCCRDF(i,t) Relative spatial difference OCCDF(i,t)IOCC(i,O,t)
~in occupancies ‘ :

DOCCTD(i,t) Relative temporal difference [0OCC(i+1,0,t-2)-0CC(i+1,0,t)]/

in downstream occupancy occ(i+1,0,t-2)
sPD(i,t)2  Speed VOL (4,0,t)/[0CC(1,0,t)xG]
SPDTDF(i,t) Relative temporal difference [SPD(i,t-2)-SPD(i,t)]/
' in speed - SPD(i,t-2)
_ _ 4
0CCL5(i,j,t) Five-minute average lane- /5 Y. occ{i,j,t-k)
specific occupancy k=0
4
VOLL5(i,j,t) Five-minute average lane- 1/5 3 VOL(i,j,t-k)
specific volume k=0
.SPDLS(i;j;t)Z Five-minute average lane- VOLL5(i,j,t)/[0CCL5(1,],t)xG])
specific speed ‘ - _
, ‘ 4
0CC5(i,t) Five-minute average 1/5 Y, occ(i,0,t-k)
occupancy k=0 .

1‘In the first interim report, this designation was used for the
_standard-normal-deviate feature.

2The G-factor appearing in this definition is empirically determined
so that SPD (and SPDL5) are estimates of speed in miles per hour. The
- factor used in this report is 2.86 and was determined from Los Angeles
surveillance system data. See Appendix D.
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future value (e.g., the value at the time of the next algorithm execut1on)
and that an incident will cause a significant discrepancy between the
actual and forecasted value. Here, we will delineate two time- -series.
approaches which lead to two classes.of features.

3.1.2.1 Double Exponential Smoothing
For'any time series, say {f(t,+kA), k=0,1,...,K}, where A is the time

interval betweeq sampies, the tecﬁn1que of doub]e exponential smooth1ng
can be applied.' The procedure is defined as

s](t) a f(t )_ (1-a)s1(t-1) (1)‘

sz(t) s](t) + (1-a)sz(t-1)' (2)

- The parameter a is termed a smoothing constant. The time series s1(t
and s,(t) are the exponentially and double exponentially smoothed series.

A linear prediction, ?(t) for the coming minute (1=1) is developed
from these smoothed series by means of the following equations. They’
are the means by which the model corrects for a trend.

Let X |
Cf(t) = A(t) + B(t) (3)
where | |
A(t) = 2 5q(t) = s,(t) (4)
and '
B(t) = ryo7 (51(1) - sp(8)) . (5)

The forecasting error is then

e(t) = F(t) - f(8) . (6)

The indication of an incident is based on the track1nq signal, defined in
~ terms of the error series as follows:

Cy(t) = y(t-1) + e(t) (7)
z(t) = y(t)/m(t-1) . (8)

]R.G.-Brown, Smoothing, Forecasting and Prediction of Discrete Time
Series, Englewood Cliffs, N.J., Prentice-Hall, 1963.
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The series z(t) is the tracging signal; m(t) is an exponentially smoothed,
mean absolute deviation defined parametrically in terms of a smoothing
constant o by - : ‘ -

m(t) = ale(t)] + (l-a)m(t-1) . (9)

The use of m(t) in equation (8) is intended to normalize the tracking
signal on the basis of a current estimate of variability.

. Computations based on equations (1), (2), (7), and (9) require ini-
?1?} values for s1(t),,sz(t),-y(t)‘and m(t), which have been chosen as
ollows: \ ‘

s1(t) = Flty) ~(10)
spltg) = fltg) » (1)
y(tg) =0 , o (12)
and |
n(ty) = oy wroesy | (13)

where o is the standard deviation of the error1 computed from the first
six values. Reflecting this, t; is taken to be t +5a, and the computa-
tion of the tracking signal from equation (8) begins at t,+A.

Based upon results reported in the first interim report, our atten-
tion in the use of double-exponential smoothing has been restricted to
the feature SOCCDF, defined by equation (8) when f(t) is taken to be
OCCDF as defined in Table 7. The parage&ers a and o were those found to
be most effective in a previous study,<:° i.e., a = .3 and o = .1,

3.1.2.2 Traffic Stream Correlation

When viewed from above, the arrangement of vehicles on a roadway

~ forms a pattern. In light traffic, this pattern tends to be stable with
time and moves along with the vehicles, changing slowly as it does. At
higher traffic levels, this pattern changes more rapidly due to the in-
crease in inter-vehicle conflicts. When traffic is very congested and
vehicles undergo marked acceleration-deceleration cycles, a different
kind of stable traffic pattern develops in the form of waves (or regions
with closely spaced vehicles) which move in the upstream direction.

These stable traffic patterns are reflected in the traffic data re-
corded from sensor stations in the form of a statistical corre1ation of

]R.G. Brown, Ibid. -
§A.R. Cook, Ibid. .
A.R. Cook and D.E. Cleveland, Ibid.
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fluctuations between adjacent stations. In this section, we disCUSs.thg
theoretical basis for such correlation and develop analytical relation-
ships for identifying such correlation in traffic data.

The theory of Lighthill and Whixham] suggests that irregularities
or small disturbances in a traffic stream are propagated at a character-
istic wave speed defined as the slope of the tangent to the volume-density
- curve at the point defining the traffic conditions (see Figure 6). Under

Slope equals
wave speed

Volume

Denslty

Figure 6. The wave speed in a traffic stream.

free-flow conditions, the wave speed is very nearly the mean traffic
stream speed; as the traffic density increases, the wave speed decreases,
reaching zero at capacity. At even higher densities, this theory pre-
dicts a negative wave speed.

The implication of this theory is that in uncongested conditions,
j.e., at lighter densities with corresponding volumes below capacity,
traffic fluctuations observed at an upstream station should be observa-
ble at a downstream station with a time lag defined by the ratio of the
separation distance to the wave speed. Near capacity, the wave speed is
near zero, leading to large time lags. This, combined with the redistri- -
bution of the traffic pattern which occurs over a period of time, largely
eliminates the correlation of traffic fluctuations suggested.

1M.q. Lighthill and G.A. Whitham, "On Kinematic Waves II. A Theory
of Traff1c Flow on Long Crowded Roads," Proc. Royal Society of London,
Series A, Vol. 229, (1955), 317-345,
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The theory also suggests that, in congested conditions, fluctuations
at a downstream station will propagate upstream. This has been previously
observed, 1 as seen in table 2, and is a frequent cause of fa]se a]arms in
incident. detection algorithms.

The upstream-to-downstream correlation of traffic.fluctuations sug-
" gested by this theory and observed in'traffic data in the lighter den-
sity regime has served as the basis for previous attempts to detect
incidents by looking for disruptions in the traffic correlation.

(An alternative approach to the detection of incidents in this 11ghter
density regime is-described by Tignor. 5)

The approach taken here is to take advantage of traffic correlation,
both upstream to downstream--as observed in light to moderate traffic--
and downstream to upstream--as observed in congested traffic, to improve
the forecast of traffic variables. Thus, for example, a fluctuation in
incident-free traffic which gives the instantaneous picture of a discon-
tinuity would be accounted for and,.therefore, would not give rise to an
unusual forecast error, On the other hand, a fluctuation due to an inci-
dent would not be reflected in the traffic correlation and, therefore,
would result in unusually large forecast errors.

The detailed developments of the traffic correlation feature are con-
tained in Appendix A as are some preliminary results-obtained with its
use for incident detection. Examination of th%se developments reveals a
close connection to the Box-Jenkins technique.® That is, the form of the

1T. Lam and R. Rothery,"The Spectral Analysis of Speed Fluctuations
on a Freeway," Transportation Science, Vol. 4, (August 1970), 293-312.

2J L. Barker, "Determination of Discontinuities in Traffic Flow as a
Factor in Freeway Operation Control," Traffic Engineering, Nov. 1961,
11-17,50.

3M. Sakasita and A.D. May, "Development and Evaluation of Incident
Detection Algorithms for Electronic Detector Systems on Freeways," Special
Report, Institute of Transportation and Traffic Eng1neer1ng, University of
California, Berkeley, Calif., 1974,

4C.L. Dudek et a1.,?Detect1ng Freeway Incidents under Low Volume
Conditions," presented at the 1975 Annual Meeting of the Transportation
Research Board, Washington, D.C., 13-1/ J‘huary, 1975

55 C. Tignor, "Operational Analysis and Improvement° fcr Freeway
Moving-Merge Systems," Ph.D. dissertation, University of Michigan,
Department of Civil Engineering, 1974. |

6George E. P. Box and Gwilynn M. Jenkins, Time Series Analysis Fore-
casting and Control, Holden-Day, 1970. . :
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forecast which is used is one included in the Box-Jenkins approach, but

we used means other than that technique to identify the form of the fore- |

cast and the forecast model coefficients. In general, we found traffic to

. be too irregular for application of the Box-Jenkins technique. "~ In fact,
our procedure involves on-line identification of forecast model coefficients.

Based upon our preliminary examination, it appears that this approach,
on its own, is not sufficiently distinctive of incidents to provide the
basis for operational incident-detection algorithms. As we have noted, as
the traffic condition approaches capacity flow, station-to-station traffic
correlation tends to disappear. :

The traffic correlation feature may yet prove to be useful for detec-
ting incidents in light traffic. This conjecture derives from a limited
number of tests in light traffic where we found correlation to be a consis-
tent phenomenon. On the other hand, the downstream-to-upstream correlation
associated with very heavy traffic, while observed, was found, even with an
on-line procedure for computing forecast model coefficients, to lack suf-
ficient regularity.to be useful for incident detection. Fortunately, other
means were eventually identified (see Section 5.4) to successfully suppress
false alarms due to compression waves. ‘

3.2 BINARY DECISION TREES

To develop and test incident detection algorithms which use several
features, we have.adopted the general structure of the binary decision
tree. In this discussion, we are concerned, first, with those without
states. We shall describe and illustrate the coding of trees so that one
can use the function NTREE to represent an incident detection algorithm,
We shall also specify the rules for coding which must be followed. A sub-
routine CTREE has been developed that examines a tree coding to check for
errors. Application of this function will be illustrated.

Next, we shall take up a discussion of binary decision trees with
states. We shall see that coding is carried out in the same manner’'as for
decision trees without states since the state can be handled as an addi-
tional feature. Hence NTREE and CTREE are also applicable to trees with
states, ' N "

Documentation pertaining to the function NTREE and the subroutine CTREE
is provided in Volume 4 of this report.

3.2,1 Binary Decision Trees Without States

A binary decision tree consists of a set of nodes connected by 1links
- to form a tree-like structure. A node is either @ decision node or a

terminal node. A decision node consists of a comparison of a feature to
a threshold and a specification of two successor nodes--one which is next
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to be examined if the comparison is true, and the second, if the compari-
son is false. The elementary building block of a binary decision tree-is
illustrated in Figure 7. Each successor node may be a decision node or a
terminal node. The root node is the first decision node.

Decision Node

/ . . \‘
Feature > Thresho;a '

True
True Successor False Successor
Node

~ Node

Figure 7. Elementary Building Block
of a Binary Decision Tree

A terminal node consists of an assignment of a state value. For
purposes of coding an incident detection algorithm, state values are
- chosen to represent incident-free or incident conditions. Later we shall
see how we can make use of the state value to represent a more complex
variety of traffic conditions.

The California algorithm has the structure of a simple binary deci-
sion tree. In Figure 8, this algorithm is again illustrated along with
the nomenclature we have introduced above. .

To define a binary decision tree representing an 1nc1dent detect1on
algorithm, one must

label decision nodes

assign terminal state values

specify the feature associated with each dec1s1on node, and
specify the threshold associated with each decision node

Bwnrn—

Labeiing Deoision Nodes

Decision nodes are labeled by integers, 1,..., N, where N is the
total number of decision nodes.  The first decis1on node, also known as .
the root node, must be Tabeled '1'. The rema1n1ng dec1s1on nodes must
be numbered so that a successor node number is larger than the corre-

sponding decision node.

Terminal State Values

A terminal state value is assigned to each terminal node. Each such
value must be a nonnegative integer. The user must associate his own
meaning with each terminal state value. ,
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OCCOF > T,

Decision
Node

Terminal
Node

Decision -
Node

OCCRDF > T

Terminal
Node

' State Designates

Decision
Node 0 Incident-free

condition
1 Incident condition |

DOCCTD > T3

O Terminal
Node

Terminal
Node

True

Figure 8. The California algorithm ebnsidered
‘ as a binary decision tree.

Feature Specification

It is assumed that feature values will be provided to the function
NTREE in the form of a vector FEATS. For each decision node one must
identify the correponding location in the FEATS vector for the appropriate
feature value. ' ‘

Threshold Specification

It is assumed that the thresholds will be provided to the function
NTREE in the form of a vector PARMS, This vector is of length N, equal
to the number of the decision nodes. PARMS(J) is the threshold used at
the decision node whose number is J. :

An array NTR is used to code the structure of the decision tree.
It contains information pertaining to each of the decision nodes. NTR
is organized as a sequence of N 3-tuples, one 3-tuple for each decision
node. The first element in the 3-tuple is the identifying number of
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the feature whose value is to be tested at that node. The second element
is either a decision node number or a terminal state designation which
will be selected if the value of the feature is greater than or equal to
the value of the threshold associated with this node (true successor node).
The third element is the decision node number or terminal state designa-
tion to be selected otherwise, i.e., if the feature is less than the
threshold (false node). In order to distinguish between the two possible
meanings for the second and third elements, i.e., as a decision node num-
ber or as a terminal state designation, we use the convention that ter-
minal state values are coded as their negative. Thus, if the second or
third element is greater than or equal to one, it will be interpreted as
a decision node number; otherwise the negat1ve of the number will be
taken to be the terminal state value.

Exercise of the function NTREE is made in the form
I = NTREE(NTR, PARMS, FEATS)

The variable I is set equal to the value of the terminal state reached
after successive comparisons of feature values teo thresholds.

Examg]e Consider the California algorithm illustrated in Figure 8.
Node Tabeling and feature designation is illustrated in Figure 9. Note
that terminal state values are indicated by nonnegat1ve integers within
boxes which represent terminal nodes. This is the value which NTREE
would return if comparisons of the feature values to corresponding
thresho]ds lead to this terminal node.

For this example, there are three decision nodes (N=3). The array
NTR would be chosen as follows:

Value - Meaning
NTR(1) 1 Feature 1 is used at decision node 1
Decision ) NTR(2) 2 If feature 1 > threshold 1, 9o to
Node decision node 2
T [NR(3) 0 If feature 1 < threshold 1, the
‘ terminal state is O ,
NTR(4) 3 - Feature 3 is used at decision node 2
Decision | NTR(5) - 3 If feature 3 > threshold 2, go to
Node : decision node 3
-2 NTR(6) 0 If feature 3 < threshold 2, the
‘ terminal state is 0
NTR(7) . 2 Feature 2 is used at decision. node 3
Decision /| NTR(8) -1 If feature 2 > threshold 3, termi-
Node nal state is 1
3o NTR(9) 0 If feature 2 < threshold 3, termi-

nal state is 0
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Node 1:
Feature 1 2 Threshold 1

Node 2:
Feature 3 > Threshold 2

false Feature No.

2
Node 3: 3
Feature 2 > Threshold 3 ,
/ State
tru false
0

Figure 9. Coding the California algorithm as

a binary decision tree.
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Note that terminal state values are d1st1nguished from decision
node numbers by the fact that terminal state values—are coded as their

negative.
After some experience with coding, it 1s found to be convenient .
"to write NTR in the form
NTR(1), NTR(2), NTR(3)
NTR(4), NTR(5), NTR(6)-

so that in this example we have

1, 2, 0.
3, 3, 0
2, -1, 0

Note that the 1abe11ng of the decision node for wh1ch the 3- tup]e is per-
tinent is implicit in the order of NTR.

Continuing with this example, if we now specify the N-tuples PARMS
and FEATS, we can call the function NTREE and get back a terminal state
value. For example, if we set PARMS = (8, 15, .15) and compute feature
values from Table 1, station 25, we obtain the fo110w1ng sequence of ter-
minal state values:

Time State
715 0
716 0
717 0
718 . 1.
719 n
720 0

3.2.2 Binary Decision Trees with States

You may think that we have already been discussing states in connec-
tion with binary decision trees, and, if so, you are right. The new con-
cept that we introduce here is that the state value determined from a
call to NTREE can be saved and used as a feature in a subsequent call to
NTREE. Assuming that you have mastered the coding procedure described
above, you will be pleased to know that coding of binary trees with
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states is done in precisely the same way. Hence we can broceed immedia- .
tely to an example. ‘ )

R Example. Cons1der the version of the Ca11forn1a algorithm presented
in Figure First, we draw up a bipary tree representat1on with nodes
and features numbered as indicated in Figure 10. You should be able to

easily verify the fo11ow1ng NTR table:

| 4, 2, 3
s'zso
4, 0
5,0
9'130

3
]
3
2

With PARMS = (1, .5,‘8,. 5, .15), one gets the sequence of states pre-
viously identified in connection with this algorithm in -the introduction.

3.2.3 Validity Checks.for Coding Algorithms

The cod1ng of an incident detection algorithm must satisfy certain
requirements in order that NTREE functions properly. After the NTR array
and the PARMS vector are defined by the user, they should be checked, using
sub-routine CTREE, to determine if NTR defines a legal tree. When the sub-
routine is called (using CALL CTREE (NNODES NTR, PARMS), wnere NNODES 1is
the number of nonterminal nodes, NTR is a vector 3xNNODES long, and PARMS
is a vector NNODES long), the tree definition is printed (on the default
printer unit, using PRINT statements), unless an error is found in the NTR
definition. The types of errors that are detected by CTREE are:

1. NNODES is not in the range of 1-100

2. Illegal branches, i.e:., a branch leads to its own parent node
or to a node whose number is larger than NNODES

More than one branch leads to the same node
More than one node has no parent node

‘No root node _'

Root node is not the first node (number 1)

-~ OB oW

Node appears before its parent node

If any of these errors are found, a message is printed and the pro-
gram is. halted. Otherwise, a tree description is printed. For example,
to represent the algorithm of Figure 10 the following statements are
used:

DIMENSION NTR(15), PARMS(5) .

DATA NTR/4,2,3,3,-2,0,1,4,0,3,5,0,2,-1,0/
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Node 1:
State (Feature 4) >

True - False
Node 2: Node 3%
Feature 3> T, Feature 1 > T,
' ' ‘ False
- True False True n
S , |
Node 4: Feature

Feature 3 2 _No. Name

' 1 OCCDF

False 2 DOCCTD

‘ 3 OCCRDF

frue ) 0] 4 State

lode 5:
Feature 2 2 T5
Terminal .
State Values Meaning
False 0 Incident-free
Truej/ : 1 Incident
occurred
‘ ‘ 2 Incident con-
tinuing

F1gure 10. Coding of a version of the California algorithm
as a binary decision tree with a state.
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To specify threshold values, one might use

DATA PARMS/1.,.5,.8,.5,.15/
_The following call: CALL CTREE(5, NTR, PARMS) will produce this output.

© TREE STRUCTURE SCAN ¥k

NODE 1.

NODE 2.

NODE 3.

NODE 4.

NODE 5.

IF FEATURE 4 IS GREATER THAN OR EQUAL TO 1.00E+00, GO TO
NODE NUMBER 2. ELSE, GO TO NODE NUMBER 3.

IF FEATURE 3 IS GREATER THAN OR EQUAL TO 5.000E-01, TERMINAL
VALUE = 2, ELSE, TERMINAL VALUE = 0.

IF FEATURE 1 IS GREATER THAN OR EQUAL TO 8.00E+00, GO TO
NODE NUMBER 4, ELSE, TERMINAL VALUE = O.

IF FEATURE 3 IS GREATER THAN OR EQUAL TO 5. OOOE -01, GO TO
NODE NUMBER 5, ELSE, TERMINAL VALUE = 0. '

IF FEATURE 2 IS GREATER THAN OR EQUAL TO 1.500E-01, TERMINAL
VALUE = 1. ELSE, TERMINAL VALUE = 0.
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4. EVALUATION CRITERIA AND CALIBRATION METHODOLOGY

The performance of an incident detection algorithm can be measured in
terms of the fraction of incidents detected, i.e., the detection rate,
and the instances in which a test of incident-free data yields an inci-
dent signal. The rate of such false signals is the false alarm rate.
These criteria are formalized and discussed in Section 4.1. -

_ In choosing a set of thresholds for any incident-detection algorithm,
it is seen that a tradeoff between the detection rate and the false alarm
rate is involved. Improvement of the detection rate is generally had at
the -cost of an increased number of false alarms. Threshold selection or
calibration involves adjustment of thresholds to achieve points on a
tradeoff curve defining "noninferior" performance, a concept discussed
in Section 4.2. For multiple-feature algorithms, calibration involves
solution of a set of optimization problems in which the false alarm rate
is minimized, subject to a minimum detection rate. ‘

The evaluation and calibration methodologies have béen embodied in
a computer program, CALB,.described briefly in Section 4.3. and documented
in Volume 4 of this report. A discussion of data requirements for exer-
cising this program is also contained in Section 4.3. :
4.1 EVALUATION CRITERIA

Simplifying things somewhat, four possibilities arise when an incident
detection algorithm is executed, as indicated below.

Actual Condition

Incident-free Incident
Condition indi- Incident-free Missed Detection
cated by ,
algorithm Incident False Alarm - Detection
(Rate: a) (Rate: B)

In this section, the concepts of detection and false alarm rates are fgr-
malized and the fundamental need to trade off detection capability against
the false alarm rate is brought out.

‘As we have seen, the result of one execution of an incident-detection
algorithm structured as a binary decision tree with a state is the assign-
ment of a value to the state variable. The possible values of the state
variable are chosen to represent, at a minimum, incident-free or incident
conditions. It is useful, both operationally and for developing perform-
ance measures, to use distinct state values to distinguish between the
first incident signal and the continuation of the same incident.

'For convenience in our discussion here, we will assume the following
values of the state are possible:
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State  Designates

0 Incident-free conditions'
1 Incident occurred
2 Incident continuing

Algorithms may have more poss1b1e state values or may use different state
values with the same meanings, but these values are sufficient to define-
the performance measures

The results of the application of an 1nc1dent detect1on algorithm
to data pertaining to a section of freeway over a specified interval of
time can be conveniently displayed in tabular form, e.g., as in Tables 8
and 9.

In the instance of the incident-free data (Table 8), one can easily .
count the number of incident signals or false alarms, equal to the number
of 1's in the table. Note that a '2' indicates continuation of the in-
cident and is not counted as a false alarm. Accumulating the results
over a number of incident-free data sets and defining

NF Total number of tests perforﬁed by the a]gorithm

NFA Total number of false alarm signals generated by the

algorithm,

the false alarm rate can then be computed as

a - false alarm rate 5'100 . NEA"
F

(percent)

Assessment of results pertaining to incident data sets is carried out
somewhat differently. For each such data set, we want to know if the
incident was detected. However, for a signal to be useful, it is neces-
sary that (1) it be generated within a reasonable interval following the
occurrence of the incident and (2) it be associated with a station or a
section near the location of the incident. Specifically, we have required
that, to be counted as a detection, a signal be generated in a time-space
set such as that enclosed within a box in Table 9. For purposes of comput-
ing performance measures, we have adopted the requirement that the signal
be generated

(1) At a station either. 1mmed1ate1y upstream or 1mmed1ate1y down-
stream of the incident site, and

(2) Within a time 1nterva1 extending from five minutes before to

twenty minutes after the (estimated) time of occurrence of
the incident."
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State values prbduced by the California al

gorithm

Table 8.

for the incident-free data set 74090454."°

Direction of Travel

Stations

QL 0.|2345678901234567890.‘234567890
= 3333333333444444444\455555555550
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Table 9, State values produced by the California a]gorifhm*
for the incident data set 74051501, Santa- Monica éastbound.

- Incident occurred at 7:15:40.between stations 25 (dpstream)
and 26 (downstream).

Stations - | ,
Time 18 19 20 21 22 23 24 25 26

700
701
-702
- 703
704
705
706
707
708
709
710
M
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727 -
728
729
730
731
732
733
734
735

(Vo]

Space-time set used
for computing detec-
tion rate.

OO0 OCOOOOCOOOCOOO0OOO0OOOCOO0OOO0O OO0 O0OOCOOoCoOoOOoO
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The reason for using a time interval that extends earlier than the time

of detection is that the time of occurrence of the incident is an estimate
extracted from data. We did not want to exclude a valid detection because
of an erroneous estimate of the time of occurrence of the incident. Two
-stations were used for similar reasons--the location assigned to the in-
cident cannot in all cases be assumed to be correct. We emphasize that
detection performance depends upon the time-space sets chosen.

Having adOptéd a convention for counting detections, we then define

NI Number of incident data sets
ND Number of incidents detected
and then
‘ ND
= detection rate = 100 - W
(percent) I

A second aspect of detection performance which is of importance is
the speed of detection, or delay time from occurrence of an incident to
its detection. For each of the ND incidents which are detected, we can
compute

Interval from estimated time of
occurrence to time of detection.

i=1, ..., ND

These results can be displayed in several ways. For our purposes, we
have chosen to compute the mean time to detect (among incidents detected),

and to generate a cumulative distribution from

ND(t) Number of incidents detected in time
less than or equal to t

?ec1f1ca11y, we have generated plots of N (t)/N versus t e g , as dis-
ayed in Figure 11 for the California a1g8r1thm

=,15). Note that with our convent1on for countiné 1nc1d ts. %he de-
tgct1on rate, g8, 1s equal to 100 Np(20}/H;.

4.2 THRESHOLD CALIBRATION METHODOLOGY
An algorithm is defined by a binary tree structure and a set of

thresholds, T = {(T., j=1,...,n)}. For each value of T, one can derive
the false alarm rate (T) and the detection rate g(T). This pair, [a(T),
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B(T)], can be d1sp1a¥ed as a point 1n a plane, Figure 2. For convenience,
the pair [a( ), B(TX)] is labeled 'k'.

_ Associated with any point 'k', (for example, '1'), there is a region
(for '1', the shaded region) which is dominated by that point; that 1s,
performance pairs in the region have false alarm rates at least a(T ) and
detection rates not greater than B(Tk) Points in this region (e.q.
points '2' and '3') are inferior since better performance is ach1eved by
the use of TK. A point which is not inferior to any other point is non-
inferior. The set of noninferior points defines the tradeoff curve for

that aTgorithm. Points '1%, '4', '5', and '6' of Figure 12 are non-
inferior.

In Figure 13, performance pairs are plotted for Algorithm 7, i1lus-
trated in Figure 14. Inferior points are identified by open circles.
The solid circles denote points that are noninferior among points repre-
sented by circles. The points represented by circles were generated by -
evaluating this algorithm for the 540 threshold sets obtained by all
gos?1b1e combinations for which individual thresholds were chosen as

ollows:

T.I = 8, 10, 12, 14, 16, 18, 20, 22, 24, 26
T2 = .30, .32, .34, .36, .38, .40
T3 = 12, 13, 14, 15, I6, 17, 18, 19, 20

Thus, one could identify the tradeoff curve for a particular algorithm by
selection from performance results obtained for a large co11ect1on of
specified threshold sets.

However, we note that a noninferior,point can be character1zed as
the solution to an optimization problem: ‘

Problem P(y):

min fo(T) ,{B(T) - }J = o (T*)

That is, the algorithm is noninferior with the threshold set T* if the
false alarm rate o«(T*) is least for all choices of threshold sets which
produce a detection rate not less than g(T*). Calibration of an.algorithm
consists of solvinga collection of such problems, each with y taken to

be a specified detection rate. ,

T4, 4. Payne, E. Polak, D. C. Collins, and W.S. Meisel, "An Algor-
ithm for Bicriteria Opt1m1zat1on Based on the Sensitivity Funct1on,"
IEEE Trans. Auto. Cont., Vol 20, No. 4 (August 1975), pp 546-548.
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Detection
Rate, B

4 e

False Alarm Rate, a

Figure 12.  Detection rate and false alarm rate pairs
for an incident detection algorithm,
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In Figure 13 triangles are points which were generated by software
which we developed to exploit the characterization of a noninferior point
as the solution of the above optimization problem. In the next section,
the use of this software is described.

4.3 EVALUATION AND CALIBRATION SOFTWARE AND RELATED DATA REQUIREMENTS

Software was developed to evaluate a multiple-feature algorithm and
to calibrate thresholds by means of the optimization technique identi-
fied in the previous section. The capabilities of this software and
required data are described here.

4.3,1 Evaluation and Calibration Software

The calibration methodology identified in the previous section has
been embodied in a computer program CALB whose structure is jllustrated
in Figure 15. This program has two major options--evaluation and cali-
bration.

When the evaluation option is selected, the detection and false alarm.
rates for an algorithm with specified thresholds are computed. 1In
addition, cases in which the algorithm produced a detection signal are
printed. For incidents, the case printed is the first case which pro-
duced the detection signal. The printed 1ist of false alarms and de-
tections is an important diagnostic tool in assessing the performance of
an algorithm.

When the calibration option is exercised, several sets of thresholds
are determined, each set being the solution of the optimization problem.
The resultant detection and false alarm rates define the tradeoff curve
for that algorithm. The optimization procedure we have used is a:
structured random search, described in more detail in Volume 4 of this
report.

Use of this software requires that the user prepare a data base,
define certain parameters, and write several subroutines to provide
program access to the data and parameters. These requirements are dis-
cussed in detail in Volume 4 of this report.

4.3.2 Data Requirements

The calibration software identifies noninferior threshold values by
exercising an optimization routine which involves repeated evaluations of
an algorithm. The quality of the calibration depends very much on the
~size of the data base.

To identify required sizes of the incident-free and incident data
bases, we will first determine confidence 1imits on the detection and
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CALB - Calibration Program Main Routine

PARMS - Reads calibration pafameters

OPT - Optimization Routine

FNCMD - Missed detection
‘ rate computation

NTREE - Applies decision
tree to data point

FARATE - False alarm rate
computation

NTREE - Applies decision
tree to data point

Figure 15. Structure of calibration program.
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false alarm rates for data bases of specified“size. Suppose there are NF
incident-free cases and N; incident data sets and that the computed

rates are «(false alarm) ind g(detection).

If o, is the underlying probability of false-alarm, the number of
false alafms determined From a data base is described by a binomial
distribution. When a large number of independent cases is used to compute
thefa1s? alarm rate, a, it is very nearly normally distributed. It can

beshown' that the probability that a, is in the range
1 4/ k2 ne 2
L P :k\/o‘[g @) 4 K (1)
1+k /NF F . F 4NF .

is y(k), with (k,y(k)) determined by the normal distribution.2 Some useful
values are given in Table 10.

Table 10. Parameters for confidence limits

k v(k)
2.57 | .99
2.00 .9545
1.96 .95
1.64 .90

Identical relations apply to the detection rate with B(Bo) replacing
a(ao) and N replacing NF'

As the successive incident-free cases are somewhat dependent, the ef-
fective number of cases is less than the number of cases in the data base.
Hen%ei the true confidence intervals are somewhat larger than those given
by (1).

Values of confidence limits for selected values of false alarm rates
- and missed detection rates are given in Tables 11 and 12, respectively.
Thege taq1es indicate a very considerable computational requirement for
‘calibration. Fortunately, it is possible to reduce this requirement by at

]B. W. Lindgren and G. W. McElrath, Introduction to ProBabi]ity and
Statistics, New York, The Macmillan Company, 1959.

2y(k) = probability {-k<X<k} where X has the normal distribution
N(0,1) .
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Table 11. 95% confidence limits (v=.95) for false aiarm rates.

a = ,05% a = .25%

Hﬁ Lower Limit (%) Upper Limit (%) Lower Limit (%) Upper Limit (%)

100 . .0006 3.7951 .0144 4.1665

1000 .0052 L4771 0775 8033

2000 .0088 - .2827 .1068 .5839

5000 0155 .1612 1447 .4317
10000 .0214 L1170 .1694 .3688
20000 .0272 .0920 | .1897 .3294

100000 .0379 .0659 .2209 _ .2829

Table 12. 95% confidence Timits (y=.95) for detection rates.

B = 50% g = 80%

NI Lower Limit (%) Upper Limit (%) Lower Limit (%) Upper Limit (%)
10 23.66 76.34 49.02 94,33
20 29.93 70.07 58.40 91.93
50 36.64 63.36 66.96 88.76

100 40.38 59.62 71.11 86.66

200 43.14 56.86 73.91 84.95

500 45,63 54,37 76.27 83.27

1000 46.91 53.09 77.41 82.36
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least an order of magnitude without any loss in the quality of the cali-
bration by culling from the data base only those cases where a change ‘in
the threshold in the specified ranges can make a difference in whether
the algorithm praoduces an incident signal.

Consider calibration of the California algorithm where we consider
thresholds in the ranges Tp>.3, T3>5, T4>.3, and T5>0. (See page 38.)
From the structure of the algorithm, it is evident that, for any parti-
cular case, the algorithm will not produce a nonzero state value for
thresholds in these ranges if the algorithm with the thresholds T,=.3,
T3=5, T4=.3, and T5=0 does not. Hence, we need not repeatedly evaluate
these cases. The reduced data base is therefore defined by cases for
which the algorithm produces a nonzero state value with the (minimum)
thresholds identified.

Starting with N, N, of adequate size to obtain satisfactory con-
fidence Timits on thE fa{se alarm and detection rates, the culling
process will yield data bases of sizes N and_NI. Careful culling will
produce an incident-free data base such Ehat N_1is considerabily smaller -
than No while N; is still nearly N,. The progFam CALB accepts as
parameEers the Aumber of 1ncident-$ree cases and the number of incident
data sets which are eliminated by this culling process.

It is the responsibility of the user to cull his data and to de-
termine the number of cases skipped. To aid the user in this effort,
the program CULDTA has been developed and is documented in Volume 4 of
this report. Examples of culling are given in analyses of Section 5.

4.4 PAIRWISE COMPARISON OF ALGORITHMS

The following question arises: Given tradeoff curves for two al-
gorithms, how do we know if the differences are statistically significant?
Here we present a simple means for resolving this question which is based
upon a comparison of the two false alarm rates for the two algorithms cor-
responding to the same detection rates. The basis for this is detailed in
Appendix C. The idea of the test for statistical significance is whether
the difference observed could be attributed to two outcomes of an experi-
ment involving two algorithms with identical false alarm rates.

Figures 16 and 17 provide the needed information for judging whether
the differences are statistically significant at levels of .10, .05 and
.01. For example, a difference is statistically significant at the .10
level if the probability that this (or a larger) difference would be ob-
served from two outcomes pertaining to two algorithms with the same false
alarm rate is .10.  To illustrate use of Figure 17, consider the comparison
of two algorithms which both provide a detection rate of 51%, while the
false alarm rates are .222% and .070%, respectively. This pair of false
alarm rates is identified on the figure as point A and lies above the
curve pertaining to the .01 1level of significance, hence the difference
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is statistically significant at a level less than .01. Point B corresponds
to false alarm rates of .004% and .010% and lies between the curves for
significance levels .01 and ,05. Hence this difference is significant
at a level less than .05 but more than .01.

In examining comparative tradeoff curves in the remainder of this
volume, Figures 16 and 17 can be similarly used to judge statistical -
significance of the differences observed. Note that one should compare
false alarm rates pertaining to the same detection rate.

4,5 DEPENDENCE OF PERFORMANCE MEASURES ON THE DATA BASE

It should be evident that the measures of performance which are pro-
duced by the software we have described depend upon the data base used.
As a result, one should take care in making application aof the resultant
measures to assess potential performance in an operational environment.
If the environment in which an algorithm is to be used is not accurately
represented by the data base we have used to obtain performance measures,
differences in these measures from those we have computed can be expected.

It will be seen in the analyses in the next three sections that there
are significant differences in the performance measures for the same al-
gorithm with fixed thresholds due to the differences in the data bases.
Specifically, results obtained for the Los Angeles and Minneapolis data
bases are significantly different. Part of these differences derives
from the fact that the Los Angeles data base includes a substantial num-
ber of incident data sets pertaining to incidents with only a slight im-
pact on traffic data. By examining a range of incident types, including
some with only a relatively slight impact, we were better able to define
the limits of performance of the algorithms considered. As a result, how-
ever, our results lead to det?cEion rates substantially lower than those
reported in previous studies.'» Tgese differences are reconciled, how-
ever, by use of a common data base.

When a common data base is used to evaluate several algorithms, rela-
tive performance of the algorithms is of most importance. That is if one
algorithm yields better performance than a second with respect to a com-
mon data base, one expects this ordering to hold as well in an operational
environment even though the absolute measures of performance may not be the
same. Our algorithm development is based on this idea and was tested in
part by comparing algorithm performance measures for two data bases, one
from Los Angeles, the second from Minneapolis.

A.R. Cook and D. E. Cleveland, Ibid.
2K.G. Courage and M, Levin, Ibid.
34.J. Payne, D.N. Goodwin, and M.D. Teener, Ibid.
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5. BASIC ALGORITHM DEVELOPMENT WITH THE LOS ANGELES DATA BASE

Using the binary decision tree structure as a basis and a portion
of the Los Angeles data base, a sequence of ten algorithms were defined,
calibrated, and evaluated. This development was guided by careful ex-
aminations of algorithm performance so that sources of false alarms, ‘in
particular, could be identified. With an understanding of the sources
of false alarms, new algorithms were defined, calibrated, and evaluated.

As a result of this development, we have been able fo.identify
several algorithms with markedly improved performance relative to that

for algorithms previously considered. These new algorithms are entirely
based upon features which are simple functions of occupancy.

For ease of reference, definitions of algorithms and calibration
and evaluation results have been assembled in Appendix B.

5.1 GENERAL ANALYSIS PROCEDURE

Each algorithm we considered was analyzed using a common procedure,
1n steps we now describe.

5.1.1 The Los Angeles Data Base

The Los Angeles data base includes a total of 118 incident and 25
incident-free data sets, taken from the portion of the Los Angeles free-
way system illustrated in Figure 18. The incident data sets used in this
evaluation are described in Table 13 by probably time of incident occurrence,
lTocation, classification number, traffic level, and incident type. Location
is specified by the station immediately upstream of the site of the inci-
dent and lane of occurrence (M denotes median; RS, right shoulder; numbers
denote lanes) where such information was available. Definitions of the
last three items are given in Table 14. The incident-free data sets used
in this evaluation are described in Table 15 by location, time period, and
data excluded.

In general, each data set was derived from one-minute averages of
occupancy and volume, updated every minute and averaged over all Tanes.
Data pertaining to each incident cover a time span of twenty-six minutes
from five minutes prior to the incident to twenty minutes after the incident
for the upstream and downstream stations surrounding the incident Tength
and covers all stations for the section of the freeway identified. 1In cer-
tain instances, however, data pertaining to some time periods and stations
were removed from a data set because it appeared that an incident had
occurred or equipment had malfunctioned.

Various subsets of the collections of incident and incident-free

data sets were used in different stages of our study. Thus, in Tables
13 and 15 we distinguish four subsets of these collections. The first
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Figure 18. Los Angeles data collection site.
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Table 14. . Incident data set characteristics definitions.

CLASS

Class 1 - good data set; incident has definite impact on traffic conditions.

Class 2 - inadequate location; good data set but incident location is vague;
usually only a station number is indicated.

Class 3 - unusual-data set; good data set but unusual incident such as animal
on roadway, ma]functioning detectors, etc.

Class 4 - marginal daté set; incident has little or no apparent impact on
traffic conditions.

TRAFFIC LEVEL

occupancy greater than 24%.

Traffic levels 1 and 5

Traffic levels 2 and 6 - occupancy less than 24%, vo]ume‘1400 vehicles pef lane

per hour, or greater.

Traffic levels 3 and 7 - occupancy less than 24%, volume between 700 and 1400

vehicles per lane per hour.

Traffic levels 4 and 8 - occupancy less than 24%, volume less than 700 vehicles
| | per lane per hour.

FREEWAY NUMBER

Freeway no. 1 - SME, Santa Monica Eastbound

Freeway no. 2 - SMW, Santa Monica Westbound

Freeway no. 3 - SDN, San Diego Northbound i

Freeway no. 4 - SDS, San Diego Southbound

Freeway no. 5 - HAN, Harbor Northbound

Freeway no. 6 - HAS, Harbor Southbound
INCIDENT TYPE

TCOL - traffic collision

DISL - disabled vehicle

GAWK - gawking

NOTH - nothing; false alarm

SPIL - spilled load
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Table 15. Incident-free data sets in the Los Angeles data base.

' Included in

Sensor
. Reason for Los Angeles Full Los Angeles Configuration
pata Set No.. Freeway From To Excluded Data Exclusion Data Base Data Base Study
74042350 HAN 0640, 0925 X X
74042353 SME 0640 0B15 Time > 0815 Incident X ‘ X
74042354 SMH 0640 0925 -Sta{ions 6,7,8 Malfunction X X
74042358 SMW 1110 1355 1) Stations 26,27 Bad data X X

2) Stations 6,7,8 Malfunction

74042359 SMW 1610 1855 1) Stations 6,7,8 Malfunction = X X
2) Stations 23-27;
Time 1709-1730 Incident

74042360 SHW 210 2355 Sfaticns 6,7,8 Halfunc*ion X X
74042363 S0S 2110 2355 - X X X
74042364 HAN 1109 1345 Time > 1345 Incident X X
74042067 SN 1110 1355  Stations 25-27; Malfunction X X X
: Time > 1331

74042368 SDN 1610 1840 Stations 22-24 Malfunction

Time > 1839 : X X X
74042369' SON 2110 2300 X X X
74061053 SMW 0630 0925 X X
84061054 SMW 1110 1400 ' . X X
74090450 SON 0640 (0925 Stations 22-24 Malfunction X X X
74090451 SDN 1110 1354:40

1) Stations 22-24 Malfunction X X X

2) Stations 28-32;

Time 1230 Incident

14090452 - SON 16]0 1855 Stations 22-24 Malfunction X X X
74090453 SDN 2110 2355 Statioms 22-24 * Malfunction X X X
74090454 50S 0640 0925 Stations 1-16;

Time 0539-0850 Malfunction X X X

74090455 SDS 1110 1354:40 Bad data X
. Station 32;
Time 1110-1214:40
Station 31; Bad data X X
Time 1125:40-1214:40

74090458 HAN 0640 0925 X X

74090459 HAN 2100 2355 - X X

74090462 - SME 0640 0925 X X

74090463 SME 2110 2355 X X

74090464 SHW 1619 1855  Stations 23-28; Incident X X
Time 1705-1810

74090465 MW 2110 2355 ' X
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of these is termed simply the "Los Angeles data base" since it is the one
most used. This data base coincides with the data base used in the first
interim report. Unless otherwise noted in Section 5 analysis was done
with this data base. The second pair-of subsets is termed the "full

Los Angeles data base." It includés all the data in the "Los Angeles

data base" and an additional 60 incident data sets. This data base was
used to evaluate results obtained in working with the Los Angeles data
base. The remaining subsets of data were used in the sensor configuration
and lane identification studies, respectively, as reported in Section 6.

5.1.2 Coding the Algorithm

The first step in the general procedure specific to an algorithm is
defining it and coding it as a binary tree with a state. To illustrate
this and succeeding aspects of our general analysis procedure, we will
indicate details for the version of the California algorithm illustrated
in Figure 8. This algorithm was considered earlier as an example in
Section 3.2.1. Coding the structure of the algorithm involves specifica-
tion of the array NTR -as was done there.

5.1.3 Culling the Data

The jncident-free data contained in excess of 100,000 valid cases
for our tests. As noted in Section 4.3.2, computational effort is
greatly reduced by culling from this, and from the incident data, only
those cases which might generate an incident signal for the range of
thresholds considered.

The algorithm of Figure 8 involves the use of three features:
OCCDF, OCCRDF, and DOCCTD. Experience with these features indicates
that useful ranges for the first two features are OCCDF 2 5 and OCCRDF
2.3. The way this algorithm is constructed, one would associate in-
cidents with positive values of DOCCTD. However, we also planned to
investigate modifications to this algorithm which did not use DOCCTD so
that for purposes of generating a culled data base, no restriction was
placed on DOCCTD. Therefore, to obtain a culled data base suitable for
the algorithm of Figure 8 and several others, we selected cases for
which a no?zero state was generated by the algorithm displayed in
Figure 19.) This was accomplished through the use of the program CULDTA.
Details of the use of this program in this instance are given in Volume 4
of this report.

]Actua11y, a more complex tree was used (to remove cases involving
missing data).
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State Designates

0 Incident-free
1 Incident occurred
.2 Incident continuing

'F_igure 19. Decision tree used to cull data for calibration.
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Application of CULDTA to our data base yjelded

N = 104,217 [Total number of valid incident-
free cases]
N% = 3,495 [Tota] number of incident-free cases
in the culled data base]
N = 49 [Total number of incident data sets] _
NI = - 40 [Total number of incident data sets

in culled.data base]

The number of skipped incident-free cases (N.-N.=100,722) and the number
of skipped incident data sets (N,-N,=9) are’ﬁeeﬁed in the evaluation/
calibration program CALB. Note {ha{ CALB will use only 3.35% of the
valid incident-free_cases and that the maximum detection rate that can
be achieved is (100NI/NI)=82%. '

5.1.4 Calibration

The next step in the general procedure is the applicétion of the
calibration option for the program CALB. This requires the construction
of several user-supplied subprograms, also described in Volume 4.

Having these subprograms, the use of CALB is governed by specifi-
cation of the input data indicated in Table 16. Specific values are
those used to calibrate the example algorithm. A portion of the
computer-generated output for this example is presented in Table 17.

5.1.5 Evaluation

The evaluation option can be used to print out the Tabels for those
cases which produce the incident alarm state. Our labels provide identi-
fication of the data set number, the sensor station (freeway segment number
and station number), and the time. For the example algorithm and the set
of thresholds, T,=.498, T3=7.66, T4=.498, T5=.049, CALB produged the output
given in Table 15. This information can be used directly to identify the
nature of the incident-free cases which produce false alarms and to determine
which incidents were detected and the times of detection. The label informa-
tion has been used extensively to guide development of algorithms as will be
discussed in detail in following sections.

5.1.6 Time-to-Detect Statistics

The last general step in our procedure was to produce time-to-detect
statistics {mean times to detect) and the plot of detection rate versus
time to detect as defined in Section 4.1. Figure 11 prgsented there is
the plot for the example algorithm we have been discussing.
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Table 16. Input data for the program CALB.

THRESHOLD CALIBRATION

7 DETECTION PROBABILITIES

NUMBER OF NON-INCLUDED INCIDENTS = 9

NUMBER OF NON-INCLUDED NON-INCIDENT POINTS = 100,722

3 THRESHOLDS, 4 PARAMETERS

INITIAL  LOWER  UPPER

POINT BOUND  BOUND  INITIAL STEPSIZE
1-  5.00 5.00  30.00 5.00 |
2 - 0.00 -3.00  1.00 .10
3-0.30 0.30 1.00 .25
4 - 1.00

STATE STORED AS FEATURE 4

ALARM STATE IS 1.

v
e

STEP SIZE REDUCTION FACTOR - 2.000

10 MAXIMUM CONSECUTIVE FAILURES AT GIVEN STEPSIZE

100 MAXIMUM ITERATIONS
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Table 17. Sample calibration output from
the program CALB. '

PASS NO. 2
DESIRED PROBABILITY OF DETECTION = .7000
OPTIMAL FALSE ALARM RATE = .008828
CORRESPONDING DETECTION PROBABILITY = .7143
OPTIMAL THRESHOLDS = 6.8036 .0562 - .3069
FINAL STEPSIZE = .00781250
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Table 18. Sample case labels produced by
the program CALB.

Label Number Data Set No. ' Time Freeway Station
492 ‘ 74042201 923 1 22
493 74042201 930 1 21
494 74042201 933 1 22
495 74051501 718 1 25
496 ) 74051501 732 1 25
497 - 74053001 652 . | 14
498 74032203 1818 1 23
499 74032203 1822 1 23
500 74032203 1824 1 23
501 74032203 1829 1 23
502 74060701 804 1 21
503 74060701 809 1 21
504 : 74060701 811 1 22
505 74062401 908 1 25
506 74062501 754 -1 21
507 74031301 1550 1 23
508 74042403 728 1 17
509 74042403 731 1 17
510 74042601 10 2 22
511 74032901 1731 2 27
512 74040103 1751 2 20
513 74040103 - 1809 2 20
514 74052404 1615 2 22
515 74052303 1638 2 13
516 74052202 1404 2 22
517 74032202 | 1743 2 21
518 74032202 1802 2 21
519 74032202 1804 2 21
520 74100201 1110 3 30
521 74100201 1114 3 N
522 74100201 1123 3 31
523 74100701 - 749 3
524 74100703 1536 .3 g?
525 74100805 1719 3 29
526 74100901 759 3 30
527 74101902 754 3 27
528 74101007 1740 3 3
529 74052804 900 4 28
530 74052804 902 q 27

. 531 74052804 908 4 28
532 74100704 1546 4 29
533 74100804 944 4 32
534 e 74100804 ’ 945 4 31
535 - 74100806 . 1820 4 32
536 74100903 - - 822 q 32
537 74100903 - 839 4 32
538 74061302 1522 4 30
539 74061302 1530 4 30
540 74061302 1536 4 30
541 74032902 1736 4 13
542 74032902 1738 4 14
543 74032902 1742 4 14
544 74042350 643 5 24
545 74042350 654 5 17
546 74042350 658 5 22
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5.2 THE CALIFORNIA ALGORITHM AND SIMPLE VARIANTS

The California algorithm as originally developed involves the use
of three features: OCCDF, OCCRDF, and DOCCTD. 1In this section, we will
~analyze the performance of this algorithm and several simple variants.

First, consider the California algorithm with no distinction between
the "incident occurred" and "incident continuing" conditions, illustrated
in Figure 20. Coding is given in Table 75. With this form of the
algorithm, each assignment of the state value '1' in incident-free data
is taken as a false alarm. Calibration results for this algorithm de-
noted as Algorithm 1, are.given in Table 76 along with the computed mean
times to detect. The plot of distribution of times-to-detect is pre-
sented in Figure 55, » '

The principal purpose in presenting results for Algorithm 1 is to
illustrate the effect on the false alarm rate which is obtained by the
more realistic device of distinguishing state values for "incident
occurred" and "incident continuing". Algorithm 2, illustrated in
Figure 21, embodies this distinction. To see the effect of the use of
the "continuing incident" state value, algorithm 2 was evaluated using
the threshold values previously determined for algorithm 1; results are
given in Table 78, As expected, detection performance is not affected
but false alarm rates are generally Tower. This is not to say that use
of the "continuing incident" state value improves performance--it does

n?t--but it more accurately reflects the operational impact of false
alarms, S

Next, algorithm 2 was calibrated and evaluated with results given
in Table 79 and Figure 57. It will be noted that these results repre-
sent some improvement over those displayed in Table 78. The more
striking fact, however, is the behavior of the threshold associated with
DOCCTD. For threshold sets 4 through 7, the thresholds obtained are such
that this feature is effectively not used, a fact which gives rise to
some question concerning the utility of DOCCTD as a feature.

To explore this, two variants of the California algorithm were con-
sidered. The first of these, Algorithm 3 (see Figure 22 and Table 83),
uses only two features: OCCDF and OCCRDF. Calibration and evaluation
results are given in Table 84 and Figure 60. Performance of algorithm 3
is seen to be poorer than that of the California algorithm (i.e., No. 2)
so that DOCCTD apparently has some value.

The second variant involves replacement of DOCCTD by DOCC, the
occupancy at the downstream station leading to Algorithm 4 displayed in
Figure 23. This choice was motivated by the observations that (1) the
most prevalent cause of false alarms in Algorithms 2 and 3 is a com-
pression wave which moves in a direction counter to the flow of the
traffic, (2) in heavy traffic with compression waves the downstream

73



Designates

0 Incident-free conditions
l O ] Incident ;onditions '

Figure 20. Decision tree for Algorithm 1.
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STATE

N =1
T F
2 3
OCCRDF ( OCCDF
=T | =T ‘
T/ F | T F.
‘ -' | ‘% ‘
2 O OCCRDF 0
| \ U =h
o T
5 .
DOCCTD o)
State  Designates 222133
0 Incident-free conditions _
1 Incident occurred
2 Incident continuing

Figure 21, Decision tree for Algorithm 2.
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OCCRDF
= T2

2 O
State Designates
0 Incident-free
1. Incident occurred
2. Incident continuing

OCCRDF
=T

,'Figure 22. Decision tree for Algorithm 3.
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STATE

2|
T F
2 3 ,
OCCRDF OCCDF
>T, / =T
T F o T F

4
| | - OCCRDE
2 0 ( ST,

T <F
State Designates ‘
- 0 Incident-free conditions
1 Incident occurred
2 Incident continuing
{

Figure23. Decision tree for Algorithm 4,
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occupancy rarely drops below 20% (in the Los Angeles data), and (3)

'1nc1den;s generally produce downstream occupancies substantially less
than 20%. ‘ ‘

Evidence for these three statements are derived from the label
printouts and examination of the corresponding one-minute occupancy
- maps. A partial label printout for Algorithm 2 is provided in Table 19,
with false alarms for incident-free data set No. 74090454 being given.
The one-minute occupancy map for this data set was previously given as
Table 2 in the introduction where the presence of compression waves was
noted. Correspondence of false alarm labels to'the passage of compres-
sion waves is easily seen. On the other hand, examination of Table 1
suppor?s the observation of lTow downstream occupancy under incident
conditions. : : - T

Calibration and evaluation results for Algorithm 4 are given in Table
86 and Figure 62. To aid in comparing the algorithms thus far discussed,
detection vs. false alarm rates are presented in Figure 24. Substantial
improvements relative to Algorithm 2 are evident. (The methodology and
results presented in Section 4.4, particularly Figures 16 and 17 on pages

56 and 57, can be used to judge the statistical significance of observed
differences in false alarm rates, at a given detection rate. From these
results, one sees that the differences in false alarm rates for Algorithm
4 and those for Algorithms 2 and 3, at detection rates of 62% or less,
are significant at the .01 level. Other pairwise differences are gen-
erally significant at levels greater than .10.)

Examination of false alarms associated with Algorithm 4 indicates
that compression waves still contribute significantly and that most of
the remaining false alarms appear to be due to bottlenecks, specifically,
at the head of queues.

5.3 ALGORITHMS WITH A PERSISTENCE REQUIREMENT

Many--but not all--disturbances in incident-free traffic are short-
Tived and, while they may produce an incident signal, the associated
"incident-continuing" state value does not last long if it is produced
at all. This is in contrast to the majority of incidents which produce
a discontinuity in the traffic stream which generally lasts at.least
several minutes. Thus, it has been suggested that improved performance
might be obtained by requiring that the discontinuity persist for a
period of time. ‘ ‘

‘The state feature of the binary tree structure we have adopted pro-
vides a convenient means of accommodating a persistence requirement. In
its simplest form, one sets the state value equal to 1 (say) when a dis-
continuity is first detected and then signals an incident (state value
equal to 2, say) if the next test (for that station or section) indi-
cates the discontinuity has persisted. A concrete realization of this
is Algorithm 5, the California algorithm with a persistence requirement,
illustrated in Figure 25. Results of the calibration and evaluation are
given in Table 89 and Figure 65.
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Tab1e/19. Partial label printout of Algorithm 2,

T] = 4,99, T2 = 563, T3 -..013
‘ . | ' Location
Label No. Data Set No. Time Freeway Station
414 74090454 645 4 2
415 74090454 719 4 26
416 74090454 720 4 30
417 - 74090454 723 "4 28
418 74090454 725 4 29
419 © 74090454 730 4 31
420 - 74090454 734 4 32
421 74090454 744 4 32
422 74090454 749 4 3]
423 74090454 753 4 32
424 74090454 757 4 28
425 74090454 759 4 30
426 74090454 803 4 32
427 ‘ 74090454 805 4 32
428 74090454 811 4 32
429 74090454 814 4 30
430 74090454 815 4 26
431 74090454 820. 4 32
432 ‘ 74090454 831 4 32
433 74090454 843 4 28
434 74090454 849 4 28
435 74090454 904 4 28
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State Designates

4 ' 6
OCCRDF OCCRDF .{ OCCRDF
bar 2T 2T

STATE

21
T F
2 5 ‘
STATE \ ( OCCDF
22 ) . 2T
T Foo T ~F

F T F T

) 2] [o

Incident-free condition

Tentative incident '

Incident occurred

Incident continuing

Figure 25, Decision tree for Algorithm 5.
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Algorithms 6 and 7 are the two variants of the California algorithm
discussed in the previous section, but with a persistence requirement
added. Definition and results for Algorithm.6 are given in Figures 26
and 67 and Table 91. Those for Algorithm 7 are given in Figures 27 and
70 and Table 94.

It will be noted in each of these a1g0r1thms that persistence is
checked by the use of the feature OCCRDF using the same threshold as that
used in the "tentative incident signal" portion of the algorithm. This
is, of course, only one of many possible mechanizations of the persistence
requirement. Use of the same threshold at both points in the algorithm
was dictated by a desire to reduce the burden on the calibration program.
(Generally, it is more difficult to get good results with the same com-
puting time when more distinct -thresholds are involved.)

Performance of these three new algorithms is displayed in Figure 28.
Algorithm 7 is clearly superior in terms of the tradeoff between detection
and false alarm rates. (Differences in false alarm rates for Algorithm 7
and those for Algorithms 5 and 6, at detection rates of between 31% and
51%, are significant at the .01 1eve1 )

5.4 AN ALGORITHM THAT SUPPRESSES COMPRESSION WAVES

We noted earlier that compression waves in heavy traffic are a prin-
cipal source of false alarms and some success in eliminating such false
alarms has been obtained with the algorithms described in the previous two
sections. Further effort was undertaken to improve performance in heavy
traffic by attempting to account for a certain regularity in the pattern
of traffic associated with compression.waves.

Consider the data displayed in Table 2 for incident-free data set
74090454, As we have noted, compression waves are manifested by sudden
large increases in occupancy which move through the traffic stream in a
direction counter to the direction of travel. In Table 2, a single series
of such large occupancy values is isolated by boxes. Attempts were made
to account for this pattern through the use of correlation analysis but
it was found that the patterns were not suff1c1ent1y regular for this
technique to be successful.

Therefore, we considered grosser means to account for the observed
patterns. It will be noted in Table 2 that the large increase at one
station is typically followed some two to five minutes later by a large
increase at the next upstream station. The typical station spacing in
Los Angeles is one-half mile corresponding to a shock wave speed of six to
,fifteen miles per hour. The fact that a compression wave has passed over
a station can be captured by the simple test displayed in F1gure 29, where
T5 30 and T = -.250 have been found to be effect1ve 1

1The use of negative values for thesholds, here To = -,250, has no
special significance in itself, but only reflects the %a

feature, here DOCCTD, is expected to have a negative value when the condi-
tion for which the corresponding comparison is being made occurs. The
arrival of a shock wave produces a sharp rise in downstream occupancy and
-therefore produces negative values of DOCCTD.

\
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4
OCCRDF OCCRDF

STATE

>
> —— 5 —
STATE (" OCCDF
=2 =T

'OCCRDF

;Ef]}z ;Ef1}g EE:-TEE
T F T
3. (o 2 0 | o]
State Desipgnates
0 Incident-free conditions
1 Tentative incident
2 Inqident occurred
3

Incident continuing

Figure 26. Decision tree for Algorithm 6.
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STATE
=2
T | T
. & ] ‘
OCCRDF OCCRDF OCCRDF °
. \ _>.;T2 ZTZ ZTZ o

T F T Fo T

3 10 2 0
State Deslipnates

0 Incident-free

1 Tentative incident

2 Incident occurred

3 Incident continuing

.

Figure 27. Decision tree for Algorithm 7.
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Of course, incidents also produce patterns which would yield a posi-
tive result for this test. In heavy traffic with compression waves, one
~would expect that a positive result for this test would be followed, typi-
cally within five minutes, by a positive result at the next upstream
station. Thus incidents are distinguished by the fact that there was no
compression wave identified at the downstream station in the previous five
minutes. ‘ ‘ .

DOCCTD
- T,

NO

NO|  IYES

Figure 29. Test for Presence of a Compression Wave.

Introduced here, is Algorithm 8 which uses the state feature in an
unusual way--essentially to suppress incident detection at any station
for a period of five minutes following detection of a compression wave
at the downstream station. This algorithm, complete with a persistence
requirement and & continuing incident state, may appear to be complex
as it does involve thirty decision nodes, but its componets have straight-
forward interpretations. The algorithm is displayed in Figure 30.

In this figure, one can discern a repeated use of the simple test for
‘presence of a compression wave. The test is phrased in terms of downstream
features, DOCC and DOCCTD. = Remaining elements of the algorithm are essen-
tially those of Algorithm 7. In Figure 30, that portion indicated as
“tentative incident check," when compared to Algorithm 7 (Figure 27, p. 84),
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can be seen to be derived from the "tentative incident check" portion of
Algorithm 7 by replacing the terminal nodes with zero state value by the
subtree of Figure 29, At this point in the algorithm, 'NO' is coded as

'0' and 'YES', as '1'. That is, when the prior state i$ incident-free,
‘here coded by the state.value zero, and the check for incident is negative,
in Algorithm 8 a further test is made for passage of a shock wave at the
downstream station. Similarly, in that portion of the algorithm in which
the "check for incident confirmed" is made, a negative result leads, in
Algorithm 8, to the test for passage of a shock wave at the downstream
station. -

The portion of Algorithm 8 which 1s "related to suppression\of*com-
pression waves" serves as a counter once a shock wave is found at the
downstream station. Note that a prior state value of one through five in-
dicates a recent passage of a shock wave at the downstream station. Sup- f
pose the prior state value were three, Exercise of the decision tree would
start at decision node 1, proceed to ‘decision nodes 2, 3, 4, and then to
16. At this point, one aga1n checks for a passage of a shock wave in the
last minute. If this check is positive, the state is reset to one. Other-
wise, the state value is set to four, i.e., the count in minutes since
passage of the most recent shock wave is advanced from three to four. If
the prior state value were five, and a new shock wave were not found, the
state value would be set to zero, freeing the algorithm to test for inci-

. dent conditions again.

. Due to the complexity of this algorithm, the question arose whether
a simpler tree might produce the same results. A tree opt1m1zat1on proce-
durel was applied and y1e1ded an equivalent tree which is given in Figure
79 This new tree has the minimum number of decision nodes, 21.

To.minimize the bhurden on the calibration program, the number of dis-
tinct thresholds has been limited to four by taking Ty = 30%. Calibration
and evaluation results are given in Table 106 and Figlre 80. Noting the
relatively slight variation in the threshold corresponding to DOCCTD, a
second calibration was executed with T2 = -,300. Results are presented in
Table 108 and Figure 81. :

We also calibrated the version of the algorithm without the persis-
tence requirement, Algorithm 9. Results for this algorithm are presented
in Table 113 and Figure 85. A comparison of performance results for Al-
gorithms 8 and 9 is shown in Figure 31. None of the differences in false
alarm rates are significant at the .01 level. Significance of any parti-
cular pair can be ascertained by reference to Figure 17, page 57. For
example, the difference pertaining to Algorithms 8 and 9 at a detection
- rate of 51%, i.e., false alarm rates of .038% and .070%, respectively, is
seen to be significant at the .05 level.

h. a. Payne and W. S. Meisel, "An Algorithm for Constructing Optimal
Binary Decision Trees," submitted for publication. .
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r

Best results were obtained for Algorithm 8 with T, determined by
the calibration program. Further, by comparing these results to those
presented in Figure 28, it can be seen that Algorithm 8 achieves the best
detection-versus-false-alarm-rates tradeoff of all nine algorithms con-
idered.— However, examination indicates that this superiority of per-
formance is had gt the expense of some increase in the mean time-to-
detect.

Examination of false alarms produced by Algorithm 8 indicates that
those due to compression waves are relatively few in number. Thus, the
device, introduced in this algorithm, of suppressing incident detection
when compression waves are present is very successful. The remaining
false alarms appear to be related to bottlenecks, specifically at the
head of a queue. :

5.5 AN ALGORITHM BASED ON A SPEED FEATURE

‘Incidents that occur in light-to-moderate traffic often do not pro-
duce capacities at their sites less than the volume of oncoming traffic
and therefore do not produce marked discontinuities as measured by occu-
pancy. The algorithms considered above often fail to detect such inci-

- dents. To address this class of incidents, we considered a tenth algo-
rithm, illustrated in Figure 32, This algorithm involves the speed fea-
ture, SPDTDF (see Table 7). The rationale for the structure of this
algorithm was to use two different subtrees for two regimes of traffic
Tevel. For occupancies less than T, (taken to be 25%), a test involving
the temporal change in speed was used. For occupancies greater, than T,,
‘the test was that used in Algorithms 4 and 7, i.e., involved DOCC. Other
structures for distinguishing between traffic levels might be considered,
but time limited our attention to this algorithm. Results of calibration
and evaluation are given in Table 116 and Figure 88. They were not as
good as those for Algorithms 7 and 8. Detection of ‘incidents in the
1ight-to-moderate traffic regime thus remains a problem. -

N
{
‘

5.6 COMPARISONS OF THE ALGORITHMS

Three measures of performance have been used in our analysis of
algorithms: detection rate, false alarm rate, and mean time to detect.
The first two were jointly used to calibrate thresholds. Considering
all three together, we can identify noninferior algorithms by the prop-
erty that no cther algorithm has simultaneously a greater detection
rate, a lower false alarm rate, and a lower mean time-to-detect. These
algorithms are defined by the algorithm number and the threshold set
number. N

A1l the calibration and evaluation results for the ten algorithms
were considered together to identify the noninferior algorithms 1listed
in Table 20. While no one algorithm emerges as clearly superior, Algo-
rithms 4, 7, 8, and 9 dominate the 1ist. Recall that Algorithm 7 is
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OCCRDF
>T,

OCCRDF
=T,

States Designates 8 |O g ;
o Incident-free ' O SPDTDF : O
1 Tentative incident ?_Tq.
2 Inc‘ident confirmed T F
3 Incident continuing
0 | | O

Figure 32, Decision tree for Algorithm 10.

- 91



Table 20. Noninferior algorithms.

Algorithm Threshold Detection False Alarm Mean Time-to-

Number Set No. Rate (%) Rate (%) Detect {Minutes)
2 1 82 1.341 77 -
4 1 82 - 1.577 .64
-3 1 82 1,693 .24
9 1 78 , 1.408 .83
2 2 71 .883 .01
9 2 69 \ 1.190 - ‘ 47
6 - 1 61 : - ,158 \ 3.84
9 3 61 .230 ‘ 2.08
7 1 59 . .134 3.25
8 2 51 .038 4,79
7 2 51 .050 4,31
10 2 51 .065 3.59
4 4 51 074 - 3.43
10 3 47 .057 - 3.73.
8 3 41 .024 5.63
7 4 no .029 1.85
4 5 41 .035 © 4,40
9 5 41 .040 4.12
4 6 37 - 014 5.20
7 6 3] .006 5.84
9 6 31 ‘ ,009 4,98
8 4 31 .010 4,93
2 6 .31 .026 4.64
5 6 20 ,002 7.43
6 7 20 ,004 6.93
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Algorithm 4 with a persistence réquirement added and that Algorithm 8 is
Algorithm 9 with a persistence requirement added, Of particular note-is
the fact that Algorithm 9 appears in the list at both high and low detec-
tion rates. :

Two final comparisons were given here--one, presented. in Figure 33,
is of Algorithms 2 and 9 and a-third algorithm we denote as Algorithm 11,
This algorithm uses the feature SOCCDF (see first interim report), a doubly
exponentially smoothed version (see Section 3.1.2) of the feature OCCDF;
the decision tree in this case consists of a single node with a single
threshold. Values of SOCCDF less than the threshold produce an incident
alarm. . Calibration of Algorithm 11 produced the results in Table 21, Al-
gorithm 2 represents the best algorithm presently in use; Algorithm 9 is
one of the best algorithms we have produced. The conclusion to be drawn
is that the simplest of the multiple-feature algorithms we considered--
essentially, the California algorithm--is clearly superior to the best al-
gorithm based on double-exponential smoothing, and the algorithms we de-
veloped demonstrate a clear superiority with respect to the California
algorithm. (Differences in false alarm rates, for detection rates of 62%
or less, are all significant at the .01 level, except for the difference
between Algorithms 2 and 11 at the detection rate 62%.) , ‘

The second comparison, displayed in Figure 34, is between the per-
formance of Algorithms 2, 7, and 8 obtained by evaluations on the full
Los Angeles data base. It can be seen that the relative ordering of per-
formance for these three algorithms found in the course of our develop-
ments is maintained on the full Los Angeles data base.

To summarize our developments, characteristics of the.ten new inci-
dent detection algorithms are given in Table 22. The structure of these
algorithms can be distinguished according to: (1) whether the feature
DOCCTD or DOCC is used to examine the downstream impact on the traffic
pattern - Algorithms 1, 2, and 5 use DOCCTD, Algorithms 3 and 6 do not
employ any such check, and Algorithms 4, 7, 8, 9, and 10 use DOCC; (2)
whether a persistence check is employed - Algorithms 1, 2, 3, 4, and 9 do
‘not require persistence, while Algorithms 5, 6, 7, 8, and 10 do involve
a persistence check; and (3) whether the algorithm checks for presence of
compression waves - only Algorithms 8 and 9 use such a check. Algorithm
10 is unique-in that distinct tests for presence of an incident are used
in two traffic regimes (1light and moderate).

In terms of overall performance, the best simple algorithm is appar-
ently Algorithm 7. Algorithms 4 and 10 are reasonable, alternative simple
algorithms. The best performance is associated with the two most complex
algorithms, Algorithms 8 and 9. The relative advantage of these latter
two algorithms is directly due to their ability to avoid false alarms 1in
the presence of shock waves. In environments lacking shock wave, this
relative advantage would not be present.
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Table 21.. Calibration results for\A]gorithm 11.

Threshold

Number

1
2

[ 2 IR S T S ]

Detected (%)

Rate

71.4
61.2
51.0
40.8
30.6
20.4

False Alarm

Rate (%)

.7053 .
.3730
. 2000
. 1256
.0483
.0213

95

Threshold

-3.29
-3.88
-4:52
-5.06
-6.14
-7.52
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Aigprithm No.

1

10

Table 22. Characteristics of the ten new
incident detection aTgorithms.‘

'Features‘Used"\ :

OCCDF, OCCRDF, DOCCTD

0CCDF, OCCRDF, -DOCCTD'

OCCDF, OCCRDF
OCCDF, OCCRDF, pocc

OCCDF, OCCRDF, DOCCTD

OCCDF, OCCRDF

OCCDF, OCCRDF, DOCC

OCCDF, OCCRDF, DOCC,
DOCCTD

OCCDF, OCCRDF, DOCC,
DOCCTD

0CC, OCCTDF, DOCC,
SPDTDF ‘

97

" Comments

" Essentially the California

algorithm

. Essentially the California

~algoritm with an incident
" continuing state

Same as Algorithm 2, but
without DOCCTD check

Same as Algorithm 2, but use of
DOCC replaces use of DOCCTD

Essentially the California
algorithm with a check for

persistence

Algorithm 3 with a check for -
persistence

Algorithm 4 with a check for

persistence, best simple
algorithm

Has form of Algorithm 4 plus
check for compression wave
. and persistence, especially
effective in "stop-and-go"
" traffic

Algorithm 8 without a per-
sistence check, especially
effective in "stop-and-go"
traffic

Distinguishes two traffic

regimes (1ight and moderate)
for purposes of detecting
incidents






6. FURTHER ALGORITHM DEVELOPMENT:AND EVALUATION
| WITH THE LOS ANGELES DATA BASE

In this section, we present results of several additional investiga-
tions (executed on the Los Angeles data base). These investigations
have (1) led to a technique for adjusting algorithms (actually, features)
to reduce the adverse impact of geometric anomalies on algorithm per-
formance, (2) provided insight into the effect that the configuration-of
sensors has on algorithm performance, (3) provided means for implementing
algorithms with updates at other than one-minute intervals, (4) led to
simple algorithms for detecting malfunctioning detectors, and (5) led to
a simple and effective algorithm for 1dent1fy1ng the lane of occurrence
of .an incident.

6.1 EFFECTS OF GEOMETRICS

Nonuniform traffic results not only from the presence of incidents but
also from the presence of certain combinations of traffic demand and geo-
metric conditions. If the nonuniformity is severe enough in the latter
instance, false alarms will result. In addressing this issue, we have
taken the point of view that the effects of geometrics are significant
only when they have a significant impact on the performance of incident
detection algorithms. Thus, for example, a lane drop is not deemed to be
significant if the usual traffic demand at that location produces traffic
patterns which do not generate false alarms. Consequently, we have not
developed a treatment which is based on a physical description of the
geometric situation. Rather, we have sought to identify significant geo-
metric anomalies by examining false alarms and by identifying cons1stent]y
~nonuniform patterns. in traffic data.

Adjustments to incident detection algorithms to reduce false alarms
associated with geometric conditions can take the form of adjustments to:
thresholds, as is done in the Los Angeles system. However, this implies
station-specific calibration, and it is very difficult to acquire a suf-
ficient number of incident data sets for one section of freeway to provide
a sound basis for this approach. Consequently, we . 1nvest1gated a second
approach which involves the normalization of features used in the a]-
gorithm, .

6.1.1 Geometric Anomalies in the Los Angeles System

Our approach is 111ustrated by our treatment of the Los Angeles system.
Spec1f1ca1]y, consider the incident alarm cases obtained for A1q0r1thm 7
by exercising the CALB program. A partial 1isting of these cases is given
in Table 23, A significantly anomalous geometric condition is identified
by repeated occurrences of false alarms corresponding to a certain location
and reference to freeway design plans. This 11st1ng of false alarms is
typical of the complete Tisting of false alarms in that repeated occur-
rences are associated with the San D1ego freeway northbound (freeway seg-
ment 3), Station 31, Th1s station is located just upstream of the

99
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Table 23. A partial listing of false alarms
for Algorithm 7, T,=8.1,T,=.313,T,=16.81.

Case'Label

100

Data Set Location
No. No. - Time Freeway Station
83 74090450 642 3 2
-84 74090450 646 -3 31
85 74090450 652 3 31
86 - 74090450 706 3 1
87 - 74090450 714 3 9
- 88 74090450 717 3 31
89 - 74090450 719 -3 10
90 74090450 722 3 8
91 74090450 . 729 - 3 2
92 74090450 730 3 31
93 74090450 731 3 10
94 74090450 737 -3 2
95 74090450 737 3 25
96 74090450 740 3 31
97 74090450 741 3 10
98 74000450 744 3 31
99 74090450 750 3 31
100 74090450 806 3 29
101 74090450 807 3 25
102 74090450 - 808 3 10
103 74090450 810 3 31
104 74090450 815 3 10
105 - 74090450 817 3 31
106 74090450 854 3 31
107 - 74090450 919 3 31



. connector to the Santa Monica freeway. The geometrics are.schematically
depicted in Figure 4. Many of the locations for which there are frequent
false alarms are near freeway-to-freeway interchanges.

Certain combinations of traffic.demand and geometrics give rise to
consistent differences in the- occupancies at adjacent stations. Inasmuch
as the a]gor1thms which have proved most effective are all based on dif-
ferences in occupancies at adjacent stations, these differences degrade
the performance of incident detection algorithms. - The pattern in which
the upstream occupancy is larger than the downstream occupancy can lead to
a false alarm if the discrepancy is 1arge ‘enough. On the other hand, if
the typ1ca1 pattern at some location is for the upstream occupancy to be
less than the downstream occupancy, the detection of incidents will be
hindered.

To verify such consistent differences, occupancy data was analyzed by
pairs of stations. A typical case is that for stations 31 and 32, San
Diego freeway northbound. Figure 35 is a scattergram of station 31 occu-
pancy versus station 32 occupancy. For this it is evident that station 31
occupancy is generally higher than station 32 occupancy, particularly when
station 32 occupancy is less than 20%. In this area, there are four lanes
of traffic at station 31 which splits into three mainline lanes at station
32 and two connector lanes. As the volume of traffic on the connector is

substantial, four lanes of traffic have the use of f1ve lanes in the
" vicinity of station 32.

The traffic pattern prone to producing the most false alarms is the
one in which the downstream occupancy values are in the range which occurs
when there is an incident, say, less than 20%. Using only cases in which
the downstream occupancy is less than 20%, a least squares fit through
the origin was computed yielding a line with slope 1.481. Thus, when
DOCC<20%, one expects 0CC=1.481xDOCC. In Table 24, the computed slopes
are given for each station in the Los Angeles system. By referring to this
table and to Figure 18, it will be observed that consistent discontinuities
(k differing from 1) are commonly found in the vicinty of freeway-to-freeway
1nterchanges o

6.1.2 Adjusting Features for Geometric Anomalies

Denoting a computed slope by k, the regression results are used to
‘make the following adjustments to features:

0CCDF=0CC-k DOCC

OCCRDF=0CCDF/0CC

. Thus, the adjusted value of OCCDF (i.e., OCCDF) represenfs the deviation from
the typical difference in occupancy values. .

These adjustments were made for those stations with k>1.20 or k<.80 to
produce the "geometrically adjusted Los Angeles data base," reflecting the
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Table 24, Slopes obtained from regressing upstream
occupancy against downstream occupancy.

. Santa Monica Freeway San Diego Freeway .  Harbor Freeway
Station Eastbound Westbound Northbound Southbround Northbound
1 1.502 , - 1.892 .943
2 .653 .589 1.100 1.213 .982.
3 .879 1.220 .998 - .938 1.014
4 1.097 987 1.034 .892 .959
5. 1.081 - .952 1.049 ©1.031 1.029
6 1.025 1.252 1.000 .956 .870
7 .987 - .736 .993 .908 1.199
8 .979 1.290 .955 .990 . 865
9 .739 .953 .892 .961 .981
10 742 1.165 . 1.269 -1.023 912
11 .785 .998 .810 912 . 1.168
12 .981 1.443 1.018 .925 - .816
13 - 1.287 1.030 1.034 1.222 1.163
14 .988 .978 - 1.067° .948 1.104
15 1.176 1.098 .996 .944 1.063
16 .903 .938 _ 911 912 1.016
17 1.163 .09 1.059 -1.056 1.079
18 1.050 1.057 .890 .865 1.086
19 1.290 1.016 1.189 1.117 1.213
20 1.154 1.070 767 .836 .902
21 1.163 1.015 1.064 1.039 1.321
22 1.092 .940 .857 1.035 1.137
23 1.109 1.080 1.036 1.080 1.071
24 . 1.039 .892 .934 1.146 1.379
25 1.086 . 1.133 1.157 1.060
26 1.011 .887 1.026 1.165
27 .758 .765 1.109 '
28 1.216 .927 1.294
29 1.054 .945
30 .973 1.126
31 | 1.481 1.079
32 ‘ .797

103



fact that,'ih“pracfice, one would T1imit ones attention to a few stations
where a significant problem exists. .

Exercising Algorithm 7 with the normalized (geometrically adjusted)
ieatures -and with the same thresholds as used to produce the results in
Table 2, we did obtain a reduction in the number of false alarms associa-
ted with geometric anomalies. Table 25, a partial listing of false alarms
is typical of the results obtained and illustrates the reduction in false
- alarms. The number of false alarms at station 31, San Diego northbound,
in the data set 74090450 is reduced from eleven to three, for example. -
The false alarm rate measured over all the incident-free data sets is re-
duced from .135% to .092%.

However, detection performance apparently is adversely affected. Of
the twenty-eight incidents detected without normalization of features,
three incidents are missed with normalization. A1l three'of these inci-
dents occurred in the section immediately downstream of station 31, San
Diego northbound. An examination of these three incidents (74052403,
74100703, and 74100801) reveals that none produced a large change in the
traffic pattern. In fact, one might regard their detection (with unnorma-
1ized features) as coincidental as the patterns involved do not differ
from the typical pattern at this location. Further, reference to Table 13
reveals that lane blockage information is lacking for these incidents sug-
gesting that all disabled vehicles may have been located in the median or
right shoulder. i

We next proceeded to recalibrate Algorithms 4, 7, 8, and 9 on the
geometrically adjusted data base, i.e., using normalized features. These
results are given in Table 88 and Figure 68 for Algorithm 4; in Table 97
and Figure 76 for Algorithm 7; in Table 110 and Figure 87 for Algorithm 8;
and in Table 115 and Figure 91 for Algorithm 9. The comparative perfor-
mance for Algorithm 7, illustrated in Figure 36, is typical of these re-
sults, and reflects the observations made above. (The differences observed
are generally not significant at the .10 level.) -

Dgspite the unconvincing nature of these quantitative results, it is
our opinion thgt the normalization procedure developed here is as good a
procedure for improving performance in geometrically anomalous sections as
is available.

6.2 EFFECTS OF SENSOR CONFIGURATION

. ‘Sensors in the form of presence detectors are the source of data for
incident detection. The configuration of sensors, therefore, can be
expected to have a significant effect upon the performance of incident
detection algorithms. One objective of this study is to quantify this

. effect and to develop recommendations for effective configurations.
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" Table 25. A partial listing of false alarms
for algorithm 7, T1=8.1, T2=.313, T3=16.8,
using normalized features.

Case Label Data Set Location
No.- No. Time Freeway Station
55 74090450 642 3 2
56 74090450 706 3 1
57 74090450 . 714 3 9
58 74090450 722 3 8
59 74090450 729 3 2
60 74090450 737 3 2
61 74090450 737 3 25
62 74090450 744 3 18
63" 74090450 752 - 3 31
64 74090450 801 3 31
65 74090450 804 3 10
66 74090450 806 3 29

.67 74090450 807 3 25
68 - 74090450 808 3 10
69 74090450 826 3 31
70 74090450 1147 3 17
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In all other work on this study, algorithm performance is based upon
the use of all available sensor data. The approach taken to.elicit the de-
pendence of algorithm performance upon sensor configuration is to develop
the same quantitative measures of performance for specified subsets of the
full set of sensors.

6.2.1 Sensor Configurations

\

Two aspects of the sensor configuration are of interest to us: (1)
the instrumented lanes at-a station and (2) the separation between stations.
It should be recognized at the outset that our treatment of sensor con-
figuration is limited by the existing configuration. That is, we can
only consider sensor configurations which are subsets of the Los Angeles
and Minneapolis configurations. A1l of our attention will, in fact, be
focused on a segment of the San Diego freeway in Los Angeles within which
nearly all lanes are instrumented. This segment includes stations 24.
through 32 in both directions. The full sensor configuration, denoted
Configuration A, is shown in Figure 37, 1In this and succeeding figures,
the symbol1® denotes a loop for which data were collected and used in
analyses; the symbol denotes a loop for which data were not available,
or were not used for the particular configuration considered. ~

Two alternative configufations are defined as subsets of Configuration
~A. Configuration B, Figure 38, has sensors in lane 2 and all stations are
employed, i.e., stations are at the minimum available spacings.

Configuration C, Figure 39, has sensors in all (avai]abTe) lanes, but
on]y.every other station is used, i.e., stations 24, 26, 28, 30 and 32.

The remaining segments of the Los Angeles and Minneapolis systems do not
permit consideration of variations of sensor instrumentation within a station.
In the remainder of the Los Angeles system, except for another segment of
the San Diego freeway for which very little incident data are available,
partial station instrumentation is most common. There are full-count
stations, but these do not occur frequently enough to allow their use in
the manner described above. Data from the Minneapolis system are primarily
available in the form of averages across all lanes, preventing any examina-
tion of partial station configurations. -

6.2.2 Data Bases

-~

For the alternative sensor configurations illustrated in Figures 37 to
39, the incident and incident-free data sets used are those indicated in
Tables 13 and 15, respectively, as noted by éentries in the column headed by
"Sensor Configuration Study."

6.2.3 Algorithm Performance

Algorithms 2, 7, and 8 were examined. For each algorithm and each sensor
configuration, thresholds previously determined by calibration on the Los
Angeles data base were used to obtain performance evaluations in the usual
form of detection and false alarm rates and means of times-to-detect. For
Algorithm 2, these results are given in Tables 81; for Algorithm 7, in
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Table 96; and for Algorithm 8, in Table 103. Comparative performance re-
sults are displayed separately for these three Algorithms in Figures 45,
46, and 47, respectively. On the whole, performance on this data base is
poorer than on the larger Los Angeles data base, primarily because a reia-
tively large fraction of thé incidents are of the difficult-to-detect
variety. Due to the small number of samples (13,357 tests, 8,267 tests
and 6,576 incident-free tests, for configurations A, B, and C, respec-
tively), differences in false alarm rates are found not to be significant
at the .10 level.

Algorithm 7 was recalibrated for each sensor configuration, with
results for sensor Configuration A being given in Table 98 and Figure 77 ;
those for.sensor Conf1gurat1on B, in Table 99 and Figure 78; and those for
sensor Conf1gurat1on C, in Table 100 and Figure 79. Comparative performance
results are given in Figure 48.

Collectively, these results indicate

@ At a given detection rate, false alarm rates for Configurations
B and C are, generally, about twice those for Configuration A,
with Conf1gurat1on C having slightly better performance than
Configuration B. Thus, the use of more detectors up to the point
represented by Configuration A yields improved performance.

® Surprisingly, times-to-detect showed no consistent pattern. One
would expect.Configuration C to experience significantly longer
times-to-detect since detections are generally related to the
back-up of the queue from the site of the inci?eat over the up-
stream detector station. Two previous studies'>¢ of station spacing
_have identified an effect of station spacings on times-to-detect,
though neither of these was based on actual traffic data.

The Tack of very clear differences in the times-to-detect for the three
configurations may be due to the fact that the detection-related performance
measures were based on very few cases. While 35 incidents were involved in
the analyses, only about one-third of these were readily detected so that
relatively few incidents entered in the computation of the times-to-detect.-

]C, L. Dudek and H. Whitson, "Toward Automatic Incident Detection on
the North Central Expressway," Dallas Freeway Corridor Study Report RF953-7,
prepared for the Federal Highway Administration, Office of Research,

‘Traffic Systems Division under Contract No. DOT-FH-11-7964, August 1973

2H. J. Payne, "Analysis and Evaluation of the California Logic for
Incident Detection," Final Report, Part III, USCEE Report 464, University

: ?f7Southern California, Department of ETectr1ca1 Englneer1ng, December
973 ‘
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Compar1ng the performance of the three a1g0r1thms for each of the
sensor configurations, one sees that Algorithm 8 is, generally, the best
and Algorithm 7 the next best, a conclusion consistent with that found in
*ha original deve]opment of these algorithms with the Los Ange]es data
base.

Finally, we note that recalibrating thresholds for Algorithm 7 did
not produce marked changes except for Configuration B. It would appear
that the thresholds are not very sensitive to sensor spacing in the range
of one-half to one .mile, but are sensitive to the instrumentation within
a station. These conclusions must be regarded with some caution, however,
since they are deduced from examination of a single algorithm on a limited
data base and with only three sensor configurations,

6.3 FREQUENCY OF ALGORITHM EXECUTION

In all of the developments we have undertaken, a]gor1thms were exe-
cuted at one-minute intervals. In contrast, at present in Chicago, Los
Angeles. and Minneapolis algorithms are executed at either 20- or 30-
sécond intervals. The choice of the one-minute interval for this study
was largely dictated by a desire to Timit computational expenses assoc1-
ated with the testing of candidate a]gor1thms .

Operational use of the more frequent algorithm executions wi11 have
the following effects:

@ Computational burden will be increased

e Modifications to the algorithms presented here will be required
® Detection times will be reduced

e The number of false alarms will be increased

That the computational burden will be increased is evident. Tests executed
at 20-second intervals will require three times the computation required
for tests at one-minute intervals.

To follow through the remaining consequences, we will consider a
specific algorithm, Algorithm 7, previously discussed. We will consider
making tests at 20-second intervals. This algorithm uses the occupancy-
based features QCCDF, OCCRDF, and DOCC. These are based on one-minute
average occupancies so that it is necessary to generate one-minute average

. occupancies updated every twenty seconds.

To modify Algorithm 7 to provide for more frequent updating requires
revision to that portion of the algorithm which checks for persistence.
Specifically, it is necessary to introduce two more state values that
cause the algorithm to wait for a minute after a tentative incident con-
dition is detected. The modified algorithm is presented in Figure 44 (and
the relevant coding in Table 94). )

116



°S|BAJURJUL pUOIBS-()7
3e BUL3S33 40y paLjLpow / wyilaobly by sunbLg

- B

0 b

E| 1 4 i
‘ ] ¢z O 2] <
| 0 442000 44950

N

F -
MFN ) .VN

0 : 2004 el 31vls

;) e—l o 1
¢z i ny
- \Jda¥xdo,) - aLvLs

1 e
L 2 AR BuLnurjuod juspLoug
40950 alvls PAli4L4U0D JUIPLOUT
JUBPLOUL BALRIUI|
) JUSPLOUL BALJRIUD|
d 1 JUBPLIUL BALRIUD]
| 2 9944 -3U3pLOU]

Or— N M W0

—————— -

. . . -+ Sdjeublsaq . an|ep 93els

117



This modified form of the algorithm was evaluated with the choice of’
thresholds T-=12.9, T,=.360, and T,=16.6, obtained previously by calibra-
tion on the Los Ange!és data base .- Table 95. In this table one finds the
mean-time-to-detect using one-minute intervals to be 4.31 minutes. With
20-second updates, four incidents are detected 20 seconds sooner, six are
. detected 40 seconds sooner, and one, 80 seconds sooner. For the
25 incidents detected by each form of the algorithm, this -gives a mean
reduction of 16 seconds.

This- result agrees-closely with the prediction based on the following
simple argument. Assume that the instant at which the traffic patterq
is such as to trigger a detection is random with respect to the algorithm
execution times and that the pattern presists after this time. Then if
S seconds remain before the next 20-second update, S, $+20, or S+40 seconds
remain before the next minute update, with each possibility equally Tikely.
Thus, the difference in times to detect is . '

%[s+(s+20) + (S+40)]-S = 20 seconds ,

very nearly that observed in the data.

This argument generalizes in the following way. As compared to the
times-to-detect for one-minute updates, the expected difference in times-
to-detect for update every t seconds is (60-t)/2 seconds. Thus, for
example, using updates at 30-second intervals, saves, on the average,

15 seconds in the time to detect. ‘

Examination of false alarms for the 20-second update form of Algo-
rithm 7 indicates that the false alarm rate actually decreases but the
number of false alarms in a given period increases substantially.
(Limited quantitative results indicate a 50% increase.)

Taken together, these conclusions suggest that the slight improvement
in mean time-to-detect obtained by testing more frequently than once per
minute is not justified in view of the increase in the number of false
alarms and the increased computational burden.

6.4 ALGORITHMS FOR LANE CLASSIFICATION OF FREEWAY INCIDENTS

Successful identification of the lane locations of freeway incidents
potentially serves two functions: (1) to direct emergency response
vehicles and (2) to provide advance warning on message signs to freeway
motorists.

Three methods exist for this purpose: (1) visual surveillance,
(2) incident detection algorithms employing individual lane data, and
(3) lane classification algorithms initiated by incident detection algo-
rithms. This report concerns the third type only.
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Characteristic differences in traffic stream data from lanes blocked
by incidents are expected: ‘ :

1. High 0CC (occupancy) 1n the 1nv01ved 1ane at the upstream station.
2. Low 0CC " downstream "
3. Low SPD (speed) v " """ ypstream "
4. High spD " o " " " downstream "
5. Low VOL (vb]ume) ‘ e " oo upstream .

Use of these features, or combinations of them, provide a basis for lane-
classification a]gor1thms

The characteristic differences between involved and noninvolved lanes
are expected to be present at upstream or downstream stations during
various time periods following the occurrence of an incident. Practicality

‘must be considered in choosing the time period to be inspected by an
algorithm. For example, identification of involved lanes based on data
accumulated over a ten-minute period following an incident may be most
effective, in terms of accuracy, but would defeat the purpose of making
lane information available to assistance vehicles. On the other hand,
algorithms employing data accumulated prior to a detection alarm would
be ideal. | :

An evaluation of algorithms employing OCC, VOL, and SPD data during
various time intervals is presented here.

6.4.1 The evaluation data base \

To estimate the performance of potent1a1 a]gor1thms, a data base was
required. Accurate lane documentation was a criterion for inclusion in
the data base. Of the forty-six incident data sets identified as having
lane documentation, seventeen were eliminated for the following reasons:

8 incidents were not detected by the detection a]gor1thm],
4 incidents occurred on collectors or on/off ramps,

3 data sets lacked sensor data,

2 data sets contained data read errors.

Twenty-nine data sets were thus available for use in a manual evaluation
(see Table 13). Twenty-second OCC, VOL, and SPD maps were generated for
these data sets. : '

The breakdown of the incident locations was as follows:

1‘The detection algorithm employed was Algorithm 7 calibrated to a
detection rate of 60% and a false alarm rate of .34%.
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7% - median :
31% - lane 1 |
17% - lane 2
17% - lane 3 h
14% - lane 4
10% - lane 5 S

3% - right shoulder

6.4.2 Algorithms employing upstream station data"

Twenty-second 0CC, VOL, and SPD data from upstream stations were
examined over one-, two-, and five-minute intervals immediately following
detection. A dominance method was employed to. identify the lanes with
(1) the maximum values of 0CC, (2) the minimum values of VOL, and (3) the
minimum values of SPD (VOL/OCC)(see Tables 26-28). For each feature, the
number of times each lane had an appropriate maximum or minimum value was
totaled over each interval being examined. The lane with the majority of
appropriate maximum or minimum values was identified as the likely inci-
dent lane. If no one lane dominated the others, a "no-decision" state was
reached (see Table 29). These predictions were matched against the actual
blocked lanes, The percentage of cases in which the predicted lane matched
or was .adjacent to the actual lane was used as a measure of performance.

(A few data sets had data for adjacent lanes only). It was felt that an
algorithm identifying an adjacent lane would still be effective as an aid

to emergency vehicles. The results of these evaluations are shown in Tables
30 through 35. The test involving VOL was eliminated due to the highly

fluctuating nature of twenty-second lane volume data. Most of these cases
led to "no-decision" states. ' ’

The classification performance of these algorithms was not sub-
stantially high.

§74.3 Algorithms Employing Downstream Station Data

Downstream OCC data were also examined. Blocked lanes downstream
of an incident would be expected to exhibit Tower OCC values than non-
involved lanes. An examination of eighteen data sets showed prnmising
results. The two-minute interval immediately following each alarm was
inspected for dominance by a particular lane. Four minimum OCC values
out of the six twenty-second intervals in the two-minute period were a
requirement for dominance. Data sets for incidents occurring in lane
2 and having downstream data for lanes 1 and 3 only were not considered,
as such cases would yielid adjacent lane identifications by default.

The results of this test are shown in Table 36. This algorithm re-
duced the number of lane 1 incidents classified in lane 3. The 77%
performance level of this test may not be spectacular, but it does ap-
proach acceptable performance. It implies that downstream data should
be considered an integral part of a lane classification algorithm.
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Table 26. Occupancy dominance, Tane 3,
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Table 27. Volume dominance, lane T.

748426 -81

E:‘_,E 5:‘, L U H E

FuWy ¢ : 2

STA 2 ¥ "

LANE NO. b 4
TIME

FE3++ 18688 1448 2108
+ 12BE 12¢0 968
+ 1448 1228 1838

7B9++ 1208 1928 1268 ~ Incident Occurs in Median
+ 10888 1268 1448 . _
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Table 30, OCC at upstream station, one-minute interval following’
" alarm. :

ACTUAL LANE

: 1 5 |&s
FEATURE - OCC AT UPSTREAM STATION P M ' 2 3 4
P 1 3 2
TIME - 7 MIN. FOLLOWING ALARM ? -
NO. CASES - 22 ¢ 2
ACTUAL OR ADJACENT LANE PREDICTED - E
' b 3| 1-] s 2 | 2
13 (59%) L -
Loal I 3
N
E 5 1

Table 31. 0CC at upstream station, two-minute interval following
’ alarm.

ACTUAL LANE

p M 1 2 3 4 5 RS
R

TIME - 2 MIN. FOLLOWING ALARM Eoal 1 2 2

NO. CASES - 23 é
¢

ACTUAL OR ADJACENT LANE PREDICTED - [ -
D3 5 3 2

12 (52%)

T 2 2
A _
N
E 5 1

Table 32. OCC at upstream station, five-minute interval following

alarm.
. ACTUAL LANE ‘
_ p M 1 3 4 5 RS
TIME - 5 MIN. FOLLOWING ALARM . E 11 2 2 1 1 1
NO. CASES - 23 ?
ACTUAL OR ADJACENT LANE PREDICTED - % 2
E
D
3 1 4
14 (60%) - 2
L
A 41 2 2
N
E
5 1




“Table 33. -SPD at upstream station, one-minute interval following

alarm.
ACTUAL LANE
'FEATURE - SPD AT UPSTREAW STATION p- mo L1 [ 2 ] 3 j 4 15 |RS
R
E oyl 2
TIME = 1 MIN. FOLLOWING ALARM D
1
NO. CASES - 22 ¢
o ‘ T
ACTUAL ORTADJACENT LANE PREDICTED -
. D3}, e F1v |3 |2 |
13 (59%) L
A4 1 1 3 .
N Ve
£
5

Table 34, SPD at upstream station, two-minute interval following
alarm.

ACTUAL LANE

'
S S KA 2 13 la ] s | &s
R
. E
TIME - 2 MIN. FOLLOMING ALARM p R 2 2§ 1
: 1
CNO. CASES - 22 ¢
: S
, ACTUAL OR ADJACENT LANE PREDICTED - .
b3 6 1 4 2 |
13 (592) L
A4 ) 2
N
E
"5

Table 35. SPD at upstream station, five-minute interval following

alarm,
J
o ACTHAL LANE
M 1 2 3. 4 5 RS
p
. R
TIME - 5 MIN, FOLLOWING ALARM E' _1_. ! ! ¢ !
I
NO. CASES - 22 . E 2
ACTUAL OR ADJACENT LANE PREDICTED - é
\ ’ D 3 4 1 5 1 1
14 (63%)
L
A 4 )] 2
N
E
5 ]
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Table 36, OCC at downstream station, two-minute interval
following alarm.

ACTUAL LANE

M 1 2 3 4| 5.1 Rrs
FEATURC - OCC AT DOWNSTREAM STATION P
. : R _
' , . E 1§ 2 4 1 1 1
TIME- 2 MIN. FOLLOWING ALARM )
. 1
NO. CASES (TOTAL) - 25 c 2
T
NO. INVALID CASES - 7' £
D3 2 3 2
NO. CASES USED - 18 '
ACTUAL OR ADJACENT PREDICTED - k 4 1 1
‘ N ‘
14 (717%) E . J
{
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Downstream SPD was also examined, but showed no promising results.

6.4.4 An A1gorithm,Empfoy1ng Both Upstream and Downstream Data

The results reported in the previous two sections imply that in
some cases upstream tests lead to accurate lane identification while in
others, downstream tests are most effective. This appears to be rea-
sonable if some characteristics of an incident are considered. First,
if an incident occurred much closer to the downstream station, the ef-
fects of the incident on the blocked lane should be most apparent at
that station, while traffic at the upstream station may still be
equally distributed over the lanes. The same logic should apply to in-
cidents located much closer to the upstream station. Nevertheless, an
incident occurring in a particular lane should cause a sudden drop in

~occupancy to propagate downstream at a speed approximating traffic
speed due to the sudden absence of vehicles in the blocked lane. This
Tow occupancy should continue until the blocked lane is cleared, unless
the incident is located far enough upstream for a redistribution of the
traffic pattern to occur. However, the effect of the incident on

upstream lane data should not be quite as marked and should not occur
quite so fast. This length of time depends on the size and speed of the
queue forming behind the incident. In addition, vehicles merging into
adjacent lanes to avoid the incident should cause fluctuations in upstream
data masking the incident's effect on a particular lane. Thus it appears
that downstream lane data should be more effective in permitting lane
identification, unless, as previously noted, the incident occurs consider-
ably closer to the upstream station. A method for determining when up-
stream versus downstream data should be used seems required. '

Many data sets examined exhibited sudden drops in occupancy in
blocked Tanes at the downstream-station. These drops were apparent ap-
proximately twenty seconds to one minute after the occurrence of the
incident and often persisted (see Tables 37 and 38). Upstream OCC in-
creases occurred approximately one minute thereafter in the blocked
lanes and subsequently spread to all upstream lanes as expected. Thus
accurate prediction should be most effective at the downstream station
during the initial few minutes following the incident. Incidents oc-
curring just below the upstream station should affect the upstream lane
data also during this interval, as the queue would reach this station
rather rapidly (Table 39), '

The incident detection algorithm, however, generally detected the
incidents a few minutes after the incident occurred. Thus the one or two
minutes immediately preceding the detection alarm should be examined by
the classification algorithm.
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Table 37, Sudden drop in
downstream lane occupancy.

74051581

GLCUPANCY
FWY = 1 1 1 1 ’
STA 25 25 .- 25 25 :
LANE NO. 1 3 [ 3
TIME
Fid++ 7. 2 13 15
+ 14 22 21 23
+ 13 ie 1% 2d
7lS9++ 16 - 16 19 17
+ 28 16 16 17 ) . )
+ M {71017 T13'—_ Disabled Vehicle Right Shoulder
Fle++ 28 23 le 14
¥ 21 12 24 15
+ 23 13 {3 = Downstream Drop Lane 3
Fiv++ 34 28 16 9
+ 48 . 14 5| - ' )
+ 45 13 2 Upstream Rise Lane 3
Fia++ 3@ 13 &
L UL
+ 27 13 4 .
At + 25 3 i3 {7 ———— Detection
+ 6 b3 14 E,
+ 14 23 318
FERE 34 24 11 3
+ 24 23 12 11
* 21 26 18 7
TELHS 41 34 3 3
+ 42 38 0% G
+ 34 28 17 13
Fadt+ 38 26 11 11
i I4 35 9% 1@
+ 37 22 11 g
T3+ 34 28 18 12
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Table 38. Sudden drop to zero of
downstream lane -occupancy.

T4BeBS-B1
DLCUFEHCY
Fuy 5 5 5 5
STA - 16 16 17 17
~LANE NO, 1 3 1 3
TIME ‘
SEE++ {9 12 16 19
+ 13 19 15 i9
+ 17 27 16 16
ZE1++ 28 19 11 19
+ 13 18 16 21
+ 22y 25 18 p 18
RE2++ [IB 23 2T 2 — Incident (Lane 1)
+ 17 18 22 38 .
+ 19 16 38 36 - : :
SA3+ 4+ i9 2H B 16 Downstream Drop
+ 1v 2B [;l 13 '
+ 24 19 gL 24
SEd++ a7 27 B 1§ — Upstream Rise Lane 1
- 59 53 | 22 —_____Upstream Rise Lane 3
+ 95 g4 -8 24
285+ 4 a94a 658 5| 21
+ 29 28 51 24
+ 44 61 8 17 Detection Occurs
SBa++ ~ 57 23 5] 24
+ 53 9% g 24
REFI+ g? g; g %g MNote Persistance of Downstream
R =6 36 g 25 Low OCC in Lane 1.
+ a4 33 B 23
SR+ + 59 38 a 25 I
+ 39 59 g 19
o+ 57 63 g 22
SEI+4+ 53 51 8 26
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Table 39, Sudden rise in
upstream lane occupancy.

T4A522-83

GCCUPANCY
FUWY 2 2 2 2
STA - 26 26 25 25
LANE NO. 1 3 1 3
TIME
leBe++ 14 13 22 13
+ i7 24 de 23
+ 13 20 33 23
TEEV+H+ 12 23 25 29
4 1z 14 21 é
+ 13 28 iv 23
1aH8++ E 19 28 28
¢ 11 Y11 g8 02
+ g 12! g z8! Collision Lane 4
1cR9++ 12 12 13 24
+ 14 17 13 15
+ 9 13 14 15
TELB++ 11 1e 12 13 )
+ 23 FE] 15 18 Upstream Rise Lane 3
+ 37 47 11 12
16i1++ 28 38 12 12
+ 25 2 ;
N 1 ;? i; %g _ Detection
161 8++ 25 25 14 18
+ ig 43 1z 19
+ 48 KRt 7 19
{634+ 43 33 iz 13 Downstream Station Shows no
+ 39 73 5 16 Lane Dominance
+ 35 i1 9
igld++ 3? 35 14 15 Upstream Lane 3 Dominance
+ o3 332 3 14 Apparent One Minute
+ e o 14 15 Before Detection
1615+4 41 29 8 16
+ 33 249 11 13
+ 43 24 16 15
tele++ 27 26 k. 18
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The {heory,presented above may be incorporated in the following al-
gorithm. (See Figure 45.) ‘

{1) 0CC data is averaged for each lane at the downstream station
ever *the one-minute period prior to the detection alarm.

(2) The lane with the Towest OCC average is identified as a
candidate for the incident Tane.

{3) To measure the intensity of the candidate lane's difference
from the other lanes, a percent mean deviation test is
performed on the downstream lane-data, as follows:

a) The one-minute lane averages are now averaged over all
lanes to give the mean 'station occupancy.

b) The candidate lane's individual OCC average is -subtracted
from the station average.

c) The ratio of this deviation to the station average is then
computed. This computation yields a feature with values
between 0 and 1. A feature value of 0 represents no
difference between downstream lanes while a value close

to 1 implies a considerable deviation between the predicted
Tane and the others.

(4) If the deviation feature is small it is probable that the
incident's effect will be more apparent at the upstream station.
Thus the feature is compared to a threshold, T1. If the feature
value is greater or equal to the chosen threshold, the lane

identified in step 2 is considered to be the involved lane.
Otherwise:

(5) The 0CC's for each upstream station lane are averaged over the
one-minute interval prior to the detection alarm.

(6) The Tane with the highest OCC average is considered to be the
involved incident lane.

6.4.5 Testing the Algorithm

The algorithm from Section 6.4.4 was manually tested on the evaluation
data base for five values of the deviation threshold, T1: 0.0, .10, .15,
+20, 1.00. The test with T1=0 employed downstream data only, and the test
with T1=1 employed upstream data only (see Tables 40 through 52).

Each test performed was evaluated in four categories: (1) those cases

in which no data were available for the blocked lane (at the station de-
termined by the deviation feature) but data existed for adjacent lanes and
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Find lane number i* such that
DOCCL (i*) = min DOCCL (1)
§

' ‘ _ DOCC - DOCCL(i*)
Compute DOCCDV = 50T

\ &

DOCCDY < T1

YES

Use upstream data; find lane
number i* such that

OCCL(i*) = m?x occL (i)

Set flag = i* (probable lane
location)

poce
DOCCL (1)

1

NO

Set flag = i*
{probable lane location)

one-minute OCC average for downstream station

one-minute OCC average for downstream lane i

0CCL(1) = one-minute OCC average for upstream lane i

Figure 45. An algorithm employing upstream and
downstream occupancy data for lane
identification of an incident.
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‘Table 40, OCC at downstream station (threshold = 0.0), one-minute
interval before alarm--overall performance.

ACTUAL LANE

FEATURE - OCC AT DOWNSTREAM: STATION P L S - B S 5 RS
P :
THRESHOLD = 0.
(THRESHOLD = 0.0) E .y . :
TIME - 1 MIN. PRIOR TO- ALARM I
, ¢
" *QVERALL PERFORMANCE T 2 2 1 1
ERALL :
NO. CASES - 24 :
SES D, NENENE 1
ACTUAL OR ADJACENT PREDICTED - - L L Z/;/
A 4 1 2 3 {72z
N 2
21 (87.5%) ; A =z
51 //4‘

Table 41. OCC at downstream station (threshold = 0.0), one-minute
interval before alarm--cases where data existed for
actual lane.
ACTUAL LANE

M 1 2 3 4 5 | Rrs

*CASES IN WHICH DATA EXISTED P - ‘
FOR ACTUAL LANE R

N A 4

D
ND. CASES - 15 I

c 2| 3 1
ACTUAL LANE PREDICTED - E

‘ 12 (80%) D 3 - 3
ACTUAL OR ADJACENT PREDICTED - Lo, : )
13 (87%) 4
E ‘
5

Table 42. OCC at downstream station (threshold = 0.0), one-minute
interval before alarm--cases with no data for actual lane.

ACTUAL LANE

M IR 8 5 RS
*CASES WITH NO DATA FOR ACTUAL LANE | ;7 .
NO. CASES - 9 g ! i 1
e
ADJACENT LANE PRUDICTED - L, : 7// .
. T : '
8 (89%) E 7 ' ‘
D 3 1 77728 IR )
| 1
Lo | 721 V2
N 77
, A
£ s N
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~Table 43, 0CC at upstream or downstream station determined by
deyiation feature (threshold = .10), one minute
interval before alarm--overall performance.

ACTUAL LANE

0CC AT UPSTREAM DR DOWNSTREAM o Mol 2 {3 1405 RS
STATION DETERMINED BY DEVIATION S
FEATURE WITH THRESHOLD = .10 0
: c 2 2 | a4 |1

TIME - 1 MIN. PRIOR TO ALARM i

*OVERALL PERFORMANCE b3 2 41 4 ! !
NO. CASES - 29 Lo 1 3| 3 ///
ACTUAL OR ADJACENT PREDICTED - N ’//

26 (90%) 51 o

Table 44. O0OCC at upstream or downstream station determined by
deviation feature (threshold = .10), one-minute
interval before alarm--cases where data. existed-for

actual. lane:
ACTUAL LANE

b I 2l 3| a | s |=&s
*CASES IN WHICH DATA EXISTED FOR P
ACTUAL LANE E 2 3
I
1N CAS -
HO. CASES - 27 ¢ » |
ACTUAL LANE PREDICTED - E
D
16 (73%) 3 ) L
ACTUAL OR ADJACENT PREDICTED - - : 3
19 (86%) y
5

Table 45, 0CC at upstream or downstream station determined by
deviation feature (thresheld = .10), one-ninute interval
before alarm--overall performance.
K ACTUAL LANE

il 1 2 3 4 5 RS

ADJACENT PREDICTED -

) p
*CASES IN WHICH NO DATA EXISTED R //
) E 4 //
FOR ACTUAL LANE D //
1 ,
NO. CASES - 7 c : //4 .
3
E
D

R

w

7 (100%)

N
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Table 46. ‘0CC -at upstream and -downstiedh ‘station deterninied by

-deviation feature (thireshold = .15), one-minute ihterval

;bEfere~aTarm-~overa11ﬁpér?oﬁMante\

‘ACTUAL ‘UANE

: | - R ‘ f
'0CC AT UPSTRCAM OR DOWNSTREAM P e e L BLE EELS
STATION DETERMINED BY DEVIATION LN P ,
TEATURE WITH THRESHOLD = .15 0 :
t 2 .3 ] &4 -
*OVERALL PERFORMANCE ‘ ‘
NO. CASES - 29 b3 g dol S 11 =1 MR
o
ACTUAL OR ADJACENT L 4. 1 3| 3 ///
vA +]. ———
26 (90%) N ] Vs 2
E s L

Table 47, OCC at upstream and downstream station determined by

deviation feature (thresho]d 15), ‘one-minute interval
before alarm--cases where data existed for actual lane.

ACTUAL LANE

Imopor e ] 3| a5 ] rs
*CASES IN WHICH DATA EXISTED FOR P
ACTUAL LANC R
Eoa)e | o3 e
NO. CASES - 23 D ——
I _
ACTUAL LANE PREDICTED - c 2 ? 4
¢ N A
17 (74%) E .
D 3 2 1 5 .
ACTUAL OR ADJACENT LANE PREDICTED -
21 (91%) T4l 1 3 |
N
E
5.

Table 48, 0CC ét upstream arid downstream station determinad by

deviation feature (threshold = .15),

one-minuteé interval

before alam--cases with no data for actuil lane.

ACTUAL LANE

‘ . M ] 2 | 3 4 5 RS
*CASES IN WHICH NO DATA EXISTED FOR P ~
ACTUAL LANE R Vs
E 1L // .....
NO CASES - 6 D
1 . ///
ADJACENT PREDICTED - ¢ 2 IR ¢ 77 -
: ./
3 // ‘ ‘
6 (100%) D3] | /// 1 M1
/ /
7 4
LAl //// 3. //
N 72av
E o5 //// ////
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Table 49, 0CC at upstream.and downstream station determined by
deviation feature (threshold = .20), one-minute interval
before alarm--overall perfermance. ’

ACTUAL LANE

o M ] 2 3 4 5 | rs
0CC AT UPSTREAY OR DOXNSTREAM p — ;
. R
STATION DETERMINED BY DEVIATION e ]2 3
. : D
FEATURE WITH THRESHOLD = .20 1
_ .2 3 1 a 1
*OVERALL PERFORMANCE ¢
E
NO.CASES - 29 5 i s |y

ACTUAL OR ADJACENT

N

25 (86%)

m2Z >

Table 50, OCC at upstream and downstream station determined by
. ‘ deviation feature (threshold = .20), one-minute interval
before alarm--cases where data existed for actual lane.

ACTWAL LANE
M 1 2 | 3 |4 |5 RS
*DATA EXISTED FOR ACTUAL LANE p :
, R
NO. CASES - 24 £ 1] 3
D
ACTUAL LANE PREDICTED I
X C 2 2 | 4 1
17N T -
ACTUAL OR ADJACENT LANE PREDICTED - D 3 2 b 5
21 (87.5%) L
A4 1 3
N
4
5

Table 51. 0OCC at upstream and downstream station determined by
deviation feature (threshold = .20), one-minute interval
before alarm--cases with no data for actual lane.

O ACTUAL LANE

*NO DATA EXISTCD FOR ACTUAL LANE -p " LA 20 T SO N I
NO. CASES 5 E 7z
ADJACENT PREDICTED - ! //7/

: o 272

5 (100%) T e

. : 2
E g
3 /// 1

Yz

7

\\\§Qd
\\\N
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 Table 32. 0OCC at upstream station (threshold = 1.00), one-minute
-interval before alarm--overall performance.

: ACTUAL /LANE
m | a2l 2] 3] a} s ] owrs’

i0GC AT "UPSTREAM. STATION DETERMIHED

©BY DEVIATION

P
R
E
D
FEATURE WITH TIRESHOLD = 1.00 I
‘ iC
TIME - 1 MIN. PRIOR TO ALARM T

E

D

*OVERALL PERFORMANCE

iNO. CASES - 28

ACTUAL 'LANE PREDICTED -
13 (46%)
~ ACTUAL OR ADJACENT LANE PREDICTED -
18 (64%)

NS
AR

138



an adjacent lane was chosen; (2) those cases in which data existed for the
actual lane and the actual lane was chosen, (3) those in which data were
available for the actual lane and either the actual or an adjacent lane
was chosen, and (4) the number of times either the actual or adjacent lane
- was chosen out of all cases considered. ’

7

The number of cases used for each test varies because some cases had
to be eliminated when the feature test pointed to a station for which sen-
sor data was unavailable causing an adjacent lane to be chosen by default.

For purposes of evaluation median incidents were considered lane 1
incidents and right shoulder incidents were considered lane 4 incidents.
The one case in which a right shoulder incident occurred and was predicted,
a lane 3 incident is counted as a correct adjacent lane prediction since
data existed for lanes 1 and 3 only. This case corresponds to the 1 in
~row 3 of the RS column in many of the tables. ‘

~ . The best results were obtained when the threshold values of .10 or .15
were employed (Tables 43 through 48). The actual lane was predicted ap-
proximately 70% of the time when data was available for that lane. Overall,

either the actual or an adjacent lane was chosen 90% of the time.

6.4.6 Interpretation and Accuracy of thé Performance Evaiuation‘

The success of the lane classification algorithm must be viewed in
connection with the incident detection algorithm employed. The results
imply that lane classification of incidents is approximately 90% effective
for incidents detected by the .detection algorithm. ‘

The actual performance of the algorithm tested may be slightly better,
or worse, due to possible inaccuracies in the documentation of the
incidents used in the evaluations. “

6.4.7 Practical Evaluation and‘Recommendations

~ The algorithm presented is recommended for use in conjunction with =
an incident detection algorithm for the following reasons:

1) High performance

2) Relatively simplistic nature - minimal computational burden.

(1)

(2)

(3) Employs lane OCC data only.

(4) Use of downstream percent deviation threshold permits further
calibration on-line and may be adjusted for systems with
different senser configurations.

(5) Use of data prior to detection alarm permits instantaneous
lane predictions. : )
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{6) Exhibits reasonable perforiiance at stations where data is
collected for less than all Tanes-
Tt §s recommended that a downstream deviation thresho]d of .15

be used, although the algorithm does not exh1b1t major sensitivity to
small changes in this value.

6.5 SENSOR MALFUNCTION DETECTION ALGORITHMS

One of the more serious problerms plaguing freeway surveillance and
1nc1dent detect1on systems is that of sensor ma]funct1ons These

fa]se alarms. Algorithms employing aggregatéed lane sensor data may
be used to detect such malfunctions.

6.5.1 Types of Malfunctions

Many.types of sensor hardware malfuné¢tions can occur. Most of these
equipment problems, however, appear in one of the following five ways:

1. Sensors stuck on or off

2. Chattering

3. Pulse Breakup (Pulsing)

4, Hanging

5. Intermittent malfunctioning

In normal, incident-free traffic, if a Sensor is stuck in the on or
off position, the malfunction is easily discernible. In thé off position,
occupancy , volume, and speed "zéro out"; in the on position, the sensor
usually gives occupancy values of 99% coupled with zero volurie and speed.
Complete lane b]ockages in the vicinity of detectors,however, may cause
similar appearing data (see Tables 53 and 54). In addition, light night
traffic may often exhibit periods in which 0CC, VOL, and SPD are zero.

Chattering occurs when a sénsor prov1des random presencé indications.
These pulses are usually of short duration (i.e. less than 2/15 second)
and often appear to occur with no relation to actual traff1c

When chattering occurs, 0CC and VOL are both e1ther abnormally Tow
or abnormally high, depending on the rate of chattering. Héwever, because
of the short duration of the pulses, speed values would be unreasonably
“high, regard1ess of the chattering rate (see Tables 55 thréugh 58).
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Zero occupancies due to an

incident at 6:12, sta 27, lane 4.

Table 53,

!
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‘Table 54. Ninety-nine -percent “‘gccupancies due to
an incident at 8:36, sta 19, lane 1.

) \
FWY 1
STA. 1919
LANE NO. 1 3

TIME

gig+s 53 32
§31+4+ 27 23

32++ 28 - 24
53i++ 23 21
334++ 21 N
335++ 34 23
Q36++ 99 24
B3T+4+ 949 29
838++ 92 31
339++ (99 29
a4B@++ (99| 23
B41++ 199 7

g42++ |39
843++ B
844++ 29
3435++ 18
846++ 16
B47++ 17 21
s43++ 15 2@
849++ 18 23
BoB++ 21 26

Bl P PLY L P
Y. N
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Table 55, Scan data from a chattering sensor, lane 4,

748725-61

FUY
STA
LANE NO.
“TIME

—

O NN N N N e R R N

PR

ol el Ll o) o) Ced e ad Ged D] God Ged €d Cad Ca) Did e o Cod Ve Co) Cad Gl g 1)

Cad Cud Tad ) 0

LA $o L P = T D 00~ T 0N e G PO e R AL QO S G O G P e OEOASY GO TR U1 B ) O = 1)

Nnonoadninennenon s il ca N el nencncnononen N onon onon Lnen o

0 B T TR Bt BR B B Bl B B Bl B BV B I B BRgV B IRt B BN TN |
Ll 1 Cad G e ] POY PO P PO P TR PO R PO D s R ks e et s et

2l i) G Gy

! o !

LR B e

- g~
Ly LN )
nonen O

G

[

LY JLES I
[a 0]

4

1 ,
% - Normal

Data

61116008808 0RO0

GBEABAREANAGERY
BOGAELOBEEREEOE
BA11110PBEAGRADB
BOBAPRBRBERABAE
0ABEBE11110B0B6GH
BAGRBREHORABEEDG
B11116BBBERBRE0NA
HORBBBEBEGHBREAR

0BBi 11 PEAREBEAR -

BE1111BBREAARA1
1110BBBBEE0REE6

BBENGEREBEBREAA

HEGEE1111088BEE6EM
fRREE0EBABOBEAL
11188B8BI 111668
goaBEeBea1i1118@
BOBRERREEANBERA
HEGBABREEAGEBREREE
BOBBRGBEBHBRARAA
BABEERBEAGEABOR
BRERBOBEGE!1 1 BAR
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. Table 56, Five-minute OCC map of. chattering sensor
(sta 18, lane 4) and intermittent hanging on (sta 14, lane 1).

T40725-81

NCCUPANDY

FuY 4 4 4

4 4 4 4 * 4 4
STA 18 18 18 ia 13 15 14 14 14
LANE NO. 1 3 4 3 1 2’ 4
TIME
T38++ 13 12 11 5| 13 18 17 18 11
T35++ 14 13 12 . 8 13 18 24 11 13
T4+ + 12 12 i1 d 12 18 22 12 i2
745+ + 15 13 12 g .14 11 13 12 14
TaE++ . 12 13 11 ] 14 11 28 13 14
7SO+ 12 12 11 5! 12 18 25 18 12
zE++ 13 13 i g i1 93 15 9 12
2ES++ 9 18 18 g i 18 27 18 14
S21B++ 9 18 9 1 a i@ 35 9 18
5i5++ i1 i1 ig i 9 18 ) i1 11
B2B++ iz iz i@ 1 11 18 23 i 13
g25++° 12 13 9 - 5} 12 9 28 11 12
§3B++ iz 12 18 i 12 18 7 18 18
835++ 11 12 3 i 11 9 le 18 11
gd48++ i8 18 18 8 18 a 18 9 .18
45++ 18 18 8 8 9 18 18 18 i1
OB+ a a g d 8 8 9 8 8
gon++ -4 18 9 4] 9 9 11 Q 9
3B+ + g Q b 8 9 8 16 9 11
SRS+ + 7 7 3 ga. 7 7 17 8 7
318++ b v b g 7 79 7 ?
F15++ 8 8 b 8 7 71y 7 8
G328+ + 7 9 7 ] 7 7 15 8 9
F25++ 3 i 7 8 8 8 12 3 4
93B++ 7 8 s 8 8 ¢ 1@ 3 14

- 144



- Table 57, Five-minute YOL map of chattering sensor
" (sta 18, lane 4) and hanging on (sta 14, .lane 1).
_ ¢ .

FWY 4 4 4 4 4 4 -4
STA 18 12 18 18 14 14 14
LANE NO. 1 2 3 4 1 2 4
TIME

FIB++ 21384 1812 1656 4B8 1956 1545 1ed8
733++ Z16H 180l 1836 396 1956 1632 106088
cdB++ 1968 1764 1824 420 1836 1776 1572
v45++ 2412 2852 1848 548 1988 1754 1788
75B++ 198B 1944 1728 432 2H84 1932 1848
- 733++ ZBd4 lod44 1eo8B 450 17Hd 15372 1o6HB
gAA++ 2B48 1824 1692 432 174B 1448 1628
gB3++ 1512 1512 1536 336 1688 1530 186H
81B++ 1536 15BY 1416 624 1356 1416 1392
815++ 1884 1632 1628 G576 1212 1628 1476
g2d++ 19635 1764 15%6 588 1728 les3 1764
£25++ 2828 1812 1452 552 1644 led4 1632
- E38++ 18672 1752 1485 612 1836 1545 13H3
8353++ 1716 1668 1344 544 1628 1eH35 1416
84B++ 1716 1548 1464 584 1524 1388 1448
245++ 1596 15HE 1344 d48H 1632 1488 1484

1892 324 114B 1388 1272

85B++ 1452 1388 1212 348 1484 1388 1128
835++ 1584 1512 1416 552 1484 132B 1188
sO8++ 1328 13536 296 444 1328 1484 1284
2B5++ 1224 1148 2B 3%6 1344 {212 9384
91B++ 1B92 1B&A 1BES 3%t 1B44 1128 984
S15+4+ 1356 1188 996 4%e 1148 1B92 1DBe8
328++ 12688 1272 1288 276 1148 1ZeB (224
225++ 1272 1332 11led 368 1356 1344 1248
23B++ 1224 1164
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Table 58, Five-minute SPD map of chattering sensor
(sta 18, lane 4) and hanging on (sta 14, lane 1).

TARTE5-B1

SFEER
FUWY 4 -4 4 4 4 4 4
STA 15 18 18 18 14 14 14
LANE NO. 1 2 3 4 1 2 4
TIME
FIE++ 55 43 Sz 191 44 52 48
7354+ 54 43 52 174 33 52 42
7aéE++ 55  S1 54 16B 39 51 5
745+ 55 48 . S1 191 42 51 45
75B++ 54 43 54 181 33 5B 45
PSS++ 56 48 52 178 37 & 46
50B++ 54 47 51 175 43 52 45
SRS++ 5 49 53 159 3B 53 45
SiE++ 56 43§ 172 21 51 48
B8l5++ 55 5B 54 181 16 5B 44
G2B++ 55 49 53 189 37 52 46
B25++ 55 49 54 178 29 49 45
G3B++ G4 48 52 186 4B 51 43
§35++ 55 4% 54 187 44 52 45
Z4B++ 57 SB 52 179 S2 5B 47
&45++ 55 43 54 176 S2 5B 42
gsB++  S7 48 53 158 SB 52 44
A55++ 56 49 53 188 46 5B 44
98B++ 55 81 53 187 36 & 2
385++ 57 0SB 55 163 33 S2 46
S1B++ 52 51 55 166 44 SB 45
315++ 57 SB 53 188 44 53 45
32P++ - 59 49 53 152 48 51 46
325++ 54 43 55 162 42 47 47
23B++ 5% 5B 55 1S58 47 49 42
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On the m1croscop1c 1eve1, chattering is apparent by presence
indications of short duration, although such pulses can be.caused by
vehicles chang1ng lanes directly over sensors.

Pulse breakup occurs when actuaT presence indications become
divided into more than one pulse. Volumes are higher since each vehicle
causes multiple counts. Occupancies are lower and hence SPD values are
unreasonably high, Pulse breakup is characterized in scan data by ex-
treme]y short headways per1ods Between pu]ses)

A hanging detector is one that remains in either the on or off.
state longer than usual. When hang1ng on, occupancies are increased,
volume is often normal, but speed is decreased (see Tables 56 through 59).
A-hanging off sensor causes low- -occupancies, reasonable volume, and high
speeds.

- It is conceivable that many freeway lane sensors may be characterized
- by 1ittle or no traffic during the night or early morning hours. Algo-
rithms employing low-end checks on- VOL or 0CC would falsely classify these
sensors as malfunctioning. Short aggregate times (e.g. 20 seconds) would
be more subject to such misclassifications than longer aggregate periods
(e.g. 5 or 10 minutes). Also, during extremely heavy traffic, vehicles may
often remain standing above sensors for re]at1ve1y Tong periods, (e.g.

20 or 30 seconds) causing 99% or 100% occupancies and zero SPDs and VOLs.
Such extreme values are unlikely, however, for long aggregate periods.

Although employing long averaging periods appears to be the solution,
early malfunction detection is sacrificed. Such delays may permit the
first invalid data values to trigger the incident detect1on a]gor1thm,
causing false alarms.

A so]ution‘to this problem would be to employ a preliminary data
screening routine. This routine would immediately detect stuck on or off
sensors based on twenty-second data and consider such sensors “"tentatively"
malfunctioning pending a five-minute average 0CC check. A description of
a potential routine is presented below (See Figure 46):

(1) Data on the smallest aggregate level available (e.g. twenty or
thirty seconds) is checked for 0 or 99% OCC -values. A "pre-
liminary malfunction"-flag is set for sensors with these
values. The number of times this flag is set could be recorded

“on a disk file for occasional examination by operation personne]
or by more advanced malfunction 1og1c

(2) Data from sensors with the preliminary malfunction flag set is
not used by the feature generator or incident detection routines.
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YES

) < _OCCL=O’
Set Preliminary
Malfunction Flag
YES :
< ' OCCL = 99
0.K.

0CCL = 20-second lane-specific 0CC

Figure 46. Preliminary data screening routine
to detect stuck -on or off sensors without
affecting indcident detection.
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(3) The ‘preliminary maTfunction F1dg s reset -at ‘the ‘beginning of
‘gach minute interval.,

{4) ‘Five=minute data tests could *then be emp]oyed (These * Will be
discussed in the next section.) If ‘the five=minute data aver-
ages ‘exndibited extreme va]ues9 a malfunction flag is set for, ‘that
sensor. This flag could theh be,‘(1) used to ‘Suppress ‘use of the

- © corresponding traffic data for ‘the next five-minute interval;,
(2) used to -alert an -operator, or {3) stored for later retr1eva1
for maintenance purposes. This flag Could be reset if -an inci-
‘dent :occurred during the five=miniute interval,

Such i@ routine would:

{1) Prevent incident false alarms based on data from stuck on/off or
intermittently operating sensors.

{2) Prevent sensors from beceming elassified as ma]funct1on1ng due
to brief periods of 0 or 99% OCC values caused by 11ght or
heavy traffic. Pre11m1nar11y removing sensors with 0 or 99% .
0CC values caused by the occurrénce of an actual 1nc1dent should

. not greatly affect incident detéction. An 1nc1dent 1ead1ng to
such extreme values will most 1ikely be so severe $0 that the
remaining sensors will easily reflect the in¢ident condition.

A sensor intermittently malfunctioning may, on occasioh; éxhibit any
of the previous problems, while operating normally the .rest of the time.
On the aggregate data level, this type of problem is difficult to detect
as sudden fluctuations in data tend to become "smoothed out:" The er=
ratic data produced often resefibles extremely heavy traffic patterns in
which compression waves cause high or low OCC fluctuations: Interm1ttent
-malfunctions are easiest to detéct on the raw scan 1eve1 by compar1son to
neighboring sensors (see Table 60).

The effects of the various malfunétion on aggregate ddta may be sum-
marized as fo]]ows

Condition Malfunction
0% 0CC Stuck off
99% 0CC ’ Stuck on
0 VOL or SPD ~ Stuck on or off
Low OCC and VOL Chattering - 10w rate
High OCC and VOL Chattering - high rate
High SPD Chattering
High VOL, Tow OCC Pulse breakup
. High SPD : Pulse breakup
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Condition " MaTfunction

High 0CC,. Tow: SPD: . ¢ Hanging: on:
Low OCC,, high: SRD: Hanging; off:

Erratic OCC Intermittent operatiom

6.5.2 Types: of MaTfunction Detection AJ

Two: types: of” maTfunction detection: algorithms. are considered: (1)
those: based on” individual sensor: tests: and’ (2) those employing comparison
checks: between: neighboring sensors. These algorithms’ will be: discussed im
reldtion’ to: the: common: types: of ma1funct1ons identified.

615‘3 Z.T S?i':in’g‘fe =sensor al go‘ri‘t" hms:

S1ng1e =sensor- algorithms. have: the: simpTer form.. They involve simple
checks: of . aggregate data from individual sensors against predetermined.
bounds:. Sensors with data: out of bounds are: considered- to- be: malfunc-
t1on1ng -

The period over which sensor data shou]d be: accumuTated: before being
tested' iis’ one question raised by such: algorithms.. The time: period used
nust: be considered with respect to' 1ight and heavy traffic and 1nc1dent
detection., :

At the present time, both Los Angeles: (CALTRANS) and' Chiicago. freeway
systems employ s1ng]e sensor maTfunction. algorithms. These: algorithms
will Be evaluated in terms of the types: of malfunctions previously dis-
cussed. .

CALTRANS Malfunction Routine, CALTRANS" maTfunction logic presently
emp]oys three data va11d1ty tests (see Figure 47). Checks are made
aga1nst five-minute averages updated every five m1nutes The first test
checks for OCC values greater than 95%. If a sensor's QOCC value is above
this Timit, the sensor's malfunction flag is set. Such a test would be
effective in catching sensors stuck in the on position. However, prob]ems
wouTd occur with incidents involving compTete Tane blockages: in the vicin-
ity of the sensor (e.g. see 1nc1dent Nos. 74073001 and 74051503 in
TabTes 53 and 54).-

The: second data test checks for a volume less than two vehicles
during the five-minute period. This corresponds to an average volume less
than twenty=four vehicles per Tane per hour. ATthough this test would
~detéct sensors stuck either in the on or of f state, again problems would
occur with incidents in the detector vicinity. In addition, some Tanes
may’ exh1b1t such Tow volumes during early morning hours, aTthough whether
this is indeed fhe case is not known, as- no night data was available.
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Checks are made against
five-minute averages up-
dated every five minutes

YES
SET FLAG -=————— 0CC5> 95% .

P
o

SET FLAG - yoL5< 24 veh/Tane/hour

NO

- SET FLAG <—YEi—— VOL5 > 3000 | veh/lane/hour

NO

0K

Figure 47, Caltrans malfunction routine.
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The third test checks for a volume greater than 250 vehicles, i.e.
3000 vehylane/hr. Such a test would detect a sensor exhibiting pulse -
breakup or -chattering at a high rate. Characteristics of this algorithm
may be isummarized as follows: .

(1) 1t will detect

© sensors stuck on or off
¢ pulse breakup
@ chattering at a high rate

(2) 1t will not detect

e chattering at low or medium rates
® pulse breakup in very 11ght traffic
e hanging on or off

e intermittent operation

(3) Its five-minute aggregation interval will permit brief traffic
fluctuations caused by extremely 1ight or heavy traffic.

(4) 1ts five-minute aggregation interval will not prevent incident
false alarms caused by sensors becoming stuck on-or off.

(5) Extreme values caused by an incident will trigger a malfunction.

Chicago Malfunction Routine. Chicago's malfunction algorithm employs
‘two data validity checks (see Figure 48). These checks are based on one-
minute averages updated every minute. ’ ‘

The first test checks for a volume greater than 35 vehicles, i.e.
2100 veh/lane/hour. Experience, however, indicates that this figure is
probably too low; 42-43 vehicles (2520-2580) would be a better threshold.
This test will detect pulsing problems and high rate chattering.

The second test checks for speed (VOL/OCC) values greater than
68 miles per hour. Such a test would -detect most chattering problems,
pulse breakup, and hanging off.

The malfunction routine also Tists sensors with zero occupancies but
does not remove these sensors from use since the detection logic employed
checks for zero values of OCC at the downstream station.

The Chicago algorithm may be summarized as follows:
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Checks are made against
one-minute data updated
every one minute

Set YES
Malfunction —e——— yoL > 2100
Flag/ '
NO
- Set

Malfunction 4—-_YES SPD < 68

Flag

NO

" DATA VALIDITY CHECK

veh/lane/hour

miles per hour

Figure 48, - Chicago malfunction routine.
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(1) It will detect

. @ chattering
. ® pulse breakup
® hanging off
- @ sensors stuck off (a]though these sensors must be manua]]y
removed from use)

(2) . It will not detect

" @ stuck on sensors
@ hanging on ‘
@ intermittent operation

(3) . The one- m1nute averaging interval may prevent some malfunc-
~ tion-caused incident false alarms

It is recommended that the preliminary data processor, prev1ously
discussed, coupled with a five-minute OCC, SPD and VOL test be evaluated
for potentia] use. Such a malfunction routine would employ the better
features from both the Los Angeles and Chicago algorithms and theoreti-
cally would detect most malfunctions, the exceptions be1ng hanging on and
intermittent operation (see Figures 49 and 50).

6.5.2.2 Neighbor comparison malfunction algorithms

Although single-sensor algorithms may be effective in detecting
extreme cases of malfunctioning detectors, such algorithms have difficulty
detecting sporadic malfunctions. Data from such intermittent malfunctions
often appear reasonable on their own, often resembling the pattern pro-
duced by very heavy or light traffic. For example, data from a sensor
intermittently hanging on might resemble compression waves moving through
heavy traffic; a sensor intermittently stuck off would appear as light

traffic. Although fluctuations from these sensors are apparent on the
microscopic level or over short aggregation intervals (see Table 61), they
would d1sappear over long averaging periods (see Table 56), .This kind of .
problem is a major cause of incident false alarms since detection 1og1c
usually employs short averag1ng intervals. A sudden O0CC increase is in-
terpreted as an upstream rise, and an OCC decrease as a downstream drop
due to an incident. Only when accumulated data from these sensors are
compared to data from adjacent lane sensors do these data appear unrea-
sonable, :

It has not been resolved whether malfunction logic employing twenty-
or thirty-second data capable of detecting intermittent malfunctions be-
fore they cause false alarms can be devised. Such algorithms would have
~a difficult time distinguishing between data from malfunctions and those
from actual incidents in heavy or light traffic., Neighbor comparisons
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Set
Malfunction
Flag

Preliminary
Data Processor
of 20-Second Data

Makes Tentative
Malfunction
Classifications
(See Figure 43)

5-Minute Averaged

Data
<_ye_s-'_‘ 0CC £ 1%
r no
'<-—1;;;? 0CC 2 95%
no
Y
~Jes] SPDT6
o
Y
"‘j;;;‘ VOL > 3000
' no
0K
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miles per hour

veh/1ane/hour

L)

Figure 49. Single-sensor malfunction a]gorithm.



Stated Degignates

0] No malfunction
1 Sensor Malfunction

Feature‘No. Name

1 0CCL5 (five-minute average lane-specific
occupancy)
2 - SPDL5 (five-minute average lane-specific volume)
3 VOLL5. (five-minute average lane-specific speed)
Decision
Node NTR Threshold
1 1,2,-1 2
2 1,-1,3 95
3 2,-1,4 75
4 3,-1,0 3000

Figure 50. Decision tree and coding for single-
sensor malfunction algorithm.
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Table 61.

Erratic 20-second 0OCC's from

intermittent hanging on (lane 1).
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would not be valid over such short averaging periods since large differ-
ences between lanes are often found in these intervals. Nevertheless, if
the percentage of invalid data coming from an intermittently malfunc-
tioning detector was large enough, a consistent deviation between the
:alfunctioning sensor and its station neighbors should exist. This con-
sistent deviaticn could easily be detected by an algorithm employing data
aggregated over a long period, e.g., five minutes. Such an algorithm may
not initially prevent an incident false alarm, but additional false alarms
could be communicated to the malfunction routine to prevent the detector
from being misclassified as malfunctioning.

A neighbor comparison algorithm was developed for purposes of illus-
tration only since time did not permit an actual evaluation and threshold
calibration. This algorithm was designed to identify intermittent hanging
on only during Tow-density traffic (since hanging on resembles slow moving
traffic under high occupancy conditions) and sporadic operation (i.e., in-
termittently stuck off) during medium or high-density traffic. Sporadic

. operation is difficult to detect during Tight traffic periods.

The potential algorithm employs five traffic data features:

F1 0CC5 - Mean station OCC - five minute average (average occu-
pancy across all lanes at a given detector station)

F2 The ratio of the OCC average from the lane with the maximum
 five minute OCC to the mean station OCC.

F3 The maximum twenty or thirty-second 0CC value from the
previous five minutes from the lane with the maximum five-
‘minute 0CC.

F4 = The ratio of the 0CC average from the lane with the minimum
five-minute OCC to the mean station OCC.

F5 The minimum twenty- or thirty-second OCC value from the
previous five minutes from the lane with the minimum five-
minute QCC.

Examples of these features can be seen in Table 62.
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Table 62. Feature computétion

740725-01

5-Minute Occupancy (810-815)
FWY -4 4 4. 4
STA 14 14 14 ‘14 ‘
LANENO. 1 2 3 &
TIME /

815 . 45 - 11 12 1
Feature values

F.l = (45 + 11+ 12 + 11)/4 = : )
, F, = 45/19 = 2.36 ' The algorithm would
2 _ jdentify lane 1 as
F3 = 88 (From Table 61) a probable malfunction
Fg = 11/19 = .57 | o
Fg =5 (From Table 61)

The mean station OCC is tested for medium- or low-density, traffic con-
ditions (e.g., < 20%). If such a condition exists, a check is made for a
sensor with an OCC average twice as large as the mean station OCC. 'If such
a sensor is found, the previous five minutes of twenty- or thirty-second
data is checked for average values greater than, for example, fifty per-
cent, Such high values are un11ke1y for a normal detector under light traf-
fic conditions.

A mean station OCC value greater than ten percent is usually asso-
ciated with traffic which is distributed evenly over all lanes. Unusually
Tow OCC values in one lane may be caused byan intermittently stuck off sen-
sor. Thus the algorithm test for traffic conditions greater than ten per-
cent OCC. If this is the case, a check is made for a lane with an OCC
one-half as large or less than the mean station OCC. If such a Tane ex-
ists, the twenty- or thirty-second data is checked for unreasonably low
values (two or three percent) F1qure 51 illustrates the binary decision
tree representing this ‘algorithm. ~(This tree will not pass the CTREE tests
since node 4 can be reached from nodes 1, 2, or 3. However, this tree can
still be executed using NTREE).

The number of lanes used in the-mean station OCC computation should
be at least four. Otherwise, data from a malfunctioning detector may cause
the mean OCC to fail the tests at nodes 1 or 4 when actually the average
0CC is within these bounds. Two ways to prevent such problems would be
(1) to compare each lane individually to the mean of the others and com-
pute the ratios from these values or (2) to include all lanes.from the
surrounding upstream and downstream detector stations in the mean traffic
average to produce a more accurate value. ‘

Although the algorithm presented was not fully evaluated, it is in-
cluded to be considered for actual testing and to illustrate how data
from neighboring sensors may be used in aiding detection of intermittent
malfunctions. Similar algorithms could be employed in conjunction with
single-sensor algorithms to provide a comprehens1ve sensor malfunction
system, )
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F1 =0CC5,
- OCCL5(1 )
R

F3 =0CC(i%),

F4 = ==

DCCL5(j*)
: iii v5

Ssmin)étation‘OCCAaverage

QCCLS(1*) is the 5-min 0CC
average ‘from the lane with
the maximum 5-min OCC average
at a -given station.

the maximum 20 or 30-second ‘0CC
value from ‘the previous 5 min-
utes from 1ane‘i*,

,0CCL5{i*) is the 5-min 0OCC

average from the lane with

" the minimum 5-min OCC average

F5 = 0CC(j*),

at a given station.

the minimum 20 or 30-second 0CC
value from the previous 5 min-
utes from lane j*

State Designates Node
0 No Ma]function 1
. 1 Probably Mal- 2
function 3
4
5
6
Figure 51,

Decision

TR ‘Threshold

2 20.0
4 2.0
4 50.0

1

-1
s

N O

s=1

U"-h—'wl\)—'

,4
3
5
0
0

.M OO
owmor

A mean comparison malfunction algorithm

using occupancy for detection of intermittent
operation and hanging on.
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7.  EVALUATION WITH THE MINNEAPOLIS DATA BASE

. Data collected over a portion of a Minneapolis freeway for the
Minnesota Highway Department were used to provide independent evalua-
tions of results obtained from the development of algorithms based
only upon Los Angeles data. The Minneapolis data were collected
under both clear and snowy conditions so that the effects of weather
could also be examined.. .

7.1 THE MINNEAPOLIS'DATA BASE

Data received from the Minnesota Highway Department consisted of
thirty-second occupancies and volumes for all stations under surveil-
lance in Minneapolis. A schematic of a port1on of the surveillance
system, that on Route I-35, is illustrated in Figure 52. Preparation
and use of data were Timited to this portion of the system. All data
were received in a form which was aggregated over all lanes at a
given station. The labeling scheme for sensor stations is given in
Table 63. Distinct station numbers are used for opposite sides of
the'roadway. At the bend in the roadway, the relationship of sensor
stations is somewhat complex. Table 64 lists, for each station, the
stations 1mmed1ate1y upstream and downstream, where they exist.

From the data rece1ved 36 incident and 5 incident-free data
sets were identified for use and were reformatted to conform to the
condensed format developed for the Los Angeles data. This allowed
us to use common software on both data bases. The identification
numbers and characteristics of the data sets in the Minneapolis data
base are given in Tables 65 (incident-free) and 66 (incident). Each
data set contains data for the entire surveillance system. Two of
the incident-free data sets and ten of the incident data sets pertain
to snowy conditions.

7.2 . ALGORITHM EVALUATIONS

To test the effectiveness of algorithms developed previously
using only Los Angeles data, Algorithms 2, 7, and 8 were selected
for examination. For each algorithm, we f1rst evaluated performance
with respect to the Minneapolis data base using thresholds previously
found (i.e., "L.A. thresholds") and then performed a calibration on
the Minneapo]is data base.

For Algorithm 2, these results are presented in Tables 81 and
g2 and Figure 63. For Algorithm 7, results are given in Tables 96
and 103 and Figure 81. For Algorithm 8, results are given in Tables
108 and 111 and F1gure 88. To provide a direct comparison of these
results and those using the Los Angeles data base, three sets of
results, in the form of detection and false alarm rates, are plotted
together for each algorithm in Figures 53, 54 and 55. In each figure
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Table 63. Minneapolis station labeling.

Minneapolis Station TSC Statiom No. No. Lanes
No. Name Freeway Station Direction
001 (0125) 3s 01 - 2
002 (0208) 35 * 02 S 3
003 (0205M) 35 03 S 2
004 (026S) 35 04 S 4
005 (028s3) 35 05 S 4
006 (031s) 35 06 S 4
007 - (0358) 35 07 -8 4
008 (0388) . 35 08 S 4
009 "(04258) 35 09 S 3
010 (0465) 35 10 S 3
011 (0508) 35 11 S 3
012 (051s) . 35 12 S 3
013 (053s) 35 13 S 3
014 (0558) 35 14 S 3
015 (060S) : 35 15 s 3
016 (061SX) 35 16 S 1
017 - (061SM) 35 17 S 1
018 (0618) . 35 18 S 2
019 (062%) 35 19 L 3
020 (063sX) 35 2C s 2
021 (063s) 35 21 S 2
022 (0635M) 35 22 S 2
0z3 (066S) 35 23 S 2
024 (0703) 35 24 S 2
025 (0738) 35 25 S .2
026 (07683) 35 26 S 2 .
027 " (0788) ) 35 27 S 2
028 (082s) 35 28 S, 2
029 (086GS) 35 29 S 2
030 (0905) 35 30 S 2
031 (0945) 35 31 S 2
032 (098s) 35 32 S 2
033 (102s) 35 33 S 2
034 (1068) 35 34 S 2
035 (106N) 35 35 N - 3
036 (102N) 35 36 N 2
037 (098N) 35 37 N 2
038 (094N) 35 38 N 2
039 (090N) 3s 39 N 2
040 (086N) 35 40 N 2
041 (082N) 35 41 N 2
042 (078R) 35 42 N 2
043 (076N) 35 43 N 2
044 (073N) 35 44 N 2
045 (070N) 35 45 N 2
046 (066N) 35 46 N 2
047 (063NX) 35 47 N .2
048 (063E) 35 48 N 2
049 (622E) 35 49 N 2
-050 (621E) 35 50 N 2
051 (063E) 35 51 N 2
052 (063N) 35 52 N 2
053 (062EM) 35 53 N 1
054 (062N) 35 54 N 3
055 . (061NX) 35 55 N 1
056 (061N) 35 56 N 2
057 (620W) 35 57 R 2
058 (C61NM) 35 58 N 1
-059 (060N) 35 59 N 3
060 (055N) 35 60 N 3
061 (053N) s 61 N 3
062 (050N) 35 62 N 3
063 . (046N) 35 " 63 -N 3
064 (042M) 35 64 N 4
065 (038NW) 35 65 N 4
066 (035N) 35 66 N 4
067 (031IN) 35 67 N 4
068 (028x%) 35 68 N 4
069 (026N) 35 69 N 4
070 (020m8X) 35 70 N 2
071 (020N) 35 71 N 3
N s 2

072 (016N) 5 - 72

N

165



Caie

Table . .B4. Upstream-downstream pointers for Minneapo]is stations.

. T3C Station No.

Freeway Station Direction

Upstream Station

Freeway Station Direction

Downstream Station

Freeway Station Direction

35
35
35
35
35
35

35.

35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
3s
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3
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35
35

35

35
35
35
35
35
35
35
35
35
35
35

01
na
03
04
05
06

© 07
.08

09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

65 .

66
67
68
69
70
71
72
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71
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Table 65.

Data Set No.

74100171
74102471
- 74102471
75010771
75010971

Incident-free data sets
~in the Minneapolis data base.

Time
From To
0630. 0900
1530 1800
~ 1530 1800
1530 1800
0630 900

167

Weather

Clear
Clear
Clear
Snow
Snow



Data ‘Seét
‘No.

74100331
74100731
24100732

74100733
‘74100734
74101031
74101131
7410431

74101631
74101632

74102232
74102231

74102331

74102531
74102532
74103131
74112731
74121231
74121331
74123031
75010231
75010232
75010631
75010831
75010832
75010833
75010834

75011331
75011332

75011431

75011432

75011433

75011434~
75011631

75011632

Ta

‘Estimated

b]e 66
“the M1nne

1

1:3

I
a

68

‘Location
“Time -of Occurf¥ence Upét“
(HHMMSS) “SPation Lane
164400 79 2
084200 49 1,2
163300 7 Five off
. » freevay
165200 T4 1
071200 23 1,2
173230 5 3
164400 61 RS
172000 29 5
075000 11 M
164500 %2 1,2
160100 60 -
074300 42 2
163000 7 2
073100 25 L
160800 18 M,;1
072000 54 RS
073600 27 RS,
160900 13 2
074100 52 2
162200 13 L2
154800 10 2;3;RS
160530 10 4
080200 23 M
081300 42 ES
161500 § 1;2,M
163600 5 M
165300 1 M
071000 60 2,3
164700 9 2,3
082900 52 M
071230° 46 2
154630 g 2
160400 4 2
173230° 4 3
154630 19'  ca¥d-
board _
on’ road

1ﬁent data sets in
polis data base,

Type

DISL

TCOL

GAWK

_TCOL
‘TCOL
'SPIL
GAWK

TCOL
DISL
TCOL
TCOL
TCOL
DISL
TCOL
DISL
GAWK
TCOL
TCOL
DISL
TCOL
DISL

DISL -

DISL
DISL
TCOL
TCOL

TCOE

DISL
DISL
DISL
DISL
DISL
DISL
DISL

SPIL’

‘Weather

Cléar
Cléar
Clear

Clear
Clear
Clear
‘Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Clear
Hazy
Clear
Clear
Clear
Clear
Snow
Snow
Snow
Snow
Snow
Snow
Snow
Clear
Clear
Clear
Clear
Snow
Snow

 Clear

Clear
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we repeat results obtained by calibration and evaluation of the
Los: Angeles. data base: and give the two sets of results pertaining
to the Minneapolis data base.

Performance: is generally better on the Minneapolis data base
ind: by calibration. on that data base, performance is improved. These
figures: prov:ide concrete illustrations of the point we made earlier--
performance: measures depend upon the data base. (Differences for -
Alfgorithm 2, Figure 53, are significant at the .01 level. For ai-
gorithms 7 and 8 differences between false alarms on the Los Angeles
and: Minneapolis data bases are sianificant at the .07 level, except
for Algorithm 7 at. detection rates less: than 31%.)

Two important conclusions emerge from further examination of
these: results

e Satisfactory performance is obtained by using
' thresholds established by calibration on the Los
Angeles data base.

‘e The relative performance of these three algorithms
is the same on the Minneapolis and Los Angeles data
bases. ‘ N

Taken together, these conclusions indicate that the results we have
obtained by developments on the Los Angeles data base--both in terms
of good structures for algorithms and the specific thresholds-- are

of general value. Implementing agencies other than the one respon-
sibTe for the Los Angeles system can also expect good performance from
the algorithms we have found. If yet better results are desired,
calibration on a data base specific to the site can be carried out.

With regard to improvements in performance obtained by calibrat-
ing on the Minneapolis data base, evaluations were carried out on
the same data base as used for calibration. To some extent, then,
the improvements observed may not be real, but merely a reflection
of fitting the thresholds to the specific data base.

7.3 EFFECTS OF WEATHER

One major reason for acquiring the Minneapolis.data base was to
~investigate the effects of weather. .

For this evaluation, Algorithms 2, 7, and 8 were again selected
for examination. The Minneapolis data base was partitioned into a
clear weather data base and a snowy-weather data base. Evaluation
results for the three algorithms are given in Tables 83, 102, and
112, respectively, where thresholds previously found from cali-
bration on the entire Minneapolis data base were used.
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It will be noted that the false alam rates, at a given detection
rate, are generally lower for clear weather as compared to snowy weather
data. However, it is not valid to draw the conclusion that algorithm
performance, in practice, will be better under clear weather conditions.
Our data were not derived from controlled experiments -- controlled in
the sense that all relevant circumstances, e.g., traffic volume, were
identical except for the weather condition. Hence other factors may’
account for the differences in performance.observed.

The more relevant question is whether different sets of thresh-
olds are justified for different weather conditions. To test this,
Algorithm 7 was recalibrated on the separate weather condition data
bases, yielding the results of Tables 103 and 104, and Figures 81
and 82. Comparing these results to those obtained by calibration
of the entire Minneapolis data base, Figure 56 and 57 indicate that
performance measures are very similar. There are differences to be
found (but they are not significant at the .10 level), but the general
conclusion is that there does not appear to be a need for (or benefit
associated with) separate sets of thresholds dependent upon weather
conditions. This conclusion is based, of course, on the specific condi-
tions represented in the Minneapolis data base and cannot necessarily
be extrapolated to conditions not represented there.
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8. RECOMMENDATIONS FOR FURTHER RESEARCH

In the course of our investigations, we have identified a]ternat1ve
approaches to the construction of incident detection algorithms which we
were not able to pursue fully or to pursue at all. One such approach is
based upon traffic correlation analysis. A second is the use of individ-
ual lane occupany data. These approaches appear to have promise for-
improving the detection of incidents in 1ight-to-moderate traffic, inci-
dents that the algorithms we have developed have difficulty in detecting.
In addition, as we have noted, false alarms due to bottleneck conditions
also remain a problem. The second approach of using individual lane
occupancy .data may be of value in reducing such false alarms.

Details of a feature based upon the concept of traffic correlation:
are given in Appendix A, along with preliminary results obtained from its
application to a few incidents. Two factors motivate our recommendation
for further attention to a]gor1thms based upon traffic correlation.

First, traffic correlation is most consistent in the 1ight-to-moderate
‘regime with speeds near f1fty miles per hour, and thus the corresponding
feature is most sensitive in this regime to d1srupt1ons in the traffic
stream. Second, it is precisely in this regime that 1nc1dents are found
to be difficult to detect.

The success we had in constructing an algorithm for identifying the
lane of occurrence of an incident suggests a refinement to the structures
of the algorithms we have developed. This refinement involves the use of
individual lane occupancy ‘data downstream of the incident site, the same
data found to be most useful in lane identification. And, since bottle-
necks remain the most prevalent source of false alarms in our best per-
forming algorithm (Number 8), this refinement is aimed at distinguishing
between incidents and bottleneck conditions.

A candidate algorithm embodying this refinement is illustrated in .
F1gure 58, it is a modification to Algorithm 7. The idea is that threshold
associated with OCCRDF vioulc be chosen as a relatively large value,

sgy .6, so that the old test used in Algorithm 7 would be applied when
large discontinuities are found. Bottlenecks do not typically produce such
large discontinuities. In an intermediate range of values of OCCRDF
associated with a choice of T4 of, for example, .35, there is possible
confusion betweer bottienecks'and incidents. Thus, in this range we would
apply a more detailed test involving DOCC and a new feature, DOCCDV, de-
fined as follows (refer to Section 3.1):

N(i+]) A . . m1n |
- E 0CC(i+1,j,t) - N(i+1) 3 0CcC(i+1,3,t)
DOCCDV (i.,t) = —I=!

N(i+1)
' :z: 0CC(i+1,3,t)
| . a5

)

1
S

ﬂPreceding puge-blunkﬁ; 177
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Figure 58. Suggested refinement’to'ATgorithm 7.
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(Note'that this feature is defined in a similar manner to that for the
feature ENRGSD which was examined in the first interim repart.)

The sensor configuration study we undertook was limited by the fact -
that the data available to us involved sensor stations no closer (on the
average) than one-half mile. Recently, a data base involving stations
spaced at approximately 600-foot intervals (San Diego freeway in Los
Angeles) has become available.

: The procedures undertaken, as described 'in Section 6.2, can be applied
to this data base as well. Various subsets of the data can be used to
study, for example, sensor spacings ranging from 600 feet to a mile. The
special value of this data base is that algorithm performance can be
studied for this important range of sensor spacings for the same incidents,
thus avoiding a possible confusion in results that might occur if differ-
ent incidents for different sensor configurations were examined.

Our study of the effects of geometrics and means for reducing their
adverse impacts on incident detection algorithm performance revealed the
importance of this factor but was inconclusive with respect to the one
technique examined for reducing adverse impacts. The approach we examined
involved a normalization of features values (differences in occupancies)
based upon typical traffic patterns. It is evident that further examina-
tion of this technique, and development and evaluation of others, is
necessary to resolve this remaining problem.
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1. TRAFFIC STREAM CORRELATION ANALYSIS ' !

Traff1c stream correlation can be used to pr0v1de an 1mproved forecast
of a traffic variable. An example is the correlation observed in light to
moderate traff1c, between the present value of a traffic variable at one

“-ation and past values of the traffic variable at an upstream station. In.
this section, the basis for such forecasts is developed, first, in the con-
text of using upstream-to-downstream correlation and, then, in the more gen-
eral context. of a dependent time series and one or more independent time
series.

1.1 UPSTREAM-DOWNSTREAM- CORRELATION ANALYSIS

We consider two time series, x(k) and ¥(k), corresponding to traffic
data from upstream and downstream stations, respectively. As the theory
suggests a correlation of fluctuations, it is appropriate to consider devia-
tions of these traffic variables from.the trends:

x(k) - ty(K) - (14)
: Fk) =y - tyk) . o (15)

Determ1nat1on of the trend values, ty(k) and ty(k), is deferred to the next
section. !

—
=
——
1

and

l

- It is expected that values of ¥(k) can be predicted from past values of
 x(k). The prob]em we address at this point is the determination of those
coeff1c1ents, a(nlk), n= no, ..sN7, which provide the best estimates

A Ny N : _
y (k-mlk) = 22 a(n|k) X(k-m-n) ~ (16)
‘ n=n:
;0
m=0,1,...,
in the sense that the error
' ® /\
=Mouf ~- o)
E(k) =m§0 e Ot[y(k-m)-y(k-mlk)]2 (17)

is least., This approach is chosen, in part because of the computat1ona]
convenience which resu]ts

Straightforward computat1ons y1e1d the f0110w1ng equations for the co-
efficients:

a=n, .
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~ where o yx (Moalk) = ”%:0 ™™ X(k-m-n) X (k-m-q) - (19)
and 0t L ™ g ¥ (emen). . (20)

Computational corivenience derives from the fact that the required
quantities can be computed recursively:

oxx(n,dlk+1) = ei“oxx(n,qlk) + ? (k+1-n)X(k+1-q) (21)
and

o (nlke1) = effoxx(n|k)+y(k+1—)§'(k+j-n) . (22)

Further, from (19) it can be seen that

g oxx(n+1,q+1|k+1)Y= oxx(n,qlk) : (23)

Therefore, equation (23) can be émployed for n=ng,...,n1-1 and g-ng,....n-1’
to obtain most of the elements of oyx(n,q|k+1). Finally, we note the symmetry
of this array, i.e.

oex(malk) =o(amll) | (22)

so that (21) need only be used to compute Gyx(Ngsalk+1), q=ng,...,n1. Symmetry
can also be exploited to reduce storage reqguirements.

One can show that

L M
E(k)’='oxx(o,-oyk);2 a(n|k) > a(qlk)o, (n,qlk) , (25)
RN n=no .q=qo : .
wherer .
™
o (matk) = z e-ma;(k-mfn)?(k-m-q) |  (26)
m=0

183



General derivations of equations 18 ‘through. 20 and 25 and 26 follow in sub-
section 1.3

1.2 COMPUTATION OF THE TREND

We. have found that Oxx» etc., are determ1ned by recursive, single ex-
ponent1aJ smoothing relations. To be consistent with this, the trend values
are determined from exponent1a1 smooth1ng Thus we compute

{

s (Wi = &% i + (- xqity (27)

and compute the trend values as

t (kt1) = s (M (k) (28)

t!

with identical relations for the downstream variable obta{ned by replacing
X with y.

When trends are present in the traffic data, it may be desirable to
account for -this by employing higher-order. exponential smoothing. 1 For
example, to account for a straight-line trend, one can employ double expo-
nential smoothing as follows:

e % (”(k) + (1-e"%)x(k+1) | (29)

sx(])(k+]) Sy

and

s*(z)(k+]) e'asx(z)(k) +,(1—e'd) Sg(])(k+1)

The trend values are then faken as one-step forecasts:

t 1) = 25, ) - s D) + L1, M i0-5, P07 .

1.3 GENEﬁALIZED CORRELATION ANALYSIS

The analyses in the two previous subsections apply more generally to
y(k) considered to be a dependent time series and to x(k), an independent
time series. For example, in congested traffic, fluctuations move 1n an
- upstream direction so that one could take y{k) to correspond to the upstream

1R. G. Brown, Smoothing, Forecasting and Predictioﬁ of Discrete Time
Series, Englewood Cliffs, N.J., Prentice-Hall, Inc., 1962, p. 123ff.
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station and x(k) to correspond to the downstream station. As a second ex-
ample, in certain locations where on-ramp traffic is particularly heavy,
one might wish to relate observed fluctuations in main-line occupancy (y)
to fluctuations in the on-ramp volume (x).

In the situation of the latter example, an even better forecast might
be obtained by using two independent time series, e.g., upstream occupancy
and on-ramp volume. To handle this, a generalization of the development of
subsection 1.1 is required and is taken up here. :

As before, y(k) is the time series of deviations~-from the trend of the
dependent time series. Now we can consider a vector time series,

x, (k)
| N | X‘(k) = T R , (32)

xp(k)

- -

i.e., a-collection of p independent time series. Trends for each componeﬁt
can be separately computed,

t, (k)
]
t (k) =1
AR RSN I (33)
t, (k)
_.p -
and then a vector of deviations, l - (34)
x1(k) - tX](k)
X(k) = ’

can be identified. ‘ ,
- The optimal forecast problem is then the determination of the -array of
coefficients
: : a](n]k)

a(n|k) = : N=Nse sy (35)
ap(nlk)
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which: provide- the best estimates

e

P

X0

Y (k=m{k) = ): f a, (nfk)

fnitheysensg;;hat theaernor

- - I A :
E(k)= & e,'ma[x?("k—-mr). -y ('kv-ml*k.)]"2
. m=0. .

is. Teast.

To jdentify equations deffhing;a{nﬁk)% we first define
oy (malk) = 32 e ¥ (k=men)J(k-m-q)

m=0o
. - ‘ -ma ~ Lo~
Yx.(nfk) = = © oy (kem) X;(k-m-n)
m=0

and

<M ~ ~
e Xj(k=m-n) X, (k-m-q) .

1

XX

o, (n.alk) =
1)

3
1

=0

Now, inserting (36) into (37), we have
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- -Ma - ~ |
E(k) = e [&(k-m) 2 EE% ar(nlk) xr(k-m-n)
Y e"““[y(k-m)}z
m=0 :
n p » _ -
-2y X ar(ﬂlk) * ey (k-m) h}(k-m-n)
n=pn r=1 m=0
0
noonp = e~ ~
+ zf 125 S % ar(n'k)a (qlk)z: e xr(k-m-n)xs(k-m-q)
n=n_ gq=n_ r=1 s=] m=0
0 0
n p
= oy (050]k) - 2 5 > ar(nlk)oyx (n,q|k)
n=n_  r=1 r
0
oM P
Y DI | ar(ﬂlk)as(nlk)cx « (nalk) (41)
n=n0 q=no r=1 s=1 ‘ rs
Let F-@]("o,k)
a, (nq[K)
A = . s (42)
ap(no|k)‘
| a (m[k)
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yX

—0 (n n el (I"I 5N )
x1xJ 0’0 xi*a 0°'1
o = | . | ’ (42]-)
'Gxicxj(n]’no)..oxicxf(n]’nij
and
o o
X1% ‘qup | N
Oy = | | . (45)
o . e 1*} o
™1 *p*p

Then, using vector-matrix notation,

- t o, at _
E(k) = Oyy(0;0|k) - 2A%, + Ao A (46)

y
and
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E(K) = o R + - ta] A- |
(k) éxx(o,olk)_ oy_x T ex ny [UXXA GXX] Uxx [GxxA ny] . (47)

As the last term is the only one involving A and is clearly nonnegative,
the best choice of A is seen to be specified by .

o A=
XX Syx s - (48)
and, for this choice, | | )

E(k) = o, (0,00K) = o, %o, ! . (49)
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2 ALGBRIWHMS ‘BASED ‘UPON TRAFFIC STREAMFCORRELATION

Jn‘thns sect1|n,<a ‘traffic stream correlat1on Feature s defined that -

s ibased upon atcompar1son of ‘the forecast of a ‘traffic variable to its

actuall walues wsing the past ‘trend iand the Fluctuation forecast. This Torre-
+atien Feature may be wsed to define @h dncident<detection Zalgorithin divect-
Ty in the form

: traffﬁm‘x%réam correlation Eéa%ure?>"$hrééhbiﬁv

or it may be nncorporated in 'multiple-feature a]gor1thm Attention here
is given to ithe definition of the feature, Some samp]e results, computat1on-
aill reguiremenits., and recommendat1ons for its wse in incident-detection
algorithms. :

2.1 fDEFWNITTON'DF'THE°@ORREbAT¥0NEFEﬂmﬂRE

Using the noitation of the previous section, the forecast of the ‘depen-
dent traffic variable is defined as the sum ©f a trend forecast and a fluc-
tuation Forecast:

y(k#1) = t(k#1) * Flke1) (50)

where the trend forecast is defined by ‘equation (28) if $ingle exponential
smoothing is used and by (31) if double exponential smoothing i$ uséd. The
fluctuation forecast is given by

n ‘ o (51)

Flk1) = [ a(nk) X{k+1<n)
oo ’

if a single independent time series is used and by equation (éﬁ),if more
than one such series is used. An accumulated forecasting error is defined
as

e(k#1) = 8re(k) + o [y(k+1) - y(k+] -
o o (52)

with 6,20, 6,20. To obtain a normalization of the accumulated forecasting
error, we de%1ne the smoothed mean absolute deviation:

(k1) = (oK) + v Iy (k#1) = §(k+1)| (53)
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and then the normalized forecast error:
e(k+1) = e(k+1)/u(k) - ' . (54)

This feature definition, resulting ultimately in e(k), is very similar
to that_for exponential smoothing features described in the first interim
report.1 It will be noted that when the correlation is weak, the contri-
bution of the fluctuation forecast will be small so that the trend forecast
will predominate, i.e. s the feature will reduce to an exponential smoothing

feature. v

Software and related documentat1on of the correlation feature is given
in Volume 4 of this report.

2.2 SAMPLE RESULTS

The software embodying the traffic correlation feature was exercised
using both occupancy and volume data. As was previously found and' reported?
results were better with the occupancy data, and results reported here per-
tain only to occupancy data.

Results that illustrate the presence of traffic correlation and the
reduction in the forecast error obtained by using the fluctuation forecast
are presented in Tables 67 through 70, In all of these cases, parameters

were as follows:

a=1/15
nO =]
Ny =‘4
9-, =62= ]/2
y = .1

First, upstream-to-downstream correlation was examined. That is, the
fluctuations in upstream data were used to produce a .forecast of downstream
data. The traffic variables chosen were twenty-second occupancies in indi-
vidual lanes. Tables 67 and69 illustrate the use of single exponential
smoothing while Tables 68and 70 i1Tustrate the use of double exponential
smoothing. It can be seen from the values of the fluctuation coefficients
(a(llk 1), etc.) that there is strong correlation of the fluctuations.

TH. 9. Payne et al, Ibid, p. 49 ff.
21bid, p. 127.
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By examining values of the mean absolute deviation, u(k-1), the re-
duction in forecast error provided by the: fluctuation forecast can be seen.
For example, from Table 67 which pertains. to: results without the fluctua-
tion forecast, one finds u(k-1) at 74300 to: be T.7288; results with. the
fluctuation forecasts, Table 69, indicate ufk-1) at 74300 to. be 1.2829.

T onilar 1mprovements due to the fluctuation forecast can be seen by com-
paring results in Tables 68 and 70, A comparison of results for single-

and double-exponential smoothing, Tables 6% and 70, shows little difference,
with those for single-exponential smoothing slightly better.

Another set of results involves downstream-to-upstream correlations,
i.e., the fluctuations in downstream data were used to produce a forecast
of upstream data. The traffic variables chosen were one-minute occupancies
averaged over all lanes. In Table 71 one-minute occupancy data are provided
in the form of an occupancy map. Boxes isotate a sequence of large values
of occupancy associated with the passage of a compression wave. In the ab-
sence of a fluctuation forecast, this wave produces very large forecast errors
as can be seen in Table 72. In Table 73, substantial correlation is ev1dent
andfthe forecast error is seen to be substant1a1]y reduced.

2.3 COMPUTER(REQUIREMENTS

Use of the correlation feature will involve substantially more computa-
tional effort than use of features prev1ous1y identified for use in incident-
detection algorithms. To address this issue, a count of the number of multi-
plications and divisions required for each element of the flow chart (Figure
4. ) was made and entered in Table 74, The parameter An=nj- no+1 is the number
of deviation-from-trend values used in the correlation analysis. In this
count, single exponential smoothing was assumed. We note that single expo-
nential smoothing requires seven multiplications.

From th1s table, it 1s seen that the growth in required operations is
dominated by the term (An)3/3. A total of 63 are required for each feature
when An=4.

The correlation feature requires substantial memory in tne form of stored
values of several variables. Table 75 identifies storage requirements. It
can be seen that growth in the storage requirements is dominated by the term
(An)2/2. When no=1, ny=4, twenty-five words of memory are required for each
feature. : .

2.4 CANDIDATE ALGORITHMS

Experience with the correlation feature has indicated that

@ substantial upstream-to-downstream correlation is consistently
present in light traffic but not in moderate-to-heavy traffic,

@ substantial downstream-to-upstream correlation is present only
when there are compression waves in heavy traffic.
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Table 71, One-minute occupancy map, data set 74090454, '
' ~ San Diego southbound. '

Direction of Travel

statigns | | -
TimeN\, 32 3 3 29 28 2 2%

710 15 20 20 18 22 26 22
rak! 13 21 19 18- 22 28 26
712 .16 19 20 19 21" 32 - 26
713 13 18 16 18 30 25 25
714 14 22 17 18 25 23 24
715 14 20 20 26 44 29 26
716 14 18 18 25. 34 26 24
717 13 21 19 3 26 21 25
718 14 24 2] 48 29 25 21
719 16 26 32 28 31 26 25
720 21 24 47 19 26 . 39 ' 23
721 14 26 32 27 26 21 22
722 14 52 32 22 29 19 23
723 14 27 23 20 18 24
726 - 13 26 21 21 30 22 2
725 24 21 22 23 26 24
726 39 20 23 38 23 28 23
727 23 21 [g5} 29 22 30 23
728 26 24 43 28 23 23 25
729 31 26 26 29 22 30 23
730 30 22 35 22 24 23
731 31 41 - 21 30 17 26 24
732 37 29 27 26 23 18 26
733 B0] 26 35 22 37 22 24
734 53 22 31 21 29 26 26
735 48 21 32 21 25 22 23
736 29 28 33 39 21 24 23
737 37 33 28 ‘26 22 30 27
738 38 29 44 21 20 23 24
739 40 25 38 21 21 20 27
740 53 23 43 19 30 23 24
741 37 47 4 22 . 36 26 23
742 41 36 42 23 38 28 26
743 38 26 38 21 31 22 25
744 56 24 29 33 29 23 22
745 64 25 24 38 27 27 24
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N

Table 75. Storage Requirements'for the Correlation Féature.

Storage Requirements per Feature

. Variables General . ong=l.ny =4
Smoothing variables 1 - 1 o ‘
Deviations from trend | ny + 2 | 6
Correlation.arrays AL'-Lé%-ﬂ-)?{] n
Filuctuation forécast

coefficients An 4

Error feature 3 - 3

-':Total AEE ; 3an 7 4 25
: 5 5 noL
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A single-feature algorithm, based on upstream-to-downstream correlation
using individual-lane, twenty-second occupancies, was briefly examined.
Results were encouraging but we were unable to devote sufficient attention
to this algarithm to draw any final conclusions.

There are presently no existing -incident-detection algorithms which
are known to be effective in light traffic. O0f course, very severe in-
cidents can be detected in 1ight traffic by present algorithms, but
present algorithms. are most suitable for the moderate-to-heavy traffic
regimé. In view. of this gap-in coverage by incident-detection algorithms
and the evidence of consistent correlation in light traffic, we regard
algorithms based upon the traffic correlation feature as worthy of further
attention. ‘ -

In the earlier stages of our development of incident detection algo-
rithms, as discussed in Section 5, compression waves produced a large
fraction of the false alarms. A feature based upon downstream-to-upstream
correlation was examined as a tool for substantially reducing such false
alarms. However, we found that compression waves are not sufficiently
regular for this feature to achieve this goal. As another technique -
(described in Section 5 and embodied in Algorithms 8 and 9) did prove to
be successful, this approach was abandoned.

-
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Appendix B

ALGORITHM DEFINITIONS,

CALIBRATION AND EVALUATION RESULTS

N
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OCCRDF
=To

F,
"DOCCTD
=T,
T F
State
0
| 0 ]

Designates

incident-free conditions
Incident conditions

Figure 59. Decision tree for Algorithm 1.
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Table 76. Coding for Algorithm 1.

Feature No. : Name

1 OCCDF

2 OCCRDF

3 DOCCTD ,
_ . : Threshold
Decision Node - NIR ‘ Vector

1 1,2,0 : T]

2 . ‘ ‘ 2,3,0 ‘ - T

3 3,-1,0 \ T
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Table 77 ; Calibration and evaluation of Algorithm 1
on Los Angeles data base.

NI = 49 NI = 4]
NF-=-]08,108 NF = 5002 .
Threshold Detect{on False alarm Mean-fime- °  Thresholds
set ~ rate rate to-detect T] T2 T3
(%) (%) (minutes) -

] 82 1.731 .85 5.3 .308 .061
2 71 1,140 1.99 5.8 .340 .112
3 . 61 .368 3.33 7.7 .498  .049
4 51 | .244 5.09 5.0 .563 013
5 4] .074 5.18 9.6 \617\ .075
6 (31 ,015 6.00 16.3  .637 .245
7

20 . .004 7.77 13.0 J10 0 .192
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State

Designates

‘Incident-free conditions

Incident occurred
Incident continuing

Figure 61. Decision tree for Algorithm 2.
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Table 78. Coding;for;A]gorithm 2.

Feature No. . Name
1 - OCCDF
2 OCCRDF
3 | DOCCTD
4 ' State ,
| Threshold
Decision Node NTR Vector
(I | 4,2,3 - B
2 2,-2,0 . Ty
3 1,4,0 T
4 2,5,0 T
5 ' 3,-1,0 T3
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Table 79. Evaluation of Algorithm 2 for thresholds
determined for Algorithm .1 from Los Angeles
data base (see Table 77).

Evaluation on Los Angeles .
data base, NI= 49,,NF= 104,217

Threshold Detection False alarm Mean-time-

set rate rate | to-detect
(%) (%) (minutes)

1 82 1.294 .85

2 71 .901 1.99

3 61 .309 3.33

4 51 .222 ‘ 5.09

5 41 .070 5.18

6 31 .015 6.00

7 20 .004 7.77
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Threshold Detection False alarm Mean-time-

Tablé 80. Calibration and evaluation of
Algorithm 2 on Los Angeles data base.

N;

NF'

49

104,217

NI'

N,

40

F= 3,495 .

. , Thresholds
set ‘rate rate to-detect T1 T2 T3
(%) (%) , (Minutes) ) .
1 82 1.341 77 5.4 .325 .01
2 7 883 .01 6.8 .307  .056
3 61 386 3.34 15.0  .335  -.050°
4 -5 .169 4.87 9.9 ° .552 -1.112
5 4’ .064 5.28 9.5  .629 -1.746
6 3N .026 ° 4.64 © 21.3  .646 ' -2.080
7 20 .01 8.72° 299  .685 " -1.959
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Tab]é.82. Calibration and evaluation of ATgorithm 2
on Minneapolis data base.

= 36 N

NI I.=33
¢
: NF = 465247 N% = 2,429
ThreSh&]d Detection False alarm . Mean-time- Thresholds
set rate rate to-detect - T1 A T2 T3
(%) (%) (minutes) :

1 92 .785 .94 6.8 .337 .141
2 81 .413 .78 8.6 .353 .141
3 72 .151 1.94 7.1 - .606 -.040
4 61 .020 2.68 22.7 .697 -.062
5 . 50 .011 3.42 29.7 .678 .173
6 42 .004 1.80 25.0 .676  .306
7 36 .004 1.46 28.8 .672 .354
8 25 .003 .94 28.1 .314 .550
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STATE

e

OCCRDF
L

Designates
0 Incident-free
1 ~ Incident occurred
2

. Incident continuing

Figure 64, _Decision tree for‘Aigorithm 3.
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Table 84 . Coding for Algorithm 3.

Feature No. T Name

1 - OCCDF

2 . OCCRDF

3 B State

Threshold

Decision Node NTR __Vector

1T - 3,2,3 1

2 - 2,-2,0 T,

3 1,4,0 T

4 2,-1,0 . \ T,
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Table g5, ‘Calibration and evaluation of Algorithm 3
. on Los Angeles data base.

N; = 49 Ny =40
© Np = 104,217 - N = 3,495
Threshold Detection False alarm Mean-time- Thresholds
set rate  rate to-detect T T,
(%) (%) (minutes)
1 82 1.693 .24 5.4 .309
2. 71 .945 .88 6.8 .374
3 61 367 2.73 15.0 .343
4 59 . .70 4.87 9.9 .552.
5 47 131 5.23 12.5 .563
6 A 114 4.17 19.6 .550
7 37 .044 4.70 4.4 .628
8 31 .028 5.1 18.9 647
9 21 0N 8.82 29.9 .692
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4
/ OCCRDF 5
2T
T
State Designates
0 Incident-free conditions )
1 Inqident occurred 5 . /
2 Incident continuing ‘ DOCC -
~ O
=T |
T \F
. 0 I

Figure g6. Decision tree for Algorithm 4.
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Table 86. Coding for Algorithm 4.

Feature No. ‘ Name
1 ' OCCDF
2 OCCRDF
3 DocC
4 State
- : Threshold
. Decision Node NTR Vector
o | 4,2,3 | 1
2 , 2,-2,0 - T,
3 1,4,0 T
4 2,5,0 T,
5 3,0,-1 T3

{
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Table 87. Calibration and evaluation of
Algorithm 4 on Los Angeles data base.

Np = 49 . WI = 40
Np = 104,217 NF = 3,495
Threshold Detection False alarm Mean-time- Thresholds
set rate ~ rate to-detect T1 T2 T3
(%) (%) (minutes)

1 82 1.577 .64 5.4 .324 26.9
2 71 1.035 .08 6.8 .327 27.0
3 61 .247 2.73 10.9 .501 27.7
4 51 .074 3.43 14.1 .428 16.6
5 41, .035 4.40 16.9  .314 16.2
6 37 .014 5.20 19.6 .394 14.1
7 31 - .010 4.64 21.6  .322 14.3
8 29 .008 5.19 22.7 .346 14.0
9 20 - .005 8.03 25.8 .%32 11.8
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Table 88 . Calibration and evaluation of Algorithm 4 .
on geometrically adjusted‘Los~Ange1es data base.

N =49 N = 40

108,384  Np = 2,436

=
-
T

Threshold Detection False alarm ~ Mean-time- Thresholds
set rate rate to-detect T To- T
(%) (%) (minutes) 1 2 3
1. 71 .958 1.39 5.8 .325 26.7
2 61 .318 1.86 9.4 .439 26.4
3 51 .068 4.09 13.0 .345 16.5
4 41 .046 5.02 18.8  .488 18.6
5 37 . .020 5.98 9.2 .649 16.3
6 31 - .019 5.87 8.8 .672 24.4
7 27 S .012 5.31  ~ 16.4 .656 14.2
8 22 .007 6.52 1.2 .702  12.7
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5 ' .
STATE - OCCDF
> 2 | , 2T
T_ F o _' . F

3 \ - 4 6 '
" ( OCCRDFY ( OCCRDF ( OCCRDF ) -
2T 2T 2T2 O

T/ \F T/ \F T\
. 7. :
\ , DOCCTD

3] [o] [e 0 >H ) (O
State Designates T F
0 Incident-free condition

1 Tentative fncident

2 Incide;lt occurred [ I ' O ‘

3 Incident continuing

Figure 69. Decision tree ‘for Algorithm 5.
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3 Table 89. Coding for Algorithm 5.

Feature No.
1

2
5
4

-Deéision Node

1

~N oy BWN

Name
OCCDF
OCCRDF
DOCCTD
State

NTR

4,2,5
4,3,4
2,-3,0
2,-2,0
1,6,0
2,7,0
3,-1,0

233

Threshold

Vector

1



Table 90.

Calibration and evaluation of Algorithm 5
on Los Angeles data base.

=49 N

;NI = 4
-NF = 125,000 NF = 61568
Threshold Detection False alarm Mean-time- Thresholds
set rate rate to-detect T] T2 T3
(%) (%) (minutes) _

1 69 .498 3.07 3.4 .320 011
2 61 .204 | 4.24 6.7 .350 .108
3 51 .108 5.04 4.8 .372 .281
4 41 .064 4.95 9.4 419 .279
5 31 .018 6.00 7.4 .519 .279
6 20 .002 7.43 15.7 .609
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STATE

=d
2 N .5
STATE - ( occoF
=2 =T
T F T
3 4 6 _
- OCCRDF ( OCCRDF OCCRDF
. ;E:TEZ‘ » ;E:]}: 22:122
T) F T F |
o] [2] [o 1] [o
State Designates
0 Incident~free conditions
1 Tentative incident
2 Incident occurred
-3 Incident -continuing

Figure 71. Decision tree for Algorithm 6.
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Table 91.

Feature No.
1
2
3

Decision Node
1

o O B wWw N

c~

Coding for Algorithm 6.

Name
0CCDF
OCCRDF
State

NTR
3,2,5
3,3,
2,-3,0
2,-2,0
1,6,0
2,-1,0
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Vector



Table 92.

N

Calibration and evaluation of
Algorithm 6 on Los Angeles data base.

N; -

49

125,000

=l
n

1~ 4

=

Threshold Detection False alarm Meathime—

F= 6,568

_ Thresholds
set rate rate to-detect T1 T2
(%) (%) (minutes)

1 61 .158 3.84 9.6 .389
2 51 .090 5.83 15.2 .419
3 47 .078 5.46 13.1 .462
4 41 .051 4.53 10.2 .510
5 37 .035 4.70 7.1 .540
6 31 0N 4.73 5.9 .591
7 20 .004 6.93 16.8 .673
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STATE

=1
T F
. ‘22 . fs
| STATE OCCDF
| =2 =T
3 ‘ 4, — 6 .
( OCCRDF\ - [/ OCCRDF OCCRDF Yy :
T N\F T/ \F T '
] 0 2 0}.
e
1 Tentative incident
2 Incident occurred
3 Incident continuing

Figure 73. Decision tree for Algorithm 7.
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Table 93. Coding for Algorithm 7.

Feature No. ~ Name

1 OCCDF

2 OCCRDF

3 : DOCC .

4 State

Threshold
Decision Node NTR - Vector
o 4,2,5 1

2 4,3,4 2

3 2,-3,0 Ts

4 2,-2,0 Ty

5 1,6,0 T

6 2,7,0 T2

7 3,0,-1 T3
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Table 94. Coding for twenty-second update
‘ version of Algorithm 7.

Feature No. . Name
1 OCCDF
2 OCCRDF
3 ' pocc
4 State
Threshold
Decision Node - NTR Vector
1 4,2,7 1
4,3,-2 2
S 4,4,-3 3
4,5,6 4
2,-5,0 T
T
T

2,-4,0
1,8,0
2,9,0 Ts
3,0,-1 T

Ww 00 N oV O BWw N
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Table 95. Calibration:and evaluation of
Algoritnm 7 on Los Angeles data base.

Ny = 49 N

NF:=\1O4,217 .N% = 3,495 |

40

Threshold Detection False alarm *Mean¥time- Thresholds

set rate rate to-detect T] _T2 T3
(%) (%) (minutes) )

1 59 A3 3.25 8.1 .313 16.8
2 51 .050 4.31 12.9 360 16.6
3 49 .043 - 4.94 13.1 .358 15.8
4 41 .029 4.85 9.6 .359 - 12.3
5 37 L0017 " 6.17 13.1 .393 12.5
6 31 ~.006 5.84 21.6 301 - 13.9
7 20 .004 7.73 - 26.6 .322 13.4
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Table 97. Calibration and evaluation of Algorithm 7
on geometrically adjusted Los Angeles data base

NI = 49 WI = 40
Ne = 108,384 * N = 2,436
Threshold Detection False alarm Mean-time- Thresholds
set rate rate to-detect T] ; T2 T3
(%) (%) (minutes)

1. 61 .245 3.61 9.9 .316 30.0
2 51 .096 4.29 13.0 .424 24.6
3 47 .030 5.10 10.3 443 16.6
4 41 .024 5.55 12.3 .464 16.5
5 37 014 - 5.52 12.8 .538 17.6
6 3] .007 5.73 21.5 .483 17.7
7 20 .002 7.03 20.8 .669 16.8
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Table 98. Calibration and evaluation of Algorithm 7
on Los Angeles sensor configuration A data base.

Ny = 35 Ny = 28

Np = 13,357 e =108
} Threshold Detection False alarm Mean-time- Thresholds
| set rate rate to-detect T1 T2 T3
i (%) (%) (minutes) s
|
i ] 51 .457 2.76 7.7 .411  23.6
| 2 40 195 3.41 17.6  .454  27.2
| 3’ 31 .067 6.12 16.9  .389  16.2
g 4 20 .030 7.00 22.1 .655  13.7
6
S
S
f/
S
O
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Table 99,

Calibration and evaluation of Algorithm 7
on Los Angeles sensor configuration B data base.

=
|

8,267 Ne =

T 32

773

Threshold Detection False alarm Mean-time-

Thresholds
set rate rate: to-detect T] T2 T3
(%) (%) (minutes)
] 51 . 992 4.70 7.7 .348 25.8
2 40 . 847 2.00 5.9 .405 28.7
3 31 .109 4.21 5.3 .530 18.8
4 20 .012 7.72 7.6 .676 24.5

253



| =]
3%

;l'llllllllLL

*aseq ejep g :owpmgsmw%:ou A0SuUdsS ‘sa|abuy soq ¢/ wyzLaob|y
404 30938p-03-SaWL] 4O UOLINGLJUYSLQ °8L 34nbLy

(NIW) INJQIONI 01 sz.quH_ZDHHuuHmo

a1 8 9 f e 0 it h-

81 91 hl a1l

|

il eaalessa e bav et n v i g liesy

I

q + X
o

[3)

" WAS 13S

Ii1ﬁ"ll-lFll|lljﬁill‘lﬂllI]TI‘ITTIII]#‘IIII]IIII'[Tﬁll

[Te]
[}

:_:::Q_:::_-__ﬂq::____:___:_:-qj:;:__::i—‘:—qa—::_:_;_____34—_:__4_:_::_:___::—::—::—:_._

02

[ak] 0h
03133130 SIN3AIONI 40 IN3J¥3d

o]}

oot

254



Table 100. Calibration and evaluation of Algorithm 7
: on Los Angeles sensor configuration C data base. .

Np = 35 N, = 27
‘Np = 6,576 e = 694,
Threshold Detection False alarm Mean-time- | Thresholds

set - rate rate - to-detect T] ‘ T2 T

(%) (%) (minutes) o 3
1 60 1.065 - 3,29 6.6 .352  29.3
2 51 .578 3.59 7.6 .301  16.1
3 40 .243 4.12 1.6 .31 15.4
4 31 .106 3.33 22.9  .481 16.6

5 20 .030 2.14 29.8 .336 15.1
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Table 101. Calibration and evaluation of

Algorithm 7 on Minneapolis data base,
: [ =36 N, = 33
F = 46,247 W = 2,429
Threshold Detection False alarm . Mean-time- Thresholds
set © rate rate to-detect T] .T2 T3
(%) (%) (minutes)
1 81 .365 1.21 7.4 .306 19.5
2. 72 .093 1.10 13.5 393 21.0
3 61 .013 2.77 21.2  .644 24.5
4 50 .009 414 29.3 .667 14.3
5 42 .007 3.60 29.3 .729 16.4
6 39 .007 3.79 26.4 ..754 20.7
7 25 4,22 22.1 .812 27.5

.004
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Table 103. Calibration and evaluation of Algorithm 7

-on Minneapolis clear weather data base.

N; = 26 Ny = 25
NF1= 27,778 N = 1,174
Threshold Detection False alarm Mean-time- Thresholds
set rate rate to-detect T] _ T2 3
(%) (%) (minutes)

1. 81 .057 3.07 24.5 .322 28.8
2 73 029 2.76 27.8  .367 20.4
3 65 .018 2.53 . 23.7 .621 14.2
4 50 0N “4,23  29:8 .729 12.4
5 46 .01 4.38 10.3  .771  22.0
6 3 .007 4.38 6.1
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Table 104. Calibration and evaluation of Algorithm.7

on Minneapolis snowy weather ‘data base.

NI=]O N-I=8_

Ne

18,469 N%

1,257

Threshold Detection = False alarm Mean-time- Thresholds
set rate rate to-detect T] . T2 T3
(%) (%) (minutes) |
1 60 .294 , 2.17 7.4 .370 19.5
2. 50 .065 -.60 13.7  .390 20.2
3 40 -0 4.38 24.3 .638 24.0
4 30 0 4,17 26.8 .610 13.4
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Table 105, Coding for Algorithm 8.

Feature No. Name
1 OCCDF’
2 DOCCTD
3 OCCRDF
4 pocc
5 State
Threshold
Decision Node NTR ' Vector
! 5,2,22 1
2 5,3,20 2
3 5,4,18 3
4 5,5,16 4
5 5,6,14 5
6 5,7,12 6
7 5,8,9 7
8 3,-8,0 T3
o 3,-7,10 T3
10 5,11,0 Tg
1 2,0,-1 Ty
12 5,13,0 Tg
13 2,0,-1 Ty
14 5,15,-5 Tg
| 15 2,-5,-1 T2
| 16 5,17,-4 Tg
17 2,-4,-1 Ty
18 5,19,-3 Tg
19 2,-3,-1 Ty
20 5,21,-2 | T
21 2,-2,-1 To
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Table 105. Coding for Algorithm 8 (cont.)

_ Threshold

Becision Node NTR _Vector
22 1,23,29. T
23 | 3,24,27 T4
24 o 4,25,-6 T,
25 . 5,26,0 . ‘ T5
26 ' 2,0,-1 Ty
27 ' 5,28,0 . ' Tg
28 2,0,-1 Ty
29 5,30,0 Tg
30 2,0,-1 Ty
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Table 106. Coding for alternative
configuration of Algorithm 8.

Feature No. Name
1 © OCCDF’
2 DOCCTD
3 OCCRDF
4  Doce
5 State
Threshold
Decision Node - NTR - Vector
1 | 5,2,7 6
2 3,3,4 T,
3 5,-8,-7 7
4 2,0,5 T,
5 4,6,0 T
6 5,0,-1 7
7 4,8,14 Te
8 2,9,-1 T,
9 5,10,0 1
10 | 5,11,-2 2
N 5,12,-3 3
12 5,13,-4 4
13 ’ 5,0,-5 5
14 5,15,19 1
15 5,16,-2 2
16 5,17,-3 3
17 5,18,-4 4
18 5,0,-5 5
19 1,20,0 T,
20 3,21,0 Ty
21 4,0,-6 T,
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Table 110. Calibration and evaluation: of Algorithm 8

on geometrically adjusted Los Angeles data base.

N= 49 W = 40

I -
Ne= 104,217 Np = 1,248
Threshold Detectijon Faise alarm Mean-time Thrésho]ds*
set rate rate to-detect T, T, T, T,
‘ (%) (%) (Minutes)
1 51 .054 3.97 14.4 -.296 .364 26.9
2 47 .032 5.19 13.0 -.298 .460 24.8
3 41 : .023 4.90 14.6 -.311 .439 17.1
4 37 .015. 5.48 14.3  -.372 .373 14.1
5 31 .007 - 4.36 13.7 -.342 .578 18.6
6 27 .003 5.51 21.6 -.266-.599 27.6
7 23 - . 001 5.94 . 23.8 -.282 .608 26.3
* .
T5 fixed at 30.
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Table 111. Calibration and evaluation

of

Algorithm 8=on Minneapolis data base.

Ny= 36 Wy = 34
NF= 46,257 ‘NF =-3,23$
Threshold Detection False alarm Mean-time Thresholds*
set rate ~ rate to-detect T Ty Ts Ty
o (%) : (%) (Minutes) .
1 80.6 4000 0 1.35 7.4 -.259 302 27.3
2 72.2 .065 - 1.23 17.4  -.649 .391 25.2
3. 61.1 .013 3.06 27.8 -.320 .606 28.8 -
4 55.6 .007 3.10 30.0 -.453 .508 15.4
5 41.7 .004 3.60 30.0 -.677 .724 15.3
6 36.1 .004 3.50 27.8 -.689 .750 11.6
7 27.8 .002 4.00 28.0 -1.084 .792 10.7
% . R )
Ts fixed at 30.
2
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Table 113. Coding for Algorithm 9.

Feature No. . Name
1 - OCCDF™
2 DOCCTD
3 OCCRDF
4 . Doce
5 ’ State
: . Threshold
Decision Node NTR ' Vector

1 5,2,22 1
2 5,3,20 2
3 5,4,18 3
4 5,5,16 4
5 5,6,14 5
6 5,7,12 6
7 3,-8,0 T3‘
12 ' 5,13,0 T5
13 2,0,1 - Ty
14 5,15,-5 Te
15 : 2,-5,-1 T,
16 : - 5,17,-4 Tg
17 i 2,-4,1 ‘ T2
18 5,19,-3 - Tg
19 , 2,-3,-1 " T,
20 5,21,-2 Tg
21 . 2,-2,-1 T2

22 1,23,29 T
23 - 3,24,27 Ty
24 E 4,25,-6 Ty
25 | 5,26,0 - T
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Table 113 Coding for Algorithm 9 (cont'd.).

' Threshold
‘Decision Node NTR - Vector
26 2,0,-1 T,
27 . 5,28,0 i Tg
28 : 2,0,-1 T,
29 . 5,30,0 Tg
30 2,0,-1 T2
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-Table 115. Calibration and evaluation of Algorithm 9
on geometrically adjusted Los -Angeles data base.

N 49 WI=40

I =
Np = 104,217 Fp=1,248
Threshold Detection False alarm Mean-time: Thresholds*
set - rate rate to-detect T, T. T3 Ty
(%) (%) (Minutes) 2 :
1 7 -.979 .93 5.4 -.428 .305 25.4
2 61 . 264 2.93 9.9 -.437 '.312 21.9
3 51 ~.080 3.65 9.2 -.543 .535 21.9
4. 47 .045 4.4 12,3 -.582 .532 16.1
5 41 .024 5.97 12.6 -.637 .613 17.7
6 37 .019 5.9] 14.0 . -.584 .642 19.9
7 33 .009 4,67 - 21.2. -.399'-.576 14.2
8 27 .006- 5.08 20.8 -.372 .394 12.4
9 20 .003 7.27 23.3  -.440 419 11.6
*
T, fixed at 30.
| .
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" States. ..Designates

(ocCROF

.OCCRDF -
2%

=T,

':'?EH'“T'Z;SPDTDF

-0 Incident-free .

" Tentative incident

1 7\ = T4 g
2 Incident confirmed R~ sunsn) vt
3

silncident continuing

“Figure 92. Decision tree for algorithm 10.
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Table 116 . Coding for Algorithm 10.

Feature No. Name
1 0cC
2 DpocCC
3 ‘ OCCRDF
4 " SPDTDF
5 State
Threshold
Decision Node NTR Vector
1 5,2,5 1
2 5,3,4 2
3 3,-3,0 Ty
4 3,-2,0 Ty
5 1,6,0 Te
6 1,7,9 Te
7 3,8,0 Ty
8 2,0,-1 T4
9 3,10,0 T
10 4,-1,0 Ty
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Appendix C

TESTING STATISTICAL SIGNIFICANCE
OF DIFFERENCES IN FALSE ALARMS

" Preceding mae 1
L_jjﬁecedmg page b'ﬂnkj 293



We consider two algorithms with identical detection rates but different
false alarm rates. We provide tests for statistical significance of the
difference in the false alarms. The basis for the tests is a determina-
_tion of the probability that: two algorithms with identical underlying
false alarm rates could have produced,,1n a finite number of tests, the
differences observed.

For the most'part, of course, the resu]ts of applying two algorithms
to data are the same - most tests result in an indication of incident-free
conditions. We are particularly interested in those cases for which only
one algorithm produced a false alarm, i.e., we exclude from consideration
cases for which .neither algorithm or both algorithms produced a false
alarm. Under the hypothesis that the underlying false alarm rates for the
two algorithms are identical, such cases should-be equally 1ikely to be
associated with each algorithm, i.e., the probability that the first al-
gorithm, say, generated the false a1arm for a particular: such case is one-
half.

Suppose that, of the N such cases, Ny are associated with the first
algorithm, N2, with the second, 'and that N}>N2 The probab111ty that

precisely n cases are associated with the first algorithm is given by
the Bernoulli distribution with mean one-half, i.e.,

oy

NY _ N!
) wi

where

Then the probab111ty that at least Ny of the N cases would be assoc1ated
with one of the algorithms is

E(N N)-z'N '()—2§N: V1"
e g -2 2 (i)

; We say that the difference in the false a]arms is s1gn1f1cant at the
devel 8 if s > P(N,(N). :

'

For large N, P(N IN is we]]-approx1mated by the normal d1str1but1on
Spec1f1ca11y, for ]ar e N , ,

1
| ' M-z
‘ Y E

«<
"
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is approx1mate1y norma11y distributed, with mean zero and unit standard
deviation. Defining °

Flix) == [ /2qa -,

- 00

for large N,

2 Nl_'

N)

It is a tedious matter to examine individual cases of false alarms.

 We now develop a simplified procedure which is based only on false alarm

rates and which is conservative, i.e., indicates a level of significance"
not less than that indicated by the more refined test detailed above.

| ", -
PN IN) =1 - H4——
, 2

A Simplified Procedure

Suppose we ignore the fact that sbme false alarms are common caées.
Then we can calculate from the false alarm rates, o] and s and the total

number of incident-free tests, NF?
My = ay - Ng/100
My = ap - Ng/100
and S O M=M N,

~..and use these in place of the parameters N,, N and N, respect1ve1y The

resultant estimate of the level of signif1%ance is conservative. A non-
rigorous proof, based on the normal approximation, that this is always the
'case is easily developed. We need only show that

1w\ 1
- Ny -2 N
1 )< Bl
Note that ifkwe designate the number of common false alarm cases by m, then
M] = N] +m
M2=N2+m
- M=N+ 2m
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Now

1 | 1 1
3 VM TwFm o AT
1
N, - LN
< } 2 -
7 N

‘Montonicity of F yields the desired result.

It is convenient to find an expression in terms of the false alarm
ratés, as these are directly indicated in tradeoff curves. For this pur-
pose, note that . S

y___.]_._fi:_.o.l]-GZl N
A

Figures’ 16 and 17 presented in Section 4.4 provide levels of significance

s

5 =201 - F(y))

for Ng = 45,000 (Minneapo]is data base) and N, = (
base)f respaciivaly ) F = 100,000 (qu,Angeles data
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