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Abstract 
With U.S. air traffic predicted to triple over the 

next fifteen years, new technologies and procedures are 
being considered to cope with this growth.  As such, it 
may be of use to quickly and easily evaluate any new 
technologies or procedures against a set of 
benchmarks, including best case and worst case.  In 
this paper, theoretical upper and lower capacity bounds 
are formulated along with a performance index 
equation to allow for the quantitative comparison and 
evaluation of different terminal area capacity-
increasing enhancements.  These benchmarks are then 
used with a conventional stochastic queueing model 
(M/D/1) and a selected capacity improvement in order 
to demonstrate how an example change impacts the 
terminal airspace capacity as compared to the 
theoretical worst case and best case.  These 
mathematical tools may hold value in quantifying 
proposed technologies and procedures intended to 
improve efficiency and to absorb the predicted increase 
in air transportation, prior to any actual 
implementation. 

Introduction 
According the Joint Planning and Development 

Office, by 2025 U.S. air traffic is predicted to increase 
two to three times, with the traditional air traffic 
control system expected to be unable to manage this 
growth [1].  The Next Generation Air Transportation 
System (NextGen) proposes active networking 
technology that updates itself with real-time shared 
information and tailors itself to the individual needs of 
all U.S. aircraft, allowing for adaptability by enabling 
aircraft to immediately adjust to ever-changing factors 
such as: weather, traffic congestion, aircraft position 
via GPS, flight trajectory patterns, and security issues 
[1].  With an influx of new technologies, it may be of 
use to evaluate these against formalized benchmarks, 
to include upper and lower bounds.  In this paper, 
theoretical upper and lower capacity bounds are 
developed along with a performance index formula to 
allow for the quantitative comparison and evaluation of 

different changes to terminal capacity-increasing 
enhancements.   

This paper first provides a summary of both the 
problem and the literature to date, as well as a short 
introduction to the field of queueing theory.  A 
queueing theory-based model is then proposed to 
describe the final approach phase at an airport along 
with formulations for calculating the theoretical 
benchmarks.  Next, a set of equations to measure 
performance as compared to best-case and worst-case 
benchmarks is created.  A case study is then used to 
demonstrate the application of the model and the 
proposed mathematical formulations in order to 
demonstrate the significance of the impact made to the 
terminal airspace capacity as given by comparison to 
the theoretical worst- and best-case bounds.  Analysis 
conducted on the results using the model and bounds to 
quantitatively describe the impact of changes in 
various parameters. 

The tools proposed here may hold value in 
preemptively quantifying proposed NextGen (or other) 
procedures or technologies that are intended to 
improve efficiency and mitigate the predicted increases 
in air transportation. 

Background 
Airport capacity is a critical contributor to the 

overall National Airspace System (NAS) capacity.  It 
can be defined in various ways: it can be measured by 
the number of arriving aircraft, departing aircraft, total 
aircraft, passengers, specific aircraft types or sizes, etc.   
It may also be defined using some measure of time; 
that is, some measure under consideration taken over a 
specified unit of time (e.g., takeoffs per hour), time of 
day (usually, the peak times), or time of year (i.e., 
seasonal).  Whatever measure is used, an airport’s 
capacity depends on a variety of considerations.  
Ginsburg [2] lists five general areas affecting airport 
capacity: the size of the aircraft, approach and 
departure paths, safety, weather, and other.  Aircraft 
size determines takeoff distances, braking distances, 
approach speeds, turning radii, ramp space, and 
ultimately runway selection and usage.  Approach and 



departure paths can limit the use of the multiple 
runways available at larger airports.  In addition, the 
geographical location of an airport can further restrict 
the approach and departure paths, including those due 
to emissions (i.e., noise or pollution) considerations.  
Safety can also impact efficiency, especially in the 
terminal area since landing and take-off are 
traditionally considered to be the portions of operations 
having the greatest safety risk.  Atmospheric 
conditions can have an impact both on terminal 
operations and on aircraft performance.  These items 
can include icing, visibility, winds (including 
crosswind considerations), pressure, temperature, 
humidity, convective action, etc.  Finally, general areas 
having an impact can include congestion, delays, 
accidents, unexpected acts (intentional damage to 
aircraft or communication, navigation, and surveillance 
systems; worker strikes; etc.), passenger emergencies, 
human error, unusual weather, hardware or software 
failures, etc.  Any strategy for dealing with these can 
have an impact on the airport’s capacity and associated 
delays.  Ginsburg categorizes these strategies as: 
arrival/departure sequencing, multiple runways, 
runway configuration, buffers (blocks of time between 
arrivals and departures to prevent the violation of 
safety rules and regulations), and delay recovery.  

Separations are required between aircraft to 
ensure safety.  These separations may depend on the 
aircrafts’ routes, weights, speeds, etc.  Efficient 
sequencing of the terminal aircraft can reduce the total 
separations and increase throughput.  Regardless of 
conditions, the controller is responsible for 
implementing the arrival or departure scheduling, as 
well as all communication and safety monitoring.  As a 
result, this is recognized as a very intensive job, while 
the high workload acts to limit the number of aircraft 
that the controller can take account of when 
sequencing.  With technologies and procedures being 
proposed to assist both pilots and controllers, while 
maintaining or increasing safety and increasing 
throughput, it is of interest to know how much of an 
improvement these new NAS components can provide 
before the costs of equipage and operator training are 
incurred by either the airlines or the Government. 

With the goal of any service system being to gain 
as much efficiency in service time while limiting queue 
sizes (i.e., waiting lines), number of balkers (customers 
that cannot get into a system to due capacity 
constraints), and minimizing costs, aviation researchers 
have often used queuing theory to determine how to 

best utilize limited NAS assets.  In this paper, queueing 
theory is used to model the approach portion of the 
terminal area, and then metrics are developed along 
with upper and lower bound formulations on these 
metrics to quantify performance improvements from 
any new procedure or technology.  Finally, the 
queueing model and the metrics are combining and 
applied with case study data to demonstrate the use of 
these models and metrics. 

Literature Review 
Airport capacity is a richly studied area and 

includes a great deal of contemporary research.  In the 
late 1970s, Newell [3] provided a well-written survey 
and critique of the literature on airport capacity.  This 
study focused on how an airport’s capacity depends 
numerous considerations including the sequencing of 
various types of operations (e.g., heavy or light 
aircraft, arriving or departing, etc.), runway geometry, 
flight conditions (i.e., visual flight rules or instrument 
flight rules), etc.  

Beasley et al. [4] consider the problem of 
scheduling aircraft landings at airports as defined by 
deciding a landing time for each plane such that each 
plane lands within a predetermined time window while 
maintaining separation criteria.  This was modeled 
using a mixed-integer zero–one formulation of the 
single runway case and extended to the multiple 
runway case.  The problem is solved using linear-
programming-based tree search.  They then present a 
heuristic for the problem.  Finally, computational 
results for both are presented for a variety of test 
problems involving up to 50 planes and four runways. 

Janic [5] considers how large-scale disruptions of 
airline networks can cause deterioration of planned 
flight schedules, including delays, rerouting, and 
cancellation of flights.  The study presents a model for 
the assessment of the economic consequences of these 
disruptions on a hub-and-spoke network as expressed 
by the cost of delays and cancellations.  The model is 
based in queueing theory, modeling the airline hub 
airport as a server and the flights as customers in the 
queueing system and using the case study of a large 
European airline. 

Atkin et al. [6] makes use of the case of London 
Heathrow Airport.  One of the busiest airports in the 
world, it only has one runway for use by departing 
aircraft at any time.  With separations required between 



each pair of aircraft at take-off (depending on their 
routes, weights, and speeds) to ensure safety, efficient 
scheduling of the aircraft for take-off can reduce the 
total separations and increase throughput.  Atkin et al. 
present models for evaluating a schedule and for 
determining the effects of the physical constraints 
imposed by the runway configuration and geometry.  
With this, a hybrid metaheuristic is proposed that can 
take into account more aircraft than a human controller 
can manage in order to recommend schedules for use 
by the controllers. 

Another decision support tool is proposed by 
Venkatakrishnan et al. [7].  They consider the benefits 
to air traffic control as provided by decision support 
systems by studying air traffic delays for landing 
aircraft at Boston’s Logan Airport.  They develop an 
empirical model for landing-time intervals between 
aircraft as defined by the factors that most significantly 
affect them: runway configuration and the aircraft 
weight category.  They also develop models of 
Boston's terminal airspace and apply sequencing 
algorithms meant to expedite the landing of incoming 
aircraft.  Their results indicate that better sequencing 
can reduce delays by 30% in some instances, though at 
the expense of a possible increase in controller 
workload. 

Queueing Theory Background 
In the field of operations research, the two 

primary types of modeling techniques are prescriptive 
models (where the model prescribes a solution; e.g., 
linear programming) and descriptive models (where 
the model describes a situation to allow for analysis but 
does not provide a solution; e.g., queuing theory).  A 
queueing (i.e., waiting line) theory model consists of a 
calling population and the queuing system (see Figure 
1). 

 

Figure 1. The Basic Queueing Process 

The calling population characteristics include its 
size (finite or infinite) and generation pattern (or 
arrival rate; generally interarrival rates are assumed to 
be exponential, i.e., following a Poisson distribution).  
The queueing system is the portion of the model that 
deals with the queue and the service facility.  The 
queue can be finite or infinite; the service discipline 
may be first in first out, last in first out, or random; the 
service facility is defined by the number of servers, 
their arrangement (series or parallel), and the service 
pattern (generally assumed to be exponential); exits 
from the system occur due to completion of service, 
balking, or reneging (leaving the system after joining).  
Model assumptions include (except for some specific 
variations): only one event can occur at a time, arrivals 
occur randomly and independently of other arrivals and 
according to a Poisson distribution, service times vary 
according to an exponential distribution, and that the 
system is past its transient period and has entered 
steady-state operation (i.e., it is independent of its 
initial state).  Where arrivals follow an Poisson 
distribution, the probability of x arrivals in a specific 
time period is given by 
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where λ is the mean number of arrivals per time 
period.  Where service rates are exponential, the 
probability that the service time will be less than or 
equal to a time of length t is given by 
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where the service rate µ is the mean number of units 
that can be served per time period. 

Several parameters describe the system.  The state 
of the system n is equivalent to the number of 
customers in the waiting line plus the service facility.  
N is the maximum number of customers in the system.  
The probability of being in state n (i.e., the probability 
of exactly n customers in the system) is Pn.  The length 
of the queueing system is given by L (the expected 
number of customers in the queueing system), while 
the length of the queue itself is given by Lq.  The 
expected time in the queueing system is represented by 
W (the expected waiting time in line is represented by 
Wq).  Little’s formula gives L = λW, Lq = λWq, and W = 
Wq + 1/µ, where 1/µ is the average amount of time a 
customer spends in a service facility. 

Kendall notation is used to depict a chosen 
model’s characteristics.  In the first portion of the six-
tuple a/b/c : d/e/f, a describes the arrival pattern 
(Markovian M, general G, degenerate D, Erlang Ek, 
etc.), b describes the service pattern (M, G, D, or Ek), 
and  c describes the number of servers in parallel.  In 
the second portion, d describes the service discipline 
(first come, first served FCFS, last come, last served 
LCLS, rotation, random SIRO, priority PRI, or any 
other GD), e describes the storage capacity (the 
maximum number of customers allowed in the system; 
N describes a limited capacity), and f describes the 
calling population (size is finite or infinite).  (Note that 
the default for the second portion is FCFS/∞/∞; if this 
describes the model, it is often not included in its 
Kendall notation.)  For example, M/M/1 : FCFS/N/∞ 
(or M/M/1/N) is the Kendall notation for a single 
server, finite waiting line queueing system with 
Poisson arrivals and exponential service. 

When queueing models are based on the birth-
and-death process (in the context of queueing theory 
the term birth refers to an input or arrival and the term 
death refers to a departure or a completed service), the 
system can be represented by a rate diagram.  Set up as 
a Markov chain, a rate diagram is a conceptual model 
that describes the possible states of the model and the 
transitions from one state to another.  The rate in = 
rate out principle can then be used to generate balance 
equations.  Finally, since we have N + 2 equations 

(given by the balance equations) and N + 1 unknowns 
(given by the possible states of the rate diagram) the 
balance equations can be solved.  These solutions, 
along with Little’s formula, are then used to provide 
closed formulations of all parameters of interest.  
Additional background and further details are provided 
by Hillier and Lieberman [8]. 

Queueing Theory-Based Model 
M/M/1 models are often used to model airport 

capacity.  A prototypical example by Hillier and 
Lieberman [8] considers the entire queueing system to 
include holding aircraft (the holding pattern is the 
queue), approaching aircraft as arriving customers 
which are cleared one at a time on the approach (i.e., 
only one aircraft is on approach, landing, then taxiing 
clear at any time – once that aircraft is clear of the 
runway, a holding aircraft can commence its 
approach), the runway as the server, a given arrival 
rate, and a service rate related to the time required for 
the aircraft to clear the runway.  The goal of the 
example is to determine the average number of aircraft 
holding and average time in holding, with further study 
related to the effects of increasing the arrival rate and 
increasing the number of runways. 

In this paper, a queueing model with a non-
exponential distribution is used as an extension to the 
example by Hillier and Lieberman.  An M/G/1-based 
model (specifically an M/D/1 model) is used to enable 
mimicking the separation provided by the air traffic 
controller.   Once an aircraft has traveled a distance 
equivalent to the allowable separation interval (and 
well before reaching the runway, landing, and taxiing 
clear), the next aircraft is allowed out of the queue and 
into the service area (the approach).  While both 
models consider that only landings are taking place on 
a given runway (i.e., no interfering takeoffs) and the 
queue is the holding pattern, the M/G/1 model here 
differs from that in Hillier and Lieberman [8] and other 
studies by considering the service mechanism to be 
degenerate (i.e., deterministic) and allowing for 
multiple aircraft on approach since an aircraft is 
considered serviced and leaves the queueing system 
once it is a safe distance ahead of the following 
aircraft. 

As long as the mean 1/µ and the variance σ2 of the 
service-time distribution are known, the M/G/1 
queueing formulations provide closed-form solutions 
to all parameters of interest.  The M/G/1 queueing 



formulation used for this terminal area model consists 
of the following familiar queuing theory equations:  
The probability of being in state zero (i.e., no aircraft 
in the system) P0 is 

1,10 <−= ρρP   (3) 

where the traffic intensity (also known as the 
utilization factor) ρ is defined as 

µ
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and s is the number of servers (set to one here).  Queue 
lengths and waiting times are given by 

ρ+= qLL  (5) 
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If it is of interest to consider differing arrival rates, the 
effective arrival rate λe is then calculated using 
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Queueing theory provides a rigorous and accepted 
probabilistic methodology to measure the performance 
of waiting line systems and is often applied to 
transportation systems.  Note that if constant arrivals 
and service were considered, a more appropriate model 
would be that of a flow shop thoroughly detailed by 
Pinedo [9].  It should also be noted that the queueing 
model proposed here is simply a tool selected to allow 
a comparison to be made in order to demonstrate this 

paper’s capacity model, benchmarks, and performance 
metrics.  Other queueing models can be used, as can 
deterministic models, other stochastic models, or 
simulation software (e.g., Arena, Simulink, etc.). 

Capacity Model 
Two obvious ways to measure terminal area 

performance include aircraft per hour and passengers 
per hour.  Assumptions in the model proposed here 
include a flat earth (see Vincenty [10] for ellipsoid 
modeling); the approach indicated airspeed (IAS, or 
more typically, knots indicated airspeed KIAS) is 
always along the ground track (i.e., taken as parallel to 
the ground, not the glideslope or, more accurately, the 
aircraft’s pitch attitude); the approach speed is the 
same as the groundspeed; constant approach speed 
(there is no deceleration on approach as is often 
practiced by controllers and pilots); and any additional 
runways that are in operation for approaches are 
parallel (therefore, multiple approaches are modeled by 
linearly increasing the analytical results).  Most of 
these assumptions can be removed with some 
additional refinement (e.g., the airspeed assumptions) 
but are maintained here in the interest of making the 
mechanisms of the model the focus of this study.  All 
measures are in nautical miles (NM) and hours.  Also, 
the runway is not considered to be a bottleneck; i.e., 
the aircraft are considered to land, decelerate, and clear 
the runway at least as quickly as the service rate.  
While the model is general for any airport (using the 
previous assumptions), the parameter data used must 
be reflective of the airport being studied. 

The service distribution mean 1/µ is obtained 
from the average approach speed and the average 
spacing by 

e

e

spacing
V

=µ  
(10)

where Ve is the expected (i.e., average) approach speed 
and the expected aircraft spacing spacinge is given by 

spacinge = interval − lengthe (11)

where interval is the controller-determined spacing 
between aircraft (actually, between aircraft centers of 
mass) and lengthe is the expected length of the aircraft 



on approach to a particular runway (lengthe can be set 
equal to zero for low resolution systems or relatively 
large spacing, both of which are the case in the NAS at 
the time of this paper) [11].  For example, aircraft 
approaching at 120 knots and allowing for 3 NM 
spacing (using lengthe = 0) results in 40 aircraft 
serviced per hour. 

The concept of expectation can be found in most 
general statistics texts.  This definition of average from 
the area of probability is commonly referred to as 
mathematical expectation E and defined as 

nn PxPxPxE ⋅++⋅+⋅= …2211  (12)

where the xs represent some amount of interest (e.g., 
speed V) and the Ps represent the associated 
probability of obtaining those amounts.  

If the parameter of interest is measured in 
passengers per hour, the service rate µ is given by 

e

ee

spacing
PAXV ⋅

=µ  
(13)

where PAXe is the expected number of passengers per 
aircraft.  Using the example above, if each of those 
aircraft averaged 100 passengers, the landing rate 
would be 4,000 passengers per hour. 

Since the service rates are modeled as being 
deterministic, the variance σ2 of the service-time 
distribution is σ2 = 0. 

The arrival rate λ describes the number of aircraft 
per hour.  This value would be selected to be 
appropriate to the particular airport being studied and 
must adhere to the constraint that 

µλ < . (14)

The airport’s aircraft capacity ACAP is the same 
as the airport’s service rate µ and can be calculated in 
the same manner as equation (10): 

e

e

spacing
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(15)

This is similar for the airport’s passenger 
capacity PCAP which is calculated in the same way as 
equation (13): 

e

ee
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Using this model, it can be seen that terminal area 
capacity is primarily affected by aircraft spacing (less 
spacing allows more aircraft) and approach speed 
(faster approach allows more aircraft).  (In the case of 
capacity being measured in terms of the number of 
passengers per hour, aircraft passenger capacity is also 
a factor.) 

Benchmark 
Theoretical upper and lower bound formulations 

provide the two extremes to be used as benchmarks for 
evaluation purposes.  The benchmarks developed here 
are modeled deterministically and do not use queueing 
theory. 

The minimum number of aircraft on approach in a 
terminal area each time period ACAPmin is trivially zero 
and hence the theoretically lower bound and given by 

0min =ACAP . (17)

This is analogous in the passenger capacity 
scenario with the minimum number of passengers 
serviced each time period PCAPmin given by 

0min =PCAP . (18)

The maximum number of aircraft would be 
obtained by aircraft touching nose to tail and doing so 
at a high approach groundspeed.  While aircraft 
touching in flight would appear to be unrealistic, it is 
valuable in providing a theoretical upper bound.  Also, 
previous capacity improvement proposals have 
included the concept of aircraft flying approaches in 
formation.  Nose-to-tail spacing along the aircraft 
longitudinal axis (but not the lateral) is fairly 
commonplace in military formation flying using what’s 
known as parade position, which provides aircraft 
separation using horizontal stagger and altitude step-
down (step-up for helicopters) [12].  Also, limitations 
of formation operations in the NAS and potential 



solutions are detailed by Harrison [13].  From 
equations (11) and (15) the maximum number of 
aircraft on approach in a terminal area each time period 
ACAPmax, the theoretical upper bound, is 
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x

x ∀
⎭
⎬
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⎨
⎧

= maxmax  
(19)

with 

}{: aircraftallxx ∈ . 

ACAPmax is determined by the aircraft having the 
highest speed-to-size ratio on a given approach at a 
given airport. 

This is analogous in the passenger capacity 
scenario, with the maximum number of passengers 
serviced each time period PCAPmax given by 
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again, with 

}{: aircraftallxx ∈ . 

This value is determined by the aircraft having the 
highest speed-and-passenger-count product to size ratio 
on a given approach at a given airport.   

While it would seem that equations (19) and (20) 
should more accurately incorporate the floor function 
(the floor function of x assigns the largest integer ≤ x, 
e.g., ⎡1.3⎤ = 1) of this makes sense (since a count of 
aircraft and people cannot practically be fractional), 
since this is actually a rate, it will not be rounded so 
that any subsequent calculations are not affected. 

Equation (20) also demonstrates one possible 
measure of an individual aircraft’s efficiency. 

Performance Metrics 
The primary mathematical evaluation tool 

developed for quantitative analysis is an extension of 
development by McGovern and Gupta [14].  As shown 
in Formula (21) and subsequently referred to as the 

efficacy index EI, it is the ratio of the difference 
between a calculated measure x and its worst-case 
measure xmin to the measure’s sample range (i.e., the 
difference between the best-case measure xmax and the 
worst-case measure as given by: max(Xy) − min(Xz) : 
y, z ∈{1, 2,…, |X|} from the area of statistical quality 
control).  It is expressed as a percentage and described 
by 

minmax
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This generates a value between zero and 100%, 
indicating the percentage of optimum for any given 
measure and any given combinatorial optimization 
methodology being evaluated.  For example, the 
efficacy index formula for an airport’s aircraft capacity 
would read 
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For the study of multiple data sets, probability 
theory presents us with the concept of a sample mean.  
The sample mean of a method’s efficacy index can be 
calculated using 
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where y is the sample size (the number of data sets).  
While Formula (21) provides individual data set size 
efficacy indices – especially useful in demonstrating 
worst and best case as well as trends with instance size 
– Formula (23) allows a single numerical value that 
provides a quantitative measure of the location of the 
data center in a sample. 

Case Study 
Any actual study needs to use empirical data that 

matches a particular airport including fleet mix and 
aircraft characteristics.  Here, a sample case study is 
provided to demonstrate the application of some of 
these formulae and to generate some characteristic 
results.  Analysis is conducted using the model and 



bounds to quantitatively depict the impact of changes 
in various parameters. 

This case study makes use of data from an actual 
airport – George Bush Intercontinental Airport (KIAH) 
in Houston, Texas – from a previously conducted study 
[15].  Items used from this study are shown in Table 1 
and include aircraft types, frequencies (based on the 
fleet mix at that airport), and approach airspeed 
distributions (collected through the use of multiple 
pilots flying multiple approaches in Level D 
simulators).  The aircraft types are masked here to 
avoid the possibility of making any inferences about 
individual airframes or manufacturers, but include 11 
aircraft types (which, in turn, are used to represent 38 
different types in the original study, from a total fleet 
mix of 47 at KIAH) from seven manufacturers.  The 
fictitious capacity improvement in this case study will 
simply consist of some procedure or technology that is 
being considered that would have the aircraft fly faster 
on the entirety of the approach.  This 
procedure/technology would take the aircraft from 
each of their current approach airspeed modes (i.e., the 
speed each type flies the most often) to its highest 
airspeed seen on approach.  For example, the current 
procedures/technologies would have aircraft A fly at 
137.42 KIAS, while the new procedure/technology 
would have that same aircraft fly the approach at 
148.60 KIAS (as such, the Vmin speeds in Table 1 are 
not used here and are included only as supplementary 
information).  

Table 1. KIAH Representative Aircraft and 
Associated Approach Data 

A/C Type Frequency Vmin Mode V Vmax 
A 54 129.30 137.42 148.60
B 8 103.60 104.40 121.80
C 11 137.80 139.02 157.30
D 305 133.70 138.91 152.60
E 300 134.60 146.45 154.40
F 70 132.50 136.84 148.90
G 41 137.20 142.02 149.40
H 759 91.41 117.80 141.80
I 87 104.33 121.40 148.80
J 40 91.41 117.80 141.80
K 94 109.30 126.52 145.20
 

Each aircraft’s associated length (length in NM) is 
listed in Table 2.  Using this data and the highest 
speeds as found in Table 1, each possible ACAPmax 

value can be calculated (see Table 2) using equation 
(20).  ACAPmin is zero from equation (18). 

Table 2. Capacity Bounds using KIAH Data 

A/C Type length (NM) ACAPmax 
A 0.0203 7,325.18
B 0.0122 9,950.31
C 0.0252 6,238.11
D 0.0197 7,753.50
E 0.0213 7,244.71
F 0.0256 5,827.62
G 0.0399 3,744.10
H 0.0142 9,970.14
I 0.0192 7,756.19
J 0.0243 5,828.09
K 0.0107 13,629.52

 

Table 2 indicates that aircraft type K provides the 
largest ACAPmax for the case study.  Even though it is 
one of the slower aircraft, its small size compensates 
significantly for its slightly lower speed in this case.  
For this example, the maximum theoretical aircraft 
capacity is equal to 13,629.52 aircraft per hour. 

The actual ACAP value (prior to any procedure or 
technology changes) at KIAH is determined in Table 3 
by using Ves equal to the Table 1 mode V values and 
then weighting each aircraft’s calculated µ (now using 
the actual 3 NM separation and setting the aircraft 
lengths to zero) using equation (15).  This is done by 
multiplying each aircraft’s calculated µ (used 
interchangeably with ACAP) by its frequency (given in 
Table 1) divided by the total number of aircraft (1769 
in this example).  Summing these values gives an 
initial actual ACAP of 42.97 aircraft per hour.  Using 
equation (22), an EIACAP of less than one percent 
(0.32%) is calculated, indicating the significant spacing 
between aircraft relative to the aircrafts’ sizes. 

 

 

 

 

 

 

 



Table 3. Baseline Service Rate Values for Individual 
Aircraft 

A/C Type µ Weighted µ 
A 45.81 1.40
B 34.80 0.16
C 46.34 0.29
D 46.30 7.98
E 48.82 8.28
F 45.61 1.80
G 47.34 1.10
H 39.27 16.85
I 40.47 1.99
J 39.27 0.89
K 42.17 2.24

 

Assuming the addition of a technology or 
procedure that safely increases the aircraft approach 
speeds (all else in this example, including interval 
between aircraft, remains unchanged), and using the 
maximum approach speeds to provide representative 
empirical data, the new ACAP value can be 
determined.  Using the same procedure described for 
Table 3, the calculations in Table 4 give a modified 
procedure/technology actual ACAP of 49.00, indicating 
a capacity increase of an additional six aircraft per 
hour. However, using equation (22) an EIACAP of 0.36% 
is calculated; just a 0.04% improvement over the 
original EIACAP, even though the relative improvement 
between ACAP values (i.e., from 42.97 to 49.00) is 
over 14%. 

Table 4. Modified Service Rate Values for 
Individual Aircraft 

A/C Type µ Weighted µ 
A 49.53 1.51
B 40.60 0.18
C 52.43 0.33
D 50.87 8.77
E 51.47 8.73
F 49.63 1.96
G 49.80 1.15
H 47.27 20.28
I 49.60 2.44
J 47.27 1.07
K 48.40 2.57

 

Next, the M/D/1 model can be used to compare 
the system before and after the procedure/technology 

changes.  Using a fixed arrival rate of λ = 35 aircraft 
per hour and formulae (3) through (8), Table 5 shows 
that the number of aircraft waiting for approach 
clearance (i.e., slowing, holding, vectored for spacing, 
etc.) drops almost in half (per the Lq value), while 
slight decreases in waiting times (Wq) are also seen. 

Table 5. Summary of Before and After Results 

Parameters Baseline Modified 
ACAP (also µ) 42.97 49.00
ρ 0.81 0.71
L 2.60 1.61
Lq 1.79 0.89
W 0.07 0.05
Wq 0.05 0.03
P0 18.56% 28.57%
EIACAP 0.32% 0.36%

 

This case study hypothetical procedure/ 
technology adds a full six aircraft per hour, per runway 
to the airport capacity, while simultaneously 
decreasing the number of aircraft being delayed for 
approach clearance as well as the amount of time those 
aircraft spend waiting; however, the improvement is 
not as impressive when compared to the upper and 
lower theoretical bounds. 

Finally, other studies could evaluate various 
combinations of varying approach speeds, aircraft 
sizes, fleet mixes, spacing between aircraft, passenger 
loads, arrival rates, etc.  Also, any results using these 
parameters could then be subsequently validated using 
simulation. 

Summary 
Airport capacity-improving procedures and 

technologies may need to be evaluated prior to 
implementing any changes in the national airspace 
system.  In this paper, terminal area upper and lower 
capacity bounds were developed along with 
formulations for measuring and for benchmarking 
capacity improvements for the purpose of quantifying 
improvements due to the proposed technologies/ 
procedures prior to their acquisition and 
implementation.  In order to demonstrate these 
formulations, the terminal area was represented using 
an M/D/1 model from the field of queueing theory.  A 
case study was then developed, demonstrating a 
fictional proposed improvement and the numerical 



results.  These mathematical tools may hold value in 
measuring potential improvements to the NAS as part 
of a cost-benefit analysis or in other studies. 
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