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10.1 INTRODUCTION
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the association of motorcyclist fatality rates with U.S.—state helmet laws while
controlling for climate measures (annual heating degree days and precipitation
inches) as proxies for motorcycling activity. The focus of the illustration is on
Poisson log-linear regression analysis of over-dispersed fatality rate data via
quasi-likelihood generalized linear modeling methods.

One popular reference on generalized linear modeling and maximum quasi-
likelihood is McCullagh and Nelder’s (1989) Generalized Linear Models. Another
is Agresti’s (2002) Categorical Data Analysis. Together, these verierable resources
provide the essential theoretical and practical background for a variety of mul-
tivariate analyses on either continuous or categorical data, including analysis of
variance and multiple linear regression, logistic, logit, probit, or log-linear regres-
sion, among others. What remains for application of these methods is the choice
‘of statistical software (although one could implement the methods from scratch),

-and there are many choices. The example we review later in this chapter uses the
SAS (2005) V8.0 procedure GENMOD (for generalized linear modeling). Methods
for longitudinal, repeated-measures, spatially-correlated, or other correlated data
are also available, but these are beyond the scope of this introductory tutorial; two

fine reference texts for correlated data problems are Diggle et al. (2002) Analysis -

of Longitudinal Data and McCulloch and Searle (2001) Generalized, Linear, and
Mixed Models.

10.1.1 Generatlized Linear Models

Generalized linear models are an extension of classical linear models, so we begin
with the latter. In classical linear modeling, a sample of # independent observa-
tons (¥, ¥, .., ¥, . ¥,) is regarded as the realization of  independently distrib-
uted components (Yr Yy Y, . Y } of a random variable Y with means (p], By
wo B s 1), In the systematic part of the classical linear model, each mean, p,
is regarded as a linear function of p explanatory variables (X Xyis oo LR .
usually with x,, = 1 for the intercept, that is,

E(Y) =1y = 2,8, + %, 8, totxB g, 8, =25 %8; (101)

where, fori=1,..,mandj=0,1, .., P~ 1, x, is the value of explanatory variable
j for observation i, and B, Is the parameter determining the direction and degree
of association of #, with explanatory variable x,- Bquation (10.1) is a linear pred;
tion function or linear predictor whereby the expected values of the Y, components
[E(Y) = p] are predicted by injﬁj. The systematic part of the classical linea
model assumes that all explanatory variables that influence the mean are included

i

in the model'and measured without error. In the random part of the classical lin-
ear model, each component Y, is assumed to be independently distributed with.a
normal (Gaussian) probability distribution and constant variance ¢* = ¢* for a
Y,i=12,.,n
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met laws while - In generalized linear modeling, the linear predictor is allowed to predict a cho-
1d precipitation sen function of the mean, g(ui), the variance o’ is allowed to vary as a function of the
Justration is on i mean g, and the random variable Y, is allowed to have any distribution in the expo-
y rate data via . nential dispersion family, a large family including the normal, Poisson, binomial,

o negative binomial, and multinomial distributions. The generalized linear model thus
aximum quasi- > subsumes and generalizes the classical linear model. Analogous to the classical linear
odels. Another - model, the systematic component of the generalized linear model has the form:

ces ' .

eizl;il:t;e:,?;ul- : n; =gl ) =2, x5 (10.2)
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where:

) 7 =gy (10.3)

is called the littk function, because it links the mean #, to the explanatory variables,
and:

7 =2 %8 (10.4)

is the linear predictor in the special case of the classical linear model, the link
function is the identity:

M = M (10.5)

and, as shown in Equation (10.1), the linear predictor is:

' i =2, %8, 10.6
fels, so we begin i = 2.5 %8, (10.6)

endent observa- By contrast, in a log-linear model (for count data), the link function js:

endently distrib- n; =logu, (10.7)
th means (g, g,
l, each mean, p, so the linear predictor is:
RO SR A X
l i ip—1 lggMi = Z’j xyﬁj (108)
0.1) If, as in the example presented later in this chapter, a log-linear model is applied
%503, (10 " N %
o rate data, where each count y, is divided by an exposure measure v, then the |
lanatory variable link function is:

ction and degree
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e Y, components
e classical linear
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“the classical lin-
istributed with a
e o} = ¢ for all

n; =logp, /v, =logu, ~logy, (10.9)

and the linear predictor is:

logu, /v, =Zj x;3; (10.10)

or, equivalently:

log p, =X, %8, +log y, (10.11)
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where the additive term log v, is called an offset. In generalized linear modeling of
rate data, the offset is modeled as an additional explanatory variable (covariate) in
the model with parameter 8 = 1 forced to unity.

The random component of the generalized linear model specifies the response
variable Y with independent observations (y,, y,, ..., ,) drawn from a probability
distribution i the exponential dispersion family, all members of which have the
form:

Fi8)=expilyd; b))/ ald)+c(y;¢)} (10.12)

where @ is the natural parameter, ¢ is the dispersion parameter, and a(¢), b(#),
and c(y,; ¢) are functions taking different forms for different members of the expo-
nential family (for example, normal, Poisson, binomial, and so on).
The probability mass or density function for any member of the exponential
" dispersion family can be written in the form of Equation (10.12). In the case of the
Poisson distribution, for example, we have:

fCspm)=e"ul' 1y =exply, logp, ~p; ~log y;!]=exp[ 6, ~exp(6;,) - log y,!]
(10.13)

where 8, = log u, a(¢) = 1,b{8) = exp(f) = u,and c(y, ¢) = — log y!. Although
other link functions might also be considered, the link function for which glp)
= 0, is called the canonical link, whereby the natural parameter equals the linear
predictor:

6,= 3, %8 (10.14)

As can be seen in Equations (10.13) and (10.14}, log u, is the canonical link func-
tion for a log-linear model and also usually makes the most sense in practical
applications as it precludes negative predictions for count data.

Finally, the variance for any member of the exponential dispersion family is
the product of the variance function V{u,) and the dispersion function a(¢), that
182
Var(Y;)=V(g,) a(¢) (10.15)

where the variance function:

V(p,)=b"(9,) (10.16) -

is the second derivative of the function b(6) in Equation (10.12), and the disper--
sion function a(¢) commonly has the form:

a(d)):q&/’w,’

(10.17)
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where the dispersion parameter ¢ is divided by a known prior weight w, which
can vary for each observation Y, but is often unity, whereby the variance is Var(Y))
= V(p)¢. In the classical linear model with normal distribution and variance o,
the variance function is Vi) = 1, and the dispersion parameter is ¢ = g2, [ the

Poisson log-linear model, the variance function is V(u) = u, and the dispersion
parameter is ¢ = 1,

10.1.2 Parameter Estimation ang Stafistical Inference

In maximum likelihood estimation of the generalized linear model parameters (B,
B s B,_,)s the likelihood of the sampled observations (Vs ¥ s ¥) is expressed
as a function of those parameters, and estimates of By B85 qu) are found that

maximize the likelihood, or rather the log likelihood, which yields the same esti-
* mates but is more mathematically ¢

‘the exponential dispersion family is:

fi =expily,6, —b(8,)]/a(d) +c(y,, )} (10.18)

and the log likelihood of an obs

ervation from the exponential dispersion family
is thus:

L =logf, “_“[,erf*b(as)}/a(¢)+c(yf,¢) (10.19)

The likelihood of 2 sample of 7 independent observations

(> ¥p s ¥,) Is the prod-
uct of the # individual observation likelihoods [ that is:

flfz---ﬂ;=H,,J$=Hnexp{[y,-9,~-b(ﬂf)]/a(¢)+c(y,-,¢)} (10.20)

and the log likelihood of a joint sample of » independent observations W ¥ wenn 7.)
is thus the sum of the # individua] observation log likelihoods L, that is

log[flfz...f"]=logf1 +log f, +...+logf,
=2, L =3 {39, —b(ﬁ,-)]/_a(fﬁ)'F c(yn9)}  (10.21)

In the case of the log-linear model, the focus of this chapter, the log likelihood for
a sample of » independent observations is thus:

YL =%y, logu; —u; ~log y,!] (10.22)

The latter term in Equation (10.21) expresses the sample log likelihood as a function
of the known sample observations ' ¥y - ¥} and unknown parameters (3, 8,
- B8,_,) that are estimated by maximizing X, L, in maximum likelihood estimation.

Estimates of B, By ﬁp_l are obtained as solutions of the likelihocod equations:

2l —pdx, 1(u)) (B, / d;)=0 (10.23)
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fori=1,.,mandj=0,1,.., p — 1, where 7, is the link function, and v{u) =
var(Y)) is the variance (expressed as a function of the mean ). The parameters 6}.
are implicit in Equation (10.23), since the mean is the inverse of the link function,
that is, g, = g~' (Ej xﬁﬁj). For example, the variance v(p,) is ¢® for a classical linear
model, i, for a Poisson log-linear model, and ¢ p, for a log-linear model which
assumes that the variance is proportional to the mean to handle overdispersion.
For the Poisson log-linear model, du./d%, = v(p) = w, so the likelihood equations
simplify to

- Ty —m)-x, =0 (10.24)

-

fori=1,..,mandj=0,1,.., p—1. Because the likelihood equations are nonlinear -

functions of the parameters (8, 6], s BP_ ) for most generalized linear models,
‘maximum likelihood estimation requires iterative numerical methods. These
methods, lucidly covered in McCullagh and Nelder (1989) and Agresti (2002) are
beyond the scope of this chapter.

A generalized linear model with as many parameters as observations (that
is, p = n) is called a saturated model. A saturated model perfectly fits the data,
explaining 100 percent of the variance and yielding the highest possible maximum
likelihood for the sample, but lacks scientific parsimony and other desirable prop-
erties such as a smooth curve fit. But the likelihood of the saturated model is a
usefull baseline for checking model fit. Let L_denote the maximum log likelihood
of a saturated model, and let L_denote the maximum log likelihood of an alterna-
tive model with fewer parameters. For a Poisson or binomial model, the scaled
deviance is twice the difference of the maximum log likelihoods of the saturated
and alternative models, that is:

D*=2L,-L,)=D/¢ (10.25)

which expresses the deviance D as a multiple of the scale parameter. For Poisson
or binomial models, ¢ = 1, so D* = D. Purthermore, for a Poisson or binomial
modeling situation in which the number of sample observations »n remains fixed
regardless of counts, the deviance D divided by its degrees of freedom, df = n — p,
has a chi-squared asymptotic distribution under the null hypothesis that the two
models (saturated and alternative) fit the data equally well. Rejecting the null
hypothesis indicates poor alternative model fit. On the other hand, failing to reject
the null can indicate either good model fit or insufficient statistical power to detect
a poor fit.

Analysis of deviance, a generalization of analysis of variance, is a powerful tool
used to compare models and identify explanatory variables associated with varja-
tion in the criterion variable Y. Consider the comparison of two generalized linear
models, M, and M,, where M is a special case of M,. Then M, is said to be nested
in M,. For example, M, might include one parameter for a covariate not included
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in M, so M, would be the special case of M, with that parameter forced to equal 0;
or M, might include an interaction term excluded from M,; or M , might include a
set of terms, such as interactions, excluded from MU; and so on. Let D, denote the
deviance of M, and let D, denote the deviance of M,. Also let p_ be the number

of parameters in M, and let b, be the number of parameters in M (withp, > p).
The difference of deviances: ‘

D, -D, =2loglexp(L;)/exp(L,)] (10.26)

divided by its degrees of freedom, af = p, — p,, is a likelihood-ratio statistic with
a chi-squared asymptotic distribution under the null hypothesis that models M,
and M, fit the data By Vs e ¥ e ¥,) equally well. Because a nested model M, with
fewer parameters than M \» €an never fit better than M p Dy = D, so a likelthood-
ratio statistic is nonnegative. The larger the likelihood-ratio statistic, the worse the
fit of M compared to M, so rejecting the null hypothesis of no difference in fit
-indicates better fit of M, compared to M,
Maximum likelihood estimation also provides asymptotic (large sample)
parameter estimate variances. The standard errors (variance square roots) of
- estimates of the model parameters ,6’}., j=0,1,.., P — 1, may be of interest, for
example, to construct confidence intervals. While the derivation of these estimates
is beyond the scope of our discussion, McCullagh and Nelder (1989) and Agresti
(2002) lucidly explain them,
In maximum quasi-likelihood estimation, an extension of generalized linear

models, one need not assume a particular distribution for Y; instead, one assumes
a mean-variance relationship:

o} =v(g;) (10.27)

and substitutes the appropriate term for v(p) in Equation (10.23). For the Poisson
distribution, for example, where 0} =p,, the quasi-likelihood equations substitute
#, for v(p) in Equation (10.23). The equations solved to obtain maximum quasi-
likelihood estimates are exactly the same as the likelihood equations used in maxi-
mum likelihood estimation, but the equations are not true likelihood equations
unless the ¥, distribution is a member of the natural exponential family, which is
the subset of the exponential dispersion family where the dispersion parameter
¢ is known, for example, the Poisson distribution where o} =p,. Nevertheless,
Wedderburn (1974) proposed quasi-likelihood estimation as a further general-
ization of generalized linear models to handle even more diverse situations and
suggested using the estimating equations in Equation (10.23) with any variance
function regardless of whether the underlying probability distribution belongs to
the natural exponential family.

One important application of quasi-lkelihood to analysis of log-linear model
rate data is to handle overdispersion, that is, variances that exceed the means, as
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often occurs in practice with non-negative integer (count) data. Failure to cor-
rect for overdispersion increases the type I error rate (that is, true probability of
erroneously rejecting the null hypothesis) for significance tests and erroneously
reduces the width of confidence intervals. To handle this situation, the variance is
assumed to be proportional to the mean, that is:

=, (10.28)

where the dispersion or scale parameter ¢ is estimated and multiplied by the esti-
mated mean to obtain the estimated variance corrected for overdispersion. The
-scale parameter’ ¢ camr be estimated several ways, but a common method is based
- on the fact that the scaled deviance D/¢ has a chi-square asymptotic distribution
with n — p degrees of freedom (and thus expectation n — p), so the deviance
divided by the degrees of freedom is an estimate of the scale parameter, that is:

D/(n—p)=¢ (10.29)

for large samples. Estimation for an overdispersed Poisson log-linear model pro-
ceeds by fitting the model by standard maximum likelihood methods, estimating
the scale parameter ¢ using the full model deviance divided by its degrees of
freedom, dividing log likelihoods used in likelihood ratio tests by the estimated ¢,
adjusting estimated parameter standard errors using the variance estimates raul-
tiplied by the estimated ¢, and proceeding as usual with hypothesis tests and/or
confidence intervals.

Finally, there are many well-known diagnostic procedures for testing the
adequacy of a model, that is, plotting observed scores against predicted scores to
identify potential outlier problems and plotting variances against means to assess
the mean-variance assumption. See McCullagh and Nelder (1989) and Agresti
(2002) for application of diagnostic methods in generalized linear modeling.

10.1.3 Hlustraiive Application

To evaluate the effectiveness of universal helmet laws, one approach is to com-
pare motorcyclist fatalities in states with a universal helmet law to those in states
without it, adjusting for differences in motorcycling activity between the states.
Unfortunately, whereas the number of annual motorcycle registrations is available
for individual states, the number of motorcycle miles traveled is not. Although the
number of motorcycle registrations is related to exposure, it neglects variation in
the activity of the registered motorcycles—a key quantitative measure needed to
assess the association of fatality rates with helmet laws. Nevertheless, since motot-
cycling activity is highly seasonal, with more activity on warm or dry days than on
cold or rainy days, and climates vary markedly across states in the United States,
fatalities per registered motorcycle in the United States can be compared between
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states with and without universal helmet laws while controlling for climate mea-
sures correlated with motorcyclist activity.

This study employed maximum quasi-likelihood generalized linear modeling
to explore the association of motorcyclist fatality rates with universal helmet laws
using climate measures to control for motorcyclist activity (Morris, 2006). The
analytic objective was to maintain scientific parsimony and statistical power, with
minimal reliance on stringent statistical assumptions, by modeling fatality rates
as a function of one explanatory variable (universal helmet law) and two climate-
related activity measures (heating degree days, precipitation) along with pertinent
quadratic and interaction terms. Quasi-likelihood generalized linear modeling
provided crucial flexibility in modeling the relationship between a function of the
mean and the covariates, the relationship between the mean and variance, and the

-error distribution.

Motorcyclist fatality data were from the National Highway Traffic Safety
Administration’s (NHTSA) Fatality Analysis and Reporting System (FARS)
4’(NHTSA, 2005). FARS is a database of information about the scenarios, vehicles,
drivers, and passengers involved in all fatal motor vehicle crashes on public high-
“ways and roads in the United States. Data on hospital emergency room-treated
injuries were from the US. Consumer Product Safety Commission’s (CPSC)
National Electronic Injury Surveillance System All-Injury Program (NEISS-AIP)
(CPSC, 2001). Data on the number of registered motorcycles by states were from
the Federal Highway Administration (FHWA, 2005),

Normalized state climate data, including population-weighted annual heat-
Ing degree days and precipitation inches, were from the National Oceanic and
Atmospheric Administration (NOAA). The heating degree days statistic is a mea-
sure of cold weather energy consumption and is defined as the annual sum of daily
differences in mean daily temperature from a 65° bage (with the difference set to 0
if the mean daily temperature exceeds the 65° base temperature), averaged across
all stations within the state, with the average weighted by population distribution
in the area. At one station in a given year, for example, five days with a mean daily
temperature of 64° would result in five degree days, as would one day with a mean
daily temperature of 60°. NOAAs normalized heating degree day measure, an
annual average derived over the 30-year period 1971-2000, is a climate measure
that estimates the annual average heating degree days for each state during the
normalization period. The advantage of heating degree days over average temper-
ature as a measure of motorcyclist activity consists both in its theoretical utility for
ratio-scale measurement of the change in thermal energy necessary to maintain
a comfortable ambient temperature and in its empirical utility in accounting for
substantial nuisance variation in fatality rates.

To demonstrate the seasonality of motorcyclist fatalities and injuries, and their
strong association with climate measures, Table 10.] gives monthly motorcyclist
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fatalities and injuries in the United States for 2001-2002 along with normalized
heating degree days and precipitation inches for the coterminous United States.
(The normalized climate measures by month were only available for the coter-
minous United States). Table 10.1 shows that the largest percentages of fatali-
ties (11.1-13:5 percent) and injuries (10.7-13.1 percent) occurred during warm
months (May-September) associated with the smallest percentages of normalized
heating degree days (0.2-3.5 percent) and the largest percentages of precipita-
tion inches (8.5-10.0 percent). Conversely, the smallest percentages of fatalities
(2.6-3.6 percent) and- injuries (3.2-3.7 percent) occurred during cold months

_ (December-Janudry) associated with the largest percentages of normalized heat-
ing degree days (16.2-20.3 percent) and the smallest percentages of precipitation

inches (6.8-7.5 percent).
Table 10:2 confirms large statistically significant Pearson correlations among
the monthly measures in Table 10.1, with a correlation of .98 for motorcyclist

Table 10.1 Monthly motorcyclist fatalities and U.S. hospital emergency
room-treated injuries during 2001-2002 and normalized heating degree days
and precipitation inches

Motoroycist | roomareued. |  Nomalizsd | Normalized pre-
fatalities, motorcyclist heating deqree clpstat[on_mches
20012002 injuries, days .(cotermmous (Ct?termmous

20012002 United States) United States)

Number % Number % Number Y% Mumber %
1 170 2.6 8,098 3.6 917 | 203 227 7.5
2 222 3.4 8,370 3.7 732 16.2 2,04 6.8
3 332 5.2 11,662 52 593 1341 2.59 8.6
4 549 8.5 21,868 9.7 345 7.6 2.44 8.1
5 7i3 111 23,8938 10.7 159 a5 3.0 10.0
6 850 13.2 28,476 12.7 39 0.9 2,92 9.7
7 842 13.1 25,888 11.5 9 0.2 2.79 9.2
8 870 3.5 29,364 13.1 15 0.3 2.65 8.8
9 796 124 25,348 11.3 7 1.7 258 8.5
10 504 7.8 19,296 8.6 282 6.2 2.29 7.6
ih| 359 5.6 14,900 6.6 539 11.9 2.40 7.9
12 234 3.6 7,188 3.2 817 18.1 2.23 7.4
Total 8,441 100.0 | 224,386 | 100.0 4,524 100.0 30.21 100.0

Sources: NHTSA, CPSC, NCAA, 2004,
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Table 10.2 Correlation matrix for monthly motoreyclist fatalities and U.S,
hospital emergency room-treated injuries during 2001~2002 and normalized
heating degree days and precipitation inches

U.S. emergency :
room-treated Normalized Normalized

motorcyclist heating degree precipitation
injuries days inches
Motoroyciist fatalities 0.983* -0,983* 0.800*
_U.S. emergency room-treated —0.979* 0. 772+
motoreycifst injurigs
" Normalized heating degree days —0.764*

P <005, *p < .0001; 2-tail,
Source: Bureau of Transportation Statistics, 2005.

fatalities and injuries, —.98 for fatalities and heating degree days, .80 for fatalities
and precipitation, —.98 for injuries and heating degree days, .77 for injuries and
precipitation, and —.76 for heating degree days and precipitation.

Fatality rates are linearly associated with annual heating degree days in both uni-
versal helmet law (R? = -284) and non-universal helmet law (R* = .519) states,
with essentially parallel least-squares regression lines relating fatality rates to
heating degree days. Range restriction in the universal helmet law states (n =
20) is the most likely explanation of the smaller proportion of variance in fatal-
ity rates accounted for by heating degree days in those states, which exclude both
Alaska and Hawaii. Although there is dispersion about the regression lines in
both groups, reflecting other relevant factors influencing state motorcyclist fatality
rates, a substantial portion of that dispersion is attributable to variation in annual
precipitation as shown in Figure 10.2,
Figure 10.2 gives fatalities per 10,000 registered vehicles per year as a function
of universal helmet law and annual precipitation inches for all 50 states. Figure 10.2
reveals quadratic association of fatality rates with annual precipitation. The linear
and quadratic components of precipitation inches together account for about 18
percent of the variance in fatality rates among universal helmet law states and 35
percent in non-universal helmet law states, It is beyond the scope of this analysis to
attempt an explanation of why the relation of state fatality rates with state average
annual precipitation should take the J form in Figure 10.2; rather, the purpose is
to control nuisance variation in state fatality rates (that is, mainly due to variation
in activity) to permit a parsimonious and statistically powerful assessment of the
association of fatality rates with universal helmet laws. The full linear mode] relat-




2246 Transportation Statistics

— 15 E o
g 14—
5 1o ;
@ E
2 12—
= 41 ° States without universal
g e hetmet law'{o}
2 40 -5 Q
N i e . = —0.7876x + 10.931
3 g .f -~ © A2 = 05189
) S N ®
2 2
R
2 = e o
R e R
o E e
2 4 o P, ) o
& 5 .f.Stateswith universal sv e oo S
i [

3 . E helmet law (o) o o \‘
5 E y=~0.7887x + 10.304
i = g2 = 0.284

0 | I | T T T T | T T T T

1 2 3 4 5 6 7 8 9 10 1 12
Normalized annual heating degree days (thousands)

o

Figure 10.1 Motorcyclist fatalities per 10,000 registered motorcycles per year in states with
or without a universal helmet law every year from 1993 through 2002 as a function of annual
heating degree days. Source: NHTSA, FHWA, NOAA, 2004.
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without a universal helmet law every year from 1993 through 2002 as a function of annual pre-
cipitation (inches). Source: NHTSA, FHWA, NOAA, 2004.
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> and the dichotomous uni-
versal helmet law indicator accounts for 55 percent of the variance in state fatality

rates and 58 percent of the (natural) log-transformed fatality rates. Thus, normal-

ized heating degree days and precipitation inches together account for substantia]
variation in state motorcyclist fatality rates,

average heating degree days and precipitation were obtaine
all 50 states in the analysis, the five states that repealed a
sometime during the 19932002 decade (3 in 1997

d likewise, To include
universal helmet Jayw

1993-2002 decade. The comparison is thus between 20 stat.
that had a universal helmet lay every year from 1993 through 2002 and 30 states
that did not (that is, 25 states that did not have a universal helmet law and five
states that did for some years, but not for the entire decade). Since helmet usage is
known to correlate highly with universa] helmet law requirements, this distinction
is likely to correlate highly with actual helmet usage in the states, with higher tota]
usage in states that had a universal helmet law in effect during the entire decade

2002. The results of both analyses were similar,

To assess the association of fatality rates with helmet laws while controlling
for annual heating degree days, precipitation inches, squared precipitation inches,
and their interaction, quasi-likelihood generalized linear regression analyses were
performed using the SAS (V8.0) GENMOD procedure and log-linear model:

log(p, /V)=8, +8,D+B,P+8,P + B.DP+B,DP*+8 H (10.30)

where log (+) denotes the natura] log function, B
V' = annual motorcycle registrations (10
P = annual precipitation (inches)

= expected annual fatalities,
,000s), D = annual heating degree days,
» and for comparison, either (@H=0o0rt

law every year from 1993 1o
aw in effect from 1993 to 2002 =< 10,
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Whether the universal helmet law factor was regarded as dichotomous or
continuous, each analysis included an intercept parameter 8, and parameters for
linear association of log fatality rate with D and P (8, 8,), quadratic association
with P (8,), interaction of D with the linear (8,} and quadratic (8,) components of
P, and association with a universal helmet law (8 ). Model pararneters were esti-
mated via maximum likelihood assuming a Poisson distribution, with parameter
estimate variances adjusted for overdispersion via quasi-likelihood generalized
linear modeling methods using the square root of the deviance divided by the
_degrees of freedom to.estimate the generalized linear model scale parameter.

- Analyses employed the SAS (V8.0) GENMOD procedure with the form:

proc genmod; model E = D P P2 DP DP2 H/
) dist=poi link=log offset=LV scale=deviance typel type3;

This SAS code specifies the model depicted in Equation (10.30), in which the vari-
ables are defined as previously stated, except that F denotes fatalities, P2 denotes
P, DP2 denotes DP? and LV denotes the natural log of V. The modeling options
specified after the slash (/) are defined as follows: dist = poi specifies the Poisson
distribution; link = log specifies a log-linear model; offset = LV specifies the offset
for this log-linear rate analysis; scale = deviance specifies that the scale parameter
is to be estimated using the full model deviance divided by its degrees of freedom
n — p; type 1 specifies a sef of hierarchical analyses using the scale parameter esti-
mated by the deviance obtained for the model including only the parameters in
the model at that point (for example, after D and P are in the model); and type 3
specifies a simultaneous analysis using the scale parameter estimated by the devi-
ance obtained for the full mode] depicted in Equation {10.30).

As shown in Table 10.3, all parameter estimates in the quasi-likelihood gen-
eralized linear model analysis differ significantly from zero, including the fatality
rate reduction associated with the universal helmet law whether the latter was
measured dichotomously [F(1, 43) = 2.72, p = .053, one-sided] or continuously
[F(1,43) = 2.63, p = .055, one-sided]. A one-sided test of the universal helmet law
effect is justified by a priori expectation of a safety benefit from existing empiri-
cal and biophysical evidence. The overall fit of either generalized linear model
with estimated scale parameter was excellent whether the universal helmet law
was measured dichotomously [scaled x*(43) / 43 = 1.04] or continuously [scaled
x%(43) / 43 = 1.03). In conclusion, with climate measures statistically controlled,
state universal helmet laws were associated with lower motorcyclist fatality rates.
This finding is consistent with studies using a variety of methodologies that have
also reported motorcycle helmet safety benefits (Norvell and Cummings, 2002;
Sass and Zimmerman, 2000).
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Table 10.3 Generalized iinear regression results

Universal helmet law factor
Dichotomous

Continuous
Source : Estimate SE F Estimate SE F
Intercept —B8.3587 0.6125 —8.4603  0.6056
Heating degree days (D) 0.2783 0.1170 5.69* 0.2893  0.1183 8.20*

Precipitation (P) 0.0860 0.0364 5.97* 0.0039  Q.0365 7.04*
P2 !

. - -D0011  0.0005 573"  -00012 00005 g.50°

DP . —0.0255  0.0071 1827  _gopes  0.0072 13.97
" DPe 0.0004 00001 14.90" 0.0004 00001 1525
Universal helmet law ~01264 00778 272 00145 0.0089 2.63+

P < .05, "p = 108, ™ = 112; 2-sided.

Note: Results are for likelihood-ratio tests with a full model fog-likelihood of 4569.0257 and a
scale parameter of 5.5666 estimated by the Square root of the fulf modef deviance divided by

the degrees of freedom e, 5.5666 = (/1332 4549//43 ) and do not depend on the order
of entry into the modef,

Source; Bureau of Transportation Statistics, 2005,

10.2 SUMMARY

The results show that climate rmeasures

have considerable promise as indirect
ity. And, more to the point of this chapter,

the analysis of fatality risk data.

The views in this chapter are those of the author ‘and do not necessarily
represent the views of the Bureau of Transportation Statistics, the Research and

Innovative Technology Administration, the U.S. Department of Transportation,
Or any other agency or staff,
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