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PREFACE
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on a task entitled "Analytical Alternatives to Multivariate Ex--
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1. INTRODUCTION

This report presents the results of the first year of research on a task
entitled "Analytical'Alternatives to Multivariate Exposure Data Coliection,"
conducted by the Transportation Systems Center (TSC) for the National Center
for Statistics and Analysis of the National Highway Traffic Saféty
Administration (NHTSA).

Multivariate exposure data are used in conjunction with accident data to
produce estimates of accident rates for various subsets of highway use,
determined by different combinations of driver, vehicle, and road
characteristics, and environmental conditions. This type of detailed
information is particularly needed in crash avoidance and accident causation
analysis and can be used to confirm serious safety problem areas and to aid
in the evaluation of countermeasures. In contrast to the collection of
multivariate accident data, which is routinely done by reporting requirements
and follow-up studies, the collection of useful multivariate exposure data
usually requires the implementation of expensive, large-scale surveys.  The
purpose of this task is to develop ways to use mathematical analysis to
obviate the need for primary collection of multivariate exposure data.

~ The specific goal of this research effort is to develop methods to
estim&te needed "large" dimensional multivariate exposure tables from data
sources of smaller dimension and/or more limited context. In general,
existing multivariate exposure data are limited in geographic coverage or
time period, are generated from a small sample and are otherwise limited in
detail or accuracy. Often, exposure data of significantly different types or
non-exposure related data (e.g., census, registration, accident data) are all
that is available.

The key methodological problem is to expand and integrate the disparate
data sources to develop "best" estimates of multi-dimensional exposure tables
in ways which maintain relationships among data elements. Because there are

1-1



S0 many possible comblnations of variables that could -conceivably be of
interest, the research effort has focused on the development of statistically
sound and demonstrably valid methods rather than on the generation of a few
specific tables.

Section 2 "An Overview of Exposure Data Problems and Analytical
Remedies," provides an overview of the type of exposure data set that is
commonly used in traffic safety analysis, and of the common deficiencies
encountered in existing exposure data. A preliminary description is given of
the major analytical methods for treating such data problems, and there is
discussion of which methods may be most appropriate for particular problems.

Section 3 "Discussion of Analytical Techniques," is the heart of the
report, containing a detailed mathematical description of the major
analytical techniques, a summary of their properties derived from the
literature, and a description of new results, relevant to exposure data
analysis, which were discovered in the course of this research. Section 3
also contains a discussion of important statistical considerations in the
context of exposure data applications.

Section 4 contains some simple, preliminary examples of applications of
several techniques to exposure data.

1-2



2. AN OVERVIEW OF EXPOSURE DATA PROBLEMS AND ANALYTICAL REMEDIES

This section descriﬁes some of the common deficiencies encountered in
existing highway safety exposure data (i.e., VMT),* and a brief overview of
how certain analytical techniques might be used to improve the situation. A
more extensive treatment of these techniques, their properties, and their
potential for mitigating exposure data problems is given in Section 3. Some
preliminary applications of these techniques to exposure data are shown in
Section 4. The major issues to be addressed in Section 2 are:

- How existing exposure data fall short of fulfilling multivariate
exposure data needs.

- Which analytical methods have potential for mitigating some of the
shorteomings in existing exposure data. ‘

- Which techniques are relevant to what data problems.

Table 1 displays a matrix whose row headings are a list of prototypical
problems which plague existing exposure data. The column headings refer to
mathematical techniques which seem to have the highest potential for
mitigating these problems. An X is entered in a cell where a particular
technique is believed to have application to a particular prqblem.

Section 2.1 provides a background description of the type of data sets
under consideration, and a brief overview of the prineipal relevant
analytical techniques. Sections 2.2 through 2.8 contain brief discussions of
each problem area and how the various techniques may be employed to mitigate
that problen.

#It has been assumed throughout this report that the exposure data measure of
interest is vehicle miles travelled (VMT).
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TABLE 1. DATA PROBLEMS AND REMEDIAL TECHNIQUES

Common Possible Remedial | Log- E-M

Defects/Deficiencies Techniques Linear IPF Algorithm

in Multivariate Modelling

Exposure Data

1. Incomplete Classification of X X
Exposure Data

2. Small Samples - Insufficient Cell X X
Counts

3. Presence of Zero Cells X X

4, Missing Levels (Categories) X

5. Classification of Levels X
Inconsistent Across Samples

6. Incorrect Data X

7. Wrong Location or Timeframe X

2=2
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2.1 COUNTED DATA SETS AND ANALYTIC METHODS

The data under consideration are known generically as "counted" data.
They are arranged in arrays, each cell of which contains the number of
individuals from an underlying population (or samﬁle) classified by certain
characteristics. (Accident data generally conform to this type of data.
Exposure data also conform to the classification aspects of counted data, but
the cell entries (VMT) more closely resemble continuous data. More is said
in Section 3.2.4 regarding adjustments needed to apply the theory of counted
data to exposure data.) The characteristics are deseribed by means of
variables and levels of variables. For example, the population might be the
licensed drivers in a State. One variable might be gender, with levels male
and female. Anopher variable might be age, with levels 0-15, 1535, 35-55,‘
over 55. A typical arrangement for such a two-variable set would be a 2xi
matrix whose rows correspond to the two levels of gender, whose columns
correspond to the four levels of age. In general, a k1xk2x...xkn array 1is
an n-dimensional array whose ith dimension has k; levels. In the following section, the terms
"ecore" and "margin®™ will be used frequently. By "core" we always mean a data
set (real or dummy) having the full set of variables (and usually the full
set of levels) of interest. "Margins" are defined as data sets that can be
derived from a core'by summing over all the levels of one variable or all the
levels of several variables. For example, the margins of a matrix are the 2
one-dimensional arrays corresponding to the row sums and the column sums,
respectively. Note that we include under the term "margin," arrays which
correspond to a subset of variables and their levels of a particular core,
but have cell counts observed independently of that core. Thus, the cell
counts do not equal the cell counts of the corresponding margin summed from
the core. When it is necessary to distinguish such margins, they are
referred to as "exogenous" margins.

The following mathematical techniques are briefly discussed below, in
order to provide background for the remainder of this Section: Log-linear
Modelling (LLM), Iterative Proporticnal Fitting (IPF) and Dempster's
Expectation-Maximization Algorithm (E-M). A thorough discussion of these
techniques, including their definitions and reference to prior literature, is
presented in Section 3.
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Log~linear modelling is the most natural general method for fitting a
model to counted data: It can be used for data smoothing, including
estimating the value of zero cells, and for detecting outliers. (See Section
3.2 for a complete description).

IPF is a method of fitting a core to a set of (compatible) exogenous
margins. For example, in the two-dimensional case, given an nxm matrix M
with positive cell counts, an n-vector A and an m-vector B with positive
entries such that the sum of the entries of A equals the sum of the entries
of B, the procedure consists of alternately scaling: the rows of M so that
the new sums equal the corresponding entries of A, the columns of M so that
the column sums equal the corresponding entries of B. The procedure usually
converges when all the input arrays are positive. A complete description of
IPF, including properties of convergence, uniqueness of solutions and a
mathematical characterization of the qualitative relationship of the solution
to the input core is given in Section 3.3.

The E-M aigorithm is a very general procedure for obtaining maximum
likelihood estimates of cell counts, due to Hartley* and Démpster."‘(See
Seotion 3.4). Its application to our problems ié a systematic way of pooling
different observations of the same data (in the form of cores and margins) by
a process that includes alternately estimating a log-linear model based on
the current expected values of the cell counts and updating the expected
value of the cell counts based on the current parameters of the model. A
complete technical description of the method and the result of our
investigation of such issues as convergence and uniqueness is given in
Section 3.4,

The sections below discuss the relevance of these techniques to the
various problem areas.

X See Reference 7.
s %See Reference 4.
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2.2 INCOMPLETE CLASSIFICATION OF EXPOSURE DATA

In this case the situation is that exposure for the population of
interest needs to be (or is desired to be) classified, jointly, by a certain
get K of variables. However, each of the several existing samples 1is
classified according to some proper subset of K, so that there is no fully
classified sample. Let the number of variables by which a sample S is
classified be called the dimension of S, and'suppose that the desired
dimension of a fully classified sample is k. In this case, there are
basically two analytical approaches to enhancing the data in a manner aimed
at approximating a fully classified sample. Both involve piecing together
the existing data sets (each of a dimension less than k) to form a data set
of dimension k.

In the first case:

- Assume that unobserved interactions among variables are zero.
Iterative Proportional Fitting (IPF) can then be used to estimate the
completely classified sample using a k-dimensional (dummy) core of all 1's,
after adjusting the available data sets for use as (compatible) margins. The
Expectation-Maximization (E-M) algorithm can also be used in this case, if an
unsatﬁrated’ log-linear model (of order not greater than the dimension of the
largest sample) is.used. As the theory described in Section 3.2.2 will
reveal, the former (IPF) approach actually results in the maximum likelihood
estimation of a log-linear model for any core having the given margins. As
discussed in Section 3.5, however, the latter approach (EM) is probably the
preferred method in this case.

In the second case:
- Utilize information on the unobserved interactions from other

sources (e.g.,-a fully classified sample from another time or place). In
this case, the only apparently practical method is to fit the margins to a

#See Section 3.2 for definition.
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core, containing interactions approximaping the unobserved interactions, via
IPF. An interesting implication of the theory expounded in Section 3.3.3 is
that it is only these interactions (in the core) that have any effect on the
outcome of IPF, i.e., the given core could be replaced in the replaced in the
computation by a core with identical unobserved interactions and an arbitrary
set of interactions corresponding to the observed (in the margin)
interactions, and the outcome array of IPF will be the same. Thus, the
resulting data set will contain the interactions present in the margins
together with higher level interactions derived from the surrogate core.

(See Section 3.3.3 for a more detailed discussion.) The E-M algorithm could
be applied formally to obtain a unique solution in this case for the
saturated or unsaturated log-linear model, but it would not be clear what the
outcome of.EM would mean. Hence, EM is not a desired method for this case.

Various complications can be present in all these cases due to basic
deficiencies in the available samples themselves. The major anticipated
problems appear to be:

- The core is unstable due to insufficient observations (cell .
counts). s

- The core or marginal samples contain too many zero cells.

- Certain levels (categories) of some variables were not observed in
the core or in some of the marginal samples.

- Classification of levels for some variables is not consistent
across samples.

- Incorrect data is present in one or more samples.

- Completely classified data are available but from the wrong
location or time frame.

Each of these complications is a data deficiency'in its own right, which

analytical methods may or may not be able to mitigate. Each is described in
more detail in the following sections. )
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2.3 SMALL SAMPLES - INSUFFICIENT CELL COUNTS

The situation is that a (fully classified) multivariate sample of
exposure (or accident) data consists of a small number of observations so
that, at least for desired levels of disaggregation, cell counés have
unacceptably large standard errors. There appear to be two possible
approaches to mitigating this problem:

(a) Fit an unsaturated log-linear model to the data set. While some
information (probably of dubious value due to the small sample) on
higher order interactions will be sacrificed, this process should
reduce the standard error in the cell counts.

(b) If marginal samples (incompletely classified observations) of
reasonably large size, from the same population, are available, the
E-M algorithm can be used to systematically combine the samples to
fit log-linear model.

Note the similarity between the situation discussed in this section and
the case of piecing together incompletely classified samples in the presence
of a fully classified core, described in section 2.2. The difference lies in
the following facts. In the former case, the focus of jinterest is on the
margins, which are the only direct observations of the population of
interest. The core plays the surrogate role of supplying subjectively
adequate estimates of interaction information missing from the marginal
samples. In this case there need be no statistical evidence that the core is
sampled from the same population as the margins. In the latter case, the
focus of interest is the core (which contains an insufficient number of
observations). The objective here is to find a valid way of pooling marginal
data to reduce the standard error of the core cells. In this case, it is
imperative to have evidence that the core and marginal samples belong to the
same pqpulation.



2.4. PRESENCE OF ZERO CELLS

Where cells in a multivariate table are not structural zeros (e.g., a
cell representing the number of motorcycles with weight = 4000 1lbs.), a
sample may still have a zero cell count because of the combined effect of a
limited number of observations and a relatively ﬁmall count for that cell in
the entire population. In this event it can be useful to have a technique
for estimating the correct relative count for that cell from the given.
population. The fitting of an unsaturated log-linear model should give such
an estimate for zero cell counts. If marginal information is present, it may
be useful to fit an unsaturated log-linear model using the E-M algorithm.

Additional complications that can be caused by zeros in the core or
marginal samples are: failure of IPF to converge, and non-uniqueness of the
outcome of the E-M algorithm (dependence of the outcome on the starting
array). This indicates that, where IPF is used, considerable smoothing of
core and marginal tables by means of unsaturated log-linear models will
probably be required. (In the case of the E-M algorithm, the analogous
adjustment is to avoid the saturated model when too many zeros are present in
the input tables).

2.5. LEVELS OF VARIABLE(S) MISSING

This situation can best be illustrated by means of a (fictitious)
example: suppose that VMT is to be classified jointly by driver age and sex,
vehicle type, vehicle age and day vs. night. Suppose further that.there is
avaltlable a special study which observed all these variables, but only for
drivers under 24 years of age. The possible age categories for drivers over
24 are the "missing levels" for the variable called "driver age." This is an
incomplete data situation, one for which the E-M algorithm was designed.
Carrying the example a bit further, suppose that, for the population of
interest, VMT has been estimated by driver age and day/night jointly, and
also by driver age and vehicle age jointly (for all levels of variables).
Theoretically, the E-M algorithm can be used to obtain maximum likelihood
estimates for the fully classified data set, using a saturated (or
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unsaturated) log-linear model for those cells where age is less than 24 and
an unsaturated model for those cells where age is over 24. The extent to
which missing levels can be successfully mitigated by E-M or other analytical
techniques is not clear. After preliminary analysis as to whether such
problems might arise significantly in practice, the situation should be
carefully investigated, if warranted.

2.6 CLASSIFICATION OF LEVELS (I.E., BOUNDARIES OF CATEGORIES) FOR
VARIABLE(S) NOT CONSISTENT ACROSS SAMPLES

Resorting again to an example, suppose we have a fully classified
multivariate core of exposure data, (e.g., VMT), and suppose there are also
partially classified, independently observed margins. Suppose further that
one of the variables is driver age, and that the levels (in the margin) for
each sample are: 15-24, 25-40, U40-55, 55-65, over 65. Suppose that the
classification of driver age in the core is 15-24, 25-55, and over 55. This
is a case where the classification of levels are incompatible but ‘
commensurate, in fact'the levels (categories) in the core are aggregates
(set-theoretic union) of fhe levels (categories) in the margins. The case
where levels aﬁe incommensurate as well as incompatible may be a more
difficult problem. This is illustrated by taking the marginal levels for
driver age as given in the example above, and supposing that the core has as
levels: 15-30, 30-U45, 45-60, and over 60. The E-M algorithm is theoretically
capable of addressing the problem of commensurate incompatible levels, and we
feel it could be extended to cover the incommensurate case as well. As with
the problem described in section 2.5, it is not obvious how successful
analytical techniques might be in mitigating this problem, and the extent to
which this problem can be tolerated or corrected for.

2.7 OUTLIERS
The final type of problem.is the presence of errors in the data. One of
the established uses of log-linear models for categorical data tables (the

form of all data of interest in this study) is to detect outliers. This is
done by fitting log-linear models to the data set of interest and checking

2-9



the relative goodness of fit of each cell. The usefulness of this check and
the determination of effective ways of dealing with detected outliers is an ’

area that may warrant some investigation.
2.8 EXPOSURE DATA FROM WRONG TIME OR PLACE

The situation is that partially classified (marginal) data sets exist
for the population of interest, and a fully classified data set (core) exists
for all the variables of interest, but the core is not from the same
population as the margins because the core is from an earlier time frame, or
a different geographic locale. This is a special occurence of the second
case described in Section 2.2, where IPF is recommended if the core (i.e.,
the core interaction observed in the margins) is thought to be a reasonable
surrogate for the time or place of interests. Confidence in the outcome of
the result can be enhanced by testing (if data are available) for stability
of the unobserved interaction over time or place.
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3. DISCUSSION OF ANALYTICAL TECHNIQUES

3.1 INTRODUCTION

In this chapter three general analytical procedures for dealing with
categorical or cross-classified data are described and some of their
properties discussed. The three procedures are:

‘1. Log linear modeling
2. Iterative proporational fitting (IPF)
3. The expectation-maximization (EM) "algorithm"

The three procedures are related. Log linear modelling will be discussed
first since its concepts and techniques play a role in the other two. Each
of the three procedures involves similar concepts and will use some common
notation. They will all be discussed in terms of similar simple hypothetical
examples. . .

The hypothetical examples will refer to a completely classified matrix Yijk»-
of count data. The matrix Yjje is called count data since it takes only non-
negative integral values, it is called completely classified since it gives a
count corresponding to specific values of eaéﬁ of the "variables" indicated
by 1 J and k (which are the entire set of variables in this three dimensional
example). Thus, variable 1 has been indexed by i, variable 2 by j and
variable 3 by k. Variable 1 could,‘for example, be driver age, variable 2
driver sex, and variable 3 could be vehicle type. Yjjx could be a count of
vehicles classified by these three variables. Variable 1 will be assumed to
have‘the levels 1, 2, ..., I. This means that i can take on the values 1
through I. Variablq 2 will have J levels (1 through J) and variable 3 'will
have K levels. Less than completely classified data sets (or marginal data

" sets) will also be of interest. For example, Rij might be a table of counts
classified by only the first two variables (for each observation the third
variable is assumed unknown). Similarly Sy will denote a table of counts
classified by only the third variable. The margins of Yijk are also examples
of less than completely classified data. For example, Y13+ will
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represent the margin of Yjj formed by summing over the third variable, k.
K
Thus Yij+=E;;Yijk « Other margins are similarly represented e.g.
I J J _

Yk ® 1;1 jgl Yijie and Yyp = j§1 gk
Although the log linear modelling, IPF and EM procedures yill be described in
this report in terms of a hypothetical 3 dimensional completely classified
matrix with cne and two dimensional margins of interest, the techniques are
applicable to more general arrays with some unusual exceptions which will be
noted. It will be convenient to keep the notation simple to the greatest
possible extent but it should be borme in mind that the Y matrix could have
any number of subsoripts, e.g.; Yijkim and any number of these can be summed
over to provide marginal matrices of interest, e.g., Yiisle: )

3.2 LOG LINEAR MODELS

Log iinear models have received far more extensive treatment in literature
than the other analytical techniques reviewed in this report (IPF and EM).
Reference to the books by Bishop and Goodman (reference 1 and 2) is
sufficient to indicate the impressive literature on the subject. The
fundamentals are however essentially simple and are reviewed briefly below.

3.2.1 Definition .

Let Yjji denote a matrix of counted data i.e. each entry is an integer.
Further let Zj yi=E(Yjjx) ®and assume that Yjji is distributed as a Poisson

random variable with mean Zjjx or as a multinominal random variable with
Yyrs=Z4=N  and pyjk=Zjj/N. Then a log linear medel for Yjji corresponds

to a multiplicative form for Zjjx. The saturated log linear model is of the
form

Zigi = %1805 €3 ut Wagk 3.1

(This is no restriction on Z4jx.) The second order unsaturated model sets‘xijk=1=

235k = %1835k O13 €1k Yt

#The notation "E( )" denotes the expected value of the quantity in the
parentheses.
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The (homogeneous) first order unsaturated model states that in addition Gij
?
Ejk’¢ki all equal one so: 2§ jk= aiBij’ These are examples of

hierarchical log linear mecdels, a term which will now be explained.

Consider the saturated model for Zjji and take logarithms of both sides of
the defining equation:

log Zy4x = UgtUp()t02¢5) ey P12 (1) 23G10 V13 23wy . 3+2

The U's in the above equation are indeterminate since there are a total of
14+I+J+K+IJ+JK+IK+IJK

of them while there are a total of IJK of the quantities log Zijk- The
ambiguity is reaolved'by requiring that any U summed over any of its
subseripts ylelds zero, e.g.

Upe) = O0ra¢ae) = 05 Uiaaagr) = O otee .33
Then the U's. are completely determined by equation 3.2 and the zero summation '
conditions. In what follows when any matrix is expressed in the form (3.2)
(with some of the U's possibly missing or set equal to zero) it is to be
understood that the zero.summation conditions hold. With this notation
U123(ijk) measures the third order interaction (in Zijx) (or the "three
factor effect"). Similarly, for example, U23(jk) represents a specific two
factor effect and Uq(y) a specific one factor effect.®

Hierarchical (log linear) models are characterized by the condition that
whenever an effect is zero, all higher order effects involving all the
variables in the zero effect must also be zero.

#Tn this report the terms "interaction" and "effect" will be synomymous as
Wwill "two factor'effect" and "second order interaction.” The term "two
factor effect™ with respect to the modgl expressed by equation 3.2 will refer
to Uq2(1j) or U23(jk) or U13(ik) whére for example, Uq2(jj) represents a
set of terms indexed by i and j.
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For example,

log Zijk‘ = Uo+Ul(i)+UZ (j)+U3('k)+U].2 (13)*’"23@&)
is a hierarchical model. The key missing (zero) effect is U13(ik). Since it
is missing, U123(1jkx) must be zero also. Consider also:

this is also a hierarchical modél since no low order effect is missing with a
higher order effect involving its variables present. Consideration of log
linear models in this report will be limited to hierarchical log linear
models. One example of a nonhierarchical model is given for illustration:

3.2.2 Maximum Likelihood Estimation Using IPF

Under the assumption of multinomially distributed YiJk’ a maximum likelihoqd
estimate of Zj 4 is obtained using Iterative Proportional Fitting or (IPF).
This process will be described in more generality in Section 3.3 but its
application to log linear models is deseribed here.

[

To fit a given log linear model to Y1k i.e. to find a maximum likelihood
estimate of Zjji given Yy ji, the procedure will be given. Xjjk will denote
the estimate to be derived. Let the model®* to be fit be given by

log 2 gk = Ug+U1(1)+U2(3)+U3(k)+U12(1])
The procedure is as follows:

1. Form the margins of Yijk corresponding to the highest order effect
involving each variable. So in this case form Y. (corresponding
to U3(k)) and Yjj, (corresponding to Uja(1j4)).

2. Initialize the matrix which will be iteratively scaled to give the
final estimate of Xjji @

or

#A brief discussion will be given subsequently of the process of choosing a
model.
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set ¥ = 1

3. Scale to each margin successively and iterate the process:

(2n+1) (2n) (2n),

Set Xy = (yya/%59 Xy

and then set
(2n+2) - (20+1) (2n+1)
ik = T/ X Xygpe
forn=0,1,2, 3, ...

X

4.  When convergence is reached Xjjx 13 found:

(n)

X 1jk

= 1lim X

-0

ijk

(Convergence is assured, see Section 3.3).

This process will be recognized as a special case of IPF. 1In the notation to
be used in Section 3.3 on IPF, xijk represents the result of applying IPF to
a core, in this case Mjj = 1, with margins Ryj = Y144 and Sg = Y++k.
Incidentally, if structural zerces are required in the model, they are
inserted into the matrix Mj j.

3.2.3 Statistics For Goodness of Fit

The fit of a log linear model is assessed by either the X2 or the G2
statistic using the appropriate number of degrees of freedom. Before
describing how to compute X2 and G2
of freedom is given.

the computation of the number of degrees

Each term in a log linear model has a specific number of degrees of freedom
associated with it: e.g. U12(1j) has (I-1)(J-1) degrees of freedom while
U123(1jk) has (I-1) (J-1) (R-1) degrees of freedom and U3(y) has K-1 degrees
of freedom. The parameter U, (e.g. in equation 3.2) has one degree of
freedom. The degrees of freedom for the model equals the sum of the degrees
of freedom of its terms. For example, consider the degrees of freedom (DF)
for the model in equation 3.4, i.e.
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log 2y = Uy + Uy (4 f UZ(j).+ Usee) *+ U12(45) . 3.5
For this model:
DF=1+(T-1) + é.r-l) + (K-1) + (I-1)(J-1) = K+IJ-1 3.6

The statistic X2 5n g2 pag a chi square distribution with degrees of freedom
equal to IJK minus the number of degrees of freedom in the model i.e.,

LJK-(K+IJ-1) = IJK=-K-IJ+1

in the preceding example.

The definitions of 62 and x2 are as follows:
2 2
X = X -Y X 3.7
%:k ( ijk ijk) / ijk .
2 1
G- =2 Egi Yijk log (xijk/Yijk) . ..3.8

The sums are over all cells in the original data matrix, Yijk- except, in the
case of G2, for cells where Yijk = 0, in which case the contribution to G2

for those cells is zero.

If two models are under consideration and the second contains all the effects
that the first does plus one or more added effects, then a decision to choose
between them may be based on the difference in X2 (or G2) divided by the
difference in degrees of freedom. The more complex model is chosen if the
difference in X2 (G2) is statistically significant (too large to be
reasonably due to chance) for the given difference in degrees of freedom.

The difference in X2 (G2) will have a chi square distribution with degrees of
freedom equal to the difference of degrees of freedom of the models [under
the null hypothesis that the extra effects in the more complex model are not
needed (i.e. have the value zero)].

The process of log linear modélling consists of these steps:
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1. Select a set of candidate log linear models.
2. Fit the selected models to the data.

3. Drop from consideration any model which is:
a. a special case (i.e. a restriction) of a more complex model which
has a significantly smaller X2 (G2);
b. an extension of a simpler model which does not have a significantly
larger X2 (G2).

4, Consider additional models which contain more effects as suggested by
the effects present in the retained models.

In summary, the key tools for estimating and evaluating log linear models

are:
1. Margin building.

2. IPF.

2 2

3. Computation of G~ and/or X



3.2.4 Discussion of Problems Encountered in Applying Log Linear Models to
Continuous Data .

59

In general, when exposure is to be calculated, the sum of VMT over each cell
is the variable of interest. This is not a "ocounted" variable as required in
the development of the standard statistical techiques for log linear models.
The cumulative VMT in a cell is not a count variable both because it is a
cell sum of a (practically) continuous quantity and because sample weighting
factors are applied (in the case of NPTS data at least). Even if trips were
analyzed instead of VMT, the individual trips would not be independent (in
the case of the NPTS data) and hence the assumptions needed in the
development of standard statistical techniques for log linear models would
not be satisfied. In general, standard discrete multivariate statistical
modelling techniques are developed under assumptions not satisfied by VMT
data.

In this section, the log linear mcdelling problem is considered from a point
of view which recognizes that the cell measures involved in some cases (in y
particular, VMT) are not counts but instead sums of random numbers of terms

o

each of which is positive and for practical purposes continuously distributed
(the individual terms may be weighted trip lengths for example).

The problem is then how to model VMT cross-classiried‘by several variables.
Clearly log linear wmodels provide a useful mathematical form for describing
_cumulative VMT classified, for example, by driver, vehicle, roadway and
environment classes. This i3 because log linear models are useful for
describing non-negative quantities in which a multiplicative model for the
joint effects of factors is of interest. In short, the log linear mcdel
structure ‘{3 just as useful whether the quantity in each cell is a cumulative
sum (of continuous terms) or is instead a cumulative count.

Other aspects of the log linear modelling process as developed for count data
are problematic however. In particular, the maximum likelihood methed for
fitting the model must be examined and the statistical criteria for model
adequacy must also be examined.
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With regard to the method of fitting the model, two questions need to be
addressed:

1. What is the form of the likelihood in the case of continuous cell
sums instead of cell counts, and to what extent is maximizing it
approximately-accdmplished by the classical discrete method.

2. Is the classical fitting method useful in providing satisfactory
fits in the more general continuous case?

" In Appendix A it is shown that the classical fitting method (i.e. applying
IPF to margins as done in the log linear modelling process) leads to log
linear models fit to the data according to a closeness of fit criterion which
i3 reasonable and this is independent of the statistical properties of the
data. This is a situation analogous to the application of linear regression
iq cases where the statistical properties assumed for the residuals do not
hold (éven though a linear relationship between the variables is postulated).

The question of whether the fitted model remains a maximum likelihood
estimate i3 examined and it i3 concluded that a maximum liklihcod estimate is
‘obtained if these assumptions hold:

1. The cell sums of VMT are normally distributed (this will be so if
each cell sum is over many records).

2. The ratio of variance to mean is constant across cells.

Assumption 1 is probably valid to the necessary degree. Assumption 2
probably is not valid to>a substantial degree. However, if the two
assumptions were valid, the chi square statistics obtained in the course of
the standard log linear modelling process could be modified by a single
factor (the same for any model based on the initial data) easily calculated
from the original data. The factor can be calculated in any case by the
formula given in Appendix A. The validity of such a calculation is discussed
in Appendix A.



Since log linear models are appropriape in the continuous case (e.g. when
cell values are VMT) and since the classical method of estimating log linear
models (developed for the discrete case) leads to models of closest fit by a
reasonable critégion, the chief weakness-of applying the classical or
standard method in the general case is the problematic nature of the
_statistical fit eriterion (chi square values in the classical case) used to
decide what degree of model complexity is justified by the data. It should
be noted that except where the assumptions needed to make the classical
approach give true maximum likelihood estimates in the general case hold, it
appears to be a nearly impossible job to develop methods for producing true
maximum likelihood estimates in the general situation. This point is brought
out in Appendix A. '

It is concluded that log linear models will remain of great interest in the
general case. It is alao likely that they may effectively be estimated using
the classical method of applying IPF to selected mérgins. However, the
statistical criterion used in model development based on chi équare

- statistics will need to be modified. The modified version (as described in
Appendix A) may not be entirely satisfactory in all cases. Other methods for
assessing statistical stability such as the jackknife and infinitesimal
Jackimife® techniques or other methods based on split samples may be of use.
If a general robust method for assessing statistical stability is developed,
it can be used in conjunction with the modified chi square (i.e. chi square
multiplied by the correction factor) to gain experience on the validity of
the latter (which should be much easier to use than general robust methods).

#See Reference 8.
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3.3 ITERATIVE PROPORTIONAL FITTING (IPF)

The second analytical technique to be dealt with in this report is
Iterative Proportional Fitting or IPF. It can be a useful technique when
marginal data i3 available relating to the context of interest and complete
data is available relating'to a somewhat different context. The aﬁalytical
technique and some of its properties will be discussed in this section.

3.3.1 General Discussion

In IPF, a completely classified matrix (of any number of dimensions) is
initialized to some "core" matrix which determines the high order
interactions. In the course of the computation, the matrix is successively
Scaled to match in turn each of a set of marginal matrices and the scaling
. process is repeated (i.e., iterated) until it converges. The resulting
matrix matches each of the marginal matrices and as noted has its higher
order interactions determined by the initial core matrix.

In the next section, three equivalent formulations of IPF will be given,
utilizing a representative hypothetical example similar to the one
considered in Section 3.2

Various properties of the IPF technique will be discussed in relation to one
or another of the equivalent formulations.

Before proceeding to give the three equivalent formulations, the procedure
will be defined in the usual way by describing the computational process
involved. This will be the same as the third of the equivalent formulations
to be given in the next section. The technique is illustrated in terms of
the representative example: '

Suppose Mj jic is given as the (initial) core matrix and Rij and Sk are
given as marginal matrices. The result of the IPF process applied to
these data will be denoted by the matrix Xj k. Let xf?k denote the
value at the initial step. By definition of the IPF process Xiji =

Mi jx. Then the current xfﬁL matrix is scaled to each of the margins in
turn and the scaling process is repeated until convergence is obtained
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(below there will be a discussion of cases where convergence is not
obtained). Suppose that Xij+ is to mateh Ryy and Xy is to match Si.
This is achieved through repetitively scaling the xijk matrix until
agreement with both incompletely clagsified or marginal matrices (i.e.

Rij and s,) 13 reached (to a prespecified accuracy).
An algebraic formulation of the process is as follows:
1. Set x{ﬁ% = Myj¢ (for all values of i, j, k)

2. For each n in turn (starting with n=0) update Xjj. as follows:

Set

(2n+1) (2n) (2n)
Ko = Xyge Ryy/Xgq40
then set

(2n+2) (2n+l1) (2n+l)
Kok = Xoge Gr/Fppp

(repeat for n=0, 1, 2, ..., etc.)
3. xgji converges to Xj ji:

(n)
1lim xijk = xijk

n-re

(Cases under which convergence may not occur are discussed below.)
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3.3.2 Three Equivalent Formulations for IPF

IPF as deséribed in the previous section is equivalent to two other
formulations given here. In the statement of thé theorem below the previous
formulation is repeated for completness. The problem statements define the
same problem in the sense that each calls for finding a matrix®* which has
certain properties, satifies certain conditions, and/or is constructed in a
certain way. Each of the three formulations leads to the same matrix RS
(or else none of the problems can be solved due to infeasible conditions).

The three formulations are as follows:

Formulation 1: Find Xyji of the form Xiji = ai1j Bk Mijx
such that

13+ = Ryy

R = S

Formulation 2:#* Find X which minimizes

X

F(x)ﬂz X log. (X,../M,..) - X...)
=L e 0% TipdMye 1§k

subject to the constraints:

X = R

ijk = Rij

X

-k = S

"

X > 0
Formulation 3: Find

= 1im x®

X
o Higk

ijk
where

(o)
Xigk = Mgk

#The formulations are given in terms of the standard example but all
statements carry over to more general dimensionalities except where noted.

¥*5ee, e.g., Reference 3. -
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and ) .
(2n+l) (2n) (2n+2) (2n+l1) (2n+l)

xijk = xijk Rij/xij+-§xijk = xijk Sk/x++k for n = 0,1,2, ...

(Formulation 3 is merely the formulation given in the previous section.)

3.3.3 Discussion on the Consequences of Formulation 1 of IPF

Formulation 1 states that Xijk = Mijk a1jBc where cjj and B are uniquely
determined by the margin conditions (Xjj4 = Ryj, X4eek = Sk) (The uniqueness
is a property of IPF addressed in Section 3.3.4).

Some consequences of this formulation of IPF related to log linear models

will now be noted. In order to state these consequences precisely, define the
following saturated log linear models:

Let
log My, = U:: + 0111(1) + Ug(j) + Ut;(k) + Un142(5..1) * ul;3(jk) 3.9 .
O30 * Bsag
log Ry, = us + "11((_15 + Uy * "1R2(13) 3.10 ;
log §, = U + Ug’(k) : 3.11

X o X X X
log Xy 1%Us *+ Uica) + Ua¢p) + U3y * U)l(z(ij)

X X X
* U3y * Uscan) * Y123c43k) : 3.12

The interactions in M jy which do not correspond to any interactions in Rij
or Sk Will be called "margin-absent" interactions (or effects).® Thus, the
last three terms in equation 3.9 represent margin-absent effects. The
effects in “ijk which correspond to effects represented in one or more of the
data margins will be called "margin-present" effects. Thus the first five
terms in equation 3.9 represent margin-present effects. In general, the
margin-absent effects are higher order effects based on factors whose lower
order effects are margin-present effects. (Thus the margin-absent effects

#The term "effect" is synonymous with "interaction" (see Section 3.2.1).
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can be spoken of loosely as higher order effects and margin-present effects
as lover order effects.) The first characteristic of IPF to be observed is:

1.  The result, Xjjk, of performing IPF with core data Mj ji and margin data
Rij and Si does not depend ori the margin-present effects in Mjjk. That
is, if the margin-present effects in Mijk are changed in any way, the
result, xijk: is unchanged.

2. The second observation is:
The margin-absent effects in Xjyyx are equal to the margin-absent effects
in Mijk- (Roughly speaking, the higher order interactions in the
initial core are preserved intact.)

To these observations, a third obvious one may be added:

3. The margins of xiJk are equal to the correspondihg marginal data
matrices (RiJ and Sy respectively).

Properties 1, 2, and 3 are characteristic of IPF. Any procedure
characterized by properties 2 and 3 is equivalent to IPF. The importance of
the properties lies in the fact that cores for IPF are characterized
completely by their margin-absent effects. The margin absent effects of a
matrix can be isolated and compared to those of another matrix to determine
if they are equivalent for use in TPF. Each matrix Mjj, can be converted to
a reduced matrix Mf}k where log ";Hk equals the sum of the terms in 3.9
corresponding to margin-absent effects. Then M;Sk does not contain (non zero
values for) the margin-present effects and so represents an equivalent core
to Mjjx which can be compared to the reduced matrix of another core matrix.

The remainder of this section is devoted to brief outline of the proof of the
assertions regarding the characteristics of IPF given earlier in this

section.

The second stated property (margin-absent effects in the core are preserved)
will be derived first:

Since Xj ji =°(13Bk M jk.
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we have:

= X X X
log X Uo + Ul(i) + U2(j) +

X X X
13k a0 * Y12¢a5) T Y23065%)

X X _
* UT3¢ak) * U123(a4k) = 108 954 * log By + v

+ Ul\;(1) + UI;(j) + "}31(1:) + ”}1(2(13)
+ Ut

23¢3k) t "Ifs(ik) + "}1123(1'310
and

O o o

a
log o U + U2(j) + UlZ(ij)

ij o + Ul(i)

8 B
log Bk = Uo + U3(k)

Then effects of various types must be equal individually® so that e.g. 0§ =
M o
Ug + Ug + uﬁ and in particular U§23(ijk) = U¥23(ijk)

! o ~

uX a uX =
23(Jk)  23(3k), "13(ik) - "13(ik)

(13

which state the equality of the margin-absent effects in xijk and Mijk
(property 2). '

The first property (that margin-present effects in the core are completely
inconsequential) is derived as follows:

Let “ijk be like Mj gy in its margin-absent effects but different in its
margin-pregsent effects.

. Then

log M!,, = UM' + ot

1k = Yo T Uiy YUy t

; ot ot

oy ¥ Y13y * Y123cik)

o e

3y ¥

UI;Z(”) 3.13

#Since the representation of a positive matrix as a saturated log linear
model is unique. . A
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where the last three terms of log M'ijk equal the corresponding terms of
log Mijk but the other terms are different. Then )

log M' + b

gk = 108 My +a, + by

where ay4 and by are arbitrary.

t ]

Let X'y = %4y B Mygp
and X'1j+ = Rij and x'++k = Sk
Then since#®
we have
' —— . '
xijk o 14 exp (aij) Bk.exp (bk) Mijk

By th '
y the uniqueness of IPF (and since X 14k is now expressed in the form aijBkMijk)
we must have

X'y3k = Xigic (QED)

That properties 2 and 3 characterize IPF may be shown as follows:

Let x'iJk be a matrix characterized by properties 2 and 3 i.e. such that
X'1j+ = Ry and X', 4k = Sk and such that the margin-absent effects in X'j ji
are the same as those in Mjjk. Then X'jjyx = Gij € M1 3k

and by the uniqueness property of IPF, X'jjk = Xijk.

#Notation: exp (x) = e
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3.3.4 Discussion of the Consequences of Formulation 2 of IPF

Formulation 2 may be called the mathematical programming formulation. It
constitutes an-optimization'pboblem with a strictly convex objective function
and linear constraints. Let

f(u) = u log_e Q- u. 3.14

Then the mathematical programming formulation is:

Mind) M . £ (X__ /M

rst ) (= F(x)) 3.15
X rst

rst’ rst

subject to the constraints

X =R

1j+ ij

X

i ° S

k . 3.16

Xiju 20 )

(This assumes Mijk > O; some modifications in the following observations are
needed if any of the Mj 4 are zero. IPF is not recommended in such a case s
unless it is a structural zero.)

It is easy to show that F is strictly convex in the Xngt's (since d2f(u)/du <
0).

A mathematical programming problem with linea} constraints and a strictly
convex objective function either has a unique solution or else is infeasible
(i.e. the constraints cannot be satisfied) and has no solution. This shows
that there is a unique solution to IPF (convergente of the IPF algorithm will
be dealt with in Section 3.3.5) so long as the margins are feasible.
Unfortunately it is possible to have infeasible margins either because they
are incompatible {e.g. if R, #S,) or essentially infeasible, i.e. compatible
but still infeasible. The latter condition is dealt with in Section 3.3.5 and .
in in Appendix B. It is not expected to be a common problem. In any case,
there can be no more than one solution to any of the three equivalent
formulations of IPF.
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The math programming formulation thus provides a useful assurance of
uniqueness of the solution as well as an indication of the importance (and -
sufficiency) of feasibiltiy.

Perhaﬁs more important is the characterization provided of the meaning of the
result of the IPF procedure. Figure 1 shows a plot of f£(u) vs. u. It has a
minimum at u = 1. Thus minimizing the objective function F (X), consists in
drivng Xi jx as close as possible to M1 jk» subject to the marginal constraints.
Other objective functions can be proposed with the same constraints, but the
resulting formulations are not necessarily equivalent to IPF. Examples of
different objective functions with the same constraints (i.e. those in 3.16)
leading to procedures different from IPF include an example in reference 3 and
a special case of EM given in Section 3.4.3.
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3.3.5 Discussion of the Consequences of Formulation 3 of IPF

Formulation 3 is simply the specification of the calculation procedure as
given in Section 3.3.1. A convergence proof is given in Reference 1 (Bishop
et al). The proof given there is for the case of IPF used to fit log linear
models, but appears to be extendable to the case of general IPF if the'
assumption of the existence of a feasible solution is included (Reference to
other proofs may be found in Reference 1 and Reference 6).

Appendix B discusses the general problem of criteria for the existence of
feasible solutions. An example of compatible but infeasible margins is given
there,

In practice convergence will take place quickly (in the IPF procedure) if the
margins are feasible. Convergence is characterized by the condition that
xigi, for sufficiently large n stops changing to any appreciable extent 1i.e.
(a+d) 4 ()

ijk 1jk

is very small for d = 1, 2, 3, .c..®

Ix

' *
If the margins are infeasible, X§?&-w111 cycle instead of converging? The
. length of the eycle is equal to the number of margins being scaled to. In the

example where two margins are being scaled to this means that lxi}ﬁzl xigilis

very small but |X§g;12 Xﬁgal is not small. The matrix X1 jx comes back to the
same place each time it is scaled to a particular margin but wanders away when

scaled to another margin.

The condition of stable cycling will indicate infeasible margins, but this
condition can be broken down into two subcategories.

1. Incompatible but otherwise feasible ("simply incompatible") margins.

2. Essentially infeasible margins.

%A convergence criterion based on comparing the margins of an& with their

target values can also be used, and has some advantages. :
**Cycling sets in gradually, i.e., is established asymptotically.
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In the first case, "simply incompatible margins," the problem is simply that
the margins do not agree along common (sub-) margins. In this case if the
disagreement is not too large a satisfactory compromise can be reached by
choosing x{%ﬁ after scaling to the most significant margin or taking the
average of X&%& over a cycle.

In the case of infeasible margins, the marginal matrices may even be
compatible but a serious inconsistency exists such that no non-negative matrix
has the given marginal matrices as its margins. It appears that then the ngi
matrix will develop zerces where no zerces are found in the margins. No
satisfactory IPF solution can be found in this case.

See Appendix B for more discussion of the margin conditions.

Some general guidelines can be established for detecting and dealing with
anomolies in the computational procedure.

1. In the case of feasible, compatible margins, convergence will be rapid.

2. If the margins are feasible but hot éompatible, stable oygl}ng of the
. n
algorithm will be observed with no zeros present in the X{jk- In this
case:

a. If the swings in the cycle are not large, an average or best
solution (of the cyeling outcome matrices) may be an adequate
solution,

b. If the swings in the cycle are large, then the margins may be too
incompatible to represent the same population®* (recall that the
core need not represent the same population).

3. If the margins are essentially infeasible, cycling will occur, with zeros
n
appearing in certain cells of xijk- In this case, IPF is not an
appropriate treatment of the given data.

#Marginal discrepancies in scale are likely to be less troublesome than
marginal descrepancies in distribution. Discrepancies in scale can be
eliminated altogether by scaling all margins to the same grand total before
commencing IPF. R
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3.4 THE EM METHOD

The Expectation Maximization Method or "EM Algorithm" was expounded by
Dempster, Laird and Rubin in 1976 (Reference 4). The EM method is a general
means of finding maximum likelihood estimates of model parameters in the face
of incomplete data. Incomplete data is data to be used in estimating a model
which actually models some (additional) data or information which is not
available. For example, if some of the observations in the data lack (i.e.
are missing) information on some of the variables considered by the model,
this would be a case of incomplete data. A typical example would involve log
linear models to be estimated from samples which contained some observations
which were fully classified and some which were not classified by one or more
of the variables of interest in the model.

3.4.1 General

The expectation maximization method (for estimating models using incomplete
data) assumes that all the data are governed by the same underlying
distribution (as embodied in the modelling assumptions). An iterative process
is undertaken to estimate (certain of the) parameters of the distribution
(i.e. the model parameters). The technique uses initial estimates of model
parameters to estimate the complete data by an expectation process (the E
step) and then uses the estimated complete data to find a maximum likelihood
estimate of the model parameters (the M step). Then the model parameters
which result from the M step are used again to estimate complete data in the E
step and the steps are repeated alternately to convergence. There is a
certain intuitive appeal to the procedure, but more importantly Dempster et al
showed that the process as they describe it leads to actual maximum likelihood
estimates pertinent to the actual data and model at hand.

All the applications to be considered are expected to be representable by
exponential family type distributions (certainly this is the case for log
linear models for count data). Dempster et al have developed a particularly
elegant formulation for the EM method in the case where the data is assumed to
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arise from an exponential family distribution. An exponential family
distribution® is one for which the density function has the form

£ (x}9) = b(x) exp ($t(x)T)/a(9) 3.17 :

Here i represents thé randoem variable describing'the (hypothetical) complete
data, (x, ¢and t(x) are multivariate i.e. each may be a vector),** ¢
represents the parameters of the distribution of x for which it is desired to
find a maximum likelihood estimate; t(x) is a sufficient statistic for ¢
given x, a(¢) and b(x) are arbitrary functions subject to the requirements of
probability distributions.

The EM algorithm states that a maximum likelihood estimate of ¢ can be
obtained by iterating the following two steps:

1. The E step:

: 3.18
e® =& (et ly, ¢ ’ : .
Here t(P) is referred to as’an "estimate".of the complete data. In the
above expression y denotes the actual incomplete data (y is known, x if s
known would determine y by a many to one mapping of x). ¢<P) represents
the estimate of ¢as it stands at the pth iteration. Under favorable
conditions as p gets larger ¢P) will approach a maximum likelihood
estimate of ¢ .

2. The M step:

Determine a maximum likelihood estimate of ¢ based on tps this will
be ¢{P*1), Then go back to the E step with ¢{P+1) in place of ¢(P)

*Familiarily with the exponentiél family is not required in the following
discussion.

##Dempster's notation is used here. Elsewhere in this report vectors and
matrices are indicated by subscripts or underlines. Note that t:(x)I here s
denotes the transpose of the vector t(x).
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3.4.2 Application to Log Linear Models for Incompletely Classified

Data

A translation of this formal specification in the particular case of some
completely classified and incompletely classified data matrices of count data
will give a better idea of the procedure.

Let the data be given in the form of matrices of count data, Mjjk, BRij and Si.
Then the M; j data is said to represent a completely classified sample while
Rij and Sk are incompletely classified in that the observations that make them
up (i.e. the individuals counted in the matrices) are not classified by all
three variables(only by the first two variables in the case of Rjj and only by
the third variable in the case of Sk). Thus Rjj and Sy in this sense
represent incomplete data. Let R'ijk represent the (hypothetical) complete
data for Ryj and S'jjy represent the complete data for Sy .. Then Ryjy =
R'1j+ and. Sy = S',.pk.

Now Mj gk, R'ijks S'ijk represent the complete data for determination of the
model parameters. As in the usual incomplete data problem the complete data
set is not actually known since in place of R'ijk: Rij is given and in place
of S'ijk, Sk 1s given. Since in the general statement of the technique x was
used to represent the complete data, Mjji, R'jjk, S'ijk will take the place
of x in the procedure. Similarly the .incomplete data will be Mj 4k, Rij, Sk

(recall that the incomplete data was denoted by y in the general exposition).

Let®

= 4 [ ]
Togie ® Mage ¥ Ry ¥ S'g5k 3.19

Then Tjjk is a sufficient statistic for*#

1y = BTyqd= B Oygp + Rlgqpe + 5'5500 3.20

#Note that Tjjx represents the total number of observations in cell ijk.

#%The ¢ 1 jx are the model parameters in this problem. This is discussed in
more detail below.
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Under the usual assumptions of log linear modelling Tijk is Poisson with mean
¢ijk or multinomial (with Pjjic = 91 jic/Tius)

Since Mjji, R'ijk, S'ijk are all from the same population it will be assumed
that Mj4x is Poisson with mean a9ijks R'ijk with mean Bdijk and similarly
S'43jx with mean Y$j4x («, B, Y are not known.)

Under these assumptions#®
ER' 4yl 300 Rygd = (Oy50/0450) Ry 3.21

This represents part of the E step since RiJ is part of the incomplete data,
¢iJk denotes the model parameters, and R'idk will provide an additive part of
the sufficient statistic.

The other equation needed is:

E(S' g gl 04495 S) =y 51 /04 Sy 3.22
This then leads to: |

BTyl Oaqir Mygier Ragr Sid = Mygu#Ryy (Byp/0g00) + Sy (0,5, /0,0  3.23

and so the E step is:

(® . (pd,4(P) (p) ;0 (P)
The M step calls for finding the maximum likelihood estimate of ¢1jk given
Tigk = ngk, This estimate will then be used for ¢§§:1).
If a saturated model is being considered then the maximum likelihood estimate
of ¢jjk 8iven Tijk is just Tjji and so for this case

(p+l)_ (p)

P = Tije

If an unsaturated hierarchical log linear model is being considered then the
log linear modelling prdcess is applied to ngi and the resulting cell
estimates are used for ¢§§§12 Note that the expescted values of cell counts

*This follows from the properties of the Poisson or the multinomial
distribution
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(i.e. ¢1Jk's) are not the usual way of expressing the parameters of a.log
linear model but they are in one-to-one correspondence with‘the usual
parameters (such as U12(13) ete.)- Consequently it is proper to consider the
parameters of the log linear model to be the expected values of the cell"
counts. According to the process of log linear modelling ¢£§§1) is determined
by forming the appropriate margins of T&%i (minimal sufficient statistics for
¢ijk) and performing IPF with these margins and a core of all ones, (the
procedure is described in some detail in Section 3.2.2).

This completes the outline of how the EM algorithm works in a typical case of

interest.
As with IPF there are computational questions of interest regarding EM:

1. Under what qircumstances does the process converge and under what
circumstances does it not converge.

2. Is there a unique result independent of the initialization of ¢§3i ?

3. When does the process converge to a maximum likelihood solution?

These questions appear to be hard to answer in general. Dempster et al
stated, "we demonstrate.....the key results which assert that successive
iterations always increase the likelihocd, and that convergence implies a
stationary point of the likelihood." This statement falls far short of
guaranteeing that the process always convérges to a unique point of maximum
likelihocod. Such a guarantee is hardly to be expected. It is easy to devise
examples which do not converge to a unique solution and in which there is no
unique maximum likelihood splution.

The next section considers questions of convergence and uniqueness in typical
examples such as would be encountered in dealing with tables of incompletely
classified count data which are to be deseribed by log linear models using the
EM method.
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3.4.3 Convergence and Uniqueness in Typical Examples

Given two models, one of which is a direct extension in complexity of the
other, i.e. such that the simple model is equivalent to the complex one with
particular values (e.g. zero) for some of its parameters, then it is clear
that the simpler model will lead to fewer local maxima of the likelihcod than
the more complex model (or at most the same number). It seems that similar
statements should hold in regard to the EM procedure: it might be expected
that the EM procedure would be more likely to yield a unique result when
applied to a simpler model than when applied to a more complex model. In
particular if the EM algorithm is applied to a particular situation assuming
on the one hand a saturated or high order log linear model, and on the other
assuming a lower order log linear model, then uniqueness of the result-would
be more likely in the latter case. This conjecture is based on intuition and
a very limited amount of experience with the procedure.

Initial experience with the EM procedure applied to saturated models suggests
that it usually converges but sometimes very slowly. EM appears to converge
much more slowly than IPF. Non-uniqueness of the EM method may be confined to
the case where the completely classified data matrix has zero cells.

Although it is not possible to answer questions of convergence and uniqdeness
in general, the conjectures stated above may be supplemented by a more
detailed analysis of a special case.

Consider a case whére a completely classified data matrix Mjji is avallable as
well as one dimensional data matrices Aj, BJ, Cio (The dimensionality of

Mj ji is arbitrary but the imcompletely classified matrices must be one
dimensional for this analysis.) Suppose that it is desired to fit a saturated
log linear model to this data using the EM method. The EM calculation
proceeds as follows: '

n+l (n) (n} (n) @; (n) i)
Tijie = Mige + (Ag/Tie) Tigke + (Bj/T...J...) Tyjk + (Ci/Teek) Tijk
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If this process converges, the result Tijk = lim T?}L
n-<e
satisfles the following equations:

Tigie = Mygie ¥ AT Toget By/Tog) Tyge® CfTnd Tagpe

or

c 3.24

Tyge = A T = By/Tgn = G/ T = Mgy

Now suppose that A,, B,, C, >> My 1i.e. the core, Mjji, has small cell
counts compared to the marginal data Aj, Bj, Cx. This represents a situation
which is expected to lead to a greater lack of determinism in the result than
any other case (if enough completely classified data is available then there
should be no indeterminism). Assuming further that Mjj is small compared to

Tijk it follows that

a- Ai/Ti++ - Bj/T+j+ - ck/T++k) =z 0.

This implies that®

Tz 4y

‘T+j+ =~ B Bj

LY

k=Y G
with

lla+1/B8+1/y =1
and

a A+ = g B+ =y c+

#For example, A1)T14+ approximately depends only on j and k and not on i and
30 is approximately a constant, q.
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At the same time from equation 3.24 Tyji has the form*#

T = Mijk/(Ui +V, + wk)

1jk 3 .

Here Uy, V4, Wy are determined by the marginal conditions.
A resemblance to formulation 1 of IPF may be observed: (replacing = by =).

Find Ty 4k of the form:

T + W

1k = Myg/ Uy + V5 + W)

(M3 yx given, Uj, Vj, Wy to be found)

such that

2, = oy =((A¥B¥C)/A) A = ((G/ADA) by = (6/B) By, ¢ = (6/C,) C,

This can even be given an equivalent math programming formulation (if MiJk >
0):

Ma: égt (Mrst log e (Trst/Mrst) - Trst) 3.25

#8203 = Aj/Tj4e +d1, Vj = B3/Ty g4 + d2, Wi 5 C/Tyyk + d3, where dq, dp, d3 are
arbitrary except di + dp + d3 = 1. .
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subject to

T = S . 3.26
and

Tyje 20
As in the case of IPF, existence and uniqueness of a solution Tijj can be
guaranteed if and only if the feasibility conditions 3.26 are satisfied. It

is easy to show that the feasibility conditions always have a solution. (This
comment is restricted to the case of one dimensional margins.)

If Miye = 0 for any ijk then, from the form Tjji = Mg ji/(Ug+V j+Wy) theré.is a
threat of indeterminateness of the solution. If too many of the Mj j=0 it
seems likely that no unique solution for Tjj will exist. (The math
programming formulation ensures uniqueness but does not apply if "1Jk = 0).

However, if Mijk > 0 for all ijk then the EM process can have only one
solution and there is no possibility of the solution depending on the
initialization of Iijk(o). The existence of the solution to 3.25, 3.26 1i.e.,
to the alternative formulation is guaranteed, but this does not strietly prove
ﬁhat the EM process itself converges. However, it seems likely that it will.

In this simple case with non~-zero values in all cells of Mijk’ using EM with a
saturated model cannot lead to more than one solution (i.e. depending on the
initialization). Consequently the previous conjecture that simpler models
(i.e., models with fewer parameﬁers) are more likely to lead to unique
solutions would suggest that all log linear models would lead to a unique
solution if the process converges. It seems likely that the process converges
and that the unique solution is the maximum likelihood solution. These
arguments strictly speaking apply only to the case where the margins dominate
the core and where the margins are all one dimensional.
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With a large sample determining Mijk and with higher dimensional margins given
for the incompletely classified data, it might be conjectured. that non
uniqueness would be less likely (than with small My ji and one dimensional
margins). As a consequence it is conjectured that the EM method applied as
outlined in Section 3.4.2 will always lead to a unique maximum likelihood
estimate of a log linear model if it converges unless some cells of the
completely classified data are emptf. In the case of margins of higher
dimensions it is possible ﬁhat convergence depends on the feasibility of the
margins (no conjecture is offered in the case of infeasible margins but
feasibility of the margins may not matter in the case of EM).

It is worth noting again that the conjectures concerning convergence in this
section are based on limited experience and on the above analysis of a special
casa.

“w
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3.5 PROPERTIES OF TECHNIQUES IN APPLICATIQNS

This section provides scme brief observations on the implications of the
properties of the techniques discussed in this report in regard to the
application of these techniques.

3.5.1 IPF

The IPF technique is for the most part motivated by considerations not usually
considered to be a part of classical statistics. Since the data marginal
matrices completely determine the margins of the result, IPF should be used
only if the marginal matrices to be used are considered reliable
representatives of the population to be represented by the result. This means
that they (each) should have a sample size large enough to be considered
statistically stable and that they should be based on samples representative
of the population of interest.

On the other hand, the data core need not be representative of the population
of interest in its lower order interactions (those characteristics of the
variable combinations represented in the marginal data) but it completely
determines the higher order interactions. Since it is usually a
straightforward matter to decide if marginal data is representative of the
population of interest, the most problematic decision in connection with IPF
is whether the core is appropriate.

If more than one core is available each with different margins but (possibly)
with the same higher order interactions (e.g. multivariate data from sources
with different time and space frames) then the higher order interactions of
each can be extracted (using log linear modelling techniques) and compared to
validate the assumption of equality of higher order interactions. Also the
sensitivity of the result with respect to variations in the core can be
determined.

The statistical stability of the core is as important as its representa-
tiveness. Formulation 1 shows that zeroes in the core are preserved
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in the result. .The same is true of thin spots. It also is clear that the
result of IPF is sensitive on a cell by cell basis to fluctuations in cell
counts (a p# change in a low population cell dominated by the rows and columns
it is in will result in a p% change in the result). This shows that
statistical stability of the core 1s.important. -A thinly populated core
should never be subjected to IPF with high population margins with the hopes
that the proces will "smooth out™ the thin spots in‘the‘core. Instead, the
core can in some cases be smoothed out prior to applying IPF by first using it
to construct a log linear model with some of the highest order interactions
left out. However, some interactions not represented in the marginal data
matrices must be retained in the core or else the IPF process will yield the
same result as would be obtained using an independent core (i.e. a core of all
ones; See Section 3.3.3).

3.5.2 Log Linear Modelling

Log linear modelling is used to provide smoothed cell estimates of
multivariate data and to separate interactions or multivariable effects so
that they may be evaluated and compared. Log linear models help determine
which interactions are significant in the data and must be aonaidered in
further analysis or in using the data in further constructions.

It also allows smoother and therefore lower variance cell estimates to be
produced. This can be of use in connection with IPF.

3.5.3 EM

The EM method is primarily of use for combining data from several samples each
classifled by a different set of variables but each from the same population.
In the case where no external "core" or measure of higher order interactions
is available, the EM method provides a.smooth and even "optimal™® method for
combining the available marginal (and completely classified if available)
data.

#If it is assumed that the various data sets represent the same population and
that the data are multinomially distributed according to a log linear model,
then the EM method leads to maximum likelihood estimates. In this sense it
is "optimal."
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The key assumption is that all data is from the same population. It is
advisable to statistically test this assumption (chi square tests comparing
the individual data sets to estimates of them derived from the complete data
ésfimated by EM can be used).

In cases where several good, incompletely classified data sets each pertinent
to (and representative of) the population of interest are available, the
choice of using EM or IPF to combine them depends on the following
considerationa:

1. If a core from a separate population is to be used to determine the
higher order interactions, then IPF must be used.

2. If no external core is to be used and especially if an internal
completely classified data set is available, then EM should be used.

3 In spite of its theoretically optimal properties, the EM method is
rather sharply limited by the requirement that all data be assumed to
be from the same population.

In summary IPF is capable of producing rather dramatic extensions of
input data while the EM method bolsters the effective sample size of a data
set by combining with an incompletely classified data set.
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3.6 SUMMARY
This chapter has considered three analytical techniques:

1. Log linear modelling,
2. Iterative proportional fitting,
3. The EM Expectation-Maximization) algorithm,

focussing on aspects likeiy to be of interesat in producing useful estimates of
multivariate exposure to driving accidents.

The section on log linear modelling gave a brief overview of that process.

The concepts and procedures are also of use in regard to the other two
methods. The last subsection of the section on log linear modelling
considered the problems involved when log linear modelling is to be applied to
continuous data (such as VMT). It is concluded that log linear models are of
great interest for modelling continuous data such as VMI. The main problems
are with the means of estimating the model parameters and with assessing the
goodness of fit.

It is shown that the standard method for estimating descrete log linear models
{based on IPF) is still satisfactory for the continuous case (although it does
not ﬁecessarily yield maximum likelihood estimates) but the chi square
statistics (calculated as if the cell VMT totals were cell counts) are not in
general valid (i.e., not chi square distributed with the appropriate degrees
of freedom). However, if certain conditions on the data are valid, the formal
chi square statistic is easily scaled to a valid chi square (distributed)
statistic (with the usual degrees of freedom). The conditions except for one
are mild and probably satisfied in very many instances. The condition which
will often not hold is that the ratio of VMT mean to VMT variance is constant
across cells. This condition would usually hold only if the variance in cell
VMT was mostly caused by fluctuations in the number of records in each cell
(i.e., if each record made about the same contribution to VMT).
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Even though the condition is not reasonable in many cases, the scale factor
for the chi square statistic can be calculated. A goodness of fit could also
be based on some robust procedure such as jackknife, infinitesimal jackknife
or sample splitting unless and untlil the adjusted chi square statistic
proposed here is found to work satisfactorily.

The section on IPF describes the procedure for calculating IPF and then goes
on to. show two other equivalent formulations leading to the same solution.

The alternative formulations are not alternative methods of solution but
formulations of problems which have the same solution as the usual formulation
of IPF. From the alternative formulations various properties of the IPF
procedure are developed:

1« The solution, if it exists, is unique.

2. The resulting matrix is as close to the core matrix as possible
(according to an information type metric which is concerned with the
ratio of the result matrix to the core matrix) subject to the marginal
and positivity constraints.

3. The result of IPF has thé same margin-absent effects as the core. The
margin-absent effects are defined in Section 3.2.2. They are roughly
speaking the higher order interactions.

. The result of IPF is unaffected by the margin-present effects in the
ocore.

5. IPF has a solution only if the margins are feasible.

The problem of the feasibility of the margins is discussed in Section 3.3 and
also in Appendix B. It is concluded that the best practical method for
determining margin feasbility is to apply IPF and observe the assymptotic
properties (convergence or eycling, development of zeroes or not). The
application of IPF in reasonable situations should not often lead to
infeasible margins but the discussion given here should assist in handling any
such cases that might arise.
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The section on the EM method gives a brief introduction to the method and then
presents the method as it would apply to developing log linear models for
incompletely classified data. A discussion on convergence and uniqueness is
given based on an explicit analysis of a case which might be expected to have
a greater propensity for indeterminarcy than most other cases: saturated
modelling in the case of one dimensional marginal data (incompletely

. classified data sets) and a thinly populated completely classified data set.
In this special case it is concluded that if the process converges the answer
will be unique so long as the completely classified data set does not have too
many zero cells. Extrapolating to other cases it is conjectured that
convergence almost always occurs (if the margins are fairly compatible) and
that uniqueness is guaranteed if there is a completely classified data set
with no zero cells. If there is no completely classified data set then the
process is likely to converge to a unique maximum likelihood estimate only if
the order of the log linear model is not too high.

The EM method appears to be very slowly convergent in some cases.
Since the EM method is derived for the case where all the data sets come from

populations having the same distribution its application may be rather
restricted.
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4. COMPUTATIONAL EXAMPLES

In this section, several of the techniques described in Section 3 are
applied to exposure data sets of modest oomplexiti.' One of the major benefits
of these exercises was to test out software, develped for the TSC computer (a
PDP10/KL), to compute margins of general arrays, to perform Iterative
Proportional Fitting (IPF) on a broad class of cores and margins, and to
compute log linear models for a large class of arrays. These computer
programs are listed in Appendix C. The set of problems that can be addressed
is limited only by computer storage requirements. Although not represented by
an example in this section, the software has been further extended to compute
maximum likelihood cell-count estimates for a variety of cases involving
incomplete data, via the EM algorithm.

In Section 4.1, a variety of log linear models are fit to a U-dimensional
Vehicle Miles Travelled (VMT) data set derived from the 1977 Nationwide
Personal Transportation Survey (NPTS). Goodness of fit measures are given for
first, second and third order models. (See Section 3 for a description of the
special problems involved in applying log linear theory to VMT (continuous)
data.)

In Section 4.2, an example of IPF with a dummy core of 1's is given.
This is an elementary example of incomplete data’ classification discussed in
Section 2.2, Ten bivariate margins are given representing pairwise
distribution of VMT among five variables, taken from a North Carolina driver
survey from which an estimate of the fully classified S-dimensional array is
made by fitting the margins to a S5-dimensional core of ones. Three-
dimensional margins from the estimated array are compared with actual three-
way distributions taken from the driver survey, as an indication of
effectiveness of the estimation.

In Section 4.3, an example of IPF with a real core is given. This is an
elementary example of the situation deseribed in Section 2.8 - the updating of
out-of-date data. Matrices of registered drivers by age and sex categbries
for 1975 and for 1979 are each fit to the corresponding 1980 margins by IPF.

4=1



The results are compared with the actual 1980 matrix. Since, in this case the
data are counted data, a statistical goodness of fif test is applied.
Saturated log linear model coefficients are calculated for the data sets, to
trace the effect of IPF on the interactions. A major theoretical result of
Section 3.3.3 is demonstrated computationally.

4.1 LOG LINEAR MODELLING - NPTS DATA SET APPLICATIONS

The log linear modelling method was applied to a multivariate data set
consisting of 1977 annual VMT, classified by four variables: driver age,
driver sex, vehicle weight and model year. The definition of variable levels
(together with a key to their use with data tables) is shown in Table 2. The
actual data set is displayed in Table 3. The data set was aggregated from a
larger multivariate set (more variables and more levels), constructed by TSC
from the 1977 NPTS data tapes. The particular 4-variable set used here was
chosen for several reasons, the principal one being to have a relatively
smooth data set of modest size, for an initial software testing. (The more
disaggregate data are quite noisy and have many zero cells.)

Three hierarchical log linear models were fit to the data, using the
standard technique described in Section 3.2.

The first model fit was a homogeneous hierarchical model of order 3
(meaning all 3-variable effects and lower order effects were present, all
effects for more than 3 variables were not present). The four 3-dimensional
margins used as sufficient statisties for the estimation are shown in Tables
4, 5, 6, and 7. The outcome cell estimates for this model are shown in
Table 8.

The second model fit was a homogeneous hierarchical mocdel of order 2.
The six 2-dimensional margins (sufficient statisties) are shown in Tables 9
and 10. The cell estimates under this model are shown in Table 11.

The final log linear model fitted was a homogenous hierarchical model of

order 1. The four 1-dimensional margins (sufficient statistics) are shown in
Table 12. The cell estimates under this model are shown in Table 13.
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TABLE 2. DEFINITION OF VARIABLE LEVELS

VARIABLE/LEVELS . KEY
SEX OF DRIVER
Male M
Female F

AGE OF DRIVER

0-24 0+
25-34 ' 25+
35-44 35+
45-54 45+
55 and older 55+

WEIGHT OF VEHICLE

0-2500 1bs. ) 0.0+
2501-3500 1bs. . 2.5+
3501-4500 1bs. 3.5+

over 4500 1bs. 4.5+

YEAR OF MODEL

1976-1978 76+
1973-1975 73+
1969-1972 ' 69+
1965-1968 65+
1964 or older 0+
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TABLE 4. THREE-DIMENSIONAL MARGIN: AGE, SEX, WEIGHT OF VERICLE
(Annual Billions of VMT, 1977 NPTS)

SEX

AGE MALE FEMALE
0-24 TT.606 8.577

25-34 19.575 7.926
35-44 13.146 5.436
45-54 7.696 3.525
55 & over 8.235 2.455.

Weight of Vehicle <2500 1bs.

SE
AGE MALE ~ FEMALE
0-24 9.104  23.258

25-34 70,041 31.520
35-44 53.936 24.131
45-54 51.335 18.512
55 & over 50.670 16.050

Weight of Vehicle 3501-4500 1bs.
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sEx
AGE MALE FEMALE
'0-24  39.958  24.373

25-34 59.175 26.746
35-44 37.362 16.314
45-54 35.799 16.946
55 & over 30.264 11.517

Weight of Vehicle 2501-3500 1bs.

SEX
AGE MALE  FEMALE
0-24 5.161 7.195

25-34 10.044 4.350
35-44 10.353 5.473
45-54 - 10.393 5.091
55 & over 12,506 3.012

Weight of Vehicle over 4500 1bs.




TABLE 5.

THREE- DIMENSIONAL MARGIN:

(Annual Billions of VMT, 1977 NPTS)

AGE
0-24
25-34
35-44
45-54

AGE, SEX, YEAR OF MODEL

WALE FEMALE AGE
37.800  12.824 0-24
41.681  17.190 25-34
31.816  12.652 35-44
30.875  11.434 45-54
8.418 55 & over

55 & over 26.640

Year of Model 1976-78

SEX
MALE
32.857

51.4N
32.895
34.028
30.634

Year of Model 1973-75

FEMALE
20,797

24.673
17.792

15.326

10.936

AGE
0-24
25-34
35-44
45-54

55 & over

Year of Model 1965-68

AGE MALE_ o

0-24 29.255 17.782

25-34 40.559 21,346

35-44 32.235 14.528

45-54 26.218 10.721

55 & over  29.553 8.538

Year of Model 1969-72
SEX AGE SEX
MALE FEMALE . == MALE FEMALE
15.753 6.703 0-24 6.160 2.297
17.803 6.237 25-34 7.381 1.097
12.815 5.462 35-44 5.037 0.920
10.430 5,632 45-54 3.673 0.960
12.071 4,185 55 & over 2.775 0.958
Year of Model 1964 or older
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TABLE 6. THREE-DIMENSIONAL MARGIN:
(Annual Billions of VMT,

AGE,

WEIGHT OF VEHICLE AND YEAR OF MODEL

1977 NPTS)

Weight of Vehicle (1000 1bs.)

Weight of Vehicle (1000 1bs.)

YEAR OF

MODEL 0-2.5 2.5-3.5 3.5-4.5
76-78 9.13¢ 18.543 28.592
73-75 11.019 26.215 33.206
69-72 4,604 28.303 25.520
65-68 1.866 9.595 10.358
64 or
older 0.878 3.265 3.883

Age of Driver 25-34

over
4.5

2.601
5.645
3.478
2.220

0.450

Weight of Vehicle (1000 1bs.)

Over'
5  3.5-4.5 4.5

20.364 3.873
23.685 5.879
23.545 3.986
8.053 1.848
2.421 0.240

YEAR OF over
MODEL 0-2.5 2.5-3.5 3.5-4.5 4.5
76-78 4,672 12.2N 15.978  2.697
73-75 8.124 18.091 24.036 3.403
69-72 5.401 19.988 19.008 2.640
65-68 0.950 10.795 9,342 1.369
64 or
older 1.031 3.182 . 3.998 0.247
Age of Oriver 0-24
YEAR OF
MODEL 0-2.5 2.5-3.
76-78 7.242 12,989
73-75 4,174 16.949
69-72 5.174 14,058
65-68 1.094 7.281
64 or
older 0.897 2.399
Age of Driver 35-44
~ Weight of Vehicle (1000 1bs.)
YEAR OF over
MOOEL 0-2.5 2.5-3.5 3.5-4.5 4.5
76-78 3.642 14,304 20.275 4,088
73-75 3.504 16.305 23,351 6.194
69-72 3.070 13,990 15.947 3.931
65-68 0.778 6.295 7.896 1.093
64 or
older 0.226 1.852 2,377

Age of Driver 45-54

0.178

Weight of Vehicle (1000 1bs.)

YEAR OF
MODEL 0-2.5 2.5-3.5 3.5-4.5

76-78 2,431 9.836 20.040
73-75 2.728 13.483 19.164
69-72 3.089 11.439 18.826
65-68 1.790 5.750 7.249

64'or

older 0.652 1.274 1.447

Age of Oriver over 55

over
4.5

2.751
6.196
4.738
1.467

0.366
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TABLE 7.

THREE-DIMENSIONAL MARGIN:

SEX OF DRIVER, WEIGHT OF

VEHICLE, AND YEAR OF MODEL (Annual Billions of VMT,

1977 NPTS)
Male Drivers .
Weight of Vehicle (1000 1bs.)
YEAR OF over
MODEL  0-2.5 2.5-3.5 3.5-4.5 4.5
76-78 19.075  46.453 76.669 11.615
73-75 19.740 59.715 83.778 18.594
69-72  13.800 58.294 72.909 12.817
65-68 4,789  28.507 30.138 .9.437
64 or
older 2.853 9,585 11.593 0.99%4
Female Drivers
Weight of Vehicle (1000 1bs.)

YEAR OF over
MODEL  0-2.5 2.5-3.5 3.5-4.5 4.5
76-78 8.052 21.490 28,581 4.395
73-75 9.808 31.327 39.665 8.723
69-72 7.538 24.483 29,937 5.957
65-68 1.691 11.208 12.760 2.559
64 or
older 0.830 2.387 2.529 0.487
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TABLE 9. TWO-DIMENSIONAL MARGINS (Annual
Billions of VMT, 1977 NPTS)

SEX weight of Vehicle (1000 1bs.) over
AGE MALE FEMALE AGE 0-2.5 2.5-3.5 3.5-4.5 4.5
0-24 106.825 60.403 0-24 20.183 64.327 72.362 10.356
25-34 158.835 70.542 25-34 27.500 85.921 101.562 14.394
35-44 114,798 51.354 35-44 18.582 53.676 78.068 15.826
45-54 105.224 44,073 45-54 11.220 52.°%5 69.847 15.484
55 and 55 and
over 101.674 33.034 over 10.690 41.780 66.720 15.518
Age of Driver vs. Sex of Age of Driver vs. Weight of Vehicle
Oriver
YEAR OF MODEL
64
76-78 73-75 69-72 65-68 or older
AGE - .
0-24 35.623 53.654 47.037 = 22.456 8.457
25-34 58.8N 76,084 61.905 24.040 8.478
35-44 44.468 50.687 46.763 18.277 5.957
45-54  42.309 49,354 36.938 16.062 4.634
55 or '
older 35.058 41.570 38.092 16.256 3.733
Age of Driver vs. Year of Model
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TABLE 10. TWO-DIMENSIONAL MARGINS (CONT.)

(Annual Billions of VMT, 1977 NPTS)

Weight of Vehicle (1000 1bs.)

over
SEX  0.25 2.5-3.5 3.5-4.5 4.5
MALE  60.257 202.554  275.087  49.458
113.471 22121

FEMALE 27.918 95.896
Sex of Driver vs. Weight of Vehicle

YEAR OF MODEL

SEX  76-78 73-75 69-72 65-68 64 or older
MALE  153.812 181.826 157.820 68.872 25.026
FEMALE 62.518 89.523 72.915 28.218 6.232
Sex of Driver vs. Year of Model
YEAR OF MODEL
H
vgachEOF 76-78 73-75 69-72 65-68 64 or older
0-2.5 27.127 29.547 21.338 6.479 .3.583
2.5-2.5 67.943 91.043 87.777 39.715 11.972
" 3.5-4.5 105.250 123.443 102.846 42.898 14.122
over 4.5 16.010 27.316 18.774 7.997 1.481

Weight of Vehicle vs. Year of Model
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TABLE 12. ONE-DIMENSIONAL MARGINS (Annual -
Billions of VMT, 1977 NPTS)

0-24 25-34 35-44 45-54 55 ‘and over
167.227 229.378 166.152 149,297 134.709

Age of Driver

MALE FEMALE
587.356 259.406

Sex of Driver

0-2.5 2.5-3.5 3.5-4.5 over 4.5

88.175 298.450 388.558 71.579
Weight of Vehicle
.(1000 1bs.)
76-78 73-75 69-72 65-68 64 or older
216.330 271.349 230.735 97.089 36.259

Year of Model
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The standard statistics for the three models are shown in Table 14, As
_noted earlier, the chi-square and likellihood-ratio statistics are not valid;
in fact, they are derived from VMI cell entries and are thus grossly distorted
(and inflated) by weights and expansion factors (See Section 3.2.4 and
Appendix A for a suggested correction factor estimates). Nevertheless, the
statistics are a crude measure of relative goodness of fit, so that one may
observe that the 3-level model appears to be the best fit¥ the 1-level model‘
the worst fit of the three models. The degrees of freedom, on the other hand,
are valid since they depend only on the total number of 69113 and the number
of parameters utilized in the model. If one assumes that the inflation factor
in the VMT data is approximately constant across cells, one can observe that
the ratio of chi-square (2.963) and of D.0O.F. (2.833) for models 2 and 1 are
almost equal. This can mean that chi-square is measuring noise. This
suggests that the better fit for model 1 is not statistically significant.

The same crude teat tells us with somewhat more confidence that model 3 is
probably not as good a fit as models 1 or 2. Of course, these observations
are highly intuitive and qualitative. Rigorous goodness-of-fit tests cannot
be applied unless successful scaling adjustments can be made to the VMT data,
or to the chi-square statistics.

Another observation that can be made from these tests has to do with the
ability of log-lihear models to detect data instabilities. In partiocular, if
one divides the given data set. of 200 cells into two sets of 100 cells each,
corresponding’ to male drivers and female drivers respectively, one can pair
the cells naturally i.e., for each "female" cell, there is exactly one "male"
cell having the same levels for all variables except sex. Inspection of Table

3 reveals that for 91 of these cell-pairs the VMT for the "male" cell is much
greater than the VMT for the corresponding "female® cell. In 9 of the cell-
pairs, -however, the "female" VMT is larger'pr close to equal to the "male"
VMT. (This can be verified easily since Table 3 is arranged so that
corresponding cells are adjacent.) If one now looks at the cell estimates for
the three mo@els, it is observed that, in each case, all 9 cell-pairs are
reversed, so that the "maie" cell dominates for all 100 cell-pairs. This, in
turn prompts an investigation of the marginal tables which reveals that for
all margins (3, 2, and 1-dimensional) the "male" cell has a

*I.e the clogest fit as measured by chi-square. It could not be otherwise since
the all three factor model contains the others.
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TABLE 14. CHI-SQUARE, G2 AND DEGREES OF FREEDOM FOR THREE HOMOGENEOUS
HIERARCHICAL LOG LINEAR MODELS '

2

CHI-SQUARE g D.0.F.
MODEL 1 (3-variable effects)  .707 X 1010 .715 X 1010 48
MODEL 2 (2-variable effects) 2.095 X 10'®  2.050 x 10'° 136
MODEL 3 (1-variable effects)’ 5.295 X 10’0  5.227 x 10'° 187
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substantially larger VMT than the corresponding "female" cell for all cell
pairs. Thus, it is not surprising that the (unsaturated) log linear models,
which are estimated from marginal information alone, reversed the male/female
VMT ratio in the 9 anomolous cell-pairs. One can now zero in on the more
disaggregate data to look for evidence of something wrong in the VMT values
‘for these cells. In fact, preliminary evidence that there may be some thin
sampling problems in these cells can be obtained from Table 3, by observing
that each of the cells correspond to the lightest (0.0+) and heaviest (4.5+)
auto classes which, according to Table 12, comprise approximately 10.4 percent
and 8.5 percent of the population, respectively.

In summary, we have prepared a modest-sized multivariate data set, for
test purposes, from the 1977 NPTS tapes. We have formally fit a sample set of
unsaturated hierarchical log linear models to the data in order to demonstrate
and test the capability.

4-17



TABLE 15. TWO- DIMENSIONAL MARGINS (Percentage
Distributions of VMT)

AGE
SEX 24 25-54 55.
Male 7.1 39.8 " 12.8
Female 6.6 28.0 5.7
__AGE —
TIME 24 25-54 55
Day 9.3 52.1 15.5
Night 4.4 15.7 3.0
AGE _
PLACE 24 25-54 55
Urban 6.6 36.3 10.0
Rural . 7.1 31.5 8.5
YEAR OF AGE :
MODEL 24 25-54 55
72-74 5.0 21.4 6.9
69-71 3.6 22.0 4.3
68 5.1 24.5 7.3

SOURCE: White, S. B., C. A. Clayton, L. D. Bressler and J. R. Stewart, -
"Improved Exposure Measures" Final Report, Research Triangle
Institute, Contract No. DOT-HS-022-2-418, September, 1975.
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TABLE 15. TWO-DIMENSIONAL MARGINS (CONT.)
(Percentage Distribution of VMT)
SEX SEX
TIME MALE FEMALE PLACE MALE FEMALE
Day 44.0 32.9 Urban 29.4 23.5
Night 15.7 7.5 Rural 30.2 16.9
YEAR OF SEX YEAR OF TIME .
MODEL MALE FEMALE MODEL DAY NIGHT
72-74 20.3 12.9 72-74 25.4 7.8
69-71 15.9 14.0 69-71 22.4 7.5
68 23.4 13.4 68 29.1 7.8
YEAR.OF PLACE PLACE
MODEL URBAN RURAL TIME URBAN RURAL
72-74 16.9 16.4 Day 39.7 37.1
69-71 17.6 12.3 Night 13.2 10.0
68 18.5 18.4. '

SOURCE: White, Clayton, Bressler and Stewart
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TABLE 16.

5-WAY OUTPUT FROM IPF (Percentage
Distributions of VMT)

YEAR OF

MODEL TIME PLACE

)

72-74
N

69-71
N
0

< 68
N

MALE FEMALE

£25 7585 >85 (24" 7B5 > 65
U 0.65 4.30 1.90 0.84 3.84 1.06
R 0.98 5.07 2.001 0.8 3.11 0.77
U 0.47 1.85 0.50 0.35 0.95  0.16
R 0.5 - 1.67 0.41 0.28 .0.59  0.09
U 0.45 4.33 1.20 0.79 5.21 0.90
R 0.51 3.79 0.9 0.61 3.3  0.49
U 0.3 2.06 0.35 0.36 1.2 0.15
R 0.3 1.38 0.21 0.21 0.65 0.06
U 0.72 5.28 2.11 0.8 4.23 1.05
R 1.11 6.29 2.27 0.89 3.47 0.78
U 0.45 1.9 0.48 0.30 0.90 0.14 -
R 0.53 1.79 0.39 0.24 0.57 0.08
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TABLE 17. COMPARISON OF TABLES FOR AGE, TIME AND YEAR OF MODEL
(Percentage Distributions of VMT)

YEAR OF AGE <2 25-54 255
MODEL TIME Day Night Day Night Day Night
72-74 3.6 1.3 .16.1 5.3 5.6 1.2
69-71 - 2.4 1.2 16.6 5.4 3.4 0.9

< 68 3.3 1.8 19.4 5. 6.4 0.9

3-WAY TABLE - ORIGINAL DATA
SOURCE: White, Clayton, Bressler and Stewart

YEAR OF AGE £24 25-54 255
MODEL TIME Day Night Day Night Day Night
72-74 3.4 1.6 16.3 5.1 5.7 1.2
69-71 2.4 1.2 16.5 5.5 3.5 0.8

<68 3.6 1.5 19.3 5.2 6.2 1.1

3-DIMENSIONAL MARGIN - 5-WAY IPF OUTPUT TABLE

YEAR OF AGE €24 25-54 255
MODEL TIME Day Night Day Night Day Night
72-74 35 140 17.3 5.2 4.7 1.4

. 69-7M 3.2 0.9 15.6 4.7 4.3 1.3
<68 3.9 1.2 19.2 5.8 5.2 1.6

INDEPENDENT 3-WAY TABLE
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TABLE 18.

COMPARISON OF TABLES FOR SEX, AGE AND YEAR OF MODEL
{Percentage Distributions of VMT)

YEAR OF
MODEL
72-74
69-71

68

YEAR OF
MODEL

72-74
69-71
68

YEAR OF
MODEL

72-74
69-71
68

SEX
AGE

SEX
- AGE

SEX
AGE

MALE . FEMALE
<24 25-54 >55 <24 25-54 255
2.6 12.7 5.1 2.4 8.7 1.8
1.7 11.7 2.6 1.9 10.3 1.7
2.8 - 15,5 5.1 2.3 9.0 2.2
3-WAY TABLE - ORIGINAL DATA
SOURCE: White, Clayton, Bressler and Stewart

MALE FEMALE
<24 25-54 255 <24 25-54 >55
2.6 12.9 4.8 © 2.4 8.5 2.1
1.6 11.6 2.7 2.0 10.4 1.6
2.8 15.3 5.3 . 2.3 9.2 2.0
3-DIMENSIONAL MARGIN FROM 5-WAY IPF QUTPUT

MALE FEMALE _
<24 . 25-54 >55 <24 25-54 >55
2.7 13.4 3.7 1.8 9.1 2.5
2.4 12.1 3.3 1.7 8.2 2.2
3.0 14.9 4.1 2.0 10.1 2.8

- INDEPENDENT 3-WAY TABLE
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TABLE 19. COMPARISONS OF 3-WAY TABLES FOR SEX, TIME AND YEAR OF MODEL
(Percentage Distributions of VMT)

YEAR OF - SEX MALE FEMALE
MODEL TIME Day Night Day Night
72-74 15.0 5.3 10.4 2.5
69-71 11.3 4.6 11.1 2.9
68 17.7 5.7 11.3 2.1

3-WAY TABLE - ORIGINAL DATA
SOURCE: White, Clayton, Bressler and Stewart

YEAR OF SEX MALE FEMALE
MODEL TIME Day  Night Day  Might
72-74 14.9 5.4 10.5 2.4
69-71 11.2 4.7 1.1 2.9

- 68 17.8 5.6 1.3 2.2

3-DIMENSIONAL MARGIN FROM 5-WAY IPF QUTPUT

YEAR OF SEX MALE FEMALE

MODEL TIME Day — Night Day  Night

72-74 5.2 4.6 0.3 3.1

69-71 13.7 4. 9.3 2.8
68 16.9 5.1 1.5 3.4

INDEPENDENT 3-WAY TABLE
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TABLE 20. U.S. REGISTERED DRIVERS BY AGE AND SEX, 1975, 1979,

1980 (1000's)

4=24

SEX SEX
AG MALE FEMALE AGE MALE FEMALE
T-24 16247 14285 0-24 16221 14311
25-34 18878 17417 25-34 19282 17012
35-44 12940 11888 34-44 13190 11638
45-54 10662 9504 45-54 10713 9452
55+ 18463 15011 55+ 17783 15690
a) 1980 Actual d) Independent 1980 Estimate
x%=84
SEX SEX
AGE  MALE  FEMALE  AGE _MALE_ T FEMALE
0-24 15789 13533 0-24 16060 14472
- 25-34 15847 14215 25-34 18680 17615
35-44 11280 10090 35-44 12838 11990
45-54 11090 9493 45-54 - 10613 9553
55+ 16552 11996 55+ 18998 14476
b) 1975 Actual e) IPF 1980 Estimate
1975 Core X=45
SEX SEX
AGE MALE FEMALE AGE MALE FEMALE
0-24 16480 14381 0-24 16217 14315
25-34 18364 16819 25-34 18841 17456
35-44 12640 11557 35-44 12898 11930
45-54 10826 9561 45-54 10651 9515
55+ 18222 14435 55+ 18583 14891
c) 1979 Actual f) IPF 1980 Estimate
1979 Core X2=2.3
Source: Highway Statistics (U.S. DOT-FHWA)




TABLE 21.

1975 SATURATED LOG-

LINEAR MODEL

o=
(]

u(1)
U (2)
U (3)
U](4) =
U](S) =

Uz(]) =
U2(2) =

Uro (1)
Ujpl21) =
Uj2(31) =
Uip(41) =
Upa(81) -
Ui2(12) =
Uip22) =
U,(32) =

U,,(42) s

U]Z(SZ)

9.45345684

+.13652076
+.16293741
-.18189439
-.21740229
+.09983851

+,08587358

-.08587358

-.00878238
-.03153233
-.02664953
-.00812903
+,07509327
+.00878238
+.03153233
+.02664953

+,00812903"

-.07509327
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TABLE 22.

1980 SATURATED LOG-
LINEAR MODEL

U = 9.55989186
U, (1) = +.07142259
U, (2) = +.24558539
U (3) = -.13421016
Uy (8) = -.34293721
U;(5) = +.16013939
U,(1) = +.06160014
Uy(2) = -.06160014
U;,(11) = +.00274901
Up,(21) = -.02132489
Uy, (31) = -.01920324
Up,(41) = -.00411349
Upp(51) = +.04189261
U,,(12) = -.00274901
L U,(22) = +.02132489
Uy5(32) = +.01920324
U;,(42) = +.00411349
- Uy, (52) = -.04189261




1980/1975 SATURATED

TABLE 23.
LOG-LINEAR MODEL

U, = 9.55945323

U, (1) = +.07257557

U (2) = +.24640532
U;(3) = -.13345763
U,(4) = -.34223593
U,(5) = +.15671267
U,(1) = +.06084445
Uy(2) = +.06084445
Upp(11) = -.00878235
U,5(21) = -.03153230
U,,(31) = -.02664955
U;,(41) = -.00812905
U;o(51) = +.07509325
U,,(12) = +.00878235
U,,(22) = +.03153230
U;,(32) = +.02664955
U;,(42) = +.00812905
Uy,(52) = -.07509325

TABLE 24. DIFFERENCES IN INTERACTIQNS

426

1980 MODEL MINUS 1980/1975
MODEL
U, (1) = -.00115298
U,(2) = -.00081993
U;(3) = -.00075253
U,(4) = -.00070128
U (5) = +.00342672
U,(1) = +.00075569
- U,(2) = -.00075569
Uy2(11) = +.01153136
U;2(21) = +.01020741
U;5(31) = +.00744631
U,,(41) = +,00401556
U,2(51) = -.03320064
U;2(12) = -.01153136
U,,(22) = -.01020741
U;,(32) = -.00744631
U,,(42) = -.00401556
Uy,(52) = +.03320064




4,2 SYNTHESIS OF MULTIVARIATE DATA SETS FROM LOWER DIMENSIONAL DATA (CASE 1 -
DUMMY CORE) 7

This section describes the application of iterative proportional fitting
(IPF) to the construction of a S-dimensional data set, using a complete set of
(g) = ten 2-dimensiocnal margins. The data are taken from a study1 conducted
in North Carolina in 1973, from which a table of VMT was prepared, classified
by six variables: vehicle type, model year, driver sex, driver age, day/night
and urban/rural. A l4-way table of the number of drivers, classified by the
first four variables, was also prepared. The North Carolina (N.C.) report
contains an extensive set of 2-way and 3-way tables of % distribution of VMT.
The data in these tables formed the basis for the data synthesis example
deseribed below.,:

A set of ten 2-way tables of % distribution of VMT was constructed from
the North Carolina report, one for each pair of variables from the following 5
variable set: model year, driver sex, driver age, day/night (time), and
urban/rural (place). These tables are displayéd in Table 15. The table was
fitted to a five dimensional core of one's by IPF. The resulting S-way table
is shown as Table 16. For three suﬁsets of three variables each (age, time,
and model year; age, sex, and model year; and sex, time and model year,
respectively), 3-way margins were computed from the IPF output table, and were
compared with the corresponding 3-way tables taken from the N.C. report. In
addition, for each case, the corresponding "independent" table (i.e., the
table with no 2-factor or 3-factor effects) was computed. The three cases are
shown in Tables 17, 18 and 19. As can be seen from these tables, in each
case, the IPF procedure using ten 2-way margins with a dﬁmmy core estimated
the 3-way tables quite well, certainly much better than the independent table.
A further experiment was conducted. For each case, the three corresponding
two=way margins were fitted by IPF to a 3-dimensional core of one's. In each
case the output 3-way table was almost

S.B. White, et al, "Improved Exposure Measurements™ Final Report by
Research Triangle Institute, under NHTSA Contract No. DOT-HS-022-2-418,
September, 1975. .

4=27



identical to the corresponding 3-dimensional margins computed from the_synthe-
sized S5~-way table. We do not believe that the latter result is to be eibected
in general. It seems likely that there would be situations in which, for
example, the 3-way margins computed from the S-way table (synthesized from 10
2-way margins) would be significantly better estimates than the corresponding
3-way table synthesized from three 2-way margins.

It is of some interest to note that, if the ten 2-way margins were count
data, the 5-way table derived from them by IPF would be the maximum likelihood
cell estimates for an unsaturated hierarchical log linear model of any 5-way
table of count data that yielded those margins.

The 3-way tables were the largest dimension of marginal tables published
in the N.C. report. The complete data for the 6-way VMT table and the 4-way
number-of-drivers table are in the appendix, but are largely illegible. If
these data could be obtained from the authors, they could, after some
manipulation in the computer, be used to conduct more extensive tests with
IPF, including a direct comparison of the 5-way IPF table with the
corresponding actual table.

4.3 SYINTHESIS OF MULTIVARIATE DATA SETS FROM LOWER DIMENSIONAL DATA (CASE 2 -
ACTUAL CORE)

The final test of IPF involves the estimation of a two-dimensional table
by titting.a fully classified core from a previous timeframe to the margins of
a (more current) year of interest. The data were tables of registered
drivers, classified by sex and age categories, compiled from 1975, 1979, and
1980 "Highway Statistics®" (a FHWA publication). These tables are shown in
Table 20, a, b, and ¢, respectively. The margins of the 1980 table were used
to caleculate the corresponding "independent™ 2-way table (no 2-way
interactions equivalent to fitting the margins to a core of 1's via IPF) shown
in Table 20(d). The 1980 margins were fit via IPF to the 1975 Table 20(e) and
the 1979, Table 20(f).
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The main idea of the example was to see how well IPF performs with a core
and, in particular, as an initial test of IPF's potential for updating a table
with later year margins. (Conversely, of estimating a later year's tables
given the later year margins and a core from an earlier year.) By comparing
Table 20(a) with Tables d, e, and £, it is clear that fitting the 1975 core or
the 1979 core gives better results than assuming independence. In the case of
1979, Table 20(f), the estimated table is very close to the 1980 table, in
fact, the difference between the two tables is not significantly different
from O at the 5% level. (The model estimates ten cells from 6 independent
fixed margins, leaving U4 degrees of freedom. The value of X2 at the 5% level
for 4d.o.f. is 9.488.) 1In the case of the estimate based on a 1975 core, the
difference between the 1980 and the estimated tables is completely determined

-by the different 2-way interactions in the 1975 table. Inspection of Tables
20(a) and e reveals that this effect is strongest on rows 1, 2, and especially
5, corresponding to the two youngest and the oldest age groups, respectively.
These observations suggest changes in the sex composition of the corresponding
age groups beﬁwean-3975 and 1980. .

The saturated log-linear model parameters were computed.for the 1975 and
1980 matrices, and for the matrix derived from fitting the 1975 matrix to the
1980 margins (hereafter denoted the 1980/1975 matrix.) The parameters are
shown in Tables 21, 22 and 23, respectively. Table 24 shows the difference in
the paraqgters between the 1980 matrix and the 1980/1975 matrix. Inspection
of this table reveals, as expectéd, that the second order interaction
differences are dominant, and are strongest in the effect qn the elements of
rows 1 and 2 and especially 5. This is consistent with the differences
observed in the matrices for 1980 and 1980/1975.

These calculations afford an opportunity to exemplify some of the
properties of IPF described in section 3. For example, a comparison of Tables
21 and 23 shows that the 1975 second order interactions are preserved exactly
(except for roundoff errors) by IPF. A comparison of Tables 22 and 23 -shows
that the 1980/1975 first- order interactions are slightly different. However,
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the main result of section 3.3.3 implies that the 1980/1975 first-order
interactions are cocmpletely independent of the first-order interactions of the
1975 (core) matrix. To illustrate this result by example, a matrix (Table 25)
was constructed, having setond order interactions exactly equal to those shown
in Table 21 for the 1975 matrix, but with first-order and zero-order
interactions equal to zero. When the matrix shown in Table 25 was fit to the
1980 margins, the outcome was, as predicted, exactly equal to the 1980/1975
matrix.
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.. TABLE 25.

CORE OF AGE-SEX DISTRIBUTIONS CORRESPONDING TO 1975 TABLE
SECOND ORDER INTERACTIONS ONLY

_SEX_

_AGE_ MALE FEMALE
0-24 .9912561 1.0088210
25-34 .9689596 1.0320347
35-44 .9737024 1.0270076
45-54 .9919039 1.0081621
55+ 1.0779846 1.9276570
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APPENDIX A
FURTHER DETAILS ON APPLICATION OF LOG LINEAR MODELS TO CONTINUOUS DATA

The first question to be addressed in this Appendix is the effect of the
classical (descrete) technique for estimating log linear models in the
continuous case. Let Vjjx be the VMT for cell ijk (summed over all
observations or records in the cell). Let Xjji be the model estimate (say of
E (Vijk)) for the cell.

The process of IPF applied to particular margins of Vijk is the classical
method of fitting log linear models to Vjjk. This process has two properties.

1. It maximizes

12 Vijk 108 (Xqgp/Vyq)

Jk

(see Bishop et al Reference 1, p. 65.)

2. It makes the selected margins of Xj 4 identical to those of Vijke

These two properties imply that the process minimizes
%:k Vigie Fge/Vige = 1080 (Rygp/Vy510)
(The latter quantity is related to the Poisson likelihood.)

This quantity may be reexpressed:

FD = %c Visk 8 Ciq/Viged
where

g (u) =u-1logg u
then

g' (u)

1 - 1u
and

g" (u) = 1/u
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It follows that F (X) is convex in the model parameters Xijke It is the sum
of terms each of which attains its minimum when Xjjk = Vijk.

The function g (u) is sketched in Figure 2. 'g (u) attains its minimum when -
u=1. The criterion of fit used by this process is thus very much like the sum
of the squares error criterion used in linear regression, having the following
similar properties:

1. The eriterion is a convex function of the model parameters.
2. It achieves its minimum when the model fits exactly.

The fact that the criterion is based on a sum of terms each dependent on only
one data point is also similar in the two cases. In the present case similar
to the case of least squares, each term is weighted by the magnitude of the
data element. This is obvious from the presence of the Vjji factor in the
present case. The fact that large deviations are weighted much more heavily
than small deviations is a familar property of least squares.

The chief difference is that g (u) goes to = when u approaches zero. This
prevents Xy from going to zero when Vj 4, is positive and it also prevents
negative values of xijk. These are necessary properties in the log linear
modelling case.

The conclusion is that the fit criterion is véry resaonable for general
applications of log linear modelling independent of whether it gives a maximum
likelihood estimate.

The second matter to be investigated in this Appendix is under what
circumstances an actual maximim likelihood estimate (of cell means) can be
obtained.

Let Vidg denote the cell sum of VMI. Thus

n

ijk = z: xr

r=l

v
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where X, denotes the ﬁeighted trip length of a given record in cell ijk. If n
is fairly large and is Poisson distributed and independent of the Xp's
(although both may be dependent on the choice of cell) then Vijk will be
approximately normally distributed. This will be assumed:

1. Vijk is normally distributed with mean ¥4 jx and variancecsﬁdk.

If the distribution of Vijk in each cell is characterized by two parameters
then a likelihood function based on one parameter per cell cannot be

constructed. In order to construct a likelihood function similar to the one
maximized by the standard log linear model procedure it will be assumed that

2
a ijk =¢ uijk’ i.e.,
2. The ratio of c?ijk and M4 ji does not depend on the cell (ijk).

On the assumption that Vijk is normally distributed the log likelihoed is
easily written down:

- - - 2,2 )
L 1/2 gkv(viik uijk) /o 14k + Constant

where the constant does not depend on the data or the distribution parameters.
On the assumption that Ozijk = Qlj 4 this becomes

L = - 1/(2a) AR LY
1§k 13k = iy’ MHigx

(dropping the constant as irrelevant to maximizing the likelihood).

The expression for -2aL is identical to the standard expression for the chi
square statistic with respect to the model Hijke If @ =1 as it does in the
case where Vijk represents cell counts with a Poisscon or multinomial
distribution then what has been derived is the identity of -2L and chi square
in the case of large samples. Since it is known that -2L has a chi square
distribution in the case of large samples whatever the underlying distribution,
it follows that the ordinary chi squﬁre statistic when divided by a will have
a chi square distribution in the more general case.
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Consequently if the number of observations in each cell is fairly large and if

2

O ik = e

then
2

1/a v -

7 gk Vg = Mg Mg
will have a chi square distribution and will serve as a statistical goodness
of fit measure for the model Iy jk.

Decisions regarding the appropriate degree of model complexity can be based on
the chi square statistic. The relevant number of degrees of freedom can be
calculated in the same manner as for standard discrete log linear models as
discussed in Section 3.2.3.

fhe final matter to be considered in this Appendix is the question of whether
the assumption that O%.jk is proportional to Hijk is a good one and, if it is
valid, how the constant of proportionality, @ can be estimated.

Let

n
\ = X
ijk 3;& T

Suppose that the Xn.'s are independent and identically distributed (within a
given cell ijk) and that n is Poisson distributed and independent of Xn
(although n and Xp both have distributions dependent on the cell ijk).

Let "ijk = E (vijk)

2 2 2
i = E (V) = (B(V4300)

n=E (n)
;i = E (n

2k ) -Ex))

2
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Then

o ’ n
BV, 50 EO P_(n) ?:-‘1 E(X )
= nzﬂo'Pr(n) “d*E(X_) = o M
2 = o n w &
E(Vijk) = 3;,0 Pr(“) E(rgl X sz=:1 xs)

=\ 2 2 2
= nZJO P (@) (a E(X) + (@"-n) (B(X))T)

o= 2 2
nd +n ux

LR

=]
[

- 2 - 2
Te + DU+ @)

(since n2 = n + (n)2 for a Poisson distribution)

Therefore

uijk = nux
and

2 - ,2 2. - .2
=n(0§+ux)=nE(xr)

%5k

Therefore

@ = cijk/uijk = “i/“x s E"‘i)'/g(xr)
For o to be constant across cells E(x2)/E(x) must be constant across cells.
This is unlikely. However, it may happen that the greatest source of cell
variance is the variance in n. In that case the assumption may not be too far
off. In any case an estimate for « as if it were constant over cells is
obtained as -

a= (2 TEINE TX)

cells 't cells T
where the summations are over all records in all cells. This quantity is

easily estimated before the rest of the log linear analysis takes place.

Clearly the assumption that Uijk = apjjk is not likely to be valid under many
-elrcumstances and so the validity of the chiﬂsquare values corrected by 1/ is
not determined by these considerations. It nevertheless appears to be
advisable to calculate these corrected chi square values in order to gain
experience concerning their usefulness in model selection.
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APPENDIX B
FEASIBLE AND INFEASIBLE MARGINAL CONDITIONS

As noted in Section 3.3.2 a requirement for the existence of a solution to any
of the three equivalent formulations of IPF (and hence for the existence of a
unique solution to all three) is the existence of a feasible solution to the
marginal and positivity conditions:

%14+ = Ry

Xprk = Sk

and

X >0

in the case of the usual example.

The margins are said to bé compatible if they agree along all common lower
order margins e.g. Ryj and Sk are compatible if R,, = S, (Ryj and Tjx would be
compatible if Rej = TJ+). It is a perhaps surprising fact that there are
compatible sets of (multi-dimensional) margins which are nevertheless
infeasible. As noted in Section 3.3.5 this leads to a particularly
intractable situation which cannot be dealt with satisfactorily using IPF.

The margins in this case are essentially inconsistent and the situation can be
referred to as essential infeasibility. As noted in Section 3.3.5, the
practical technique for detecting essential infeasibility recommended in

this report is to attempt to apply IPF and check for stable cycling with the
developent of zero cells in the matrix being computed (see Section 3.3.5 for
details). However, it is of some interest to note that at least in special
cases explicit conditions for essential infeasibility can be given.

Note that the marginal conditions always have some solution (assuming they are
compatible) and infeasibility arises only when any solution must have negative
elements (of the Xjji matrix).

Darroch (reference 5)considered the 2X2X2 case (three variables each with two
levels) and found that the following conditions are necessary and sufficient
for the existence of a positive solution. Suppose P,..1, Py, P.11, etc.
stand for specific positive margins of a positive matrix Pijk (1jk each have 2
levels) then:
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Piti= P1es = Piqs = Puyt + Pygq + Piyg + P11y >, O
Pe11 = P1e1 = P11 + P1ge > O

P141 = P11e = Pe11 + Py1y > O

P114 = P411 = P1e1 + Py > O

Pegk > O, Pigg > 0, Pije >0

are the conditions.

A set of three compatible all-positive two dimensional margins which do not
satisfy these conditions is easy to find. The following are an example:

Xigo = (1 3
2 1
Xk = 3 5
1 2.5
2.5

When a core matrix of all ones (it could be any positive core to illustrate
the point) 13 scaled to these margins, convergence does not take place and
instead stable cycling is observed. In addition, as expected from the
discussion in Section 3.3.5 zeros develop in the matrices produced while
attempting IPF. The matrices

"
7 N\
- N

(3no+1) (3n+2) (3n+3)

o o Rage 0 Rugxe
representing the three stages in a cycle are:

1.000 1.01199
1.04853  0.000
0.000 1.99801
0.95147  1.000
1.46447  0.500
1.53553 0.000
0.000 1.66332
1.000 0.83668
1.49046 0.50904 \
1.500 0.000
0.000. 1.000
1.36115 1.13885
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APPENDIX C
LISTING OF PROGRAMS .

The following program listingas are included in this report:

1. PRSCAL.FOR =~ for IPF . (Page C-2)
2. EM.FOR - for EM (Page C-9)
3. LOGLIN - for fitting log-linear models(Page C-16)

The first and last programs are well checked out but the program EM.FOR is
not.
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‘TIPE LN 0 1r TUU w58 OUTPUT TiEkD uN 'ty
READ(9,22) LleklTh

frilanplte Jtde 0) GO TU S
Lklfe 2 22

LRI TSy

UPENLUNLT3L2,0eVECE=*USK,p lLe=*Uitbut. DAL, ACCESS 2 "SEUQUE ) ——

CUNTAINUE

siTE{LTYPL,UHY)
PUMMAT(LA, “TYPE 1N L 1F TOU wiSH INPUT DATA TU B PRINTEDZ,/
1A, UTHENWESE TYPE (N D) .

KREAUCLMEAD, 22) LPHLINT .,

il LE(LTYPE,99Y) T :
EOKMAT(LR, “TePe I8 1 1 YOU widH CUMARG TU 8k PRINTEV®,/

s1X,°UTHernlSE Trbe LN 0°)
KEAD{IREAD,22) KPHLNT

INLTLALLLATIUN UF LEVCUR

by L0 1 = | P}-)
Leveun(i) = 1L
CUNTLNUE

INATIALLGATLUN UF CORRUM

vy 2V lllc
LU 30 v = 1,5
CUxkBUMLL,J) = 0
LUNlinve

C=2



2V wentTinue
UBTALN USeit INPUT

READ I NAME UP CUNE MATHLX ENUM The TTY

ceeae

wilTe(iTeFe,111)

111 PURMAT(SK, “Nane UF CURE SATRIX FlLE:*,5X,5)
REAUCIKEAU,11) CURelL

11 PUKRMAT(ALY)

" e eme—e ..

[}

uPh«gunnr:tuunul,uuvlcza’osn',tlLb:CURFlL,ACc&ssa'ssulu')

t: GET LNFUKMATLUN UN CURE MATHLX FRUM FLLE CURFIL

v READCIREADL,22) NDILM rem oo e e ai n
22 rNMAT(L012)

% he AUCLKEADL ,22) (LEVCONCL), 131,801M)

: IFCIFRINT oJEue 0) GO Tu 30 -

acife(iriTe,l112) nOIM
1111 FURMAT(LX, “NULN=",13,7/7)
sriTellklTe,2222) L, ,LeVCORCL ), 120, M01LN)
2222 CUNRATLLA, “NUMBER UF LLVELS PUKR DIMENSLON *,12,° = *,12)

[

50 COnTINUE

T e e e————— o ———

L
Cc HEAD IN CUKE MATHIX PRUM FILE COKFLL AND WRITE out oy TTY
¢
LECIFRINT otwe 0 GU TU 00 L
¢
ARLITELINRLTE,3333) R -
3343 CURMAT(//,20K, CURE MATRLIX®,?)
¢ —
ol LUNTLINUE
¢ - -
vl 1090 N9=1,LEVCUR(S)
LU 110 N421,LEVCUR(4) -
VU 120 N3=1,LEVCURLS)
VU 130 N2=1,LEVCURL2) L e
KLAD(IREADI,JJ)(CUKE(NI,“I,NJ,NQ,NS)
1 #N1=1,LEVCUKR(L))
3 PURMAATL(SY)
¢ .. Cem— e
letirniNT.LY.0)CU TO 130
< .
RLITE(LRLTE, 4444) (ML, N2,03,84,N5,
1 CUKE(NI(NZ(“J;N4,NQ)'
2 nl=l,LEVCUOR(L))
4444 FUKMATULA,D(012,F13.5,28))
130 CUNTLNUY
12¢ . CUNTINUE
110 CUNTLINYE
130 cuntTiiue
(4
c READ IN NAME UP MAKGLNAL MATHIX tHUM THE TTY A
(X

wRiTot LTI ,222)
222 PURMAT( /7,52, “NAKE 1F MAKGINAL MATKRICES FLILE:®,5A,3)

c-3



(e N X oA [ =8

<

0000

170

1717

[

200

(38 ¥ o

[ 2]

By8y

250

1

¢
330
J20
310
VY

.

HLAULLNEAL,LL) #arelo
u9c~(0n11=lv=Auz,uavlCaa'usa',FlLasnAk?IL,AccEasatséuln')
GEL LNPUKMATLON UN MARGINAL MATRICES FKUM FILE MAKEIL
KEAULENEADZ,22) aMARGL '
LFCLIPRINT okue 0) GO TU LSO

reLTECLNATE,9595) NMARS
EURMATLLA, “NUMBEN UF MAKGLNAL MATRICESS®,1J)

LUNT LNUE

LU 200 1=1,NMAKG
READLLREADL, 22) NAKDLEIM(L)

LFLLIPRINT EW.0) GU fU 170

aFLTe(LRLTE,00606) 1, MARDLNC(L)
FURMATLLA, “NUMBER UF UIMLNSLUNS UF MARGLINAL “12,° 3%,12)

CUNTINUE
KEAVLUIREADL, 22.) (CURRDMLL,J), 021, MARUINCL))
LeLIPREINT oEde 0) GO Tu 200

WRITECLRLTR, TT7T) (1,J,CURKUM(L,J),J=1,MARDINCL))
FURMAT( LR, "CURKDM®,1X,5(483,34,14,0X))

CONTINUE |

KEAD IN MARGLINALS PRUM FPLLE MARFIL AND wRITE OUUT ON THY
LFULPHINT otde 0) GU Tu 290

ARLTE(LRLTE, Sb0Y)
FORMAT(/7, 20K, *MARGLNALS, 7/ )

CunTiNueg

LY 300 Jz),NMANKG
VU 310 md4s1,LLvCUR{CURKLA(J,1))
UG 340 m331,LEVCURLCURRUNLY,3)) ..
V0 349 mM2zl,LEVCUR(CURRDMCY,2))
HEADLLREAD2, 33 ) (MARG(I, ML, H2,M3,n4),
M1:=1,LEVCURCCURKRUMLJI,L ) ) )

. me e e nee

IFCI¢RINTEu.0)5L TU 330

e LTE(INLTE, 4444) (J,ui, ni, 03,84,
H.NG‘J'RI‘HZ'NJ'“‘.)'
MLsl,LEVOCURCCURKUNLI,1)))
CUNTLINUE
CUNT L NUE
CUNTINUE
CUNT LNUE T

CUMPUTE MARULINALS FHUM CURE AND SCALE CUKE

C-4
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L L TiNue UNTLIL CUNVERLENLE Un AAXLMUM NUMBER Ur AINTEKRALLUND
L HAD> breN realtelUe. PACH LTERATLIUN LUUPS TriU ALL MANGINALS

000
oo
m
71

55555

400

(2} [ 3

[

(2]

L X% x ¥ 5}

140
430
420

wklleqlfYbe,000) . .
PURMATCZ/,2 A, LNl MARLMUM NUMHEKR UP LTERATLIONS?,94,5)
KLAULIREAU,00) MARLT

rUsMATLLY)

okiletlTebe,177)

PURMAT( /7,18, 28TRK EPSILY,98,9)

KREAD(IHEAD, 7)) LPSIL

PUNMAT(ELO.S)

wrlTetiriTe,995995) MAXLT,ePSIL . T T
PURMATULAL, /770" MARLTZ ,19,9K, “ePSIL3,e093T,74) .
1Teks0

LAUFLGSL

ATER=11ENRe]

LECLTER ohue 1) BNUFLG = 0

UlkMax = 0, .

nlule = G

Nibie =0

niuter = 0 T
navir =0 B

adbuger = ¢ Tttt/ T T
KAIMAX s 0, -

NMIRKAT = C

NZKRAT = 0 T

N3xAl <= 0

NAKAT = O T T
w5xAr =0 -

veLMAZ = 0.

nlutt =0 Tt

M2VEL =0

MIVEL s ©C ToToTommm T

wabeL =0 2 —

oL = O

YHUMAA = O, T T T
NlPRU = ¢ . )

H2envy = 0 Tttt
NiEND = 0 o

skl = 0

NSFRU = 9

UU 000 J=1,NMAKG

KELINITLALLLE CUMPUTED MARGLNAL MATHLIX

VU 419 tlst,s
VU 420 [231,9
by 490 t4s1,%
LU0 440 1L4=1,5
COmARGLI1,12,13,14)30,
CunT LNUe
CUNT L NUE
CUNTINVE

C~5



al¢

[

c.cCc

+50

e

160
47¢

[z 3 P >4

11111
475

93¢

~ -

520
a1v
500
490
440

«

sel

LUnl ivue
L1E(Maruin(y ) elwet)UT0 dol

SET UNUDLD DIMENSIUN INDLICES UF MAKGINALS TU |

UU 150 RaMaKUIM(J)I*L, 4

M(K)=1
LONTINUE ‘ -
FUSSIULY UNUSEY UIMENSIUN Ue CUke LNULCES fO )7 "= ~— ==
U0 470 Rrs4,> . T

LICO R :
cuat e T T e e

LUUP THKU ALL CUME VALUES ANV CUMPUTE MARGINAL VALUES TRUR CUNE

1P AKPHINT obue 0) 6O Tu 475 ot T

avife(lxlTe, illil) : e —
PUKRRAT(/7,204, °CUMARG,//)

CUNTINUE

DU 400 N9l ,LEVCUR(S)
N(D )3 NS
U0 4¥0 N4=2L,LEVCUR(4) _
8(q)=N49
VU 500 N3=1,LEVCURL))
N 3 )=
VO 910 N2=24,LEVCUR(2)
n(2)sn2
U0 520 N1al,LEVCURKL)
nil)anl
U0 530 Kal,MARDINGY)
MR )=N(CURKRUMES, ) )
CONTLNVE
CUMAKG(MCL ), 0(d),N{3),{T))
_-CUHARb(H(I)aHll)IN(a)oﬂ(4))0
COKELNL,H2,N83,09,85)
LF(KPRLINT.EW.0) GU Tu 520
akiteilnife, 4444)
n(l),N(2),08(3),804),
CUMARG(H 1), MC2),M¢3),8(9T)
CUNT INUE .
CUNTINUE
CUNTLINUE
LUNTINYE
CunTLNUL

- . . e ee e misa. e -

¢ SCALE CUKE Br GLVEN MAKGLNAL DIVIDED BY COMPUTZD MARGINAL
¢

LU 540 u521,LEVCURLS)

N(D)3Hd .
vl 599 N421,LEVCUKL4)

NC4)SN4

VU 500 N3=1,LSVCURLY)

B TRPETE]
VO 270 82=1,LEVCUKR(2)
N(e)=ne

C-6
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Uy Sel NLlsl,LrhvluRtl)
NLl)=N)
L) 990 Ral,uAakuingd)
MR )=NLCUKKUR(J, A ))
aut LunTiNvE

SFACTaMANG(J, ML), N(2),

1 HCI) M(4))/CUMARLE

2 M1}, 2(2),m(3),M(42))
CORVAL=CUNE(NL,N2,N3,N4,85)
CURNERSCURTAL®SFACT

DELF3IALS{CURNE w=LUKVAL)
LEPCULFVLELDLFMAX)IGD TU 592
LVIeMAXK=ULFY

[JUTTETTN

N2DLF N2

LRITTE T K]

NAULF N4

NOUIF=NY

292 LONTLNUE ,
RATLUSCUKNE W/ CURY AL
LF(RATIDLE.HATMAX)IUY TU Sva
KRATMAXIRATIU
NLKATaN]
N2AT=N2
N3IKATSND
NAKAT NG
NSHAT=NS

994 ConTLNug
LEQJNENMARG )Y TU 599

LE(LTEN.GTL 16U TU 595
CUNOLD(NL,N2;NJ,R4,N§):CUKHS-
wl TU 99y

[

299 CUNTLNVE
ulrF-Ahbtcuquu-cquLDtul.N2,N3,u4,ub))
LE(DIPF . LE.DELMAX)GU TU S9Y0
UBLMAXSDLE?Y
NlUELaN]
N2UELIN2
NIVELSHI
N4lEL3N4
NSUELS N9

Svo CUNTLNUE

KATIUSCURNER/CURULD(NL, N2,83,84,45)
LF(RATLIULE.PRUNMAK)IGU TU SYH
PRUMAR=RATIO

N1 PHU=K]

N2PRU=SN2

NIPHUSNS

N4PRU=NY

NOPRUSNS

SYa CUNTLNUE
lf(lUs(LUR“El'LU“ULD(“1,“2;“J'NQ(ND)J
1 elbetPSILIGY TU 597
LNDELGSD

Cc-7



Se? CUNT LNUE
CUHOLD‘ “1' NZ, NI FL.L P NS ,-'-CUR”hd

¢
99y LUNTLINUE
. CUKELNL,02,N3,84,89)3CURNER
EY-0) CUNTLNUE
N CUNTLNUE
200 CUnTENUE
554 INTT7S STTITY
540 CUNTINE
00V Cuntinve
1P battLueta 1 )GUTY 700 tHAVE ¥ 1NAL CUKE MATHIA
LPLllereLT.MARITIGU TU 400 IMAALMUN B UF LTERATLONS NUT REACHED
¢ "
C MARLINMUR wUMHER UF LTenATLUNS KEACHEU Ok METHUD CUNVENGLS
¢
M9 CUslLisUe T
¢
W Teke VUt FLINAL Cuke vALUGS
¢

i erile(iniTE,9411)
1411 PUNMATL2UX, “LOMPARISUN OF FLNAL MAKGLNALS®, .
L ° rur Twu CUNSECUTIVE LITERATIUNS®)
aNITE(LMITE,4422) LITER
4422 PURMATL/, 98, “NuMBEk UF LTERATIUNS=?,15)
nielTe(inlTe, 4433) UELMAX,NLDEL,N20RL, NIVEL,NADEL, NODEL
4439 PUKMAT(/,94, ABSULUTE VALUE UF MAX UBYLATIUN LS “,el5.7,
1 ° At pulnt “,513) )
ariTe{ 11 Te, 4459) PHUNAX, N1PRO, N2PNU, N3PRO,N4PRO, NSPRO
4455 CURMAT L/, 9K, “MaX HATLIO (S “etl9.7,° AT PUINT *+513)
c..llll
nelTE(D, 4411)
niltle(d,4422) LTER
nRiTE(5,4433) vELMAX,NLDEL,N2DEL,NIDLEL, NADLEL, HSDEL
wHLTE(D,4459) PRUMAK,NLPRO,N2PRO, NIPRU, #4PRO, NSPRO

geassana

aRl1Te(ixtTe,4400)

4400 PURMATLZ77,208, °COMPARLSUN UF TwU CUNSECUTLYE MARGLINALS®)
arlTECLIRLITE,24933) ULEMAK,RLDLF ,N201F,N30LFP ,NADLF, H50LF
wATE(ANLTE,3499) KATMAK, NLRAT,N2RAT, NIRAT, NARAT, NORAT

c.l.l'l

riLTE(9,4400) .

wrilEtld,4433) ULIEMAX,NLIVLF,N2DLIP,NIVLE,H4DLF,NSDLF

wRITE(2,4495) KALMAK NLRAT,N2RAT,NIKAT, HQARAT, NDRAT
c.lllll
¢

amiTe(IrLITE,94TT)
4471 tURMAT (LRl 777)
C

VU 710 N33),LEYCURLY )

VU 720 M4=1,LEVCURLA)
VO 730 N321l,LEVCURLI)
YU T40 82:1,LEVCUKL2)
WHATECLRATE, 3444) (N2, N2,N3,04,H85,

1 LUREBANL,N2,N3,04,NY9),
2 Nlal,LEVCORCLD)
110 CUNTLNVE
730 CUNT LU e
120 CUNTINUE
0 TCONTLNYE

CALL BEgHT

c-8



¥iUiEAM EW
prUS FAN ‘“.FUP EDLTED QCTU®ER 7, 1482
PRUGK A TO QU ITEPATIYE 4FE1GHTED SCALING.
The ¢ROGRAM RTADS FPROY A FILE A_CORE MATRIX WITH THF PﬂXlPUH NUMBER OF
5 CIPZKSIUNG AND A WAXIMUM MUMBER CF S LEVELS PCR DINFNSION.
MARGLNAL MATRICES CF LESSFR_DIMENSIONS THAN THE CORF ARFE
KEAD FEOM A4 SECNND FILE, AND THE FORE IS ITTRATIVELY SCALED 10
A WEIGHTED COMO INATION OF _TWE_MARGIHALS.
THE PIUGRAM DOES NOT CHECK THAT THE MARGINALS ARE CONSISTENT.
ARE CUNSISTENT.. _. _ . e -

aacoacacaca

1NTEGER CORFOM(10,5),ENDFLG _

DIMZNS10N CNRE(S5,9,5,5,5),LE VPOR(Uls);FlFDlF(IO)
GI¥TNSION N(5),"(4):CUMSRG(<,S,S,S),HPIGH?IOIIC)

RZAL MARG(1%,5,%,9,5)

UDIMENSION TMPCOR(S,5,.5,5,5)CNRNEN(S,5,5,5,5) . . . -
DOUALE PRECISION fUPFILIMlRFIL'UUTFTL .

CATA LEVCOR(O)/1/7 . . -
1READ
IREADLL
IPLAD2

T e e . ® E—— e e —— ————— e ¢ me— . . -

wnan
Nas N

r S
!
]
[}
|
l

1TYPE
1PITE
c — “ -
WRITE(ITYPE,32332) . '
22272 EORMAT(1X, TYPE_IM. L IF_YOU WISH_QUTPUT 10 BE PRINTED_®, _ . __
“ON A FILE®,/,L1X,
CTYPE [N O IF_YOU WYSH _QUTPUT_ TYPED ONW TTY’) . _
AEAD(5,22) TWRITE
22 FORMATCLITD) .

e,

[ ¢
N

(¥

1 e

IF(IaRITE. . FQ..N)_GO_10_5
1RITE = 22
h?lTE(llYPE:l!44) - ewman
144 FUFMAT(2X,°“TYPE NANF OF OUTPUT FILE',SX:S)
FEAD(LIRZAD, 11S5) NUTFIL
118§ FChAT(A19)
C

UPEV(UHIT=2?,DEVICE”’DSK':FILE=OUTFIL'lCCESS:'SEQUUT Y

) CURTINUR
wRITECITYPE,008)
bRA FORMAT(1X, “TYPE, lW_L_J}_xQD_leH_IHPUT.DATI TO BE PRINTED®,/
1 ,1X,°0THERWISE TYPE IN 7
FERJCIREAD,22) IPRINT
WRITE(ITYPE,999)
999 FOP"&T(IX:'TYP‘ IN 1 IF YOU WISH CO“APG TO RE PRINTED",/
1 ,l&, OTHERAISE TYPE IN 0°)
FEADCIREAD, 22) XPOINT _

C
c INITIALIZATION QF LEVCCE
c
cntin 1 =1,8
LEYCOR(T) = 1

1¢ cunrinug .
c .
c INITIALEZATION OF CORPC™
(¥

Cc-9



ACGAOGN

X2 Xz} (2]

a aoa0ca o

ann (]

4
pas

191
11

1111
2222

54

1333

A0

13

14¢

D) 20 1 = 1,10
o1 3¢ J = 1,S ‘
CPRRDM(T,J) = 0
CNNTINUF  ___ .
CONTINGE

NBTAIN USER iNPUT
READ IN NAMF OF CORE WATRTX EPOM TiiE $7V

~2ITE(LTYPE,LLL)

FORMAT(5X, *NAME _OF _CORE MATPIX FILE:*,5X,$)
hSADCIREAD,i1) COSFIL :
POR4AT(ALD)

OPLY(UNIT=IREAD],PEVICE="DSK", FILE2CQRFIL, ACCESS= "SEQIN *)
G°T INFURMATION ON CURE_MATRIX FROM FILT CURFIL

READ(IREAD1,1122) NDIM,WEIGHT(O0) _
FOKMAT(I2,F10.3)

hSAD( IREADL,22) (LEVCOR(I), 1=1,HDIN)
IF(IPRINT .EQ, Ay gd'FOSO ~~ -~ ~—~— - -

FCrVAT(IX' nglu ,IJ¢3X¢'HEIGHT§ )=°¢E15.7,47)
wRITE(IRITE,2222) (1,LEVCORCI),I=1,RDIN)
$GRMAT(1X, *NUMBER OF LEVELS FOR DIMENSION °,12,° = °,12)

CUNTINUE

e ot et 0 ¢ s e e et bt s mm . ea e ciw -

READ 1IN conr*ynrarx FROM FILE CORFIL AND_WRITE_OUT ON TTY _
IFCIPRINT .EQ. 1) GO_T0 69

ARITE(1RLITE,3333) RTITiL E6FF RiFBIRT7Y)
FCRUAT(LH1,/7,16X, *INTTTAL CGRE HATPIX",7)

ConTInnE
READ [ CNRE VATRYX AHO INITIALIZE COPHER
vo 100 ¥5=i,LEVEARTE)
D0 110 Y4=1,LEYCOR(4)
00 120 43=1,LEVCOR()
READ IN CORT MATRIX
DN 130 N2=1,LEVCAP(F)
RFAD(TREADL, 32)(CORE(N1, N2, N3, N4, RS)
M121,LEVCOP(1))
e FDBMATLSE)
INITIALTZE COPNEW
0N 140_%41=],LEVCUR(L) .
CORMEW(N1,H2,43,N4,5)=COPE (K1, H2,N3,N4,NS)

CONTINUF
IF(JPRPINT.ER.D)GD TO 130

APITE(ISITE, 4444) (N1, N2,M3,u4,45,
CORF(%1,K2,M3,84,4%),

C-10



~2

u1=1,LEYCOR(1))

1444 ' FORMATC(1X,5(512,F123.5,2X))
130 CORTIYUE
179 CONTINUF, ___ . .
1e CONTINUE
162 CONTINUE [
c
C ETAD IN NAMT OF NARGINAL MATRIX FFUM THE TTY
c
WRITECITYPE,222). _ o .
22  FOFMAT(//,S5X, “NOBME OF MPRGINAL MATRICRES FILE:*,S5X,S)
READ(IREAD,11) MAREIL._ _ . _ .
c )
OPEH(UNIT=IREAD2,DEVICE="DSK",FILESVARFIL, ACCESS=*SEQIN®)
c
¢ ET IMFORMATION ON..MARGINAL_MATRICES FROM FILE MARFIL
[
READ(IREAD2,22) NMARG___ .
c )
IFCIPRINT .FQ. 7)_GO_TO 150 _ . .
¢

WRITE(IPITE,5555)_NH
S35  FCRMAT(LH1,//,1X, "NUHBE®D DF MARGINAL MATRICES=,13,7)

C . e =
150  COnTIvUE
c C o e ——— e eee e
0D 279 1=1,HMIRE
READCIREAR2,1122) MARDIMCI),WEIGHT(]) .
c
IF(TPRINT _.EQ.0) GO 10 170
C
ARITECIRITE,6666) 1.MARDIN(CI),I,HEIGHT(T)
6660 FORMAT(1X, “NUMBFR OF DIMENSIONS OF MARGINAL °12,° =°,12
1 1N HEIGHTL 2 12,°)2,F15.7)
c
17¢ CONTINUE  _ -
c .
REID(IRE!D2;221 (CORADE(I,J),J=1,NARDIN(]))
c
IF(IPRINT «EQ.. Ol_Gﬂ_In_ZQQ______
c

ARITECIRITE,T7777) (1.J,CORRDM(I,J),J=1,MARDINC(L))
11177 FORVAT(IX"CORRDH':IX:5(213¢3X:IZ:GX))

G o000 o

0 conriwve T
KEAD IN MARGINALS FROM FILE WARFIL AND WRITFE OUT ON TTY
IF(IPRINT .EQ. 9) GO TaO 250
W 1TE (IRITE,8ABR) -
89 FURMAT(//,20K, MARGINALS L) _.°
z 350 cONTINUS -

b@ 399 J=1,NMARG
00 210 w4=1,LEVFOR(CORRDONCJI,4))
-3 D0.320 4321,LEVCOR(COPRDOM(JI,3))
09 330 ¥2=1,LEVCOR(CCRRDM(J,2))
READ(TREADZ,37)(MARG(J, M1, 02,43, H4),
1 M121,LEVCOR (CORRDM(J,1)))

C-11



amaao

anaan

anca 0

IF(IPRINT.EQ.")RC TO 33N

o A WPITECIRITE,4444) (J,M1,M2,M3,M4,
1 MARG(J,¥1,02,M3,N4), '
‘ N . M1=1,LEVCOR(CORRD¥(J,1)))
I CONTINUE
320 CONT YU
31 cCouTINUF

se CONTINUS

COUBPUTE MARGINALS FPOW CORE AND SCALE CORE
COMTINUE UNTIL CONVERGENCF PR MAXIMUM KUMRER OF INTERATIONS
Hs5 BEEN REACHED. EACH ITERATION LOOPS THRU ALL NARGINALS

WPIPE(LTYPE,666) . —
066 FCa:Ar(//,lx,'snrvn FAXTHUM NUNPER OF ITERATINNS®,SX,S$)
FZADCIFEAD,66) VAXIT _
S6  EOAYAT(IS)
WPITE(LTYPE,T777)
777 #CRMAT(//,1X,"ENTER EPSTL®,5X,8)
*ZAD(LREAD,77) TPSIL
7T FORMAT(FL0.3)

55995 FCRMRT(IHI,II' MAXTT=" ,15,§}175951L=’1515.7,Il)

ITER=
"o EIDFLG=1
ITER=[TER*]

cemer  mmesamm e - .

REINITLALTZE TEMPORIRY CORE MATRIX
00 41) 11=1,5
DY 112 12=1,5 _ __ . __ _ .
0O 414 13=1,5
00 415 14<1,5
on 418 15=1,5
o= THROARCI1L 2,13, 14, 15)=0.

413 CONTINUF
416 CONTINUE —
414 CONTINUE
412 CUNTINUE o
419 CONTINUS

DC 50) J=1,FHARG

RZINITIALIZS CUMPUTED MARGIRAL MATRIX
00 $2v I1=1,5
09 438 12=1,5 —
on 440 13<1,5
0N 445 [4=1,5 .
CONARG(T1,02,13,14)20.

445 CONTINUE
440 COKTINUE
430 CINTINUE

479 CANTINUR
LF(VARD14(J).FC.4)GNTIN 469

c-12



[z2xKz]

SET UNGSED DIMENSTON TufICES NF MAPSLHALS 10 1

DN 157 K=VARDTM(J)*1,4
M(X)=1
450 CGUTINUE

C
c SFT FCSSIRLY UNUSED DIMFNSION CF COPE INDICES 10 1
c
460 0O 377 K=3,S__ . __.
8(K)=1
470 cCouriNus e e o .
c .
c LOOP THRU ALL CORE VALUES _AND COMPUTE MARGINAL VALUES FROM COPE
c
1F(KPRINT .%Q._0)_G0_10_475 —ee
C
WRITE(IRITE,11111) _
11111 FORMAT(// ,20X,°COMARG®,//) ™
¢ S
79 CUONTINUE
c e
U0 1HY NS=1,LEVCOR(S)
d(S)=U§, e ot
DI 490 H4=i,LEVCORCA) ~
N(4)=N4_ —
00 S00. WJ=1,LEVCOR(3)
——HL3)=H3 -
DN S10 H2=1,LEVCOR(2)
-NC2)=N2__ e e— =
DO 529 “T=1,LEVCOR(1)
- ~-NE1)NL_ e e
DD 530 K=1,MARDTN(J)
e M{K)sH(CORRDM I, X)) i tn o e
S3¢ CONTINUE

Sa———s LY LI OIS P PLI eI P63 PLIC D D DO

sCOMARG(NM(1),M(2),P(3),P(4))+
. GORMEW(N1,N2,N3,84,NS)_ ..
IF(XPRINT.EQ.0) GO 10 5320

N -

r emssommeeee e WELTEL LRI TE £ 44444 ) - .

1 M(1),H(2),0(3),M(4),
< . .. COMIRG(M(1),M(2).M(3),N(4))
44444 rouvuux.5(4t2,51s.1.2x))
520 LCONTINGS . .
51y CANTINUE
510 CANTINUE ——
470 CUNTINUF

480 CONTINVUE e
(o4
C  SCALE CURZ BY GIVEN MARGINAL DIVIDED RY COFPUTED MARGINAL
c
00 34) N5=1,LEVCOR(S)
t(s)=v5
VN 550 H4=1,LFVCOR(4A)
NC4)I=N4
DD %69 M3=1,LEVNCR(I)
H(3)s=%3
00 S7M N2=1,LEVCOP(2)
H(2)=m2
DO 589 ®1=21,LFVCOR(1)
ti(l=81

C-13



X2 X 2] oo

DO =GN ¥=1,VAPDIN(J)
M(K)=N(CURKDN(J,K))

27 CONTINUF
. . . SFACT=MARG(J,M(1),M(2), P("l”(4))/
1 COMERG(M(L),N(2),%(2),K(4))
R ~ . TMPCOR(M1,N2,H3,N4,N5)=

1 . TMECOR(¥1,R2,HI N4, NS) +

2 HEIGﬂT(J)'SFACT'COR"EH("1,“2,"3;"4'NS)
G5R¢ CONTINUE
570 . GONTINUR e e L
36¢ CONTINUE
559 CONTINUE

540 CUNTINUE ) o L.

699 COnTINVE

UIFHAX = O,

D0 449 N3=i,LEVCOR(5)
N(S)sMS L
00 650 N4=i,LcvéoRid)
_N(4)z2N4
D0 560 4Y3=1,LRVCCPR(3)
Mn$3 =N3 _ = i e 5 @k et e em o o e m e
14 W2=1,LEVCER(3)
LNC2)=942
00 saolnlsi,nsvcﬁ‘?i)
SN | ¢ 9 12} W - .
CORVAL=WETGHT(0)*CORE(NI,N2,N3,N4,H5)+
_TMECOR(NL,N2,H3,H4,RS) __ __ L
DIFF=ABS(CCRHEW(Ni, H2,N3, 14, 5)-cunvnn)
lsguxvr.ngiolrunxz G0 10 675 _ o

-

DIk MAX
o 180Xl = X1 e —_—
1XDX2 = N2
- -—.JNOX3 = H3 —
INDX4 = N4
..INOXS = NS_ ___ .
675 . CONTINUE e et e — .
IF(DIFF.LE.EPSIL) GO 1G 678
e e —ENDFLG = 0 IR
074 eee o .um. CGONTINUE _ __ e s e s -
CORNEU(NI,N2,H3, N4, N5 )=CORVAL
88C . CONTINUE e
674 CONTIHUE
6R0 CONTINUE . . )
650 CONTINUF
€40  CONTINUE i
IF(TEDFLG.£G.1)GUTQ 700 1HAVE_FINAL_CORE MATRIX
IFCITER.LT.*AXITICO TO 409 TMAXINUM f# CF ITERATICNS NOT nsacnso

MAXIMUM NUMIER CF ITERATIONS REACHED OR METHOD FGNVFRGES
710 CRNTINUE

TYPE UUT FINAL COPE VALDES
ARITECIRITE,4422) ITe9,0iFMiX, 1NUXL, INOX2, INDX3, INDX4, INDXS

Cc-14



742
139
72

e

[N R

FCrMAT(3X, *MUMRER OF ITTRATIONS=",I1S5,
9X,°MAX DEVIATION *,E15.7,2X, GCCURS AT POINT (7,
4€12,°,%), 152, 7) ,II,l‘X,’FlNAL CORE unrn:x',/)
0N 710 w5=1,LEVCUR(S)
0N 720 M4=1,LEVCGR(4)_ ___
00 730 n3=1,LEVCOR(3)
..bD 740 N2=1,LEVCOR(2)
WRITE(IRPITE, 4444) (N1,N2,H3,H4,N5,

e mmeem s e e CORNEW(HL, N2,03,H4,H5),
© N1=1,LEVCOR(1))
e memem— o CONTINUE .
"CONTINUF

CONTINVE ___ _ . ... R
CONTINUE
CILL EXIT e e
END ‘




c

Lx] [x] [x Xz Kx]

(2] [x] (2] anaaaaaanacacdc

il

11 -

222
2L

1
1

1

PFUSEAM LOGLIN
FRUGEAM LOGLIN o STUPED AN FILE LOGLIN.FOR
CREATED AWGNST 16, 1992 REVISFD AUGUST 25, 19862

FAUSEAM TO INPUT CORE MATRIX AND CREATE DESIRED MARGINALS (MARGEN)
USLNG THESE MARRIYALS TO DBTAIN NFW COR® MATRIX (PRSCAL)
D3TAIN STATISTICS CNMPARING OLC AND HEW CORF MATRICES (CHISQR)

MARGINAL INFORMATTION IS READ FROM A FILE DESIGNATED 8Y THE USER
THE 4&IN PROGRAM_PENDS IN_THE_FIEST CORE MATRIX

THIS MAIRIX HAS A MAXIMUM QF 5 DIMEHSTICNS AND A MAXINUM HUKPER
0f 5 LEVELS PER EACH DIVENSION

LITEGER CORFDM  _ .

ESAL MARG

DCYSLE PRFCISION CORFIL,CORINI,INNARG,OUTFIL

CCvYON /CORES1/ CORFST(S,5,5,5,5)
CUMMON /CORFS2/ CORNEN(S,5,5,5,5)
COMMON /MARGIN/ NDIM,LEVCOR(0/S),NMARG, PARDTF(10),CORRDM(10,5),
MERG(10,5,5,5,5)

conwug/luour/ 1READ, IREAD1, IREAD2, IREAD3, ITYPE, IRITE, IRITFL,
IRITC

COMMON /PRINT/ IPRINT,KPRINT _
COMHOH/ ISCALE/ SCALE

DATA LEVCOR(0Y71/

IPEAL = 8§

IREADL = 29 e e e+ i e -

15402 = 21

CIREADS = 22 - — e e -
1TYPE = S - . — -

IRITE = 5. . o e e .

IRITEL = 24

IRITE2 =_25 . e -
LWRITECITYPE,111) e e =

FORVAT(1X, “TYPE N 1 Tf ¥0U wiSH OUTPUT IO RE PRINTED °*,
‘O A FILE®,/,1X, _—
STYPE IM N IF YOU WiSH CUTPUT TVYPED ON TTV®)
READ(IREAD,11) TWRJTE
FORMAT(LOT2)

IFCIWRITE JEGe 9) GD T0 S

131TE = 23
SRITECITYPE,22Z)
. FORMAT(LX, “TYPE_NAME_NF_OUIPUT FILE®.SX¢S) _ _ _
FEADCIREAD,22) DUTFTL

FCRUAT(ALN)

UPEY OUTPUT FILF OQUTFIL

OPENCUNIT=IRITE ,URVICES "DSK®,FILESUUTFIL,ACCESS="SEQGUT *)

CONTINUS

C-16



anan aMOa0oan “aan aon

GO0

anaa

WAlITF(ITYPE,33D)
313 FCRv"AT(LA,"TYPE I 1 IF YOU WwTISH INTUT DATA TO PE PRINTED®,/
1 X, DTUHERW ISE TYPE IN ~°)
READCIREAD, 11) TPRPINT_ , .. . ..

INITLALIZF- PARGTHAL MATFIX MAPG

ana

00 ) 15= 1,5 . -
00 711 14 = 1,5 "
00 720 13 .=_1,5_____ .
on 730 12 = 1,5
.00._740_ 11 = 1,12

H!RG(II,IZ,IJ,[4,IS)
740 .. CONTINUF __
730 CONTINUE
? ... CONTINUE .
1¢ CONTINUF

me CONTINUE

INITIALIZATION OF LEVCCR___ __

LG tv I = 1,5
- LEVCOR(I) =
10 CaNrlnve

IHITIAL IZATION OF _CORRDM

D) 29 I = 1,10
00 0 J = 1,5
. .—.CORRLU¥M(I,J) = 0

pL CONTINUE
20 CONTINUG e evan s ———
COTALM MSER _INPUT .
READ IN SCALING FACTOR. 10 KAKE OUTPUT MORE REIQABLE
WRITECITYPE,TTT)

1 FORAAT(1X, *NTER SCALING FACTOR IN F FOPMAT®)
FEAD(IREAD,44) . SCALS ..
44 FCRMAT(F)

hZAD IN NAMF OF MARGIWAL THFORMATION FILE
wRITE(ITYPE,444) T

444 FOWMAT(1X, *TYPE_NAME_OF_MARGANAL. TNFORMATION FILE®,5X,$)
FEADCIPEAD,22) TNMARG

FSA) IN NUME OF FTRST CORE MATRIX FILE FROM THE TTV

aRITC(ITYPE,SSS)
SFS FONW&I(IX:'TYPE_&&FE OF FIRST_CORF YATRIX FILE®,5X,$)
FEADCIREAD, ?2) CORFRIL

HFAD TN NAMT OF FILS THAT INITIALIZFS THE CCRR MATRIX
FNR SUBANUTINE FRSCAL

WRITS(ITYPE,656). | .
(113 FOFAT(1X,"TYPE FTLE NAME FCR INITIAL CORS MATRTIX FOR PRSCAL’,
1 $%,5) .
$3AD(IPFAD, 22) COPINI

C-17



[ I 2} [ ¢} acn ana

111i
2222

|

[z B aaa o

3313

[x]

60

(2]

4444
13¢

G a0 0o O

8555

(2}

100

[xX2Xx} [rXxX2] noa

T DU 100 [=1,KMARC.

UPEN ARG INAL INENHWATION FILE INMARG
OPEUCUNTIT=IPFADL1,DEVICE="SCTA,FILESINNARG, ACCESS="SECIN®)
GET COKE THFOPMATION FROP FILE INMARG

READCIREADL,11) UDIV . .

KEAD(IREADL,11) (LEVCOR(L),I=1,RDIN)

IFCIPRINT .EQ. N) GO TO 50

WPITECIRITE,1111) NDIM

FURMAT(LX,°NDIN=", 131,1’
ARITECIRITE,2222)_(1,LEVCOR(L), T=1,NDIN)

FOKYAT(LX, *NUMBER OF LEVELS FCR DIMENSION °*,12,° = °,I2)
CONT INVE o ]

GZT INFURVATION UV MARGINAL MATRICES FRON FILE INMARG

READCIREAD L, 117 Kiare

IF(TIPRINTY .FQ. 0) GO T4 63
WPITECIRITE,3333) ¥NAAG. ~ "~~~
FChMAT(1X, *NUMRER_OF MARGINAL VATRICES=",13)

CarrINvE

REMCIRFADL,i1) WARDIAC(T)

[F(TPPINT .£Q.0) GO Tn 130
4R1TE(IRITE,4434) I, PARDIN(T)
FORMAT(1X, “NUMBER OF DIMENSTONS OF MARGINAL °12,° =°,12)

CONTINUE . S
REaﬂ(lREAﬁltlllujCDRBDH(I,J),JSI,NARDIE(I))

IF(IPRINT .£Q. Q) GN TO_100 _ _

ARITECIFLITEL5555) (1o, CORRDM(I,J),J21,MARDINCI))
runvar(lx,'cnnnnv',1x,5(213,3x,12,ex))

courinue
CLOSE FILE INMAPG
CLUSE(UNIT=TREADLY T

OPEN FIRST CORE MATRIX FILE CORFIL
UPLN(UNIT=LIPSAD2,DEVICE=*SCIA“, FILE=CNRFIL, ACCESS3*SEQLIN®)
PEAD IN FIRST CORE WATRIX FROV FILE cnpFIL

LE(IP2LUT SR, €) GN TO 160

c-18
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€ O o [xXx X x] O OO0 [x] aaOa aO0a0

wallS(IFITE,6666)
50hb £0 1&!(1&1,////////;2“X:”IPST CORE MATPIX - HOT SCALED",/)
¢ e

1h0 CUNTLNUE

UC 299 15=1,LFVCUR(")
U3 210 N4=1,LFVCOR(L). .. _ .. _
00 229 ¥3=1,LEVCOR(3)
~.00_238 N2=1,LENCOR(2)_
. R'an(IRFAD2:31)(CU&’ST(NI,N2 N3,N4,NS)
1 #M121,L°VC0R(1))
33 FCRUAT (5F) .

IFC(TPRINT.EQ.0)R0 19 230

hFlTE(l"lTE,7777) (N1,82,N3,84,N5,
1 . CDRFST(41,N2,H3,N4,45),
2 N1=1,LEYCOR(1))
v en e o EORMAT(UX,5(S12,F15.0,1X)) _ __
230 CONTINUE

220 CONTIVUE e e e e e

a1e CINTINVE
<00 CCHTINUE

SPECIAL OUTPUT
CALL JUTPUT(1)

CLUSE FILE CORFIL __
CLUSE(UNIT=IREAD2)
CALL MARGEN . —_ -—

UPEN INITIAL_COPE MATRIX_EJLE CORINT ____ ___ _ _ . ... .. . _._
UPEN(UKIT=IREAD3,PEVICE="SCIA*,FILEZCORINT,ACCESS="SEQIN") _
CALL PRSCAL

CLUSE FILE CORINI

CLUSE(UHIT=TREADI)

CALL CHISQR _ . : —— e
CLOSE UUTPUT FILE
CLGSE(UNIT=IRITE)

Stue
END

Cc-19



SO0 a 2 X2 Xz K x] (5] (2] 2Rz X K X a X Xz Kx]

[z X2 X1z}

[z Xz Xz

COPPUTE MARGINALS FRQM CORE_MATRIX

150

SHUIIYTINT VARGFY
¥AECLY G NECATOP SUPRNUTINE STIPED NN FILE MARGN.FOP
LR”&T‘D AUGUST 16, 1982 __. . _ RFVISED AUGUST 16, 1982
THIS SUIRTUTINE USES A GIVEM CCRE MATRIX TO CALCULATE DESIRED MARGINALS

ocF INTTION AF VARIABLES
_(TO BF_FILLED IN)

INTEGER COREDM_... .

REAL MARG e

DIMENSION N(S),M(A) .. __ _
DIMENSION TMPMAR(10,5,5,5,5)

comvoN /CNRES1/ CIRE(5,5,5,5,%)

CUM“ON /MARCINZ _NODIM,LEVCOR(O/5),NMARG, "ARDIV(10),CORPDM(10,5),
MAG(12,5,5,5,5)

CLM%D;IINOUTI IREAD.IREAD1,.IREAD2, IREAD3, ITYPF,IRITE, IRITEL,
12112

COM40N /PRINTL_IPOINT.KPRINT _

COx4ON/ISCALE/ SCALE

00 50 J=1,MMARG _—
lF(HARDIM(J).EQ;A)GDTQ_AQQ_--_

SET UNUSED PI“ENSTO".INQICESNDF MARGINALS 10 1
PO 450 KaMAEDIMCJ)el 4

M(K)=1
CONTINUS . -

STT PCSSIBLY UNUSED DINENSION CF.CORE INDICES 10 1

149

470

00 479 x=7,8,
N(K)=1
CONTINUE

LOUP THPU ALL CCRE VALUFS AND_CNMPUTE MARGINAL VALUES FROM CORE

310

[N

0N 480 NS=LLEVCOR(SY . .
H(S)=N5
L0 499 N4q=1,LEVCGCR(4)
N(4)=Ng
DD %00 N3=1,LEVCCR(3)
N(3)=H3
.DN S10_M2=1,LEVCOR(2)
N(2)=N2
DO 529 41=1,LEVCOR(1)
n(l)sNl
LD 30 F=1,MARDIMC(J)
M{K)=N(CORRDM(J,K))
——. CONTINUE _._
MARC(I, ML), M(2),4(3),¥r(4))
=SMAFGLI, N (L), M(2),H(3),M(4))+
COFC(ML, N2,M3,84,45)

Cc-20
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52¢
510
300
490
4PC

500

L1

3qe

1777
are
30
e

990y
Nu

NS -

CONntidivF
CONTINUE _
CONTINUE
_ CUNTINUE
CONTINUE

CONTINUEZ

wRITECIRITE,B8RBR) SCALE
FCRMATCLH1,/7/,20X, "MARGIHALS = _SCALED BY FACTOR °,E15.7,///11)

00 3929 J=1,NMAFC
D0 310 »4=1,LEVEGP(CORRDM(J,4)) -
DO 320 v3= 1:L°VCOR(COR“DH(J"’)
DO 339 M2=1,LEVCOR(CORRDM (J,2))

e DO 340 M1=z)1,LEVCOR(CORRDMN(J,1))
T"P"‘P(J' ”ll "2, l‘3r"4)«'—‘
MARG(J,M1,H2,M3,M9)

CONTINVE
UWRITECIRITE,TTTTY (J,M1,02, "3' M4,
TMPMAR(J,M1,02,M3,H4),
I M1=1,LEVCOR(CORRD¥(J,1)))
FORMAT(1X,5(512,F15.0,1X))

ioerim o iy . CONTINUE
CONTINGF
CONTINUE __° 55555 ~—
49 1TECIRITE,59939)
FORMAT ()
CONTINUE
PETYPY
ENDL
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SJHRUUTINE PRSCAL

”»

SUBROUTINE PRSCAL STORED ON FILE PROSCL.FOR
. .SUEROUTINE TO DU ITERATIVE PROPORTIONAL SCALING. (IPE_NMETHOD)
REAUS FROM A FILE AN INITIAL CORE MATRIX WITH THE MAXINUM NUMBER OF
DIMENSIONS 5 AND A MAXIMHUM NUMBER OF S LEVELS PER DIMENSIOH.
MARGINAL MATRICES OF LESSSR DIMENSIONS THAN THE CORE_IRE e e e
ODTATHED #R0OM SUBROUTINE MARGEN, AND THE CORE IS ITERATIVELY SCALED T0
THE MARGINALS. THE PROGPAM DOES NOT CHECK THAT THE MARGINALS
. ARE_COHSISTFENT. g

DEFINITION OF VARIAALES
(T0 BE FILLED IN)

INTEGER ENOFLG

DIMENSTUN COROLD(S,5,5,5,8)
D IMEYSIUN CORTMP(5,5,5,5,5)
DIMSNSION COMARG(S,5,5,5)
DINENSTUN N(5),N(4)

INTZGER CORKOM
REAL MARG

COoMMON /CORES2/ CORE(S,5,5,5,5)

CUMMON /MARGIN/ noxv,cavcnR(OIS).auaac.nuantn(1o),couaon(1o,5),
1 MARG(10,5,5,5,5) .

COMMON/ LHOUT7 IREAD, IREAD1, IREAD I, TREADI, TTYPE, TRITE, IRITEL,
1 IRLTE:

CUMHMUN /PRINT/ IPOINT,KPRINT , o . 3

COMMON/LSCALE/ SCALE .

.. MWRITECITYPE,999) e
999  FORUAT(LX,*TYPE IN 1 IF VOU wISH COMARG T0 ©E PRINTED®,7
.1 ,1X,°UTHERWISE TYPE IN 0°)
PEAYCIREAD,11) KPRINT
i1 rorMaTC10id)

REAJ IN INITIAL CORE MATRIX FROM FILE CORINI

iman:

9
|
|
1

'nnn

H
[

O QAN OAN

o — e —— .

IFCIPRINT .EQ. 0) GO TO 60

CERITECIRITELIINYY S O ——
3333 FORAAT(1H1,///,20X, "INITIAL CORE MATRIX = NOT SCALED®,///7/)
c .

80 CONFINUE " et e e ———

00 109 ¥5=1,LEVCOR(S5) ) L
oYy ilb §4=1,LEVCOR(E)
0N 120 83=1,LEVCOR(3)
_ DO 130 N2=1,LEVCOR(2) e
’ o REAO(IREAD3, 33 ) (COREINT , NZ, AT, NA,N5T
1 ’~1=11LBV‘:0R(1’)
33 FORMAT(SF)

—ep e m e ———— e e e e e

IF(IPRINT.EQ.0)GO TO 130

""""""" T ' WRITECIRITE, 4344 (N1, HZ, 83,44, 15,
1 CORE(N1,N2,83,N4,N5),
2 o - N1=1,LEVCOR(1))

[x] [x32 X1}
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FORMAT(1X,5(5T2,F15.0,1X))

130 CONTINUE
120 CONTINUF
A1 CONTINVE e
180 7 ¢anTinug
COMPUTE MARGINALS FRUM_CORE AMD SCALE CORE —
CONTIHUE JNTIL CONVERGENCE OR MAXIMUM NUMBER OF INTERATIONS™
HAS BEEH RFEACHED. EACH ITERATION LOOPS THRU ALL MARGIHALS

TFRITECITYPE,866)
666  FORMAT(//,1X, ENTSR NAXIMUM NUMBER OF ITERATIDNS ,sx,s>
B . READCIREAD,66) MAXIT )
86 T FURMAI(ISY

WRITE(IIYPE,777)

m toaunr(//,lx,'euren EPSIL®,5X,$)
READ¢ 1READ, 377 EpSiL

77 FURMAT(¥19.3)

aRITECIRITE,55585) HAXIT, EPSIL
FORMAL(LH1,/7/, MAXIT=",15,5X, "EPSIL=",E15.7,//)

" 17ER=)

400  ENVFLG=L
ITER=ITER+1

IFCITER .EQ., 1) ENOFLG = 0

DifHaK
N1DIF
N2DIF
N3DLF
NADIF
_HSDIF

RATMAX
HIRAT
N2RAT
NJRAT
N4RAT
N5RAT

_DELMAY
#iDEL
N2DEL
NJIOEL

" Ad0EL T

N3DEL

T U PRUNAX
N1PRO
N2PRO
URLEU]
NFRU

0V 410

00 41)

0Woiv u s

coocovoo Dooacmo

H5PR0

RETRLITIALIZE TOMPUTED MARGINAL wATRIX

W muwaay
OOV OD 'OOO'OOOI
. . .,

’
i
[]
i

"W uann N,

Ja1, NMARG

11=1,5 R
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90 420 I2=1,5 )
D9 430 13=i,5

0O 440 r4=1,5
COHARG(TL,12,13,14)=0._

“440 cORTINUE
43¢ CONTINUE
—_. .80 . _ _CONTINUE — e e e e
410 ~Tcontinug
c
e e em .. . IF(MARDIM(J).EQ.4)GDTO 460 —
¢
c SET UNUSED DIMENSION INDICES OF MARGINALS TO 1
¢ s C e
TTUTT T DUTASE KeNARD TN (I, 4
M(K)=1
~- 450 cowtiwve ___ e s
C SET POSSIBLY UNUSED DIMENSION OF CORE INDICES TO 1
¢
460 DO 472 Kk=3,5 -
H(K)=1
. 470 CONTINUE A . A
¢ .
C LOOP THRU ALL CORE VALUES AND COMPUTE MARGINAL VALUES FROM CORE
c — e
iF(xPRlaT .EQ. 0) GG T 475
C
) WRITE(IRITE,LL212)  * e -
11181 FORMATCLd1,//777,20%, *CoNARG®,/77)
¢
. _ 475  COuTLNUE - oL L
¢
D0 489 NS=1,LEVCOR(S)
N(S)=8S5 = . - -
00 490 iW4=f,LEVCOR¢A)
N(4)=N4
00 S00_83=1,LEVCOR{(3) —
N(3)=N3
00 S10 N2=1,LEVCOR(2)
. o NC2)3N2 _ .
D0 520 Ki=i,LEVCOR(1)
N(1)=N1
— .. o e, .00 530 K=1,MARDINCGJY = _
MK )=N(CORRDM(J, X))
530 CONTINUE
) - . COMARG(M(1),M(2),H(3),M€4))
{ SCONARG(M(1),4(2),M¢3),M{4))%
2 CORE(N1,N2,N3,N4,NS)
e mseeme oo .. L1E(KPRINT.EQ.0) GO TO S20 0
KRITECIRITE,44444)
1 . MC1),M(2),M(3),HC4),
e % - COMARG(M(1),M(2),M(3)pMC4)) _ =
43344 . FORIAT(1X,5¢512,E15.7,1%))
520 CONTINUE
- 380 _ . _CONTINUE e e e
- 50¢ cauTINVE
490 CONCINUE

 AR0 _ CONTINUE

c SCALE CURE BY GIVEN MARGINAL DIVIDED 8Y COMPUTED MARGINAL
¢ . : :

C-24
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'Y

D2 543 WS=L,LEVCUR(S)

N(5)=N5

00 550 N4=1,LEVCOR(4)

————— L & L L B

00 560 N3=1,LEVCOR(I)

N(3)s=N3

. D0_S79 N2=1,LEVCOR(2)

H(2)=N2
00 S8Q N1=],LEVCOR(1)

.59,

"N -

592

c
R X4 2

.. B(1),M(2),H(3),H(4))

RATI0=CORKEW/CORVAL

N(1)=H1 e

DO 590 K=1,MARDINCJ)
M(K)SH(CORRDM(J, X))

CONTINVE =

SFACT=NARG(J,M(1),HL3),

M(3),H(4))/COMARG(

CORVAL=CORE(N1,N2,N3,N4,N5)
CORNEW=CORVAL*SFACT
DIFF=ABS(CORNEW=-CORVAL) _ __
IF(DIPF.LE.DIFHAX)GO TO 592
DIFMAX=DIFF
N1DIF=N1
N20IF=N2
N3DIF=N3
N4D IF=H4
50 [F=N5

CONTINUE

IF (RATI0.LE.RATMAX)GO TO 594
RATYAX=RATIO
NIRAT=H]
N2RAT=N2
NIRAT=N3

“4“‘13“4 . ' : i

NSRAT=HS

CONTINUE
IF(J.NE.NMARG)GO T0 599

1P (1TER.CT.1)G0 TO 595
COROLD(N1,N2,N3,N4,NS5)=CORKEW
G0 TO 599

CONTINUE

_ DIPF=ABS(CORNEW-COROLOCN1,N2,N3,N4,N5))

IP(DIFPF.LE.DELMAKICO TU 598
DELYAX=DIFF
H1DEL=N1

T H2DEL=N2 T T T

NIDEL=N3
N4DEL=N4 e e et
NSDEL=NS , .

CONTINUE ‘ _ » e
RAT 10=CORNWEW/COROLD (N1, N2, N3,1i3,88)

IF (RATIO.LE.PROMAX)GO TO 598

PROMAXaRAT10 e
NiERD=N]

H2PPO=N2

¥3PRO=N3

C=25



H4PRO=N4

WRITECIRITE, 441107

. NSPFDzNS
c .
— 598 .. _. GONTINUE e e o - e e
IF(ABS(CORNEX=COROLD(N1,N2,N3,H4,N5))
1 «LE.EPSIL)GO TO 59
e e e e ENDFLG=0 ~ e
¢
597 CONTINUE
. _‘ ..... .[COROLD(N1,42,N3,H4,X5)=CORKEN
¢
599 CONTINVE
e mme e emn e —-—.CORE(N1,N2,H3,H4,N5)=CORNEN __ .
580 CONTINUE :
$70 CONTINUE
— 350 . __ COWNTINUE _ __ . e e e
550 CUNTINUE
540 CJNTIHUE
600  CONPINVE  _ e e e
IF(ENOFLG.2Q.1)G0T0 700 THAVE FINAL CORE MATRIX
IF(ITER.LT.MAXITIGO 10 400 IMAXIMUM # OF ITERATIONS NOT REACHED
c e L .. e e e e —_—
€ MAXIMUM NUM9ER OF ITERATIONS REACHED OR NETHOD CONVERGES
c
. 700  CONTINVE —
¢
€ TYPE JUT FINAL CORE VALUES
c. e e e e et ————

4411 FORMAT(20X, “COMPARISON OF PINAL MARGINALS®,
1

. ° FUR TWO CONSECUTIVE ITERATIONS®)
WRITE(IRITE,4422) ITER

4422 FORMAT(/,5X, HUMBER OF ITERATIQHS=*,IS)

i433l FORMAT(/,5X,*ABSOLUTE VALUE OF MAX DEVIATION IS *sE1S5.7,

WRITE(IRITE,443) DELMAX,N1DEL,N2DEL,N30EL,N4DEL, NSDEL

° AT POINT °,S513)

RITE (IRITE,4455) PROMAX,N1PRO,N2PRO, HIPRO, N4PRO, NSPRO

4455  FORMAT(/,5X,°MAX RATIO IS °,E15.7,° AT POINT *,513)

’ ——r v m e — - e s

WRITE(LIAITE,4466)

aQana

(3]

. 4466 FCRMAT(///, 20K, “CONPARISON OF TWO CONSECUTIVE MARGINALS)
WRITE(IR[TE,4433) DIFHAX,NiDI?,ﬂZDIF,N3DIF'N4DIFi"SDIF
XRITECIRITE,4455) RlTHAX,NlRlT,NIRAT'H3RAT,N4RAT;NSRAT
SPECIAL BUTPUT |
CALL 2UTPUT(2)

WRITE(IRITE,4477) SCALE
—-. 2477 FORMAT(LH1,///,1X,FINAL CORE MATRIX - SCALED BY FACTOR °, . . .
17€15.1,7777)

Qoo

.. SCALE_MATRIX FOR FINAL PRINTOUT

00 31) NS=1,LEVCOR(S)

DY 620 H4=1,LEVCOR(4) e e e
T U0 530 N3=i,LEVCOR(I) ’

DO 640 MN221,LEVCOR(2)

00 650 N1s1,LEVCOR(1) )
CORPTMP(N1,N2,N3,N4,H5)
=SCALE*COPE(N1,N2,R3,N4,N5)

CONTINUE

C=-26

2

i



.«

—_ b3 _CONTINUE - —
839 CONTINUE
620 CONTINUE
610 cONrfINUg - ..
c
c PRINT UUT FINAL CORE MATRIX SCALED BY FACTOR SCALE
c —
U3 710 #5=1,LEVCOR(S)
D0 720 N4=1,LEVCOR(4)
— —— 00 730_H3=1,LEVCOR(3)_ P
DO 740 N2=1,LEVCOR(2)
WRITE(IRITE,4444) (N1,N2,N3,N4,HS,
. % S CUR{"?!N eH2,N3,N4,85),
3 N1=1,LEVCOR(L))
740 CONTINUY
- .0 e CONTINUE
730 CONTINUE
710  CONTINUE
RETURN .. . 3 e
END
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40
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ie
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JUEFUYTINE CHTSRR
SUBROUTINE chisck  ~ STORED Ok FILE CHISQR.FOR

s e b . = =6 e

SUBROUTINE 10 ORTR1YW STATISTICS FOR ORIAINAL COPE VERSUS NEW CORE

CUMMON /CORSS1/ COROLD(S,5,5,5,5)
CUMHON /CORES?/ CORYMEW(S,S5,5,9.5)_.
CULMUN /MARCIN/ NDI”,LEVCUR(UIS)oNNlRG:PARDTF(lﬂ)oCORRDH(IO,5),
MARG(19,5,5,5,5)
COMvUR/ NNV T/ thlD,IREEDIIIRElD2'l‘EAD1pITYP€'IR!TE,IRITFI;
IRLTER

EPSTIL = i.0E-i0"

3.
3.

Silnl
sun2

"W

0C 1u NS5 = 1,LEVCORCSY -

00 20 u4s1,LEVCNR(4)
00,320 HI=1LEVCOR(D) . e e
00 472 N231,LEVCCR(2)
.b0 S0 N1=1,LEVCORC1) .
X = IMAX1CCOROLDCHI, N3, W3, N4,N5),EPSIL)
Y = AMAX1CCORNEW(M1,N2,N3,84,N5),EPSIL)

D1 = ((X-V)**2)7y e
D2 = X * ALOG(X/Y) A
—e B3 202 ¢ Y =X L -

cmmme oo SUPL 2 SUNL e DL
SUM2 = SUM2 + D2
e oo CONTINUE — e
CONTINUE
.....CONTINVE
CUHTIVUF
contlinve

"

5UM2 = 2.._"_SUM2

“1CECIRITE,11) SUNM]1,SU“2

FOAMAT(1HY, CHI SOUAFE = °,EiS 1,/,1x,'c 'SQUARE = *,E15.T)
KETURN
ENOD

‘o em oy e e

"
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SULROUT INF CUTPUT(ISW)

DIMNY SUSPOUTINE FOP SPECTAL dutTeut

RETOPH =
END

Y
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