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Executive Summary

Automatic freeway incident detection is an important component of advanced transportation
management systems (ATMS) that provides information for emergency relief and traffic control
and management purposes. In this research, a multi-paradigm intelligent system approach and
several innovative algorithms were developed for solution of the freeway traffic incident
detection problem employing advanced signal processing, pattern recognition, and classification
techniques. The methodology effectively integrates fuzzy, wavelet, and neural computing
techniques to improve reliability and robustness. The specific accomplishments of this research
are

e Development of an effective traffic feature extraction model using discrete wavelet transform
and linear discriminant analysis.

e Development of a computational model for automatic traffic incident detection using discrete
wavelet transform, linear discriminant analysis, and adaptive conjugate gradient neural
network of Adeli and Hung.

e Development of a fuzzy wavelet radial basis function neural network (RBFNN) model for
automatic detection of freeway incidents.

e Development of a two-stage single-station freeway incident detection model based on energy
representation of the traffic pattern in the wavelet domain.

e A comprehensive parametric study of the performance of the single-station fuzzy-wavelet
RBFNN freeway incident detection model and comparison with the benchmark California
algorithm #8 based on three quantitative measures of detection rate, false alarm rate, and
detection time, and the qualitative measure of algorithm portability using both real and
simulated data. The new algorithm outperformed the California algorithm consistently under
various scenarios.

e A comprehensive evaluation of the single-station wavelet energy neural network freeway
incident detection algorithm and comparison with the California algorithm #8.

e Evaluation of the wavelet energy neural network freeway incident detection algorithm on
rural freeways where flow rates are low and detector stations are spaced further apart.

It is demonstrated that both fuzzy-wavelet RBFNN and wavelet energy neural network
freeway incident detection algorithms are computationally efficient, produce excellent detection
rates and very low false alarm rates on urban freeways, and can readily be implemented on-line in
any ATMS without any need for re-calibration and without any performance deterioration.
Considering the difficulty in automatic detection of incidents on rural freeways, the wavelet
energy algorithm performs well on rural freeways as well. The algorithm is fast as it detects an
incident on urban freeways in less than two minutes and on rural freeways in less than three

minutes.
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Neural Network Model for Automatic Traffic Incident Detection
Principal Investigator: Hojjat Adeli, Professor, The Ohio State University

Executive Summary

Automatic freeway incident detection is an important component of advanced transportation
management systems (ATMS) that provides information for emergency relief and traffic control
and management purposes. Earlier algorithms for the freeway incident problems have produced
unreliable results especially in recurrent congestion and compression wave traffic conditions. In
this research, a multi-paradigm intelligent system approach and several innovative algorithms
were developed for solution of the freeway traffic incident detection problem employing
advanced signal processing, pattern recognition, and classification techniques. The methodology
effectively integrates fuzzy, wavelet, and neural computing techniques to improve reliability and
robustness. The specific accomplishments of this research are
e Development of an effective traffic feature extraction model using discrete wavelet transform
and linear discriminant analysis.
e Development of a computational model for automatic traffic incident detection using discrete
wavelet transform, linear discriminant analysis, and adaptive conjugate gradient neural
network of Adeli and Hung.

e Development of a fuzzy wavelet radial basis functlon neural network (RBFNN) model for

automatic detection of freeway incidents.

e Development of a two-stage single-station freeway incident detection model based on energy
representation of the traffic pattern in the wavelet domain.

* A comprehensive parametric study of the performance of the single-station fuzzy-wavelet
RBFNN freeway incident detection model and comparison with the benchmark California
algorithm #8 based on three quantitative measures of detection rate, false alarm rate, and
detection time, and the qualitative measure of algorithm portability using both real and
simulated data. The new algorithm outperformed the California algorithm consistently under
various scenarios. False alarms are a major hindrance to the widespread implementation of
automatic freeway incident detection algorithms. The false alarm rate ranges from 0 to 0.07
% for the new algorithm and 0.53 to 3.82% for the California algorithm.

e A comprehensive evaluation of the single-station wavelet energy neural network freeway
incident detection algorithm and comparison with the California algorithm #8.

e Evaluation of the wavelet energy neural network freeway incident detection algorithm on
rural freeways where flow rates are low and detector stations are spaced further apart.

It is demonstrated that both fuzzy-wavelet RBFNN and wavelet energy neural network
freeway incident detection algorithms are computationally efficient, produce excellent detection
rates and very low false alarm rates on urban freeways, and can readily be implemented on-line in
any ATMS without any need for re-calibration and without any performance deterioration.
Considering the difficulty in automatic detection of incidents on rural freeways, the wavelet
energy algorithm performs well on rural freeways as well. The algorithm is fast as it detects an
incident on urban freeways in less than two minutes and on rural freeways in less than three
minutes.
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Summary and Organization of the Report

This report consists of seven parts presented as seven different manuscripts. Each
manuscript is summarized in the following paragraphs. Automatic freeway incident detection is
an important component of advanced transportation management systems that provides
information for emergency relief and traffic control and management purposes. Earlier
algorithms for the freeway incident problems have produced unreliable results especially in
recurrent congestion and compression wave traffic conditions. Tfafﬁc incidents are non-recurrent
and pseudo-random events that disrupt the normal flow of traffic and create a bottleneck in the
road network. The probability of incidents is higher during peak flow rates when their system
wide impact is most severe. Model-based solutions to the incident detection problem have not
produced practically useful resuits primarily because the complexity of the problem does not lend
itself to accurate mathematical and knowledge-based representations. ‘

To elifninate false alarms an effective traffic incident detection algorithm must be able to |
extract incident related features from the traffic patterns. A robust featuré extraction algorithm
also helps reduce tine dimension of the input space for a neural network model without any
significant loss of related traffic information, resulting in a substantial reduction in the network
size, the effect of random traffic fluctuation, the number of required training samples, and the
computational resources required to train the neural network. In Part 1, an effective traffic feature
extraction model is presented using discrete wavelet transform (DWT) and linear discri_minan_t
analysis (LDA). The DWT is first applied to raw traffic data and the finest resolution coefficients
representing the random fluctuations of traffic are discarded. Next, LDA is employed to the
filtered signal for further feature extraction and reducing the dimensionality of the prbblem. Thé

results of LDA are used as input to a neural network model for traffic incident detection.



Artificial neural networks are known to be effective in solving problems involving pattern .
recognition and classification. The traffic incident detection problem can be viewed as
recognizing incident patterns from the incident-free patterns. A neural network classifier has to
be trained first usipg incident and incident-free traffic data. The dimensionality of the training
~ input data is high and the embedded incident characteristics are not easily detectable. In Part 2, a
computational model is presented for automatic traffic incident detection using discrete Wavelet
transform, linear discriminant analysis, and neural networks. Wavelet transform aﬁd linear
discriminant analysis are uséd for feature extraction, de-noising, and effective preprocessing of
data before an adaptive neural network model is used to make the traffic incident detection.
Simulated as well as actual traffic data are used to test the model. For incidents with duration 6f
more than five minutes, the incident detection model yields a detection rate of nearly 100% and

false alarm rate of about 1% for two- or three-lane freeways.

Resear_bhers_have pfesented freeway traffic incident detection algorithms by combining
the adaptive learning capability of neural networks with imprecision modeling capability of fuzzy
logic. In Part 3, it is shown that the performahce of a fuzzy neural network algorithm can be
improved through preprocessing of data using a wavelet based feature extraction model. In
particular, the discrete wavelet transform de-noising and feature extfaction model presented in
Part 1 is combined with the fuzzy-neural network approach pfesented by Hsiao et al. (1994). It is
shown that substantial improvement can be achieved.using the data filtered by DWT. Use of the..
wavelet theory to de-noise the traffic data increases the incident detection: rate, reduces the false

alarm rate and the incident detection time, and improves the convergence of the neural network

training algorithm substantially.
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In Part 4, a multi-paradigm intelligeﬁt system approach is presented for the solution of the
freeway traffic incident detection problem employing advanced signal processing, pattern
recognition, and classification techniques. The methodology effectively integrates fuzzy, wavelet,
and neural computing techniques to improve reliability and robustness. A wavelet-based de-

noising technique is employed to eliminate undesirable fluctuations in observed data from traffic

sensors. Fuzzy c-mean clustering is used to extract significant information from the observed

data and to reduce i{s dimensionality. A radial basis function neural network is developed to
classify the de-noised and clustered observed date. The new model produced excellent iﬁcident
detection rates with no false alarms when tested using both real and simulated data.

In Part 5, a two-stage single-station freeway incident detection model is presented based on
adw)anced wavelet analysis and pattern reeeéﬁifioh teehﬁiques. Wavelet analysis is used to de-
noise, cluster, and enhance the raw trafﬁe ciata, which is then classified by a radial basis function
neural network. An energy representation of the traffic pattern in the wavelet domain is found to
best characterize incident and non-incident traffic conditions. False alarm during recurrent
congestion and compression waves is eliminated by normalization of a sufficiently long time-
series pattern. The model is tested under several traffic flow scenarios including compression
wave -conditions. It produced excellent detection and false alarms characteristics. The_ model is
computationally efficient and can readily be implemented on-line in any ATMS without any need
for re-calibration. -

In Part 6, the performance of the fuzzy-wavelet radial basis function neural network
(RBFNN) freeway incident detection model presented in Part 4 is evaluated and compared with

the benchmark California algorithm #8 using both real and simulated data. The evaluation is




based on three quantitative measures of detection rate, false alarm rate, and detection time, and
the qualitative measure of algorithm portability. The new algorithm outperformed the California
algorithm consistently under various scenarios. False alarms are a major hindrance to the
widespread implementation of automatic freeway incident detection algorithms. The false alarm
rate ranges from 0 to 0.07 % for the new algorithm and 0.53 to 3.82% for the California
algorithm. The new fuzzy-wavelet RBFNN freeway incident detection model is a single-station
pattern-based algorithm that is computationally efficient and requires no re-calibration. The new
model can be readily transferred without re-training and without any performance deterioration.
In Part 7, a comprehensive evaluation of the single-station wavelet energy neural network
freeway incident detection algorithm of is presented. Quantitative performance measures of
detection rate, false alarm' rate, and -detection time as well as. the qualitative measure of
portability are investigated for both urban and rural freeway conditionss-: Fu&hef,’ the perfonnance
of the algorithm is compared with that of the California algorithm #8. This research demonstrates
the portability of the wavelet energy algorithm and its excellent performance for urban freeways
across a wide range of traffic flow and roadway geometry conditions regardless of the density of
the loop detectors. Rural freeways bresent additional challenges in that flow rates are low and
detector stations are spaced further apart. Considering the difficulty in automatic detection of
incidents on rural freeways, the new wavelet energy algorithm performs well on such freeways.
The algorithm is fast as it detects an incident on urban freeways in less than two minutes and on

rural freeways in less than three minutes.
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FEATURE EXTRACTION FOR TRAFFIC INCIDENT DETECTION USING

WAVELET TRANSFORM AND LINEAR DISCRIMINANT ANALYSIS

A. Samant’ }and H. Adeli’
!Graduate Research Associate, 2 Professor
Dept. of Civil and Environmental Engineering and GeoAdetic Science
The Ohio State University, 470 Hitchcock Hall

2070 Neil Avenue, Columbus, OH 432710.

ABSTRACT: To eliminate false alarms an effective traffic incident detection algorithm

must be able to extract incident related features from the traffic patterns. A robust feature

“extraction algorithm also helps reduce the dimension of the input space for a neural

network model without any significant loss of related traffic information, resulting in a. :
substantial reduction in the network size, the effect of random traffic fluctuation, the
number of required training samples, and the computational resources required to train'l '
the neural network. This article presents an effective traffic feature extraction model
using discrete wavelet transform (DWT) and lineaf discriminant analysis (LDA). The
DWT is first applied to raw traffic data and the finest resolution coefficients representing
the random fluctuations of traffic are discarded. Next, LDA is employed to the filtered
signal for further feature extraction and reducing the dimensionality of the problem. The

results of LDA are used as input to a neural network model for traffic incident detection.



1. INTRODUCTION

Reliable automatic detection of traffic incidents is required for efficient traffic
management on freeways. Travel time delays occur due to lane blockages and the
corresponding reduction in the capacity of the freeway following the incident. Our
research goal is to create computational models which take into account the traffic flow
variations and detect the traffic incidents automatically, By distinguishing the traffic
incident patterns from the incident-free ones. Since there are lots of traffic fluctuations in
the traffic flow for various reasons the incident and incident-free decision regions cannot
be divided easily. This is the main cause for the poor performance of the existing traffic
incident detection algorithms.

Until early 90s, the two-station comparative algorithms such as California
algorithm'! were widely used, where the differences between traffic flow parameters (e.g.
traffic volume and occupancy) at upstream and downstream stations are used for the
detection of the operatihg problems in the traffic flow. Persaud et al.'? proposed a single
station algorithm known as McMaster algorithm, where congestion is detected using
traffic volume, occupancy, and vehicle speed (if available) values at a siﬁgle station.
Though these computational models were easy to implement, they could not achieve the
desired level of accuracy. Consequently, new approaches such as artificial neural
networks>'® and fuzzy logic’ have been investigated to improve the performance.
Research also has been carried out to filter out the random fluctuations of the trafﬁcl using
moviﬁg average or .median plus average methods in an attempt to minimize the

occurrence of false alarm (i.e., false detection of incidents) but with limited success.
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Most of the existing incident detection algorithms based on conventional
statistical methods compare the traffic flow values or the differences between the values
at various locations with some fixed threshold values to recognize congested traffic
patterns from non-congested ones. But this single threshold value may not represent the
traffic flow accurately because of the random fluctuations and the time-dependent nature
of the freeway traffic. This is the major cause of the unreliability in such incident.

detection algorithms.

To eliminate the false alarms an effective ihcident detection algorithm must be
able to extract features from the traffic patterns, which are related to the incident. In this
work we use the discrete wavelet transform (DWT) and Linear Discriminant Analysis
(LDA) for feature extraction. - Actual ‘ﬁéfﬁc data obtained from the sensors on the
freeways are not well suited as a direct input to a neural network model to be used t(;
detect incidents. The dimensionélity of the training input data is generally high as various'i
traffic parameters (e.g. traffic volume and occupancy) at different locations (e.g. |
upstream and downstream of the various incident locations) and at many instances of
time are required to be inputted, and the embedded incident characteristics may not be
easily detectable. Also, the training of a neural network incident detection algorithm
requires input patterns containing sufficient incident data. Thus, effective pre-processing
of the sensory data is essential before they can be used in a neural network model. In this
work, we perform feature extraction in two steps. In the first step, the data is filtered and
the high frequency signals representing noise, which may not be related to an incident,
are removed using wavelet transform. In the second step, the features are enhanced using

LDA. The feature extraction algorithm also helps reduce the dimensionality of the input




space to a neural network model without any significant loss of related traffic
information. In the companion paper we use the feature extraction algorithm to develop a

robust traffic incident detection model’.

2. DISCRETE WAVELET TRANSF ORM

The wavelet transform is found to be an effective tool in signal and image
processing due to its attractive properties such as‘time-frequency Ioéalization (obtaining a
signal at particular time or frequency), multi-rate filtering (differentiating the signals
having various frequencies), scale-space analysis (extracting features at various locations
in spéce at different scales), and multi-resolution analysis**’. Using these properties one
can extract the desired features from an input signgl-gharact’erized by certain local
properties in time and space. In thls research, we view the traffic flow as a signal, with
traffic incidents as well as other traffic patterns such as traffic bottleneck or compression
wave having different time-space proberties. Most of the previous incident detection
algorithms performed unsatisfactorily because they can not distinguish the traffic incident
patterns from other similar traffic patterns such as recurrent congestion, and specially the
compression wave, consistently. We use the wavelet transform to extract the specific
features distinguishing such traffic patterns as it can extract features from different time

scales having different resolutions quite effectively.

For the traffic incident detection problem, we consider various traffic data (e.g.
traffic volumes and occupancies at various locations) recorded at a fixed time interval
(e.g. 20-30 secohds). Each of these data series can be represented by x[j], where jeZand

Z is a set of integers (square brackets represent a series, a sequence or a vector and




circular brackets represent functions). The vector space of square summable sequences is

defined as follows:

J=+0

2@ =), D) < M)

j=—m

where v, represents a sequence of real numbers and Z is the set of all the integers. That

means the inner product of a sequence with itself converges to a finite value. We denote

the orthonormal wavelet bases of L*(Z) by {¢,, , },EZ and {\u I }IE , (the brackets {} denote

a set of series) where { 5 ,}IE ,and {\;f j:’}IeZ represent scaling and wavelet functions*”’,

respectively and 7 is a positive integer. The value of 7 is chosen such that the desired level

of resolution is obtained and j = 1, 2,..., I The output of the DWT consists of thé{

coordinates, ,[/] and A,[I] of the orthonormal wavelet bases

Bl = (S1K1, ¢, 1)) and 1= @
Aj[l]=(x[k],y/j,,[k]); l=-2’fj—'and j=1,2,...,1 (3)

where ( ) denotes the inner product of the two sequences in the vector space I*(Z), k
represents the total number of input data points, / represents the number of coefficients of
each data series such as traffic volume or occupancy. The coordinates f and A are in
fact, low and high-resolution coefficients of the given dat_a series x[k], respectively. The

inner product of any two data series f[n] and g[n] is calculated as follows:

i=+»

(£, gl = 3. ST gli] o @

i=-00



In our traffic incident detection problem, we use 8-minute traffic patterns with
data recorded in intervals of 30 seconds as multi-resolution analysis using DWT requires
at least 16 data points at a time. As such, in Egs. (2) and (3) k=16. We choose, 7 = 2,

which means the traffic patterns are divided into three types of signals: low-resolution

(B, ), medium-resolution (4, ), and high-resolution ( 4,). In this case / in Eq. (2) = _122 =

4. Consequently, we have 4 low-resolution coefficient ( £, [/]). Similarly / in Eq. (3) is
equal to 8 for j=1, and equal to 4 for j=2, which yields us 8 fine-resolution coefficients

(A, [7]) and 4 medium resolution coefficients (A, 1.

'I'He coordinates of the wavelet bases ( fsand /is) are computed using a concept
;:alled the quadréture mirror ﬁltérsls. >'Qu"adr'ature ﬁlter 1san 'opérator >th'éit 'pefformg si‘gﬂal |
convolution and downsamplirig”. We use mirror filters (a pair of filters) so that the
original traffic signal can be reconstructed without any loss of related information (One
filter yields the high-resolution components of the signal and the other filter yields the
low-resolution components.) The convolution of any two sequences f[n] and g[n] is

calculated as follows:

i=+

(f * @Il = (fIm]* glmD[n] = 3 flilgln—i] )

j=—c0

The downsampling part is discussed in the following section.

To extract the traffic incident pattern from the traffic data we perform multi-
resolution analysis of the wavelet transforms of traffic patterns. Multi-resolution analysis

involves dividing the original signal (e.g. traffic volume or occupancy) into signals

.
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having different frequencies and time localizations and analyzing the signal in different

scales.

To carry out a multi-resolution analysis of a traffic pattern we need to define a

two-dimensional set of scaling functions, ¢(r), and wavelet functions, w(f). A two-

dimensional family of scaling functions is obtained by scaling and translating the basic

scaling function ¢(¢) as follows:
$,:(0)=27"2¢(27t—k) where j,keZ and () e *(Z) (6)

where t is an integer representing the number of time intervals (such as 30-sec. intervals).

Integers j and k are called scaling and translation parameters respectively. The

corresponding subspaces spanned by ¢, , () are®:

v, = Spang@)  forallkeZ %)
k

J

The over-bar indicates that V; is a closed subspace (i.e. boundaries are included in the

subspace). Equation (7) means any function fr) € ¥, can be represented as a weighted

sum of the scaling functions with scale j as follows:
f@®= Z}/k¢k (27t - k) for any ) eV, )]
k

The scale j can be varied from — o to + oo to obtain signals having various resolutions.

Similar to the scaling functions a two-dimensional family of wavelet functions is

obtained from the mother wavelet y/(f) by scaling and translation as follows:

V() = 27"y (271 — k) | ®



The corresponding subspaces spanned by wavelets y ; , (¥) are

W, = S;;an {w, )y forallkeZ (10)

3. MULTI-RESOLUTION ANALYSIS

A Multi-resolution Analysis in L*(Z) consists of finding out wavelet transforms

using a sequence of closed subspaces V; in I*(Z) with the following properties'®:

ViacV, foral jeZ (11)
- V,={0} (indicating the empty space) (12)
V,=I’(Z) (contains the original input signal) (13)

Equation (11) indicates that V4, is a subset of V. The subspace V; contains all the signals

included in V}+; plus additional high-resolution signals. These additional high-resolution

signals are contained in the wavelet-spanned subspace W ,,:

Vj = Vj+l 6_) Wj+l (14)

and W,

J+

where © indicates that both subspaces- V.

J+l

are part of ¥, and orthogonal to

each other®". Forj = 0 in Eq. (14) we obtain
V=V, ®W, (15)
and by combining Egs. (11), (14) and (15) the sequence can be generalized as

V,=V, ®W, ®W, ®W,,... W, W, (16)

.
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The value of / can be varied to obtain the desired level of resolution. We choose I = 2, for
the same reasons explained for Egs. (2) and (3). In that case, the original signal is divided

into three parts, each one lying in a different subspace as follows:
Vo=V, ® W, ®W, (17)

where V,, W,, and W, contain the low, medium and high-resolution signals, respectively.

“The definition of ¥} and the scaling condition given by Eq. (6) ensure that elements in the

‘two consecutive subspaces ¥; and ¥+, are inter-related as follows:

fOev, o f(-;-)eV,-“ (18)

- where the notation <> indicates mutual implication. The actual relationship is expressed

as follows®:
¢[2“‘t]=71_2—2h[n] $[27t—nl, neZ (19)

where Ah[n] is a sequence of real numbers known as the scaling function coefficients or

low-pass filter coefficients. (—\/1.—2_— keeps the norm of the scaling function equai to 1).

Since the wavelet-spanned subspace at scale j+1 is a part of V; (the subspace
spanned by the scaling function with scale j, i.e. W, < V) the wavelets at scale j+1 can
be represented in terms of scalar-multiples of the translated scaling functions at scale j as

follows:

!//(2"“t)=%;h1[n] p7t-nl,  neZ 20)



where h[n] is a set of real numbers known as wavelet function coefficients or high-pass
filter coefficients. Due to the orthogonal relationship between the wavelet and scaling

functions, the wavelet coefficients are related to scaling coefficients as follows?:

hlnl= ()" h[L-1-n] (21)

where L is the length of the filter used. In our traffic incident detection case, we use

length-4 Daubechies filter coefficients (L = 4) as it is found to be accurate and efficient in

the area of digital filtering. For this filter, #[n] values are found by solving the recursion

equation (19) by the zero wavelet moment design approach?:

hin] = ﬁ 3, 3443, 3—J§ 1—\5] for n=0,1,2,3 22)
Substituting L = 4 in Eq. (21) we obtain the corresponding 4, [#] values as follows:

B [n] = 4—3/—5 [1—J§, —(3=/3), 3+4/3, =(1+3) ] for n=0,1,2,3 (23)

Now we can write any input data series f [f] in ¥, (orL?(Z)) as a series expansion in

terms of the scaling functions and the wavelets®:

=3 BKeld + XS Ay, (24)

k=—o0 J=0k=-c0

In this work, we use discrete data points and not a continuous signal,

consequently we do not have to deal with the scaling functions or wavelets directly. Only
the coefficients h[n] and A[n] in the defining Egs. (19) and (20) and A [4] and A,[k] in

the expansion Eq. (24) need to be considered. The first two sets of coefficients can be

10
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viewed as digital filters (low and high-pass filters respectively) and the last two sets of

coefficients can be viewed as digital signals (low and high-resolution coefficients,

.Iespectively). In order to use the wavelet transform coefficients directly, the relationship

between the expansion coefficients at two consecutive scale levels should be known. By
scaling and translating the basic recursion Eq. (6), the required relationship is found for

the scaling and wavelet coefficients as follows?:

Bralk) = Y him—2k1,[m] (25)
Apulk] = Y mm=2k15,[m] (26)

4. FILTERING AND DOWNSAMPLING
Digital filtering of the input signal is carried out by convoluting the signal with
another set of numbers known as the filter coefficients or impulse responses’ and the: -
downsampling process involving decimation of some of the input data. In downsampling,
the input signal x(n) is transformed into an output signal y(n) such that y(n) = x(2n). This

means the alternate data points are discarded as shown in Figure 1 schematically.

Equations (25) and (26) in fact perform digital filtering and downsampling. These

equations show that the scaling and wavelet coefficients at different levels of scale can be

obtained by convoluting the expansion coefficients at scale j with the filter coefficients
hy[n] and A;[n] and then downsampling to obtain the expansion coefficients at the next
level j+1. In other words, the j scale coefficients are filtered by two so-called FIR (Finite

Impulse Response)’ digital filters with coefficients Ag[n] and hi[n]. After filtering and

downsampling are completed the next low-resolution scaling and high-resolution wavelet

11



coefficients are found. This is shown schematically in Figure 2, where Hy and H;
represent the two FIR filters. This splitting (dividing of signal into higher and lower
resolution signals), filtering and decimation (downsampling) can be repeated on the

scaling coefficients to obtain a two- or three-stage two-scale filter (Figure 3).

Having found the relationship among the four sets of coefficients, we now
describe how to obtain the input set of scaling coefficients ( £, ) from the input signal. In
the traffic incident detection model the traffic data are not continuous. We use the tr_;lfﬁf:
volume and occupancy values at 30 second intervals which means the data are pre-
filtered and can be used directly as input coefficients. As an example if we use 8-minute
traffic patterns, we will have 16 input values for each of the four input parameters:
upstream aﬁd downstream occupancy and volume. After two s.t'ages of deﬁsampliﬁg and
filtering we will have 8 coefficients of the finest resolution, 4 coefficients of the medium
resolution and 4 coefficients of the coarse resolution for each traffic parameter. All 8
high-resolution coefficients are discarded as they represent the ordinary traffic
fluctuations, which may not be related to the traffic incidents. For both low as well as
medium resolution coefficients, we will take some or ;111 of them, and find out the best
combination. The signal is then re-generated using these medium and low-resolution
coefficients, which is called de-noised signal. To enhance the feature extraction, linear
discriminant analysis is i)erformed on the coefficients obtained from the wavelet

transform and multi-resolution analysis. Linear discriminant analysis is discussed in the

next section.
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5. LINEAR DISCRIMINANT ANALYSIS

We use a linear discriminant analysis to reduce the dimensionality of the problem

‘as well as to improve the generalization capability of the pattern classifier while at the

same time reducing its computational processing requirements. This part of feature
extraction can be formulated as a mapping from a d-dimensional input space (R?) to an

m-dimensional feature space (R ™) through a transformation matrix T:

T:R“> R™, m<d 27

The linear discriminant analysis achieves feature extraction through linear

mapping of the input space to the output space. The most popular and commonly used

linear discriminant classifiers are Fisher Linear Discriminant Classifier (FLD) and .

Nearest Mean Classifier (NMC) or Euclidean Distance Classifier. The construction

procedure for both classifiers is almost the same with minor differences in the end'*.

Let (X;); be a vector representing the i training sample outputted by the discrete
wavelet transform in classj. If we use 6 of the 8 medium and low resolution coefficients,
as an example then, (Xi); = (x;,,x.,,....,x.,) . In the traffic incident detection case j will

be either 1 or 2 where j = 1 indicates the incident free samples and j = 2, indicates the
incident samples. Also, i = 1, 2,..., nj, where n; = number of training samples in class j,

and n = n; + ny, the total number of training samples. The within-class co-variance square

matrix C,, of dimension d is defined as

€, =233, - my) (X,); - my)’ e

Jj=l =l



where m; is the mean vector for class j. The incident detection is a two-class problem
involving classification of data between incident and incident-free regions. For this two-

class problem, the between-class covariance square matrix, C;, of dimension d is

defined as®:

C, = ’;—‘(ml —m)(m, —m)” + %(mz ~m)(m, —m)" (29)

where m is the mean vector of all the data. The goal of linear discriminant analysis is to
find a dxm transformation matrix T such that the within-class scatter is ° ° ‘zed and

the between class scatter is maximized. This can be achieved by maximizing the sum of
the eigenvalues (J) of the multiplication matrix C{Cy 8, Simplifying Eq. (29) we obtain

Cp =" (m, -m,)(m, —m,)" (30)

n2

Since Cj is a function of only one vector (m, —m, ), its rank (number of independent

rows or columns in the matrix) is one. And since C,, has a full rank its inverse exists and

the rank of C5 Cyis also equal to one. That is, it has only one non-zero eigenvalue. The

corresponding eigenvector of this non-zero eigenvalue js1°

_ C;l(mz -m,)

E. =
bctam, -m,)|

€2y

Where the constant denominator is chosen to make the norm of the eigenvector unity, i.e.

"E1 || = 1. For our two-class incident detection problem the eigenvector is a function of

one vector (m,~—m,) only, requiring one discriminating feature, and the mapping

function yielding the output vector Y is:

Y=EX=c(m,-m,)"C;)X (32):

14

J—

R



where c is a constant.

In the incident detection problem, the value of d is varied from 3 to 6, when we
apply LDA to a single data series at a time. If the LDA is carried out using all the data
series (upstream and downstream traffic volume and occupancy) together then d will be
equal to the number of data series considered (4 in this particular case). On the other hand
m = 1 (Figure 4) represents a single value of effective traffic occupancy or volume for a
given time period of 8 minutes. .Since the incident detection problem is a two-class
classification problem only one feature is sufficient to differentiate between the two
classes. Consequently, number of input nodes of the neural network is reduced to 4.

Equation (35) represents the general FLD function. The NMC function does not
consider the covariance part (C5}) and is represented by

Y=E/X=c(m, -m,)"X (33)

As the name suggests the Nearest Mean Classifier (NMC) classifies the data on the basisvbv

of distance from the class means. Thus, in the two-class incident detection problem it
generates the perpendicular bisector between the class means. This type of linear
classification is ideal for classes with identical distribution of data around the class
means. But in the incident detection case, the incident and incident-free data may not
have identical distribution around their class means. Consequently, the covariance part
has to be considered for optimal linear classification. The standard FLD takes into

account the covariance part, but linear classification using FLD involves inversion of
within-class covariance matrix (C,,), which is often an ill-conditioned matrix. This
problem can be overcome by adding some constant value (&) to the diagonal elements of

the covariance matrix as follows'*:



Cyr =C,+01 34

where 1 is an identity matrix. In this case, the classifier is known as Regularized FLD.

6. DATA ACQUISITION

Traffic incident detection is a real-life problem. Therefore it is quite essential to
test the model with realistic traffic data. At present, different types of det_:ection
techniques are used to measure traffic flow properties, suéh as vehicle velocity, traffic
volume and occupancy. Different incident detection algbrithms use different
. combinations_lvof these traffic data types. In the companion paper’, we will consider
various combinations of traffic volu-m“e,' 6ccupéncy, and avérage speeds and investigate
their effects on the incident detection algoﬁthm. |

A large number (up to a few hundreds) of traffic patterns with and without
incidents are normally needed to train a neural network model for incident detection
effectively. Data for many traffic pétfems with incident cases for éparticular location or
similar locations are not readily available. Traffic incident data are collected in a variety
of ways. The first data source often is the information logged in by the central operator
monitoring the traffic conditions on freeways. Methods of surveillance and detection vary
from actual observation of the incident by traveling motorists, highway patrol, or traffic
reporting units, to sightings of an incident through the use of closed-circuit televisions
- and cameras, to detection through computerized electronic surveillance and control

systems.
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The last method is based on using sensors pl_aced along freeways at intervals of a
few hundred meters to a few kilometers and computers to process the traffic flow déta.
In this approach, sensors detect the effects of incident occurred within two neighboring
sets of detectors rather than the incidents themselves. In some incident detection
algorithms an incident is detected after a few minutes, which is relatively considerable.
One of our goals in this research is to minimize the detection time.

In an auiomated freeway incident detection system (AFIDS) an entire freeway -
system can be monitored continuously in a central office through the use of a network of
sensors without actually anyone observing the incidents. But, first the AFIDS has to be

trained using the data obtained from sensors. At present, most of the time an operator

~ creates an incident log manually by examining the incident data obtained from various

sources including sensors and specifying and recording the location, time, duration, and
cause of the incident, upstream/downstream sensor IDs, number of casualties and’
injuries, and number of lanes blocked. Unfortunately, some of the important information’
such as the sensor ID or the time of detection is frequently left out due to human error or
other reasons. Consequently, incident logs obtained from departments of transportation
can not be used directly to train the incident detection algorithm. Also some incidents,
called isolated incidents, may not have any impact on the traffic flow and therefore are of
no consequence to the traffic incident detection algorithm and should not be included in
the training set.

As such, we found the traffic incident logs obtained from several departments of
transportati‘on (DOT) including Arizona DOT and Minnesota DOT not to be helpful in

training the IDA. An alternative to the use of the actual incident data with the

17




aforementioned drawbacks is simulation of the freeway traffic using a simulation
package. Traffic simulation further provides a means to investigate various traffic
conditions.

In this work we use the traffic simulation package TSIS/CORSIM developed by
ITT Systems and Sciences Corporation (http://www.fhwa-tsis.com) to simulate the

freeway traffic needed to train the IDA. This simulation package allows you to simulate

the road conditions for a given grade, curvature, or maximum allowable speed as well as

the traffic conditions such as traffic flow, incident location, percentage lane blockage,
and duration of the incident. The simulated data can be displayed graphically on the
computer screen. An exatﬁple is shown in Figure 5 displaying a straight four-lane
: freeway segment with two seis of entry and exit .ramI')s. TSIS/CORSIM | provides a
comprehensive freeway incident simulation module called FRESIM (Freeway Simulation
Package). An example of a simulation instance for the freeway of Figure 5 is shown in
Figure 6, displaying the location of the accident and the traffic congestion after the
incident.

We can specify either blockages in one or both lanes or rubbernecking which is a
reduction in the capacity of a lane without a blockage (defined as a percentage reduction
in the capacity) due to blockage in a neighboring lane or an incident on the shoulder. The
user can specify the following for an incident: the longitudinal location on a freeway link,
the length of the blockage, and the duration of the incident. The characteristics of an
incident can be changed duriné the incident duration. For example,‘ it is possible to
specify a two-lane blockage turning into a one-lane blockage after a specified duration.

The lane from which the blockage is removed can then become unrestricted or subjected

18

-


http://m.fhwa-tsisxom

LA

to rubbernecking. The simulation parameters to be chosen are the percentage reduction in

the capacity of the freeway.

7. RESULTS

Figures 7(a) to 7(d) show the results of the filtered data after applying the wavelet
transform for upstream and downstream traffic volume and occupancy using the
simulated data for an §-minute traffic pattern. Similarly, Figures 8(a) to 8(d) show similar
results using actual data obtained from the Minnesota DOT over a period of 150 minutes.
The smoothening effects of the traffic data are clearly noted in these figures. In a
companion paper, the two-stage feature extraction algorithm presented in this article is

used as a preprocessor for a robust neural network model for automatic detection of

traffic incidents'.
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AN ADAPTIVE CONJUGATE GRADIENT NEURAL NETWORK-WAVELET

MODEL FOR TRAFFIC INCIDENT DETECTION

H. Adeli' and A. Samant®
'Professor, ?Graduate Research Associate
Dept. of Civil and Environmental Engineering and Geodetic Science
The Ohio State University, 470 Hitchcock Hall

2070 Neil Avenue, Columbus, OH 43210.

ABSTRACT: Artificial neural networks are known to be effective in solving
problems involving pattern recognition and classification. Th¢ traffic inc_ident detection
problem can be viewed as recognizing incident patterns from the incident-free patterns. A
neural network classifier has to be trained first using incident and incident-free traffic.
data. The dimensionality of the training input data is high and the embedded incident
characteristics are not easily detectable. In this article we present a computational model
for automatic traffic incident detection using discrete Wévelet transform, linear
discriminant analysis, and neural networks. Wavelet transform and linear discriminant
analysis are used for feature extraction, de-noising, and»effective preprocessing of data
before an adaptive neural network model is used to 'maké the traffic incident detection.
Simulated as well .as actual traffic data are used to test the model. For incidents with
duration of more than five minutes, the incident detection model yields a detection rate of

nearly 100% and false alarm rate of about 1% for two- or three-lane freeways.



1. INTRODUCTION

Stephanedes et al." used a moving average method to reduce the effect of random
fluctuations in the traffic on the incident detection algorithm. They average the
differences in the occupancies at upstream and downstream locations over 3-minute
periods using data recorded at 30-second intervals. Their comparison with other existing
approaches showed improvement in reducing the false alarm rates. They report a
detection rate of around 90% for a false alarm rate of about 1%. They also note that “the
algorithm performance may exhibit varying degree of transferability across test
locations”. To take into account the uncertainty and imprecision inherent in the incident
deteqtigng, researchers havg:_ recently explored_the use of new computing approaches such

as fuzzy logi.cg’ﬁ and neural networks>® to improve the incident detéctidn rate wrch
simultaneous reduction in false ala;'ms. Neural networks are known as a powerful method
for pattern recognition and classification®. The price to pay for their adaptive learning
capability is often the need for large computational resources when the problem is
complicated requiring a large network and a large number of training instances. As an
example, if we use an 8-minute traffic pattern with 30-sec. intervals and upstream and
downstream traffic volumes and occupancies as input, then the number of input nodes for
the neural netv&lfork model will be 4x8x2 = 64. If we use one hidden layer with the same
number of nodes as the input layer then the number of links connecting the input layer to
the hidden layer would be 64x64 = 4096. This means we have to solve a large
optimization problem with 4096 + 64 = 4160 variables (aséuming one output node) in
- order to find the 4160 weights of the network. Further, a few hundreds fraining instahces

are needed to train such a large network.
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In order to reduce the high dimensionality of the network and improve its
computational efficiency, we first employ a two-stage feature extraction model using the
discrete wavelet transform and linear discriminant analysis, as described in the
companion paper'*. This will reduce the number of nodes in the input and hidden layers
for the aforementioned example to 4, thus reducing the size of the network substantially

and resulting in significant computational efficiency (Figure 1).

A robust feature extraction algorithm also helps reduce the dimension of the input
space for a neural network model without any significant loss of related traffic

information, resulting in a substantial reduction in
o the network size (i.e., the number of nodes in the input and hidden layers),

o the effect of random traffic fluctuation on the learning curve of the neural network,

(Learning curve for any neural network is defined as the relation between the mean

squared error of the output and the number of iterations required for the training. As-

the random traffic fluctuations are reduced the total number of iterations required for

convergence reduces t00.)

¢ the computational resources required to train the network, and

o the required number of training samples (that means more accurate generalization).

Backpropagation neural network'® has been used to solve the traffic incident
detection problems’m. The attraction of backpropagation is its simplicity. But, it suffers
from a number of}shortcomingsl’w:

1. It often requires a very large number of iterations for convergence,

2. Its convergence depends heavily on the selection of two problem-dependent

parameters, learning and momentum ratios, that have to be selected by trial and error,



‘3. It suffers from the hill-climbing problem, that is entrapment in a local minimum.

In this work we use the adaptive conjugate gradient neural network learning
algorithm of Adeli and Hung', which combines the conjugate gradient method originally
proposed by Fletcher and Reeves’ and modified by Powell'? with an inexact line search

with three criteria for finding the optimal search direction.

2. ADAPTIVE CONJUGATE GRADIENT NEURAL NETWORK LEARNING

MODEL

The conjugate gradi__ent méthod is based on the steepest descent method where
weight changes are made along the .direction resulting in the maximum decrease in the
system e#or. Determination of thel step length of a gradient-based optimization algorithm
has a significant impact on its efficiency’. A very accurate or “exact” line search requires
many function evaluations thus making the algorithm prohibitively and unnecessarily
expensive. An appropriate inexact line search algorithm can determine the step length,
within a small percentage of that found based on an exact search. Adeii and Hung' use
the backtracking inexact line search algorithm of Dennis and Schnable®, the step length
selection terminating criterion of Armijo* to ensure the step length is ﬁot too large, the
terminating criterion of Goldstein® to ensure the step léngth is not '_too small, and the

direction conve o ensure that the descent direction is always
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The steps of the adaptive conjugate gradient algorithm for training of neural

networks are presented here briefly. For a classification problem involving T decision

variables, the training of the network is started using a randomly generated initial weight
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vector of (W’ eRT). Two stopping criteria are provided for convergence, one for the
gradient vector (€ =107 to 10°®) and one for the minimum system error (0.01 or 0.001).
The minimum (minlen) and maximum (maxlen) step length is set to 0.0001 and 100,
respectively. The initial search direction is set to 0. The parameters € and £ are chosen
equal to 0.9 and 0.01, respectively, per Adeli and Hung®. The outer iteration number, n, is
set to 1. The decision variable counter, t, is set to 0.

1. Steps (a) through (e) are carried out for p training samples (k =1 to p)..

a) FeedfforWard procedure is performed on the neural network. The output of any

node k in layer i+1 is calculated by:
ot = 4(P) M

where

y
P=>wof and 4= — )
i=1

P is called the pre-processing function and A is called an activation function.

b) The system error is calculated for the k™ training instance. In the traffic incident

detection case, there is only one output node so the error will be just the square of

the difference between actual ( y, ) and actual output (o, ).
1 2
E, ZE(J’k __Ok) (3

¢) The deltas in the output layer for the k™ training instance are calculated as

follows:

S, == 0)(1~ 0,) 0 | @ -



d) Deltas for the hidden layers are then calculated back, propagating the error: E

5,:'4 =0, (- okq)Z(é',qui) (5)

g

e) The gradient vector for the k™ training instance is calculated as: i

aE + i
VE, = —— =570, ©) r

ar ’

. The total system error is then calculated by adding-up the individual errors .from step
1(b). If the total system error satisfies the minimum error convergence criterion, the
training is completed. Otherwise, the gradient vector for the total system error is
calculated. A new search direction is assigned as negative of the gradient vector as

follows:

a® - —VE (W®) %)

—-

If the gradient vector satisfies the convergence criterion IVE(W ™) < gthen the

training is stopped and the weight vector obtained is the final solution. Otherwise,

following steps are performed.

s

. The decision variable counter (t) is increased: t =t + 1. If t > T, that is if t exceeds

the number of decision variables, then it is set to 0 (t = 0). If t = 1, &, is set to 0. \

| {
Otherwise, a new conjugate direction is calculated as follows: :
I
d®=_VE(W®)+q,d"" (8)
!
where k
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a, = max+0, |VE (w(*‘-”}’ )
and
veh = VE(W®) - VE (We) (10)

4. The inexact line search algorithm is performed to calculate the step length A . First,

A is initialized equal to one. Then, the Armijo* criterion is applied to ensure the step

length is not too large. If the step length is too large, step 10 is carried out. Otherwise,

the Goldstein® criterion is applied to ensure the step length is not too small. If this

criterion is satisfied then step 8 is carried out where a new search direction is

calculated using the new value of A. If the Goldstein® criterion is not satisfied then

value of A is checked. If its value changeé (that is A#1), then step 6 is carried out.

Otherwise, next step is performed.

. A new A value is set as follows:

A=min (24, , maxlen) ‘ an

n?

A new search direction d®*is calculated (Eq. 8). Using this new search direction
Nocedal'! direction convergence criterion is checked. If the direction convergence
criterion is not satisfied then step 6 is carried out. If the direction convergence
criterion is satisfied then Goldstein® criterion is checked. If Goldstein criterion is not

satisfied or if A value becomes greater than maxlen, step 6 is carried out. Otherwise

this step is repeated.



10.

11.

12.

13.

If A<1,or,if A>1 and direction convergence criterion of Nocedal'! is not satisfied

then step 7 is carried out. Otherwise, step 12 is carried out directly.

A new value of A is calculated using backtfacking and parabolic interpolation. A
new search direction is calculated using Eq. (8). This is repeated until both N_ocedal“

and Goldstein® criteria are satisfied simultaneously. Then, step 12 is carried out.

A new search direction is found and checked for the descent condition criterion of
Nocedal'. If it is satisfied then step 12 is carried out directly. Otherwise, the next step

is performed.

A new A is found by backtracking and a new search direction is computed (Eq. 8).
This step is repeated until the gradient descent condition of Nocedalbll is satisfied..

Then step 12 is carried out directly.
If A < minlen, Ais setto 0 and step 12 is performed.

If A= 1.0, backtracking is performed using parabolic interpolation to find a new 1.

Otherwise, cubic interpolation is used to find anew A.

If this step is executed directly after step 7, 8, 9 or 10 then the inexact line search
algorithm is stopped and step 13 is performed. Otherwise, step 4 is carried out using a

new value of 4.

Weight vector is updated along with the iteration counter as follows:
WD =W 4 4 g® - (12)
n=n+l (13)

If n exceeds the specified maximum number of iterations the training is stopped.
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14. If step 14 is executed directly after step 2 or step 3, then stop. In this case weight

vector obtained is the optimum weight vector.

This algorithm is repeated after every T iterations (for T decision variables), and

. @, 1s set to zero for the t = 1.

3. INCIDENT DETECTION RESULTS USING VARIOUS APPROACHES
As discussed in the companion paper'* the actual data obtained from several state
departments of transportation including Minnesota DOT were not sufficient to train the

classifiers and the neural network. Consequently, the results presented in this section are

- based on simulated data using TSIS/CORSIM developed by ITT Systems and Sciences

Corporation (http://www.fhwa-tsis.com). Three types of traffic data are used and :
investigated: traffic volume, traffic occupancy, and average vehicle speed.

Deciding on the data polling frequency, that is the data-recording interval, is
crucial in developing an automated freeway incident detection and management system.
If the interval is very small, say 5 sec., then the change in the traffic data per intel;;/al may

not be noticeable and the hardware and computational cost can become prohibitively

high. The increase in the computational cost will be due to an increase in the size of the

network as well as the required number of training instances. On the other hand, if this

interval is made large, say 5 minutes, then it will take a relatively long time to detect the

incident and take appropriate recovery measures such as re-routing the traffic or

providing emergency medical assistance. A data polling period of 20-40 sec is commonly

used in automatic traffic incident detection models. We have used 30-sec intervals for the

simulated traffic data.


http://www.fhwa-tsis.com

The distance between the sensors also affects the incident detection rate and
specially the time to detect the incident. If the distance is too small, say a couple of
hundred meters, the number and cost of sensors needed to cover the same segment of the
freeway will increase. On the other hand, if this distance is too large, say a few
kilometers, the sensors will take a long time to detect the incident and may not detect
small incidents at all. The appropriate distance appears to be in the range of 2000-3000 ft
(600-900 m). The lower end of the range can be used for the critical sections of the
freeway where the probability of incident dccunence is high, such as before the exit ramp
and after the entry ramp, or where there is a reduction in the number of lanes. These are
considered critical sections because of a large number of lane changes which is one of the
maiin’ factors Caﬁsing ihcide;lts.

The incident détection rate is mainly éovemed by the upstream traffic patterns
and the incident detection time is mostly governed by the downstream traffic data,
Because an incident has a major impact on the upstream traffic and a relatively minor
impact on the downstream traffic flow (especiaily the occupancy). However, these
changes in the downstream traffic flow are immediate after the traffic incident as
compared to those of the upstream &afﬁc flow, which explains their impact on the

detection time.
The traffic incident detection results presented in this section for various
approaches are for a straight two-lane freeway segment (in one direction). The simulated

data used for testing include 45 incidents with traffic volume varied from 300 to 2000

vehicles/hour per lane. In the subsequent section, we will consider the effects of
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geometry, such as curvature and the number of lanes on the performance of the incident

detection algorithm.

- 3.1LDA

We will investigate the application of linear discriminant analysis in two different

ways, as a linear classifier and as a feature enhancer. As a linear classifier, it is applied to

all the data series simultaneously using a single data point from each data series, without -

“using neural networks. As a feature enhancer, it is applied to each data series separately

“and the resulting traffic parameter values are used as input to the neural network model.

Table 1 presents the classification results using three different types of LDA classifiers

described in the companion paper'®. It includes the incident detection rate, the false alarm _

rate, and the mean time for'défection.‘ These results show that LDA by itself is a poor.
classifier for the problem at hand.
3.2 DWT and LDA

Table 2 presents the classification results when the wavelet transform is preceded

by the LDA. The results show improvement over LDA, but still not acceptable. However,

“the results of the two-stage feature extraction model presented in Samant and Adeli'* can

'be used as input to a neural network model described in the previous section to obtain an

accurate incident detection model, as presented subsequently.

3.3 ACGNN

In this work we will investigate various combinations of different traffic data
series such as traffic volume, occupancy and average vehicle speed at upstream and
downstream stations. Parametric studies will be performed to find out the most effective

combination of the traffic data series.

11



Table 3 shows the results of traffic incident detection usmg three different types
of traffic data and their combinations employing the ACGNN learning model. It is
observed that the combination of all three parameters yields the best incident detection
rate of 91.1% and the lowest false alarm rate of 5.1%. But, the results are only slightly
better than those obtained from the combination of the traffic volume and occupancy with
the corresponding numbers of 88.9% and 5.1%. Considering the fact that the three-
parameter traffic data input increases the number of nodes in the input and hidden layers
by a factor of 1.5 and the number of links (and the unknown weights) cennecting the
hidden layer to input and output layers by a factor of 1.5=2.25, we will choose the trafﬁc
volume and occupancy as the mput parameters for the final incident detection algorithm.

The results presented in Table 3 show that the ACGNN is superior to the
combination of DWT and LDA (Table 2). However, the 5.1% rate of false alarm is still
too high. This can be explained by the fact that the incident and incident-free domains. are

not easily separable using the original unfiltered data.

3.4 DWT, LDA, and ACGNN

Table 4 shows the incident detection results employing the ACGNN algorithm
after the filtering and preprocessing of data by DWT and LDA using the traffic volume
and occupancy as input data. As explained in Samant and Adeli'* the traffic data are first
filtered using DWT and multi-resolution analysis and the high-resolution components are
discarded. The low and medium resolution components are found to be sufficient for
representing the traffic flow.

After the vwavelet transform is performed, the resulting data can be applied to

LDA or ACGNN in two different ways. Wavelet transform coefficients can be used

12
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directly as the input to LDA or ACGNN. Alternatively, the traffic signal can be re-
generated using an inverse of the DWT and setting the high-resolution coefficients equal

to zero. The results for both cases are shown in Table 4. The two methods yield

-comparable results. Re-generating the traffic signals is an additional and unnecessary

computational burden. While the wavelet transform coefficients have no physical
significance their use is adequate and therefore recommended for computational
efficiency.

It is observed that the new computational model for traffic incident detection
based on preprocessing of the traffic data by DWT and LDA followed by application of

the ACGNN yields a high incident detection rate of 97.8% and a low false alarm rate of

‘around 1%. Further, the mean time for detection is about 38 seconds.

The traffic data obtained from Minnesota DOT included only two incidents over a

150-min. period. We used these data to test the new incident detection model trained .

using the simulated data. The model detected both incidents with time to incident

detection of less than a minute.

4. EFFECT OF DATA FILTERING USING DWT
In order to see the effect of DWT on improving the performance, the raw
upstream and downstream traffic volume data obtained from Minnesota DOT as well as
the data filtered by DWT are shown in Figures 2 and 3, respectively. These figures show
the incident and incident-free regions are more distinct after the data are filtered using

DWT. This helps the neural network model classify the incident and incident regions

" more effectively resulting in better incident detection and low false alarm rates. Further,

13



this helps improve the convergence of the ACGNN learning model substantially, as . -

shown in Figure 4.

5. RELATIVE CONTRIBUTION OF DWT AND LDA FOR FEATURE
EXTRACTION
Our feature extraction model is a two-step algorithm consisting of DWT and
LDA. In order to investigate their relative contribution in feature extraction, we also used
DWT as the sole feature extractor. The results are shown in Table 5. A comparison of the
data in Tables 4 and 5 indicate »that most of the feature extraction capability is due to
DWT. LDA has a smaller contributién towafd improving the incident detection. Oné can

- . say it has a fine tuning effect for reducing the false alarm rates.

6. EFFECTS OF FREEWAY GEOMETRY ON THE INCIDENT DETECTION
In order to show the efficacy and robustness of the new incident detection
algorithm in various situations we performed a parametric study. To investigate the effect
of various geometric changes on the incident detection algorithm, we used 65 incident
test runs with minimum incident duration of 5 minutes and minimum traffic flow of 50%

of the freeway capacity. Selected results of this study are presented here.

6.1 Effect of Curyature

Freeway geometric features such as grade, super-elevation, curvature, and
pavement conditions do not affect the incident detection algorithm directly. They may
have an indirect effect. For example, an incident on a curved freeway often causes more
congestion than a similar incident on a straight segment. As a result, smaller duration

incidents can cause sufficient congestion to get detected by the incident detection
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a_lgorithm. As an example, Figure 5 displays an instance 45 seconds after a simulated
incident on a curved freeway. Comparing the results obtained for a curved freeway
segment with those obtained for the straight freeway segment in Table 6, it is concluded
that the curvature does not have an appreciable effect on the incident detection and false
alarm rates of the incident detection model. However, the detection time for the curved
segment is lower than that for the straight segment, because freeway gets congested

faster.

6.2 Effect of Number of Lanes

The number of lanes in a freeway also affects the incident detection time and the

~ detection rate of the incident detection algorithm. For similar incidents, having similar

blockage characteristics as well as duration,. the percentage changes in the traffic '
parameters are smaller for a larger freeway. Consequently, it takes more time to detect an
incident as number of lanes increases. An example of an incident on a five-lane freeway -
is shown in Figure 6(a) to 6((:). Figure 6(a) shows the traffic pattern 45 seconds after the
incident. Normally, this type of incident involving a lane blockage on a two-lane freeway
(in one direction) gets detected within this time range. But for an incident on five-lane
freeway (in one direction) two to four minutes may be required to detect the same. Figure
6(b) shows the traffic pattern 3 minutes after an incident. Figure 6(c) displays the incident
characteristics.

For a small-duration incident the incident may not get detected. Thus, it affects
the detection rate of an incident detection algoﬁ&m. The detection rate computed for a
five-lane freeway is aBout 94% and the average detection time is 2 minutes and 47

seconds. The false alarm rate remains practically the same. Figure 7(a) and 7(b) show the

15



effect of the size of the freeway (number of lanes) on the incident detection rate and time
for detection, respectively. It is observed that change in the detection rate and time is
much higher for ACGNN using raw data than for the ACGNN using data filtered by

DWT and LDA.

7. CONCLUSION

In this and the companion papers, we presented a robust incident detection
computational model and algorithm through adroit integration of three different
computational approaches/disciplines: signal processing and wavelet transform, statistical
linear discriminant analysis, and artiﬁcial neural networks. For incidents with duration of

more than five minutes, the algorithm yields a detection rate of nearly 100% and false

alarm rate of about 1% for two- or three-lane and freeways. For incidents with duration of .

less than 5 minutes, the incident detection rate for two- or three-lane freeways is about

98% with a false alarm rate of about 1%.

For four-lane and five-lane freeways, the detection rate is reduced to 96%
and 94%, respectively, but the false alarm rate remains around 1%. It is also observed

that the freeway curvature does not affect the performance of the algorithm.

There is one type of incidents that the new algorithm canﬁot detect, that is the so-
called i;volated incident where there are no appreciable traffic volume and occupancy
changes. Because the incident dete.ction model considers the variations in traffic
parameters obtained from loop detectors to detect the incidents. To detect the isolated

incidents visual sensor input is needed.

16
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Table 1 Incident detection results using LDA only

Incident detection False alarm Mean time for
Classifier
rate (%) Rate (%) detection
'NMC (Nearest Mean) 62.2 (28/45) 14.9 (107/720) 73.2 sec.
FLD (Fisher LD) 68.9 (31/45) 13.8 (99/720) 69.5 sec.
Regularized FLD (8 = 20) 71.1 (32/45) 13.1 (94/720) -69.1 sec.

Table 2 Incident detection results using DWT and LDA

Incident detection False alarm Mean time for
Classifier .
rate (%) rate (%) detection
NMC (Nearest Mean) 71.1 (32/45) 10.0 (72/720) 70.7 sec.
FLD (Fisher LD) 711 (32/45) 9.4 (68/720) 68.9 sec.
Regularized FLD (8 = 20) 73.3 (33/45) 8.5 (61/720) 67.2 sec.
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Table 3 Study of traffic parameters using ACGNN

Vol. + Occupancy + Speed

91.1 (41/45)

Incident detection False alarm Mean time for

Traffic Data rate (%) rate (%) detection
Volume (vehicles/hr) 75.5 (34/45) 9.6 (69/720) 63.8 sec.
Occupancy (%) 71.1 (32/45) 9.3 (67/720) 59.7 sec.
Avg. Speed (miles/hr) 68.9 (31/45) 8.9 (64/720) 68.9 sec.
Vol. + Occupancy 88.9 (40/45) 5.1 (37/720) 51.4 sec.
Vol. + Avg. Speed 84.4 (38/45) 6.0 (43/720) 52.5 sec.
5.1(37/720) 47.6'sec.

Table 4 Incident detection results for a straight two-lane freeway segment using

DWT, LDA and ACGNN
Incident detection | False alarm Mean time for
Input Dat
Hput Lata rate (%) rate (%) detection
Using wavelet coefficients 97.8 (44/45) 1.0 (7/720) 38.9 sec.
Using re-generated traffic signals 97.8 (44/45) 1.1 (8/720) 38.1 sec.
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Table S Incident detection results using DWT and ACGNN

Incident detection | False alarm Mean time for
Input Data " .
rate (%) rate (%) detection
Using wavelet coefficients 97.8 (44/45) 1.8 (13/720) 40.1 sec.
Using re-generated traffic signals 97.8 (44/45) 2.1 (15/720) 39.8 sec.

Table 6 Effect of curvature using DWT, LDA, and ACGNN

Incident detection | False alarm Mean time for
Input Data )
rate (%) rate (%) detection
Two-lane straight freeway 100.0 (65/65) 1.2 (16/1300) 47.8 sec.
Two-lane curved freeway » 100.0 (65/65) 1.4 (18/1300) 40.2 sec.
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5
Figure 6

Figure 7

Figure 8

CAPTIONS FOR FIGURES
Artificial neural network for traffic incident detection
problem

Comparison of raw and filtered data for upstream traffic

(from Minnesota DOT)

Comparison of raw and filtered data for downstream traffic

(from Minnesota DOT)

Convergence curve for ACGNN learning model for a two-

lane straight freeway segment

An incident on a curved freeway

An incident on a five-lane freeway

~ Effect of size of a freeway (number of lanes) on the

incident detection rate

Effect of size of a freeway (number of lanes) on the

incident detection time
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Traffic Volume per 30 seconds
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Upstream traffic data from Minnesota DOT
(Filtered Data using DWT)
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Downstream traffic data from Minnesota DOT
(Raw Data)
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Traffic Volume per 30 seconds

Downstream traffic data from Minnesota DOT
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ENHANCING NEURAL NETWORK TRAFFIC INCIDENT DETECTION
ALGORITHMS USING WAVELETS

A. Samant' and H. Adeli’

ABSTRACT: Researchers have presented freeway traffic incident detection algorithms
by combining the adaptive learning capability of neural networks with imprecision
modyeling capability of fuzzy logic. In this article it is shown that the performance of a
fuzzy neural network algorithm can be improved through preprocessing of data using a
wavelet based feature extraction model. In particular, the discrete wavelet transform
(DWT) de-noising and feature extraction model proposed by Samant and Adeli (2000) is
combined with the fuzzy-neural network approach p{escnted by Hsiao et al. (1994). It is
shown that substantial improvement can be achieved using the data filtered by DWT. Use
of the wavelet theory to de-noise the traffic data increases the incident detection rate,
reduces the false alarm rate aﬁd the incident detection time, and improves the

convergence of the neural network training algorithm substantially.

'Graduate Research Associate, *Professor, Dept. of Civil and Environmental Engineering
and Geodetic Science, The Ohio State University, 470, Hitchcock Hall, 2070 Neil

Avenue,’Columbus, OH 43210.



1. INTRODUCTION
Fuzzy logic was created by Zadeh (1978) to model the imprecision or uncertainty
involved in the human decision-making process. For modeling imprecision a fuzzy logic
system usually consists of three components:
1. Input fuzzification. It transforms the input values to the degree of membership values
using linguistic rules and the concept of membership function.
2. Knowledge or inference rule base. It is a collection of inference or heuristic rules. In
the freeway traffic incident detection problem, an example of an inference rule is
If (traffic volume is high AND occupancy is low AND average vehicle speed is

high) THEN occurrence of incident is impossible.

Based on the degree of membership values for the input variables (traffic volume,
occupancy, and the vehicle speed) in the antecedents of all the applicable rules,
degrees of membership are computed for the consequences of the rules (incident or
no-incident) using fuzzy operations such as fuzzy-AND and fuzzy-OR.

3. Output defuzzification. It takes the output from the inference rule base and defuzzify

it to produce the output variable for decision making.

A few researchers have presented freeway traffic incident detection algorithms by
combining the adaptive learning capability of neural networks with fuzzy logic. Hsiao et
- al. (1994) present a Fuzzy Logic Incident Patrol System (FLIPS) for the freeway traffic
incident problem by treating threshold as variable and finding its values using fuzzy logic
rules and membership functions. They use the simple backpropagation (BP) neural

network learning rule (Rumelhart et al., 1986, Adeli and Hung, 1995) and bell-shaped
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membership functions. They test the model using an “empirical data base collected in
Toronto, Canada”. They report detection rates in the range of 54% (with a false alarm

rate of 0%) to 90% (with a false alarm rate of 7.9 %)).

A main reason for unreliability of the traffic incident detection algorithms is the
noise in the traffic data. In other words, the traffic data are often corrupted as they are

collected by sensors and then transmitted to a central processing station. To eliminate

false alarms an effective traffic incident detection algorithm must be able to extract

features from the traffic patterns, which are related to thé incident. A robust feature
extraction algorithm also helps reduce the dimension of the input space for a neural
network model without any significant loss of related traffic information, resulting in a
substantial reduction in the network size, effect of random traffic ﬂu'c':tua-tions, number of

required training samples, and computational resources required to train the neural

network.

Samant and Adeli (2000) present an effective traffic data de-noising and feature
extraction model using discrete wavelet transform (DWT) and linear discriminant
analysis. The DWT is first applied to raw traffic data and the finest resolution coefficients
representing the random fluctuations of traffic are discarded. Next, LDA is employed to
the filtered signal for further feature extraction and reducing the dimensionality of the

problem. The results of LDA are used as input to a neural network model for traffic
incident detection.
In this article it is shown that the performance of a fuzzy neural network

algorithm can be improved through preprocessing of data using a wavelet-based feature

extraction model. In particular, the DWT de-noising and feature extraction model

LI



proposed by Samant and Adeli (2000) is combined with the fuzzy-neural network
approach presented by Hsiao et al. (1994). It is shown that substantial improvement can

be achieved using the data filtered by DWT.

2. DISCRETE WAVELET TRANSFORM

The wavelet transform is found to be an effective tool in signal and image
processing due to its attractive properties such as ‘time-frequency and multi-resolution
analysis (Daubechies, 1992; Jameson et al., 1996; Mallat, 1998). Using these properties
one can extract the desired features from an input signal characterized by certain local

properties in time and Space. A feature extraction approach using wavelet transform is

used to achieve higher level of accuracy in the decision making process by the fuzzy

neural rietwork 'ailgofithm; The details of the feature extraction model for the traffic

incident detection problem are pres¢nted in Samant and Adeli (ZOOO). The basic idea is
briefly described here in non-mathematical terms.

We view the traffic flow as a signal, with traffic incidents as well as other traffic
patterns such as traffic bottleneck or compression wave having different time-space

properties. We use the wavelet transform to extract the specific features distinguishing

such traffic patterns as it can extract features from different time scales having different
resolutions quite effectively.

For the traffic incident detection problem, we consider various traffic data
recorded at a fixed time interval as input for DWT. Each of these data series can be

represented by x[j], where jeZ and Z is a set of integers (square brackets represent a

T



series or a sequence and circular brackets represent functions). The output of the DWT

consists of the coordinates f3,[/] and A,[/]of the orthonormal wavelet bases
k
B, = (xik], 4, ,[k]) and I =7 (D

2,10y = (xlk), v, K1) ; 1=§ and j=1,2,...,1 @)

where ( ) denotes the inner product of the two sequences, k represents the total number
of input data points, / represents the number of coefficients of each data series such as
traffic volume or occupancy, {¢,. ; }/ez and {\y i }IeZ (the brackets {} denote a set of series)

represent scaling and wavelet functions (Daubechies, 1992; Farge et al., 1993),
fésbectively, énd I is a positive integer. We use Daubechies wavelet function as it is
found to be quite effective in digital signal processing. The value of / is chosen such that
the desired level of resolution is obtained and j = 1, 2,..., I The coordinates § and A are
in fact, low and high-resolution coefficients of the given data series x[k], respectively.
The cQordinates of the wavelet bases ( fs and As ) are computed using a concept called the

quadrature mirror filters (Wickerhauser, 1994).

To extract the traffic incident pattern from the traffic data we perform multi-
resolution analysis of the wavelet transforms of traffic patterns. Multi-resolution analysis
iﬂvolves dividing the original signal (e.g. tréfﬁc volume or occupancy) into signals
having different frequencies and time localizations and analyzing the signal in different

scales.



3. ARCHITECTURE

The architecture of the enhanced iﬁcident detection model is represented
schematically in Figure 1. The learning block shown in this figure makes use of the fuzzy
logic rules and guides the fuzzification and the defuzzification blocks to learn the
membership functions. Different types of membership functions such as triangular,
trapezoidal, and bell-shaped have been used to solve various problems. We employ the

same bell-shaped membership function used by Hsiao et al. (1994) in the following form:

(_(u, - n:?)IJ
” | 3)

where u, is the i input variable, m; and o are the mean and the variance of the M
fuzzy set of the i input variable, and v, is the output of the input membership function

providing degree of membership for the /™ fuzzy set. Thre¢ fuzzy sets are defined for
each one of the three traffic variables as: low, medium, and high.

The fuzzy wavelet neural network for the incident detection problem consists of
an input layer with three nodes representing traffic volume, occupancy, and vehicle speed
and an output layer with a single node with two output states representing incident and
no-incident (Figure 2). The traffic data are de-noised using DWT. The filtered data from
the input layer is transferred to an input membership function layer where each node
calculates the degree of membership of input data in each one of the three predefined
fuzzy sets (for three linguistic variables low, medium, and high). The output of the input
membership function layer varies from 01t 1, with 0 indicating no membership and 1

indicating full membership.
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The degree of membership values are then passed to a knowledge or inference

rule base. Each fuzzy rule in the rule base performs a fuzzy-AND operation to produce
the feasible range, w, , for the K" fuzzy rule as follows:
w, = min(v,) i=1,2,3 k=123,...,27 “4)

where the input v; is the degree of membership value for the i fuzzy set obtained from

the: input membership function layer. The inference rule base contains twenty-seven

~ fuzzy logic rules given by Hsiao et al. (1994). After obtaining the feasible range for every

rule, the rules having the same consequences, for example, possible occurrence of an

incident, are combined using a fuzzy-OR operation as follows:
x; =min(l, Y w,) Ci=12 (5)
k

where x; is the degree of membership value for the i™ output membership function.
Using these degree of membership values a crisp output is obtained by using a “center of

area” defuzzification method (Lee, 1990) as follows:

Z(m: d:) X;

0= i=1,2 (6)
where m; and o, are the means and the variances of the i output membership function

for the output variable. The value of the output variable, o, can vary between 0 and 1. A
value less than 0.5 indicates the state of no-incident and a value equal or greater than 0.5

indicates the state of incident occurrence.



4. TRAINING OF THE NETWORK

The training of the network requires finding the means (m,j,m;) and variances

(O'y ,0';) of the input and output membership functions. Shortcomings of the BP learning
algorithm such as very slow rate of learning and trial-and-error problem-dependent
selection of learning and momentum ratios have been discussed in the recent literature
(Adeli and Hung, 1994). Since the objective of this article is to demonstrate how a fuzzy
neural network incident detection model can be improved through a DWT feature
extraction model we use the same feed forward BP learning rule used by Hsiao et al.
(1994) to train the neural network.

The training is initialized by providing the desired initial rénges of input and
output fuzzy partitions in the fbrm of means and variances of the membership ﬁlﬁctions.
For example, for occupancy initial mean values of 0%, 50%, and 100% are provided for
the three linguistic variables low, medium and high with a variance value of 30% for each
one. The initialization is done such that the linguistic variable covers the feasible region

of the corresponding input/output space uniformly (Hsiao et al., 1994).
After the initialization the mean and variance values are obtained by minimizing

an crror function in the following form:

(y-o)? | )




where y = desired output and o = computed output. The error is back propagated and the
deltas (Am, Ao) for the output and input membership function parameters are calculated

as follows (Rumelhart, 1986; Hsiao et al., 1994): -

Am = _77_624 and Ao = «77?5- ®)
om oo

where 7 is the so-called learning rate parameter. Using Egs. (6), (7) and (8) the means of

the output membérship functions are updated as follows:

A ™ = (y‘"’ _ o"") o, ®

: ——
E OU;
¢+ (n+l) v (n) '
m " = e Am o

where superscript » is the iteration counter. Similarly the variances of the output
membership functions are updated. The .error in the evaluation of the output membership
functions is back-propagated to the input membership function layer through inference
rule base by a rule matching process and the input membership function parameters are

updated in a similar way.

5. FILTERING OF TRAFFIC DATA USING DWT

The raw traffic data is obtained through simulation of freeway traffic flow using
the TSIS/CORSIM simulation package (http://www.thwa-tsis.com). The traffic flow
parameters (traffic volume, occupancy and vehicle speed) are recorded at 30-second
intervals. DWT is then applied to each of the traffic data series separately. Eight-minute
traffic patterns yielding 16 data points are used at a time for the filtering process. DWT

divides the signal into two parts: high-resolution signal and low-resolution signal. Thus, a


http://www.fkwa-tsis.com

single stage DWT produces 8 high-resolution data points and 8 low-resolution data
points. The high-resolution data points are discarded as they mainly represent the random
fluctuations in the traffic. DWT is again applied to the remaining 8 low-resolution data
points to obtain 4 medium-resolution and 4 low-resolution data points. The traffic signal
is then regenerated using these medium and low-resolution data points which carry the
incident related information. This process is called multi-resolution analysis (MRA) as it
extracts the signals having different resolutions. The new filtered signal is used as a direct
input to the fuzzy-neural network. The linear discriminant analysis used in Samant and
Adeli (2000) is not needed here for feature extraction as the means and variances of the
tratfic data are incorporated in the form of membership function parameters of the fuzzy

sets,

6. INCIDENT DETECTION RESULTS

The fuzzy wavelet neural network is trained using the data obtained from 32

simulation runs, 25 of which include an incident. The network was then tested using 45

new simulated lane-blocking incidents on freeways with different number of lanes.

Figures 3a to 3c show the learned membership functions for traffic volume,
occupancy and vehicle speed, respectively, for a two-lane freeway (in one direction)
using the fuzzy wavelet neural network. We obtained similar curves when the data was

not filtered by DWT.

Table 1 shows the incident detection results for a two-lane freeway (in one
direction) using the fuzzy wavelet neural network model as well the fuzzy neural network

model of Hsiao et al. (1994). Use of the wavelet theory to de-noise the traffic data

"y



increases the incident detection rate from 86.7% to 97.8%, reduces the false alarm rate
from 5.3% to .1.8%, and reduces the iﬁcident detection time from 63.6 second to 48.9
seconds. Figure 4 shows the training convergence curve with and without DWT. It is
observed that use of DWT improves the convergence of the training algorithm
substantially.

Figures 5 and 6 show the effects of the size Qf the freeway (number of lanes) on
the incident detéction rate and time for detection, respectively. In general, the rate of
detection reduces and the detection time increases with an increasé in the number of
lanes. Preprocessing of the traffic data by DWT, however, improves the performance of
the algorithm substantially. Figure 7 shows the false alarm rate as a function of the
number of lanes. The false alarm rate changes little with the number of lanes. It is 1.5-
2.2% for the fuzzy wavelet neural network model and 4.9-6.1% for the fuzzy neural

network model.
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Table 1 Comparative performance of the incident detection models

Incident Detection Incident detection | False Alarm Rate Mean time for
Model Rate (%) (%) detection
Fuzzy neural network 86.7 (39/45) 5.3 (38/720) 63.6 sec.
(Hstiao et al., 1994)
Fuzzy wavelet neural 97.8 (44/45) 1.8 (13/720) 48.9 sec.
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Membership functions for average speed
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AFUZZY-WAVELET RBF NEURAL NETWORK MODEL FOR FREEWAY
INCIDENT DETECTION

Hojjat Adeli' and Asim Karim®

ABSTRACT: Traffic incidents are non-recurrent and pseudo-random events that disrupt the
normal flow of traffic and create a bottleneck in the road network. The probability of incidents
is higher during peak flow rates when their system wide impact is most severe. Model-based
solutions to the incident detection problem have not produced practically useful results -
primarily bec;ause the complexity of the problem does not lend itself to accurate mathematical
and knowledge-based representations. A new multi-paradigm intelligent system approach is
presented for the solution of the proBlem efnploying advanced signal processing, pattern
recognition, and classification techniques. The methodology effectively integrates fuzzy,
wavelet, and neural computing techniques to improve reliability and robustness. A wavelet-
based de-noising technique is employed to- eliminate undesirable fluctuations in observed data
from traffic sensors. Fuzzy c-mean clustering is used to extract significant information from
the observed data and to reduce its dimensionality. A radial basis function neural network is
developed to classify the de-noised and 4clustered observed data. The new model produced

excellent incident detection rates with no false alarms when tested using both real and

simulated data.

! Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University,

Columbus, OH 43210, USA.
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INTRODUCTION

According to one estimate about 60 percent of the total vehicle-hours of deldy on urban
freeways is caused by traffic incidents (Lindley, 1987). In most urban are:as the situation is
worsening with increasing traffic and limited expansion of the existing highway
infrastructure. In fact, most major urban freeways regularly operate at levels above their
design capacities.

The Intermodal Surface Transportation Efficiency Act of 1991 and the National Highway
- System Designation Act of 1995 realize the significance of the situation and require all urban
areas with populations greater than 200,000 to implement a congestion management system
(Cottrell, 1998). A number of major U.S. cities already have a freeway management system in
plac‘e with rembte detection of traffic chéracteﬁsticé and-a c'entrél operation§ center. However,
few make use of an automatic incident detection algorithm for rapid identification and
localization of incidents. In most cases, detection of incidents is done by human operators
monitoring video camera outputs and/or from information obtained from the news media.

Considerable research has been done on the development of traffic incident detection
algorithms in the past three decades. The lack of their widespread use is primarily due to their
unreliability. In the simplest case, incident detection is a cl_assiﬁcation problem with two
desired output classes: incident detected and no incident detected. The misclassification of an
incident into no incident detected and no incident conditions into incident detected (false
al;:lrm) reduces the reliability of the algorithm and makes it less effective for general use.

In this article, we present a new systematic approach to the traffic incident detection

problem employing advanced signal processing, pattern recognition, and classification

techniqueé. The developed model judiciously integrates fuzzy logic, wavelet theory; and
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neural network computation technique;s into an efficient, reliable, and robust algorithm. One
key feature of the new ‘model is noise elimination and signal enhancement to improve
detection and reduce false alarms. The collection and transmission of data introduces random
noise that masks the observed signal and throws off any algorithm based on them. We p;esent
an advanced de-noising technique based on wavelet theory to overcome this problem and

improve the efficiency and effectiveness of the algorithm.

INCIDENT DETECTION ALGORITHMS

Several algorithms have been suggested over the years for automatic freeway incident
detection based on traffic data obtained from fixed detectors. The traffic characteristics
obtained from these detectors and commonly used as input for the algorithﬁ.i‘s‘ 'éire-ithé .tr‘afﬁc
occupancy (the fraction of time a location is occupied by a vehicle expressed as a percentage),
flow rate (the number of vehicles passing a location in unit amount of time), and speed.

The approaches used for the incident detection algorithms range from simple magnitude
comparisons to model-based predictions. The California algorithm (Payne and Tignor, 1978)
is a popular algorithm that compares temporal and spatial occupancy data to predetermined
thresholds in its algorithm logic. The thresholds are calibrated for each on-line
implementation based on the trade-off desired between the detection rate and false alarm rate.
The California algorithm is an example of a multi-detector, comparative algorithm. On the
other hand, the McMaster algorithm (Persaud and Hall, 1989; Persaud et al., 1990) is a single
detector algorithm that is based on a catastrophe theory/model of the traffic flow. Thé traffic

model partitions the flow rate-occupancy behavior among different traffic states. This



information is then used in the algorithm logic together with the speed data to detect the onset
of congestion due to a traffic incident.

Traffic data usually exhibit sudden and large changes in magnitude that reduce the
reliability of algorithms. Statistical techniques for preprocessing the raw data have been
proposed in the past (Dudek et al. 1974; Cook and Cleveland 1974; Ahmed and Cook, 1982;
Stephanedes and Chassiakos 1993). Dudek et al. (1974) use the standard normal deviate of the
data in their threshold-based algorithm, while Cook and Cleveland (1974) propose the use of
double exponential smoothing of traffic data in a similar algorithm logic. Ahmed and Cook
(1982) present a short-time time-series moving average model of occupancy data to determine
large deviations and predict incidents. The Minnesota algorithm (Stephanedes and
CHassiakos, 1993) uses a. moving average smoothing approach to remove high frequéﬁcy
components in observed data. The smoothed data is then employed in the algorithm logic for
incident detection.

More recently research has concentrated on model-free intelligent systems approaches to
the solution of the incident detection problem. These algorithms are either based on fuzzy
logic theory (Chang and Wang, 1994; Lin and Chang, 1998; Weil et al. 1998), neural network
techniques (Cheu and Ritchie, 1995; Dia and Rose, 1997; Amin et al., 1998), or hybrid fuzzy
logic and neural network approaches (Hsiao et al., 1994; Geng and Lee, 1998). Fuzzy logic
theory provides a tool for reasoning about complex systems that effectively utilizes imprecise
and linguistic input (Zadeh, 1978). Chang and Wang (1994) and Lin and Chang (1998)

propose a fuzzy expert system approach for the incident detection problem. The idea is to

build a fuzzy knowledge base from the raw data in the form of fuzzy rules that are then

processed by a fuzzy inference system to identify and classify the relevant traffic states. The
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authors of these articles describe the Adevelopment of the fuzzy rules but present no tested
implementation of the algorithm. Weil et al. (1998) propose a fuzzy logic model of traffic
flow based on a fuzzy partitioning of the traffic data into daily and weekly flow patterns.
Using an unsupervised learning technique the patterns in each partition are classified into two
traffic states, normal or abnormal, where the abnormal state corresponds to congested flow.
This research also does not present any implementation results.

Artificial neural networks (ANN) are powerful pattern recognizers and classifiers (Adeli
and“Hung, 1995). They operate as black box, model-free, and adaptive tools to capture and
learn significant structures in data. The use of ANNs for the identification of incident patterns
in traffic data is presented by Cheu and Ritchie (1995). Three ANN architectures—multi-layer
perceptrdﬁ; .sélf-orgénizing feature map, and adaptive resonance theory model two (ART2)}—
are investigated and compared with three common conventional algorithms using simul;ated
data. Dia and Rose (1997) use field data to test a multi-layer perceptron ANN as an incident
detection classifier. Amin et al. (1998) propose a control model for advanced traffic
management. The traffic flow prediction module is based on a radial basis function network
that can potentially be used for congestion detection. Hsiao et al. (1994) present a hybrid
fuzzy logic-neural network approach for the solution of the traffic incident detection problem.
They use fuzzy ldgic rules to partition and classify observed occupancy, flow rate, and speed
data into possible incident or no incident conditions. A neural network is used to learn the
membership grades needed for fuzzy reasoning. Geng and Lee (1998) use the fuzzy cerebral
model arithmetic computer (CMAC) ANN architecture to learn incident patterns in. traffic

data. The incorporation of fuzzy logic into ANN learning makes the process more amenable to



performance analysis and system output validation. The authors, however, do not present any
numerical results.

A judicious combination of Al techniques and a multi-paradigm approach has. the best
potential to prqvide an effective solution to the incident detection problem (Adeli and Hung,
1995). Work during the past 30 years on developing a model-based solution, either
mathematical or symbolic, has not produced reliable solutions that can be adopted widely in
practice. Currently available algorithms can miss up to 30 percent of incidents and can
produce Va fraction of a percent of tests in false alarms. These performance indicators may look
good but when the algorithm is implemented on an urban freeway management system with
hundreds or even thousands of detector stations it can produce an unacceptable number of
missed detéctions and faise alarmsAs a reSﬁlt; the total cost of operation of these. algorithms
in a practical environment is often too high to justify their deployment._ '_I'he primary reason
for the poor performance of incident detectioﬁ algorithms is the complexity of the problem
that does not lend itself to accurate conventional mathematical and knowledge-based
representation. On the other hand, ANN techniques are self-organizing and learn from
examples. However, it is imprudent to ignore known behavior of traffic flow completely. Our
new approach to be described subsequently is based on a judicious integration of various

problem-solving paradigms.

WAVELET, MULTIRESOLUTION, AND TIME-FREQUENCY ANALYSIS
Basic Concept |
Wavelet analysis is a transformation method in which the original signal is transformed

into and represented in a different domain that is more amenable to analysis and processing.
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The concept of wavelet analysis is sirﬁilar to that of Fourier analysis in that both techniques
decompose the original signal into a linear combination of elementary functions. However,
unlike the sine and cosine harmonics used in the Fourier analysis, wavelet analysis uses a
more flexible wave function called a wavelet that is localized both in time and frequency. The
result is a more informative and useful decomposition of the signal. For example, because of
the compact support of wavelets (i.e. the function exists only over a subset of the input_space
and vanishes outside it) it is possible to localize signal features in both time and frequency by
analyzing the magnitudes of the wavelet coefficients. Fourier analysis, on the other hand, uses
periodic functions with infinite support (i.e. the functions exist over the entire input space)
making it unsuitable for transient sigﬁal analysis. In the following paragraphs we introduce
the mathematics of wavelet a'n& multiresolﬁtion analysis briefly.

Asignal x(¢) € §' can be written as a linear combination of elementary functions v, , ()
x(r):ZwaM(t) j.keZ m
Jok

where {w,,} is the set of coefficients corresponding to the expansion set {y;,} and Z is the
space of integers. A two-dimensional decomposition is necessary to provide time and
freciuency resolution which is iﬁdicated by the subscripts j and k. The signal space S may be
the space of discrete-time sequences or continuous-time functions. Equation (1) is an

expansion series representation of the original signal. The choice of the set {y;,} determines

the usefulness of the transformation.
In general, the expansion set chosen must be able to represent the original signal in a
compact manner. In other words, the choice should result in a representation in which most of

the coefficients {w,,} are insignificant in magnitude. Another consideration in the choice of



the expansion set is ease of computation of both the expansion set and the corresponding

expansion coefficients. In wavelet analysis, elementary functions are obtained in a structured

manner from a single function in the following form:

%NF%ﬂF?J j>0keZ L ®

where y is called the mother or generating wavelet. The integers j and k represent the scaling
and translation values, respectively. In most practical uses, the scaling in Eq. (2) is done in

powers of two. For this dyadic formulation Eq. (2) can be rewritten as

v O =2"y2t-k) j>0keZ y S 3)
When an orthonormal basis is used as the expansion set the coefficients of the expansion

can be computed by an inner product of the signal with the cdrreéponding wavelet:

Wi = (x5 =[x, (Odt X )
Equation (1) with the coefﬁciénts given by Eq. (4) is called the discrete-time or continuous-
time wavelet transform. It is called a discrete-time wavelet transform or discrete v;/avelet
transform (DWT) when x is a discrete-time sequence and a continuous-time transform or
continuous wavelet transform (CWT) when x is a continuous-time function. In the following
discussion it is assumed that the signal is a discrete-time function and Eq. (1) represents the
DWT of the functibn.

Multiresolution Analysis
Multiresolution analysis provides a powerful framework for analyzing functions at various

levels of detail or resolution (Mallat, 1989). Multiresolution analysis entails a sequence of

nested closed approximation subspaces V,, (m e Z), satisfying the following properties:

fin
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eV, ,cVycV,cV,c- 5)

U, =2'® | ©)
(VW = {0} 7
x(eV, o x2)eV,,, . 8
x()eV, =>x(t-j)eV, jezZ )

and there exist a scaling function ¢ €V, such that ¢,, (ke Z) forms a basis of V,. The
scaling function @,, is defined as in Eq. (3). In Egs. (5)-(9), ¥, c¥, means that V, is a

subspace of ¥, U represents the union of spaces, [ represents the intersection of spaces, the
over bar denotes the closure of the space, L*(R) is the space of all square integrable functions

of real variables, and = and < stands for one way and two way implications, respectively.
If Egs. (5)-(9) hold then there exists a set of functions ,, (Eq. 3) suchthat v, (ke Z)

spans W, which is the orthogonal complement of the spaces ¥ and V,,. More specifically, if
{@o.} spans V, then {y,,} spans W, such that

v, =V,®WwW, (10)
and, in general

C(R)=-OW_,0W OW,dW, ®W,®--- (11)
where @ represents a direct sum. This means by starting from a representation of a functjon

belonging to a coarse subspace higher detail or resolution can be obtained by adding spaces
spanned by y/; , at a higher resolution (i.e. given by the next higher value of ).

The function x(¢) can then be represented as



(O =26, 4P O+ DD d W0 (12)
k .

k Jj=Jo
where the first term is a coarse resolutioh at scale j, and the second term adds details of
increasing resolutions. Equation (12) can also be viewed as the time-frequency decomposition
of x(t) where the second term provides the frequency and time breakdown of the signal. The
nesting of spaces achieved by multiresolution and time-frequency analysis is shown

conceptually in Figure 1. Note that spaces spanned by different scales of wavelets are

orthogonal to each other because they do not overlap (non-overlapping functions are always

orthogonal).

Computation of the DWT

- In practical wavelet analysis of discrete signals we usually do not have to deal with the "

- functions themselves but instead work with discrete coefficients. If {p ;x4 and {y;,} form an
orthonormal basis of L*(R), which is true for most wavelet systems used in practice, the
expansion coefficients c;, and d;, can be found by taking the inner products of the basis
functions and the original signal. Using the properties of the wavelet system, Eq. (4) can be

written in terms of the coefficients as follows (Burrus et al., 1998):
¢ip =, lk1= 3 holm=2k]c,, [m] ~3a3)
d; =d,[k1= ) hm=-2klc,,[m] (14)

The sequences h, and A, are called filter coefficients whose values are known for each type of
wavelet system that may be used for analysis. The initial scaling coefficients c; are taken equal
to the original discrete signal. Equations (13)-(14) provide a recursive way to compute the

DWT of a signal. Note that these computations have a finite time complexity as the
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coefficients are of finite length. The inverse DWT is used to reconstruct the signal from the
wavelet coefficients using Eq. (12). In this work we use Daubechies wavelet system of length
8 (Daubechies, 1992). For a more detailed coverage of DWT and its computation see Samant

and Adeli (2000).

SELECTION OF TYPE AND NUMBER OF TRAFFIC DATA

It is important to carefully choose the number, type, and format of input data to be used
for the incident detection algorithm. Most currently used sensors provide the speed, the
occupancy, and the flow rate values at a given location every 20 or 30 seconds. Therefore, the
choice for the type of traffic data has to be restricted to these three types. From these three
c'la;te‘l’types' éﬁly those that gxhibit consistently identifiable patterns for incident and ﬁon—
incident traffic flow conditions should be selected.

In this work, a pattern consists of a time-history of data rather than a single-time: data
value. This pattern preserves the temporal nature of traffic flow and makes distinguishing
between patterns produced by incident and non-incident conditions easier. The distinguishing
feature adopted in this work is the shape of the time-history and not any particular magnitude.
To achieve this, each pattern is normalized to eliminate the effect of data magnitudes on the
classification process. This approach also eliminates algorithm calibration and transferability
issues caused by location specific conditions and temporal traffic flow variations. A single-
station non-comparative approach is adopted in this research. This decision is based on the
analysis of patterns on both the upstream and downstream side of an incident. The upétream
and downstream patterns produced by an incident do not develop at the same time. Therefore,

mixing them reduces the reliability of the algorithm. Furthermore, using patterns ffom



adjacent stations makes the algorithm . dependent on several factors such as incident
characteristics, distance between stations, and existence of on- and off-ramps in between the
stations. The result is calibration problems and poor performance of the algorithm.

The speed and occupancy upstream of a capacity reducing obstruction are found to exhibit
the most significant and consistent change relatively independent of the flow rate (Figure 2a,
b). Consequently, the upstream speed and occupancy time-series data are used as input for the
new model. Each pattern of traffic consists of ¥ data points for the occupancy and the speed
values obtained at the lane sensor immediately upstream of the incident location. From the
algorithmic performance point of view the smallest number that can produce accurate results
must be chosen. Computatiqnally, however, DWT requires N to be a power of 2. Our
numerical expeﬁments iﬁ&iééte N = i6 provides accurate results and is therefore used in the
model. The 16 data points constitute 5 minutes and 20 seconds of data,(if data is obtained
every 20 seconds. This represents a sufficient amount of data to characterize Eefore and after
incident traffic flow conditions and establish the defining shape of the traffic pattern. Eight
data points did not produce good performance while the performance with 32 data points was

identical to that for 16 data points. The normalized occupancy and speed data streams

obtained from a given sensor location are denoted by the sequences x,[n] and x(n],

respectively, where n =1, 16.

WAVELET-BASED DE-NOISING

When a signal is transformed into the wavelet domain it often becomes less complicated
to effectively reduce noise and outliers in the signal. This ease is usually due to a degree of

separation of noise and signal in the wavelet domain. For example, if the noise is made up of
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localized high frequency components in a predominantly low frequency signal then the signal

can be de-noised by the following procedure. Take the DWT of the signal, selectively discard

the higher scale coefficients, and then reconstruct the signal by taking the inverse DWT. This
technique is not optimal and automatic for use in a real-time intelligent system environment.

In particular, no definite criteria are available to determine which wavelet coefficients to

discard in order to produce the best results.

‘In recent years, formal wavelet-based de-noising techniques have been presented in the
literature (Polchlopek and Noonan, 1997; Donoho, 1993, 1995). These techniques perform a
nonlinear filtering on the transformed signal, modifying the wavelet coefficients in such a way
that the inverse transformation yields a de-noised signal.

Donoho (1995) pfesented a‘teéhnique in which the wavelet coefficients are passed through
a nonlinear threshold filter. The resulting coefficients then represent an optimally de-noised
DWT of the original signal. To de-noise each of the data sequences x,[n] and xgn] the
following procedure is employed:

o Calculate the DWT of x[n] to obtain the noisy wavelet coefficients {d;,}. The 16 data
points can be resolved into 4 different frequency bands or scales. The coarsest scale j,
resolved in the DWT is 2 producing 2* = 4 scaling coefficients. At this scale also the
general‘shape of the original sequence is preserved. The number of wavelet coefficients
obtained is (2* — 2%) = 12 corresponding to the two highest scales. Applying the soft-
thresholding on these coefficients will effectively remove the higher frequency

components without distorting the signal.



o Filter the wavelet coefficients wusing the soft-thresholding nonlinearity
n(d) = sgn(d)le - t)+ where (.)" is equal to (.) when (.) is positive and zero otherwise and
the function sgn(.) returns the sign of its argument. The threshold ¢ is given by

t= m where N (equal to 16 in our test example) is the total number of data
poir_lts. |

e Perform the inverse DWT using the scaling and the filtered wavelet coefficients.

The de-noised signals corfesponding to xy[n] and xs[n] .a}re.__denoted by X,[n] and X [n].

These signals will be cleaner versions of the original corrupted signal.

FUZZY DATA CLUSTERIN G

Data clustering techniques extract significant features from data based on given criteria.
The goal is to reduce the dimensionality of the data without losing important information
needed for a particular probleﬁ. Dimensionality reduction is needed to reduce data processing

complexity and increase robustness and efficiency. The data clustering problem can be stated

as follows: Given a set of vectors X = {x,,x,,X,,...,x,} find the set Z={z,,2,,2,,...,2,}

where 2<c<n and x,ze R? such that Z properly characterizes X. The vectors z, represent
classes or clusters in X. In general, data clustering techniques are either based on statistical or
fuzzy logic theory. It has been shown that moét of these techniques have similar properties
and produce comparable results (Dave and Krishnapuram, 1997). However, fuzzy logic
approaches have the advantage of effective handling of imprecision. |

The fuzzy c-means (FCM) clustering algorithm (Bezdek, 1981; Cannon et al., 1986)

performs a fuzzy partitioning of the data set into classes. This is in contrast to crisp
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assignment of data vectors to distin;:t classes employed in classical statistical clustering
techniques. The prefix c in the fuzzy c-partitions refers to the number of classes in each
partition. The clustering problem can be posed as a constrained optimization problem as.
follows:

Minimize

‘Jﬁ(z)zizc:A,f"x, -z _ (15)

i=1 j=1

subject to
D 4;=1 1<i<n (16)
=

A. >0 1<i<n,1<j<c o a17)
where J, is the objective function for a given value of B, 4, is the membership grade of

vector i in class j, and ||| denotes the Euclidean norm. The parameter 4 represents the degree

of fuzziness in the data. This value is often in the range 2 > £ >1. Larger values are selected
for fuzzier data situations. A value of £ =1.5 is chosen in the test example in this work. Note
that ¢, the number of classes desired, is an input parameter. The classes are identified by the

cluster centers z, and the membership of a vector in a given class is determined by its

Euclidean distance from the class center.
In a general FCM formulation the membership grades 4; are also optimization variables.
However, this formulation leads to a non-convex optimization problem that does not always

produce a global optimal solution (Al-Sultan and Fediki, 1997). When using an iterative

15




‘procedure for solving the optimization problem we use the following membership grade

function based on the Euclidean norm (Bezdek, 1981).

l -1
2
f B-1

A,;-H — Z

> 1<i<n, 1£j<c (18)
e

where the superscript # denotes the iteration number.
To cluster the de-noised data séquences X,[n] and x;[n] we define the feature or traffic
pattern matrix X = {X,,X,,X,,...,X, } Where the vector x; is given by
x, ={%,[il, %[} 1<i<N. ( (19
and use the FCM algorithm in the following fonn. )
1. Select an initial fuzzy c-partition by setting up the membership grédes AU such that Eq.
(16) is satisfied. Select a value for £ > 1. Set the iteration counter ¢ = 0.

2. Calculate the class centers for the traffic pattern X.

’ n
m
E A,.jx,.

z, = I<j<c (20)
S

i=l
3. Calculate the updated membership grade using Eq. (18).

4. If the maximum change in the membership grade is less than & , Of
max|4;" - 4l < I<i<nl<j<c @1)

stop. Otherwise, update ¢ = + 1 and go to step 2.

This algorithm is efficient and usually converges in a few iterations.
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The FCM algorithm is used to redﬁce the dimensionality of the feature matrix to obtain ¢
cluster centers z, where 1 < ¢ < N. In the test example, the 16 pairs of occupancy and speed
déta are reduced to 4 (i.e. ¢ = 4) representative samples. This reduced data set contains the
most significant features of the original data and is then used for classification of t;afﬁc
signals into incident and incident-free signals. It should be noted that these computations are
efficient as the FCM algorithm converges in less than 10 iterations and the dimensionality of
the data is small.

RADIAL BASIS FUNCTION NEURAL NETWORK CLASSIFIER

The radial basis function neural network (RBFNN) learns an input-output mapping by
covering the input space with basis functions that transforms a vector from the input space to
thé butput space (Moody and Darken, 1989; Poggio and Girosi, 1990). COnéep_tuaIly,' tile
RBFNN is an abstraction of the observation that biological neurons exhibit a receptive field of
activation such that the output is large when the input is closer to the center of the field and
small when the input moves away from the center. Structurally, the RBFNN has a simple
topology with a hidden layer of nodes having nonlinear basis transfer functions and an output
layer of nodes with linear transfer_functioné.

Figure 3 shows the topology of the RBFNN for the classification of traffic data into two
states: incident and no incident. Therefore, only a single node in the output layer is required.
The input vector is denoted by x and the output is denoted by y. The number of input nodes is
equal to N, which is equal to the product of the number of clusters, ¢ (equal to 4 in our test
example), and the dimension of each cluster (equal to 2, when occupancy and speed is ﬁsed as

in our example). The number of nodes in the hidden layer is equal to the number of cluster

17



centers, 1 <N, <N, for the entire training instances where N, is the total number of training

instances. The cluster centers p, (1<i < N_) is obtained using the FCM algorithm.
The connection from the input node i to the hidden node j is assigned the weight u i
corresponding to the ith component of the vector p ;. Each hidden node produces an output

that is a function of the Euclidean distance of the input vector x from the cluster center p;.In

this work, we use the Gaussian (bell-shaped) function as the transfer function for the hidden

nodes. The output of the hidden node j is then given by

. = exp —M | 22)
J 202

J
where the factor o f controls the spread or range of influence of the Gaussian function

centered at p ;. The output y of the network is given by

Y= Zc¢jlj | | @
J=

where 4, is the weight of the link from the hidden node j to the output node. The output value

of 1 corresponds to an incident classification while a value of —1 corresponds to a no incident
. classification.

The variables 4,’s and y,’s are found by training the neural network off-line. The FCM
algorithm is used to obtain ,.NC cluster centers p; from the N, training instances x. The RBFNN
is trained to find the weights A, by minimizing the error between the network computed
output y and the desired output y,. In other words, to train the network for 1;’s we solve the

following unconstrained optimization problem:
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Minimize E(\) = |y’ - yj| 24
i=l ‘
The gradient descent optimization algorithm is used to solve this optimization problem.

The spread parameters o, ’s can also be treated as variables. However, we found that there

was no improvement in the performance of the classification when the spread parameter is
allowed to adapt. At the same time, including the parameter in the learning process slows

down the training. In this work, the following expression is used to pre-assign the value of

o;:

g,

J =

¢ i=l

This equation approximates the spread parameter o; as one third of the mean distance

between the cluster center at j and all other cluster centers. In this way an adequate amount of

overlap of the basis functions is achieved for classification purposes.

EXAMPLE

The new incident detection algorithm is tested using both simulated and real traffic data.
The simulated data is generated from the simulation software TSIS (Traffic Software
Intégrafed System) (http://www.thwa-tsis.com). TSIS uses a microscopic stochastic model to
simulate traffic flow on freeways. A variety of parameters can be specified to sirhulate
different traffic flow scenarios. By changing the random number seeds for each simulation run
a representative sample is obtained for training and testing. The real traffic data is oiitained

from the - Freeway Service Patrol Project’s [-880 database in Californié


http://www.fhwa-tsis.com

(http://www.path.berkeley.edw/FSP/). The model is trained using simulated data only. The

trained model is then tested using both simulated and real traffic data.
The simulated training and testing data is generated from simulating traffic on a straight
stretch of a two-lane (in one direction) freeway. Traffic enters the freeway section from one

end and exits from the other. Pairs of loop detectors are spaced 450-750 m (1500-2500 feet)

apart. A total of one hundred and fifty 800-second simulations were performed with data

obtained in 20-second intervals. Ninety of these simulations involve a traffic incident while
the remaining sixty do not have any incident. Each incident is modeled by the blockage of one
lane and the reduction in capacity of the adjacent lane. The blockages are evenly distributed
between the two lanes and are located at varying distances from an upstream detector station.
The entry flow rate is varied in 'thé range 20l()0;2500 vehicles per ‘hour. Low demand
conditions are adopted for evaluation because these are the conditions unc_lel_’ which currently
available incident detection algorithms perform poorly.

Thirty incident and thirty non-incident patterns were used for training. It was found that
the basic shapes of the occupancy and speed plots are similar in different incident simulation
runs; the primary differénce is that they are time shifted depending on the location of the
incident downstream of a detector station and the flow rate at the time of the incident.
Therefore, to ensure that the incident patterns are consistent they are extracted from the 800-
second simulations such that the effects of the blockage is pronounced during the last few
values of the sample. Figure 4 shows the normalized occupémcy plots for two simulation runs.
Figure 4a is for an incident 244 m downstream of the detector station while Figure 4b is for an
incident 122 m downstream of thé detector station. Figure 5 shows the corresponding

occupancy incident patterns extracted from these simulations and used for training. Notice the
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similarity of the form of the two péttems. This pattern extraction is essential for robust
classification. For the test example, the RBFNN learned the patterns with a cumulative mean
square error of less than 0.003 in a few seconds on a Pentium II 400 MHz machine.

Testing of Algorithm Using Simulated Data

To test the algorithm the output from the RBFNN is passed through a threshold, ¢, of 0.3.

~ An output greater than or equal to 0.3 is classified as an incident. Otherwise, it is classified as

a non-incident. The model is tested using the simulated data by presenting each of the ninety
800-second simulation as a continuous streaxﬁ of data. An output is produced every 20-second
after the first 320-second (16 data points). An incident is detected when the output becomes
greater than the threshold for the first time. All the 60 incidents were detected correctly during
the testing of the model. Therefore, the detectionj ratels 106 ﬁercent. Also, none of the non-
incident simulations or the incident simulations before the occurrence of the incident (a total
of 360 péttems) were misclassified as an incident. Therefore, the false alarm rate is zero.

The time to detection tends to be somewhat large for flow rates less than the freeway
capacity. Figure 6 shows the variation of the mean detection time of the algorithm with pre
incident flow rate and distance from the upstream detector station.

Testing of Algorithm Using Real Data

The 1-880 database contains loop detector and incident data for a 14.8 km (9.2-mile) long
segment of the freeway from Oakland to San Jose, California. The number of lanes in each
direction varies from three to five. The incident data is recorded by human observers
traversing this segment of the freeway in patrol vehicles. Several incident characterisﬁcs are
recorded including the type of the incident; the location of the ihcident, and the time of

occurrence of the incident. For the testing of the new incident detection algorithm, the



southbound data is processed to extract 21 incidents that block one or more lanes. The loop
detector data are averaged over a 30-second time interval. Our incident detection model
detected 20 of the 21 incidents, resulting in a detection rate of 95.2 percent. The traffic pattem
corresponding to the missed incident did not exhibit the characteristics of an incident
condition. This appears to be an error in the incident data. The incident data, in general, is not
accurate as the location of incidents are reported approximately (like 1 mile from exit) and the
time of the incident is aetually the time at which a patrol vehicle observed the incident and not
the time at which the incident occurred. As a result,’it is not possible to determine the time to
detection which in our tests varied from negative to positive values.

Four hours of incident free traffic data are used for testing the false alarm performance. In
all, 30 patterns were presented to the model. Our new incidenf detectioﬁl fﬁ‘odel 'ceﬁectly
identified all 30 patterns as non -incident patterns. Thus, the false alarm rate is zero.

Note that the model trained using simulated is tested on both simulated and real data
without modification. Also, the simulated data is available at 20-second interval while the real
data is available at 30-second intervals. The model does not require any calibration and can be

used at all locations once it has been trained.

CONCLUSION

A new multi-paradigm intelligent system methodology is presented, for the solution of the
traffic incident detection problem. The methodology effectively integrates fuzzy, wavelet, and
neural computing techniques to improve reliability and robustness of the algorithm. A
wavelet-based de-noising technique is employed to eliminate undesirable fluctuations in

observed data from traffic sensors. Fuzzy clustering is used to extract significant information
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from the observed data and to redu?:e its dimensionality. A radial basis function neural
network is developed to classify the de-noised and clustered observed data. The ﬁew
methodology has been implemented in the combination of C++ and MATLAB programming
environments.

The algorithm was tested using both simulation and real data. One hundred and fifty
simulation runs were performed by changing the blocked lane, the distance of the blockage
from the upstream sensor, and the ﬂow. rate. Under these conditions the algorithm produces
the detection rate 'of 100 percent and the false alarm rate of zero. Real traffic data was
obtained from the I-880 database. The algorithm correctly identified 20 out -of 21 lane-
blocking incidents and did not signal a false alarm in four houl;s of incident free data.

The methodology presented provides a solid foundation for -further' réséarch and
development. We are curréntly investigating approaches to improve the mean detection time

without sacrificing the excellent reliability of the algorithm.
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LIST OF CAPTIONS FOR FIGURES

. Multiresolution function space decomposition using wavelet analysis

. Typical time-histories upstream of an incident (a) occupancy plot, and (b) speed plot

. Radial basis function neural network for discriminating incident and non-incident patterns
. Normalized occupancy plots obtained from simulating traffic on a two-lane freeway
(incident occurs at time 400 second)

. The occupancy incident patterns extracted from the simulations presénted in Figure 7

. Mean detection time of an incident as a function of flow rate and distance from upstream

sensor
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INCIDENT DETECTION ALGORITHM USING WAVELET ENERGY
- REPRESENTATION OF TRAFFIC PATTERNS
Asim Karim' and Hojjat Adeli?

Abstract: Automatic freeway incident detection is an important component of advanced
transportation management systems that provides information for emergency relief and traffic
control and management purposes. Earlier algorithms for the freeway incident problems have
produced less reliable results especially in recurrent congestion and compression wave traffic
conditions. This article presents a new two-stage single-station freeway incident detection model
based on advanced wavelet analysis and pattern recognition techniques. Wavelet analysis is used to
de-noise, cluster, and enhance the raw traffic data, which is then classified by a radial basis function
(RBF) neural network. An energy representation of the traffic pattern in the wavelet domain is
found to best characterizej i‘ﬁéident and. non-incident traffic conditions. False alarm during recurrent
.congestion and compression waves is eliminated by normalization of a sufficiently long tixne-s;eries
pattern. The model is tested under several traffic flow scenarios including compression .Vwave
conditions. It produced excellent detection and false alarms characteristics. The model is

computationally efficient and can readily be implemented on-line in any ATMS without any need

for re-calibration.
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INTRODUCTION

An important component of any advanced transportation management system (ATMS) is the

reliable and efficient detection of traffic incidents. Traffic incidents on heavy demand freeways can = -

seriously disrupt the performance of the entire highway network. From an engineering point of view

the challenge is to localize the disruptive effects of an incident. The key to this problem is the ‘

development of an automatic algorithm that immediately recognizes the presence of a congestion-

inducing incident so that effective control measures can be taken to prevent the spread of the

congestion. A typical urban highway network often has excess capacity at any given time. The goal

is to effectively utilize this extra capacity When a bottleneck occurs.

Traffic incident detection algorithms must rely on daté obtained at periodic time intervals from
traffic sensors or detectors. The common traffic ‘data available for use in incident detection
algorithms are the lane oCCupaﬁcy, speed, and flow rate obtained from -road sensors located every
500 m to 2 km at usually 20- or 30-secoﬁd time intervals. Incident detection algorithms must be
.able to process this information to determine changes in patterns that may indicate an incident
condition. However, incident-like patterns may also be produced by non-incident conditions such as
recurrent congestion during rush hours and banding of vehicles or compression waves. Traffic
incident detection algorithms also have to be able to deal with erroneous data from mal-functioning
traffic sensors effectively.

Over the years researchers have developed numerous .algorithms for the traffic incident
detection (ID) problem (Cook and Cleveland, 1974; Payne and Tignor, 1978; Ahmed and Cook,
1982; Persaud and Hall, 1989; Chassiakos and Stephanedes, 1993, Hsiao et al., 1994; Cheu and
Ritchie, 1995; Dia and Rose, 1997; Lin and Daganzo, 1997; Ishak and Al-Deek, 1998; Lin and
Chang, 1998; Xu et al., 1998). These algorithms range from earlier simple comparative approaches

to more recent pattern recognition and decision-making techniques. The results, in general, have not

1

™a



been very satisfactory and few freeway management systems today employ an automatic ID
algorithm. The complexity arises from both the dynamic and uﬁpredictable nature of traffic flow
and the. unreliability of the installed traffic sensors, which in turn make simple approaches
unreliable.

When a traﬁic incident reduces the capacity below the prevailing flow rate a queue will form on
the upstream direction producing significant reduction in lane speed and significant increase in lane
occupancy. This change in pattern is well pronounced. The queue, however, may develop slowly
depending on the prevailing flow conditions and the number of lanes. closed. Hence the detection
time can be large. On the other hand, the change in the flow pattern downstream of a capacity-
reducing incident can take place within seconds, independent of the prevailing flow rate befofe the
occurrence of the incident. This_ change (de_:f:rgase in lane flow rate and occupancy), however, is not
as significant compared with that occurring on the upstream of the incident. It has been argued that
an algorithm that uses only the downstream readings produces a high false alarm rate and has
difficulty in distinguishing compression waves from incident producing patterns (Weil, et al., 1998).
This argument, however, is often based oﬁ using algorithms incapable of reliably distinguishing the
patterns. |

Recently, Adeli and Karim (2000) presented a computational model for automatic traffic
incident detection using discrete wavelet transform, fuzzy logic, and neural networks. In their
model, the upstream lane occupancy and speed time series data is adopted as the characterizing
pattern for traffic state classification. The raw data is first de-noised by soft thresholding in the
wavelet domain. Subsequently, the de-noised data is clustered by the fuzzy c-means technique to
reduce data dimensionality and enhance feature separation. Finally, a radial basis function neural
- network is developed to reliably classify the de-noised and clustered pattern. The model is tested

with .both simulated and real frafﬁc data producing exéellent incident detection- and false alarm



characteristics. However, the time to detection for the model is long, and depending on the traffic
and incident characteristics can be as large as 5 minutes.

In this article, a new traffic incident detection algorithm is presented that distinguishes
effectively patterns produced by capacity reducing incidents from those produced by compression
waves and recurrent congestion. Furthermore, in most traffic and incident conditions, it signals the
presence of an incident within a minute of its occurrence. Only data available locally at each
detector station are used for processing Computationally, the algorithm is based on an advanced
energy representation of the time-series pattern developed usiﬁg wavelet theory. Thjé approach
effectively enhances the desirable features and de-noises the traffic patterns, which are then
classified using a radial basis function (RBF) neural network. The new algorithm is developed,

described, and evaluated in the subsequent sections.

FREEWAY INCIDENT DETECTION AND PATTERNS IN TRAFFIC FLOW
A freeway incident detection algorithm determines the presence or absence of an incident
condition based on patterns in traffic flow. Therefore, the selection of the number, type, and format
of the traffic data to be used is essential to the reliability of the algorithm. Cﬁnently, most advanced
transportation management systems can provide lane occupancy, speed, and flow rate data from
irregularly spaced sensors at regular time intervals. Hence, a reliable incident detection algorithm
must be based on the use of such data only. In selecting appropriate patterns for an effective
incident detection algorithm we-set three goals.
o First, the selected patterns must consistenﬂy characterize traffic incident conditions and, at the
same time, be distinguishable from other flow conditions such as compression waves.
" e Second, the selected patterns by and large should be independent of prevailing roadway and

traffic conditions to avoid calibration problems.
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e Third, the patterns should indicate an incident condition in less than one minute after the
occurrence of incidence.
In this section patterns in traffic data before, during, and after an incident are investigated to
determine the most appropriate input for the incident detection algorithm. Note that raw traffic data

are analyzed. The pattern identified from this analysis will be processed further to enhance desirable

features. The data presented in this section are obtained from TSIS (http:/www.fhwa-tsis.com), a

traffic simulation software.

' Single-Station Versus Two-Station Incident Detection Approaches

A capacity-reducing traffic incident will produce observable changes in flow conditions at the

‘detector stations immediately upstream and downstream of the incident. In general, these changes

‘consist of an increase in traffic congestion upstream and a decrease in traffic "congestion

downstream of the incident. Based on thése observations, two different approaches—called two-
station éomparative and single-station approaches—have been used to develop traffic incident
detection algorithms. The single-station approach relies on data obtained from only one station
while the twé-station approach makes use of data from two adjaqent stations.

The two-station comparative approach, exemplified by the California algorithm (Payne and
'i‘ignor, 1978), employs both spatial and temporal data in its algorithm logic. The premise is that
using spatial data will reduce false alarms that are produced as a result of changing roadway and
traffic conditions because of the natural canceling effect of comparative analysis (Weil et al., 1998;

Persaud and Hall, 1989; Payne and Tignor, 1978). The California algorithm is a simple threshold-

‘based algorithm that uses only one flow parameter (occupancy). Also, because of its comparative

approach it has to be calibrated at each station to optimize it for the particular roadway geometry.
The two-station comparative approach, in general, has several disadvantages even when

advanced pattern recognition techniques are employed. Traffic incidents are temporal events whose


http://www.fhwa-tskcom

effects develop over time both in the upstream and downstream directions. However, the
characteristics of the traffic patterns developed in the upstream and downstream directions are
different. Therefore, combining data from both stations is likely to produce less reliable detection of
incidents because of the mixing of two different temporal patterns. Two-station comparative
algorithms are also more difficult to calibrate because they are affected by the geometry of the
roadway, the distance between the stations, the presence of on- and off-ramps, and the prevailing
flow conditions.

Figures 1 and 2 shovxjitypical time-series plots of lane occupancy, lane speed, and lane flow rate
at a station upstream and downstream, respectively, of a lane-blocking incident on a two-lane
freewayf Three time-series plots are displayed for three different traffic flow rates of 1000, 1250,
1500 Vghicles pér hour (vph) per lane. The incident occurs at time 400 second. Note that the time at
which: the upstream traffic occupancy and speed change (Figures la and b) depends on the pre-
incident flow rate. The formation of a queue, which produces the significant changes in the traffic

- occupancy and speed patterns, also depends on the reduction in the capacity aﬁd roadway conditions
(not presented in the figures). Figure 1c indicates that there is no significant change in the traffic
flow on the upstream side. On the other hand, on the downstream side, thére are significant changes
in the traffic occupancy and flow rate (Figures 2a and c) but no significant change in the traffic
speed (Figure 2b). As a result, the two-station comparative algorithms that employ upstream and
downstream data together are difficult to calibrate and are likely to produce unreliable detection.

Single-station approaches (Persaud and Hall, 1989; Cook and Cleveland, 1974) do not require
data from more than one station to make a decision on the presence or absence of an incident
condition. As such, their on-line implementation does not reduire expensive continuous

" communication between different detector stations. Furthermore, singie-station patterns are not

affected by the freeway layout and geometry. Recufring changes in traffic flow such as those
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produced by da{ily rush time traffic and bad weather can be handled effectively .by using a
normalization technique, as explained later.

In this research our computational model relies on single-station patterns. Our model can handle
patterns from both upstream and downstream stations. But, there is no comparison of patterns from

the upstream and downstream stations. Rather, each set of patterns are processed independently.

Upstfeam and Downstream Flow Patterns

From Figures 1 and 2 the pattern formed on the upstream or the downstream side of a capacity-
reducing incident each can be used as the basis for an incident detection algorithm. On the upstream
side, the dominant flow pattern is the increase in occupancy and the decrease in speed. The flow
rate, however, does not show a consistent and significant change as compared to the occupancy and
the speed. A pattern based on the upstream time histories of the lane occupancy and speed is™ -
therefore most appropriate for reliable incident detection purposes. This conclusion is confirmed by
Figure 3, which shows a scatter plot of occupancies and speeds before and after an incident. In this
figure, regions of .congested and normal flow are generally distinguishable (they can be clearly
separated after data de-noising and feature enhancement). On the other hand, the scatter plot of
occupancy and flow rate (Figures 4) does not indicate a clear demarcation between normal and
congeéfed flow conditions. One limitation of using only the upstream data for an incident detection
algorithm is that the detection time may be unacceptably large under low flow rate conditions. The
detection time is also dependent on other factors such as distance between detector stations and
weather conditions.

Three observations can be made from the time series plots of traffic data on the downstream
side of an inCident (Figures 2a through c). First, the occupancy and the flow rate decrease rapidly
after the occurrence of the incident (in about 20 s or one time interval reported by sensors in the

examples of Figures 2a and ¢). This change, however, is less marked as compared to the increase in




lane occupancy and decrease in lane speed seen on the upstream side. Second, the speed

downstream of an incident is not a good indicator of an incident condition, as observed in Figure 2b.
After passing through an incident region, vehicles will aqcelerate and reach free flow speeds rather
quickly. Third, the times at which the occupancy and the flow rate decrease appreciably are about
the same and relatively independent of the flow rate.

The scatter plots of occupancy and speed (Figures 5) and occupancy and flow rate (Figure 6) for
data from a location downstream of an incident show that there are no discernable and separable
regions for before and after incident flow conditions. Because of this the development of a reliable
algorithm for incident detection based on data from the downstream side has proven to be more
difficult. Using the downstream data poses two additional challenges. First, there is the risk of false

- alarms as a result of compression waves because a compression wave’s occupancy and flow rate
downstream patterns resemble those of an incident. Second, the magnitudes of the flow rate data on
the downstream side may vary because of weather conditions, the severity of the capacity reduction
as a result of the incident, and other daily changes in the flow rate. On the other hand the major
advantage of using the downstream data is that the change in pattern after an incident is almost
immediate and independent of the prevailing flow rate.

Based on these observations a new incident detection logic and computational model is
developed that utilizes both upstream and downstream traffic patterns independently. A two-stage
logic is employed. ‘In the first stage, the presence or absence of an incident condition is determined
from the downstream occupancy and flow rate time-series data. The second stage confirms the
presence or the absence of an incident condition by using the upstream occupancy and speed time-
sgries data. To minimize the possibility of a missed detection and eliminate false alarms an
advanced wavelet-based feature enhancement and de-noising approach is adopted to process the

data. False alarms from compression waves are avoided by using a sufficiently long time series as

by
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input. Recurrent congestion is handled by a normalization technique. These models are developed in

detail in subsequent sections.

DISCRETE WAVELET TRANSFORM AND SIGNAL ENERGY
The discrete wavelet transform (DWT) provides a powerful and efficient technique for
analyzing, decomposing, de-noising, and compressing signals. In particular, the DWT of a signal

breaks it down into several time-frequency components that enable the extraction of features

desirable for signal identification and recognition.- The DWT and wavelet theory in general have

been developed rapidly in the last 10 years (Daubechies, 1992, Burrus et al., 1998). In this section
the basic concepts of DWT and its energy representation employed in this research are presented

briefly. Additional details of DWT and its application in ITS problems can be found in Samant and
Adeli (2000).
A one-dimensional signal f(f) € ’(R) can be decomposed into multiresolution components

that are indexed by the scale j (indicator of frequency) and the translation £ (indicator of time):

f(t)=zcjo,k¢jo,k(t)+szj,k‘//j,k(t) 1)
k

k Jj=Jo .

where L2(R) is the space of all square integrable functions defined in the one-dimensional real space

R, c; is the scaling coefficient corresponding to the scaling function @, (¥), and d;; is the wavelet
coefficient corresponding to wavelet ¥ ;. () . The index j, represents the lowest resolution that is

decombosed by the DWT. The functions ¢, (t) (j,k€Z) and v,,(t) (Jj,k € Z)(Z is the space of

integers), each forming a basis of L*(R), are defined by the following equations:

0,0 =2""p(2t-k) )

o(t)= S kW20t k)  keZ | 6
k
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where hy and h; are filter coefficients and the constant \/5 maintains the unity norm of the
functions. In this work, the Daubechies wavelet system of order eight (Daubechies, 1992), defined
by eight #; and Ao coefficients, is used. This wavelet basis system is selected because of its
orthonormality property and compact support providing a DWT with a finite length and number of
wavelet coefficients.

When an orthonprmal basis is used the coefficients ¢;« and dj are given by the inner product of

the signal with the appropriate function:
cip =c,lkl= [f)p,(0d  Vjik | | )

d, =d[K]= [fOv,@Od ik o - 6)
which can be reduced to the following recursive equations (Burrus et al., 1998): |

¢, lk1= 3 hylm ~2Klc ., [m] o

d,;[k]= D m—2klc,,,[m] ®)

In these equations it is assumed that the scaling coefficients of the signal at the highest resolution
are known.

The traffic data are available as a discrete sequence f[k] of finite length L = 2’ where J is an

integer. The highest resolution part of the scaling function ¢, (1), @, ,(¢), will approach a Dirac

delta function and Eq. (5) will represent a sampling of f[k]. Therefore, c,{k] can be approximated by
fIk]. Use of the recursive Eqgs. (7) and (8) for calculating the DWT coefficients requires that f]k] be

extended periodically. In other words, the following equation should hold:

flkl= flk+Ln] n=123,... ) ©
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However, traffic time-series data, such as those shown in Figures 1 and 2, are ndt periodic. In other
words, generally the end values f[1] and f[L] are not equal. As a result of the incompatibility of the
traffic data with the periodic boundary condition, the wavelet representation can distort the shape of
the original traffic pattern. To overcome this problem the traffic pattern is extended on either ends
before its DWT is found. This procedure is explained in detail in the next section.

An advantage of using an orthonormal basis to find the DWT of a signal is that the energy of the
signal can be partitioned int§ its various time-frequency components. The energy contribution from
each component is expressed as a function of the wavelet and scaling coefficients. This is known as
Parseval’s theorem and is expressed mathematically in the form of the following energy functional

(Burrus et al., 1998):

frara=Xle, [ + X3l a0

J=Jo
We use this functional to enhance the traffic data streams for the purpose of pronouncing the traffic

incident patterns, as explained in the next section.

TRAFFIC PATTERN FEATURE ENHANCEMENT AND DE-NOISING
In our traffic incident detection model, we process the three time-series traffic data (lane
occupancy, speed, and ﬂoW rate) obtained at each detector station with the objec;tives of reducing

the noise and enhancing the desirable features. This processing is essential to ensure that no
incidents go undetected and no false alarms are triggered. The upstream lane occupancy ( f,[i]) and
speed ( fs []) form one pattern for identifying incident conditions. The downstream lane occupancy
(f,li]) and flow rate ( f[i]) form another pattern for identifying incident conditions.

Sixteen dat;cl points are selected for each one of the three traffic parameters. That is, the

sequences f,[i], fr[i], and f[i] consist of sixteen values indexed from 1 to 16. There are two



reasons for selecting this length for each time-series. The DWT used in this work (and in fact in
“most cases) requires that the number of data points to be equal to some power of 2 (4, 8, 16, etc.).
For algorithmic efficiency, the smallest number is preferred. We found 16 to be the minimum
number needed to avoid false alarms that may be caused by compression waves. We found this
necessary for the downstream pattern ( f,[i] and f;[i]) which may exhibit similar patterns for both
compression waves and incident conditions.

When the time interval between successive readings is 20 seconds (which is the minimum
available from c:ilrrent detectbr stations) sixteen data points constitute 5 minute and 20 second of

data. Compression waves are usually temporary conditions and not very likely to exist for as long as

5 minutes. In other words, it is unlikely that a pattern in which the values of f,[i] and f.[i] (G =

15, 16) are much smaller than the values of f,[i] and fF[i] (i=1, 2,...,14) is caused by a |

compression wave. This data sampling strategy preveﬁts the downstream pattern from signaling an
incident condition erroneously whenever a compression wave passes by.

The traffic time-series data are normalized by dividing them by the average of the highest two
values in each series. Normalization r¢duces the significance of magnitude in the pattern
recognition process and the undesirable domination of a single large value. Patterns are
distinguished primarily on the basis of their shape and form and not on the basis of magnitude. As a
result, the normalization technique also eliminates the need for re-calibration whenever the flow
condition changes. Flow variations caused by daily rush time traffic, weather conditions, geometry,

and other situations can therefore be handled automatically and transparently. The normalized

occupancy, speed, and flow rate sequences are represented as” f,[i], f[i], and f[i], respectively.
The normalized data series are extended by 8 points at-each end before their DWT's are

calculated as follows:
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05711+ f[21)  1<i<8
Flil=1 fli-8] <i<24 11
0.5(7[151+ f116]) 25<i<32

The length L of each data series now becomes 32 (i.e. L =2’ and J = 5). The need for extending the |

data series is shown in Figures 7a and b. Figure 7a shows a typical flow rate data series, fF [i] |

(solid line), on the downstream side of an incident and its scale 3 (i.e. j = 3) wavelet approximation
(dasﬁed line). Notice how the shape of the wavelet approximation is disforted at the left edge
because of the periodic boundary condition assumption. Figure 7b shows the same data series
extended using Eq. (11) (solid line) and its scale 3 wavelet approximation (dashed line). In this

figure the wavelet distortion has been pushed aside to the outer edges, outside the usable region of

- data, the segment from data points 9 to 24. In this segment the basic shape of the original data series

is preserved without distortions.

In the new:trafﬁc incident detection model, the DWT is employéd to reduce the dimensionality
of input data for the neural network pattern classifier, eliminate the traffic noise, and enhahée the
desirable features in each data series. The extended data series has a length of 2° and is represented
by scale J = 5 in Eq. (5). Equation (7) is applied two ﬁmes recursively to calculate the scaling
coefﬁcienfs at scale j = 3. This operation corresponds to a two-stage low-pass filtering of ¢/[x] with
ho (Samant and Adeli, 2000). At this reduced resolution the higher frequency noise-like components
are eliminated ieaving a smoother de-noised shape or form. Also, through the two-stage low-pass
filtering the 32-point time-series is now reduced to an 8-coefficient representation. However, this
DWT is for the extended 32-point data series. The DWT of the original 16-point data series is given

by the middle 4 values of the 8 coefficients (c3fk], £ = 3, 4, 5, 6). Let these reduced sets of
coefﬁcients be defined as ¢, [i], cs[i], and c;[i] for occupancy, speed, and flow rate, respectively,

wherei=1,2,3,4.



Notice from Figures 1 and 2 that an incident condition pattern exhibits either a sudden decrease
or a sudden increase in magnitude of data values which occur in the last few data points. This
feature, which distinguishes an incident condition from a non-incident condition, can be enhanced
by using the energy representation capability of wavelet transforms (Eq. 10). The squares of the
absolute values of the coefficients c[i] represent the energy of the de-noised time-series data at each
time location defined by index i. The energy (or the area under a squared time-series plot) enhances
" incident condition patterns and distinguishes them from non-incident condition patterns. Thus, the
scaling coefficients are modified as follows:

eil=|eli]’ Vi (12)

The benefit of DWT-based de-noising Aand feature enhancement is demonstrated in Figures 8
and 9. Figure 8 is a scatter plot of éo [i] and C¢[i] based on the same data used in Figﬁre. 3. Figure 9
is a scatter plot of ¢, [i] and ¢, [i] based on the same data used in Figure 6. Comparisons of Figure
3 with Figure 8 and Figure 6 with Figure 9 indicate the improvement in pattern separation achieved
by wavelet-based de-noising and feature enhancement. The points between cluster r¢gi6ns seen in
these figures are intermediate conditions that will move to one of the clusters as the time-series
pattern becomes more defined with time.

The enhanced traffic pattern at the upstream side, x,[i], is then férmed by concatenating the 4

coefficients from the occupancy and the speed data series. Similarly, the enhanced traffic pattern on
the downstream side, x,[i], is formed by concatenating the occupancy and flow ratc data series
coefficients. Mathematically, the patterns are given by

xy ={ClCslily  1=1.234 (13)

xp, ={Colil,Cc[1}} i=1234 - (14)
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PATTERN CLASSIFICATION USING RADIAL-BASIS FUNCTiON NEURAL NETWORK

Neural networks are powerful model-free péttern classifiers (Adeli and Hung, 1995). However,
they can be computationally very expensive when the size or dimensionality of the input data is
large requiring a very large number of training instances. Training instances of the traffic patterns
defined by Egs. (13) and (14) are used to develop a mapping from an 8-dimensional space to a one-
dimensional space. VF or this purpose, the radial basis function (RBF) neural network is adopted. The
RBF neural network is an efficient universal classifier (Moody and Darken, 1989) that has a simple
topology consisting of a hidden layer of nodes with nonlinear transfer functioﬁs and an output layer

of nodes with linear transfer functions.

The topology of the RBF neural network developed for the traffic pattern classification is shown

in Figure 10. The input layer has 8 nodes corresponding to the eight data points in each pattern

(xufi] or xp[i], henceforth called vector x). The number of nodes in the hidden layer, Ny is equal to
the number of cluster centers used to vcharacterize the input training space. The output layer has one
node (). The number of nodes in the hidden layer is chosen as a fraction of the total number of
training instances. This choice is based on numerical experimentation to determine which number
adequately covers the input space and produces the best mapping. We found a number within the

range of 10 to 30% of the number of training instances to provide satisfactory results. The cluster

centers p; (1<i< N,) is obtained using the fuzzy c-means algorithm (Bezdek, 1981; Cannon et al.,

1986).

The connection from the input node i to the hidden node j is assigned the weight u,
corresponding to the ith component of the vector p;. The output of a hidden node j is given by the

following Gaussian transfer function:



2
x|

; =€Xp| —
@; =exp 257

(15)

where the factor o ; controls the spread or range of influence of the Gaussian function centered at
K ;. In this work o; is calculated as

1

o, =
/48

2_llu,~ - 1=j<12 (16)

where N is the total number of training instances. Equation (16) approximates the spread parameter

o ; as one third of the mean distance between cluster centers. The connec_tion from the hidden node

J to the.output node is assigned the weight A,. The output y of the network is then given by

y:

M=

A, o SRR (17)

j=1
Theoretically an output value of 1 corresponds to an incident classification while an output value of
~1 corresponds to ‘a no incident classification. Practically, howeiler, one has to choose a threshold
value for distinguishing between the two cl.asses as the output from Eq. (17) can take any value in

the range -1 and 1.

The weights A, are calculated by minimizing the error between the network computed output y

and the desired output y, based on training examples. In other words, to train the network for A4 ;S

we solve the following unconstrained optimization problem:
Minimize E()) ='Zly' - yj,] (18)
i=1

The gradient descent optimization algorithm is used to solve this optimization problem.
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MODEL TESTING
Introduction

The new computational model for freeway incident detection is tested using both real and
simulated traffic data. More than 40 hours of simulated traffic data is generated from the traffic
simulation software TSIS/CORSIM while real traffic data is obtained from the freeway service
patrol (FSP) project’s I-880 database. A large portion of the simulated data is made up of incident
or incident-like conditions on two- and three-lane freeways. This is an advantage of employing a
simulation software for testing purposes as sufficient quantities ¢f reliable real data with traffic
incidents are not readily available. Furthermore, with a data generating software it is possible to
study the performance of the model under various traffic flow scenarios. The real data is used for
further validation of the model.
Training

The model is trained using a sample of 30 incident anci 30 nqn-incident patterns extracted from
the simuiated data. Two RBF neural networks are trained: one for the upstream detector station and
the other for the downstream detector station. Training is done only once and no re-calibration or re-
training is needed. The RBF classifier can thereforé be implemented on-line on all stations after the
training is done off-line.
First Test Using Simulated Data: Two-lane Freeway

The performance of the incident detection model on a two-lane freeway (in each direction) is
shown in Table 1. The prevailing flow rate per lane is varied from 1000 to 2000 vehicles per hour
(vph). The traffic incident consists of the blockage of one lane (the blockages are distributed evenly
between the lanes) and a 50 percent reduction in capacity of the adjacent lane. In 600 different
simulations the algorithm detects all incidents both at the downstream and the upstream detector

stations. One false alarm is produced at the downstream station when the demand is a low 1000 vph

17



per lane. The data that caused this false alarm exhibited a pattern similar to that of an incident

condition pattern. This situation will occuf rarely in practice and only in low flow conditions. A

sensor malfunction may also cause a false alarm. But this can be handled easily in the preprocessing

logic as most sensors report their operation status regularly. False alarms can be eliminated

completely by using a slightly higher transition threshold frorh non-incident to incident condition on

the RBF classifier output. In this first test scenario the threshold was kept at zero to validate the
| pattern recognition properties of the model.

The_avérage incident detection time for the downstream detector station is 46.5 seconds with a
range varying from 40 to 54 seconds. This is an acceptable delay for practically all emergency and
control purposes. Also, there is practically no variation of this time with any change in flow rate and

~16cétion of the incident. This result is signiﬁcantly better than that reported by'Adeli and' Kanm

(2000) where the detection time is as large as 5 minutes. The time to detection for the upstream
detector station, on the other hand, does vary significantly with the flow rate and the distance of the
incident from the detector station. It varies from 70 to 228 seconds. The upstream pattern is based
on fhe formation of a queue that takes a rather long time to develop (in the order of one to four
minutes). -

In the subsequent test scenarios the threshold value was taken as 0.2 where an output greater or
equal to 0.2 was signaled as an incident while a value less than 0.2 was labeled as a non-incident.
This was intended to eliminate the false alarms but at the expense of slightly more detection times.
Second Test Using Simulated Data: Three-lane Freeway

Table 2 shows the performance of the model on a 3-lane freeway for flow rates ranging from
1250 vph to 2000 vph per lane. Only one lane (eithér the lane adjacent to the shoul_der or the
median) is blocked in this scenario with no reduction in éapacity of the other lanes. This scenario

simulates a shoulder or median obstruction that also requires the closure of the adjacent traffic lane.

18
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Under this scenario in 600 different traffic simulations the downstream detector station produced
perfect results while the upstream . detector station missed 4 incidents during low demand
conditions. The missed detections by the upstream detection station are understandable because the
remaininglcapacity (about 4000 vph) is still able to handle the demand (3750 vph) without the
development of significant congestion on the upstream side. On the other hand, the downstream
detector station is able to detect all incidents within about a minute of its occurrence. This test
scenario illustrates the capability of the model under low demand conditions and minor
obstructions, situations in which many algorithms produce poor detection and numerous false

alarms.

Third Test Using Simulated Data: Compression Waves

""" To test the model’s performance under compression wave-like conditions one hundred minutes

of data are generated for a two-lane freeway with moderate flow rate and with several periods of

increased flow rate by up to 500 vph. The periods of increased flow rate are limited to 5 minutes or

less based on the assumption that compression waves are temporary conditions. A typical 25-1ﬁinute
plot of lane occupancy is shown in Figure 11. The higher flow rate period lasts from 600 to 900
seconds. In all, there are 374 patterns in tﬁis 100-minute data. The model correctly identified all of
them as non-incident conditions.
Fourth Test Using Real Data: FSP Project’s I-880 Database

The freeway service patrol (FSP) project’s database contains traffic data for a 14.8 km 9.2
mile) long segment of the 1-880 freeway between Oakland and San Jose, California. This segment
has a varied geometry of 3 to 5 lanes (in each direction), singlé and multiple lane on- and off-ramps,
and mild horizontal and vertical curvatures. Over the duration of the project observers in patrol
vehicles traversed this freeway segment and recorded the occurrence of incidents by noting down

key incident characteristics such as location, time, and type of incident. By correlating this
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information with data obtained from sensors, samples for 21 lane blocking incidents are extracted
from the database. To test the false alarm rate performance, 4 hours of incident free data are also
extracted. Table 3 shows the performance of the new incident detection model using real data. Both
. downstream and upstream stations produced a detection rate of 95.2 percent and a false alarm rate
of zero. This result is identical to that reported by Adeli and Karim (2000). Accurate information for
the time of occurrence of incidents is not available from the database. Thus, the detection times for
the model cannot be computed.

Result Slim_mary and Comparison

The results of the new incident detection model indicate that the downstream detector station

data and logic by themselves provide satisfactory results. In an ATMS that does not provide speed
data the upstream station logic can be eliminated. However, in situations where the speed data is
avaizlable‘the upstream detector station logic provides an additional level of reliability without any
significant increase in computation. The results also show the calibration free transferability of the
ﬁlodel where the model trained using simulated data performs reliably when tested using both real
and simulated data. As compared to the fuzzy-wavelet RBFNN model presented by Adeli and
Karim (2000), the new model produces significantly shorter detection times without aﬁy loss in
detection and false alarm rate performance. Furthermore, the new model is computationally more
efficient as it does not require the compuation of the inverse wavelet transform and the fuzzy c-

mean at each time interval.

CONCLUSION
A new traffic incident detection logic and computational model is presented that overcomes
several shortcomings of earlier algorithms. The model uses a two-stage single-station detection

logic. In the first stage a decision is made based on data obtained from the downstream detector
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station only while in the second stage the decision is conﬁrmed based on data obtained from the
upstream detector station only. Wavelet -domain processing is used to de-noise, compress, and
enhance the raw traffic data for classification. It is found that an energy representation of the data
best characterizes incident and non-incident conditions. The model determines the state of the

| traffic flow from the shape of the time-series data rather than the magnitude. A radial basis function

neural network is developed to classify the processed traffic data into incident and non-incident

states.

The new model has the following five advantages and desirable characteristics. No other
I existing incident detection algorithm can provide all of them simultaneously.

' * The new model is capable of detecting all incidents even when the reduced freeway capacity
after the incide{ltAis- greater t_han the prevailing flow rate (normally occurring under low flow
i rate conditions). |

e The model can reliably identify recurrent congestion and compression waves a non-incident

g

conditions without triggering a false alarm.
o The model signals the presence of an incident within one minute of its occurrence, to a great
T extent independent of the prevailing traffic and roadway conditions.

e The model does not require re-calibration for its on-line implementation and thus is readily

transferable.
e The model is computationally highly efficient because a) DWT operations require a small
number of multiplications and additions in every sensor reporting interval (say 20 seconds) and
b) we have reduced the dimensionality of the RBF neural network through wavelet-based
energy representation of input. |
These characteristics make our new traffic incident detection model ideal for Widéspread

practical adoption in urban ATMS. The model was tested under several traffic flow scenarios. In

lan
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general, it produced excellent results across a wide range of prevailing flow conditions. The model
also correctly identified compression wave conditions and none of them were signaled as false

alarms.
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Table 1. Performance of the new incident detection model on a two-lane freeway

Flow | Location Downstream station ** Upstream station **
rate (m)* Detections | False | Detection | Detections | False | Detection
(vph alarms time alarms time
per s) s)
lane) ) A
1000 244 10/10 1/40 50 10/10 0/40 192
1000 122 10/10 0/40 40 10/10 0/40 142
1100 244 10/10 0/40 40 10/10 0/40 228
1100 122 10/10 0/40 40 10/10 0/40 126
1250 244 10/10 0/40 48 10/10 0/40 172
1250 122 10/10 0/40 46 10/10 0/40 110
1500 244 10/10 0/40 48 10/10 0/40 130
1500 122 10/10 0/40 48 10/10 0/40 82
1750 244 10/10 0/40 44 10/10 0/40 114
1750 122 10/10 0/40 48 10/10 0/40 70
2000 244 10/10 0/40 54 10/10 0/40 88
2000 122 10/10 0/40 52 10/10 0/40 70
" Totals. 120/120 1/480 - 120/120 . | 0/480 | .
100 % 0.2 % 100 % 0%

* Distance of the traffic incident from the upstream station. Distance between stations is 460 m.
** Numbers after / indicate the total number of simulations.



Table 2. Performance of the new incident detection model on a 3-lane freeway

Flow | Location Downstream station ** Upstream station **
rate (m)* | Detections | False | Detection | Detections | False | Detection
(vph alarms time alarms time
per s) ®)
lane)
1250 244 10/10 0/140 40 6/10 0/140 435
1500 244 10/10 1/140 42 10/10 0/140 320
1833 244 10/10 0/140 48 10/10 0/140 292
2000 244 10/10 0/140 66 10/10 0/140 248
Totals 40/40 1/560 36/40 0/560
100 % 0.18 % 90 % 0% -

. * Distance of the traffic incident from the upstream station. Distance between stations is 460 m.
** Numbers after / indicate the total number of simulations.

Table 3. Performance of the new incident detection model using real data from the FSP project’s

da_tabase
Dowstream stétior; ® Upstream station *
Detections False Detections False
alarms alarms
20/21 0/480 20/21 0/480
952 % 0% 95.2 % 0%

* Numbers after / indicate the total number of tests
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LIST OF CAPTIONS FOR FIGURES

. Time-series plots of upstream traffic data on a two-lane freeway with three prevailing flow rates

of 1000, 1250, and 1500 vph per lane before and after an incident. (a) lane occupancy plot, (b)

lane speed plot, (c) lane flow rate plot

. Time-series plots of downstream traffic data on a two-lane freeway with three prevailing flow

rates of 1000, 1250, and 1500 vph per lane before and after an incident. (a) lane occupancy plot,

(b) lane speéd plot, (c) lane flow rate plot

. Scatter plot of upstream lane occupancy and speed before and after incidents

. Scatter plot of upstream lane occupancy and flow rate before and after incidents

. Scatter plot of downstream lane occupancy and speed before and after incidents

. Scatter plot of downstream lane occupancy and flow rate before and after incidents

. (a) DWT of a 16-point flow rate traffic pattern

(b) DWT of an extended 32-point flow rate traffic pattern (based on the data of Figure 7a) |

. Scatter plot of upstream lane occupancy and speed wavelet energy coefficients before and after

incidents

. Scatter plot of downstream lane occupancy and flow rate wavelet energy coefficients before and

after incidents

10. Topology of radial basis function neural network for traffic pattern classification

11. Typical lane dccupancy time-series plot for compression wave traffic condition
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COMPARISON OF THE FUZZY-WAVELET RBFNN FREEWAY INCIDENT
DETECTION MODEL WITH THE CALIFORNIA ALGORITHM

Asim Karim' and Hojjat Adeli®

ABSTRACT: A multi-paradigm general methodology is advanced for development of reliable,
efficient, and practical freeway incident detection algorithms. The performance of the new fuzzy-
wavelet radial basis function neural network (RBFNN) freeway incident detection model of
Adeli and Karim is evaluated and compared with the benchmark California algorithm #8 using
both real and simulated data. The evaluation is based on three quantitative measures of detection
rate, false alarm rate, and detection time, and the qualitative measure of élgorithm portability.
The new algorithm outperformed the California algorithm consistently under various scenarios.
False alarms are a major hindrance to the widespread implementation of automatic freeway
incident detection algo;'ifill-rls. The false alarm rate ranges from 0 to 0.07 % for the new algorithm
and 0.53 to 3.82% for the California algorithm. The new fuzzy-wavelet RBFNN freeway
incident detection model is a single-station pattern-based algorithm that is computationally
efficient and requires no re-calibration. The new model can be readily transferred without re-

training and without any performance deterioration.

INTRODUCTION

In recent years, researchers have investigated neural network based incident detection
algorithms with promising performance results. Adeli and Samant (2000) developed an adaptive
conjugate gradient neural network pattern recognition model for freeway incident detection that

employed data de-noising and enhancement. Discrete wavelet transformation and linear

! Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio
State University. )



discriminant analysis is used for data de-noising and enhancement, respectively (Samant and
Adeli, 2000). The model is tested using simulated data for several geometric and traffic flow
conditions.

Recently, Adeli and Karim (2000) created a new single-station pattern-based freeway
incident detection algorithm. The characterizing pattern used is a time-series of the upstream lane
occupancy and speed. Wavelet-based de-noising, fuzzy clustering, and neural network
c‘lasvsiﬁcation are used to reliably identify incident and non-incident conditions from the time-
series pattern. The algorithm was tested using both simulated and real data producing excellent
performance results.

In this article, a general methodology is presented for development of reliable, efficient, and
practical freeway incident detection algorithms. Next, the incident detection model of Adeli and
Kaﬁm (2000) is described Brieﬂy foliowed By é &iééussioﬁ of California algorithm #8. Then, the
performance of Adeli and Karim’s incident detection model is evaluated and compared with that
of California algorithm # 8 on ty;)ical urban freeway systems. The emphasis is to evaluate the
robustness of the algorithms under various traffic flow and roadway geometry conditions, as a
comprehensive indicator of their practical implementation in an area-wide ATMS. Further, the
new model is also tested using real incident data from the advanced regional traffic interactive
management and information system (ARTIMIS) implemented in Cincinnati, Ohio
(http://www.artimis.org/) an& the freeway service patrol (FSP) project’s I-880 database for the I-

880 freeway between Oakland and San Jose, California (hitp://www.path.berkeley.edw/FSP/).

2 professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University,
Columbus, OH 43210, USA.
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A NEW TRAFFIC INCIDENT DETECTION METHODOLOGY
A freeway incident detection algorithm must produce bonsistently reliable results from
remotely sensed data of traffic streams. This is a challenging problem especially considering the

ndn-homogenous, turbulent, and often chaotic nature of traffic flow and the limited information

“available from sensors. This is further complicated by noise introduced in the data during its

collection and transmission. This indicates that a wholly model-based approach is less likely to
be successful than a model-free, adaptive pattern recognition approach. However, a pattern-based
approach must not neglect traffic behavior information that can be used to improve the efficiency
and performance of the algorithm. The pattern-based approaches presented in the literature often
neglect this aspect and tend to be overly simplistic. To solve the complex freeway incident
detection problem effectively, our appfogch is based on utilizing advanced signal procégéing,
pattern recognition, and classification techniques with appropriate heuristics derived from known
traffic flow behavior.
The rationale behind this methodology is:
e Traffic flow is highly complex and not amenable to accurate mathematical modeling.
Therefore, reliance must be made on adaptive algorithms that can learn and recognize
‘ patterns in an unsupervised manner.
e Traffic data is often corrupted with noise. Noise elimination is essential to improve the
performance of any algorithm.
. :..:The algorithm should require little or no calibration for its on-line implementation. That is,
the algorithm’s. perf;)rmance must be independent of roadway geometry, existence of on- and

off-ramps, weather conditions, and changing traffic demand.

(8]



e Traffic flow behavior and information from other sources must not be ignored. For example,

knowledge of flow behavior should be used wherever possible to simplify the algorithm and

improve performance.

e The algorithm must be capable of real-time operation. Therefore, computationally intensive
algorithms must be avoided.

Figure 1 presents a schematic view of the new methodology for development of advanced
incident detection algorithms. Five sequential stages of processing are identified: (1)
preprocessing, (2) de-noising, (3) clustering, (4) classification, and (5) decision-making. In each
stage an appropriate technique has to be used to achieve the desired result. These techniques may
be unique in each stage, or two or more. stages may use the same technique provided that the
goals of each stage are a_chievéd. In the following paragraphs, each of these five stages is
described brieﬂy. | N |

The preprocessing stage takes the raw traffic data obtained from sensors and transforms the
data in the format needed for the algorithm. Common preprocessing approaches include
calculating the cumulative values of time-series data and calculating the difference in values
obtained from two sensors. The number, type, and format (i.e. the pattern) of traffic data is
selected based on the behavior of traffic flow before, during, and after incidents and the
performance of the algorithm.

The second stage performs de-noising and enhancemenf of the signal output obtained from
the preprocessing stage. This is an ifnportant stage because noise corruption is one of the primary
reasons 'for poor reliability of the incident detection algorithms. Noise is introduced both during
data observation and transmission, and depends 'o'n random factors such as environmental
conditions, sensor calibration errors, and traffic anomalies. The goal of this stage is to produce a

clean noise-free signal. Large fluctuations in values over a short period of time due to noise

S



primrg -

PO

make it difficult for any algorithm to discriminate between an actual incident pattern and a noise-
induced pattern. Noise can be effectively removed from a signal if it can be separated from the
true signal. Transform-based techniques, such as discrete wavelet transform, provide the best
solution.

The third stage performs a feature extraction process. This stage reduces the dimensionaiity '

of the data and improves the performance of the following classification and decision-making

stages. Several clustering techniqlies are available including neural network (Adeli and Hung,

- 1995; Adeli and Park, 1998), fuzzy logic, and statistical approaches. In general, the statistical

discriminant analysis approaches are computationally intensive and require high CPU resources
in order to be implemented in real-time, a requirement for effective incident detection
algorithms. Fuzzy clustering techniques such as the fuzzy c-means ‘appr'oaAélAi'_ are both
computationally efficient and capable of handling imprecision.

The classification sfage identifies patterns in data into relevant categories. This stage
determines whether the data represeﬁts an incident or not. Neural network models are most
appropriate for this stage of processing. The clustering and classification stages may be
combined in an algorithm. |

The final decision is made in the decision making stage. This stage can be used to merge
information available from other sources such as surveillance cameras before making a decision.
Techniques such as fuzzy logic and decision theory may be used in this stage, in addition to

heuristics based on human judgement.

FUZZY-WAVELET RBFNN MODEL FOR INCIDENT DETECTION

Recently, Adeli and Karim (2000) developed a new multi-paradigm incident detection model

- for freeway incident detection. The model is based on the general methodology for the



development of reliable, robust, and efficient incident detection algorithms presented above. The

model is self-calibrating once it is trained and does not need to be modified for different roadway

geometries and flow conditions. The new incident detection algorithm is described briefly in this

section. For complete details, the reader should refer to Adeli and Karim (2000).

This model is a single-station time-series pattern recognition approach that uses advanced de-
noising and classification techniques to minimize misclassification of the prevailing traffic flow
conditions. Each decision pattern consists of sixteen data points of the upstream lane occupancy
and speed. The two time series are normalized by dividing the values in each by the average of
all values. This'approach reduces the effects of varying flow rates, and thus, improves algorithm
pbrtability. The normalized time series data are then de-noised by soft-thresholding the wavelet
coefficients. The de-noised data series are then clustered using the fuzzy c-means approach. The
| de-noiséd ‘and clustered dafa represents the essential characteristics of the traffic flow needed to
differentiate incident flow conditions from non-incident flow conditions. This pattern is then
classified by a trained radial basis “function neural network.

The algorithm is shown schematically in Figure 2 and summarized succinctly in the
following s‘teps;. These steps represent the processing that is needed at each decision interval
(equal to the reporting interval for the sensors) and at each detector station.

1. Obtain the most recent .16 data values for the lane occupancy (xp[n]) and the lane speed
(xs[n]). When data are available every 20-s, for example, then this process is performed every
20-s by adding the new reading and dropping the last reading in the sequence.

2. For each data sequence x[n] (n = 1,...,16) perform the following computations:

a) Normalize each sequence by dividing their values by the average of the last 16 values.

The normalized sequences are denoted by x’.
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b) Calculate the discrete wavelet transform (DWT) of thé normalized sequence (x') using
Daubechies wavelet system of length 8 (D8). The lowest scale resolved is 2. Therefore,
the final number of scaling coefficients (c,4) obtained is 4 and the final number of
wavelet coefficients (dj ) obtained is 12.

":"c) Filter the wavelet coefficients (djx) using the soft-thresholding nonlineérity,
n(d) = sgn(d)qdl—t)+ , to remove noise. In this equation ()" is equal to () when (.) is
positive and zero otherwise and the function sgn(.) returns the sign of its argument. The

threshold ¢ is given by ¢ = \/2log(N) where N is the total number of data points (equal to

16 in this work). Let d ;x denote the filtered wavelet coefficients.

d) Calculate the inverse DWT (denoted by IWT in Figure 2) with ¢y as the scaling _

coefficients and d i+ as the wavelet coefficients to obtain the de-noised normalized

sequence X[#].

3. Form the traffic pattern matrix x, = {%, [i],%;[{]} (i = 1, 16). Use the fuzzy c-mean (FCM)
algorithm to reduce the dimensionality of x from 16 x 2 to 4 x 2, denoted by x’. These 8 data
points represent the de-noised and clustered pattern that is used in the next classification step.

4. Feed-forward the pattern through the trained radial basis function neural network (RBFNN).
If the output y is greater than a pre-selected threshold, then an incident condition is signaled.
Otherwise, no incident condition exists.

'i;he RBFNN is frained off-line from representative incident and non—incidént patterns. Each
pattern is processed by following Steps 1-3 above. Note that the training hés to be done only
once. The trained RBFNN can then be implemented on all the detector stations in the freeway
management system. This portability is possible because the algorithm depends on the shape of a

pattern rather than on any magnitude to distinguish between incident and non-incident




conditions. The RBFNN can even be trained using simulated data only and implemented on-line,

which is the case in this evaluation.

CALIFORNIA ALGORITHM #8

The California Department of Transportation and its associates developed several algorithms
for freeway incident detection in the 1970s that are collectively known as California algorithms.
As many as 10 variations of these algorithms were developed. All of these algorithms use the

lane occupancy values at one or two adjacent stations as input and compare them with pre-

selected thresholds to characterize the state of the traffic flow. In the original California-

algorithm—also know as California algorithm #l—traffic flow is characterized into either
_incident or incident-free states based on a sequence of logic tests performed using three
occupancy-based traffic patterns. 'La‘té-r -aigoﬁfhms extended this simple logic by increasing the
number of logical decisions rﬁade and the number of traffic flow states reported by the algorithm.

Califomia algorithm #8 (Pz;yne and Tignor, 1978) incorporates incident persistence and
compression wave suppression logic. The algorithm reports an incident only after the incident
condition has persisted for a specified number of time periods. Further, it suppresses the

signaling of an incident for 5 minutes after a compression wave is detected. California algorithm

#8 uses both temporal and spatial occupancy values as input. It can classify traffic into five

states: incident-free, compression wave, tentative incident, incident confirmed, and incident in
progress. The compression wave state is further classified into 5 states that indicate the presencé
of a compression wave in the last 1, 2, 3, 4, or 5 minutes. The logic of California algorithm #8
~ can be described by a binary tree structure where each node, except the leaf (end) nodes, perform
a two-way decision made by co-mparing a traffic pattern (an occupancy-based value) with a pre-

selected threshold (Payne and Tignor, 1978; Levin and Krause, 1979). Starting from the root
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node a sequence of such decisions are made until a leaf node is reached, which represents a
traffic state. This algorithm needs six parameters for calibration. These are defined in Table 1.
Five of them (P; to Ps) are thresholds for occupancy-based values, while parameter Py specifies
the number of time periods the algorithm will wait for a compression wave condition to persist
before signaling it. )
The performance of the algorithm depends on the choice of these parameters. The parameters
are determined in a trial-and-error fashion by testing the algorithm oﬁ a given data set to obtain
the Best.trade-off between detection rate and false alarm rate. The calibrated parameters are data
dependent and may not be optimal for other data sets. This in turn means that the performance of
the algorithm will not be optimal at all locations and at all times in a freeway management
system. Thus,'California algorithms are not readily transferable and need re-calibrations for their
effective network wide implementation. Despite this shortcoming the California algorithms—
especially algorithms #7 and #8—are the most widely known and accepted algorithms for traffic
incident detection. They are often used as benchmarks for the evaluation of new algorithms. Both
algorithms #7 and #8 are recognized as the “best” (Levin and Krause, 1979). However, algorithm
#8, with its additional compression wave suppression logic, performs better in heavy trafﬁc; and
produces fewer false alarms as compared to algorithm #7 (Levin and Krause, 1979). For these
reas.d'fls, we adopt California algorithm #8 for the comparative evaluation of the new fuzzy-

wavelet RBFNN incident detection model.

EVALUATION OF THE MODEL
Introduction
In general, there are two approaches to the evaluation of a new computational model. The

first approach is to test the model using a standard representative data set and determine its



performance. This data set should be recognized as the benchmark for comparative evaluations
of such models. In the second approach, the model is evaluated using non-standard but
representative data sets and its performance compared to that of a benchmark model on the same
data set. Presently, a standard data set is not available for evaluating freeway incident detection
algorithms. Furthermore, real traffic data is not available in sufficiently large and varied
quantities to allow any meaﬁingful evaluations. Therefore, freeway incident detection algorithms
are usually evaluated using representative simulated data for which the performance of both the
new and a benchmark algorithm (such as California algorithm #8) are compared. The use of
simulated data has one more advantage not possible with real data: the algorithms can be tested
and studied under different freeway traffic flow and geometric conditions.

The fuzzy.-wavel'et RBFNN freeway i_ncident_detection_mod_e_l (also abbreviated as the new
algorithm/model in the resf ef thie article) is -teste.d usiné Both simﬁlaied and real data.. Simulated
data vis used for cemparative evaluations with California algorithm #8 (also abbreviated as
California algorithm), whereas rez;l data is used to test model robustness and portability.
Evaluation Criteria - | |

Three quantitative measures are commonly used to evaluate freeway incident detection
algorithms.

e Detection rate: The detection rate is defined as a percentage calculated by dividing the
number of incidents correctly signaled by the algorithm to the total number of incidents in
the data set. A value of 100 percent represents perfect performance.

o False alarm rate: The false alarm rate is defined as the percentage calculated by dividing the
number of incidents incorrectly signaled to the total number -of decisions made by the
algorithm. A value of zero represents perfect performance. As the ratio is calculated with

respect to the total number of decisions made by the algorithm even a small value -for the
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false alarm rate can represent an unacceptable number of false alarms in practice. For
example, a false alarm rate of 0.5% can produce 21.6 false alarms from a single station (that
reports every 20 seconds) per day. Urban freeway management systems usually have
* hundreds of detector stations, thus compounding the problem. Therefore, a very low false
" alarm rate is of utmost practical importance. ”
e Detection time: The detection time is defined as the time it takes the algorithm to signal the
“incident after its occurrence. A consistently short detection time is desirable so that
: emergency éupport can be dispatched to the scene and appropriate traffic control measures
| can be taken quickly. An incident detection algorithm that correctly signals 100 percent of
the incidents but takes a long time to do so is of little practical value. |
‘The quantitative measures defined above, however, do not Qom_pletely ‘describe the
performance of an incident detection algorithm in practice. These performénce measures are
often determined from off-line tests on data for which the algorithm is calibrated. "Suph
calibrations, however, are not practically feasible when an algorithm is implemented on-line in a
large freeway management system. Thus, the network wide performance degrades significantly
from that reported in the tests. For this reason, the following qualitative measure must also be
considered in the evaluation of freeway incident detection algorithms.
. "i’ortability: An algorithm is transferable if it performs at optimal or near optimal levels under
different conditions without re-calibration or re-training. This qualitative measure is judged
By the performance of the algorithm in terms of the three quantitative measures on different
'ﬁ‘eeway traffic flow and geometric conditions. Ideally, an algorithm should not require any

re-calibration for its network wide on-line implementation.
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Traffic Data

The new model is tested and evaluated using both simulated and real traffic data. Simulated
traffic data is generated from the microscopic stochastic simulation software package
TSIS/CORSIM (http://www.fhwa-tsis.com/). More than 110 hours of traffic data is generated
representing different freeway geometric and traffic flow conditions. Traffic incidents are
simulated by the blockage of one lane and the fifty percent reduction in capacity of the adjacent
lane(s). The incidents have a duration of 10 minutes. Coupled loop detectors or sensors are used
to obtain lane occupancy; speed, and flow rate at 20-second time intervals. Detector stations are
spaced ﬁom 610 to '762 m apart. In all, more than 200 separate simulatiox_ls are conducted with
different random number seeds resuiting in more than 225,000 reports of lane occupancy, speed,

and flow rate from the sensors.

Real traffic data is obtained from two sources: ARTIMIS for the Cincinnati-Northern
Kentucky area freeway system, and FSP project’s I-880 database for the I-880 freeway between
Oakland and San Jose, Califomia.‘ ARTIMIS is an automated freeway management system that
monitors and controls 142 km (88 miles) of freeways in the Northern Kentucky/Cincinnati, Ohio,
area with 78 closed-circuit TV (CCTV) cameras, 1100 detectors, and numerous changeable
Vmeséage signs. Lane occupancy, speed, and flow rate data are available from the detectors every
30 seconds. Incidents are recorded by CCTV camera monitors and by proprietary incident
detection logic. Very limited data were available for incident testing as the archived data period
averaged over 15 minutes rather than 30 seconds.

The FSP project’s database cqntains 30-second traffic lane occupancy, speed, and flow rate
data frorﬁ al4.8 km (9.2 mile) segment of the I-880 freeway between Oakland and Saq_ Jose,
California. Incidents are recofded By human observers traversing this freeway segment in patrol

vehicles and noting incident location, type, and time of occurrence. The freeway has a varied
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geometry with 3 to 5 lanes in each direction, one and two lane on- and off-ramps, and lane drop-
offs and add-ons.
Training and Calibration

"The new model is trained using simulated data. Following the procedure outlined in a
prévious section 60 incident and 60 incident-free patterns are used for training. These pa&éfns
are selected randomly from all the different simulations performed for this evaluation. In
pai‘ticixlar, the incident-free patterns contain samples from traffic compression waves, stop-and-
go traffic, and traffic affected by on- and off-ramps. This selection is done to provide added
robustness to the trained network in recognizing incident-free conditions from those caused by
incidents. However, it should be noted that the model bases its decision on a pattern that is to a
large extent independent of the prevailing traffic and freeway conditidns. Once the nef_work is
traine& énd its weights established the model is evaluated without any modifications.

The California algorithm is calibrated with the same 60 incident and 60 incident-free traffic
samples used for the training of the fuzzy-wavelet RBFNN model. Threshold calibration is done
in a trial-and-error manner whereby the thresholds are modified after each run through the data
set based on the determined detection rate, false alarm rate, and detection time. There is a trade-
off Abetween the detection rate and the false alarm rate such that an increase in the detection rate
results in an increase in the false alarm rate. In the calibration process, a ceiling for the detection
rate is achieved and the thresholds are then modified to minimize the false alarm rate. This
procedure is identical to that reported by Payne and Tignor (1978) and Levin and Krause (1979).
The set of parameters obtained are P, = 13, P, = -30, P; = 30, P4 = 15, Ps =130, and P¢ =2. Note

that compression wave false alarm suppression is done for two time periods (40 or 60 seconds)

‘unlike the 5 minutes used by Payne and Tignor (1978). This low value is chosen to avoid
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unacceptably long detection times. This set is used throughout the evaluation without
modification.
First Simulation Test - Parametric Evaluation

In this test, the new model is evaluated under different freeway g‘eometric, traffic flow, and
detector station location conditions. The general freeway layout and the locations of the detector
stations and the incidents are shown in Figure 3. In this evaluation, the number of lanes is varied
from 2 to 4, the flow rate is varied from 1000 to 2000 vehicles per hour (vph) per lane, and the
location of the iﬁcident downstream of a detector station is varied from 152 to 610 m. Detector
stations are spaced 762 m apart. An incident is modeled by the blockage of one lane and the fifty
percent feduction in capacity of the adjacent lane.
| The blockage of a lane produces a bottleneck in the flow of traffic. If the p“revailingv flow rate
is gréatef than the reduced cépécity éfte_r i:he incident, a queue will develop on fhe upsﬁeam side.
At some location upstream of the incident the average speed will degrease and the occupancy
will increase. This change, howev;ar, takes some time to develop and move upstream dependiﬁg
on the prevailing flow rate, the remaining capacity of the freeway at the bottleneck, and the
distance of the incident from the upstream detector station. Even when the reduced capacity after
an incident is greater than the prevailing flow rate, a change m-ay be noticeable in the upstream
speed and occupancy close to the incident location. This change in flow pattern upstream of an
incidént is the basis for the detection of an incident by the fuzzy-wavelet RBFNN incident
detection model.

The performance of the néw algorithm and California algorithm on a 2-, 3-, and 4-lane
freeway is pfesented in Tables 2, 3, and 4, respectively. The fesults include the detection rate, the

false alarm rate, and the detection time for each simulated situation. The fuzzy-wavelet RBFNN

model is a single-station algorithm, and as described in the previous paragraph, its detection time
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depends on the distance of the station from the incident, the prevailing flow rate, and the capacity
reduction at the incident location. The detection times for the California algorithm also depend
on the same factors. However, because the California algorithm has a two-station logic its
detection time variation with distance is less pronounced. This behavior is evident from Figure 4,
which shows the variation of detection times for the new and California algorithms with dist-éﬁce
of incident from upstream station on a 4-lane freeway with prevailing flow rate of 2000 vph per
lane. Notice that the detection time is longer for the California algorithm at shorter distances and
shorter at longer distances as compared to the new algorithm. Nonetheless, this difference is not
significant and for most practical purposes both algorithms have similar detection time
performances. The detection times are long especially when the flow rate is low. When flow rate
is high (2000 vph per lane) the detection time varies from 64 to 180 seconds. To shorten the time
of response further, \A;hiCh is cri-ticél in heavy traffic, the detector stations have to be spaced
closer than 762 m.

The detection time (for both the new and(Califomia algorithms) does not depend on the
number of lanes in the freeway provided the flow rate remains the same. This behavior is evident
from Figure 5, which shows the variation of detection times of the new algorithm with distance
ona 2-'-':, 3-, and 4-lane freeway with a prevailing ﬂow rate of 2000 vph per lane. As observed
from the figure the detection times are practically the same for all freeway lane configurations.
The detection times do depend on the flow rate. Figure 6 shows the variation of detection times
of the new algorithm with distance on a 4-lane freeway when flow rates are 1000, 1500, and
2000 vbh per lane. At a distance of 152 m the detection time varies from 68 to 180 seconds as
the flow rate increases from 1000 to 2000 vph per lane. In all these simulations the reduction in

capacity is the same and thus does not impact the detection times. The effects of flow rate and
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capacity reduction on detection timcs'are, inter-related. The detection times would decrease when

the-capacity is reduced further or when the flow rate is increased.

Both ﬁew and California ‘algorithms detected all inicidents on a 2-lane freeway (Table 2)
yielding é detection rate of 100 percent. On 3- and 4-lane freeways both algorithms failed to
detect some incidents for the smallest flow rate of 1000 vph per lane (Tables 3 and 4). This is
because the 'reducedl capacity after incident is still greater than the prevailing flow rate, and the
impact on traffic on the upstream side is mini_r'nal. Both algorithms detected all five ipcidents
when the incident is closest (152 m) to an upstream detector station. The new model, however,
performed better on the 4-lane freeway where it also detected some incidents locéted at distances
| greater thén 305 m (Table 4) yieldipg an overall detection rate of 83.3% as compared to 75% for
 the Califonia algorithm,

The fuzzy-wavélét RBFNN .rﬁo.délA &id noi éignal éﬁy 'false‘ aiarms in all the simulated
conditions, thus yielding a perfect false alarm rate of zero. The Califomia algorithm, on tﬁe other
hand, signaled several false alarrﬂs especially under heavy traffic conditions. The comparison of
false alarm rate oﬁ a 4-lane freeway is shown in Figure 7. The new model is thus significantly
superi(;r to the Calif;)mia algorithm when it comes to false alarm performance. And this is a very
important consideration in the evaluation of freeway incident detgction algorithms for network
wide implementation. |
Second Simulation Test - Freeway with On- and Off-Ramps

In this test, the false alarm rate perfo@mce of the new and California algorithms are
evaluated on a freeway w1th on- and off-ramps. Tﬁe purpose of this test is to determine the
portability of the algorithms th conditit)ns of varying f_low ratles and freeway bottlenecks.‘These

conditions are known to generate false alarms because they create traffic compression waves,

stop-and-go traffic, and traffic chaos near on- and off-ramps. The geometry of the freeway, the
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location of the detector stations, and the on- and off-ramps are shown in Figure 8 as five
contiguous segments identified by the detector station numbers noted at the bottom each
segment. It consists of two on-ramps and two off-ramps. There are 3 through lanes and one
auxiliary lane of length 244 m for each on- and off-ramp. Detector stations are spaced 610 or 762
m apart, 305 or 610 m upstream of the off-ramps, and 305 m upstream and downstream of “the
on-ramps. In the simulation model the motorists are warned in advance to the presence of an on-
or an off-ramp downstream so that they can make appropriate lane change maneuvers in time.

Four traffic flow scenarios are simulated for this geometric setup as defined in Table 5. Each
scenario consists of three time periods each having a different through, on-, and off-ramp flow
rate. The second time period in all the scenarios has a larger through-traffic flow rate than~ the
first time period. This simulates sudden spikes in traffic flow. In tl_leT third _time periods the flow
rates drop back to the values in the first time ﬁeriod. Scenarios 1 and 2 sir;ulaté moderate to
heavy flow conditions with moderate on-ramp traffic, while scenarios 3 and 4 simﬁlate the same
with heavy on-ramp traffic.

The presence of on- and off-ramps produces non-homogeneity in traffic flow as vehicles
undergo lane change maneuvers either to exit the freeway or to accommodate entering traffic.
Traffic flow in the vicinity of ramps is therefore chaotic with frequent congestions and
occasional stop-and-go traffic behaviors. This is especially true upstream of an on-ramp where
vehicles on the freeway have to accommodate heavy traffic entering from the on-ramp. The lane
occupancy and speed downstream of the on-ramp is not significantly affected. Similarly, chaotic
traffic flow often occurs upstream of an off-ramp. |

The false alarm rate performance of the new and California algorithms for the four simulated
scenarios are presented in Table 6. The new fuzzy-wavelef RBFNN model outperformed the

California algorithm #8 consistently under various scenarios (Figure 9). The false alarm rate
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ranges from 0 to 0.'07 % for the new algorithm and 0.53 to 3.82% for the California algorithm. It
is observed that the false alarm rate of the California algorithm increases several folds when flow
rate is increased. From scenario 1 to 2, the false alarm rate jumped from 0.98 to 2.34 percent, and
it jumped from 0.53 to 3.82 percent from scenario 3 to 4. The false alarm rate is larger for
scenarios 3 and 4 for both algorithms as compared to scenarios 1 and 2 because of the heavier
on-ramp traffic in simulations 3 and 4.

The freeway éegment between stations 4 and 5 generated the most false alarms. For example,
in scenario 4 the California algorithm signaled 227 false alarms out of 1125 decisions, whereas
the new model generated only 4 false alarms. This result highlights the poor portability
characteristics of the California algorithm. As Figure 9 shows there are large differences in
- occupancy values between stations 4 and 5 causing the Calif_o_rnia algorithm, which has a
comparative logic, to generate false élarms. The performance may be improved if the algonthm
is re-calibrated using data from this particular location. However, this is not a practicai solution
to the problem. On the other han&, the fuzzy-wavelet RBFNN model has a single station logic
where each traffic pattern is normalized before classification thus eliminating portability
problems. Moreover, thelnew model uses a sufficiently long (5 min 20 seconds for sixteen 20-
second time periods) time-series pattern that reduces the impact of sudden changes in traffic
flow. As a result, the new model signaled only a few false alarms primarily at detector station 4
due the close proximity of the station to the off-ramp and chaotic traffic situation at that station.
Test Using Real .Data .

To further evaluate the performance of the new algorithm real traffic data from two sources
are used for testing.

ARTIMIS
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Sixteen traffic incident data from ARTIMIS were used to evaluate the new model. Each
incident data sample consists of 30-second lane occupancy, speed, and flow rate values obtained
from the upstream detector station for 10 minutes preceding the time the incident is signaled. The
fuzzy-wavelet RBFNN model detected all sixteen incidents resulting in a 100 percent detection
rate (Table 7). Moreover, in all cases the algorithm detected the incident before that reporte;i‘ .by
the on-line incident logic used in ARTIMIS. The exact time of occurrence of the incident is not
known; therefore, the detection time cannot be determined. The ARTIMIS incident data
contained data for one station (the upstream station) only. Thus, the two-station California
algorithm could not be tested using those data.

FSP project's I-880 database

Both incident and incident-free data from the FSP project’s I-880 database are A‘use_d to

evaluate the new and California Aalgorithms. Data for 21 incidents that block one or more lanes

are used. The times of occurrence of incidents and their locations are only known approximately
as this information is recorded by human observers in a subjective manner. Based on this
information 20 minutes of 30-second lane occupancy and speed data are extracted from the
stations upstream and downstream of the incidents. Four hours of incident-free data are also
extracted from the database and tested for false alarms. The performance of the new and
California algorithms based on this data set is presented in Table 7. The fuzzy-wavelet RBFNN
model outperformed the California algorithm in both detection rate and false alarm rate. The
California algorithm signaled 3 false alarms in 480 decisions whereas the new algorithm
correctly identified all of them as incident-free conditions. This test again shows the robustness
and superior performance of the fuzzy-wavelet RBFNN model as compared to the California
algorithm #8. Both new and California algorithms are not re-trained or re-calibrated for the real

data test highlighting the superior portability characteristics of the new model.
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CONCLUSION

In this article, the performénce of the new fuzzy-wavelet RBFNN freeway incident detection
model is evaluated and compared with the benchmark California algorithm #8 using both real
and simulated data. Three quantitative and one qualitative performance measures are used for
comparison. Besides the commonly used measures of detection rate, false alarm rate, and
detection time, the qualitative measure of algorithm portability is also evaluated. This additional
measure is of utmost practical importance because re-training and/or re-calibration is not a
practically feasible solution to poor algorithm performance under varyjng conditions. Therefore,
in all the tests performed in this evaluation no re-calibration or re-training is done? and the
algorithms were compared based on the three quantitative measures.

More than 110 hours éf sirﬁulated data is generated on various freeway geometries and with
different flow rates for testing. Results indicate the clear superiority of the new model over the
California algorithm #8. Both the new and California algorithms detected all incidents in
moderate to heavy traffic. However, in light traffic (flow rate of 1000 vph per lane) on a 4-lane
freeway, the new model performed better than the California algorithm, detecting incidents even
when they are more than 305 m downstream of the detector station. The detection times for both
algorithms are identical for practical purposes. For a freeway segment with no on- and off-ramps
the new model signaled no false alarms while the California algorithm reported several fal;e
alarms especially in heavy traffic.

False alarms are a major hindrance to the widespread implementation of automatic freeway
incident detection algorithms. They are not only a nuisance but also costly in the freeway
management system. As a result, the false alarm rate performance of an algorithm is of utmost

practical importance especially on congested urban freeways with on- and off-ramps. In such
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simulated situations, it is found that the new model performed much better than the California
algorithm. For example, on a 3-lane freeway segment with two on- and off-ramps and heavy
flow rates (scenario 4) the new model produced a false alarm rate of 0.07% as compared to
3.82% for the California algorithm.

To further evaluate the robustness and portability of the new model, real data from ARﬁMIS
and FSP project’s I-880 database is also used for testing. Again, the new algorithm outperformed
the California algorithm in both detection rate and false alarm rate performémce. The new fuzzy-
wavelet RBFNN freeway incident detection model is a single-station pattern-based algorithm

that is computationally efficient and requires no re-calibration. It consistently outperformed the

- California algorithm #8, which is considered the benchmark algorithm for freeway incident

detection and the most widely used. This shows the promise of the new model to solve the
decades long quest for reliable automatic freeway incident detection on urban freéways. This
research shows that the new model can be readily transferred without re-training and without any

performance deterioration.
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Table 1. Definition of parameters used in California algorithm #8

Parameter | Definition

Py Threshold of occupancy difference between consecutive
stations

P, Threshold of percent occupancy change at downstream station

P Threshold of percent occupancy difference between consecutive
stations

Py Threshold of occupancy at downstream station

Ps Another threshold of occupancy at downstream station

Py Number of compression wave suppression periods

Table 2. Performance of the new incident detection model and California algorithm #8 on a two-
lane freeway ’

‘Flow | Location New Algorithm - -~ - California Algorithm #8
rate (m) Detections | False | Detection | Detections | Faise | Detection
(vph alarms time alarms time
per (s) (s
lane)
1000 152 5/5 0/150 172 5/5 0/150 164
305 5/5 0/150 300 5/5 0/150 252
457 5/5 0/150 368 5/5 0/150 384
610 5/5 0/150 500 5/5 0/150 480
1500 152 5/5 0/150 72 5/5 0/150 92
305 515 0/150 152 5/5 0/150 132
457 5/5 0/150 164 5/5 0/150 176
610 515 0/150 240 5/5 1/150 228
2000 152 5/5 0/150 64 5/5 0/150 96
305 5/5 0/150 88 5/5 2/150 84
457 5/5 0/150 128 5/5 1/150 116
610 5/5 0/150 140 5/5 0/150 132
Totals 60/60 0/1800 60/60 4/1800
100% 0% 100% 0.22%
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Table 3. Performance of the new incident detection model and California algorithm #8 on a
three-lane freeway

Flow | Location New Algorithm California Algorithm #8
rate (m) Detections | False Detection | Detections | False | Detection
(vph alarms time alarms time
per (s) ()
lane)
1000 152 5/5 0/150 156 5/5 0/150 248
305 0/5 0/150 - 0/5 0/150 -
457 0/5 0/150 - 0/5 0/150 -
610 0/5 0/150 - 0/5 0/150 -
1500 152 5/5 0/150 80 5/5 0/150 96
305 5/5 0/150 124 5/5 1/150 132
457 5/5 0/150 244 5/5 0/150 208
610 5/5 0/150 280 5/5 0/150 264
2000 152 5/5 0/150 64 5/5 1/150 76
305 5/5 0/150 96 5/5 0/150 92
457 5/5 0/150 136 5/5 0/150 136
610 5/5 - 0/150 160 5/5 0/150 148 -
Totals 45/60 .0/1800 45/60 2/1800
75% 0% 75% 0.11%

Table 4. Performance of the new incident detection model and Californial algorithm #8 on a
four-lane freeway

Flow | Location New Algorithm California Algorithm #8
rate (m) Detections | False Detection | Detections | False | Detection
. (vph alarms time alarms time
per ®) s)
lane)
1000 152 5/5 0/150 180 5/5 0/150 168
305 2/5 0/150 390 2/5 0/150 440
457 2/5 0/150 250 0/5 0/150 -
610 1/5 0/150 320 0/5 0/150 -
1500 152 5/5 0/150 76 5/5 0/150 96
305 5/5 0/150 124 5/5 1/150 132
457 5/5 0/150 208 5/5 0/150 188
610 5/5 0/150 272 5/5 0/150 268
2000 152 5/5 0/150 68 5/5 0/150 84
305 5/5 0/150 84 5/5 2/150 96
457 5/5 0/150 136 5/5 1/150 128
610 5/5 0/150 144 5/5 1/150 140
Totals 50/60 0/1800 45/60 5/1800
83.3% 0% 75% 0.28%




Table 5. Definition of the four simulation scenarios evaluated for the three-lane freeway with

ramps
Scenario # | Time [Entryflow | On-ramp flow rate Off-ramp flow rate
period # rate (vph) (vph)
(vph) A B A B
1 1 4500 300 500 225 450
2 4800 300 500 240 480
3 4500 300 300 225 450
2 1 5250 300 500 260 525
2 5500 300 500 275 550
3 5259 300 300 260 525
3 1 4000 600 600 200 400
2 4500 600 600 225 450
3 4000 600 600 200 400
4 1 5500 600 600 275 550
2 6000 600 600 300 600
3 5500 600 600 275 350

Table 6. False alarm performance of the new incident detection model and Cahforma algonthm
#8 for the three-lane freeway with ramps

Station # False alarms (out of 1125 decisions)
Scenario 1 Scenario 2 Scenario 3 Scenario 4
New Cal. New Cal. New Cal. | New Cal.
1 0 0 0 0
2 0 0 0 0 0 0 1 0
3 0 3 0 1 0 1 0 0
4 2 0 0 1 2 0 4 5
5 0 51 0 130 1 27 0 207
6 0 1 0 0 0 2 0 3
0.03% | 0.98% 0% 2.34% | 0.04% | 0.53% | 0.07% | 3.82%

Table 7. Performance of the new incident detection model and California algorithm #8 using real

traffic data
ARTIMIS FSP Project
Detections Detections False alarms
New New Cal. New Cal.

16/16 20/21 19/21 | 0/480 3/480

100% 95.2% | 90.5% 0% 0.63%
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FAST AUTOMATIC INCIDENT DETECTION ON URBAN AND RURAL
FREEWAYS USING THE WAVELET ENERGY ALGORITHM

Asim Karim' and Hojjat Adeli®

ABSTRACT: A comprehensive evaluétion of the single-station wavelet energy neural
network freeway incident detection algorithm of Karim and Adeli is presented. -
Quantitative performance measures of detection rate, false alarm rate, and detection time
as well as the qﬁalitative measure of portability are investigated for both urban and rural
freeway conditions. Further, the performance of the algorithm is compared with that of
the California algorithm #8. This research demonstrates the portability of the wavelet
energy algorithm and its excellent performance for urban freeways across a wide range of-
traffic flow and roadway geometry conditions fegardless of the density of the loop “
detectors. Rural freeways present additional challenges in that flow rates are low and
detector stations are spaced further apart. Considering the difficulty in automatic
detection of incidents on rural freeways, the new wavelet energy algorithm performs well
on such freeways. The algorithm is fast as it de‘;ects an incident on urban freeways in less

than two minutes and on rural freeways in less than three minutes.

INTRODUCTION

There are two major uses of automatic incident detection in an advanced traffic

management system (ATMS). First, it is used to signal the dispatch of emergency crews

to the site for prompt medical support, obstruction removal, and general maintenance of

! Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic Science, The
Ohio State University. _



motorists’ safety. Second, it provides useful information to the routing control system to

maintain and optimize system wide performance. For the best performance, the incident

detection system must provide quick and reliable information. The traffic incident
detection system is a main component of an ATMS (Figure 1). The other components
that make up the advanced traffic management system include the traffic routing and
control system, the data archiving system, and the pre- and post-processing systems.
Traffic sensors provide the main source of data for analysis. Additionally, information
may be obtained from the news media, special traffic probe vehicles, and motorists’ call-
ins. The goal of an ATMS is to maximize the system throughput. This is currently
achieved by means of traffic control devices such as entry ramp access control and
chéﬁgeable message signs that guide and contrcﬂ tfafﬁ& |

Recently, Adeli and Karim (2000) presented a new multi-paradigm intélligent system
approach to the solution of the freeway incident detection problem employing advanced
signal processing, neural network pattern recognition (Adeli and Hung, 1995; Adeli and
Park, 1998), and classification techniques. This is a single-station algorithm that uses
loop detector data upstream of the incident A wavelet-based de-noising technique is
employed to eliminate undesirable fluctuations in observed .data from traffic sensors
(Samant and Adeli, 2000). Fuzzy c-mean clustering is used to extract significant
information from the observed data and to reduce its dimensionality. A radial basis
function neural network (RBFNN) is developed to classify the de-noised and clustered
observed data. The performance of the model. is e\./aluated and compared with the

benchmark California algorithm #8 using both real and simulated data (Karim and Adeli,

2 Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State
University, Columbus, OH 43210, USA.
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2001a). The new algorithm outperformed the California algorithm consistently under

various scenarios. The false alarm rate rénges from 0 to 0.07 % for the new algorithm and

.. 0.5 to 3.8% for the California algorithm. The incident detection time ranged from 64

.. seconds for larger flow rates and shorter distances to the detector station to 480 seconds
- for lower flow rates and longer distances to the detector station.

~ In order to reduce the incident detection time to the range of one-to-two minutes on

v urban freeways, Karim and Adeli (2001b) developed a new single-station pattern

- recognition algorithm for freeway incident detection using data tha.ined from loop

detectors' downstream of the incident. The algorithm uses an innovative energy

representation of the traffic data in the wavelet domain to de-noise and enhance desirable

~ features before classifying them by a radial-basis function neural network. The algorithm; -

is based on a new methodology for the development of freeway incident detection

algorithms that emphasizes de-noising, feature enhancement, and the selection of a traffic |

pattern independent of the roadway geometry and traffic flow conditions.
The purpose of -evaluating a new freeway incident detection algorithm is to determine
its robustness under different traffic flow and roadway geometry conditions, and thus to
~assess its cost-effectiveness for practical network-wide implementation. Three
quantitative performance measures are commonly used for this purpose. They are the
detection rate (percentage of number of correctly detected incidents to the total number of
zincidents in the data set), the false alarm rate (percentage of the number of false alarms
.signaled by the algorithm to the total number of decisions made), and the detection time

(the time it takes for the algorithm to signal the incident after its occurrence).



These three quantitative measures, however, do not provide a complete picture of an
algorithm’s performance in practice. The qualitative measure of portability without re-
calibration must also be considered in conjunction with the quantitative measures. This is
because the cost of maintaining and re-calibrating the algorithm to perform acceptably at

all locations in a large freeway system can make its network-wide implementation

economically infeasible. There is a cost associated with every missed detection and every

false alarm, the time taken to detect an incident, and the efforts exerted to maintain and
calibrate the algorithm. These costs ultimately detérminé the success or failure of the
algorithm in practice. As reported by Abdulhai and Ritchie (1999), traffic control centers
place differing cost premiums.on each performance measure whenever a trade-off is
| '-sought. In Aahy casé, a higher detecti(‘)n'rate, a 1owér false alarm rate, and a shorter
detection time is always desirable. Moreover, an algorithm that is readily portable is often
preferred over one that performs excellently only at a given location.

All freeway incident detection algorithms reported in the literature have been
developed and evaluated for urban freeway éystems. This is uﬁderstandable because of
the negative impacts incidents create on congested urban freeways and the need to
remove them as soon as possible. However, there is also a need to develop and evaluate
incident detection algorithms for rural freeways. The vehicle-miles of rural freeways in
the United States is much larger than that for urban freeways and there is indeed a ﬁeed
for automatic and rapid detection of incidents so that emergency/medical support can be
dispatched in time. Challenges such as low flow rates and long distance between loop

detectors have hampered the development of algorithms that work effectively in rural

freeway environments.
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_ In this article, first a comprehensive parametric evaluation of the new wavelet energy
freeway incident detection algorithm of Karim and Adeli (2001b) is presented using both
real and simulated data. Several urban freeway scenarios are simulated for evaluation by
varying the flow rate, the number of lanes, and the distance of the incident from detector
station. The effects of on- and off-ramps are also considered. Next, the algorithm is
evaluated on rural freeway scenarios where flow rates are low and detector stations are
spaced far apart. For comparison, the performance of the California algorithm #8 is also
presented.

In the following section, factors to consider in rural freeway incident detection are

delineated. Then, the wavelet energy freeway incident detection algorithm is described

_step-by-step, followed by a comprehensive evaluation of the algorithm and discussions of

the test results.

FACTORS TO CONSIDER IN RURAL FREEWAY INCIDENT DETECTION

Traffic on urban freeways is characterized by high demand and periodic congestion
that reduces the level of service expected by motorists. Because of the high demand and
insufficient capacity the level of service degrades dramatically when an obstructing
incident occurs. Therefore, quick and reliable identification and localization of such
incidents is essential to prevent unacceptable backups and delays caused by obstructions
that are not cleared quickly. As such, an effective incident detection algorithm must be
both reliable and fast in detecting an incident.

Traffic on rural freeways, on the other hand, is usually congestion-free under normal

operating conditions. Furthermore, the impact of an obstructing incident is often less



severe because traffic demands on rural freeways usually do not exceed the capacity.

‘Nevertheless, the need for reliable automatic incident detection still exists. Incidents in

rural areas; unlike in urban areas, may go unreported for several minutes. Fﬁrthermore,

the transit of emergency and medical support to rural locations can take more time.

Therefore, rapid automatic notification of an incident condition is very valuable.

Automatic incident detection on rural freeways is challenging because of low flow rates

and large distances between detectors. Most of the incident detection algorithms

developed so far have hot been evaluated under such conditions, and, in general, perform
poorly under low flow rate conditions.

Several factors have to be considered in the development and evaluation of an
automatic rural freeway incident détection algorithrimL These'éoﬁsideratioris are in géneral
more stringent and demanding than those required for reliable detection on urban
freeways.

e Density of detectors: It is practically infeasible to have closely spaced loop detectors
on rural freeway segments. Thus, the algorithm must work reliably under situations
where detectors are spaced 2-3 km apart. The cost-effectiveness of the solution
improves dramatically. with an increase in the distance between detectors at which the
algorithm can produce reliable results.

e Detection time: The detection time on rural freeways is important not for traffic
management purposes but for emergency medical support reasons. Often a serious
congestion may not develop as a result of a rural incident. Howevér, rapid
identification and localization of the incident is still necessary to ensure that

emergency support can arrive on the scene at the earliest possible time. There is a
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tradeoff between the detection time and the distance between detectors. In general,.
the closer the spacing between detectors, the shorter the detection time; however,
reducing the spacing between detectors significantly increases the number of
detectors that have to be installed and maintained on long stretches of rural ﬁeewayé.
Low prevailing flow rates: Traffic incident detection algorithms normally depend on
the change in traffic pattern that results from an incident to identify its occurrence.
However, when the prevailing flow rate is low and the incident does not reduce
freeway capacity significantly the change in traffic pattern can be minor. This poses a
serious challenge in the design of reliable algorithms.

Calibration and maintenance: Because of the huge mileage of rural freeways

calibration and maintenance of algorithms at all locations can become extremely'.

costly. Therefore,. algorithms for rural freeway incident detection should require
minimal maintenance for acceptable operational performance. Custom calibration of

the algorithm at each location is practically infeasible.

. An algorithm that is cost-effective for implementation on an urban freeway system

f_nay be impractical for implementation on rural freeways. In general, a lower
performance should be expected for an algorithm on rural freeways than on urban
freeways because of the constraints on detector spacing and flow rates. The goal is to

have an algorithm that requires no re-calibration with acceptable performance. Note that
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these considerations apply to passive techniques for incident detection only where traffic
data obtained from ldop detectors embedded in the pavement are analyzed to identify

characterizing patterns. Active techniques, such as in-vehicle transponders, may be more



effective in rural settings but require more investment and are often perceived as intrusive

by the public.

WAVELET ENERGY MODEL FOR FREEWAY INCIDENT DETECTION

The new single-station incident detection algorithm developed by Karim and Adeli
(2001b) takes as inputs a time-series of lane occupancy and lane speed at the upstream
detector station or a time-series of lane occupancy and lane flow rate at the downstream
detector station. Each time series consists of 16 data values averaged over and obtained at

every 20- or 30-second interval. The patterns at both upstream and downstream detector

stations are transformed and represented in the wavelet domain as an energy functional. -

This representation makes 1t pdséible to de-noise, enhance, and reduce the &imensibnality
of the patterns effectively and efficiently. The processed patterns are then classified into
one of two states representing either an incident or incident-free condition by a radial
basis function neural network. The key ideas are described in Karim and Adeli (2001b) in
general terms. A compiete detailed step-by-step algorithm is presented in this section.
Only the downstream station logic is implemented and tested in this evaluation. It was
found that the upstream logic produced results almost identical—and in the case of
detection time, slightly inferior—to those produced by the downstream logic. Therefore,
the wavelet energy algorithm consists of the collection, processing, and classification of
the downstream lane occupancy and flow rate time-series data. In a freeway management
system, this algorithm is implemented at. e-very detector station and reports on the
presence or absence of an incident upstream of the station. The algorithm is shown

schematically in Figure 2 and described in the following steps.

.



1.

Obtain the last 16 lane occupancy and lane flow rate readings and form the sequences

Joli] and f7], respectively, where i = 1,...,16. When readings are available every 20-

s, for example, this process is performed every 20 seconds by adding the new reading

and dropping the last reading in the sequence.

a)

b)

d)

- For each data sequence f[7] perform the following computations:

Sort the elements in the sequence f[i] to create a new sequence g[i] such that

glilzgli+1]; i=1,...,15

Normalize f[i] by dividing all its elements by the average of the two largest
values:
flil= Si] i=1,.,16 o)

0.5(g[1]+ g[2])

Extend the normalized sequence f[i] by 8 elements on each side, as follows:

05(F)+ f[21)  1<iss
Flil=1 fli—8] 9<i<24 )
0.5(F[151+ f[16]) 25<i<32

The sequence f" [i] now has 32 elements.

Perform a two-stage low-pass filter of the sequence f’ [i], as follows:
ci[k]= X holi = 2k171i] - 3)
k] = Zho [i = 2k]e, [1] 4)

where ho[i] is the 8-coefficient low-pass filter for the Daubechies wavelet system

of length 8 (Daubechies, 1992). The se.quence csfi] (i =1,...,8), called the scaling



coefficients, represents a lower scale or resolution (scale 3) of the original 32-

element sequence f [i] (scale 5).

e) Enhance the sequence c[i]
cli-2]= ;[ i=3,4,56 )
The sequence c[i] has 4 elements representing the squared scaling coefficients (a

measure of energy in the wavelet »domain) for the middle 16 elements of f” [7].

These clements correspond to the input traffic data before it is extended for

processing. Let the processed lane occupancy and speed data be denoted as ¢, [i]

and c[i], respectively.
3. Formthe feéture pattérn by concatenating the processed lane occupancy- and flow rate

sequences:
x[il=c,li], x[i+4]=cp[i] i=1,..4 (6)
The 8-element sequence x[7] represents the de-noised, clustered, and enhanced pattern
that is used in the subsequent step for classification

4. Feed-forward the feature pattern x[i] through a trained radial-basis function neural
network. The neural network has 8 input nodes, 12 hidden nodes with Gaussian
transfer functions, and one output node with a linear transfer function. If the output is
greater thani a pre-selected threshold (a small positive value such as 0.2) then an
incident is signaled; otherwise, the pattern represents an incident-free condition.

The RBFNN is trained with incident é.nd incident-free patterns to determine the weights

of the links connecting the input layer to the hidden layer and the links comecting the

hidden layer to the output node. Training is done iteratively to minimize the output error.
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Once the network is trained no further training is necessary. For further details, refer to

Karim and Adeli (2001b).

EVALUATION AND PARAMETRIC INVESTIGATION

Goals

A comprehensive evaluation of the wavelet energy freeway incident detection

algorithm is presented in this section. The goals of the evaluation are:

1.

To determine the quantitative performance measures (detection rate, false alarm rate,
and detection time) for typical urban freeway conditions;

To determine the quantitative performance measures for typical rural freeway
conditions;

To assess the transferability or portability of the algorithm, that is, to compare the

algorithm’s performance under different roadway geometry and traffic flow

conditions without re-calibration;

To perform a parametric evaluation of the algorithm, that is, to determine the
sensitivity of the algorithm to variations in roadway geometry and traffic flow
conditions.

To compare the performance of the algorithm with that of California algorithm #8
(Payne and Tignor, 1978).

The roadway geometry conditions evaluated are the number of lanes (2, 3 and 4), the

_distance of the incident from detector station (152 to 2744 m), and proximity to on- and

off-ramps. Traffic flow is varied from 500 to 2000 vehicles per hour (vph) per lane. An

incident is modeled as the blockage of one lane and the 50 or 40 percent reduction in

11



capacity of the adjacent lane(s). The time of blockage is varied from 3 minutes to 10

minutes.

Data

The majority of the traffic data used in the evaluation are generated using the

simulation software TSIS (http://www.thwa-tsis.com/). TSIS is a microscopic simulation
tool that considers each vehicle as a separate entity in a stochastic model of vehicles and
their environment (roadway geometry, pavement conditions, proximity to other vehicles,
etc).

In addition to simulated data, real data from the San Francisco Bay area freeway
service patrol project’s 1-880 database is also used for evaluation. This database is a
collection of binary files of loop detecAt(A)‘r'-AoutputsA éollected over a period of about 2
months. A software program is used to process this database and extract selected
information in a readable format for further processing. The database contains basic
information such as lane occupancy, flow rate, and speed. The information on the
location and time of incidents is recorded by human observers and has to be correlated to
the loop data for analysis. Because this information is recorded by humans, it is not
reliable énd has to be verified by visual observation of the loop detector data. In all, data
for 21 single-lane blocking incidents and four hours of incident-free conditions are
extracted for evaluation in this research.

Training and Calibration

The wavelet energy freeway incident detection algorithm is trained with 60 incident

and 60 incident-free patterns. These patterns are chosen randomly from all the simulated

data generated for the evaluation. No real data is used in the training phase of the
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network. The training determines the weights for the .RBFNN. Once the algorithm' is
trained no further training is done as it is evaluated using different sets of data.

The California algorithm #8 (Payne and Tignor, 1978) is a well-known two-station
comparative algorithm for freeway incident detection that uses lane occupancy data as
input. The algorithm logic consists of a sequence of decisions where occupancy-based

input values are compared with pre-selected thresholds to characterize traffic flow into

.one of five major states. California algorithm #8 is one of several variations that were

developed in the 1970s. It incorporates an incident persistence test and a compression
wave suppression test to reduce the generation of false alarms. Six parameters or
thresholds have to be calibrated for the algorithm. Employing the same 60 incident and
60 incident-free patterns used for the wavelet energy algorithm, calibration of thé :
California algorithm is done in a trial-and-error fashion until the misclassification error is
minimized. The threshold values used in this evaluation are as follows (these values_"
produced the best overall calibration results for the data used): |
Threshold of occupancy difference between consecutive stations = 13%,
Threshold of percent occupancy change at downstream station over the time interval =30,
Threshold of percent occupancy difference between consecutive stations = 30,
Threshold of occupancy at downstream station = 15%,
Second threshold of occupancy at downstream station = 30%, and
Number of compression wave suppression periods = 2.

The same set of parameters is used throughout the evaluation without re-calibration.
This is done to test the portability property of the algorithm and compare it with that of

the new wavelet energy algorithm. '



Parametric Evaluation Using Simulated Data on Typical Urban Freeways

Figure 3 shows the freeway layouts simulated for the parametric evaluation. These
layouts represent typical urban freeway segments with 2, 3, and 4 lanes with detectors
spaced 762 m apart. The locétion of the incident, which consists of the blockage of one
lane and the 50 percent reduction in capacity of the adjacent'lane, is varied from‘ 152 to
610 m from the downstream (or upstream) detector station. The flow rates considered are
1000, 1500, and 2000 vph per lane. The data set used for this evaluation is identical to

_that used for the parametric evaluation of the earlier fuzzy-wavelet RBFNN model
(Karim'and Adeli, 2001a).

The performance of the new wavelet energy algorithm is compared with that of the
California algorithm.#>8 oﬁ 2, 3 and 4 lané".ﬁeeways 1n Tableé 1, 2, .‘and é, respectiVély.
The wavelet energy algorithm performs perfectly in all scenarios in terms of producing
an overall detection rate of 100 percent and a false alarm rate of zero. The California
algorithm, on the other hand, failed to detect 25 percent of the incidents on 3- and 4-lane
freeways. This result demonstrates the excellent performance of the new wavelet energy
algorithm in difficult-to-detect situations such as the closure of just one lane on a multiple
lane freeway when prevailing flow rate is low. In general, whenever the prevailing flow
rate is less than the reduced capacity after the incident, incident detection algorithms like
California algorithm #8 are less likely to detect an incident because a significant queue
does not develop in a short period of time (say, a few minutes). This characteristic also
exists in-other incident detection algorithms that utilize only the upstream occupancy to

detect the presence of an incident condition.
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The detection times reported by the new wavelet energy algorithm varies from 56 to
116 seconds. The detection time generally increases with an increase in the distance of
the incident from the downstream detector station. However, this variation of the
detection time with location of incident is substantially less pronounced than that for the
California algorithm. This is evident from Figure 4, which compares the detection times
for the wavelet energy and Califomia algorithms on a 2-lane freeway. The detection time
for California algorithm is a lot longer, varying from 76 to 480 seconds; it increases
substantially with a decrease in flow rate and distance of incident from downstream
detector station. This is because the California algorithm is based on the formation of
congestion on the upstream side of thé incident, which takes more time to develop when
the prevailing flow rate is low. The wavelet energy algorithm, on the other hand, does riof
exhibit Vthis behavior as seen in Figure 4. The performance of the wavelet energy
algorithm is also not greatly effected by changes in geometry such as the number of lanes
as noted in Figure 5. The relative independence of the wavelet energy algorithm to |
chémges in flow rate and roadway geometry demonstrates its superior portability property
as compared to the California algorithm.

False alarms generated by automatic freeway incident detection algorithms are often a
major source of excessive operational costs. Traffic control centers would often prefer an
algorithm that generates fewer false alarms over another one with better detection rate but
higher false alarm rate. On urban freeway segments, the wavelet energy algorithm
generated no false alarms, thus producing an overall false alarm rate of zero. In contrast,

the California algorithm produced false alarm rates of 0.22, 0.11, and 0.28 percent, on 2-,




3-, and 4-lane freeways, respectively. These false alarms are generated during moderate
and heavy traffic flow conditions.
False Alarm Performance in the Vicinity of On- and Off-Ramps

Traffic flow in the vicinity of on- and off-ramps is often chaotic and marked by large
fluctuations in occupancy, speed, and flow rate as vehicles maneuver to enter and exit the
freeway. This is especially true for urban freeways where ramps are usually spaced
closely apart and the entering and exiting flow rates are high. On- and off-ramps are thus
geometﬁc bottlenecks that create non-homogeneities in traffic flow, and are responsible
for generating a large n;Janer of false alarms from existing automatic freeway incident

detection algorithms. To test the false alarm performance of the algorithms in such

situations a 3-lane urban freeway segment with two on- and off-ramps is modeled for

simulation (Figme 6). For this freeway geometry four traffic flow scenarios are
evaluated, as described in Table 4. Each scenario consists of three time periods of
different mainline, on-, and_ off-ramp traffic flow rates. This is done to simulate sudden
changes in entering and exiting flows on heavy traffic freeways that often cause
automatic freeway incident detection algorithms to produce false alarms.

The false alarm performance of the wavelet energy algorithm and California
algorithm #8 in the vicinity of on- and off-ramps is given in Table 5. The remarkable
false alarm performance of the wavelet energy algorithm is evident; it produced no false
alarms at all six detector station locations and in 27000 (4X6X1125) decisions. The
California algorithm, on the other hand, produced numerous false alarms, ranging from

0.5% to 3.8%, especially for the roadway segment between detectors 4 and 5 (Figure 6).
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Note that both algorithms are not re-calibrated or retrained for this and all other
evaluations. This is done to ascertain the portability property of the algorithms. The
California algorithm #8 may be re-calibrated for each segment to produce fewer false
alarms. However, this procedure is time consuming and expensive on a large urban
freeway management system. Furthermore, this procedure may be required on a regular
basis to ensure optimal performance with changing traffic flow conditions. The wavelet
energy algorithm, ;)n the other hand, performed excellently without any need for
retraining and thus is readily transferable and portable for implementation on urban
freeway systems.

Evaluation on Rural Freeways

Rural freeways present a challenge for passive automatic freeway incident defectioﬁ e
algorithms that use loop d'etectof data. As discussed earlier, it is economically infeasible |
to have closely spaced loop detectors on the large network of rural freeways in the U.S. |
Thus, incident detection algorithms can only rely on sparse information to arrive at a:'
decision. This is further complicated by the often low flow rates on rural freeways that
are impacted little by an incident. As a result, passive automatic incident detection
algorithms often perform poorly on rural freeways making them impractical for traffic
agencies to implement. Traffic agencies also desire algorithms that require little
maintenance and no site-specific calibrations-for their optimal performance on rural
free;zvays.

To the best of the authors' knowledge, no automatic freeway iﬁcident detection
algorithm has been evaluated for rural freeway conditions. In this section, the new

wavelet energy algorithm and California algorithm #8 are evaluated on a simulated 2-lane



rural freeway segment with loop detectors spaced 3048 m (10,000 ft) apart. The
performance of the algorithms is determined for flow rates of 500, 1000, 1500, and 2000
vph per lane. The distance of the incident from the downstream detector station is varied
from 152 to 2744 m. A lane-blocking incident is modeled as the closure of one lane and
the 40 percent reduction in capacity of the adjacent lane. A shoulder incident is modeled
by the 40 percent reduction in capacity of both lanes. Incidents of 5- and 10-minute
durations are evaluated.

The performance of the wavelet energy algorithm and California algoﬁtﬁm #8 on a 2-
lane rural freeway with a lane-blocking incident of 10 minutes duration is given in Table
6. Results are categorized by prevailing flow rates (500, 1000, 1500, and 2000 vph/lane)
and distanée of ihe inéident from '-fhe do'v‘vr.lstream.- detector station ( 152-2744 m). The
wavelet energy algorithm performed much better overall than the California algorithm
#8. When the prevailing flow rate is a low 500 vph per lane, the wavelet energy algorithm
detected 18 percent of the incidents as compared to zero for the California algorithm. At
this low flow rate, there is little or no impact of the incident on traffic patterns upstream
and downstream of tﬁe incident. A change in the upstream traffic pattern is usually non-
existent because any shock wave created dissipates within 50 to 100 m of the incident.
On the downstream side, the shock wave travels much faster and is less likely to be
‘masked by oncoming traffic flow. However, because of the natural variation inherent in
traffic flow and the fact that the change in pattern is small, this pattern often cannot be
distinguished from normal traffic flow patterns.

This is evident from Figure 7, which shows a typical lane occupancy time-series plot

at the downstream detector station. An incident occurs at time 900 seconds and persists
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for 600 seconds; however, no visible change in the occupancy pattern such as a persistent -

reduction in the occupancy during and after the incident is noticeable from the plot (the
spike in the figure is an outlier due to an extraneous factor such as noise in the data and is
not an indicator of any change in the occupancy pattern). The wavelet energy algorithm is
able to detect some incidents because it considers both occupancy and flow rate readings
to create an enhanced and de-noised pattern before classifying it. The increased
sensitivity of the algorithm, however, does come with a higher false alarm rate. The
number of false alarms can be reduced by increasjng the threshold ¢ (see Figure 2) used in

the wavelet energy algorithm. This can be done easily and in real-time by an appropriate

 logic in the algorithm.

A flow rate of 1000 vph per lane is typical on many rural freeways under normal A‘

operational conditions. Under these conditions the wavelet energy algorithm detected 88
percent of the incidents with a false alarm rate of 0.08 percent. The California algorithm,
on the other hand, produced detection and false alarm rates of 20 percent and zero,r
res-pectively.‘ The California algorithm failed to detect any inéident that is less than 2479
m from the downstream station. The wavelet energy algorithm is able to detect 85% of
incidents for such distances from the downstream station. The California algorithm will
require the detector stations to be spaced at about 610 m apart for its performance to be at
par with the wavelet energy algorithm. Such a high density of loop detectors is
economically infeasible for rural freeways. Furthermore, the wavelet energy algorithm
required an average time of 151 seconds to detect the incidents, which is acceptable for

rural incident management applications. These results show the superiority of the wavelet

energy algorithm on rural freeways.



At flow rates of 1500 and 2000 vph per lane the wavelet energy algorithm detected all
incidents producing a detection rate of 100 percent, while the California algorithm
produced a detection rate of- 72 and 100 percent, respectively. The California algorithm
again failed to detect incidents at distances of less than 600 m from the downstream
detector station at the lower flow rate of 1500 vph per lane highlighting its unsuitability
for implementation on rural freeways. It also had a false alarm rate of 0.56% at the higher
flow rate of 2000 vph per lane compared with 0% for the wavelet energy algorithm. The
detection times for the wavelet eﬁergy and California algorithms varied from 44 to 160
and 148 to 500 seconds, respectively. Except when flow rate is 500 vph per lane the
detection time for the wavelet energy algorithm on rural freeway is less than three

minutes.

Often an incident.results in the blockage of a lane for only a short duration of time.
For example, a disabled vehicle may block one lane for a few minutes before it is moved
onto the shoulders. Detecting such incidents are often more challenging for incident
detection algorithms as the impact of the incident lasts just for a shorter period of time. In
all the previous evaluations, the incident duration is equal to 10 minutes. Table 7 shows
the performance of the wavelet energy algorithm and California algorithm #8 on a 2-lane
rural freeway when the lane blockage lasts for 5 minutes only. The detection rate, false
alarm rate, and detection times produced by the two algorithms for this scenario are
similar to those produced for 10-minute incidents recorded in Table 6. This is because the
maximum detection time for the energy wavelet algorithm in all cases is 160 seconds
which is substantially less than the S-minute duration of the incident. As long as the

duration of an incident is greater that the detection time it does not affect the performance

20




R —

of the algorithm in any significant way. The same does not hold true for the California
algorithm because its detection time is as large as 430 seconds. Consequently, as is the
case for the 10-minute duration incidents, the performance of the wavelet energy
algorithm is superior to that of California algorithm #8.

lSometimes incidents produce no lane blockage but only reduction in the capacity of
the lanes. This situation may occur when, for example, a disabled truck is parked on a
shoulder reducing the capacity of the lanes. To study such scenarios on rural freeways a
40 percent reduction in capacity of both lanes that lasts for 10-minutes is modeled forA
evaluation. The performance of the wavelet energy and California algorithms under such
scenario are given in Table 8. The detection rates produced by both wavelet energy and
California algorithms dropped slightly as compared to the case when one la_né is blocked
(Table 7). This is because an incident that does not block any lanes produces a less severe
disruption in traffic flow than an incident that blocks at least one lane. This is especially
true when the flow rate is low (1000 vph per lane). For the same reason also, the average-
detection time by California algorithm is longer as it takes more time for the congestion
to develop and be detected by the algorithm. The detection time of the wavelet energy
algorithm is in the range of 40-145 seconds while that of the California algorithm is in the
range of 252-580 seconds.

Evaluation Using Real Data

Limited usable real traffic data was available to the authors. Real traffic flow and
incident data are extracted from the San Francisco bay area freeway service patrol
project’s I-880 database for evaluation of the wavelet energy and California algorithms.

Data for 21 incidents that block at least one lane are used to determine detection rate

21



performance, while 4 hours of incident-free data are used to ascertain the false alarm rate
performance. The time of incident information in the database is inaccurate and therefore
cannot be used to determine detection times. The performance ;)f the wavelet energy and
California algorithms using real data is shown in Table 9. The wavelet energy algorithm
outperformed the California algorithm in both detection and false alarm rate. In
particular, the wavelet energy algorithm did not signal any false alarm at ali. In contrast,
the California algorithm produced false alarm rate of 0.63% for this small real data set. It
should be noted that this evaluation was also done without re-calibrating or re-training

the algorithms. Also, note that the algorithms have been trained/calibrated using

simulated data only. The detection rate of the wavelet energy incident detection algorithm

-can bé improved When a good amouﬂt of real data is availéble..
PERFORMANCE SUMMARY AND CONCLUSION

Transferability or portability is a qualitative property of a freewa_ly incident detection
algorithm that-determines how well the algorithm performs across various traffic flow
and roadway geometry conditions. In all the tests performed in this evaluation the
algorithms are not re-calibrated or retrained. Thus, a good way to assess the algorithms’
portability is to compare their performance vectors across different test scenarios. A
performance vector is defined as a vector with three performance elements: the
percentage of missed detections (eqﬁal to 100 minus the detection rate), the false alarm
rate, and the detection time. The smaller the value of each element the better the
performance. Table 10 gives the performance vectors for &e wavelet energy and
California algorithms for the various scenarios evaluated in this research (extracted from

Tables 1 through 3 and 6 through 8). The wavelet energy algorithm performed
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consistently well across all scenarios including typical rural and urban freeway

conditions. Furthermore, for any given scenario the wavelet energy algorithm

outperformed the California algorithm #8. This result establishes the portability of the -

wavelet energy algorithm and demonstrates its excellent performance for urban freeways
across a wide range of traffic flow and roadway geometry conditions regardless of the
density of the loop detectors. |

To the best of the authors' knowledge, no systematic evaluation of any existing
incident detection algorithm has ever been published in the literature before. This paper
presented the first investigation of this kind. Considering the difficulty in automatic

detection of incidents on rural freeways, the new wavelet energy algorithm performs well

" on such freeways with detectors being placed a large 3 km apart, except when the flow _

ra:2 1s lower than 500 vph per lane. It is unlikely that a passive incident detection

algorithm based on loop detector data can perform better than the wavelet energy"

algorithm in such low flow rate conditions; the traffic is just not affected enough to be

detected reliably.
It is concluded that the new wavelet energy algorithm is not only highly robust and
suitable for practical implementation on large urban freeway systems but also suitable

and cost-effective for implementation on most rural freeways.
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Table 1 Performance of the new wavelet energy algorithm and California algorithm #8
on a two-lane freeway ‘

Flow | Location Wavelet energy Algorithm California Algorithm #8
rate (m) * | Detections | False | Detection | Detections | False [ Detection
(vph alarms time alarms
per (s) time
lane)

©)

1000 152 5/5 0/150 80 5/5 0/150 480

305 5/5 0/150 96 5/5 0/150 . 384

457 5/5 0/150 68 5/5 0/150 252

610 5/5 0/150 112 5/5 0/150 164

1500 152 5/5 0/150 68 5/5 1/150 228

305 5/5 0/150 80 5/5 0/150 176

457 5/5 0/150 192 5/5 0/150 132

610 5/5 0/150 96 5/5 0/150 92

2000 152 5/5 0/150 68 5/5 0/150 132

305 5/5 0/150 92 5/5 1/150 116

457 - 5/5 0/150 92 5/5 2/150 84

610 - 5/5 0/150 124 5/5 0/150 96
Totals 60/60 0/1800 60/60 4/1800
100% 0% 100% 0.22%

* Location of the incident from the downstream detector station. The distance between
detector stations is 762 m. ‘



Table 2 Performance of the new wavelet energy algorithm and California algorithm #8

on a three-lane freeway

Flow | Location Wavelet energy Algorithm California Algorithm #8
rate (m) * | Detections | False | Detection | Detections | False | Detection
(vph alarms time alarms
per (s) time
lane)
(s)
1000 152 5/5 0/150 56 0/5 0/150 -
305 5/5 0/150 68 0/5 0/150 -
457 5/5 0/150 80 0/5 0/150 -
610 5/5 0/150 72 5/5 0/150 248
1500 152 5/5 0/150 56 5/5 0/150 264
305 5/5 0/150 76 5/5 0/150 208
457 5/5 0/150 76 5/5 1/150 132
‘ 1 610 5/5 0/150 - 88 5/5 0/150 96
2000 152 5/5 0/150 88 5/5 0/150 148
305 5/5 0/150 116 5/5 0/150 136
457 5/5 - 0/150 | 100 5/5 0/150 92
610 5/5 0/150 96 5/5 1/150 76
Totals 60/60 0/1800 45/60 | 2/1800
100% 0% 75% 0.11%

* I ocation of the incident from the downstream detector station. The distance between
detector stations is 762 m.
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Table 3 Performance of the new wavelet energy algorithm and California algorithm #8

on a four-lane freeway

Flow | Location,. Wavelet energy Algorithm California Algorithm #8
rate (m) * | Detections | False | Detection | Detections | False | Detection
(vph alarms time alarms
per (s) time
lane)
(s)
1000 152 5/5 0/150 60 0/5 - 0/150 -
305 5/5 0/150 68 0/5 0/150 -
457 5/5 0/150 72 2/5 0/150 440
610 5/5 0/150 84 5/5 0/150 168
1500 152 5/5 0/150 72 5/5 0/150 268
’ 305 5/5 0/150 96 5/5 0/150 188
457 5/5 0/150 92 5/5 1/150 132
610 5/5 0/150 84 5/5 0/150 96
2000 152 5/5 0/150 68 5/5 1/150 140
305 5/5 0/150 84 .55 1/150 128
457 5/5 0/150 84 - . 5/5 2/150 96
610 5/5 0/150 108 5/5 0/150 84
Totals 60/60 0/1800 45/60 5/1800
100% 0% 75% 0.28%

* Location of the incident from the downstream detector station. The distance between
detector stations is 762 m.



Table 4 Description of the four simulation scenarios used for evaluating the false
alarm performance on a three-lane freeway with ramps

Scenario # | Time | Entry flow | On-ramp flow rate Off-ramp flow rate
- | period # rate (vph) (vph)
(vph) A B A B
1 1 4500 300 500 225 450
2 4800 300 500 240 480
3 4500 300 300 225 450
2 1 5250 300 500 260 525
2 5500 300 500 275 550
3 5259 300 300 260 525
3 1 4000 600 600 200 400
2 4500 600 600 225 450
3 4000 600 600 200 400
4 1 5500 600 600 275 550
2 6000 600 600 300 600
3 5500 600 600 275 550

Table 5 False alarm performance of the wavelet energy and California algorithm #8 for
 the three-lane freeway with ramps

Station # False alarms (out of 1125 decisions for each station in a senario)
Scenario 1 Scenario 2 Scenario 3 - Scenario 4

WE Cal. WE Cal. WE Cal. WE Cal.

1 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 3 0 1 0 1 0 0

4 0 0 0 1 0 0 0 5

5 0 51 0 130 0 27 0 207

6 0 1 0 0 0 2 0 3
0% |098% | 0% |234% | 0% |053% | 0% | 3.82%

WE = Wavelet energy algorithm; Cal. = California algorithm #8
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Table 6 Performance of the wavelet energy algorithm and California algorithm #8 on a
two-lane rural freeway (incident duration is 10 minutes; 1 lane is blocked, the
other lane's capacity is reduced by 40%)

Flow | Location Wavelet energy Algorithm California Algorithm #8
rate (m) * Detections | False | Detection | Detections | False | Detection
(vph alarms time alarms
per (s) time
lane)
(s)
500 152 0/5 3/125 - 0/5 0/125 -
305 0/5 2/125 - 0/5 0/125 - -
610 2/5 6/125 240 0/5 0/125 -
915 0/5 1/125 - “0/5 0/125 -
1220 2/5 0/125 280 0/5 3/125 -
1524 1/5 0/125 20 0/5 0/125 -
1829 1/5 0/125 20 0/5 0/125 -
2134 2/5 0/125 130 0/5 0/125 -
2439 0/5 1/125 - 0/5 0/125 -
2744 1/5 0/125 180 0/5 0/125 -
Totals 9/50 13/1250 0/50 3/1250
18% 1.04% 0% 0.24%
1000 152 4/5 0/125 150 0/5 0/125 -
305 5/5 1/125 80 0/5 0/125 -
610 4/5 0/125 125 0/5 0/125 -
915 - 3/5 0/125 153 0/5 0/125 -
1220 5/5 0/125 156 0/5 0/125 -
1524 3/5 0/125 153 0/5 0/125 -
- 1829 5/5 0/125 164 0/5 0/125 -
2134 5/5 0/125 186 0/5 0/125 -
2439 5/5 0/125 188 5/5 0/125 452
2744 5/5 0/125 152 5/5 0/125 244
Totals 44/50 1/1250 10/50 0/1250
88% 0.08% 20% 0%
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Table 6 — continued

Flow | Location Wavelet energy Algorithm California Algorithm #8
rate (m) * | Detections | False | Detection | Detections | False [ Detection
(vph alarms time alarms
per (s) time
lane)
(s)
1500 152 5/5 0/125 92 0/5 0/125 -
305 5/5 0/125 76 0/5 0/125 -
610 5/5 1/125 68 3/5 0/125 246
915 5/5 0/125 44 3/5 0/125 406
1220 5/5 0/125 120 5/5 0/125 500
1524 5/5 0/125 120 5/5 0/125 428
- 1829 5/5 0/125 120 5/5 0/125 332
2134 5/5 0/125 116 5/5 0/125 236
2439 5/5 0/125 160 5/5 0/125 180
2744 5/5 0/125 156 5/5 0/125 152
Totals | 50/50 1/1250 36/50 0/1250
100% 0.08% 72% 0%
2000 152 5/5 0/125 52 5/5 2/125 160
305 5/5 0/125 60 5/5 1/125 232
610 5/5 0/125 64 5/5 0/125 228
915 5/5 0/125 84 5/5 0/125 168
1220 5/5 0/125 68 5/5 0/125 164
1524 5/5 0/125 112 - 5/5 1/125 212
1829 5/5 0/125 100 5/5 0/125 176
2134 5/5 0/125 - 136 5/5 1/125 160
2439 5/5 0/125 156 5/5 2/125 148
2744 5/5 0/125 140 5/5 0/125 148
Totals 50/50 0/1250 50/50 7/1250
100% 0% 100% 0.56%

* Location of the incident from the downstream detector station. The distance between
detector stations is 3048 m.
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Table 7 Performance of the wavelet energy algorithm and California algorithm #8 on a

two-lane rural freeway (incident duration is 5 minutes; 1 lane is blocked, the
other lane's capacity is reduced by 40%)

Flow | Location Wavelet energy Algorithm California Algorithm #8
rate (m) * | Detections | False | Detection | Detections | False | Detection
(vph alarms time alarms _
per (s) time
lane)
: (s)
1000 152 5/5 0/125 104 0/5 0/125 -
' 305 5/5 0/125 120 0/5 0/125 -
610 3/5 0/125 160 0/5 0/125 -
915 5/5 1/125 120 0/5 0/125 -
1220 4/5 0/125 85 0/5 0/125 -
1524 3/5 0/125 146 0/5 0/125 -
1500 152 5/5 0/125 68 0/5 0/125 -
305 5/5 0/125 80 1/5 0/125 100
610 5/5 0/125 80 0/5 0/125 -
915 5/5 - 0/125 112 1/5 0/125 120
1220 5/5 0/125 96 0/5 0/125 -
1524 5/5 0/125 88 4/5 0/125 430
2000 152 5/5 0/125 44 5/5 0/125 204
305 5/5 0/125 60 1/5 0/125 80
610 5/5 0/125 72 5/5 0/125 184
915 5/5 0/125 80 5/5 0/125 132
1220 5/5 07125 72 5/5 1/125 168
1524 5/5 0/125 112 5/5 0/125 192
Totals 85/90 1/2250 32/90 1/2250
94.4% 0.04% 35.6% 0.04%

* Location of the incident from the downstream detector station. The distance between
detector stations is 3048 m.

31



Table 8 Performance of the wavelet energy algorithm and California algorithm #8 on a
two-lane rural freeway (incident duration is 10 minutes; no lane is blocked,
the capacity of each lane is reduced by 40%)

Flow | Location Wavelet energy Algorithm California Algorithm #8
rate (m) * | Detections | False | Detection | Detections | False | Detection
(vph alarms time alarms
per (s) time
lane)
(s
1000 152 0/5 0/125 - 0/5 0/125 -
: 305 0/5 0/125 - 0/5 0/125 -
610 1/5 0/125 80 0/5 0/125 -
915 - 0/5 0/125 - 0/5 0/125 -
1220 2/5 0/125 60 0/5 ~0/125 -
- 1524 - 3/5 0/125 113 0/5 0/125 -
1500 152 3/5 0/125 - 80 0/5 0/125 -
305 2/5 0/125 120 0/5 0/125 -
610 2/5 0/125 60 0/5 0/125. -
915 2/5° | 0125 | 145 0/5 0/125 -
1220 3/5 0/125 127 0/5 0/125 -
1524 5/5 0/125 128 0/5 0/125 -
2000 152 5/5 0/125 40 4/5 0/125 580
305 5/5 0/125 60 5/5 0/125 508
610 5/5 0/125 68 5/5 0/125 444
915 5/5 0/125 72 5/5 0/125 444
1220 5/5 0/125 80 5/5 0/125 252
1524 5/5 0/125 116 5/5 0/125 276
Totals 53/90 0/2250 29/90 0/2250
58.9% 0% 32.2% 0%

* Location of the incident from the downstream detector station. The distance between
detector stations is 3048 m.

Table 9 Performance of the wavelet energy and California algorithms using

Detectioh rate False alarms
WE Cal. WE Cal.
20/21 19/21 0/480 3/480
95.2% | 90.5% 0% 0.63%

WE = Wavelet energy algorithm; Cal. = California algorithm #38

real traffic data from the San Francisco bay area freeway service patrol project’s
1-880 database
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Table 10 Performance vector for assessment of algorithm portability

Wavelet energy California algorithm #8
algorithm

0,0, 89 0,0, 320
0,0, 84 0,0.17, 157
0,0,94 0, 0.5, 102
0,0, 69 75, 0,248
0,0, 74 0,0.17,175
0,0, 100 0,0.17,113
0,0,71 65, 0,304
0,0, 86 0,0.17,171
0,0, 86 0,0.67,112
82, 1.04, 145 -1 100, 0.24, inf
12, 0.08, 151 80, 0, 348

0, 0.08, 107 28,0,310
0,0,97 0, 0.56, 180
17, 0.13, 122 100, 0, inf
0,0, 87 80,0, 217
0,0,73 13, 0.13, 160
80, 0, 84 100, 0, inf
60,0,110 100, 0, inf
0,0,73 3,0,417

inf = No incidents are detected and the detection time is theoretically equal to infinity.



LIST OF CAPTIONS FOR FIGURES

. Information processing in an advanced traffic management system

. The wavelet energy freeway incident detection algorithm

. Layout of urban freeway segments simulated for parametric evaluation

. Variation of detection time with distance of incident from downstream detector
~ station on a 2-lane urban freeway for the wavelet energy algorithlﬁ (denoted by
WE) and the California Algorithm #8 (denoted by Cal)

. Variation of detection time with distance for the wavelet energy algorithm on 2-,
3-, and 4-lane urban freeway segments when flow rate is 2000 vph per lane .

. Layout of urban freeway with ramps evaluated for false alarm ‘pei'fo;"rhance‘

. Lane occupancy plot at downstream detector station on a 2-lane rural freeway

when flow rate is 500 vph per lane
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