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Executive Summary 
Automatic freeway incident detection is an important component of advanced transportation 
management systems (ATMS) that provides information for emergency relief and traffic control 
and management purposes. In this research, a multi-paradigm intelligent system approach and 
several innovative algorithms were developed for solution of the freeway traffic incident 
detection problem employing advanced signal processing, pattern recognition, and classification 
techniques. The methodology effectively integrates fuzzy, wavelet, and neural computing 
techniques to improve reliability and robustness. The specific accomplishments of this research 
are 

Development of an effective traffic feature extraction model using discrete wavelet transform 
and linear discriminant analysis. 
Development of a computational model for automatic traffic incident detection using discrete 
wavelet transform, linear discriminant analysis, and adaptive conjugate gradient neural 
network of Adeli and Hung. 
Development of a fuzzy wavelet radial basis function neural network (RBFNN) model for 
automatic detection of freeway incidents. 
Development of a two-stage single-station freeway incident detection model based on energy 
representation of the traffic pattern in the wavelet domain. 
A comprehensive parametric study of the performance of the single-station fuzzy-wavelet 
RBFNN freeway incident detection model and comparison with the benchmark California 
algorithm #8 based on three quantitative measures of detection rate, false alarm rate, and 
detection time, and the qualitative measure of algorithm portability using both real and 
simulated data. The new algorithm outperformed the California algorithm consistently under 
various scenarios. 
A comprehensive evaluation of the single-station wavelet energy neural network freeway 
incident detection algorithm and comparison with the California algorithm #8. 
Evaluation of the wavelet energy neural network freeway incident detection algorithm on 
rural freeways where flow rates are low and detector stations are spaced further apart. 
It is demonstrated that both fuzzy-wavelet RBFNN and wavelet energy neural network 

freeway incident detection algorithms are computationally efficient, produce excellent detection 
rates and very low false alarm rates on urban freeways, and can readily be implemented on-line in 
any ATMS without any need for re-calibration and without any performance deterioration. 
Considering the difficulty in automatic detection of incidents on rural fieeways, the wavelet 
energy algorithm performs well on rural freeways as well. The algorithm is fast as it detects an 
incident on urban freeways in less than two minutes and on rural freeways in less than three 
minutes. 
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1 Neural Network Model for Automatic Traffic Incident Detection 

Principal Investigator: Hojjat Adeli, Professor, The Ohio State University 

Executive Summary 

Automatic fieeway incident detection is an important component of advanced transportation 
management systems (ATMS) that provides information for emergency relief and traffic control 
and management purposes. Earlier algorithms for the freeway incident problems have produced 
unreliable results especially in recurrent congestion and compression wave traffic conditions. In 
this research, a multi-paradigm intelligent system approach and several innovative algorithms 
were developed for solution of the freeway traffk incident detection problem employing 
advanced signal processing, pattern recognition, and classification techniques. The methodology 
effectively integrates hzzy, wavelet, and neural computing techniques to improve reliability and 
robustness. The specific accomplishments of this research are 
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Development of an effective traffic feature extraction model using discrete wavelet transform 
and linear discriminant analysis. 
Development of a computational model for automatic traffic incident detection using discrete 
wavelet transform, linear discriminant analysis, and adaptive conjugate gradient neural 
network of Adeli and Hung. 
Development of a fuzzy wavelet radial basis function neural network (RBFNN) model for 
automatic detection of freeway incidents. 
Development of a two-stage single-station freeway incident detection model based on energy 
representation of the traffic pattern in the wavelet domain. 
A comprehensive parametric study of the performance of the single-station fiizzy-wavelet 
RBFNN freeway incident detection model and comparison with the benchmark California 
algorithm #8 based on three quantitative measures of detection rate, false alarm rate, and 
detection time, and the qualitative measure of algorithm portability using both real and 
simulated data. The new algorithm outperformed the California algorithm consistently under 
various scenarios. False alarms are a major hindrance to the widespread implementation of 
automatic freeway incident detection algorithms. The false alarm rate ranges from 0 to 0.07 
% for the new algorithm and 0.53 to 3.82% for the California algorithm. 
A comprehensive evaluation of the single-station wavelet energy neural network freeway 
incident detection algorithm and comparison with the California algorithm #8. 
Evaluation of the wavelet energy neural network freeway incident detection algorithm on 
rural freeways where flow rates are low and detector stations are spaced fiuther apart. 

It is demonstrated that both --wavelet RBFNN and wavelet energy neural network 
freeway incident detection algorithms are computationally efficient, produce excellent detection 
rates and very low false alarm rates on urban freeways, and can readily be implemented on-line in 
any ATMS without any need for re-calibration and without any performance deterioration. 
Considering the difficulty in automatic detection of incidents on rural freeways, the wavelet 
energy algorithm performs well on rural freeways as well. The algorithm is fast as it detects an 
incident on urban freeways in less than two minutes and on rural freeways in less than three 
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Summary and Organization of the Report 

This report consists of seven parts presented as seven different manuscripts. Each 

manuscript is summarized in the following paragraphs. Automatic freeway incident detection is 

an important component of advanced transportation management systems that provides 

information for emergency relief and traffic control and management purposes. Earlier 

algorithms for the freeway incident problems have produced unreliable results especially in 

recurrent congestion and compression wave traffic conditions. Traffic incidents are non-recurrent 

and pseudo-random events that disrupt the normal flow of trfl ic and create a bottleneck in the 

road network. The probability of incidents is higher during peak flow rates when their system 

wide impact is most severe. Model-based solutions to the incident detection problem have not 

produced practically useful results primarily because the complexity of the problem does not lend 

itself to accurate mathematical and knowledge-based representations. ' 

To eliminate false alarms an effective traffic incident detection algorithm must be able to 

extract incident related features from the traffic patterns. A robust feature extraction algorithm 

also helps reduce the dimension of the input space for a neural network model without any 

significant loss of related traffic information, resulting in a substantial reduction in the network 

size, the effect of random traffic fluctuation, the number of required training samples, and the 

computational resources required to train the neural network. In Part 1, an effective traffic feature 

extraction model is presented using discrete wavelet transform (D WT) and linear discriminant 

analysis (LDA). The DWT is first applied to raw traffic data and the fmest resolution coefficients 

representing the random fluctuations of traffic are discarded. Next, LDA is employed to the 

filtered signal for further feature extraction and reducing the dimensionality of the problem. The 

results of LDA are used as input to a neural network model for traffic incident detection. 
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\ Artificial neural networks are known to be effective in solving problems involving pattern 

recognition and classification. The traffic incident detection problem can be viewed as 
7 

recognizing incident patterns from the incident-free patterns. A neural network classifier has to 

be trained first using incident and incident-free traffic data. The dimensionality of the training 

input data is high and the embedded incident characteristics are not easily detectable. In Part 2, a 

r 

1 

computational model is presented for automatic traffic incident detection using discrete wavelet . 
transform, linear discriminant analysis, and neural networks. Wavelet transform and linear 

discriminant analysis are used for feature extraction, de-noising, and effective preprocessing of 

data before an adaptive neural network model is used to make the traffic incident detection. 
, 

? 
Simulated as well as actual traffic data are used to test the model. For incidents with duration of 

more than five minutes, the incident detection model yields a detection rate of nearly 100% and 

false alarm rate of about 1% for two* or three-lane fieeways. 
? 

7 

Researchers have presented freeway traffic incident detection algorithms by combining 

the adaptive learning capability of neural networks with imprecision modeling capability of fbzzy r 

logic. In Part 3, it is shown that'the performance of a fuzzy neural network algorithm can be 
7 

improved through preprocessing of data using a wavelet based feature extraction model. In 

particular, the discrete wavelet transform de-noising and feature extraction model presented in 

Part 1 is combined with the fuzzy-neural network approach presented by Hsiao et al. (1994). It is 

T 
I 

I 
n n r . - r  T T  shown that substantid improvement can be achieved using the data fiitered by u w I .  use of the 

wavelet theory to de-noise the traffic data increases the incident detection rate, reduces the false 
f 

alarm rate and the incident detection time, and improves the convergence of the neural network ! 

training algorithm substantially. 
I 
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In Part 4, a multi-paradigm intelligent system approach is presented for the solution of the 

freeway traffic incident detection problem employing advanced signal processing, pattern 

recognition, and classification techniques. The methodology effectively integrates hzzy, wavelet, 

and neural computing techniques to improve reliability and robustness. A wavelet-based de- 

noising technique is employed to eliminate undesirable fluctuations in observed data from traffic 

sensors. Fuzzy c-mean clustering is used to extract significant information from the observed 

data and to reduce its dimensionality. A radial basis function neural network is developed to 

classify the de-noised and clustered observed data. The new model produced excellent incident 

detection rates with no false alarms when tested using both real and simulated data. 

In Part 5, a two-stage single-station freeway incident detection model is presented based on 

advanced wavelet analysis and pattern recognition techniques. Wavelet analysis is used to de- 

noise, cluster, and enhance the raw traffic data, which is then classified by a radial basis function 

neural network. An energy representation of the traffic pattern in the wavelet domain is found to 

best characterize incident and non-incident traffic conditions. False alarm during recurrent 

congestion and compression waves is eliminated by normalization of a sufficiently long time- 

series pattern. The model is tested under several traffic flow scenarios including compression 

wave conditions. It produced excellent detection and false alarms characteristics. The model is 

computationally efficient and can readily be implemented on-line in any ATMS without any need 

for re-calibration. 

In Part 6, the performance of the fuzzy-wavelet radial basis function neural network 

(RBFNN) freeway incident detection model presented in Part 4 is evaluated and compared with 

the benchmark California algorithm #8 using both real and simulated data. The evaluation is 
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based on three quantitative measures of detection rate, false alarm rate, and detection time, and 

the qualitative measure of algorithm portability. The new algorithm outperformed the California 

algorithm consistently under various scenarios. False alarms are a major hindrance to the 

widespread implementation of automatic freeway incident detection algorithms. The false alarm 

rate ranges from 0 to 0.07 % for the new algorithm and 0.53 to 3.82% for the California 

algorithm. The new fizzy-wavelet RBFNN freeway incident detection model is a single-station 

pattern-based algorithm that is computationally efficient and requires no re-calibration. The new 

model can be readily transferred without re-training and without any performance deterioration. 

In Part 7, a comprehensive evaluation of the single-station wavelet energy neural network 

freeway incident detection algorithm of is presented. Quantitative performance measures of 

detection rate, false alarm rate, and detection time as well as the qualitative measure of 

portability are investigated for both urban and rural freeway conditions: Further, the performance 

of the algorithm is compared with that of the California algorithm #8. This research demonstrates 

the portability of the wavelet energy algorithm and its excellent performance for urban freeways 

across a wide range of traffic flow and roadway geometry conditions regardless of the density of 

the loop detectors. Rural freeways present additional challenges in that flow rates are low and 

detector stations are spaced further apart. Considering the difficulty in automatic detection of 

incidents on rural fkeeways, the new wavelet energy algorithm performs well on such freeways. 

The algorithm is fast as it detects an incident on urban freeways in less than two minutes and on 

rural freeways in less than three minutes. 
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FEATURE EXTRACTION FOR TRAFFIC INCIDENT DETECTION USING 

WAVELET TRANSFORM AND LINEAR DISCRIMINANT ANALYSIS 

A. Samant' and H. Adeli2 
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ABSTRACT: To eliminate false alarms an effective trdfic incident detection algorithm 

must be able to extract incident related features from the traffic patterns. A robust feature 

extraction algorithm also helps reduce the dimension of the input space for a neural 

network model without any significant loss of related traffic information, resulting in a 

substantial reduction in the network size, the effect of random traffic fluctuation, the 
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number of required training samples, and the computational resources required to train 

the neural network. This article presents an effective traffic feature extraction model 
? 

using discrete wavelet transform (DWT) and linear discriminant analysis (LDA). The 

DWT is first applied to raw traffic data and the finest resolution coefficients representing 
! 

the random fluctuations of traffic are discarded. Next, LDA is employed to the filtered 

signal for further feature extraction and reducing the dimensionality of the problem. The 

results of LDA are used as input to a neural network model for traffic incident detection. 



1. INTRODUCTION 
I 

Reliable automatic detection of traffic incidents is required for efficient traffic 

management on freeways. Travel time delays occur due to lane blockages and the 

corresponding reduction in the capacity of the freeway following the incident. Our 

research goal is to create computational models which take into account the traffic flow 

variations and detect the traffic incidents automatically, by distinguishing the traffic 

incident patterns from the incident-free ones. Since there are lots of traffk fluctuations in 

the traffic flow for various reasons the incident and incident-free decision regions cannot 

be divided easily. This is the main cause for the poor performance of the existing traffic 

incident detection algorithms. 

Until early 9Os, the two-station comparative algorithms such as California 

algorithm" were widely used, where the differences between traffic flow parameters (e.g. 

traffk volume and occupancy) at upstream and downstream stations are used for the 

detection of the operating problems in the traffic flow. Persaud et al.12 proposed a single 

station algorithm known as McMaster algorithm, where congestion is detected using 

traffic volume, occupancy, and vehicle speed (if available) values at a single station. 

Though these computational models were easy to implement, they could not achieve the 

desired level of accuracy. Consequently, new approaches such as artificial neural 

 network^^"^ and fuzzy logic7 have been investigated to improve the performance. 

Research also has been carried out to filter out the random fluctuations of the traffic using 

moving average or median plus average methods15 in an attempt to minimize the 

occurrence of false alarm (i.e., false detection of incidents) but with limited success. 
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Most of the existing incident detection algorithms based on conventional 

? 
i .r 

statistical methods compare the traffic flow values or the differences between the values 

at various locations with some fixed threshold values to recognize congested traffic 

patterns from non-congested ones. But this single threshold value may not represent the 

traffic flow accurately because of the random fluctuations and the time-dependent nature 

of the fi-eeway traffic. This is the major cause of the unreliability in such incident 

detection algorithms. 

To eliminate the false alarms an effective incident detection algorithm must be 

able to extract features from the traffic patterns, which are related to the incident. In this 

work we use the discrete wavelet transform @WT) and Linear Discriminant Analysis 

(LDA) for feature extraction. Actual traffic data obtained from the sensors on the 

fi-eeways are not well suited as a direct input to a neural network model to be used to 

detect incidents. The dimensionality of the training input data is generally high as various 

traffic parameters (e.g. traffic volume and occupancy) at different locations (e.g. 

upstream and downstream of the various incident locations) and at many instances of 

time are required to be inputted, and the embedded incident characteristics may not be 

easily detectable. Also, the training of a neural network incident detection algorithm 

requires input patterns containing sufficient incident data. Thus, effective pre-processing 

of the sensory data is essential before they can be used in a neural network model. In this 

work, we perform feature extraction in two steps. In the first step, the data is filtered and 

the high frequency signals representing noise, which may not be related to an incident, 

are removed using wavelet transform. In the second step, the features are enhanced using 

LDA. The feature extraction algorithm also helps reduce the dimensionality of the input 



space to a neural network model without any significant loss of related traffic 

information. In the companion paper we use the feature extraction algorithm to develop a 

robust traffic incident detection model'. 

2. DISCRETE WAVELET TRANSFORM 

The wavelet transform is found to be an effective tool in signal and image 

processing due to its attractive properties such as time-frequency localization (obtaining a 

signal at particular time or frequency), multi-rate filtering (differentiating the signals 

having various frequencies), scale-space analysis (extracting features at various locations 

in space at different scales), and multi-resolution ana ly~ i s~ ,~ .~ .  Using these properties one 

can extract the desired features fiom an input signal characterized by certain local 

properties in time and space. In this research, we view the traffic flow as a signal, with 

traffic incidents as well as other traffic patterns such as traffic bottleneck or compression 

wave having different time-space properties. Most of the previous incident detection 

algorithms performed unsatisfactorily because they can not distinguish the traffic incident 

patterns from other similar traffic patterns such as recurrent congestion, and specially the 

compression wave, consistently. We use the wavelet transform to extract the specific 

features distinguishing such traffic patterns as it can extract features from different time 

scales having different resolutions quite effectively. 

For the traffic incident detection problem, we consider various traffic data (e-g. 

traffic volumes and occupancies at various locations) recorded at a fixed time interval 

(e.g. 20-30 seconds). Each of these data series can be represented by xb], where j E 2 and 

2 is a set of integers (square brackets represent a series, a sequence or a vector and 
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circular brackets represent functions). The vector space of square summable sequences is 

defined as follows: 

where y represents a sequence of real numbers and 2 is the set of all the integers. That 

means the inner product of a sequence with itself converges to a finite value. We denote 

the orthonormal wavelet bases of L2(Z)  by {qj, , ,} ,Ez and {vj,l}lez(the brackets {} denote 

a set of series) where (qj , , , ) lSz and { tp j , ,  } Is represent scaling and wavelet 

respectively and I is a positive integer. The value of I is chosen such that the desired level 

of resolution is obtained and j = 1, 2,. . ., I. The output of the DWT consists of the 

coordinates, PI [ I ]  and Aj [ I ]  of the orthonormal wavelet bases 

k 
2' 

A j [ l ]  = ( x [ k ] ,  v j , , [ k ] )  ; 1 =- and j =  1,2, ..., I (3) 

where ( ) denotes the inner product of the two sequences in the vector space L2 (2) , k 

represents the total number of input data points, 1 represents the number of coefficients of 

each data series such as traffic volume or occupancy. The coordinates f3 and A are in 

fact, low and high-resolution coefficients of the given data series x[k] , respectively. The 

inner product of any two data seriesAn] and g[nJ is calculated as follows: 

5 



In our traffic incident detection problem, we use 8-minute traffic patterns with 

data recorded in intervals of 30 seconds as multi-resolution analysis using DWT requires 

at least 16 data points at a time. AS such, in Eqs. (2) and (3) k16.  We choose, I = 2, 

which means the traffic patterns are divided into three types of signals: low-resolution 

16 
2' 

( p2 ), medium-resolution ( A2 ), and high-resolution ( A, ). In this case I in Eq. (2) = - = 

4. Consequently, we have 4 low-resolution coefficient (p2 [Z'J). Similarly 1 in Eq. (3) is 

equal to 8 forj=l, and equal to 4 forj=2, which yields us 8 fine-resolution coefficients 

(A, [a) and 4 medium resolution coefficients (4 [o). 

The coordinates of the wavelet bases ( pS and As ) are computed using a concept 

called the quadrature mirror filters'*. Quadrature filter is an operator that performs signal 

convolution and d~wnsampling'~. We use mirror filters (a pair of filters) so that the 

original traffic signal can be reconstructed without any loss of related information (One 

filter yields the high-resolution components of the signal and the other filter yields the 

low-resolution components.) The convolution of any two sequences An] and g[n] is 

calculated as follows: 

I 

I 

1 

T 

The dclrw-sampling part is discussed in the following section. 

To extract the traffic incident pattern from the traffic data we perform multi- 

resolution analysis of the wavelet transforms of traffic patterns. Multi-resolution analysis 

involves dividing the original signal (e.g. traffic volume or occupancy) into signals 

6 



having different frequencies and time localizations and analyzing the signal in different 

scales. 

To carry out a multi-resolution analysis of a traffic pattern we need to define a 

two-dimensional set of scaling fimctions, #(t), and wavelet functions, cy(t). A two- 

dimensional family of scaling functions is obtained by scaling and translating the basic 

scaling function 4(t) as follows: 

4j,k ( t )  = 2-JI2 4(2-’t - k )  where j ,  k E Z and 4 (t) E L2 (2) (6) 

where t is an integer representing the number of time intervals (such as 30-sec. intervals). 

Integers j and k are called scaling and translation parameters respectively. The 

corresponding subspaces spanned by 4j,k (t) are*: 

yi = span {#j,k (t)> for all k E 2 
k 

.. . 
.. . 

(7) 

The over-bar indicates that 5. is a closed subspace (-.e. boundaries are included in the 

subspace). Equation (7) means any functionAt) E Vj can be represented as a weighted 

.- 

sum of the scaling functions with scalej as follows: 

The scalej can be varied from - 00 to + 00 to obtain signals having various resolutions. 

Similar to the scaling functions a two-dimensional family of wavelet functions is 

obtained from the mother wavelet ~ ( t )  by scaling and translation as follows: 

f,Uj,k(t) = 2-’I2y/(2-’t - k )  (9) 



The corresponding subspaces spanned by wavelets vj,k ( t )  are 

Wj = Span ( ~ ~ , ~ ( t ) }  for all k E 2 
k 

3. MULTI-RESOLUTION ANALYSIS 

A Multi-resolution Analysis in L2 (2) consists of finding out wavelet transforms 

using a sequence of closed subspaces 5 in L2 (2) with the folloWing proper tie^!^: 

Vj+l c Vj forall j e Z  (1 1) 

(12) V, = { O }  (indicating the empty space) 

V, = L~ (2) (contains the original input signal) (13) 

Equation (1 1) indicates that 7$+1 is a subset of 5. The subspace 5 contains all the signals 

included in 5+1 plus additional high-resolution signals. These additional high-resolution 

signals are contained in the wavelet-spanned subspace Wj+l : 

vj = 8 wj+l (14) 

where 0 indicates that both subspaces and Wj+l are part of Vi and orthogonal to 

each other8>l3. Forj  = 0 in Eq. (14) we obtain 

v, = v, @ w, 

and by combining Eqs. (1 l), (14) and (1 5) the sequence can be generalized as 

vo = Y, @ w, sw,-, @ w,-2.. . .sw2 @wl 

8 



The value of I can be varied to obtain the desired level of resolution. We choose I = 2, for 

I 
1 

I 

the same reasons explained for Eqs. (2) and (3). In that case, the original signal is divided 

into three parts, each one lying in a different subspace as follows: 

where V, , W, , and W, contain the low, medium and high-resolution signals, respectively. 

The definition of 4 and the scaling condition given by Eq. (6) ensure that elements in the 

two consecutive subspaces 4 and G+I are inter-related as follows: 

where the notation e indicates mutual implication. The actual relationship is expressed 

as follows2: 

n E Z  1 
4[2'"tI = - Z h [ n ]  4[2' t -n] ,  

f i n  

where h[n] is a sequence of real numbers known as the scaling function coefficients or 

1 low-pass filter coefficients. (- keeps the norm of the scaling function equal to 1). 
f i  

Since the wavelet-spanned subspace at scalej+l is a part of V, (the subspace 

spanned by the scaling function with scalej, i.e. W j  c Vj+l) the wavelets at scalej+l can 

be represented in terms of scalar-multiples of the translated scaling functions at scalej as 

follows: 



where hl[n] is a set of real numbers known as wavelet function coefficients or high-pass 

filter coefficients. Due to the orthogonal relationship between the wavelet and scaling 

functions, the wavelet coefficients are related to scaling coefficients as follows2: 

(21) 4 [ n ]  = (-1y h[L  -1-n] 

where L is the length of the filter used. In our traffic incident detection case, we use 

length-4 Daubechies filter coefficients (L  = 4) as it is found to be accurate and efficient in 

the area of digital filtering. For this filter, h[n] values are found by solving the recursion 

f 
i 

I 

equation (1 9) by the zero wavelet moment design approach2: 

f 

Substituting L = 4 in Eq. (21) we obtain the corresponding h, [n] values as follows: 

1 4 [ n ]  = - [I-&, - ( 3 - 6 ) ,  3 + 6 ,  - ( 1 + 6 ) ]  forn=0,1,2,3 (23) 
4 J z  

Now we can write any input data series f [t] in Vo (orL2 (2)) as a series expansion in 

terms of the scaling functions and the wavelets': 

k = m  I k = m  

k=-m j=Ok=-s, 

In this work, we use discrete data points and not a continuous signal, 

consequently we do not have to deal with the scaling functions or wavelets directly. Only 

the coefficients h[n] and hl[n] in the defining Eqs. (19) and (20) and P [k] and 'lj [k]  in 

the expansion Eq. (24) need to be considered. The first two sets of coefficients can be 

s 

1 

I 
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viewed as digital filters (low and high-pass filters respectively) and the last two sets of 

coefficients can be viewed as digital signals (low and high-resolution coefficients, 

respectively). In order to use the wavelet transform coefficients directly, the relationship 

between the expansion coefficients at two consecutive scale levels should be known. By 

scaling and translating the basic recursion Eq. (6), the required relationship is found for 

the scaling and wavelet coefficients as follows2: 

m=O 

m =O 

4. FILTERING AND DOWNSAMPLING 

Digital filtering of the input signal is carried out by convoluting the signal with 

another set of numbers known as the filter coefficients or impulse responsesg and the 

downsampling process involving decimation of some of the input data. In downsampling, 

the input signal x(n) is transformed into an output signal y(n) such that y(n) = x(2n). This 

means the alternate data points are discarded as shown in Figure 1 schematically. 

Equations (25) and (26) in fact perform digital filtering and downsampling. These 

equations show that the scaling and wavelet coefficients at different levels of scale can be 

obtained by convoluting the expansion coefficients at scale j with the filter coefficients 

ho[n] and hl[n] and then downsampling to obtain the expansion coefficients at the next 

levelj+ 1. In other words, the j scale coefficients are filtered by two so-called FIR (Finite 

Impulse Response)' digital filters with coefficients ho[n] and hl[n]. After filtering and 

downsampling are completed the next low-resolution scaling and high-resolution wavelet 

11 



coefficients are found. This is shown schematically in Figure 2, where Ho and H, 

represent the two FIR filters. This splitting (dividing of signal into higher and lower 

resolution signals), filtering and decimation (downsampling) can be repeated on the 

scaling coeficients to obtain a two- or three-stage two-scale filter (Figure 3). 

Having found the relationship among the four sets of coefficients, we now 

describe how to obtain the input set of scaling coeEcients (Po  ) from the input signal. In 

the traffic incident detection model the traffic data are not continuous. We use the traffic 

volume and occupancy values at 30 second intervals which means the data are pre- 

filtered and can be used directly as input coefficients. As an example if we use 8-minute 

trafpic patterns, we will have 16 input values for each of the four input parameters: 

upstream and downstream occupancy and volume. After two stages of downsampling and 

? 

filtering we will have 8 coefficients of the finest resolution, 4 coefficients of the medium 

resolution and 4 coefficients of the coarse resolution for each traffic parameter. All 8 

high-resolution coefficients are discarded as they represent the ordinary traffic 

fluctuations, which may not be related to the traffic incidents. For both low as well as 

medium resolution coefficients, we will take some or all of them, and find out the best 

combination. The signal is then re-generated using these medium and low-resolution 

coefficients, which is called de-noised signal. To enhance the feature extraction, linear 

discriminant analysis is performed on the coeficients obtained from the wavelet 

transform and multi-resolution analysis. Linear discriminant analysis is discussed in the 

next section. 

12 



5. LINEAR DISCRIMINANT ANALYSIS 

a 
I 

We use a linear discriminant analysis to reduce the dimensionality of the problem 

as well as to improve the generalization capability of the pattern classifier while at the 

same time reducing its computational processing requirements. This part of feature 

extraction can be formulated as a mapping from a d-dimensional input space ( R ") to an 

m-dimensional feature space ( R  " I )  through a transformation matrix T6: 

The linear discriminant analysis achieves feature extraction through linear 

mapping of the input space to the output space. The most popular and commonly used 

linear discriminant classifiers are Fisher Linear Discriminant Classifier (FLD) and 

Nearest Mean Classifier (NMC) or Euclidean Distance Classifier. The construction 

procedure for both classifiers is almost the same with minor differences in the 

Let (XJj be a vector representing the ith training sample outputted by the discrete 

wavelet transform in classj. If we use 6 of the 8 medium and low resolution coefficients, 

as an example then, (Xi)j = (X~,~,X~,~,.. . . ,X,!~) 1 2  - In the traffic incident detection casej will 

be either 1 or 2 where j = 1 indicates the incident free samples and j = 2, indicates the 

incident samples. Also, i = 1, 2,. . ., nj, where nj = number of training samples in class j, 

and n = nl + n2, the total number of training samples. The within-class co-variance square 

matrix C, of dimension d is defined as 



where mi is the mean vector for class j .  The incident detection is a two-class problem 

involving classification of data between incident and incident-fiee regions. For this two- 

class problem, the between-class covariance square matrix, C,, of dimension d is 

defined as6: 

(29) C, = L ( m  n , -m)(m, -m)T + -(m2 n2 -m)(m2 -mlT 
n n 

where m is the mean vector of all the data. The goal of linear discriminant analysis is to 

find a dxm transformation matrix T such that the within-class scatter is 'zed"and ' 

the between class scatter is maximized. This can be achieved by maximizing the sum of 

the eigenvalues (J) of the multiplication matrix C$CB6. SimplifLing Eq. (29) we obtain 

Since C, is a function of only one vector (m2 -m,), its rank (number of independent 

rows or columns in the matrix) is one. And since C, has a Eull rank its inverse exists and 

r 

r 

the rank of C:C,is also equal to one. That is, it has only one non-zero eigenvalue. The 

corresponding eigenvector of this non-zero eigenvalue is6*'' 

Where the constant denominator is chosen to make the norm of the eigenvector unity, i.e. 

llEl 11 = 1. For our two-class incident detection problem the eigenvector is a function of 

one vector (m2 - m,) only, requiring one discriminating feature, and the mapping 

function yielding the output vector Y is: 

Y = ETX=c(m, -m,)TC;;'X 

14 
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where c is a constant. 

In the incident detection problem, the value of d is varied from 3 to 6, when we 

apply LDA to a single data series at a time. If the LDA is carried out using all the data 

series (upstream and downstream traffic volume and occupancy) together then d will be 

equal to the number of data series considered (4 in this particular case). On the other hand 

m = 1 (Figure 4) represents a single value of effective traffic occupancy or volume for a 

given time period of 8 minutes. Since the incident detection problem is a two-class 

classification problem only one feature is sufficient to differentiate between the two 

classes. Consequently, number of input nodes of the neural network is reduced to 4. 

Equation (35) represents the general FLD function. The NMC function does not 

consider the covariance part (C:) and is represented by 

Y =  EfX=c(m, -m,)TX (33) 

As the name suggests the Nearest Mean Classifier (NMC) classifies the data on the basis 

of distance from the class means. Thus, in the two-class incident detection problem it 

generates the perpendicular bisector between the class means. This type of linear 

classification is ideal for classes with identical distribution of - data around the class 

means. But in the incident detection case, the incident and incident-free data may not 

have identical distribution around their class means. Consequently, the covariance part 

has to be considered for optimal linear classification. The standard FLD takes into 

account the covariance part, but linear classification using FLD involves inversion of 

within-class covariance matrix (C, ), which is often an ill-conditioned matrix. This 

problem can be overcome by adding some constant value ( 6 )  to the diagonal elements of 

the covariance matrix as fol10ws'~: 



c, = C , + S I  (34) 

where I is an identity matrix. In this case, the classifier is known as Regularized FLD. 

6. DATA ACQUISITION 

Traffic incident detection is a real-life problem. Therefore it is quite essential to 

test the model with realistic trafEc data. At present, different types of detection 

techniques are used to measure traffic flow properties, such as vehicle velocity, traflic 

_. - 

volume and occupancy. Different incident detection algorithms use different 

combinations of these traffic data types. In the companion paper', we will consider 

various combinations of traffic volume, occupancy, and average speeds and investigate 

their effects on the incident detection algorithm. 

A large number (up to a few hundreds) of traffic patterns with and without 

incidents are normally needed to train a neural network model for incident detection 

effectively. Data for many traffic patterns with incident cases for a particular location or 

similar locations are not readily available. Traffic incident data are collected in a variety 

of ways. The first data source often is the information logged in by the central operator 

monitoring the traffic conditions on freeways. Methods of surveillance and detection vary 

fie3 acf t?l  observatim ofthe incident by traveling motorists: highway patrol, or traffic 

reporting units, to sightings of an incident through the use of closed-circuit televisions 

and cameras, to detection through computerized electronic surveillance and control 

systems. 

16 



The last method is based on using sensors placed along freeways at intervals of a 

few hundred meters to a few kilometers and computers to process the traffic flow data. 

1 

In this approach, sensors detect the effects of incident occurred within two neighboring 

sets of detectors rather than the incidents themselves. In some incident detection 

algorithms an incident is detected after a few minutes, which is relatively considerable. 

One of our goals in this research is to minimize the detection time. 

In an automated fieeway incident detection system (AFIDS) an entire freeway 

system can be monitored continuously in a central office through the use of a network of 

sensors without actually anyone observing the incidents. But, first the AFIDS has to be 

trained using the data obtained from sensors. At present, most of the time an operator 

creates an incident log manually by examining the incident data obtained fiom various 

sources including sensors and specifling and recording the location, time, duration, and 

cause of the incident, upstreddownstream sensor IDS, number of casualties and 

injuries, and number of lanes blocked. Unfortunately, some of the important information 

such as the sensor ID or the time of detection is frequently left out due to human error or 

other reasons. Consequently, incident logs obtained from departments of transportation 

can not be used directly to train the incident detection algorithm. Also some incidents, 

called isolated incidents, may not have any impact on the traffic flow and therefore are of 

no consequence to the traffic incident detection algorithm and should not be included in 

the training set. 

As such, we found the traffic incident logs obtained fiom several departments of 

transportation (DOT) including Arizona DOT and Minnesota DOT not to be helpful in 

training the IDA. An alternative to the use of the actual incident data with the 



aforementioned drawbacks is simulation of the freeway trdfic using a simulation 

package. Traffic simulation M e r  provides a means to investigate various traffic 

conditions. 

In this work we use the traffic simulation package TSIS/CORSIM developed by 

I 

I 
1 

ITT Systems and Sciences Corporation (http://m.fhwa-tsisxom) to simulate the 

freeway traflic needed to train the IDA. This simulation package allows you to simulate 

the road conditions for a given grade, curvature, or maximum allowable speed as well as 

the traffic conditions such as traffic flow, incident location, percentage lane blockage, 

and duration of the incident. The simulated data can be displayed graphically on the 

computer screen. An example is shown in Figure 5 displaying a straight four-lane 

freeway segment with two sets of entry and exit ramps. TSIS/CORSIM provides a 

comprehensive fieeway incident simulation module called FRESIM (Freeway Simulation 

Package). An example of a simulation instance for the freeway of Figure 5 is shown in 

Figure 6 ,  displaying the location of the accident and the traffic congestion after the 

incident. 

We can specify either blockages in one or both lanes or rubbernecking which is a 

reduction in the capacity of a lane without a blockage (defined as a percentage reduction 

in the capacity) due to blockage in a neighboring lane or an incident on the shoulder. The 

user can specify the following for an incident: the longitudinal location on a fieeway link, 

the length of the blockage, and the duration of the incident. The characteristics of an 

incident can be changed during the incident duration. For example, it is possible to 

specify a two-lane blockage turning into a one-lane blockage after a specified duration. 

The lane from which the blockage is removed can then become unrestricted or subjected 

I 

1 
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to rubbernecking. The simulation parameters to be chosen are the percentage reduction in 

the capacity of the freeway. 

7. RESULTS 

Figures 7(a) to 7(d) show the results of the filtered data after applying the wavelet 

transform for upstream and downstream traffic volume and occupancy using the 

simulated data for an 8-minute traffic pattern. Similarly, Figures 8(a) to 8(d) show similar 

results using actual data obtained from the Minnesota DOT over a period of 150 minutes. 

The smoothening effects of the traffic data are clearly noted in these figures. In a 

companion paper, the two-stage feature extraction algorithm presented in this article is 

used as a preprocessor for a robust neural network model for automatic detection of 

traffic incidents'. 
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ABSTRACT: Artificial neural networks are known to be effective in solving 

problems involving pattern recognition and classification. The traffic incident detection 

problem can be viewed as recognizing incident patterns from the incident-free patterns. A 

neural network classifier has to be trained first using incident and incident-free traffic 

data. The dimensionality of the training input data is high and the embedded incident 

characteristics are not easily detectable. In this article we present a computational model 

for automatic traffic incident detection using discrete wavelet transform, linear 

discriminant analysis, and neural networks. Wavelet transform and linear discriminant 

analysis are used for feature extraction, de-noising, and effective preprocessing of data 

before an adaptive neural network model is used to make the traffic incident detection. 

Simulated as well as actual traffic data are used to test the model. For incidents with 

duration of more than five minutes, the incident detection model yields a detection rate of 

nearly 100% and false alarm rate of about 1% for two- or three-lane freeways. 



I 

r 1. INTRODUCTION 

Stephanedes et al.” used a moving average method to reduce the effect of random 

fluctuations in the traffic on the incident detection algorithm. They average the 

, 
1 

differences in the occupancies at upstream and downstream locations over 3-minute I 

f 
periods using data recorded at 30-second intervals. Their comparison with other existing 

approaches showed improvement in reducing the false alarm rates. They report a 

detection rate of around 90% for a false alarm rate of about 1%. They also note that “the 

algorithm performance may exhibit varying degree of transferability across test 

! 

7 I 

locations”. To take into account the uncertainty and imprecision inherent in the incident 

detection’, researchers have recently explored the use of new computing approaches such 
1 

\ 

as fuzzy logic9,17 and neural n e t ~ o r k s ~ , ~  to improve the incident detection rate with 

simultaneous reduction in false alarms. Neural networks are known as a powerful method 

for pattern recognition and classification2. The price to pay for their adaptive learning 

capability is often the need for large computational resources when the problem is 

complicated requiring a large network and a large number of training instances. As an 

example, if we use an 8-minute traffic pattern with 30-sec. intervals and upstream and 

\ 

‘I 

f 

downstream traffic volumes and occupancies as input, then the number of input nodes for 

the neural network model will be 4 x 8 ~ 2  = 64. If we use one hidden layer with the same 

ni-~mher of nodes as the input layer then the number of links connecting the input layer to 

the hidden layer would be 64x64 = 4096. This means we have to solve a large 1 

optimization problem with 4096 + 64 = 4160 variables (assuming one output node) in 

order to find the 4160 weights of the network. Further, a few hundreds training instances 

I 

r 

1 
are needed to train such a large network. 

2 



In order to reduce the high dimensionality of the network and improve its 

computational efficiency, we first employ a two-stage feature extraction model using the 

discrete wavelet transform and linear discriminant analysis, as described in the 

companion paperI4. This will reduce the number of nodes in the input and hidden layers 

for the aforementioned example to 4, thus reducing the size of the network substantially 

and resulting in significant computational efficiency (Figure 1). 

A robust feature extraction algorithm also helps reduce the dimension of the input 

space for a neural network model without any significant loss of related traffic 

information, resulting in a substantial reduction in 

the network size @e., the number of nodes in the input and hidden layers), 

the effect of random traffic fluctuation on the learning curve of the neural network, 

(Learning curve for any neural network is defined as the relation between the mean 

squared error of the output and the number of iterations required for the training. As 

the random trdfic fluctuations are reduced the total number of iterations required for 

convergence reduces too.) 

the computational resources required to train the network, and 

the required number of training samples (that means more accurate generalization). 0 

Backpropagation neural network13 has been used to solve the traffic incident 

detection p r ~ b l e m ~ > ' ~ .  The attraction of backpropagation is its simplicity. But, it suffers 

fiom a number of shortcomings'.'': 

1. It often requires a very large number of iterations for convergence, 

2. Its convergence depends heavily on the selection 

parameters, learning and momentum ratios, that have to 

of two problem-dependent 

be selected by trial and error, 
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3. It suffers fiom the hill-climbing problem, that is entrapment in a local minimum. 

In this work we use the adaptive conjugate gradient neural network learning 

algorithm of Adeli and Hung', which combines the conjugate gradient method originally 

proposed by Fletcher and Reeves7 and modified by Powell'2 with an inexact line search 

with three criteria for finding the optimal search direction. 

i 

i 

I 

r 

r 

, . 
2. ADAPTIVE CONJUGATE GRADIENT NEURAL NETWORK LEARNING 

MODEL 

The conjugate gradient method is based on the steepest descent method where 

weight changes are made along the direction resulting in the maximum decrease in the 

system error. Determination of the step length of a gradient-based optimization algorithm 

has a significant impact on its efficiency'. A very accurate or "exact" line search requires 

many function evaluations thus making the algorithm prohibitively and unnecessarily 

expensive. An appropriate inexact line search algorithm can determine the step length, 

within a small percentage of that found based on an exact search. Adeli and Hung' use 

the backtracking inexact line search algorithm of Dennis and Schnable6, the step length 

selection terminating criterion of Armijo4 to ensure the step length is not too large, the 

terminating criterion of Goldstein' to ensure the step length is not too small, and the 

aireciioii coilvergenee cr;iterion of Kocedi!'' tc! ensure that the descent direction is always 

generated. 

1 .  

The steps of the adaptive conjugate gradient algorithm for training of neural 

networks are presented here briefly. For a classification problem involving T decision 

variables, the training of the network is started using a randomly generated initial weight 

? 
! 

1 

T 
i 

d 
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vector of (@ c R T ) .  Two stopping criteria are provided for convergence, one for the 

gradient vector (E =lom5 to and one for the minimum system error (0.01 or 0.001). 

The minimum (minlen) and maximum (marlen) step length is set to 0.0001 and 100, 

respectively. The initial search direction is set to 0. The parameters 8 and p are chosen 

equal to 0.9 and 0.01, respectively, per Adeli and Hung2. The outer iteration number, n, is 

set to 1. The decision variable counter, t, is set to 0. 

1. Steps (a) through (e) are carried out forp training samples (k = 1 top). 

a) Feed-fonkd procedure is performed on the neural network. The output of any 

node k in layer i+l is calculated by: 

. .. 
.. . 

0;' = A (P) 

where 

1 P 
P =  cw,ko,k and A =  

i = l  1 + e-' 

P is called the pre-processing h c t i o n  and A is called an activation function. 

b) The system error is calculated for the k* training instance. In the traffic incident 

detection case, there is only one output node so the error will be just the square of 

the difference between actual ( Y k  ) and actual output ( ok ). 

c) The deltas in the output layer for the kth training instance are calculated as 

follows: 

5 
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d) Deltas for the hidden layers are then calculated back, propagating the error: 

5 
h 

'kq = Okq (l - Okq w q j )  
j=l  

e) The gradient vector for the k* training instance is calculated as: 

r 

2. The total system error is then calculated by adding-up the individual errors fiom step 

l(b). If the total system error satisfies the minimum error convergence criterion, the 

training is completed. Otherwise, the gradient vector for the total system error is 

calculated. A new search direction is assigned as negative of the gradient vector as 

.. . follows: 

If the gradient vector satisfies the convergence criterion IVE(W("))I < E then the 

training is stopped and the weight vector obtained is the final solution. Otherwise, 

following steps are performed. 

3. The decision variable counter (t) is increased: t = t + 1.  If t 2 T, that is if t exceeds 

the number of decision variables, then it is set to 0 (t = 0). If t = 1 ,  a, is set to 0. 

Otherwise, a new conjugate direction is calculated as follows: 

where 
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b 

I 
3 
e 
1 

and 

4. The inexact line search algorithm is performed to calculate the step length A. First, 

A is initialized equal to one. Then, the Armijo4 criterion is applied to ensure the step 

length is not too large. If the step length is too large, step 10 is carried out. Otherwise, 

the Goldstein' criterion is applied to ensure the step length is not too small. If this 

criterion is satisfied then step 8 is carried out where a new search direction is 

calculated using the new value of A .  If the Goldstein' criterion is not satisfied then 

value of A is checked. If its value changes (that is A f 1 ), then step 6 is carried out. 

Otherwise, next step is performed. 

5. A new A value is set as follows: 

A= min ( 2 4  , maxlen) (11) 

A new search direction d("+)is calculated (Eq. 8). Using this new search direction 

Nocedal" direction convergence criterion is checked. If the direction convergence 

criterion is not satisfied then step 6 is carried out. If the direction convergence 

criterion is satisfied then Goldstein8 criterion is checked. If Goldstein criterion is not 

satisfied or if Avalue becomes greater than muxlen, step 6 is carried out. Otherwise 

this step is repeated. 



! 

6.  If A. c 1 , or, if A. > 1 and direction convergence criterion of Nocedal" is not satisfied 

then step 7 is carried out. Otherwise, step 12 is carried out directly. 

7. A new value of A is calculated using backtracking and parabolic interpolation. A 

new search direction is calculated using Eq. (8). This is repeated until both Nocedal" 

and Goldstein' criteria are satisfied simultaneously. Then, step 12 is carried out. 

8. A new search direction is found and checked for the descent condition criterion of 

Nocedal". If it is satisfied then step 12 is carried out directly. Otherwise, the next step 

is perfonned. 

9. A new A. is found by backtracking and a new search direction is computed (Eq. 8). 

This step is repeated until the gradient descent condition of Nocedal" is satisfied. 

Then step 12 is carried out directly. 

10. If A < minlen, A. is set to 0 and step 12 is performed. 

1 1 .  If A. = 1.0, backtracking is performed using parabolic interpolation to find a new A . 

Otherwise, cubic interpolation is used to find a new A . 

12. If this step is executed directly after step 7, 8, 9 or 10 then the inexact line search 

algorithm is stopped and step 13 is performed. Otherwise, step 4 is carried out using a 

new value of A. 

1 

? 

I 
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13. Weight vector is updated along with the iteration counter as follows: 

n = n + l  (13) 

If n exceeds the specified maximum number of iterations the training is stopped. 

I 
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14. If step 14 is executed directly after step 2 or step 3, then stop. In this case weight 

vector obtained is the optimum weight vector. 

This algorithm is repeated after every T iterations (for T decision variables), and 

an is set to zero for the t = 1.  

3. INCIDENT DETECTION RESULTS USING VARIOUS APPROACHES 

As discussed in the companion paper14 the actual data obtained from several state 

departments of transportation including Minnesota DOT were not sufficient to train the 

classifiers and the neural network. Consequently, the results presented in this section are 

based on simulated data using TSIS/CORSIM developed by ITT Systems and Sciences 

Corporation (http://www.fhwa-tsis.com). Three types of trait data are used and 

investigated: traffic volume, traffic occupancy, and average vehicle speed. 

Deciding on the data polling frequency, that is the data-recording interval, is 

crucial in developing an automated freeway incident detection and management system. 

If the interval is very small, say 5 sec., then the change in the traflfic data per interval may 

not be noticeable and the hardware and computational cost can become prohibitively 

high. The increase in the computational cost will be due to an increase in the size of the 

network as well as the required number of training instances. On the other hand, if this 

interval is made large, say 5 minutes, then it will take a relatively long time to detect the 

incident and take appropriate recovery measures such as re-routing the traffic or 

providing emergency medical assistance. A data polling period of 20-40 sec is commonly 

used in automatic traffic incident detection models. We have used 30-sec intervals for the 

simulated traffic data. 

9 

http://www.fhwa-tsis.com


The distance between the sensors also affects the incident detection rate and 1 

specially the time to detect the incident. If the distance is too small, say a couple of 

hundred meters, the number and cost of sensors needed to cover the same segment of the 
I 

freeway will increase. On the other hand, if this distance is too large, say a few ? 

kilometers, the sensors will take a long time to detect the incident and may not detect 

small incidents at all. The appropriate distance appears to be in the range of 2000-3000 ft 
1 

(600-900 m). The lower end of the range can be used for the critical sections of the 

freeway where the probability of incident occurrence is high, such as before the exit ramp 

and after the entry ramp, or where there is a reduction in the number of lanes. These are 

1 

1 

considered critical sections because of a large number of lane changes which is one of the 

main factors causing incidents. 

> h  

The incident detection rate is mainly governed by the upstream traffic patterns 

and the incident detection time is mostly governed by the downstream traffic data, 
T 

because an incident has a major impact on the upstream traffic and a relatively minor ? 

impact on the downstream traffic flow (especially the occupancy). However, these 

changes in the downstream traffic flow are immediate after the traffic incident as 
1 

\ 

1 compared to those of the upstream traffic flow, which explains their impact on the i 

detection time. 
! 

, I  

me trziffiz iiizideiit dsteciiwii results presented in (his section for various I 
I 

approaches are for a straight two-lane freeway segment (in one direction). The simulated 

c data used for testing include 45 incidents with traffic volume varied from 300 to 2000 ? 

vehicleshour per lane. In the subsequent section, we will consider the effects of 
7 
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geometry, such as curvature and the number of lanes on the performance of the incident 

detection algorithm. 

3.1 LDA 

r We will investigate the application of linear discriminant analysis in two different 

ways, as a linear classifier and as a feature enhancer. As a linear classifier, it is applied to 

all the data series simultaneously using a single data point from each data series, without 

using neural networks. As a feature enhancer, it is applied to each data series separately 

and the resulting traffic parameter values are used as input to the neural network model. 

Table 1 presents the classification results using three different types of LDA classifiers 

1 

I 
r 
I 
i 

i 
1 

I 

described in the companion paper14. It includes the incident detection rate, the false alarm 

rate, and the mean time for detection. These results show that LDA by itself is a poor 

classifier for the problem at hand. 

3.2 DWT and LDA 

7 Table 2 presents the classification results when the wavelet transform is preceded 

by the LDA. The results show improvement over LDA, but still not acceptable. However, 

' the results of the two-stage feature extraction model presented in Samant and Adeli14 can 

i 
r 
I 

r be used as input to a neural network model described in the previous section to obtain an 
i 

accurate incident detection model, as presented subsequently. 

3.3 ACGNN 
r 

In this work we will investigate various combinations of different traffic data 

series such as traffic volume, occupancy and average vehicle speed at upstream and 

downstream stations. Parametric studies will be performed to find out the most effective 
.L 

combination of the traffic data series. 
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Table 3 shows the results of traffic incident detection using three different types 

of traffic data and their combinations employing the ACGNN learning model. It is 

observed that the combination of all three parameters yields the best incident detection 

rate of 91.1% and the lowest false alarm rate of 5.1%. But, the results are only slightly 

better than those obtained from the combination of the traffic volume and occupancy with 

the corresponding numbers of 88.9% and 5.1%. Considering the fact that the three- 

parameter traffic data input increases the number of nodes in the input and hidden layers 

by a factor of 1.5 and the number of links (and the unknown weights) connecting the 

hidden layer to input and output layers by a factor of 1 .52=2.25, we will choose the traffic 

volume and occupancy as the input parameters for the final incident detection algorithm. 

The results presented in Table 3 show that the ACGNN is superior to the 

combination of DWT and LDA (Table 2). However, the 5.1% rate of false alarm is still 

too high. This can be explained by the fact that the incident and incident-free domains are 

not easily separable using the original unfiltered data. 

3.4 DWT, LDA, and ACGNN 

Table 4 shows the incident detection results employing the ACGNN algorithm 

after the filtering and preprocessing of data by DWT and LDA using the traffic volume 

and occupancy as input data. As explained in Samant and AdeliI4 the traffic data are first 

filtered using DWT and multi-resolution analysis and the high-resolution components are 

discarded. The low and medium resolution components are found to be sufficient for 

representing the traffic flow. 

After the wavelet transform is performed, the resulting data can be applied to 

LDA or ACGNN in two different ways. Wavelet transform coefficients can be used 

I 

? 
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directly as the input to LDA or ACGNN. Alternatively, the traffic signal can be re- 

generated using an inverse of the DWT and setting the high-resolution coefficients equal 

to zero. The results for both cases are shown in Table 4. The two methods yield 

comparable results. Re-generating the traffic signals is an additional and unnecessary 

computational burden. While the wavelet transform coefficients have no physical 

significance their use is adequate and therefore recommended for computational 

efficiency. 

It is observed that the new computational model for tr&ic incident detection 

based on preprocessing of the trafEc data by DWT and LDA followed by application of 

the ACGNN yields a high incident detection rate of 97.8% and a low false alarm rate of 

around 1%. Further, the mean time for detection is about 38 seconds. 

The traffk data obtained from Minnesota DOT included only two incidents over a 

150-min. period. We used these data to test the new incident detection model trained 

using the simulated data. The model detected both incidents with time to incident 

detection of less than a minute. 

4. EFFECT OF DATA FILTERING USING DWT 

In order to see the effect of DWT on improving the performance, the raw 

upstream and downstream traffic volume data obtained from Minnesota DOT as well as 

the data filtered by DWT are shown in Figures 2 and 3, respectively. These figures show 

the incident and incident-free regions are more distinct after the data are filtered using 

DWT. This helps the neural network model classify the incident and incident regions 

more effectively resulting in better incident detection and low false alarm rates. Further, 

13 



this helps improve the convergence of the ACGNN learning model substantially, 

shown in Figure 4. 

5. RELATIVE CONTRIBUTION OF’ DWT AND LDA FOR FEATURE 

EXTRACTION 

Our feature extraction model is a two-step algorithm consisting of DWT and 

LDA. In order to investigate their relative contribution in feature extraction, we also used 

DWT as the sole feature extractor. The results are shown in Table 5. A comparison of the 

data in Tables 4 and 5 indicate that most of the feature extraction capability is due to 

I 

I 

DWT. LDA has a smaller contribution toward improving the incident detection. One can 
i 

say it has a fine tuning effect for reducing the false alarm rates. 

6. EFFECTS OF FREEWAY GEOMETRY ON THE INCIDENT DETECTION 

In order to show the efficacy and robustness of the new incident detection 

algorithm in various situations we performed a parametric study. To investigate the effect 

of various geometric changes on the incident detection algorithm, we used 65 incident 

test runs with minimum incident duration of 5 minutes and minimum traffic flow of 50% 

of the freeway capacity. Selected results of this study are presented here. 

6.1 Effect of Curvature 

Freeway geometric features such as grade, super-elevation, curvature, and 

pavement conditions do not affect the incident detection algorithm directly. They may 

have an indirect effect. For example, an incident on a curved freeway often causes more 

congestion than a similar incident on a straight segment. As a result, smaller duration 

incidents can cause sufficient congestion to get detected by the incident detection 

a 
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algorithm. As an example, Figure 5 displays an instance 45 seconds after a simulated 

incident on a curved fieeway. Comparing the results obtained for a curved freeway 

segment with those obtained for the straight freeway segment in Table 6, it is concluded 

that the curvature does not have an appreciable effect on the incident detection and false 

alarm rates of the incident detection model. However, the detection time for the curved 

segment is lower than that for the straight segment, because freeway gets congested 

faster. 

6.2 Effect of Number of Lanes 

The number of lanes in a freeway also affects the incident detection time and the 

detection rate of the incident detection algorithm. For similar incidents, having similar 

blockage characteristics as well as duration, the percentage changes in the traffic 

parameters are smaller for a larger freeway. Consequently, it takes more time to detect an 

incident as number of lanes increases. An example of an incident on a five-lane freeway 

is shown in Figure 6(a) to 6(c). Figure 6(a) shows the traffic pattern 45 seconds after the 

incident. Normally, this type of incident involving a lane blockage on a two-lane freeway 

(in one direction) gets detected within this time range. But for an incident on five-lane 

freeway (in one direction) two to four minutes may be required to detect the same. Figure 

6(b) shows the traffic pattern 3 minutes after an incident. Figure 6(c) displays the incident 

characteristics. 

For a small-duration incident the incident may not get detected. Thus, it afYects 

the detection rate of an incident detection algorithm. The detection rate computed for a 

five-lane freeway is about 94% and the average detection time is 2 minutes and 47 

seconds. The false alarm rate remains practically the same. Figure 7(a) and 7(b) show the 
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effect of the size of the freeway (number of lanes) on the incident detection rate and t h e  

for detection, respectively. It is observed that change in the detection rate and time is 

much higher for ACGNN using raw data than for the ACGNN using data filtered by 

DWT and LDA. 

7. CONCLUSION 

In this and the companion papers, we presented a robust incident detection 

computational model and algorithm through adroit integration of three different 

computational approaches/disciplines: signal processing and wavelet transform, statistical 

linear discriminant analysis, and artificial neural networks. For incidents with duration of 

more than five minutes, the algorithm yields a detection rate of nearly 100% and false 

alarm rate of about 1% for two- or three-lane and freeways. For incidents with duration o f .  

less than 5 minutes, the incident detection rate for two- or three-lane freeways is about 

98% with a false alarm rate of about 1 'YO. 

For four-lane and five-lane freeways, the detection rate is reduced to 96% 

and 94%, respectively, but the false alarm rate remains around 1%. It is also observed 

that the freeway curvature does not affect the performance of the algorithm. 

There is one type of incidents that the new algorithm cannot detect, that is the so- 

called isolated incident where there are no appreciable traffic volume and occupancy 

changes. Because the incident detection model considers the variations in traffic 

parameters obtained from loop detectors to detect the incidents. To detect the isolated 

incidents visual sensor input is needed. 
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Table 1 Incident detection results using LDA only 

I Incident detection False alarm Mean time for 
Classifier 

rate ('A) Rate (%) detection 

NMC (Nearest Mean) 

FLD (Fisher LD) 

Regularized FLD (6 = 20) 

62.2 (28/45) 14.9 (1 07/720) 73.2 sec. 

68.9 (3 1/45) 13.8 (99/720) 69.5 sec. 

71.1 (32/45) 13.1 (94/720) 69.1 sec. 

Table 2 Incident detection results using DWT and LDA 

Incident detection 

rate ('YO) 
Classifier 

False alarm Mean time for 

rate ('YO) detection 

NMC (Nearest Mean) 

FLD (Fisher LD) 

Regularized FLD (6 = 20) 

71.1 (32/45) 10.0 (72/720) 70.7 sec. 

71.1 (32/45) 9.4 (68/720) 68.9 sec. 

73.3 (33/45) 8.5 (61/720) 67.2 sec. 
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Table 3 Study of traffic parameters using ACGNN 

Incident detection 

rate (“A) 
Traffic Data 

False alarm Mean time for 

rate (%) detection 

Volume (vehiclesh) 

occupancy (Yo) 

Avg. Speed (milesh) 

75.5 (34/45) 9.6 (69/720) 63.8 sec. 

71.1 (32/45) 9.3 (67/720) 59.7 sec. 

68.9 (3 1/45) 8.9 (64/720) 68.9 sec. ‘ 

I VOl. + occupancy I 88.9 (40/45) I 5.1 (37/720) 1 51.4 sec. 

Input Data 

Using wavelet coefficients 

Using re-generated traffic signals 

I Vol. + Avg. Speed 1 84.4 (38/45) I 6.0 (431720) 1 52.5 sec. 

Incident detection False alarm Mean time for 

rate (%) rate (‘YO) detection 

97.8 (44/45) 1 .O (7/720) 38.9 sec. 

97.8 (44/45) 1.1 (8/720) 38.1 sec. 

1 Vol. + Occupancy + Speed 1 91.1 (41145) I 5.1 (37/720) 1 47.6sec. 

Table 4 Incident detection results for a straight two-lane freeway segment using 

DWT, LDA and ACGNN 
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Incident detection 

rate (%) 

Table 5 Incident detection results using DWT and ACGNN 
1 

False alarm Mean time for 

rate (%) detection 
Input Data 

Using wavelet coeficients 

Using re-generated traffic signals 

97.8 (44/45) 1.8 (1 3/720) 40.1 sec. 

97.8 (44/45) 2.1 (15/720) 39.8 sec. 

Table 6 Effect of curvature using DWT, LDA, and ACGNN 

Input Data 

Two-lane straight freeway 

Two-lane curved freeway 

7 

I 

? 

T 
! 

rate (%) rate (%) detection 
B 

100.0 (65/65) I 1.4 (18/1300) I 40.2 sec. 1 1 

E 
t 
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(from Minnesota DOT) 
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Figure 6(c) 
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ENHANCING NEURAL NETWORK TRAFFIC INCIDENT DETECTION 
ALGORITHMS USING WAVELETS 

A. Samant' and H. Adeli2 

ABSTRACT: Researchers have presented freeway trafic incident detection algorithms 

by combining the adaptive learning capability of neural networks with imprecision 

modeling capability of fuzzy logic. In this article it is shown that the performance of a 

kzzy neural network algorithm can be improved through preprocessing of data using a 

wavelet based feature extraction model. In particular, the discrete wavelet transform 

(DWT) de-noising and feature extraction model proposed by Samant and Adeli (2000) is 

combined with the kzzy-neural network approach presented by Hsiao et al. (1 994). It is 

shown that substantial improvement can be achieved using the data filtered by DWT. Use 

of the wavelet theory to de-noise the traffic data increases the incident detection rate, 

reduces the false alarm rate and the incident detection time, and improves the 

convergence of the neural network training algorithm substantially. 

Graduate Research Associate, *Professor, Dept. of Civil and Environmental Engineering 

and Geodetic Science, The Ohio State University, 470, Hitchcock Hall, 2070 Neil 

Avenue,'Colurnbus, OH 432 10. 
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1. INTRODUCTION 

Fuzzy logic was created by Zadeh (1978) to model the imprecision or uncertainty 

involved in the human decision-making process. For modeling imprecision a fuzzy logic 

system usually consists of three components: 

1. Input fuzziJication. It transforms the input values to the degree of membership values 

using linguistic rules and the concept of membership function. 

2. Knowledge or inference rule base. It is a collection of inference or heuristic rules. In 

the freeway traffic incident detection problem, an example of an inference rule is 

If (traffic volume is high AND occupancy is low AND average vehicle speed is 

high) THEN occurrence of incident is impossible. 

Based on the degree of membership values for the input variables (traffic volume, 

occupancy, and the vehicle speed) in the antecedents of all the applicable rules, 

degrees of membership are computed for the consequences of the rules (incident or 

no-incident) using fuzzy operations such as fuzzy-AND and fuzzy-OR. 

3. Output defuzzijication. It takes the output from the inference rule base and defuzzifj 

it to produce the output variable for decision making. 

A few researchers have presented freeway traffic incident detection algorithms by 

combining the adaptive learning capability of neural networks with fuzzy logic. Hsiao et 

al. (1994) present a Fuzzy Logic Incident Patrol System (FLIPS) for the freeway traffic 

incident problem by treating threshold as variable and finding its values using fuzzy logic 

rules and membership functions. They use the simple backpropagation (BP) neural 

network learning rule (Rumelhart et al., 1986, Adeli and Hung, 1995) and bell-shaped 
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membership functions. They test the model using an “empirical data base collected in 

Toronto, Canada”. They report detection rates in the range of 54% (with a false alarm 

rate of 0%) to 90% (with a false alarm rate of 7.9 %). 

A main reason for unreliability of the trafic incident detection algorithms is the 

noise in the traffic data, In other words, the traffic data are often corrupted as they are 

collected by sensors and then transmitted to a central processing station. To eliminate 

false alarms an effective traffic incident detection algorithm must be able to extract 

features from the traffic patterns, which are related to the incident. A robust feature 

extraction algorithm also helps reduce the dimension of the input space for a neural 

network model without any significant loss of related traffic information, resulting in a 

>- 

substantial reduction in the network size, effect of random traffic fluctuations, number of 

required training samples, and computational resources required to train the neural 

network. 

Samant and Adeli (2000) present an effective traffic data de-noising and feature 

extraction model using discrete wavelet transform (DWT) and linear discriminant 

analysis. The DWT is first applied to raw traffic data and the finest resolution coefficients 

representing the random fluctuations of traffic are discarded. Next, LDA is employed to 

the filtered signal for further feature extraction and reducing the dimensionality of the 

problem. The results of LDA are used as input to a neural network model for traffic 

incident detection. 

In this article it is shown that the performance of a fuzzy neural network 

algorithm can be improved through preprocessing of data using a wavelet-based feature 

extraction model. In particular, the DWT de-noising and feature extraction model 
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proposed by Samant and Adeli (2000) is combined with the fbzzy-neural network 

approach presented by Hsiao et al. (1994). It is shown that substantial improvement can 

be achieved using the data filtered by DWT. 

2. DISCRETE WAVELET TRANSFORM 

The wavelet transform is found to be an effective tool in signal and image 

processing due to its attractive properties such as time-frequency and multi-resolution 

analysis (Daubechies, 1992; Jameson et al., 1996; Mallat, 1998). Using these properties 

one can extract the desired features from an input signal characterized by certain local 

properties in time and space. A feature extraction approach using wavelet transform is 

used to achieve higher level of accuracy in the decision making process by the fbzzy 

neural network algorithm. The details of the feature extraction model for the traffic 

incident detection problem are presented in Samant and Adeli (2000). The basic idea is 

briefly described here in non-mathematical terms. 

We view the traffic flow as a signal, with traffic incidents as well as other traffic 

patterns such as traffic bottleneck or compression wave having different time-space 

properties. We use the wavelet transform to extract the specific features distinguishing 

such traffic patterns as it can extract features from different time scales having different 

resolutions quite effectively. 

For the traffic incident detection problem, we consider various traffic bzitta 

recorded at a fixed time interval as input for DWT. Each of these data series can be 

represented by xG], where j € 2  and 2 is a set of integers (square brackets represent a 

1 
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series or a sequence and circular brackets represent functions). The output of the DWT 

consists of the coordinates ,O, [ l ]  and A, [ I ]  of the orthonormal wavelet bases 

i 

. .  
. .  

-. - 
i 

k 
2’ 

/zi[l] = (~[k], v , , / [ k ] )  ; 1 =- and j =  1,2, ..., I 

where ( ) denotes the inner product of the two sequences, k represents the total number 

of input data points, 1 represents the number of coefficients of each data series such as 

traffic volume or occupancy, (4,.,},,, and (w (the brackets ( }  denote a set of series) 

represent scaling and wavelet functions (Daubechies, 1992; Farge et al., 1993), 

respectively, and I is a positive integer. We use Daubechies wavelet function as it is 

found to be quite effective in digital signal processing. The value of I is chosen such that 

the desired level of resolution is obtained and j  = 1, 2,. .., I. The coordinates p and A are 

in fact, low and high-resolution coefficients of the given data series x [ k ] ,  respectively. 

The coordinates of the wavelet bases ( ps and As ) are computed using a concept called the 

quadrature mirror filters (Wickerhauser, 1994). 

To extract the traffic incident pattern from the traffic data we perform multi- 

resolution analysis of the wavelet transforms of traffic patterns. Multi-resolution analysis 

involves dividing the original signal (e.g. traffic volume or occupancy) into signals 

having different fkequencies and time localizations and analyzing the signal in different 

scales. 
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3. ARCHITECTURE 

The architecture of the enhanced incident detection model is represented 

schematically in Figure 1. The learning block shown in this figure makes use of the fuzzy 

logic rules and guides the fuzzification and the defuzzification blocks to learn the 

membership functions. Different types of membership functions such as triangular, 

trapezoidal, and bell-shaped have been used to solve various problems. We employ the 

same bell-shaped membership function used by Hsiao et al. (1 994) in the following form: 

1 

where u, is the ith input variable, mli and cu are the mean and the variance of the jth 

fuzzy set of the ith input variable, and vi is the output of the input membership function 

providing degree of membership for thejth fuzzy set. Three hzzy sets are defined for 

each one of the three traffic variables as: low, medium, and high. 

The fuzzy wavelet neural network for the incident detection problem consists of 

an input layer with three nodes representing traffic volume, occupancy, and vehicle speed 

and an output layer with a single node with two output states representing incident and 

1 
no-incident (Figure 2). The traffic data are de-noised using DWT. The filtered data from 

the input layer is transferred to an input membership function layer where each node 

calculates the degree of membership of input data in each one of the thme predefined 

fuzzy sets (for three linguistic variables low, medium, and high). The output of the input 

membership function layer varies from 0 to 1, with 0 indicating no membership and 1 

indicating full membership. 

< 
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The degree of membership values are then passed to a knowledge or inference I ?  
j i  

i 

I 

rule base. Each fizzy rule in the rule base performs a fi~zzy-AND operation to produce 

the feasible range, wk , for the kth fuzzy rule as follows: i 

wk = min(vi) i = l , 2 , 3  k = l , 2 , 3  ,..., 27 (4) 

where the input vi is the degree of membership value for the i’ fuzzy set obtained from 
I 

the input membership function layer. The inference rule base contains twenty-seven 

f k z y  logic rules given by Hsiao et al. (1 994). After obtaining the feasible range for every 

F rule, the rules having the same consequences, for example, possible occurrence of an 

incident, are combined using a fUzzy-OR operation as follows: 

i’=1,2 ( 5 )  

where xi is the degree of membership value for the ith output membership function. 
T 

Using these degree of membership values a crisp output is obtained by using a “center of i 
.i 

area” defuzzification method (Lee, 1990) as follows: 

i c<m; a;) xi 
i=l ,2 i 0 =  zcT; X i  

i 

1 

,.J 

I 

I 
where mi and ai are the means and the variances of the ith output membership function 

for the output variable. The value of the output variable, 0, can vary between 0 and 1. A 

value less than 0.5 indicates the state of no-incident and a value equal or greater than 0.5 

indicates the state of incident occurrence. 

i 
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4. TRAINING OF THE NETWORK 

The training of the network requires finding the means ( mu, rn] ) and variances 

( ay ,a]) of the input and output membership functions. Shortcomings of the BP learning 

algorithm such as very slow rate of learning and trial-and-error problem-dependent 

selection of learning and momentum ratios have been discussed in the recent literature 

(Adeli and Hung, 1994). Since the objective of this article is to demonstrate how a fizzy 

neural network incident detection model can be improved through a DWT feature 

extraction model we use the same feed forward BP learning rule used by Hsiao et al. 

(1994) to train the neural network. 

The training is initialized by providing the desired initial ranges of input and 

output fuzzy partitions in the form of means and variances of the membership functions. 

For example, for occupancy initial mean values of O%, 50%, and 100% are provided for 

the three linguistic variables low, medium and high with a variance value of 30% for each 

one. The initialization is done such that the linguistic variable covers the feasible region 

of the corresponding inputloutput space uniformly (Hsiao et al., 1994). 

After the initialization the mean and variance values are obtained by minimizing 

A- ---* C.w-Ann in the fnllnyring form: L L l U 1  L U l I b L l U l A  111 C I l Y  A" 1". 

, 
(7) 

I 

? 

\ 



where y = desired output and o = computed output. The error is back propagated and the 

deltas ( Am, Acr ) for the output and input 

as follows (Rumelhart, 1986; Hsiao et al., 

and 
dE Am = -7- 
dm 

membership function parameters are calculated 

1994): 

where 77 is the so-called learning rate parameter. Using Eqs. (6), (7) and (8) the means of 

the output membership functions are updated as follows: . 

where superscript n is the iteration counter. Similarly the variances of the output 

membership functions are updated. The error in the evaluation of the output membership 

functions is back-propagated to the input membership function layer through inference 

rule base by a rule matching process and the input membership function parameters are 

updated in a similar way. 

5. FILTERING OF TRAFFIC DATA USING DWT 

The raw traffic data is obtained through simulation of freeway traffic flow using 

the TSISKORSIM simulation package (http://www.fkwa-tsis.com). The traffic flow 

parameters (traffic volume, occupancy and vehicle speed) are recorded at 30-second 

intervals. DWT is then applied to each of the traffic data series separately. Eight-minute 

traffic patterns yielding 16 data points are used at a time for the filtering process. DWT 

divides the signal into two parts: high-resolution signal and low-resolution signal. Thus, a 

9 
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single stage DWT produces 8 high-resolution data points and 8 low-resolution data 

points. The high-resolution data points are discarded as they mainly represent the random 

fluctuations in the traffic. DWT is again applied to the remaining 8 low-resolution data 

points to obtain 4 medium-resolution and 4 low-resolution data points. The traffic signal 

is then regenerated using these medium and low-resolution data points which carry the 

incident related information. This process is called multi-resolution analysis ( M U )  as it 

extracts the signals having different resolutions. The new filtered signal is used as a direct 

input to the --neural network. The linear discriminant analysis used in Samant and 

Adeli (2000) is not needed here for feature extraction as the means and variances of the 

traffic data are incorporated in the form of membership function parameters of the f izzy 

sets. 

6. INCIDENT DETECTION RESULTS 

The fizzy wavelet neural network is trained using the data obtained from 32 

simulation runs, 25 of which include an incident. The network was then tested using 45 

new simulated lane-blocking incidents on freeways with different number of lanes. 

Figures 3a to 3c show the learned membership functions for traffic volume, 

occupancy and vehicle speed, respectively, for a two-lane freeway (in one direction) 

using the fuzzy wavelet neural network. We obtained similar curves when the data was 

not filtered by DWT. 

Table 1 shows the incident detection results for a two-lane freeway (in one 

direction) using the fuzzy wavelet neural network model as well the fuzzy neural network 

model of Hsiao et al. (1994). Use of the wavelet theory to de-noise the traffic data 

, 
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increases the incident detection rate fiom 86.7% to 97.8%, reduces the false alarm rate 

from 5.3% to 1.8%, and reduces the incident detection time from 63.6 second to 48.9 

seconds. Figure 4 shows the training convergence curve with and without DWT. It is 

observed that use of DWT improves the convergence of the training algorithm 

substantially. 

Figures 5 and 6 show the effects of the size of the freeway (number of lanes) on 

the incident detection rate and time for detection, respectively. In general, the rate of 

detection reduces and the detection time increases with an increase in the number of 

lanes. Preprocessing of the traffic data by DWT, however, improves the performance of 

the algorithm substantially. Figure 7 shows the false alarm rate as a function of the 

number of lanes. The false alarm rate changes little with the number of lanes. It is 1.5- 

2.2% for the fuzzy wavelet neural network model and 4.9-6.1% for the fuzzy neural 

network model. 
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Figure 2 Enhanced fuzzy wavelet neural network 
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A FUZZY-WAVELET RBF NEURAL NETWORK MODEL FOR FREEWAY 
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INCIDENT DETECTION 

Hojjat Adeli’ and Asim Karim’ 

ABSTRACT: Traffic incidents are non-recurrent and pseudo-random events that disrupt the 

normal flow of traffic and create a bottleneck in the road network. The probability of incidents 

is higher during peak flow rates when their system wide impact is most severe. Model-based 

solutions to the incident detection problem have not produced practically useful results 

primarily because the complexity of the problem does not lend itself to accurate mathematical 

and knowledge-based representations. A new multi-paradigm intelligent system approach is 

presented for the solution of the problem employing advanced signal processing, pattern 

recognition, and classification techniques. The methodology effectively integrates hzzy, 

wavelet, and neural computing techniques to improve reliability and robustness. A wavelet- 

based de-noising technique is employed to eliminate undesirable fluctuations in observed data 

from traffic sensors. Fuzzy c-mean clustering is used to extract significant information from 

the observed data and to reduce its dimensionality. A radial basis function neural network is 

developed to classify the de-noised and clustered observed data. The new model produced 

excellent incident detection rates with no false alarms when tested using both real and 

simulated data. 

’ Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 
Columbus, OH 432 10, USA. 
’ Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio 
State University. 



INTRODUCTION 

According to one estimate about 60 percent of the total vehicle-hours of delay on urban 

freeways is caused by traffic incidents (Lindley, 1987). In most urban areas the situation is 

worsening with increasing traffic and limited expansion of the existing highway 

infrastructure. In fact, most major urban freeways regularly operate at levels above their 

design capacities. 

The Intermodal Surface Transportation Efficiency Act of 199 1 and the National Highway 

System Designation Act of 1995 realize the significance of the situation and require all urban 

areas with populations greater than 200,000 to implement a congestion management system 

(Cottrell, 1998). A number of major U.S. cities already have a freeway management system in 

place with remote detection of traffic characteristics and a central operations center. However, 

few make use of an automatic incident detection algorithm for rapid identification and 

localization of incidents. In most cases, detection of incidents is done by human operators 

monitoring video camera outputs and/or from information obtained from the news media. 

Considerable research has been done on the development of traffic incident detection 

algorithms in the past three decades. The lack of their widespread use is primarily due to their 

unreliability. In the simplest case, incident detection is a classification problem with two 

desired output classes: incident detected and no incident detected. The misclassification of an 

incident into no incident detected a b  no incidezt conditions into incident detected (false 

alarm) reduces the reliability of the algorithm and makes it less effective for general use. 

In this article, we present a new systematic approach to the traffic incident detection 

problem employing advanced signal processing, pattern recognition, and classification 
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techniques. The developed model judiciously integrates fuzzy logic, wavelet theory, and 
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neural network computation techniques into an efficient, reliable, and robust algorithm. One 

key feature of the new model is noise elimination and signal enhancement to improve 

detection and reduce false alarms. The collection and transmission of data introduces random 

noise that masks the observed signal and throws off any algorithm based on them. We present 

an advanced de-noising technique based on wavelet theory to overcome this problem and 

improve the efficiency and effectiveness of the algorithm. 

INCIDENT DETECTION ALGORITHMS 

Several algorithms have been suggested over the years for automatic freeway incident 

detection based on traffic data obtained from fixed detectors. The tr&k characteristics 

obtained from these detectors and commonly used as input for the algorithms are the traffic 

occupancy (the fraction of time a location is occupied by a vehicle expressed as a percentage), 

flow rate (the number of vehicles passing a location in unit amount of time), and speed. 

The approaches used for the incident detection algorithms range from simple magnitude 

comparisons to model-based predictions. The California algorithm (Payne and Tignor, 1978) 

is a popular algorithm that compares temporal and spatial occupancy data to predetermined 

thresholds in its algorithm logic. The thresholds are calibrated for each on-line 

implementation based on the trade-off desired between the detection rate and false alarm rate. 

The California algorithm is an example of a multi-detector, comparative algorithm. On the 

other hand, the McMaster algorithm (Persaud and Hall, 1989; Persaud et al., 1990) is a single 

detector algorithm that is based on a catastrophe theorylmodel of the traffic flow. The traffic 

model partitions the flow rate-occupancy behavior among different traffic states. This 
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information is then used in the algorithm logic together with the speed data to detect the onset 

of congestion due to a traffic incident. 

Traffic data usually exhibit sudden and large changes in magnitude that reduce the 

reliability of algorithms. Statistical techniques for preprocessing the raw data have been 

proposed in the past (Dudek et al. 1974; Cook and Cleveland 1974; Ahmed and Cook, 1982; 

Stephanedes and Chassiakos 1993). Dudek et al. (1 974) use the standard normal deviate of the 

data in their threshold-based algorithm, while Cook and Cleveland (1974) propose the use of ! 

double-exponential smoothing of traffic data in a similar algorithm logic. Ahmed and Cook 
3 

(1  982) present a short-time time-series moving average model of occupancy data to determine 

large deviations and predict incidents. The Minnesota algorithm (Stephanedes and 

Chassiakos, 1993) uses a moving average smoothing approach to remove high frequency 

components in observed data. The smoothed data is then employed in the algorithm logic for 

incident detection. 

More recently research has concentrated on model-free intelligent systems approaches to 

. .  

the solution of the incident detection problem. These algorithms are either based on fuzzy 
f 

logic theory (Chang and Wang, 1994; Lin and Chang, 1998; Weil et al. 1998), neural network 

techniques (Cheu and Ritchie, 1995; Dia and Rose, 1997; Amin et al., 1998), or hybrid fuzzy 

logic and neural network approaches (Hsiao et al., 1994; Geng and Lee, 1998). Fuzzy logic 

theory provides a roo1 for reaoniiig &oat c o q l e x  systems that effectively utilizes imprecise 

and linguistic input (Zadeh, 1978). Chang and Wang (1994) and Lin and Chang (1998) 

propose a fuzzy expert system approach for the incident detection problem. The idea is to 

build a fuzzy knowledge base from the raw data in the form of fuzzy rules that are then 

processed by a h z z y  inference system to identify and classify the relevant traffic states. The 
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authors of these articles describe the development of the hzzy rules but present no tested 

implementation of the algorithm. Weil et al. (1998) propose a hzzy logic model of traffic 

flow based on a fuzzy partitioning of the trafic data into daily and weekly flow patterns. 

Using an unsupervised learning technique the patterns in each partition are classified into two 

traffic states, normal or abnormal, where the abnormal state corresponds to congested flow. 

This research also does not present any implementation results. 

Artificial neural networks (ANN) are powerful pattern recognizers and classifiers (Adeli 

and-Hung, 1995). They operate as black box, model-free, and adaptive tools to capture and 

learn significant structures in data. The use of A N N s  for the identification of incident patterns 

in traffic data is presented by Cheu and Ritchie (1 995). Three ANN architectures-multi-layer 

perceptron, self-organizing feature map, and adaptive resonance theory model two (ART2)- 

are investigated and compared with three common conventional algorithms using simulated 

data. Dia and Rose (1997) use field data to test a multi-layer perceptron ANN as an incident 

detection classifier. Amin et al. (1998) propose a control model for advanced traffic 

management. The traffic flow prediction module is based on a radial basis h c t i o n  network 

that can potentially be used for congestion detection. Hsiao et al. (1994) present a hybrid 

fuzzy logic-neural network approach for the solution of the traffic incident detection problem. 

They use hzzy logic rules to partition and classify observed occupancy, flow rate, and speed 

data into possible incident or no incident conditions. A neural network is used to learn the 

membership grades needed for fuzzy reasoning. Geng and Lee (1998) use the fuzzy cerebral 

model arithmetic computer (CMAC) ANN architecture to learn incident patterns in traffic 

data. The incorporation of fuzzy logic into ANN learning makes the process more amenable to 
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performance analysis and system output validation. The authors, however, do not present any 

numerical results. 

A judicious combination of AI techniques and a multi-paradigm approach has the best 

potential to provide an effective solution to the incident detection problem (Adeli and Hung, 

1995). Work during the past 30 years on developing a model-based solution, either 

mathematical or symbolic, has not produced reliable solutions that can be adopted widely in 

practice. Currently available algorithms can miss up to 30 percent of incidents and can 

produce a fkaction of a percent of tests in false alarms. These performance indicators may look 

good but when the algorithm is implemented on an urban freeway management system with 

hundreds or even thousands of detector stations it can produce an unacceptable number of 

missed detections and false alarms. As a result, the total cost of operation of these algorithms 

in a practical environment is often too high to justify their deployment. The primary reason 

for the poor performance of incident detection algorithms is the complexity of the problem 

that does not lend itself to accurate conventional mathematical and knowledge-based 

representation. On the other hand, ANN techniques are self-organizing and learn from 

examples. However, it is imprudent to ignore known behavior of traffic flow completely. Our 

new approach to be described subsequently is based on a judicious integration of various 

problem-solving paradigms. 

WAVELET, MULTIRESOLUTION, AND TIME-FREQUENCY ANALYSIS 

Basic Concept 

Wavelet analysis is a transformation method in which the original signal is transformed 

into and represented in a different domain that is more amenable to analysis and processing. 
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The concept of wavelet analysis is similar to that of Fourier analysis in that both techniques 

decompose the original signal into a linear combination of elementary functions. However, 

unlike the sine and cosine harmonics used in the Fourier analysis, wavelet analysis uses a 

more flexible wave function called a wavelet that is localized both in time and frequency. The 

result is a more informative and useful decomposition of the signal. For example, because of 

the compact support of wavelets (i.e. the function exists only over a subset of the input space 

and vanishes outside it) it is possible to localize signal features in both time and frequency by 

analyzing the magnitudes of the wavelet coefficients. Fourier analysis, on the other hand, uses 

periodic functions with infinite support (i.e. the functions exist over the entire input space) 

making it unsuitable for transient signal analysis. In the following paragraphs we introduce 

the mathematics of wavelet and multiresolution analysis briefly. I 

A signal x ( t )  E S can be written as a linear combination of elementary hc t ions  vj,k ( I )  

where {w,,k} is the set of coefficients corresponding to the expansion set {Y,~} and Z is the 

space of integers. A two-dimensional decomposition is necessary to provide time and 

fkequency resolution which is indicated by the subscripts j and k. The signal space S may be 

the space of discrete-time sequences or continuous-time functions. Equation (1) is an 

expansion series representation of the original signal. The choice of the set {v,,k} determines 

the usefulness of the transformation. 

In general, the expansion set chosen must be able to represent the original signal in a 

compact manner. In other words, the choice should result in a representation in which most of 

the coefficients {w,,,} are insignificant in magnitude. Another consideration in the choice of 



the expansion set is ease of .computation of both the expansion set and the corresponding 

expansion coefficients. In wavelet analysis, elementary functions are obtained in a structured 

manner from a single function in the following form: 

where v /  is called the mother or generating wavelet. The integers j and k represent the scaling 

and translation values, respectively. In most practical uses, the scaling in Eq. (2) is done in 

powers of two. For this dyadic formulation Eq. (2) can be rewritten as 

vjh ( t )  = 2 V (  y 2 J t  - k )  j > 0, k E Z (3) 

When an orthonormal basis is used as the expansion set the coefficients of the expansion 

can be computed by an inner product of the signal with the corresponding wavelet: 

Equation (1) with the coefficients given by Eq. (4) is called the discrete-time or continuous- 

time wavelet transform. It is called a discrete-time wavelet transform or discrete wavelet 

transform (DWT) when x is a discrete-time sequence and a continuous-time transform or 

continuous wavelet transform (C WT) when x is a continuous-time function. In the following 

discussion it is assumed that the signal is a discrete-time fbnction and Eq. (1) represents the 

DWT of the hc t ion .  

Multiresolution Analysis 

Multiresolution analysis provides a powerful framework for analyzing functions at various 

levels of detail or resolution (Mallat, 1989). Multiresolution analysis entails a sequence of 

! 

1 

1 

nested closed approximation subspaces V,,, (rn E 2)  , satisfying the following properties: 
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U V n ,  = L2(R)  

msz 

x ( t )  E V, x ( t  - j )  E V, j E 2 (9) 

and there exist a scaling function p E Yo such that poh (k E 2) forms a basis of V,. The 

scaling function p,,k is defined as in Eq. (3). In Eqs. (5)-(9), Yo cV, means that V, is a 

subspace of VI, U represents the union of spaces, n represents the intersection of spaces, the 

over bar denotes the closure of the space, L2(R) is the space of all sqmre integrable functions 

of real variables, and 3 and a stands for one way and two way implications, respectively. 

If Eqs. (5)-(9) hold then there exists a set of functions y,, (Eq. 3) such that f,u,,k ( k  E 2) 

More specifically, if spans T. which is the orthogonal complement of the spaces 5 and 

{P,,~} spans V, then ( ty0 .k)  spans w, such that 

v, =v,sw, 

and, in general 

L2(R)  =.*-sw-, ew-, ew, sw, sw, e-.. (11) 

where 8 represents a direct sum. This means by starting from a representation of a function 

belonging to a coarse subspace higher detail or resolution can be obtained by adding spaces 

spanned by yj,k at a higher resolution (i.e. given by the next higher value ofj). 

The function x( t )  can then be represented as 



k k j = j ,  

where the first term is a coarse resolution at scalej, and the second term adds details of 

increasing resolutions. Equation (1 2 )  can also be viewed as the time-frequency decomposition 

of '(0 where the second term provides the frequency and time breakdown of the signal. The 

nesting of spaces achieved by multiresolution and time-frequency analysis is shown 

T 

I 

conceptually in Figure 1 .  Note that spaces spanned by different scales of wavelets are 

orthogonal to each other because they do not overlap (non-overlapping h c t i o n s  are always 

orthogonal). 

Computation of the DWT 

In practical wavelet analysis of discrete signals we usually do not have to deal with the 

fbnctions themselves but instead work with discrete coefficients. If {p,&} and {vjk} form an 

orthonormal basis of L2(R), which is true for most wavelet systems used in practice, the 

expansion coefficients c;,k and 4 , k  can be found by taking the inner products of the basis 

functions and the original signal. Using the properties of the wavelet system, Eq. (4) can be 

written in terms of the coefficients as follows (Burrus et al., 1998): 

dj,k = d , [ k ] =  ~ h , [ m - 2 k ] c j + , [ m ]  
c: 

The sequences h, and h, are called filter coefficients whose values are known for each type of 

wavelet system that may be used for analysis. The initial scaling coefficients cj are taken equal 

to the original discrete signal. Equations (13)-(14) provide a recursive way to compute the 

DWT of a signal. Note that these computations have a finite time complexity as the 

1 

i 
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coeficients are of finite length. The inverse DWT is used to reconstruct the signal from the 

wavelet coefficients using Eq. (12). In this work we use Daubechies wavelet system of length 

8 (Daubechies, 1992). For a more detailed coverage of DWT and its computation see Samant 

and Adeli (2000). 

SELECTION OF TYPE AND NUMBER OF TRAFFIC DATA 

It is important to carefully choose the number, type, and format of input data to be used 

for the incident detection algorithm. Most currently used sensors provide the speed, the 

occupancy, and the flow rate values at a given location every 20 or 30 seconds. Therefore, the 

choice for the type of traffic data has to be restricted to these three types. From these three 

data types only those that exhibit consistently identifiable patterns for incident and non- 

incident traffic flow conditions should be selected. 

In this work, a pattern consists of a time-history of data rather than a single-time data 

value. This pattern preserves the temporal nature of traffic flow and makes distinguishing 

between pattenis produced by incident and non-incident conditions easier. The distinguishing 

feature adopted in this work is the shape of the time-history and not any particular magnitude. 

To achieve this, each pattern is normalized to eliminate the effect of data magnitudes on the 

classification process. This approach also eliminates algorithm calibration and transferability 

issues caused by location specific conditions and temporal traffic flow variations. A single- 

station non-comparative approach is adopted in this research. This decision is based on the 

I 

analysis of patterns on both the upstream and downstream side of an incident. The upstream 

and downstream patterns produced by an incident do not develop at the same time. Therefore, 

mixing them reduces the reliability of the algorithm. Furthermore, using patterns from 

11 
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adjacent stations makes the algorithm dependent on several factors such as incident 

characteristics, distance between stations, and existence of on- and off-ramps in between the 

stations. The result is calibration problems and poor performance of the algorithm. 

The speed and occupancy upstream of a capacity reducing obstruction are found to exhibit 

the most significant and consistent change relatively independent of the flow rate (Figure 2% 

b). Consequently, the upstream speed and occupancy time-series data are used as input for the 

new model. Each pattern of traffic consists of N data points for the occupancy and the speed 

values obtained at the lane sensor immediately upstream of the incident location. From the 

algorithmic performance point of view the smallest number that can produce accurate results 

must be chosen. Computationally, however, DWT requires N to be a power of 2. Our 

numerical experiments indicate N = 16 provides accurate results and is therefore used in the 
I 

model. The 16 data points constitute 5 minutes and 20 seconds of data, if data is obtained 

every 20 seconds. This represents a sufficient amount of data to characterize before and after 
.̂.- 

incident traffic flow conditions and establish the defining shape of the traffic pattern. Eight 

data points did not produce good performance while the performance with 32 data points was 

identical to that for 16 data points. The normalized occupancy and speed data streams 

obtained from a given sensor location are denoted by the sequences xo[n] and xs[n], 

respectively, where n = 1, 16. 

WAVELET-BASED DE-NOISING 

When a signal is transformed into the wavelet domain it often becomes less complicated 

to effectively reduce noise and outliers in the signal. This ease is usually due to a degree of 

separation of noise and signal in the wavelet domain. For example, if the noise is made up of 

J 
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i 
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localized high frequency components in a predominantly low frequency signal then the signal 

can be de-noised by the following procedure. Take the DWT of the signal, selectively discard 
t 
I 

i 

! 
i 
i 

the higher scale coefficients, and then reconstruct the signal by taking the inverse DWT. This 

technique is not optimal and automatic for use in a real-time intelligent system environment. 

In particular, no definite criteria are available to determine which wavelet coefficients to 

discard in order to produce the best results. 

i 
I 
i 
f In recent years, formal wavelet-based de-noising techniques have been presented in the 

literature (Polchlopek and Noonan, 1997; Donoho, 1993, 1995). These techniques perform a 
f 
T 

i 
I nonlinear filtering on the transformed signal, modifying the wavelet coefficients in such a way 

I 

i 
I 

I 
I 

i 

that the inverse transformation yields a de-noised signal. 

Donoho (1 995) presented a technique in which the wavelet coefficients are passed through 

a nonlinear threshold filter. The resulting coeEcients then represent an optimally de-noised 

DWT of the original signal. To de-noise each of the data sequences xo[n] and xs[n] the - I 

r following procedure is employed: 
i 

0 Calculate the DWT of x[n]  to obtain the noisy wavelet coefficients {4;k}. The 16 data 

points can be resolved into 4 different’ frequency bands or scales. The coarsest scale j ,  

resolved in the DWT is 2 producing 22 = 4 scaling coefficients. At this scale also the 

general shape of the original sequence is preserved. The number of wavelet coefficients 

obtained is (24 - 22) = 12 corresponding to the two highest scales. Applying the soft- 

thresholding on these coefficients will effectively remove the higher frequency 

components without distorting the signal. 



0 Filter the wavelet coefficients using the soft-thresholding nonlinearity 

~ ( d )  = sgn(d)(ldl- t)+ where (.)+ is equal to (.) when (.) is positive and zero otherwise and 

the function sgn(.) returns the sign of its argument. The threshold t is given by 

t = J2log(N) where N (equal to 16 in our test example) is 

points. 

the total number of data 1 

7 

The de-noised signals corresponding to x,[n] and xJn] are denoted by Z,[n] and zs [n] . 

These signals will be cleaner versions of the original corrupted signal. 

Perform the inverse DWT using the scaling and the filtered wavelet coefficients. 

- - i  

1 

FUZZY DATA CLUSTERING 1 ,  

T 

1 
Data clustering techniques extract significant features from data based on given criteria. 

The goal is to reduce the dimensionality of the data without losing important information 

needed for a particular problem. Dimensionality reduction is needed to reduce data processing 

complexity and increase robustness and efficiency. The data clustering problem can be stated ‘ i  

f 
i 

as follows: Given a set of vectors X = (x, ,x2,xJ ,..., x,~} find the set Z = (z,,zz,zj,. -.,z,} 

where 2 I c < n and x,z E RP such. that Z properly characterizes X. The vectors zi represent 

classes or clusters in X. In general, data clustering techniques are either based on statistical or 

fuzzy logic theory. It has been shown that most of these techniques have similar properties 

L 

i 

and produce comparable results (Dave and Krishnapuram, 1997). However, fuzzy logic i 

approaches have the advantage of effective handling of imprecision. 7 

The fuzzy c-means (FCM) clustering algorithm (Bezdek, 1981; Cannon et al., 1986) 

performs a fuzzy partitioning of the data set into classes. This is in contrast to crisp 

7 

I ,- 
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assignment of data vectors 

techniques. The prefix c in 

to distinct classes employed in classical statistical clustering 

the fuzzy c-partitions refers to the number of classes in each . 

partition. The clustering problem can be posed as a constrained optimization problem as 

follows: 

Minimize 

subject to.. 

where J ,  is the objective finction for a given value of p ,  A ,  is the membership grade of 

vector i in classj, and 11.11 denotes the Euclidean norm. The parameter p represents the degree 

of fuzziness in the data. This value is often in the range 2 2 p > 1. Larger values are selected 

for M e r  data situations. A value of p = 1.5 is chosen in the test example in this work. Note 

that c, the number of classes desired, is an input parameter. The classes are identified by the 

cluster centers zi and the membership 

Euclidean distance from the class center. 

of a vector in a given class is determined by its 

In a general FCM formulation the membership grades A,  are also optimization variables. 

However, this formulation leads to a non-convex optimization problem that does not always 

produce a global optimal solution (Al-Sultan and Fediki, 1997). When using an iterative 



procedure for solving the optimization problem we use the following membership grade 

function based on the Euclidean norm (Bezdek, 198 1). 

r 1 1-1 

where the superscript t denotes the iteration number. 

To cluster the de-noised data sequences Xo [n] and Xs [n] we define the feature or trdfic 

pattern matrix X = {x, , x, , xj ,. . ., x N  } where the vector xi is given by 

x, = {Xo[i],Xs[i]} 1 I i 2 N .  

and use the FCM algorithm in the following form. 

(19) 

. . .  . 

1. Select an initial fuzzy c-partition by setting up the membership grades A ,  such that Eq. 

(1 6)  is satisfied. Select a value for p > 1 . Set the iteration counter t = 0. 

2. Calculate the class centers for the traffic pattern X. 

1 5  j l c  

i 

r 

3. Calculate the updated membership grade using Eq. (1 8). 

4. If the maximum change in the membership grade is less than E ,  or 

maxArl -A;.( < E I 1 I i I n,l I j I c 

stop. Otherwise, update c = t + 1 and go to step 2. 

This algorithm is efficient and usually converges in a few iterations. 
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The FCM algorithm is used to reduce the dimensionality of the feature matrix to obtain c 

cluster centers zi where 1 < c < N. In the test example, the 16 pairs of occupancy and speed 
I 
! 
I 

P 

I data are reduced to 4 (i.e. c = 4) representative samples. This reduced data set contains the 
i 

most significant features of the original data and is then used for classification of traffic f 
I 
i 

t 
signals into incident and incident-free signals. It should be noted that these computations are 

efficient as the FCM algorithm converges in less than 10 iterations and the dimensionality of 

the data is small. 

RADIAL BASIS FUNCTION NEURAL NETWORK CLASSIFIER 

' The radial basis function neural network (RBFNN) learns an input-output mapping by 

covering the input space with basis functions that transforms a vector Erom the input space to 

1 

? " the output space (Moody and Darken, 1989; Poggio and Girosi, 1990). Conceptually, the 

RBFNN is an abstraction of the observation that biological neurons exhibit a receptive field of 

activation such that the output is large when the input is closer to the center of the field and 

small when the input moves away from the center. Structurally, the RBFNN has a simple 

topology with a hidden layer of nodes having nonlinear basis transfer functions and an output 

layer of nodes with linear transfer functions. 

Figure 3 shows the topology of the RBFNN for the classification of traffic data into two 

states: incident and no incident. Therefore, only a single node in the output layer is required. 

The input vector is denoted by x and the output is denoted by y. The number of input nodes is 

equal to N. which is equal to the product of the number of clusters, c (equal to 4 in our test 

example), and the dimension of each cluster (equal to 2, when occupancy and speed is used as 

in our example). The number of nodes in the hidden layer is equal to the number of cluster 

17 



centers, 1 < N, < Np, for the entire training instances where Np is the total number of training 

instances. The cluster centers pi (1 5 i I N , )  is obtained using the FCM algorithm. 

The connection from the input node i to the hidden node j is assigned the weight pji 

corresponding to the ith component of the vector pi.  Each hidden node produces an output 

that is a function of the Euclidean distance of the input vector x from the cluster center pi .  In 

this work, we use the Gaussian (bell-shaped) function as the transfer function for the hidden 

nodes. The output of the hidden nodej is then given by . . .  

where the factor D, controls the spread or range of influence of the Gaussian function 

centered at p, . The output y of the network is given by 

where l j  is the weight of the link from the hidden nodej to the output node. The output value 

of 1 corresponds to an incident classification while a value of -1 corresponds to a no incident 

classification. 

The variables lj ’ s  and ,uji ’ s  are found by training the neural network off-line. The FCM 

algorithm is used to obtain N, cluster centers pi from the Np training instances x. The RBr”I\siu’ 

is trained to find the weights Ai by minimizing the error between the network computed 

output y and the desired output yJ. In other words, to train the network for Ai’s we solve the 

following unconstrained optimization problem: 
1 
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The gradient .descent optimization algorithm is used to solve this optimization problem. 

The spread parameters aj 's can also be treated as variables. However, we found that there 

was no improvement in the performance of the classification when the spread parameter is 

allowed to adapt. At the same time, including the parameter in the learning process slows 

down the training. In this work, the following expression is used to pre-assign the value of 

aj : 

t 

This equation approximates the spread parameter aj as one third of the mean distance 

between the cluster center at j and all other cluster centers. In this way an adequate amount of 

overlap of the basis functions is achieved for classification purposes. 

EXAMPLE 

The new incident detection algorithm is tested using both simulated and real traffic data. 

The simulated data is generated from the simulation software TSIS (Traffic Software 

Integrated System) (http://www.fhwa-tsis.com). TSIS uses a microscopic stochastic model to 

simulate traffic flow on freeways. A variety of parameters can be specified to simulate 

different traffic flow scenarios. By changing the random number seeds for each simulation run 

a representative sample is obtained for training and testing. The real traffic data is obtained 

from the Freeway Service Patrol Project's 1-880 database in California 

http://www.fhwa-tsis.com


(http://m.path.berkeley.edu/FSP/). The model is trained using simulated data only. The 

trained model is then tested using both simulated and real traffic data. 

The simulated training and testing data is generated from simulating traffic on a straight 

stretch of a two-lane (in one direction) freeway. Traffic enters the freeway section from one 

end and exits from the other. Pairs of loop detectors are spaced 450-750 m (1500-2500 feet) 

apart. A total of one hundred and fifty 800-second simulations were performed with data 

obtained in 20-second intervals. Ninety of these simulations involve a traffic incident while 

the remaining sixty do not have any incident. Each incident is modeled by the blockage of one 

lane and the reduction in capacity of the adjacent lane. The blockages are evenly distributed 

between the two lanes and are located at varying distances from an upstream detector station. 

The entry flow rate is varied in the range 2000-2500 vehicles per hour. Low demand 

conditions are adopted for evaluation because these are the conditions under which currently 

available incident detection algorithms perform poorly. 

Thirty incident and thirty non-incident patterns were used for training. It was found that 

the basic shapes of the occupancy and speed plots are similar in different incident simulation 

runs; the primary difference is that they are time shifted depending on the location of the 

incident downstream of a detector station and the flow rate at the time of the incident. 

Therefore, to ensure that the incident patterns are consistent they are extracted from the 800- 

second simuiations such that the effects ofthe blockzge is pronounced during the last few 

values of the sample. Figure 4 shows the normalized occupancy plots for two simulation runs. 

Figure 4a is for an incident 244 m downstream of the detector station while Figure 4b is for an 

incident 122 m downstream of the detector station. Figure 5 shows the corresponding 

occupancy incident patterns extracted from these simulations and used for training. Notice the 

r 
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? 
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similarity of the form of the two patterns. This pattern extraction is essential for robust 

classification. For the test example, the RBFNN learned the patterns with a cumulative mean 

square error of less than 0.003 in a few seconds on a Pentium I1 400 MHz machine. 

Testing of Algorithm Using Simulated Data 

To test the algorithm the output from the Rl3FNN is passed through a threshold, t, of 0.3. 

An output greater than or equal to 0.3 is classified as an incident. Otherwise, it is classified as 

a non-incident. The model is tested using the simulated data by presenting each of the ninety 

806-second simulation as a continuous stream of data. An output is produced every 20-second 

after the first 320-second (1 6 data points). An incident is detected when the output becomes 

greater than the threshold for the first time. All the 60 incidents were detected correctly during 

the testing of the model. Therefore, the detection rate is 100 percent. Also, none of the non- 

incident simulations or the incident simulations before the occurrence of the incident (a total 

of 360 patterns) were misclassified as an incident. Therefore, the false alarm rate is zero. 

The time to detection tends to be somewhat large for flow rates less than the freeway 

capacity. Figure 6 shows the variation of the mean detection time of the algorithm with pre 

incident flow rate and distance from the upstream detector station. 

Testing of Algorithm Using Real Data 

The 1-880 database contains loop detector and incident data for a 14.8 km (9.2-mile) long 

segment of the freeway from Oakland to San Jose, California. The number of lanes in each 

direction varies from three to five. The incident data is recorded by human observers 

traversing this segment of the freeway in patrol vehicles. Several incident characteristics are 

recorded including the type of the incident, the location of the incident, and the time of 

occurrence of the incident. For the testing of the new incident detection algorithm, the 



southbound data is processed to extract 21 incidents that block one or more lanes. The loop 

detector data are averaged over a 30-second time interval. Our incident detection model 

detected 20 of the 21 incidents, resulting in a detection rate of 95.2 percent. The traffic pattern 

corresponding to the missed incident did not exhibit the characteristics of an incident 

condition. This appears to be an error in the incident data. The incident data, in general, is not 

accurate as the location of incidents are reported approximately (like 1 mile from exit) and the 

time of the incident is actually the time at which a patrol vehicle observed the incident and not 

the time at which the incident occurred. As a result,'it is not possible to determine the time to 

detection which in our tests varied from negative to positive values. 

Four hours of incident free traffic data are used for testing the false alarm performance. In 

all, 30 patterns were presented to the model. Our new incident detection model correctly 

identified all 30 patterns as non -incident patterns. Thus, the false alarm rate is zero. 

Note that the model trained using simulated is tested on both simulated and real data 

without modification. Also, the simulated data is available at 20-second interval while the real 
! 

7 

data is available at 30-second intervals. The model does not require any calibration and can be 

used at all locations once it has been trained. 

CONCLUSION 

A new multi-paradigm intdigefit system methodolegy is presented for the solution of the 

traffic incident detection problem. The methodology effectively integrates fizzy, wavelet, and 

neural computing techniques to improve reliability and robustness of the algorithm. A 

wavelet-based de-noising technique is employed to eliminate undesirable fluctuations in 

observed data from traffic sensors. Fuzzy clustering is used to extract significant information 
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from the observed data and to reduce its dimensionality. A radial basis function neural 

network is developed to classify the de-noised and clustered observed data. The new 

methodology has been implemented in the combination of Ctt -  and MATLAB programming 

environments. 

The algorithm was tested using both simulation and real data. One hundred and fifty 

simulation runs were performed by changing the blocked lane, the distance of the blockage 

fiom the upstream sensor, and the flow rate. Under these conditions the algorithm produces 

the detection rate of 100 percent and the false alarm rate of zero. Real traffic data was 

1 obtained fiom the 1-880 database. The algorithm correctly identified 20 out of 21 lane- 
r 

blocking incidents and did not signal a false alarm in four hours of incident free data. 
I 

1 The methodology presented provides a solid foundation for fiu-ther research and 

development. We are currently investigating approaches to improve the mean detection time 

without sacrificing the excellent reliability of the algorithm. 

i 
I 
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1. Multiresolution fbction space decomposition using wavelet analysis 
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3. Radial basis function neural network for discriminating incident and non-incident patterns 

4. Normalized occupancy plots obtained from simulating traffic on a two-lane freeway 

(incident occurs at time 400 second) 

5.  The occupancy incident patterns extracted from the simulations presented in Figure 7 
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INCIDENT DETECTION ALGORITHM USING WAVELET ENERGY 

REPRESENTATION OF TRAFFIC PATTERNS 

Asim Karim' and Hojjat Adeli2 

Abstract: Automatic freeway incident detection is an important component of advanced 

transportation management systems that provides information for emergency relief and traffic 

control and management purposes. Earlier algorithms for the fieeway incident problems have 

produced less reliable results especially in recurrent congestion and compression wave traffic 

conditions. This article presents a new two-stage single-station freeway incident detection model 

based on advanced wavelet analysis and pattern recognition techniques. Wavelet analysis is used to 

de-noise, cluster, and enhance the raw tr&c data, which is then classified by a radial basis function 

(RBF) neural network. An energy representation of the traffic pattern in the wavelet domain is 

found to best characterize incident and non-incident traffic conditions. False alarm during recurrent 

congestion and compression waves is eliminated by normalization of a sufficiently long time-series 

pattern. The model is tested under several traffic flow scenarios including compression wave 

conditions. It produced excellent detection and false alarms characteristics. The model is 

computationally efficient and can readily be implemented on-line in any ATMS without any need 

for re-calibration. 

Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State 

Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State University, 470 
University. 

Hitchcock Hall, 2070 Neil Ave., Columubus, OH, 432 10, USA. 
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INTRODUCTION 

important component of any advanced transportation management system (ATMS) is the 
r 

reliable and efficient detection of traffic incidents. Traffic incidents on heavy demand freeways can , - 

seriously disrupt the performance of the entire highway network. From an engineering point of view 

the challenge is to localize the disruptive effects of an incident. The key to this problem is the 

development of an automatic algorithm that immediately recognizes the presence of a congestion- 

, 
f 

- 
I 

inducing incident so that effective control measures can be taken to prevent the spread of the 

congestion. A typical urban highway network often has excess capacity at any given time. The goal 

is to effectively utilize this extra capacity when a bottleneck occurs. 

: 
I 
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I 

Traffic incident detection algorithms must rely on data obtained at periodic time intervals from 

traffic sensors or detectors. The common traffic data available for use in incident detection 

algorithms are the lane occupancy, speed, and flow rate obtained fiom road sensors located every 

7 

I 

500 m to 2 km at usually 20- or 30-second time intervals. Incident detection algorithms must be . 

able to process this information to determine changes in patterns that may indicate an incident 

condition. However, incident-like patterns may also be produced by non-incident conditions such as i 

recurrent congestion during rush hours and banding of vehicles or compression waves. Traffic 

incident detection algorithms also have to be able to deal with erroneous data from mal-functioning 

traffic sensors effectively. 

f 

I 
I 

B Over the years researchers have developed numerous algorithms for the traffic incident . 

detection (ID) problem (Cook and Cleveland, 1974; Payne and Tignor, 1978; Ahmed and Cook, 

1982; Persaud and Hall, 1989; Chassiakos and Stephanedes, 1993; Hsiao et al., 1994; Cheu and 

Ritchie, 1995; Dia and Rose, 1997; Lin and Daganzo, 1997; Ishak and Al-Deek, 1998; Lin and 
< 

‘1 

Chang, 1998; Xu et al., 1998). These algorithms range fiom earlier simple comparative approaches , 

to more recent pattern recognition and decision-making techniques. The results, in general, have not 
F 
E 
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been very satisfactory and few freeway management systems today employ an automatic ID 

algorithm. The complexity arises fiom both the dynamic and unpredictable nature of traffic flow 

and the. unreliability of the installed traffic sensors, which in turn make simple approaches 

unreliable. 

When a traffic incident reduces the capacity below the prevailing flow rate a queue will form on 

the upstream direction producing significant reduction in lane speed and significant increase in lane 

occupancy. This change in pattern is well pronounced. The queue, however, may develop slowly 

depending on the prevailing flow conditions and the number of lanes closed. Hence the detection 

time can be large. On the other hand, the change in the flow pattern downstream of a capacity- 

reducing incident can take place within seconds, independent of the prevailing flow rate before the 

occurrence of the incident. This change (decrease in lane flow rate and occupancy), however, is not 

as significant compared with that occurring on the upstream of the incident. It has been argued that 

an algorithm that uses only the downstream readings produces a high false alarm rate and has 

difficulty in distinguishing compression waves fiom incident producing patterns (Weil, et al., 1998). 

This argument, however, is often based on using algorithms incapable of reliably distinguishing the 

patterns. 

Recently, Adeli and Karirn (2000) presented a computational model for automatic traffic 

incident detection using discrete wavelet transform, h z z y  logic, and neural networks. In their 

model, the upstream lane occupancy and speed time series data is adopted as the characterizing 

pattern for traffic state classification. The raw data is first de-noised by soft thresholding in the 

wavelet domain. Subsequently, the de-noised data is clustered by the fuzzy c-means technique to 

reduce data dimensionality and enhance feature separation. Finally, a radial basis function neural 

network is developed to reliably classify the de-noised and clustered pattern. The model is tested 

with both simulated and real traffic data producing excellent incident detection and false alarm 

3 



characteristics. However, the time to detection for the model is long, and depending on the traffic 

and incident characteristics can be as large as 5 minutes. 

, 

In this article, a new traffic incident detection algorithm is presented that distinguishes 

effectively patterns produced by capacity reducing incidents from those produced by compression 

L 

I 

waves and recurrent congestion. Furthermore, in most traffic and incident conditions, it signals the 

presence of an incident within a minute of its occurrence. Only data available locally at each 

’ 

7 

detector station are used for processing Computationally, the algorithm is based on an advanced 

energy representation of the time-series pattern developed using wavelet theory. This approach 

effectively enhances the desirable features and de-noises the traffic patterns, which are then 

3 
! 

-_ 
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classified using a radial basis h c t i o n  (RBF) neural network. The new algorithm is developed, 

described, and evaluated in the subsequent sections. 

i 

r 

FREEWAY INCIDENT DETECTION AND PATTERNS IN TRAFFIC FLOW T 

A freeway incident detection algorithm determines the presence or absence of an incident 

condition based on patterns in traffic flow. Therefore, the selection of the number, type, and format 
f 

of the traffic data to be used is essential to the reliability of the algorithm. Currently, most advanced 

transportation management systems can provide lane occupancy, speed, and flow rate data fi-om 

irregularly spaced sensors at regular time intervals. Hence, a reliable incident detection algorithm 

T 

r 

must be based on the use of such data only. In selecting appropriate patterns for an effective 1 

incident detection algorithm we set three goals. 
7 

First, the selected patterns must consistently characterize trafpic incident conditions and, at the 

same time, be distinguishable from other flow conditions such as compression waves. 

Second, the selected patterns by and large should be independent of prevailing roadway and 

trafEc conditions to avoid calibration problems. 

? 
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Third, the patterns should 

. occurrence of incidence. 

indicate an incident condition in less than one minute after the 

In this section patterns in trafic data before, during, and after an incident are investigated to 

determine the most appropriate input for the incident detection algorithm. Note that raw traffic data 

are analyzed. The pattern identified from this analysis will be processed further to enhance desirable 

features. The data presented in this section are obtained from TSIS (http://www.fhwa-tskcom), a 

traffic simulation software. 

Single-Station Versus Two-Station Incident Detection Approaches 

A capacity-reducing traffic incident will produce observable changes in flow conditions at the 

detector stations immediately upstream and downstream of the incident. In general, these changes 

consist of an increase in traffic congestion upstream and a decrease in trdfic congestion 

downstream of the incident. Based on these observations, two different approaches-called two- 

station comparative and single-station approaches-have been used to develop traffic incident 

detection algorithms. The single-station approach relies on data obtained from only one station 

while the two-station approach makes use of data from two adjacent stations. 

The two-station comparative approach, exemplified by the California algorithm (Payne and 

Tignor, 1978), employs both spatial and temporal data in its algorithm logic. The premise is that 

using spatial data will reduce false alarms that are produced as a result of changing roadway and 

traffic conditions because of the natural canceling effect of comparative analysis (Weil et al., 1998; 

Persaud and Hall, 1989; Payne and Tignor, 1978). The California algorithm is a simple threshold- 

based algorithm that uses only one flow parameter (occupancy). Also, because of its comparative 

approach it has to be calibrated at each station to optimize it for the particular roadway geometry. 

The two-station comparative approach, in general, has several disadvantages even when 

advanced pattern recognition techniques are employed. Traffic incidents are temporal events whose 

http://www.fhwa-tskcom


effects develop over time both in the upstream and downstream directions. However, fie 

characteristics of the traffic patterns developed in the upstream and downstream directions are 

different. Therefore, combining data from both stations is likely to produce less reliable detection of 

incidents because of the mixing of two different temporal patterns. Two-station comparative 

algorithms are also more difficult to calibrate because they are afTected by the geometry of the 

roadway, the distance between the stations, the presence of on- and off-ramps, and the prevailing 

flow conditions. 

Figures 1 and 2 show'typical time-series plots of lane occupancy, lane speed, and lane flow rate 

at a station upstream and downstream, respectively, of a lane-blocking incident on a two-lane 

fieeway. Three time-series plots are displayed for three different traffic flow rates of 1000, 1250, 

1500 vehicles per hour (vph) per lane. The incident occurs at time 400 second. Note that the time at 

which the upstream traffic occupancy and speed change (Figures la and b) depends on the pre- 

incident flow rate. The formation of a queue, which produces the significant changes in the traffic 

occupancy and speed patterns, also depends on the reduction in the capacity and roadway conditions 

(not presented in the figures). Figure IC indicates that there is no significant change in the traffk 

flow on the upstream side. On the other hand, on the downstream side, there are significant changes 

in the trafpic occupancy and flow rate (Figures 2a and c) but no significant change in the traffic 

speed (Figure 2b). As a result, the two-station comparative algorithms that employ upstream and 

downstream data together are difficult to calibrate and are likely to produce unreliable detection. 

Single-station approaches (Persaud and Hall, 1989; Cook and Cleveland, 1974) do not require 

data from more than one station to make a decision on the presence or absence of an incident 

condition. As such, their on-line implementation does not require expensive continuous 

communication between different detector stations. Furthermore, single-station patterns are not 

affected by the freeway layout and geometry. Recurring changes in traffic flow such as those 
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produced by daily rush time traffic and bad weather can be handled effectively by using a 

normalization technique, as explained later. 

In this research our computational model relies on single-station patterns. Our model can handle 

patterns from both upstream and downstream stations. But, there is no comparison of patterns from 

the upstream and downstream stations. Rather, each set of patterns are processed independently. 

Upstream and Downstream Flow Patterns 

From Figures 1 and 2 the pattern formed on the upstream or the downstream side of a capacity- 

reducing incident each can be used as the basis for an incident detection algorithm. On the upstream 

side, the dominant flow pattern is the increase in occupancy and the decrease in speed. The flow 

rate, however, does not show a consistent and significant change as compared to the occupancy and 

the speed. A pattern based on the upstream time histories of the lane occupancy and speed is 

therefore most appropriate for reliable incident detection purposes. This conclusion is confirmed by 

Figure 3, which shows a scatter plot of occupancies and speeds before and after an incident. In this 

figure, regions of congested and normal flow are generally distinguishable (they can be clearly 

separated after data de-noising and feature enhancement). On the other hand, the scatter plot of 

occupancy and flow rate (Figures 4) does not indicate a clear demarcation between normal and 

congested flow conditions. One limitation of using only the upstream data for an incident detection 

algorithm is that the detection time may be unacceptably large under low flow rate conditions. The 

detection time is also dependent on other factors such as distance between detector stations and 

weather conditions. 

Three observations can be made from the time series plots of traffic data on the downstream 

side of an incident (Figures 2a through c). First, the occupancy and the flow rate decrease rapidly 

after the occurrence of the incident (in about 20 s or one time interval reported by sensors in the 

examples of Figures 2a and c). This change, however, is less marked as compared to the increase in 

7 
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lane occupancy and decrease in lane speed seen on the upstream side. Second, the speed 

downstream of an incident is not a good indicator of an incident condition, as observed in Figwe 2b. 

After passing through an incident region, vehicles will accelerate and reach free flow speeds rather 

quickly. Third, the times at which the occupancy and the flow rate decrease appreciably are about 

the same and relatively independent of the flow rate. 

The scatter plots of occupancy and speed (Figures 5 )  and occupancy and flow rate (Figure 6)  for 

data from a location downstream of an incident show that there are no discernable and separable 

regions for before and after incident flow conditions. Because of this the development of a reliable 

algorithm for incident detection based on data from the downstream side has proven to be more 

difficult. Using the downstream data poses two additional challenges. First, there is the risk of false 

alarms as a result of compression waves because a compression wave’s occupancy and flow rate 

downstream patterns resemble those of an iocident. Second, the magnitudes of the flow rate data on 

the downstream side may vary because of weather conditions, the severity of the capacity reduction 

as a result of the incident, and other daily changes in the flow rate. On the other hand the major 

advantage of using the downstream data is that the change in pattern after an incident is almost 

immediate and independent of the prevailing flow rate. 

Based on these observations a new incident detection logic and computational model is 

developed that utilizes both upstream and downstream traffic patterns independently. A two-stage 

logic is employed. In the first stage, the presence or absence of an incident condition is determined 

from the downstream occupancy and flow rate time-series data. The second stage confirms the 

presence or the absence of an incident condition by using the upstream occupancy and speed t h e -  

series data. To minimize the possibility of a missed detection and eliminate false alarms m 

advanced wavelet-based feature enhancement and de-noising approach is adopted to process the 

data. False alarms from compression waves are avoided by using a sufficiently long time series as 
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input. Recurrent congestion is handled by a normalization technique. These models are developed in 

detail in subsequent sections. 

DISCRETE WAVELET TRANSFORM AND SIGNAL ENERGY 

The discrete wavelet transform (DWT) provides a powerful and efficient technique for 

analyzing, decomposing, de-noising, and compressing signals. In particular, the DWT of a signal 

breaks it down into several time-frequency components that enable the extraction of features 

desirable for signal identification and recognition. The DWT and wavelet theory in general have 

been developed rapidly in the last 10 years (Daubechies, 1992, Burrus et al., 1998). In this section 

the basic concepts of DWT and its energy representation employed in this research are presented 

briefly. Additional details of DWT and its application in ITS problems can be found in Samant and 

Adeli (2000). 

A one-dimensional signal f ( t )  E L2 ( R )  can be decomposed into multiresolution components 

that are indexed by the scalej (indicator of frequency) and the translation k (indicator of time): 

f (t> = ~ C j o , k ~ j o , k  ( t )  -k 7 x d j , k v j , k  ( t )  (1) 
k k j = j o  

where L2(R) is the space of all square integrable functions defined in the one-dimensional real space 

R, ci,k is the scaling coefficient corresponding to the scaling function p , , k  ( t )  , and 4, ,~ is the wavelet 

coeficient corresponding to wavelet v , , k  ( t )  . The index j o  represents the lowest resolution that is 

decomposed by the DWT. The functions p , , k  ( t )  ( j ,  k E 2) and vjh ( t )  ( j ,  k E Z)  (2 is the space of 

integers), each forming a basis of L2(R), are defined by the following equations: 

~ ) ~ , ~ ( t )  = 2”*9(2’t-  k )  

p(t) = z h o  [k]&p(2t - k )  k E 2 
k 



~ ( t )  = h, [k]JZy1(2t - k) k E 2 
k 

(4) 

where ho and hl are filter coefficients and the constant f i  maintains the unity norm of the 

functions. In this work, the Daubechies wavelet system of order eight (Daubechies, 1992), defined 

by eight hl and ho coefficients, is used. This wavelet basis system is selected because of its 
I 

orthonormality property and compact support providing a DWT with a finite length and number of f 

wavelet coefficients. 

When an orthonsrmal basis is used the coefficients Cj,k and dJ,k are given by the inner product of 

the signal with the appropriate function: 

which can be reduced to the following recursive equations (Burrus et al., 1998): 

In these equations it is assumed that the scaling coefficients of the signal at the highest resolution 

are known. 
I 

The traffic data are available as a discrete sequence Ak] of finite length L = 2J where J is an 

htteger. The highest resoh?inn pzrt of the sca!ing function m r J,K . . ( t )  pj,k ( t )  will approach a Dirac 

delta function and Eq. (5) will represent a sampling off[k]. Therefore, cdk] can be approximated by 

Ak]. Use of the recursive Eqs. (7) and (8) for calculating the DWT coefficients requires thatJEk] be 

extended periodically. In other words, the following equation should hold: 

f[k] = f [ k  + Ln] n = 1,2737... (9) 
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However, traffic time-series data, such as those shown in Figures 1 and 2, are not periodic. In other 

words, generally the end valuesfill andJcL] are not equal. As a result of the incompatibility of the 

trafiic data with the periodic boundary condition, the wavelet representation can distort the shape of 

the original traffic pattern. To overcome this problem the traffic pattern is extended on either ends 

before its DWT is found. This procedure is explained in detail in the next section. 

An advantage of using an orthonormal basis to frnd the DWT of a signal is that the energy of the 

signal can be partitioned into its various time-frequency components. The energy contribution from 

each component is expressed as a function of the wavelet and scaling coeficients. This is known as 

Parseval's theorem and is expressed mathematically in the form of the following energy functional 

(Burrus et al., 1998): 

. .. . . 

.. . '(10) 

We use this functional to enhance the traffic data streams for the purpose of pronouncing the traffic 

incident patterns, as explained in the next section. 

TRAF'FIC PATTERN FEATURE ENHANCEMENT AND DE-NOISING 
- 

In our traffic incident detection model, we process the three time-series trafic data (lane 

occupancy, speed, and flow rate) obtained at each detector station with the objectives of reducing 

the noise and enhancing the desirable features. This processing is essential to ensure that no 

incidents go undetected and no false alarms are triggered. The upstream lane occupancy ( fo [i] ) and 

speed ( fs [i]) form one pattern for identifying incident conditions. The downstream lane occupancy 

( fo [i]) and flow rate ( fF [i]) form another pattern for identifying incident conditions. 

Sixteen data points are selected for each one of the three traffic parameters. That is, the 

sequences fo [i] , fF [i] , and fs[i] consist of sixteen values indexed from 1 to 16. There are two 
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reasons for selecting this length for each time-series. The DWT used in this work (and in fact in 

most cases) requires that the number of data points to be equal to some power of 2 (4, 8, 16, etc.). 

For algorithmic efficiency, the smallest number is preferred. We found 16 to be the minimum 
! 
- 

number needed to avoid false alarms that may be caused by compression waves. We found this I 

necessary for the downstream pattern ( fo [i] and f, [i]) which may exhibit similar patterns for both 

compression waves and incident conditions. 
! 

When the time interval between successive readings is 20 seconds (which is the minimum 

available from current detector stations) sixteen data points constitute 5 minute and 20 second of 

data. Compression waves are usually temporary conditions and not very likely to exist for as long as 

' 

1 

II 
5 minutes. In other words, it is unlikely that a pattern in which the values of fori] and fF[i] (i = 

15, 16) are much smaller than the values of fo[i] and fF[i] (i = 1, 2, ..., 14) is caused by a 1 

compression wave. This data sampling strategy prevents the downstream pattern from signaling an 

incident condition erroneously whenever a compression wave passes by. 
f 

I 

The traffic time-series data are normalized by dividing them by the average of the highest two 

values in each series. Normalization reduces the significance of magnitude in the pattern 

recognition process and the undesirable domination of a single large value. Patterns are 
1 

distinguished primarily on the basis of their shape and form and not on the basis of magnitude. As a I 

result, the normalization technique also eliminates the need for re-calibration whenever the flow 

conditinn changes. Flow variations caused by daily rush time traffic, weather conditions, geometry, 
i 

and other situations can therefore be handled automatically and transparently. The normalized 

r occupancy, speed, and flow rate sequences are represented as To [i] , fs [i] , and f, [i] , respectively. ! 

The normalized data series are extended by 8 points at each end before their DWT's are 
1 

calculated as follows: 

12 

e 
c 



E 
f 

0.5(j[i] + f[21) 1 I i I 8 

j[i] = f[i-8] 9 I i 1 2 4  i 0.5(?[15] + f[16]) 25 I i I 3 2  

The length L of each data series now becomes 32 (i.e. L = and J =  5). The need for extending the 

data series is shown in Figures 7a and b. Figure 7a shows a typical flow rate data series, f F [ i ]  

(solid line), on the downstream side of an incident and its scale 3 (i.e.j = 3) wavelet approximation 

(dashed line). Notice how the shape of the wavelet approximation is distorted at the left edge 

because of the periodic boundary condition assumption. Figure 7b shows the same data series 

extended using Eq. (11) (solid line) and its scale 3 wavelet approximation (dashed line). In this 

figure the wavelet distortion has been pushed aside to the outer edges, outside the usable region of 

data, the segment from data points 9 to 24. In this segment the basic shape of the original data series 

is preserved without distortions. 

In the new traffic incident detection model, the DWT is employed to reduce the dimensionality 

of input data for the neural network pattern classifier, eliminate the traffic noise, and enhance the 

desirable features in each data series. The extended data series has a length of 25 and is represented 

by scale J = 5 in Eq. (5). Equation (7) is applied two times recursively to calculate the scaling 

coefficients at scalej = 3. This operation corresponds to a two-stage low-pass filtering of cJlk] with 

ho (Samant and Adeli, 2000). At this reduced resolution the higher frequency noise-like components 

are eliminated leaving a smoother de-noised shape or form. Also, through the two-stage low-pass 

filtering the 32-point time-series is now reduced to an 8-coefficient representation. However, this 

DWT is for the extended 32-point data series. The DWT of the original 16-point data series is given 

by the middle 4 values of the 8 coefficients (cj[k], k = 3, 4, 5, 6). Let these reduced sets of 

coefficients be defined as co [i] , cs [i] , and cF [i] for occupancy, speed, and flow rate, respectively, 

where i = 1,2,3,4. 



Notice fiom Figures 1 and 2 that an incident condition pattern exhibits either a sudden decrease 

or a sudden increase in magnitude of data values which occur in the last few data points. This 

feature, which distinguishes an incident condition fiom a non-incident condition, can be enhanced 

by using the energy representation capability of wavelet transforms (Eq. 10). The squares of the 

absolute values of the coefficients c[ i ]  represent the energy of the de-noised time-series data at each 

time location defined by index i .  The energy (or the area under a squared time-series plot) enhances 

incident condition patterns and distinguishes them fiom non-incident condition patterns. Thus, the 

scaling coefficients are modified as follows: 

;[i] = Ic[i1l2 t / i  (12) 

The benefit of DWT-based de-noising and feature enhancement is demonstrated in Figures 8 

and 9. Figure 8 is a scatter plot of to [ i ]  and ts [ i ]  based on the same data used in Figure 3. Figure 9 

is a scatter plot of to [ i ]  and tF [ i ]  based on the same data used in Figure 6. Comparisons of Figure 

3 with Figure 8 and Figure 6 with Figure 9 indicate the improvement in pattern separation achieved 

by wavelet-based de-noising and feature enhancement. The points between cluster regions seen in 

these figures are intermediate conditions that will move to one of the clusters as the time-series 

pattern becomes more defined with time. 

The enhanced traffic pattern at the upstream side, xu [ i ]  , is then formed by concatenating the 4 

coefficients from the occupancy and the speed data series. Similarly, the enhanced traffic pattern on 

the downstream side, x D [ i ] ,  is formed by concatenating the occupancy ai4 flow rate daki series 

coefficients. Mathematically, the patterns are given by 

xu = {to [ i ] , t s [ i ] }  i = 1,2,3,4 

x D  = { t o [ i ] , t F [ i ] }  i = 1,2,3,4 
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PATTERN CLASSIFICATION USING RADIAL-BASIS FUNCTION NEURAL NETWORK 

Neural networks are powerful model-free pattern classifiers (Adeli and Hung, 1995). However, 

they can be computationally very expensive when the size or dimensionality of the input data is 

large requiring a very large number of training instances. Training instances of the traffic patterns 

defined by Eqs. (1 3) and (1 4) are used to develop a mapping from an 8-dimensional space to a one- 

dimensional space. For this purpose, the radial basis function (RBF) neural network is adopted. The 

RJ3F neural network is an efficient universal classifier (Moody and Darken, 1989) that has a simple 

topology consisting of a hidden layer of nodes with nonlinear transfer Tmctions and an output layer 

of nodes with linear transfer functions. 

The topology of the RBF neural network developed for the traffic pattern classification is shown 

in Figure 10. The input layer has 8 nodes corresponding to the eight data points in each pattern 

(xdi] or x ~ [ i ] ,  henceforth called vector x). The number of nodes in the hidden layer, Nh is equal to 

the number of cluster centers used to characterize the input training space. The output layer has one 

node 61). The number of nodes in the hidden layer is chosen as a fraction of the total number of 

training instances. This choice is based on numerical experimentation to determine which number 

adequately covers the input space and produces the best mapping. We found a number within the 

range of 10 to 30% of the number of training instances to provide satisfactory results. The cluster 

centers pi (1 I i 5 N h )  is obtained using the fuzzy c-means algorithm (Bezdek, 1981; Cannon et al., 

1986). 

The connection from the input node i to the hidden node j is assigned the weight p,i 

corresponding to the ith component of the vector p j  . The output of a hidden node j is given by the 

following Gaussian transfer function: 



r 

where the factor a, controls the spread or range of influence of the Gaussian h c t i o n  centered at 
I 

p, . In this work a, is calculated as I 

; where N is the total number of training instances. Equation (1 6 )  approximates the spread parameter - 

a, as one third of the mean distance between cluster centers. The connection from the hidden node 

j to the output node is assigned the weight A,. The output y of the network is then given by 
I 

.. . 

Theoretically an output value of 1 corresponds to an incident classification while an output value of 

-1 corresponds to a no incident classification. Practically, however, one has to choose a threshold 
, 
f 

value for distinguishing between the two classes as the output from Eq. (17) can take any value in : 

the range -1 and 1. 

The weights A, are calculated by minimizing the error between the network computed output y 

and the desired output yd based on training examples. In other words, to train the network for A, 's 
f 

we solve the following unconstrained optimization problem: 1 
N 

Minimize E ( 5 )  = zlyi - y61 
i=l 

B The gradient descent optimization algorithm is used to solve this optimization problem. ? 

16 



MODEL TESTING 

Introduction 

The new computational model for freeway incident detection is tested using both real and 

simulated traffk data. More than 40 hours of simulated traffic data is generated fiom the trafEc 

simulation software TSIS/CORSIM while real tr&ic data is obtained from the freeway service 

patrol (FSP) project’s 1-880 database. A large portion of the simulated data is made up of incident 

or incident-like conditions on two- and three-lane freeways. This is an advantage of employing a 

simulation software for testing purposes as sufficient quantities s f  reliable real data with traffic 

incidents are not readily available. Furthermore, with a data generating software it is possible to 

study the performance of the model under various traffic flow scenarios. The real data is used for 

further validation of the model. 

Training 

The model is trained using a sample of 30 incident and 30 non-incident patterns extracted fiom 

the simulated data. Two RBF neural networks are trained: one for the upstream detector station and 

the other for the downstream detector station. Training is done only once and no re-calibration or re- 

training is needed. The RBF classifier can therefore be implemented on-line on all stations after the 

training is done off-line. 

First Test Using Simulated Data: Two-lane Freeway 

The performance of the incident detection model on a two-lane freeway (in each direction) is 

shown in Table 1. The prevailing flow rate per lane is varied from 1000 to 2000 vehicles per how 

(vph). The traffic incident consists of the blockage of one lane (the blockages are distributed evenly 

between the lanes) and a 50 percent reduction in capacity of the adjacent lane. In 600 different 

simulations the algorithm detects all incidents both at the downstream and the upstream detector 

stations. One false alann is produced at the downstream station when the demand is a low 1000 vph 
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per lane. The data that caused this false alarm exhibited a pattern similar to that of an incident 

condition pattern. This situation will occur rarely in practice and only in low flow conditions. A 

sensor malfunction may also cause a false alarm. But this can be handled easily in the preprocessing 

logic as most sensors report their operation status regularly. False alarms can be eliminated 

completely by using a slightly higher transition threshold from non-incident to incident condition on 

the RBF classifier output. In this first test scenario the threshold was kept at zero to validate the 

pattern recognition properties of the model. 

The average incident detection time for the downstream detector station is 46.5 seconds with a 

range varying from 40 to 54 seconds. This is an acceptable delay for practically all emergency and 

control purposes. Also, there is practically no variation of this time with any change in flow rate and 

location of the incident. This result is significantly better than that reported by Adeli and Karim 

(2000) where the detection time is as large as 5 minutes. The time to detection for the upstream 

detector station, on the other hand, does vary significantly with the flow rate and the distance of the 

incident from the detector station. It varies from 70 to 228 seconds. The upstream pattern is based 

on the formation of a queue that takes a rather long time to develop (in the order of one to four 

minutes). 

In the subsequent test scenarios the threshold value was taken as 0.2 where an output greater or 

equal to 0.2 was signaled as an incident while a value less than 0.2 was labeled as a non-incident. 

This was intended to eliminate the false alarms but at the expense of slightly more detection times. 

Second Test Using Simulated Data: Three-lane Freeway 

Table 2 shows the performance of the model on a 3-lane freeway for flow rates ranging from 

1250 vph to 2000 vph per lane. Only one lane (either the lane adjacent to the shoulder or the 

median) is blocked in this scenario with no reduction in capacity of the other lanes. This scenario 

simulates a shoulder or median obstruction that also requires the closure of the adjacent traffic lane. 
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Under this scenario in 600 different traffic simulations the downstream detector station produced 

perfect results while the upstream detector station missed 4 incidents during low demand 

conditions. The missed detections by the upstream detection station are understandable because the 

remaining capacity (about 4000 vph) is still able to handle the demand (3750 vph) without the 

development of significant congestion on the upstream side. On the other hand, the downstream 

detector station is able to detect all incidents within about a minute of its occurrence. This test 

scenario illustrates the capability of the model under low demand conditions and minor 

obstructions, situations in which many algorithms produce pbor detection and numerous false 

alarms. 

Third Test Using Simulated Data: Compression Waves 

< 

To test the model’s performance under compression wave-like conditions one hundred minutes 

of data are generated for a two-lane fieeway with moderate flow rate and with several periods of 

increased flow rate by up to 500 vph. The periods of increased flow rate are limited to 5 minutes or 

less based on the assumption that compression waves are temporary conditions. A typical 25-minute 

plot of lane occupancy is shown in Figure 11. The higher flow rate period lasts from 600 to 900 

seconds. In all, there are 374 patterns in this 100-minute data. The model correctly identified all of 

them as non-incident conditions. 

Fourth Test Using Real Data: FSP Project’s 1-880 Database 

The fieeway service patrol (FSP) project’s database contains traffic data for a 14.8 km (9.2 

mile) long segment of the 1-880 freeway between Oakland and San Jose, California. This segment 

has a varied geometry of 3 to 5 lanes (in each direction), single and multiple lane on- and off-ramps, 

and mild horizontal and vertical curvatures. Over the duration of the project observers in patrol 

vehicles traversed this freeway segment and recorded the occurrence of incidents 

key incident characteristics such as location, time, and type of incident. By 

by noting down 

correlating this 
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infoimation with data obtained from sensors, samples for 21 lane blocking incidents are extracted 

from the database. To test the false alarm rate performance, 4 hours of incident fiee data are also 

extracted. Table 3 shows the performance of the new incident detection model using real data. Both 

downstream and upstream stations produced a detection rate of 95.2 percent and a false alarm rate 

of zero. This result is identical to that reported by Adeli and Karim (2000). Accurate information for 

the time of occurrence of incidents is not available from the database. Thus, the detection times for 

the model cannot be computed. 

Result Summary and Comparison 

The results of the new incident detection model indicate that the downstream detector station 

data and logic by themselves provide satisfactory results. In an ATMS that does not provide speed 

data the upstream station logic can be eliminated. However, in situations where the speed data is 

available the upstream detector station logic provides an additional level of reliability without any 

significant increase in computation. The results also show the calibration free transferability of the 

model where the model trained using simulated data performs reliably when tested using both real 

and simulated data. As compared to the *-wavelet RBFNN model presented by Adeli and 

Karim (2000), the new model produces significantly shorter detection times without any loss in 

detection and false alarm rate performance. Furthermore, the new model is computationally more 

efficient as it does not require the compuation of the inverse wavelet transform and the fuzzy C- 

mean at each time interval. 

CONCLUSION 

A new traffic incident detection logic and computational model is presented that overcomes 

several shortcomings of earlier algorithms. The model uses a two-stage single-station detection 

logic. In the first stage a decision is made based on data obtained from the downstream detector 
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station only while in the second stage the decision is confrmed based on data obtained fiom the 

upstream detector station only. Wavelet domain processing is used to de-noise, compress, and 

enhance the raw traffic data for classification. It is found that an energy representation of the data 

best characterizes incident and non-incident conditions. The model determines the state of the 

trafEc flow fiom the shape of the time-series data rather than the magnitude. A radial basis function 

neural network is developed to classify the processed trafEc data into incident and non-incident 

states. 

The new model has the following five advantages and desirable characteristics. No other 

existing incident detection algorithm can provide all of them simultaneously. 

0 The new model is capable of detecting all incidents even when the reduced freeway capacity 

after the incident is greater than the prevailing flow rate (normally occurring under low flow 

rate conditions). 

0 The model can reliably identify recurrent congestion and compression waves a non-incident 

conditions without triggering a false alarm. 

The model signals the presence of an incident within one minute of its occurrence, to a great 

extent independent of the prevailing traffic and roadway conditions. 

0 The model does not require re-calibration for its on-line implementation and thus is readily 

transferable. 

The model is computationally highly efficient because a) DWT operations require a small 

number of multiplications and additions in every sensor reporting interval (say 20 seconds) and 

b) we have reduced the dimensionality of the RI3F neural network through wavelet-based 

0 

energy representation of input. 

These characteristics make our new traffic incident detection model ideal for widespread 

practical adoption in urban ATMS. The model was tested under several traffic flow scenarios. In 
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general, it produced excellent results across a wide range of prevailing flow conditions. The mode] 

also correctly identified compression wave conditions and none of them were signaled false 

alarms. 
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b * Distance 

1 Table 1. Performance of the new incident detection model on a two-lane freeway 

I 

of the traffic incider 

Flow 
rate 
(Vph 
Per 

lane) 
1000 
1000 
1100 
1100 
1250 
1250 
1500 
1500 
1750 
1750 
2000 
2000 

Totals 

Location I Downstream station ** 
(m)* Detections I 
244 
122 
244 
122 
244 
122 
244 
122 
244 
122 
244 
122 

10/10 
10/10 
10/10 
104 0 
10/10 
10/10 
10/10 
10/10 
10/10 
10/10 
10/10 
10/10 1 120/120 
100 % 

False 
alarms 

1 /40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 

1/480 
0.2 Yo 

Detection 
time 
(s) 

50 
40 
40 
40 
48 
46 

48 
44 
48 
54 
52 

48 

from the upstream sts 

Upstream station ** 
Detections 

10/10 
10/10 
10/10 
10/10 
10/10 
10/10 
10/10 
lU10 
1040 
10/10 
10/10 
10/10 

120/120 
100 Yo 

In. Distancl 
* * Numbers after / indicate the total number of simulations. 

I 
i 
i: 

False 
a la IT l lS  

0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 
0/40 

0/480 
0% 

Detection 
time 
(9 

192 
142 
228 
126 
172 
110 
130 
82 
114 
70 
88 
70 

)etween stations is 460 m. 

F 
, 
i 



Table 2. Performance of the new incident detection model on a 3-lane freeway 

Flow Location Downstream station ** 
rate (m)* Detections False Detection 
(Vph alarms time 
Per (SI 

lane) 
1250 244 10/10 0/140 40 
1500 244 10/10 1/140 42 
1833 244 10/10 0440 48 
2000 244 loll0 0/140 66 

Totals 40/40 1/560 
100% 0.18% 

Upstream station ** 
Detections False Detection 

a l a n n S  time 
(s)  

6/10 0/140 435 
10/10 Oh40 320 
10/10 0/140 292 
10/10 0/140 248 

3 6/40 0/560 
90 Yo 0 Yo 

Dowstream station * 
Detections . False 

alZllXSlS 

20/2 1 0/480 

95.2 % 0 Yo 
1 
! 

Upstream station * 
Detections False 

alarms 
20/2 1 0/480 

95.2 Yo 0 Yo 
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2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

LIST OF CAPTIONS FOR FIGURES 

Time-series plots of upstream traffic data on a two-lane freeway with three prevailing flow rates 

of 1000,1250, and 1500 vph per lane before and after an incident. (a) lane occupancy plot, (b) 

lane speed plot, (c) lane flow rate plot 

Time-series plots of downstream traftic data on a two-lane freeway with three prevailing flow 

rates of 1000, 1250, and 1500 vph per lane before and after an incident. (a) lane occupancy plot, 

(b) lane speed plot, (c) lane flow rate plot 

Scatter plot of upstream lane occupancy and speed before and after incidents 

Scatter plot of upstream lane occupancy and flow rate before and after incidents 

Scatter plot of downstream lane occupancy and speed before and after incidents 

Scatter plot of downstream lane occupancy and flow rate before and after incidents 

(a) DWT of a 16-point flow rate traffic pattern 

(b) DWT of an extended 32-point flow rate traffic pattern (based on the data of Figure 7a) 

Scatter plot of upstream lane occupancy and speed wavelet energy coefficients before and after 

incidents 

Scatter plot of downstream lane occupancy and flow rate wavelet energy coefficients before and 

after incidents 

10. Topology of radial basis function neural network for traffic pattern classification 

1 1. Typical lane occupancy time-series plot for compression wave traffic condition 
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COMPARISON OF THE FUZZY-WAVELET RBFNN FREEWAY INCIDENT 
DETECTION MODEL WITH THE CALIFORNIA ALGORITHM 

Asim Karim' and Hojjat Adel? 

ABSTRACT: A multi-paradigm general methodology is advanced for development of reliable, 

efficient, and practical freeway incident detection algorithms. The performance of the new buy- 

wavelet radial basis function neural network (RBFNN) freeway incident detection model of ' 

? 

i 

t 

Adeli and Karim is evaluated and compared with the benchmark California algorithm #8 using 

both real and simulated data. The evaluation is based on three quantitative measures of detection 

rate, false alarm rate, and detection time, and the qualitative measure of algorithm portability. 

The new algorithm outperformed the California algorithm consistently under various scenarios. 

False alarms are a major hindrance to the widespread implementation of automatic freeway 

incident detection algorithms. The false alarm rate ranges from 0 to 0.07 % for the new algorithm 

and 0.53 to 3.82% for the California algorithm. The new --wavelet RBF'NN freeway 

incident detection model is a single-station pattern-based algorithm that is computationally 

efficient and requires no re-calibration. The new model can be readily transferred without re- 

training and without any performance deterioration. 

INTRODUCTION 

In recent years, researchers have investigated neural network based incident detection 

algorithms with promising performance results. Adeli and Samant (2000) developed an adaptive 

conjugate gradient neural network pattern recognition model for freeway incident detection that 

employed data de-noising and enhancement. Discrete wavelet transformation and linear 

Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio I 

State University. 
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discriminant analysis is used for data de-noising and enhancement, respectively (Samant and 

Adeli, 2000). The model is tested using simulated data for several geometric and traffic flow 

conditions. 

Recently, Adeli and Karim (2000) created a new single-station pattern-based freeway 

incident detection algorithm. The characterizing pattern used is a time-series of the upstream lane 

occupancy and speed. Wavelet-based de-noising, fuzzy clustering, and neural network 

classification are used to reliably 

series pattern. The algorithm was 

performance results. 

identify incident and non-incident conditions fiom the time- 

tested using both simulated and real data producing excellent 

In this article, a general methodology is presented for development of reliable, efficient, and 

practical freeway incident detection algorithms. Next, the incident detection model of Adeli and 

Karim (2000) is described briefly followed by a discussion of California algorithm #8. Then, the 

performance of Adeli and Karim’s incident detection model is evaluated and compared with that 

of California algorithm # 8 on typical urban freeway systems. The emphasis is to evaluate the 

robustness of the algorithms under various traffic flow and roadway geometry conditions, as a 

comprehensive indicator of their practical implementation in an area-wide ATMS. Further, the 

new model is also tested using real incident data from the advanced regional traffic interactive 

management and information system (ARTIMIS) implemented in Cincinnati, Ohio 

(htto:Nwww.artimis.orn/) and the freeway service patrol (FSP) project’s 1-880 database for the I- 

880 freeway between Oakiand aid S m  Jose, California (htto://www.path.berkelev.edu/FSPb 

’ Professor. Dept. of Civil and Environlnental Engineering and Geodetic Science, The Ohio State University, 
Columbus, OH 43210, USA. 
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A NEW TRAFFIC INCIDENT DETECTION METHODOLOGY 

A freeway incident detection algorithm must produce consistently reliable results from 

remotely sensed data of traffic streams. This is a challenging problem especially considering the 

non-homogenous, turbulent, and often chaotic nature of traffic flow and the limited information 

available from sensors. This is further complicated by noise introduced in the data during its 

collection and transmission. This indicates that a wholly model-based approach is less likely to 

be successful than a model-free, adaptive pattern recognition approach. However, a pattern-based 

approach must not neglect traffic behavior information that can be used to improve the efficiency 

and performance of the algorithm. The pattern-based approaches presented in the literature often 

neglect this aspect and tend to be overly simplistic. To solve the complex freeway incident 

detection problem effectively, our approach is based on utilizing advanced signal processing, 

pattern recognition, and classification techniques with appropriate heuristics derived from known 

traffic flow behavior. 

The rationale behind this methodology is: 

Traffic flow is highly complex and not amenable to accurate mathematical modeling. 

Therefore, reliance must be made on adaptive algorithms that can learn and recognize 

patterns in an unsupervised manner. 

Traffic data is often corrupted with noise. Noise elimination is essential to improve the 

performance of any algorithm. 

The algorithm should require little or no calibration for its on-line implementation. That is, 

the algorithm’s performance must be independent of roadway geometry, existence of on- and 

off-ramps, weather conditions, and changing traffic demand. 
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Trafic flow behavior and information from other sources must not be ignored. For example, 

knowledge of flow behavior should be used wherever possible to simplify the algorithm and 

improve performance. 

The algorithm must be capable of real-time operation. Therefore, computationally intensive 

algorithms must be avoided. 

Figure 1 presents a schematic view of the new methodology for development of advanced 

incident detection algorithms. Five sequential stages of processing are identified: (1) 

preprocessing, (2) de-noising, (3) clustering, (4) classification, and (5) decision-making. In each 

stage an appropriate technique has to be used to achieve the desired result. These techniques may 

be unique in each stage, or two or more stages may use the same technique provided that the 

goals of each stage are achieved. In the following paragraphs, each of these five stages is 

described briefly. 

The preprocessing stage takes the raw traffic data obtained from sensors and transforms the 

data in the format needed for the algorithm. Common preprocessing approaches include 

calculating the cumulative values of time-series data and calculating the difference in values 

obtained from two sensors. The number, type, and format (Le. the pattern) of traffic data is 

selected based on the behavior of traffic flow before, during, and after incidents and the 

performance of the algorithm. 

The second stage performs de-noising and enhancement of the signal output obtained from 

the preprocessing stage. "his is an importmi stage because mise corruption is one of the primary 

reasons for poor reliability of the incident detection algorithms. Noise is introduced both during 

data observation and transmission, and depends on random factors such as environmental 

conditions, sensor calibration errors, and traffic anomalies. The goal of this stage is to produce a 

clean noise-free signal. Large fluctuations in values over a short period of time due to noise 
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make it difficult for any algorithm to discriminate between an actual incident pattern and a noise- 

induced pattern. Noise can be effectively removed from a signal if it can be separated from the 

true signal. Transform-based techniques, such as discrete wavelet transform, provide the best 

solution. 

The third stage performs a feature extraction process. This stage reduces the dimensionality 

of the data and improves the performance of the following classification and decision-making 

stages. Several clustering techniques are available including neural network (Adeli and Hung, 

1995; Adeli and Park, 1998), fuzzy logic, and statistical approaches. In general, the statistical 

discriminant analysis approaches are computationally intensive and require high CPU resources 

in order to be implemented in real-time, a requirement for effective incident detection 

algorithms. Fuzzy clustering techniques such as the hzzy c-means approach- are both 

computationally eficient and capable of handling imprecision. 

The classification stage identifies patterns in data into relevant categories. This stage 

determines whether the data represents an incident or not. Neural network models are most 

appropriate for this stage of processing. The clustering and classification stages may be 

combined in an algorithm. 

The final decision is made in the decision making stage. This stage can be used to merge 

information available from other sources such as surveillance cameras before making a decision. 

Techniques such as fuzzy logic and decision theory may be used in this stage, in addition to 

heuristics based on human judgement. 

FUZZY-WAVELET RBFNN MODEL FOR INCIDENT DETECTION 

Recently, Adeli and Karim (2000) developed a new multi-paradigm incident detection model 

for freeway incident detection. The model is based on the general methodology for the 
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development of reliable, robust, and efficient incident detection algorithms presented above. The 

model is self-calibrating once it is trained and does not need to be modified for different roadway 

geometries and flow conditions. The new incident detection algorithm is described briefly in this 

section. For complete details, the reader should refer to Adeli and Karim (2000). 

This model is a single-station time-series pattern recognition approach that uses advanced de- 

noising and classification techniques to minimize misclassification of the prevailing traffic flow 

conditions. Each decision pattern consists of sixteen data points of the upstream lane occupancy 

and speed. The two time series are normalized by dividing the values in each by the average of 

all values. This approach reduces the effects of varying flow rates, and thus, improves algorithm 

portability. The normalized time series data are then de-noised by soft-thresholding the wavelet 

coefficients. The de-noised data series are then clustered using the fuzzy c-means approach. The 

de-noised and clustered data represents the essential characteristics of the traffic flow needed to 

differentiate incident flow conditions from non-incident flow conditions. This pattern is then 

classified by a trained radial basis function neural network. 

L 

The algorithm is shown schematically in Figure 2 and summarized succinctly in the 

following steps. These steps represent the processing that is needed at each decision interval 

(equal to the reporting interval for the sensors) and at each detector station. 

1. Obtain the most recent 16 data values for the lane occupancy (xo[n]) and the lane speed 

(xs[n]). When data are available every 2053, for example, then this process is performed every 

20-9 by adding ihe new reading and dropping the lac? reading in the sequence. 

2. For each data sequence x[n]  (n = 1 ,. . . , 1 6 )  perform the following computations: 

a) Normalize each sequence by dividing their values by the average of the last 16 values. 

The normalized sequences are denoted by x' . 
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b) Calculate the discrete wavelet transform (DWT) of the normalized sequence ( x ’  ) using 
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4. 

Daubechies wavelet system of length 8 (D8). The lowest scale resolved is 2. Therefore, 

the final number of scaling coefficients (c2,k) obtained is 4 and the final number of 

wavelet coefficients (&) obtained is 12. 

Filter the wavelet coefficients ( 4 . k )  using the soft-thresholding nonlinearity, 

~ ( d )  = sgn(d)()dl- t>’ , to remove noise. In this equation (.)+ is equal to (.) when (.) is 

positive and zero otherwise and the function sgn(.) returns the sign of its argument. The 

threshold I is given by t = ,/- where N is the total number of data points (equal to 

16 in this work). Let g,& denote the filtered wavelet coefficients. 

Calculate the inverse DWT (denoted by IWT in Figure 2) with c 2 ~  as the scaling 

coefficients and J,,k as the wavelet coefficients to obtain the de-noised normalized 

sequence X[ n] . 

Form the traffic pattern matrix x i  = {To[i],Ts[i]} (i = 1, 16). Use the fuzzy c-mean (FCM) 

algorithm to reduce the dimensionality of x from 16 x 2 to 4 x 2, denoted by x’ . These 8 data 

points represent the de-noised and clustered pattern that is used in the next classification step. 

Feed-forward the pattern through the trained radial basis function neural network (RBFNN). 

If the output y is greater than a pre-selected threshold, then an incident condition is signaled. 

Otherwise, no incident condition exists. 

The RBFNN is trained off-line from representative incident and non-incident patterns. Each 

pattern is processed by following Steps 1-3 above. Note that the training has to be done only 

once. The trained RBFNN can then be implemented on all the detector stations in the fieeway 

management system. This portability is possible because the algorithm depends on the shape of a 

pattern rather than on any magnitude to distinguish between incident and non-incident 



conditions. The RBFNN can even be trained using simulated data only and implemented on-line, 

which is the case in this evaluation. 

CALIFORNIA ALGORITHM #8 

The California Department of Transportation and its associates developed several algorithms 

for freeway incident detection in the 1970s that are collectively known as California algorithms. 

As many as 10 variations of these algorithms were developed. All of these algorithms use the 

lane occupancy values at one or two adjacent stations as input and compare them with pre- 

selected thresholds to characterize the state of the traffic flow. In the original California 

algorithm-also know as California algorithm #1-traffic flow is characterized into either 

incident or incident-free states based on a sequence of logic tests performed using three 

occupancy-based traffic patterns. Later algorithms extended this simple logic by increasing the 

number of logical decisions made and the number of traffic flow states reported by the algorithm. 

California algorithm #8 (Payne and Tignor, 1978) incorporates incident persistence and 

compression wave suppression logic. The algorithm reports an incident only after the incident 

condition has persisted for a specified number of time periods. Further, it suppresses the 

signaling of an incident for 5 minutes after a compression wave is detected. California algorithm 

#8 uses both temporal and spatial occupancy values as input. It can classify traffic into five 

states: incident-free, compression wave, tentative incident, incident confirmed, and incident in 

progress. The compression wave state is further classified into 5 states that indicate the presence 

of a compression wave in the last 1, 2, 3, 4, or 5 minutes. The logic of California algorithm #8 

can be described by a binary tree structure where each node, except the leaf (end) nodes, perform 

a two-way decision made by comparing a traffic pattern (an occupancy-based value) with a pre- 

selected threshold (Payne and Tignor, 1978; Levin and Krause, 1979). Starting from the root 
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node a sequence of such decisions are made until a leaf node is reached, which represents a 

traffic state. This algorithm needs six parameters for calibration. These are defined in Table 1. 

Five of them (PI to Ps) are thresholds for occupancy-based values, while parameter p6 specifies 

the number of time periods the algorithm will wait for a compression wave condition to persist 

before signaling it. 

The performance of the algorithm depends on the choice of these parameters. The parameters 
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are determined in a trial-and-error fashion by testing the algorithm on a given data set to obtain 

the best trade-off between detection rate and false alarm rate. The calibrated parameters are data 

dependent and may not be optimal for other data sets. This in turn means that the performance of 

the algorithm will not be optimal at all locations and at all times in a freeway management 

system. Thus, California algorithms are not readily transferable and need re-calibrations for their 

effective network wide implementation. Despite this shortcoming the California algorithms- 

especially algorithms #7 and #8-are the most widely known and accepted algorithms for trafic 

incident detection. They are often used as benchmarks for the evaluation of new algorithms. Both 

algorithms #7 and #8 are recognized as the “best” (Levin and Krause, 1979). However, algorithm 

#8, with its additional compression wave suppression logic, performs better in heavy traffic and 

produces fewer false alarms as compared to algorithm #7 (Levin and Krause, 1979). For these 

reasons, we adopt California algorithm #8 for the comparative evaluation of the new fuzzy- 

wavelet RBFNN incident detection model. 

EVALUATION OF THE MODEL 

r Introduction 

In general, there are two approaches to the evaluation of a new computational model. The 
I 

first approach is to test the model using a standard representative data set and determine its 
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performance. This data set should be recognized as the benchmark for comparative evaluations 

of such models. In the second approach, the model is evaluated using non-standard but 

representative data sets and its performance compared to that of a benchmark model on the same 

data set. Presently, a standard data set is not available for evaluating freeway incident detection 

algorithms. Furthermore, real traffic data is not available in sufficiently large and varied 

quantities to allow any meaningful evaluations. Therefore, freeway incident detection algorithms 

are usually evaluated using representative simulated data for which the performance of both the 

new and a benchmark algorithm (such as California algorithm #8) are compared. The use of 

simulated data has one more advantage not possible with real data: the algorithms can be tested 

and studied under different fieeway traffic flow and geometric conditions. 

The f-wavelet RBFNN freeway incident detection model (also abbreviated as the new 

algorithrdmodel in the rest of this article) is tested using both simulated and real data. Simulated 

data is used for comparative evaluations with California algorithm #8 (also abbreviated as 

California algorithm), whereas real data is used to test model robustness and portability. 

Evaluation Criteria 

Three quantitative measures are commonly used to evaluate freeway incident detection 

algorithms. 

Detection rate: The detection rate is defined as a percentage calculated by dividing the 

number of incidents correctly signaled by the algorithm to the total number of incidents in 

the data set. A vaiue of i OO percent represents perfect performance. 

False alarm rate: The false alarm rate is defined as the percentage calculated by dividing the 

number of incidents incorrectly signaled to the total number of decisions made by the 

algorithm. A value of zero represents perfect performance. As the ratio is calculated with 

respect to the total number of decisions made by the algorithm even a small value for the 
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false alarm rate can represent an unacceptable number of false alarms in practice. For 

example, a false alarm rate of 0.5% can produce 21.6 false alarms from a single station (that 

reports every 20 seconds) per day. Urban freeway management systems usually have 

hundreds of detector stations, thus compounding the problem. Therefore, a very low false 

alarm rate is of utmost practical importance. 

Detection time: The detection time is defined as the time it takes the algorithm to signal the 

incident after its occurrence. A consistently short detection time is desirable so that 

emergency support can be dispatched to the scene and appropriate traffic control measures 

can be taken quickly. An incident detection algorithm that correctly signals 100 percent of 

the incidents but takes a long time to do so is of little practical value. 

The quantitative measures defined above, however, do not completely describe the 

performance of an incident detection algorithm in practice. These performance measures are 

often determined from off-line tests on data for which the algorithm is calibrated. Such 

calibrations, however, are not practically feasible when an algorithm is implemented on-line in a 

large freeway management system. Thus, the network wide performance degrades significantly 

from that reported in the tests. For this reason, the following qualitative measure must also be 

considered in the evaluation of freeway incident detection algorithms. 

'Portability: An algorithm is transferable if it performs at optimal or near optimal levels under 

different conditions without re-calibration or re-training. This qualitative measure is judged 

by the performance of the algorithm in terms of the three quantitative measures on different 

freeway traffic flow and geometric conditions. Ideally, an algorithm should not require any 

re-calibration for its network wide on-line implementation. 
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Traffic Data 

The new model is tested and evaluated using both simulated and real traffic data. Simulated 

traffic data is generated from the microscopic stochastic simulation software package 

TSIS/CORSIM (httD://www.fhwa-tsis.Com/). More than 110 hours of traffic data is generated 

representing different freeway geometric and traffic flow conditions. Traffic incidents are 

simulated by the blockage of one lane and the fifty percent reduction in capacity of the adjacent 

I 

lane(s). The incidents have a duration of 10 minutes. Coupled loop detectors or sensors are used 

to obtain lane occupancy, speed, and flow rate at 20-second time intervals. Detector stations are 

spaced from 610 to 762 m apart. In all, more than 200 separate simulations are conducted with 

different random number seeds resulting in more than 225,000 reports of lane occupancy, speed, 

and flow rate from the sensors. 

Real traffic data is obtained from two sources: ARTIMIS for the Cincinnati-Northern 

Kentucky area freeway system, and FSP project’s 1-880 database for the 1-880 freeway between 

Oakland and San Jose, California. ARTIMIS is an automated freeway management system that 

monitors and controls 142 km (88 miles) of freeways in the Northern Kentucky/Cincinnati, Ohio, 

area with 78 closed-circuit TV (CCTV) cameras, 1100 detectors, and numerous changeable 

message signs. Lane occupancy, speed, and flow rate data are available from the detectors every 

30 seconds. Incidents are recorded by CCTV camera monitors and by proprietary incident 

detection logic. Very limited data were available for incident testing as the archived data period 

zvcragcd ~ v e r  15 minutes miher than 30 secocds. 

The FSP project’s database contains 30-second traffic lane occupancy, speed, and flow rate 

data from a 14.8 km (9.2 mile) segment of the 1-880 freeway between Oakland and San Jose, r 

California. Incidents are recorded by human observers traversing this freeway segment in patrol 

vehicles and noting incident location. type. and time of occurrence. The freeway has a varied 

i 
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geometry with 3 to 5 lanes in each direction, one and two lane on- and off-ramps, and lane drop- 

offs and add-ons. 

Training and Calibration 

The new model is trained using simulated data. Following the procedure outlined in a 

previous section 60 incident and 60 incident-free patterns are used for training. These patterns 

are selected randomly from all the different simulations performed for this evaluation. In 

pai-ticular, the incident-free patterns contain samples from traffic compression waves, stop-and- 

go traffic, and traffic affected by on- and off-ramps. This selection is done to provide added 

robustness to the trained network in recognizing incident-free conditions from those caused by 

incidents. However, it should be noted that the model bases its decision on a pattern that is to a 

large extent independent of the prevailing traflic and freeway conditions. Once the network is 

trained and its weights established the model is evaluated without any modifications. 

The California algorithm is calibrated with the same 60 incident and 60 incident-free traffic 

samples used for the training of the --wavelet RBFNN model. Threshold calibration is done 

in a trial-and-error manner whereby the thresholds are modified after each run through the data 

set based on the determined detection rate, false alarm rate, and detection time. There is a trade- 

off between the detection rate and the false alarm rate such that an increase in the detection rate 

results in an increase in the false alarm rate. In the calibration process, a ceiling for the detection 

rate is achieved and the thresholds are then modified to minimize the false alarm rate. This 

procedure is identical to that reported by Payne and Tignor (1 978) and Levin and Krause (1 979). 

The set of parameters obtained are PI = 13, P2 = -30, P3 = 30, P4 = 15, P5 = 30, and P6 = 2. Note 

that compression wave false alarm suppression is done for two time periods (40 or 60 seconds) 

unlike the 5 minutes used by Payne and Tignor (1978). This low value is chosen to avoid 



unacceptably long detection times. This set is used throughout the evaluation without 

modification. 

First Simulation Test - Parametric Evaluation 

In this test, the new model is evaluated under different freeway geometric, traffic flow, and 

detector station location conditions. The general freeway layout and the locations of the detector 

stations and the incidents are shown in Figure 3. In this evaluation, the number of lanes is varied 

from 2 to 4, the flow rate is varied from 1000 to 2000 vehicles per hour (vph) per lane, and the 

location of the incident downstream of a detector station is varied from 152 to 61 0 m. Detector 

stations are spaced 762 m apart. An incident is modeled by the blockage of one lane and the fifty 

percent reduction in capacity of the adjacent lane. 

The blockage of a lane produces a bottleneck in the flow of traffic. If the prevailing flow rate 

l 
is greater than the reduced capacity after the incident, a queue will develop on the upstream side. 

At some location upstream of the incident the average speed will decrease and the occupancy 

will increase. This change, however, takes some time to develop and move upstream depending 

on the prevailing flow rate, the remaining capacity of the freeway at the bottleneck, and the 

distance of the incident from the upstream detector station. Even when the reduced capacity after 

an incident is greater than the prevailing flow rate, a change may be noticeable in the upstream 

speed and occupancy close to the incident location. This change in flow pattern upstream of an 
I 

incident is the basis for the detection of an incident by the fuzzy-wavelet RBFNN incident ! 
I 

detection mode!. 
I 

The performance of the new algorithm and California algorithm on a 2-, 3-, and 4-lane 

freeway is presented in Tables 2, 3, and 4, respectively. The results include the detection rate, the ? 

false alarm rate, and the detection time for each simulated situation. The fuzzy-wavelet RBFNN 

model is a single-station algorithm, and as described in the previous paragraph, its detection time 

I 
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depends on the distance of the station from the incident, the prevailing flow rate, and the capacity 

reduction at the incident location. The detection times for the California algorithm also depend 

on the same factors. However, because the California algorithm has a two-station logic its 

detection time variation with distance is less pronounced. This behavior is evident from Figure 4, 

which shows the variation of detection times for the new and California algorithms with distance 

of incident from upstream station on a 4-lane fieeway with prevailing flow rate of 2000 vph per 

lane. Notice that the detection time is longer for the California algorithm at shorter distances and 

shorter at longer distances as compared to the new algorithm. Nonetheless, this difference is not 

significant and for most practical purposes both algorithms have similar detection time 

performances. The detection times are long especially when the flow rate is low. When flow rate 

is high (2000 vph per lane) the detection time varies fiom 64 to 180 seconds. To shorten the time 

of response further, which is critical in heavy traffic, the detector stations have to be spaced 

closer than 762 m. 

The detection time (for both the new and California algorithms) does not depend on the 

number of lanes in the freeway provided the flow rate remains the same. This behavior is evident 

from Figure 5 ,  which shows the variation of detection times of the new algorithm with distance 

on a 21, 3-, and 4-lane freeway with a prevailing flow rate of 2000 vph per lane. As observed 

from the figure the detection times are practically the same for all freeway lane configurations. 

The detection times do depend on the flow rate. Figure 6 shows the variation of detection times 

of the new algorithm with distance on a 4-lane freeway when flow rates are 1000, 1500, and 

2000 vph per lane. At a distance of 152 m the detection time varies from 68 to 180 seconds as 

the flow rate increases from 1000 to 2000 vph per lane. In all these simulations the reduction in 

capacity is the same and thus does not impact the detection times. The effects of flow rate and 
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capacity reduction on detection times are inter-related. The detection times would decrease when 

the capacity is reduced further or when the flow rate is increased. 

Both new and California ‘algorithms detected all incidents on a 2-lane freeway (Table 2) 
I 

yielding a detection rate of 100 percent. On 3- and 4-lane freeways both algorithms failed to 

detect some incidents for the smallest flow rate of 1000 vph per lane (Tables 3 and 4). This is 

because the reduced capacity after incident is still greater than the prevailing flow rate, and the 

impact on traffk on the upstream side is minimal. Both algorithms detected all five incidents 

when the incident is closest (152 m) to an upstream detector station. The new model, however, 

performed better on the 4-lane freeway where it also detected some incidents located at distances 

greater than 3b5 m (Table 4) yielding an overall detection rate of 83.3% as compared to 75% for 

the Califomia algorithm. 

The fuzzy-wavelet RBFNN model did not signal any false alarms in all the simulated 

conditions, thus yielding a perfect false alarm rate of zero. The California algorithm, on the other 

hand, signaled several false alarms especially under heavy traffic conditions. The comparison of 

false alarm rate on a 4-lane freeway is shown in Figure 7. The new model is thus significantly 

superior to the California algorithm when it comes to false alarm performance. And this is a very 

important consideration in the evaluation of freeway incident detection algorithms for network 

wide implementation. 

Second Simulation Test - Freeway with On- and Off-Ramps T 

In this test, the false alarm rate performance of the new and California algorithms are 

evaluated on a freeway with on- and off-ramps. The purpose of this test is to determine the 

portability of the algorithms to conditions of varying flow rates and freeway bottlenecks. These 

1 
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conditions are known to generate false alarms because they create traffic compression waves, 

stop-and-go traffic, and traffic chaos near on- and off-ramps. The geometry of the freeway, the 
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location of the detector stations, and the on- and off-ramps are shown in Figure 8 as five 

contiguous segments identified by the detector station numbers noted at the bottom each 

segment. It consists of two on-ramps and two off-ramps. There are 3 through lanes and one 

auxiliary lane of length 244 m for each on- and off-ramp. Detector stations are spaced 610 or 762 

m apart, 305 or 610 m upstream of the off-ramps, and 305 m upstream and downstream of the 

on-ramps. In the simulation model the motorists are warned in advance to the presence of an on- 

or an off-ramp downstream so that they can make appropriate lane change maneuvers in time. 

Four traffic flow scenarios are simulated for this geometric setup as defined in Table 5. Each 

scenario consists of three time periods each having a different through, on-, and off-ramp flow 

rate. The second time period in all the scenarios has a larger through-traffic flow rate than the 

first time period. This simulates sudden spikes in traffic flow. In the third time periods the flow 

rates drop back to the values in the first time period. Scenarios 1 and 2 simulate moderate to 

heavy flow conditions with moderate on-ramp traffic, while scenarios 3 and 4 simulate the same 

with heavy on-ramp traffic. 

The presence of on- and off-ramps produces non-homogeneity in traffic flow as vehicles 

undergo lane change maneuvers either to exit the freeway or to accommodate entering traffic. 

Traffic flow in the vicinity of ramps is therefore chaotic with frequent congestions and 

occasional stop-and-go traffic behaviors. This is especially true upstream of an on-ramp where 

vehicles on the fieeway have to accommodate heavy traffic entering fiom the on-ramp. The lane 

occupancy and speed downstream of the on-ramp is not significantly affected. Similarly, chaotic 

traffic flow often occurs upstream of an off-ramp. 

The false alarm rate performance of the new and California algorithms for the four simulated 

scenarios are presented in Table 6. The new --wavelet RBFNN model outperformed the 

California algorithm #8 consistently under various scenarios (Figure 9). The false alarm rate 
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ranges from 0 to 0.07 % for the new algorithm and 0.53 to 3.82% for the California algorithm. It 

is observed that the false alarm rate of the California algorithm increases several folds when flow 

rate is increased. From scenario 1 to 2, the false alarm rate jumped from 0.98 to 2.34 percent, a d  

it jumped from 0.53 to 3.82 percent from scenario 3 to 4. The false alarm rate is larger for 

scenarios 3 and 4 for both algorithms as compared to scenarios 1 and 2 because of the heavier 

on-ramp traffic in simulations 3 and 4. 

The freeway segment between stations 4 and 5 generated the most false alarms. For example, 

in scenario 4 the California algorithm signaled 227 false alarms out of 1125 decisions, whereas 

the new model generated only 4 false alarms. This result highlights the poor portability 

characteristics of the California algorithm. As Figure 9 shows there are large differences in 

occupancy values between stations 4 and 5 causing the California algorithm, which has a 

comparative logic, to generate false alarms. The performance may be improved if the algorithm 

is re-calibrated using data from this particular location. However, this is not a practical solution 

to the problem. On the other hand, the fuzzy-wavelet RBFNN model has a single station logic 

where each traffic pattern is normalized before classification thus eliminating portability 

problems. Moreover, the new model uses a sufficiently long (5  min 20 seconds for sixteen 20- 

second time periods) time-series pattern that reduces the impact of sudden changes in traffic 

flow. As a result, the new model signaled only a few false alarms primarily at detector station 4 

due the close proximity of the station to the off-ramp and chaotic traffic situation at that station. 

Test Using Reai Data 

To hrther evaluate the performance of the new algorithm real traffic data from two sources 

are used for testing. 

ARTIMIS 
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Sixteen traffic incident data from ARTIMIS were used to evaluate the new model. Each 

incident data sample consists of 30-second lane occupancy, speed, and flow rate values obtained 
r 

from the upstream detector station for 10 minutes preceding the time the incident is signaled. The 

fuzzy-wavelet RBFNN model detected all sixteen incidents resulting in a 100 percent detection 

rate (Table 7). Moreover, in all cases the algorithm detected the incident before that reported by 

i 

r 

i 

I the on-line incident logic used in ARTIMIS. The exact time of occurrence of the incident is not 1 

i 

known; therefore, the detection time cannot be determined. The ARTIMIS incident data 
F 

contained data for one station (the upstream station) only. Thus, the two-station California 

algorithm could not be tested using those data. 
I 

b 

r FSP proiect's 1-880 database 

I Both incident and incident-free data from the FSP project's 1-880 database are used to 

evaluate the new and California algorithms. Data for 21 incidents that block one or more lanes 
r 

I 
r are used. The times of occurrence of incidents and their locations are only known approximately 
1 

A 
as this information is recorded by human observers in a subjective manner. Based on this 

information 20 minutes of 30-second lane occupancy and speed data are extracted from the 
r * 
I 

I stations upstream and downstream of the incidents. Four hours of incident-free data are also 

extracted from the database and tested for false alarms. The performance of the new and 

California algorithms based on this data set is presented in Table 7. The fuzzy-wavelet RBFNN 

I 

t 

model outperformed the California algorithm in both detection rate and false alarm rate. The ip 
California algorithm signaled 3 false alarms in 480 decisions whereas the new algorithm 

correctly identified all of them as incident-free conditions. This test again shows the robustness 
F 

I and superior performance of the fuzzy-wavelet RBFNN model as compared to the California 

algorithm #8. Both new and California algorithms are not re-trained or re-calibrated for the real 

data test highlighting the superior portability characteristics of the new model. 
I 
I 
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CONCLUSION 

In this article, the performance of the new fuzzy-wavelet MFNN freeway incident detection 

model is evaluated and compared with the benchmark California algorithm #8 using both real 

and simulated data. Three quantitative and one qualitative performance measures are used for 

comparison. Besides the commonly used measures of detection rate, false alarm rate, and 

detection time, the qualitative measure of algorithm portability is also evaluated. This additional 

measure is of utmost practical importance because re-training and/or re-calibration is not a 

practically feasible solution to poor algorithm performance under varying conditions. Therefore, 

in all the tests performed in this evaluation no re-calibration or re-training is done, and the 

algorithms were compared based on the three quantitative measures. 

More than 110 hours of simulated data is generated on various freeway geometries and with 

different flow rates for testing. Results indicate the clear superiority of the new model over the 

California algorithm #8. Both the new and California algorithms detected all incidents in 

moderate to heavy traffic. However, in light traffic (flow rate of 1000 vph per lane) on a 4-lane 

freeway, the new model performed better than the California algorithm, detecting incidents even 

when they are more than 305 m downstream of the detector station. The detection times for both 

algorithms are identical for practical purposes. For a freeway segment with no on- and off-ramps 

the new model signaled no false alarms while the California algorithm reported several false 

damis especially in heavy trafr"lc. 

False alarms are a major hindrance to the widespread implementation of automatic freeway 

incident detection algorithms. They are not only a nuisance but also costly in the freeway 

management system. As a result, the false alarm rate performance of an algorithm is of utmost 

practical importance especially on congested urban freeways with on- and off-ramps. In such 
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simulated situations, it is found that the new model performed much better than the California 

algorithm. For example, on a 3-lane freeway segment with two on- and off-ramps and heavy 

flow rates (scenario 4) the new model produced a false alarm rate of 0.07% as compared to 

3.82% for the California algorithm. 

To further evaluate the robustness and portability of the new model, real data from ARTIMIS 

and FSP project's 1-880 database is also used for testing. Again, the new algorithm outperformed 

the California algorithm in both detection rate and false alarm rate performance. The new f izzy- 

wavelet RBF'NN freeway incident detection model is a single-station pattern-based algorithm 

that is computationally eMicient and requires no re-calibration. It consistently outperformed the 

California algorithm #8, which is considered the benchmark algorithm for freeway incident 

detection and the most widely used. This shows the promise of the new model to solve the 

decades long quest for reliable automatic freeway incident detection on urban freeways. This 

research shows that the new model can be readily transferred without re-training and without any 

performance deterioration. 
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Table 1. Definition of parameters used in California algorithm #8 

Parameter 
PI 

p2 
p3 

p4 

p5 
p6 

Definition 
Threshold of occupancy difference between consecutive 
stations 
Threshold of percent occupancy change at downstream station 
Threshold of percent occupancy difference between consecutive 
stations 
Threshold of occupancy at downstream station 
Another threshold of occupancy at downstream station 
Number of compression wave suppression periods 

Table 2. Performance of the new incident detection model and California algorithm #8 on a two- 
lane freeway 

Flow 
rate 

Per 
lane) 
1000 

(VPh 

1500 

2000 

Totals 

Location 
(m> 

152 
305 
457 
610 
152 
305 
457 
610 
152 
305 
457 
610 

New Algorithm 
Detections 

515 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 

60160 
100% 

- 
False 

alarms 

011 50 
011 50 
01150 
011 50 
011 50 
01150 
01150 
011 50 
011 50 
01150 
0/150 
011 50 

011 800 
0% 

Detection 
time 
(SI 

172 
300 
368 
500 
72 
152 
164 
240 
64 
88 
128 
140 

California Algorithm #8 
False I Detection Detections 

515 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 

60160 
100% 

alarms I 

011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
111 50 
011 50 
211 50 
111 50 
011 50 

4/1800 
0.22% 

time 
6) 
164 
252 
3 84 
480 
92 
132 
176 
228 
96 
84 
116 
132 
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Table 3. Performance of the new incident detection model and California algorithm #8 on a 
three-lane freeway 

Flow 
rate 

Per 
lane) 
1000 

(vph 

1500 

2000 

Totals 

Location 
(m> 

152 
305 
457 
610 
152 
305 
457 
610 
152 
3 05 
457 
610 

New Algorithm 
False Detections 

515 
015 
015 
015 
515 
515 
515 
515 
515 
515 
515 
515 

45/60 
75% 

alarms 

011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
011 50 
011 50 

01 1 800 
0% 

Detection 
time 
(SI 

156 
- 
- 
- 

80 

244 
280 
64 
96 
136 
160 

- 124 

California Algorithm #8 
False I Detection Detections 

515 
015 
015 
015 
515 
515 
515 
515 
515 
515 
515 
515 

45/60 
75% 

011 50 
011 50 

011 50 
011 50 
11150 
011 50 
011 50 
11150 
011 50 
011 50 
011 50 

011 50. 

time 
(SI 

248 
- 
- 
- 

96 
132 
208 
264 
76 
92 
136 
148 - 

211 800 
0.1 1% 

Table 4. Performance of the new incident detection model and California1 algorithm #8 on a 
four-lane freeway 

Flow 
rate 
(vph 
Per 

lane) 
1000 

1500 

2000 

Totals 

Location 
(m> 

152 
305 
457 
610 
152 
305 
457 
610 
152 
305 
457 
610 

New Algorithm 
Detections 

515 
215 
215 
1 /5  
515 
515 
515 
515 
515 
515 
515 
515 

50160 
83.3% 

False 
alarms 

011 50 
011 50 
011 50 
011 50 
01150 
011 50 
011 50 
011 50 
011 50 
011 50 
01150 
011 50 

011 800 
0% 

Detection 
time 
6) 
I80 
390 
250 
320 
76 
124 
208 
272 
68 
84 
136 
1 44 

California Algorithm #8 
Detections 

515 
215 
015 
015 
515 
515 
515 
515 
515 
515 
515 
515 

45/60 
75% 

- 
False 

alarms 

01150 
011 50 
011 50 
01150 
011 50 
11150 
011 50 
01: 52 
011 50 
211 50 
11150 
11150 

511 800 
0.28% 

Detection 
time 
(SI 

168 
440 

- 
- 

96 
132 
188 
268 
84 
96 
128 
140 
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Table 5. Definition of the four simulation scenarios evaluated for the three-lane freeway With 
-PS 

300 
300 
300 
300 
600 
600 
600 
600 
600 
600 

Scenario # 

1 

2 

3 

4 

300 
500 
500 
300 
600 
600 
600 
600 
600 
600 

Time 
period # 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

Station # 

1 
2 
3 
4 
5 
6 

Entry flow 
rate 

4500 
4800 
4500 
5250 
5500 
5259 
4000 
4500 
4000 
5500 
6000 
5500 

(Vh) 

False alarms (out of 1 125 decisions) 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

New Cal. New Cal. New Cal. New Cal. 
0 0 0 0 
0 0 0 0 0 0 1 0 
0 3 0 1 0 1 0 0 
2 0 0 1 2 0 4 5 
0 51 0 130 1 27 0 207 
0 1 0 0 0 2 0 3 

0.03% 0.98% 0% 2.34% 0.04% 0.53% 0.07% 3.82% 

ARTIMIS 
Detections 

New 
16/16 

100% 

Off-ramp flow rate 

FSP Project 
Detections False alarms 

New Cal. New Cal. 
20121 19/21 01480 3/480 

95.2% 90.5% 0% 0.63% 

0 
A 

225 
240 
225 
260 
275 
260 
200 
225 
200 
275 
300 
275 

B 
450 
480 
450 
525 
550 
525 
400 
450 
400 
550 
600 
550 
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FAST AUTOMATIC INCIDENT DETECTION ON URBAN AND RURAL 

FREEWAYS USING THE WAVELET ENERGY ALGORITHM 

Asim Karim' and Hojjat Adeli2 

ABSTRACT: A comprehensive evaluation of the single-station wavelet energy neural 

network freeway incident detection algorithm of Karim and Adeli is presented. 

Quantitative performance measures of detection rate, false alarm rate, and detection time 

as well as the qualitative measure of portability are investigated for both urban and rural 

freeway conditions. Further, the performance of the algorithm is compared with that of 

the California algorithm #8. This research demonstrates the portability of the wavelet 

energy algorithm and its excellent performance for urban freeways across a wide range of 

traffic flow and roadway geometry conditions regardless of the density of the loop 

detectors. Rural freeways present additional challenges in that flow rates are low and 

detector stations are spaced M e r  apart. Considering the difficulty in automatic 

detection of incidents on rural freeways, the new wavelet energy algorithm performs well 

on such freeways. The algorithm is fast as it detects an incident on urban freeways in less 

than two minutes and on rural freeways in less than three minutes. 

INTRODUCTION 

There are two major uses of automatic incident detection in an advanced traffic 

management system (ATMS). First, it is used to signal the dispatch of emergency crews 

to the site for prompt medical support, obstruction removal, and general maintenance of 

' Graduate Research Associate. Dept. of Civil and Environmental Engineering and Geodetic Science, The 
Ohio State University. 



motorists’ safety. Second, it provides usehl information to the routing control system to 

maintain and optimize system wide performance. For the best performance, the incident 

detection system must provide quick and reliable information. The traffic incident 

detection system is a main component of an ATMS (Figure 1). The other components 

that make up the advanced traffic management system include the traffic routing and 

control system, the data archiving system, and the pre- and post-processing systems. 

TrafEc sensors provide the main source of data for analysis. Additionally, information 

may be obtained from the news media, special traffic probe vehicles, and motorists’ call- 

ins. The goal of an ATMS is to maximize the system throughput. This is currently 

achieved by means of traffic control devices such as entry ramp access control and 

changeable message signs that guide and control traffic. 

Recently, Adeli and Karim (2000) presented a new multi-paradigm intelligent system 

approach to the solution of the freeway incident detection problem employing advanced 

signal processing, neural network pattern recognition (Adeli and Hung, 1995; Adeli and 

Park, 1998), and classification techniques. This is a single-station algorithm that uses 

loop detector data upstream of the incident A wavelet-based de-noising technique is 

employed to eliminate undesirable fluctuations in observed data from traffic sensors 

(Samant and Adeli, 2000). Fuzzy c-mean clustering is used to extract significant 

information from the observed data and to reduce its dimensionality. A radial basis 

function neural network (RBFNN) is developed to classify the de-noised and clustered 

observed data. The performance of the model is evaluated and compared with the 

benchmark California algorithm #8 using both real and simulated data (Karim and Adeli, 

Professor. Dept. of Civil and Environmental Engineering and Geodetic Science, The Ohio State 2 

University, Columbus, OH 432 10, USA. 
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200 1 a). The new algorithm outperformed the California algorithm consistently under 

various scenarios. The false alarm rate ranges from 0 to 0.07 % for the new algorithm and 

0.5 to 3.8% for the California algorithm. The incident detection time ranged from 64 

seconds for larger flow rates and shorter distances to the detector station to 480 seconds 

for lower flow rates and longer distances to the detector station. 

In order to reduce the incident detection time to the range of one-to-two minutes on 

urban freeways, Karim and Adeli (2001b) developed a new single-station pattern 

recognition algorithm for freeway incident detection using data obtained from loop 

detectors downstream of the incident. The algorithm uses an innovative energy 

representation of the traffic data in the wavelet domain to de-noise and enhance desirable 

features before classifying them by a radial-basis function neural network. The algorithm 

is based on a new methodology for the development of freeway incident detection 

algorithms that emphasizes de-noising, feature enhancement, and the selection of a traffic 

pattern independent of the roadway geometry and trfiic flow conditions. 

The purpose of evaluating a new freeway incident detection algorithm is to determine 

its robustness under different trdfic flow and roadway geometry conditions, and thus to 

, assess its cost-effectiveness for practical network-wide implementation. Three 

quantitative performance measures are commonly used for this purpose. They are the 

detection rate (percentage of number of correctly detected incidents to the total number of 

incidents in the data set), the false alarm rate (percentage of the number of false alarms 

signaled by the algorithm to the total number of decisions made), and the detection time 

(the time it takes for the algorithm to signal the incident after its occurrence). 

* a 
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These three quantitative measures, however, do not provide a complete picture of 

algorithm's performance in practice. The qualitative measure of portability without re- 

calibration must also be considered in conjunction with the quantitative measures. This is 

because the cost of maintaining and re-calibrating the algorithm to perform acceptably at 

all locations in a large freeway system can make its network-wide implementation 

economically infeasible. There is a cost associated with every missed detection and every 

false alarm, the time taken to detect an incident, and the efforts exerted to maintain and 

calibrate the algorithm. These costs ultimately determine the success or failure of the 

algorithm in practice. As reported by Abdulhai and Ritchie (1999), traffic control centers 

place differing cost premiums on each performance measure whenever a trade-off is 

sought. In any case, a higher detection rate, a lower false alarm rate, and a shorter 

detection time is always desirable. Moreover, an algorithm that is readily portable is often 

preferred over one that performs excellently only at a given location. 

All freeway incident detection algorithms reported in the literature have been 

developed and evaluated for urban freeway systems. This is understandable because of 

the negative impacts incidents create on congested urban freeways and the need to 

remove them as soon as possible. However, there is also a need to develop and evaluate 

incident detection algorithms for rural freeways. The vehicle-miles of rural freeways in 

the United States is much larger than that for urban freeways and there is indeed a need 

for automatic and rapid detection of incidents so that emergency/medical support can be 

dispatched in time. Challenges such as low flow rates and long distance between loop 

detectors have hampered the development of algorithms that work effectively in rural 

freeway environments. 
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In this article, first a comprehensive parametric evaluation of the new wavelet energy 

freeway incident detection algorithm of Karim and Adeli (2001 b) is presented using both 

real and simulated data. Several urban freeway scenarios are simulated for evaluation by 

varying the flow rate, the number of lanes, and the distance of the incident from detector 

station. The effects of on- and off-ramps are also considered. Next, the algorithm is 

evaluated on rural freeway scenarios where flow rates are low and detector stations are 

spaced far apart. For comparison, the performance of the California algorithm #8 is also 

presented. 

In the following section, factors to consider in rural freeway incident detection are 

delineated. Then, the wavelet energy freeway incident detection algorithm is described 

step-by-step, followed by a comprehensive evaluation of the algorithm and discussions of 

the test results. 

FACTORS TO CONSIDER IN RURAL FREEWAY INCIDENT DETECTION 

Traffic on urban freeways is characterized by high demand and periodic congestion 

that reduces the level of service expected by motorists. Because of the high demand and 

insufficient capacity the level of service degrades dramatically when an obstructing 

incident occurs. Therefore, quick and reliable identification and localization of such 

incidents is essential to prevent unacceptable backups and delays caused by obstructions 

that are not cleared quickly. As such, an effective incident detection algorithm must be 

both reliable and fast in detecting an incident. 

Traffic on rural freeways, on the other hand, is usually congestion-free under normal 

operating conditions. Furthermore, the impact of an obstructing incident is often less 



severe because traflic demands on rural freeways usually do not exceed the capacity. 

Nevertheless, the need for reliable automatic incident detection still exists. Incidents in 

rural areas, unlike in urban areas, may go unreported for several minutes. Furthermore, 

the transit of emergency and medical support to rural locations can take more time. 

Therefore, rapid automatic notification of an incident condition is very valuable. 

Automatic incident detection on rural freeways is challenging because of low flow rates 

and large distances between detectors. Most of the incident detection algorithms 

developed so far have not been evaluated under such conditions, and, in general, perform 

poorly under low flow rate conditions. 

Several factors have to be considered in the development and evaluation of an 

automatic rural fieeway incident detection algorithm. These considerations are in general 

more stringent and demanding than those required for reliable detection on urban ' 

freeways. 

0 Density of detectors: It is practically infeasible to have closely spaced loop detectors 

on rural freeway segments. Thus, the algorithm must work reliably under situations 

where detectors are spaced 2-3 km apart. The cost-effectiveness of the solution 

improves dramatically with an increase in the distance between detectors at which the 

algorithm can produce reliable results. 

Detection time: The detection time on rural freeways is important not for traffic 

management purposes but for emergency medical support reasons. Often a serious 

congestion may not develop as a result of a rural incident. However, rapid 

identification and localization of the incident is still necessary to ensure that 

emergency support can arrive on the scene at the earliest possible time. There is a 
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tradeoff between the detection time and the distance between detectors. In general, 

the closer the spacing between detectors, the shorter the detection time; however, 

reducing the spacing between detectors significantly increases the number of 

detectors that have to be installed and maintained on long stretches of rural freeways. 

Low prevailing flow rates: Traffic incident detection algorithms normally depend on 

the change in traffic pattern that results from an incident to identiQ its occurrence. 

However, when the prevailing flow rate is low and the incident does not reduce 

fieeway capacity significantly the change in traffic pattern can be minor. This poses a 

serious challenge in the design of reliable algorithms. 

Calibration and maintenance: Because of the huge mileage of rural freeways 

calibration and maintenance of algorithms at all locations can become extremely 

costly. Therefore, algorithms for rural freeway incident detection should require 

minimal maintenance for acceptable operational performance. Custom calibration of 

the algorithm at each location is practically infeasible. 

An algorithm that is cost-effective for implementation on an urban freeway system 

may be impractical for implementation on rural freeways. In general, a lower 

performance should be expected for an algorithm on rural freeways than on urban 

freeways because of the constraints on detector spacing and flow rates. The goal is to 

have an algorithm that requires no re-calibration with acceptable performance. Note that 

these considerations apply to passive techniques for incident detection only where traffic 

data obtained from loop detectors embedded in the pavement are analyzed to identify 

characterizing patterns. Active techniques, such as in-vehicle transponders, may be more 



.. . 

effective in rural settings but require more investment and are often perceived as intrusive 

by the public. 

WAVELET ENERGY MODEL FOR FREEWAY INCIDENT DETECTION 

The new single-station incident detection algorithm developed by Karim and Adeli 

(2001b) takes as inputs a time-series of lane occupancy and lane speed at the upstream 

detector station or a time-series of lane occupancy and lane flow rate at the downstream 

detector station. Each time series consists of 16 data values averaged over and obtained at 

every 20- or 30-second interval. The patterns at both upstream and downstream detector 

stations are transformed and represented in the wavelet domain as an energy functional. 

This representation makes it possible to de-noise, enhance, and reduce the dimensionality 

of the patterns effectively and efficiently. The processed patterns are then classified into 

one of two states representing either an incident or incident-free condition by a radial 

basis function neural network. The key ideas are described in Karim and Adeli (2001 b) in 

general terms. A complete detailed step-by-step algorithm is presented in this section. 

Only the downstream station logic is implemented and tested in this evaluation. It was 

found that the upstream logic produced results almost identical-and in the case of 

detection time, slightly inferior-to those produced by the downstream logic. Therefore, 

the wavelet energy algorithm consists of the collection, processing, and classification of 

the downstream lane occupancy and flow rate time-series data. In a fi-eeway management 

system, this algorithm is implemented at every detector station and reports on the 
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presence or absence of an incident upstream of the station. The algorithm is shown 

schematically in Figure 2 and described in the following steps. 

8 

c 
?= 



1. Obtain the last 16 lane occupancy and lane flow rate readings and form the sequences 

fo[i] and f~[i], respectively, where i = 1,. . .,16. When readings are available every 20- 

s, for example, this process is performed every 20 seconds by adding the new reading 

and dropping the last reading in the sequence. 

2. For each data sequenceAi] perform the following computations: 

a) Sort the elements in the sequenceffi] to create a new sequence g[i] such that 

g[i] 2 g[i + 11; i = l,...,l 5 

b) Nonnalizetfli] by dividing all its elements by the average of the two largest 

values: 

c) Extend the normalized sequence f[i] by 8 elements on each side, as follows: 

The sequence ][i] now has 32 elements. 

d) Perform a two-stage low-pass filter of the sequence j[i] ,  as follows: 

where ho[i] is the 8-coefficient low-pass filter for the Daubechies wavelet system 

of length 8 (Daubechies, 1992). The sequence c3[i] (i = 1 ,.. . ,8), called the scaling 

9 



coefficients, represents a lower scale or resolution (scale 3) of the original 32- 

element sequence j[i] (scale 5). 

e) Enhance the sequence c[i] 

c[i - 21 = Icj [ill’ i = 3,4,5,6 (5) 

The sequence c[i] has 4 elements representing the squared scaling coefficients (a 

measure of energy in the wavelet domain) for the middle 16 elements of f[i]. 

These dements correspond to the input traffic data before it is extended for 

processing. Let the processed lane occupancy and speed data be denoted as co [i] 

and cF [i] , respectively. 

3. Form the feature pattern by concatenating the processed lane occupancy and flow rate 

sequences: 

x [ i ]  = co [i], x[ i  + 41 = cF [i] i = 1, ..., 4 (6) 

The 8-element sequence x[ i ]  represents the de-noised, clustered, and enhanced pattern 

that is used in the subsequent step for classification 

4. Feed-forward the feature pattern x[i] through a trained radial-basis function neural 

network. The neural network has 8 input nodes, 12 hidden nodes with Gaussian 

transfer functions, and one output node with a linear transfer function. If the output is 

greater than a pre-selected threshold (a small positive value such as 0.2) then an 

incident is signaled; otherwise, the pattern represents an incident-free condition. 

The RBFNN is trained with incident and incident-free patterns to determine the weights 

of the links connecting the input layer to the hidden layer and the links connecting the 
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hidden layer to the output node. Training is done iteratively to minimize the output error. 
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1 Once the network is trained no further training is necessary. For further details, refer to 

Karim and Adeli (2001b). 

EVALUATION AND PARAMETRIC INVESTIGATION 

Goals 

A comprehensive evaluation of the wavelet energy freeway incident detection 

algorithm is presented in this section. The goals of the evaluation are: 

1. To determine the quantitative performance measures (detection rat& false alarm rate, 

and detection time) for typical urban fieeway conditions; 

2. To determine the quantitative performance measures for typical rural freeway 

conditions; 

3. To assess the transferability or portability of the algorithm, that is, to compare the 

algorithm’s performance under different roadway geometry and traffic flow 

conditions without re-calibration; 

4. To perform a parametric evaluation of the algorithm, that is, to determine the 

sensitivity of the algorithm to variations in roadway geometry and trafic flow 

conditions. 

5. To compare the performance of the algorithm with that of California algorithm #8 

(Payne and Tignor, 1978). 

The roadway geometry conditions evaluated are the number of lanes (2, 3 and 4), the 

distance of the incident from detector station (1 52 to 2744 m), and proximity to on- and 

off-ramps. Traffic flow is varied from 500 to 2000 vehicles per hour (vph) per lane. An 

incident is modeled as the blockage of one lane and the 50 or 40 percent reduction in 
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capacity of .the adjacent lane(s). The time of blockage is varied fiom 3 minutes to 10 

minutes. 

Data 

The majority of the traffic data used in the evaluation are generated using the 

simulation software TSIS (http://www.fhwa-tsis.com/). TSIS is a microscopic simulation 

tool that considers each vehicle as a separate entity in a stochastic model of vehicles and 

their environment (roadway geometry, pavement conditions, proximity to other vehicles, 

etc). 

In addition to simulated data, real data. from the San Francisco Bay area freeway 

service patrol project’s 1-880 database is also used for evaluation. This database is a 

collection of binary files of loop detector outputs collected over a period of about 2 

months. A software program is used to process this database and extract selected 

information in a readable format for further processing. The database contains basic 

information such as lane occupancy, flow rate, and speed. The information on the 

location and time of incidents is recorded by human observers and has to be correlated to 

the loop data for analysis. Because this information is recorded by humans, it is not 

reliable and has to be verified by visual observation of the loop detector data. In all, data 

for 21 single-lane blocking incidents and four hours of incident-free conditions are 

extracted for evaluation in this research. 

Training and Calibration 

The wavelet energy freeway incident detection algorithm is trained with 60 incident 

and 60 incident-free patterns. These patterns are chosen randomly from all the simulated 

data generated for the evaluation. No real data is used in the training phase of the 

1 
! 

12 

http://www.fhwa-tsis.com


I 
‘ 1  

network. The training determines the weights for the RBFNN. Once the algorithm is 

trained no further training is done as it is evaluated using different sets of data. 

The California algorithm #8 (Payne and Tignor, 1978) is a well-known two-station 

comparative algorithm for freeway incident detection that uses lane occupancy data as 

input. The algorithm logic consists of a sequence of decisions where occupancy-based 

input values are compared with pre-selected thresholds to characterize traffic flow into 

one of five major states. California algorithm #8 is one of several variations that were 

developed in the 1970s. It incorporates an incident persistence test and a compression 

wave suppression test to reduce the generation of false alarms. Six parameters or 

thresholds have to be calibrated for the algorithm. Employing the same 60 incident and 

60 incident-free patterns used for the wavelet energy algorithm, calibration of the 

California algorithm is done in a trial-and-error fashion until the misclassification error is 

minimized. The threshold values used in this evaluation are as follows (these values 

produced the best overall calibration results for the data used): 

Threshold of occupancy difference between consecutive stations = 13%, 

Threshold of percent occupancy change at downstream station over the time interval =30, 

Threshold of percent occupancy difference between consecutive stations = 3 0, 

Threshold of occupancy at downstream station = 15%, 

Second threshold of occupancy at downstream station = 30%, and 

Number of compression wave suppression periods = 2. 

The same set of parameters is used throughout the evaluation without re-calibration. 

This is done to test the portability property of the algorithm and compare it with that of 

the new wavelet energy algorithm. 



Parametric Evaluation Using Simulated Data on Typical Urban Freeways 

Figure 3 shows the freeway layouts simulated for the parametric evaluation. These 

layouts represent typical urban freeway segments with 2, 3, and 4 lanes with detectors 

spaced 762 m apart. The location of the incident, which consists of the blockage of one 

lane and the 50 percent reduction in capacity of the adjacent lane, is varied from 152 to 

610 m from the downstream (or upstream) detector station. The flow rates considered are 

1000, 1500, and 2000 vph per lane. The data set used for this evaluation is identical to 

that used for the parametric evaluation of the earlier --wavelet RBFNN model 

(Karim and Adeli, 2001a). 

The performance of the new wavelet energy algorithm is compared with that of the 

California algorithm #8 on 2, 3 and 4 lane freeways in Tables 1, 2, and 3, respectively. 

The wavelet energy algorithm performs perfectly in all scenarios in terms of producing 

an overall detection rate of 100 percent and a false alarm rate of zero. The Cdifornia 

algorithm, on the other hand, failed to detect 25 percent of the incidents on 3- and 4-lane 

freeways. This result demonstrates the excellent performance of the new wavelet energy 

algorithm in difficult-to-detect situations such as the closure of just one lane on a multiple 

lane freeway when prevailing flow rate is low. In general, whenever the prevailing flow 

rate is less than the reduced capacity after the incident, incident detection algorithms like 

California algorithm #8 are less likely to detect an incident because a significant queue 

does not develop in a short period of time (say, a few minutes). This characteristic also 

exists in .other incident detection algorithms that utilize only the upstream occupancy to 
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detect the presence of an incident condition. 
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The detection times reported by the new wavelet energy algorithm varies from 56 to 

1 16 seconds. The detection time generally increases with an increase in the distance of 

the incident from the downstream detector station. However, this variation of the 

detection time with location of incident is substantially less pronounced than that for the 

California algorithm. This is evident fkom Figure 4, which compares the detection times 

for the wavelet energy and California algorithms on a 2-lane freeway. The detection time 

for California algorithm is a lot longer, varying from 76 to 480 seconds; it increases 

substantially with a decrease in flow rate and distance of incident from downstream 

detector station. This is because the California algorithm is based on the formation of 

congestion on the upstream side of the incident, which takes more time to develop when 

the prevailing flow rate is low. The wavelet energy algorithm, on the other hand, does not 

exhibit this behavior as seen in Figure 4. The performance of the wavelet energy 

algorithm is also not greatly effected by changes in geometry such as the number of lanes 

as noted in Figure 5. The relative independence of the wavelet energy algorithm to 

changes in flow rate and roadway geometry demonstrates its superior portability property 

as compared to the California algorithm. 

False alarms generated by automatic freeway incident detection algorithms are often a 

major source of excessive operational costs. Traffic control centers would often prefer an 

algorithm that generates fewer false alarms over another one with better detection rate but 

higher false alarm rate. On urban freeway segments, the wavelet energy algorithm 

generated no false alarms, thus producing an overall false alarm rate of zero. In contrast, 

the California algorithm produced false alarm rates of 0.22, 0.1 1 , and 0.28 percent, on 2-, 



3-, and 4-lane freeways, respectively. These false alarms are generated during moderate 

and heavy traffic flow conditions. 

False Alarm Performance in the Vicinity of On- and Off-Ramps 

Traffic flow in the vicinity of on- and off-ramps is often chaotic and marked by large 

fluctuations in occupancy, speed, and flow rate as vehicles maneuver to enter and exit the 

freeway. This is especially true for urban freeways where ramps are usually spaced 

closely apart and the entering and exiting flow rates are high. On- and off-ramps are thus 

geometric bottlenecks that create non-homogeneities in traffic flow, and are responsible 

for generating a large number of false alarms from existing automatic freeway incident 

detection algorithms. To test the false alarm performance of the algorithms in such 

situations a 3-lane urban freeway segment with two on- and off-ramps is modeled for 

simulation (Figure 6) .  For this freeway geometry four traffic flow scenarios are 

evaluated, as described in Table 4. Each scenario consists of three time periods of 

different mainline, on-, and off-ramp traffic flow rates. This is done to simulate sudden 

changes in entering and exiting flows on heavy traffk freeways that often cause 

automatic freeway incident detection algorithms to produce false alarms. 

The false alarm performance of the wavelet energy algorithm and California 

algorithm #8 in the vicinity of on- and off-ramps is given in Table 5. The remarkable 

false alarm performance of the wavelet energy algorithm is evident; it produced no false 

alarms at all six detector station locations and in 27000 (4X6X1125) decisions. The I 
California algorithm, on the other hand, produced numerous false alarms, ranging from 

0.5% to 3.8%, especially for the roadway segment between detectors 4 and 5 (Figure 6). 
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Note that both algorithms are not re-calibrated or retrained for this and all other 

evaluations. This is done to ascertain the portability property of the algorithms. The 

California algorithm #8 may be re-calibrated for each segment to produce fewer false 

alarms. However, this procedure is time consuming and expensive on a large urban 

fieeway management system. Furthermore, this procedure may be required on a regular 

basis to ensure optimal performance with changing traffk flow conditions. The wavelet 

energy algorithm, on the other hand, performed excellently without any need for 

retraining and thus is readily transferable and portable for implementation on urban 

freeway systems. 

Evaluation on Rural Freeways 

Rural fieeways present a challenge for passive automatic freeway incident detection 

algorithms that use loop detector data. As discussed earlier, it is economically infeasible 

to have closely spaced loop detectors on the large network of rural freeways in the U.S. 

Thus, incident detection algorithms can only rely on sparse information to arrive at a 

decision. This is further complicated by the often low flow rates on rural freeways that 

are impacted little by an incident. As a result, passive automatic incident detection 

algorithms often perform poorly on rural freeways making them impractical for traffic 

agencies to implement. Traffic agencies also desire algorithms that require little 

maintenance and no site-specific calibrations for their optimal performance on rural 

fieeways. 

To the best of the authors' knowledge, no automatic fieeway incident detection 

algorithm has been evaluated for rural freeway conditions. In this section, the new 

wavelet energy algorithm and California algorithm #8 are evaluated on a simulated 2-lane 



rural freeway segment with loop detectors spaced 3048 m (10,000 ft) apart. The 

performance of the algorithms is determined for flow rates of 500, 1000, 1500, and 2000 

vph per lane. The distance of the incident fiom the downstream detector station is varied 

fiom 152 to 2744 m. A lane-blocking incident is modeled as the closure of one lane and 

the 40 percent reduction in capacity of the adjacent lane. A shoulder incident is modeled 

by the 40 percent reduction in capacity of both lanes. Incidents of 5- and 10-minute 

durations are evaluated. 

The performance of the wavelet energy algorithm and California algorithm #8 on a 2- 
? 

lane rural freeway with a lane-blocking incident of 10 minutes duration is given in Table 

6. Results are categorized by prevailing flow rates (500, 1000, 1500, and 2000 vpMane) 

and distance of the incident fi-om the downstream detector station (152-2744 m). The 

wavelet energy algorithm performed much better overall than the California algorithm 

#S. When the prevailing flow rate is a low 500 vph per lane, the wavelet energy algorithm 

detected 18 percent of the incidents as compared to zero for the California algorithm. At 

this low flow rate, there is little or no impact of the incident on traffic patterns upstream 

and downstream of the incident. A change in the upstream traffic pattern is usually non- 

existent because any shock wave created dissipates within 50 to 100 m of the incident. 

On the downstream side, the shock wave travels much faster and is less likely to be 

masked by oncoming traffic flow. However, because of the natural variation inherent in 

traffk flow and the fact that the change in pattern is small, this pattern often cannot be 

distinguished fiom normal traffic flow patterns. 

This is evident from Figure 7, which shows a typical lane occupancy time-series plot 

at the downstream detector station. An incident occurs at time 900 seconds and persists 
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for 600 seconds; however, no visible change in the occupancy pattern such as a persistent 

reduction in the occupancy during and after the incident is noticeable from the plot (the 

spike in the figure is an outlier due to an extraneous factor such as noise in the data and is 

not an indicator of any change in the occupancy pattern). The wavelet energy algorithm is 

able to detect some incidents because it considers both occupancy and flow rate readings 

to create an enhanced and de-noised pattern before classifying it. The increased 

sensitivity of the algorithm, however, does come with a higher false alarm rate. The 

number of false alarms can be reduced by increasing the threshold t (see Figure 2) used in 

the wavelet energy algorithm. This can be done easily and in real-time by an appropriate 

logic in the algorithm. 

A flow rate of 1000 vph per lane is typical on many rural freeways under normal 

operational conditions. Under these conditions the wavelet energy algorithm detected 88 

percent of the incidents with a false alarm rate of 0.08 percent. The California algorithm, 

on the other hand, produced detection and false alarm rates of 20 percent and zero, 

respectively. The California algorithm failed to detect any incident that is less than 2479 

m from the downstream station. The wavelet energy algorithm is able to detect 85% of - 

incidents for such distances from the downstream station. The California algorithm will 

require the detector stations to be spaced at about 610 m apart for its performance to be at 

par with the wavelet energy algorithm. Such a high density of loop detectors is 

economically infeasible for rural freeways. Furthermore, the wavelet energy algorithm 

required an average time of 151 seconds to detect the incidents, which is acceptable for 

rural incident management applications. These results show the superiority of the wavelet 

energy algorithm on rural freeways. 



At flow rates of 1500 and 2000 vph per lane the wavelet energy algorithm detected all 

incidents producing a detection rate of 100 percent, while the California algorithm 

produced a detection rate of 72 and 100 percent, respectively. The California algorithm 

again failed to detect incidents at distances of less than 600 m from the downstream 

detector station at the lower flow rate of 1500 vph per lane highlighting its unsuitability 

for implementation on rural freeways. It also had a false alarm rate of 0.56% at the higher 

flow rate of 2000 vph per lane compared with 0% for the wavelet energy algorithm. The 

detection times for the wavelet energy and California algorithms varied from 44 to 160 

and 148 to 500 seconds, respectively. Except when flow rate is 500 vph per lane the 

detection time for the wavelet energy algorithm on rural freeway is less than three 

minutes. 

Often an incident.results in the blockage of a lane for only a short duration of time. 

For example, a disabled vehicle may block one lane for a few minutes before it is moved 

onto the shoulders. Detecting such incidents are often more challenging for incident 

detection algorithms as the impact of the incident lasts just for a shorter period of time. In 

all the previous evaluations, the incident duration is equal to 10 minutes. Table 7 shows 

the performance of the wavelet energy algorithm and California algorithm #8 on a 2-lane 

rural freeway when the lane blockage lasts for 5 minutes only. The detection rate, false 

alarm rate, and detection times produced by the two algorithms for this scenario are 

similar to those produced for 1 0-minute incidents recorded in Table 6.  This is because the 

maximum detection time for the energy wavelet algorithm in all cases is 160 seconds 

which is substantially less than the 5-minute duration of the incident. As long as the 

duration of an incident is greater that the detection time it does not affect the performance 
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of the algorithm in any significant way. The same does not hold true for the California 

algorithm because its detection time is as large as 430 seconds. Consequently, as is the 

case for the lorminute duration incidents, the performance of the wavelet energy 

algorithm is superior to that of California algorithm #8. 

Sometimes incidents produce no lane blockage but only reduction in the capacity of 

the lanes. This situation may occur when, for example, a disabled truck is parked on a 

shoulder reducing the capacity of the lanes. To study such scenarios on rural freeways a 

40 percent reduction in capacity of both lanes that lasts for 10-minutes is modeled for 

evaluation. The performance of the wavelet energy and California algorithms under such 

scenario are given in Table 8. The detection rates produced by both wavelet energy and 

California algorithms dropped slightly as compared to the case when one lane is blocked 

(Table 7). This is because an incident that does not block any lanes produces a less severe 

disruption in traffic flow than an incident that blocks at least one lane. This is especially 

true when the flow rate is low (1000 vph per lane). For the same reason also, the average 

detection time by California algorithm is longer as it takes more time for the congestion 

to develop and be detected by the algorithm. The detection time of the wavelet energy 

algorithm is in the range of 40-145 seconds while that of the California algorithm is in the 

range of 252-580 seconds. 

Evaluation Using Real Data 

Limited usable real traffic data was available to the authors. Real traffic flow and 

incident data are extracted from the San Francisco bay area freeway service patrol 

project’s 1-880 database for evaluation of the wavelet energy and California algorithms. 

Data for 21 incidents that block at least one lane are used to determine detection rate 
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performance, while 4 hours of incident-fiee data are used to ascertain the false alarm rate 

performance. The time of incident information in the database is inaccurate and therefore 

cannot be used to determine detection times. The performance of the wavelet energy and 

California algorithms using real data is shown in Table 9. The wavelet energy algorithm 

outperformed the California algorithm in both detection and false alarm rate. In 

particular, the wavelet energy algorithm did not signal any false alarm at all. In contrast, 

the California algorithm produced false alarm rate of 0.63% for this small real data set. It 

should be noted that this evaluation was also done without re-calibrating or re-training 

the algorithms. Also, note that the algorithms have been trainedcalibrated using 

simulated data only. The detection rate of the wavelet energy incident detection algorithm 

can be improved when a good amount of real data is available. 

PERFORMANCE SUMMARY AND CONCLUSION 

Transferability or portability is a qualitative property of a fieeway incident detection 

algorithm that-determines how well the algorithm performs across various traffk flow 

and roadway geometry conditions. In all the tests performed in this evaluation the 

algorithms are not re-calibrated or retrained. Thus, a good way to assess the algorithms’ 

portability is to compare their performance vectors across different test scenarios. A 

performance vector is defined as a vector with three performance elements: the 

percentage of missed detections (equal to 100 minus the detection rate), the false alarm 

rate, and the detection time. The smaller the value of each element the better the 

performance. Table 10 gives the performance vectors for the wavelet energy and 

California algorithms for the various scenarios evaluated in this research (extracted from 

Tables 1 through 3 and 6 through 8). The wavelet energy algorithm performed 
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consistently well across all scenarios including typical rural and urban fieeway 

conditions. Furthermore, for any given scenario the wavelet energy algorithm 

outperformed the California algorithm #8. This result establishes the portability of the 

wavelet energy algorithm and demonstrates its excellent performance for urban freeways 

across a wide range of trafEc flow and roadway geometry conditions regardless of the 

density of the loop detectors. 

To the best of the authors' knowledge, no systematic evaluation of any existing 

incident detection algorithm has ever been published in the literature before. This paper 

presented the first investigation of this kind. Considering the difficulty in automatic 

detection of incidents on rural freeways, the new wavelet energy algorithm performs well 

on such freeways with detectors being placed a large 3 km apart, except when the flow 

rst: is lower than 500 vph per lane. It is unlikely that a passive incident detection 

algorithm based on loop detector data can perform better than the wavelet energy 

algorithm in such low flow rate conditions; the traffic is just not affected enough to be 

detected reliably. 

I 

It is concluded that the new wavelet energy algorithm is not only highly robust and 

suitable for practical implementation on large urban freeway systems but also suitable 

and cost-effective for implementation on most rural freeways. 
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Table 1 Performance of the new wavelet energy algorithm and California algorithm #8 

! on a two-lane freeway 
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Flow 
rate 

Per 
lane) 

1000 

(vph 

1500 

2000 

Totals 

* Loca 

Location 
(m) * 

152 
3 05 
457 
610 
152 
305 
457 
610 
152 
305 
457 
610 

Detections 

515 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 

60160 
100% 

in of the incident from 

0/150 
01150 
011 50 
0/150 
011 50 
0/150 
0/150 
0/150 
01150 
0/150 
01150 
01150 

0/1800 
0% 

he d o w  
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Detection 

time 
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80 
96 
68 
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68 
80 
92 
96 
68 
92 
92 
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515 
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515 
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60/60 
100% 

California Algorithm #8 
False I Detection 

alarms 
time 
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01150 
011 50 
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111 50 
011 50 
011 50 
011 50 
011 50 
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211 50 
011 50 

411 800 
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(SI 
480 
3 84 
252 
164 
22 8 
176 
132 
92 
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84 
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I detector stations is 762 m. 



Table 2 Performance of the new wavelet energy algorithm and California algorithm #8 
on a three-lane freeway 

Flow 
rate 

Per 
lane) 

1000 

(vph 

1500 

2000 

Totals 

* Locat 

Location 
(m) * 

152 
305 
457 
610 
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Wavelet energy r! 
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time 
(9 
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72 
56 
76 
76 
88 
88 
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96 

California Algorithm #8 
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015 
015 
015 
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515 

45/60 
75% 

- 
False 

alarms 

011 50 
011 50 
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011 50 
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01150 
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011 50 
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0.1 1% 
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time 

(SI 
- 
- 
- 
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264 
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96 
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136 
92 
76 
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Table 3 Performance of the new wavelet energy algorithm and California algorithm #8 
on a four-lane freeway 

Flow 
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lane) 

1000 

(vph 

1500 
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Location 
(m) * 
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Detections 
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0/150 
011 50 
011 50 
0/150 
OD50 
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0% 

In of the incident from 
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84 
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Table 4 Description of the four simulation scenarios used for evaluating the false 
alarm performance on a three-lane freeway with ramps 

3 00 

Scenario # 

1 

2 

3 

4 

500 

Time 
period # 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
4 
5 

Entry flow 
rate 

4500 
4800 
4500 
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5500 
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4500 
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5500 
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5500 

(Vph) 
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WE Cal. WE Cal. 
0 0 
0 0 0 0 
0 3 0 1 
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0 51 0 130 

On-ramp flow rate 
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Scenario 3 
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0 
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WE Cal. 
0 T 

0 0 
0 0 
0 5 I 

m 

300 
300 
300 
300 
300 
600 
600 
600 
600 
600 
600 

I I 

500 
300 
500 
500 
300 
600 
600 
600 
600 
600 
600 

I 1 I 

! 

Off-ramp flow rate 

6 

(b 
A 

225 
240 
225 
260 
275 
260 
200 
225 
200 
275 
3 00 
275 

0 1 0 0 

0% 0.98% 0% 2.34% 

h) 
B 

450 
480 
450 
525 
550 
525 
400 
450 
400 
550 
600 
550 

- . . .  . 

Table 5 False alarm performance of the wavelet energy and California algorithm #8 for 
r 

the three-lane freeway with ramps 
J 

Station# I False alarms (out of 1125 decisions for each station in a senario) 

I 

0% I 0.53% I 0% I 3.82% 
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f 
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I 
1 
i 

I 
1 
i 

I 
t 

1 

i 

f 
' .. . i 

.. . 

alarms 

01125 
01125 
0/125 
0/125 
3425 
0/125 
01125 
01125 
01125 
01125 

311250 
0.2490 
01125 
011 25 
0/125 
01125 
01125 
01125 
01125 
011 25 
011 25 
01125 

Y1250 
0% 

Table 6 Performance of the wavelet energy algorithm and California algorithm #8 on a 
two-lane rural fieeway (incident duration is 10 minutes; 1 lane is blocked, the 
other lane's capacity is reduced by 40%) 

time 

(SI 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 

452 
244 

Flow 
rate 
(VPh 
Per 

lane) 

500 

Totals 

1000 

Totals 

Location 
(m) * 

152 
305 
610 
915 
1220 
1524 
1829 
2134 
2439 
2744 

152 
3 05 
61 0 
915 
1220 
1524 
1829 
2134 
2439 
2744 

Detections 

015 
015 
215 
015 
215 
115 
1 I5 
215 
015 
115 

915 0 
18% 
415 
515 
415 
315 
515 
3 I5 
515 
515 
515 
515 

44/50 
88% 

311 25 
211 25 
611 25 
11125 
0425 
01125 
0/125 
01125 
11125 
01125 

1311250 

01125 
11125 
01125 
01125 
01125 
01125 
01125 
0/125 
011 25 
01125 

111250 
0.08% 

1.04% 

O r i t h m  
Detection 

time 
(s) 

- 
- 

240 

280 
20 
20 
130 

180 

- 

- 

150 
80 
125 
153 
156 
153 
164 
186 
188 
152 

False I Detection Detections 

015 
015 
0/5 
0/5 
0/5 
015 
0/5 
015 
015 
015 

0150 
0% 
015 
0/5 
015 
015 
015 
015 
015 
015 
515 
515 

10/50 
20% 

3 



Table 6 - continued 

Flow 
rate 

Per 
lane) 

1500 

(vph 

Totals 

2000 

Totals 

* Locat 

Location 
(m) * 

152 
305 
610 
915 
1220 
1524 
1829 
2134 
243 9 
2744 

152 
305 
610 
915 
1220 
1524 
1829 
2134 
243 9 
2744 

False Detections 

515 
515 
515 
515 
515 
515 
515 
515 
515 
515 

50/50 
100% 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 

50150 
100% 

m of the incident from 
detector stations is 3048 m. 

alarms 

011 25 
011 25 
11125 
011 25 
011 25 
011 25 
011 25 
011 25 
011 25 
011 25 

111250 
0.08% 
011 25 
011 25 
011 25 
011 25 
011 25 
011 25 
011 25 
011 25 
01125 
011 25 

011250 
0% 

ie downs 

;0rithm 

6) 

Detection 
time 

92 
76 
68 
44 
120 
120 
120 
116 
160 
156 

52 
60 
64 
84 
68 
112 
100 
136 
156 
140 

False Detections 

015 
015 
315 
315 
515 
515 
515 
515 
515 
515 

36/50 
72% 
515 
515 
515 
515 
515 
515 
515 
515 
515 
515 

50150 
100% 

alarms 

01125 
01125 
01125 
01125 
01125 
01125 
01125 
011 25 
011 25 
0/125 

04250 
0% 

21125 
11125 
01125 
011 25 
011 25 
11125 
011 25 
11125 
21125 
01125 

711250 
0.56% 

eam detector station. The distance 

Detection 

time 

(SI - 
1 - 

246 
406 7 

500 
428 
332 ? 

23 6 
180 
152 

1 

160 
232 
228 ‘I 

168 
164 
212 9 

176 
160 
148 
148 I 

? 

etween 

5 
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Table 7 Performance of the wavelet energy algorithm and California algorithm #8 on a 
two-lane rural freeway (incident duration is 5 minutes; 1 lane is blocked, the 
other lane's capacity is reduced by 40%) 

Flow 
rate 

Per 
lane) 

1000 

(vph 

1500 

2000 

Totals 

* Loca 

Location 
(m) * 

152 
3 05 
610 
915 
1220 
1524 
152 
305 
610 
915 
1220 
1524 
152 
305 
610 
915 
1220 
1524 

False Detections 

515 
515 
315 
515 
415 
315 
515 
515 
515 
,515 
515 
515 
515 
515 
515 
515 
515 
5 / 5  

85/90 
94.4% 

In of the incident from 

a l2UI l lS  

01125 
01125 
Oh25 
11125 
0/125 
0/125 
011 25 
01125 
011 25 
01125 
011 25 
011 25 
01125 
01125 
01125 
OD25 
01125 
01125 

112250 
0.04% 

orithm 
Detection 

time 
(SI 

104 
120 
160 
120 
85 
146 
68 
80 
80 
112 
96 
88 
44 
60 
72 
80 
72 
112 

Detection2 

0/5 
015 
015 
0/5 
015 
0/5 
0/5 
115 
0/5 
1 /5  
015 
415 
515 
115 
515 
515 
515 
515 

32/90 
35.6% 

- 
False 

alarms 

0/125 
01125 
01125 
01125 
01125 
0/125 
01125 
01125 
01125 
01125 
01125 
01125 
Oh25 
01125 
01125 
01125 
11125 
01125 

112250 
0.04% 

ie downstream detector station. The distance 

Detection 

time 

(SI 
- 
- 
- 
- 
- 
- 
- 

100 

120 

430 
204 
80 
184 
132 
168 
192 

- 

- 

etween 

f 
detector stations is 3048 m. 
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Table 8 Performance of the wavelet energy algorithm and California algorithm #8 on a 
two-lane rural fieeway (incident duration is 10 minutes; no lane is blocked, 
the capacity of each lane is reduced by 40%) 

Flow 
rate 

Per 
lane) 

1000 

(vph 

1500 

2000 

Totals 

* Loca 

Location 
(m) * 

152 
305 
610 
915 
1220 
1524 
152 
305 
610 
91 5 
1220 
1524 
152 
3 05 
610 
91 5 
1220 
1524 

False Detections 

015 
015 
115 
015 
215 
315 
315 
215 
215 
215 
315 
515 
515 
515 
515 
515 
515 
515 

53/90 
58.9% 

in of the incident from 

alarms 

01125 
01125 
01125 
01125 
01125 
01125 
01125 
0/125 
01125 
,01125 
01125 
01125 
01125 
01125 
01125 
01125 
011 25 
01125 

012250 
0% 

orithm 
Detection 

time 
(SI 

- 
- 

80 

60 
113 
80 
120 
60 
145 
127 
128 
40 
60 
68 
72 
80 
116 

- 

California Algorithm #8 
Detections 

015 
015 
015 
015 
015 
015 
015 
015 
015 
015 
015 
015 
415 
515 
515 
515 
515 
515 

29/90 
32.2% 

I 

False 
alXtllS 

011 25 
011 25 
011 25 
01125 
01125 
011 25 
011 25 
01125 
01125 
01125 
01125 
01125 
01125 
01125 
01125 
01125 
011 25 
01125 

012250 
0% 

he downstream detector station. The distancc 

Detection 

time 

(SI 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

580 
508 
444 
444 
252 
276 

)elween 
detector stations is 3048 m. 

Table 9 Performance of the wavelet energy and California algorithms using 
real traffic data from the San Francisco bay area freeway service patrol project’s 
1-880 database 

95.2% I 90.5% I 0% I 0.63% I 
WE = Wavelet energy algorithm; Cal. = California algorithm #8 
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. I  

Wavelet energy 

0, 0,89 
0, 0,84 
0, 0, 94 
0, 0,69 
0, 0, 74 
0, 0, 100 
0, 0,71 
0, 0, 86 
0, 0, 86 
82, 1.04, 145 
12, 0.08, 151 
0, 0.08, 107 
0, 0,97 
17,0.13, 122 
0, 0, 87 
0, 0,73 
80,0, 84 
60,0, 110 
0, 0, 73 
i d =  No incidents are 

algorithm 

! .! 
- :  

i 

California algorithm #8 

0, 0, 320 
0,0.17, 157 
0, 0.5, 102 
75,0,248 
0,0.17, 175 
0,0.17, 113 
65, 0,304 
0,0.17, 171 
0,0.67, 112 
100, 0.24, i d  
80,0,348 
28,0,310 
0,0.56, 180 
100, 0, i d  
80,0,217 
13,0.13, 160 
100, 0, inf 
100, 0, inf 
3,0,417 
detected and-the detection time is theoretically equal to infinity 

a 

Table 10 Performance vector for assessment of algorithm portability 
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1. Information processing in an advanced traffic mdnagement system 

2. The wavelet energy freeway incident detection algorithm 

3. Layout of urban freeway segments simulated for parametric evaluation 

4. Variation of detection time with distance of incident from downstream detector 

station on a 2-lane urban freeway for the wavelet energy algorithm (denoted by 
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5. Variation of detection time with distance for the wavelet energy algorithm on 2-, 
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Raw occupancy and flow rate data 

fori]; i =  1, 16 
h[i]; i =  1, 16 

I 

I f [ i ] ;  i = 1,16 - 

I 
I 
I 

f [ i ] ;  i,= 1,32 

I 
I 
I 

c,[k]; k =  1, 8 i 
I 

I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 
I 

I 

I I 
I 
I 

c[i]; i =  1, 4 Twice 
I - - - - - - - - - - - - - - - - - - - - -  - - - - - - - - - - - - - - - - - , , , - I  -c 

c0[i]; i = 1,4 

FonnPattern(c,, cF) 

Incident 
condition 

Incident-free No 
condition 

Figure 2 

1 

1 

6 

36 



! 

I 

152 - 610 m (500 - 2000 ft) 
l-----d 

i 

T 
i 

762 m (2500 ft) I I 

I /  

Legend 

Detector station 

Blocked lane 

Lane with reduced capacity 

I 

Figure 3 



500 

450 

400 

350 

.E 300 

5 250 

200 

150 

100 

50 

h 
rA W 

Q) 

id 

E 
0 

.C( 

id 

I3 

100 

, 

I I I I I 

0, -e- WE; 1000 vph/lane 
\ .  * WE; 1500 vphAane 

\ + WE; 2000 vph/lane 
'. ' 8 .  Cal.; 1000 vpNlane 

. +- Cal.; 2000 vph/lane 

\ - 

'. 
- '. . -x- Cal.; 1500 vph/lane - 

- 
\ 

a. 
\ - 

\ 
\ 

\ - 
\ 

- 

\ 

b\, - - 
\ .  

1. '. x .  
'. .. 

1. 

' '. '. .. 
- 

' 0  
x...  

.. 
1. .. .. 

- 

- - 

I I I I I 

200 300 400 500 

Figure 4 

1 

! 

6 

38 



13C 

120 

110 
n 
w W 

3 100 
.r( Y 

.m Y 

Y 
8 90 

a" 
80 

70 

I I I 
I I 

P * 3-lane 

Figure 5 

t 



// O n - r a m p s ~  
610 m 

Detector station I 
Figure 6 

40 



? 

i 

I 

i 

0 500 1000 1500 2000 
Time (seconds) 

Figure 7 



.. . . 


	- Raw Data -Two-Stage Filter
	Dennis J.E Jr and Schnable R.B Numerical Methods for Unconstrained
	Goldstein A.A Constructive Real Analysis Harper & Row NY
	Hsiao C.H Lin C.T and Cassidy M ﬁApplication of fuzzy logic and neural
	Figure
	Units Neural Computation Vol 1 pp1-294
	Payne H J and Tignor S C 1978), "Freeway Incident-Detection Algorithms Based on
	Decision Trees With States Transportation Research Record No 682 pp30-37
	Persaud B N and Hall F L 1989), "Catastrophe Theory and Patterns in 30-Second
	Freeway Traffic Data--Implications for Incident Detection Transportation Research--Part A
	McMaster Incident Detection Algorithm Transportation Research Record No 1287 pp
	Inpastructure Engineering Vol 15 No 4 pp1-250
	Figure
	Scenario 1 Scenario 2 Scenario 3 Scenario
	Figure
	fori]; i=
	i=
	f[i]; i = 1,16
	c,[k k=
	c[i]; i=

	Twice
	-c
	Figure




