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ABSTRACT 
 

In this report, the information propagation via inter-vehicle communication is studied along two 

parallel roads. By identifying an inherent Bernoulli process, it is able to derive the mean and 

variance of propagation distance. A road separation distance of  times the transmission range 

distinguishes two cases for approximating the success probability in the Bernoulli process. In 

addition, the results take the single road as a special case. The numerical test shows that the 

developed formulas are highly accurate. In addition, this study also explores the idea of 

approximating the probability distribution of propagation distance with the Gamma distribution. 
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EXECUTIVE SUMMARY 
 
 
An elementary concept in the initiative of IntelliDrive™ under the federal Department of 

Transportation Intelligent Transportation Systems (ITS) program, the Inter-Vehicle 

Communication (IVC) aims to integrate fast mobile computing and advanced wireless 

communication technologies with vehicles for the sake of traffic safety, mobility, efficiency and 

high quality of life.  The IVC system connects vehicles with each other (via on-board equipment) 

and with roadside infrastructure (via roadside stations) so that vehicles can disseminate and share 

such information as traffic condition, safety related warning, and other matters of importance.  A 

unique cross-disciplinary area between transportation engineering and wireless communication 

has emerged.   

 

Routing algorithms and communication protocol, critical to this system, both depend on the 

estimated volume of information potentially transmitted between vehicles. The volume of 

information is largely dependent on the size of ad hoc mobile vehicular networks. The network 

size is a function of vehicular connectivity.   This connectivity can also be equivalently 

characterized through information propagation. In this report, we particularly studied the process 

of information propagation on two parallel roads. 

 

An IVC system depends on various parameters such as (1) communication range, (2) bandwidth 

of the device, and (3) the number of hops of communication. To simplify this study, the 

following assumptions are made:  

 

(1) The information propagation distance is measured based on instantaneous connectivity. 

(2) The communication range is deterministic and no channel interference is considered. 

 

Therefore, the information propagation in this report is represented by a distance of the last 

receiving vehicle connected to the information originating vehicle through a transmission range. 

In other words, it is a connected distance of vehicles. Unlike the previous work that studies the 

same process on a single road, this work expands onto a network of two parallel roads. The 

process of instantaneous propagation on two parallel roads is significantly more complex on one 
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road. The complexity is due to interactions of vehicles between the two roads. Information can 

take a ‘detour’ through the other road when it comes to a vehicle gap larger than the transmission 

range on one road. Modeling of this process was challenging. 

 

An approximate model was developed, which determines a similar process of information 

propagation on two parallel roads. The general framework was to develop a Bernoulli process. 

When information propagation succeeded, the information moved forward by one vehicle gap, 

called a successful Bernoulli trial. In this process, a Bernoulli region is defined, which was 

determined by a vehicle gap on one road. A Bernoulli region covers sections on both roads. The 

Bernoulli region was used to calculate the probability of a successful trial in the Bernoulli 

process. With this Bernoulli process, it is able to characterize the propagation process by its 

mean, variance, and probability distribution.   

 

In addition, extensive numerical tests are conducted on the proposed model. This study 

especially examined the cases when the vehicle headway followed a Gamma distribution, 

truncated normal distribution, and when the two parallel roads were zigzag. The results showed 

that the approximation method generally worked well in an overwhelming majority of the cases 

tested. 
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CHAPTER 1: 

INTRODUCTION 

 
Recently, a fascinating technology that allows vehicles to exchange traffic information has 

emerged in a new traffic system called Inter-Vehicle Communication (IVC), also referred to as 

IntelliDrive in the new literature. It aims to enhance significantly safety, mobility, and quality of 

life of the public (IntelliDrive website, Dion et al. 2010). By integrating fast mobile computing 

and advanced wireless communication technologies, the IVC system can connect vehicles with 

each other (via on-board equipment) and with roadside infrastructure (via roadside equipment). 

Drivers could be warned of potential hazards through in-vehicle display by receiving 

information, such as speed, acceleration and deceleration rate, road conditions, etc., from 

neighboring vehicles and roadside infrastructure. The transportation monitors could also use the 

traffic information transmitted from vehicles on the road networks to adjust transportation 

system operations. Figure 1 illustrates this scheme of communication. Compared with the 

traditional systems that distribute information from a centered control station, this system 

provides more flexibility to individual vehicles and has the capability of strengthening a driver's 

awareness of surrounding traffic. It is anticipated that this system will remarkably improve the 

efficiency of the transportation operations. In order to design and deploy the IVC system, one of 

the important issues is to know the property of information propagating in a vehicular network. 

In this report, we explore this issue. 

BACKGROUND 

 
In the 1970s, a project that enabled vehicles to communicate by radio was initiated in Japan 

(Kawashima 1990) in order to reduce road congestion and accidents. Although the technology at 

that time could not provide high quality communication, it explored the potential benefits of 

sharing information among individual vehicles. In these days, the development of technologies in 

wireless local area network (WLAN) enables automobile industries to develop and equip reliable 

wireless devices on vehicles at low cost (Papadimitratos 2009). In 2009, the U.S. Department of 

Transportation (USDOT) and its public and private partners developed a strategic plan for the 

IntelliDrive. This USDOT five-year (2010 – 2014) plan mainly focuses on safety, mobility, and 
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environmental applications and research (Website of IntelliDrive). In this system, vehicles are 

equipped with wireless communication devices, enabling IVC, Vehicle-Infrastructure Integration 

(VII), and connectivity among infrastructure, vehicles, and other wireless stations. Similar 

programs, for example, eSafety program in Europe and Advanced Safety Vehicles (ASV) 

program in Japan, are also under way.  

 

 

Figure 1: Vehicles Communicate with Neighboring Vehicles and Roadside Infrastructure. 
 

There are two main objectives of the IntelliDrive system. The first objective is to improve safety. 

IVC and VII techniques can monitor traffic situations and alert drivers as soon as potential 

hazards take place, and even automatically navigate the vehicles, by exchanging driving 

information such as acceleration and deceleration. It also can potentially reduce a large 

number of accidents caused by careless driving or drivers' misperception. For instance, the 

application of blind spot warning could alert drivers who tend to change lanes frequently when 

another vehicle is in the blind spot (IntelliDrive Website). Moreover, the relative analysis shows 

that the estimated total safety benefit equals to 41.8 billion dollars in accident cost savings (VII 
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Initiative Benefit-cost Analysis 2008). The second objective is to increase mobility. It is 

recognized that ineffective traffic control and inefficient use of road system capacity are due to 

limited traffic information available to planners and performance limitations of drivers. The 

intent of the IVC system is to provide information about vehicles in the traffic network, such as 

the location and route of each vehicle, so that traffic managers are able to adjust traffic signals to 

improve overall traffic flow. An application such as adaptive cruise control can also reduce the 

headway between two vehicles, resulting in an increase in the road capacity (Shladover et al. 

2009). Another benefit of lessening traffic and congestion is an estimated savings of 1.2 million 

gallons of fuel a year (VII Initiative Benefit-cost Analysis, 2008). 

 

Networks such as IntelliDrive systems are called Vehicular ad hoc Networks (VANETs) (Willke 

et al. 2009), referring to self-organizing wireless communication networks among vehicles 

without the aid of established infrastructure. In these systems, the information of one vehicle 

and/or its surroundings (for instance, speed and relative distance) is coded into a piece of 

so-called beacon message for wireless transmission. For each wireless device, the power of a 

signal attenuates as the distance from this device increases. When the power is below a certain 

value, the message cannot be decoded. That means two vehicles equipped with the same kind of 

wireless communication device can exchange information only when their distance headway is 

less than a certain distance, so-called communication range. If two vehicles are not within the 

communication range, their communication depends on multi-hop transmission. Since vehicles 

constantly enter and exit a segment of road, the communication connectivity among vehicles 

may vary constantly, which leads to concerns about performance and challenges in designing 

VANETs. 

 

It is recognized that the information propagation distance, defined from the source of a vehicle 

delivering one piece of message to the furthest receiver, is a fundamental measure for the 

performance of the IVC system, as it can help estimate the connectivity in a vehicular network 

and thereby guide the design of wireless communication devices and communication protocols. 

However, previous studies on this issue have been limited to the case of one (lane) straight road. 

Interactions among vehicles from different roads on a discrete traffic network have significant 

impact on effective information propagation along traffic streams. A basic situation is parallel 
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roads, which might be found as two divided highway lanes or an elevated road and its frontage 

road. The rationale for studying this case was based on the question: “If one cannot handle this 

case, how can one expect to address the case of discrete networks?” This research began with a 

study of the statistic property of information propagation on two parallel roads. 

 

PROBLEM STATEMENT 

 
Information propagation in VANETs depends on various parameters such as communication 

range, bandwidth of the device, and number of hops. To avoid the complexity that prohibits 

development of useful results, in this study, the following three major assumptions are made: 

 

 Message is transmitted and delivered instantaneously with respect to vehicle movement. 

 The information propagation distance is measured based on instantaneous connectivity. 

 The communication range is deterministic and no channel interference is considered. 

 

The first assumption gives reasonable representation of the current wireless communication 

technologies, according to which the data transmission interval is less than 100 ms 

(Briesemeister et al. 2000, Ohyama et al. 2000). This was also true for most applications of 

vehicle-to-vehicle communications (Chen et al. 2010). During such a short period, the effect of 

vehicle movement can be omitted. Admittedly, this requirement could only be realized in 

practice with a large communication bandwidth device and short messages. The second 

assumption disregards the connectivity through vehicle mobility. If two neighboring vehicles, 

which travel in opposite directions, have distance headway larger than the communication range 

of a wireless device, the message could not be delivered between them instantaneously. 

Although such a message could possibly be sent to one vehicle in the opposite direction after a 

period during which the transmitter holds it, this kind of information propagation could not be 

effective when applications relate to, for example, urgent safety issues. Hence, this study only 

considered the vehicles with instantaneous connectivity. The third assumption states that the 

fading effect of the wireless device is not considered. Otherwise, it would lead to the highly 
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complex expression results without better understanding of the basic network property. In fact, it 

is not difficult to extend the proposed method to the fading case. 

 

Consider two parallel straight roadways denoted by 1R  and 2R , respectively. 1R  and 2R are 

separated by a distance d . The traffic density on each road is 1 and 2 , respectively. According 

to the assumptions, the direction of movement of traffic is not considered explicitly. Since 

usually the communication range L  is significantly larger than the width of lanes, each road of 

multi-lanes can be considered a single lane. As illustrated in Figure 2, starting from a vehicle A  

on road 2R , information is propagated forward in one direction of interest, say, rightward. 

Vehicles on both roads within the communication range of A  are able to receive and instantly 

further transmit the information forward. If we only consider the information transmission on 

road 2R , and if there is no vehicle present on road 2R  within the communication range L , 

vehicle A  is not able to reach directly vehicle C . However, with help from vehicle 'G  on road 

1R  within range L , information is able to propagate to vehicle C . Clearly, compared with the 

case of one road, information propagation is enhanced by vehicles on the second road (Wang 

2007). 

 

 
 

Figure 2: An Illustrative Process of Information Propagation. 
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The objective of this study was to find out the probabilistic property of the information 

propagation distance in terms of its expectation, variance, and probability distribution. The 

propagation distance measures from the initiating vehicle to the last receiving one on the same 

road, as illustrated in Figure 3. According to such definition and assumptions, one can also treat 

the information propagation distance as the diameter of a random graph (Penrose 2003). At the 

beginning of the next chapter, a mathematical description of the issue is provided. 

 

 
 

Figure 3: An Illustration of Information Propagation Distance. 

OVERVIEW OF THE PROPOSED METHODOLOGY 

 
To deal with the complexity of information propagation on two parallel roads, we developed an 

approximate method. By identifying the conditions that the information fails to propagate 

further, the propagation process was approximated by a Bernoulli process. This method can also 

be applied to the case of one road (Wang 2007). For this model, the distance headway can be 

generalized to any distribution. The approximation generally works well but suffers significant 

errors in some cases. 

 

Considering the particular vehicular network studied here, the information process can be viewed 

as an instance of a stochastic geometry process. Due to the inherent important relationship 

between geometry process and wireless communication network, the proposed analytical method 

has a potential to be generalized for other research on ad hoc networks (Kendall and Molchanov 

2010). 
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RESEARCH OBJECTIVE 

 
The objective of this research was to model the information propagation process along two 

parallel roads. The focus was to develop models to estimate the expectation, the variance, and the 

probability distribution of information propagation along two parallel roads under certain 

distributions of vehicle headway. In details, this study will do as follows. 

 
 Review and assessment of the current research on IVC systems. 

 Develop an approximate model to address explicitly the information propagation distance 

by assuming a general distribution for the distance headway. 

 Implement numerical tests of the proposed models, including numerical calculation and 

simulation. 
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CHAPTER 2: 

LITERATURE REVIEW 

An appropriate model of wireless ad hoc networks, particularly a probabilistic model simplifying 

physical world without losing basic characteristics, can give some insights into the performance 

and help design IVC systems. Many groundbreaking analytical results are obtained ranging from 

connectivity issues to network capacity. On the other hand, simulation is necessary to explore the 

performance, because very often the complexity of IVC systems exceeds the capability of 

analytical methods due to a large number of factors, such as signal fading and interference, and 

because field tests are too costly to conduct (Dion et al. 2010).  This chapter focuses on the 

simulation and two basic topics: network capacity and connectivity. 

SIMULATION ISSUES 

 
Computer simulations serve as a basic tool to evaluate the functionality of IVC systems. An 

appropriate simulator must be capable of modeling both wireless network communication and 

traffic flow. Unfortunately, currently no integrated simulator exists with a full range of 

components, though there are many advanced simulators in each individual area and a number of 

efforts in progress (Piorkowski et al. 2008, Balcioglu et al. 2009). From the perspective of 

wireless communication, one challenge of simulation comes from simulating radio signal 

propagation with various environment factors. Besides the path loss effect, i.e., the power 

reduction as signal propagates in space, the radio wave signal may be diffracted and scatted by 

the environment, and the vehicle mobility may also cause a time-variant distortion to the signal 

strength, known as shadowing and fading, respectively (Killat 2009). The multi-path loss effect 

also plays a significant role in communication. It arises when the same messages transmitted 

through different internodes arrive at a receiver simultaneously. In vehicular networks, 

information propagation usually takes place in a multi-hop manner. The percentage of equipped 

vehicles, known as market penetration rate, may affect the multi-hop delivery since this value 

can vary significantly in different places in a large-scale network. To deal with some of these 

issues in simulation, currently, there are several wireless communication simulators, such as 

Qualnet, NS-2, OPTNET, and NCTUns.  
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A traffic simulator is needed to describe the movement of vehicles according to some constrains 

such as road topology and speed limit. From the perspective of traffic engineering, a qualified 

simulator should employ at least microscopic and macroscopic mobility models. The former 

tracks individual vehicles and mimics individual driver behaviors with response to surrounding 

traffic, such as car following and lane changing. The latter deals with the vehicular traffic flow at 

an aggregate level, describing the phenomena such as trip generation (Hoogendoom and Bovy 

2001, Harri et al. 2006). Current studies tend to integrate the traffic and wireless communication 

simulators, for examples, combing NS-2 and microscopic simulator VISSIM (Park and Lee 

2009), and to explore the performance of vehicular networks, topics including transverse 

message delivery (Kesting et al. 2010), packet-routing protocols (Wang et al. 2009), packet 

collision rate (Jarupan et al. 2008), and safety improvement (Killat 2009). 

 
There are many benefits for establishing a realistic simulation framework. It is crucial to test 

current theoretical models and design of next generation networks (Harri et al. 2006). Although 

it is argued that field tests provide much valuable information, field tests are often restricted to 

addressing small-scale issues. This is because large-scale deployment of IVC systems would be 

too expensive (Shladover 2009). Hence, evaluation of IntelliDrive systems in simulation will 

remain crucial for a long time. 

 

CAPACITY OF VEHICULAR NETWORKS 

 
It is important to measure the "amount of information flow" in a wireless ad hoc network. This 

issue is addressed as the capacity of networks from different perspectives. In a pioneered work, 

Gupta and Kumar (2000) study the transport capacity that measures the distance-rate throughput 

that is transported per second. They investigate a model of fixed ad hoc networks where the 

source and destination are randomly located with a fixed communication range. The main result 

shows that the capacity reduces linearly as 
1

( )
n

  with the decreasing number of nodes n . 

Along this strategy, the work in (Xie and Kumar 2006) shows the expected transport capacity 

can be upper-bounded by the multiple of total transmission powers of nodes in some cases. 

Franceschetti et al. (2007) apply percolation theory to find a lower bound on the achievable bit 
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rate in a wireless network. Although there may be some interference in the communication, their 

results show that in some cases the total amount of information sent by all sources can be 

transmitted by the nodes along the end-to-end connected paths. For the case of independent 

fading channel between any pair of nodes, the exact expression of per-node capacity can also be 

found if multi-hop connection only allows data forwarding (Nebat et al. 2009). 

 
The transmission capacity, defined as the throughput of successful transmitting nodes in the 

network per unit area, is first introduced in Weber et al. (2005) with an outage constraint. Most 

interestingly, the transmission capacity can be tightly bounded in many situations. Currently, the 

transmission capacity has been studied from the perspectives of design and performance 

analysis, addressing the issues such as interference cancelation (Weber et al. 2007a), power 

control (Weber et al. 2007b), and the relationship with outage probability and data rate (Haenggi 

2009). However, most of these studies focus on a one-hop wireless ad hoc network. For the 

VANETs, several works show the mobility of nodes increase the capacity of the networks 

(Grossglauser and Tse 2002, Diggavi et al. 2005). The results show that the end-to-end 

throughput does not significantly decrease with the growth of number of nodes in the entire 

network. From the transportation engineering perspective, Du et al. (2009) consider the 

VANETs with a broadcast transmission protocol and study the broadcast capacity measured by 

the maximum number of successful concurrent transmissions. Due to the particular 

characteristics of traffic flow, various effects such as traffic density and vehicular distribution are 

investigated by two integer programming models. 

 

CONNECTIVITY OF VEHICULAR NETWORKS 

 
Estimating connectivity of wireless ad hoc networks like IVC systems is important for 

understanding the effectiveness of the system and designing routing protocols. Bettstetter and 

Eberspacher (2003) investigate the probability distribution of the minimum number of hops, 

given fixed number of uniformly distributed nodes on a rectangular area. Although closed form 

expressions can be derived for the cases that the nodes are one or two hops connected, the cases 

of two hops or more are only studied by simulation. Mullen (2003) presents two approximate 

models for the distance distribution of connected nodes within a rectangular region, assuming 
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that the static nodes are independently distributed in each dimension. The work by Orris and 

Barton (2003) and its correction by Zanella et al. (2009) provide the distribution of the number 

of nodes within one-hop area with log-normal fading effect. Although this work does not allow 

multi-hop connection, it provides some guideline and inspires further research. Mukherjee and 

Avidor (2008) extend the study to the multi-hop network with homogeneous Poisson distributed 

nodes in a plane, considering the fading channel and power consumption with battery-operated 

nodes.  

 
Although there are many studies on the connectivity of ad hoc wireless networks, the work on 

IVC systems from a connectivity perspective is rare. The IVC systems distinguish themselves 

from other ad hoc networks in several ways. In contrast to the previous studies where nodes are 

randomly distributed within a circle or a rectangular plane and are randomly assigned with a 

speed, groups of vehicles travel in a segment of road along a fixed direction whereby the traffic 

density, volume, and speed follow certain relationship. That means the mobility of nodes is 

predictable with a constrained road topology. Since vehicles can provide enough power to the 

wireless devices, power consumption is not an issue. Additionally, most previous work focuses 

on one-hop broadcast communication, but IVC systems adopt multi-hop strategy in real 

application. Inspired by these particular features, many researchers from transportation and 

electronic engineering areas make great effort. Wang (2007) studies the information propagation 

along one road. This work defines a relay process to obtain a closed formula for information 

propagation distance when the traffic follows homogeneous Poisson distribution. Wu et al. 

(2009) considers the mobility effect on the information propagation. The vehicles are assumed to 

have the same communication range and a constant delay between receiving and transmitting at 

the same vehicle. In light of this strategy, the study in Kesting et al. (2010) considers the effects 

of two-direction traffic flow, assuming the messages to be delivered within a tolerable delay. 

When no vehicle locates within the communication range, a vehicle can broadcast the 

information until it reaches another one in the opposite direction. The investigation of this kind 

of connectivity is conducted by simulation. Jin and Recker (2010) extend study to the 

inhomogeneous Poisson traffic where the positions of vehicles are known through simulation or 

field observation. 
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CHAPTER 3: 

BERNOULLI APPROXIMATION 

INTRODUCTION 

 
This chapter discusses the process of instantaneous information propagation along two parallel 

roads of traffic, as stated in Chapter 1. In the context of instantaneous propagation, the 

propagation distance is equivalent to the distance of the furthest connected vehicle on the same 

road. This problem can be also described by the random geometric graph (Penrose 2003) 

discussed in the following section. 

 

RANDOM GEOMETRIC GRAPHS DESCRIPTION   

 
The assumptions in Chapter 1 enable to use random geometric graphs to model the vehicle ad 

hoc networks. It is assumed that the network nodes were randomly placed on two parallel lines, 

and a communication link connects two nodes if the distance between them was not greater than 

the communication range. A mathematical model for this case is as follows. Let  be the 

Euclidean norm, and 1R  and 2R be two parallel lines on 2 . The distance of these two lines is 

0d  . Let 1 ( )f  and 2 ( )f  be some two probability density function (p.d.f.) on 1R  and 2R , 

respectively. Note that 1 ( )f  and 2 ( )f  are defined on 1 . Also, let 1 2 3, , , ......X X X be 

independent and identically distributed (i.i.d.) random variables with the density 1 ( )f , where i  

denotes he random location of node i  on the line 1R . Similarly, let 1 2 3, , ,...Y Y Y be i.i.d. random 

variables with the density 2 ( )f  on the line 2R . The ensemble of graphs with undirected links 

connecting all those pairs { , }i jz z (where { }i iz X or { }iY ) with , 0,i jz z L L    is called 

random geometric graph (Penrose 2003), which is denoted by ( , )G L . 

 

In this model, when saying ‘one node can send the information to another one,’ it means there 

exists a link connecting these two nodes. The problem of information propagation can be 
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described as follows. Let W  be any connected component of ( , )G L and 0 1{ , ,..., }NY Y Y W , 

where N  is a random integer valued variable and it depends on W . The node iY  should locate 

between 1iY   and 1iY   on 2R . Define the information propagation distance 2D  on 2R  in this 

chapter as follows: 

2 sup{ : , {0,1,..., }}.i jD y y i j N   

In this definition, one can see that 2 0 .ND y y   Let 1 .i i iH y y    Then one can express 2D  

as 

2
1

.
N

i
i

D H


                                                                       [1] 

It is primarily concerned with the expectation 2[ ]E D  and variance 2( )V D  in this chapter. 

 

IDEAS ABOUT THE SOLUTION 

 
In this chapter, the ideas about the solution of Equation 1 are straightforward: to find an 

approximation that all iH  are independent. In details, the steps of this study are: 

 to find some geometric region (called Bernoulli region) related to each pair 1{ , }i iy y   

(they may not necessarily connect with each other), where the length of one edge of this 

region is equal to iH ; 

 to find the probability of iH  by conditioning on the same connected component; 

 to treat approximately all Bernoulli regions to be independent under some situations; and 

 to consider the probability for each Bernoulli region occurring the same, so that the 

information propagation can be approximated by Bernoulli process. 

 

In the next sections, we will first identify two cases in terms of the distance d  between 1R  and 

2R , where in the first case the proposed approximation performs well. 

 

With the help of the Bernoulli region, we derived the mean and variance of the propagation 

distance. Then, numerical simulations were conducted to assess accuracy of the results from 
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using the Bernoulli process, and to show how distance between the two parallel roads impacts 

the propagation distance.  

APPROXIMATION WITH A BERNOULLI MODEL 

 
This study considered the information relayed along one road rightward, say 2R . Vehicle A is the 

transmitting vehicle on 2R , as shown in Figure 4. Suppose G and H  are the furthest points 

directly reachable by vehicle A on both roads. ABGH is the according parallelogram with

BG AH L  . Two cases are identified. Left side of Figure 4 shows that point B within the 

communication range of vehicle A , representing Case I. In Case I, it is clear that vehicles left of 

the parallelogram ABGH do not matter in further propagating information rightward from 

vehicle A : any vehicle left of point B on road 1R  would have to resort to vehicles within BG for 

further propagation. By the language of random graph, it means that any node in BG can connect 

with A and only these nodes can connect the nodes (if any) at the right of points G and H . We 

further define 2 22( )r L L d    in Case I, representing two times the horizontal shift of the 

two horizontal sides of each parallelogram. 

 

If point B of the parallelogram is outside vehicle A 's transmission region, one gets Case II as 

shows on the right of Figure 4. In Case II, it is not possible to have a parallelogram ABGH within 

the communication range of A , and point B will be out of reach by the vehicle at point A as 

shown in Figure 4. In the later part, we define for Case II the point B as the leftmost reachable 

point by A , in which case ABGH will not be a parallelogram. 
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Figure 4: Two Cases of Point B on Road 1R . 

Case I has the following relationship: 
3

2
d L . Similarly, Case II corresponds to the situation 

in which 
3

2
d L . Here 

3

2
d L is the critical point separating two cases, at which the 

parallelogram ABGH has exactly three points BGH on the circle of radius L about point A . The 

increase of the separation distance d makes point B fall outside the circle, implying Case II, while 

the decrease draws point B to within the circle, implying Case I. We first discuss Case I. 

CASE I 

Suppose vehicle A is the transmitting vehicle on 2R and C is the immediate next vehicle to A on 

2R . That is, there is no vehicle in the segment AC . As shown in Figure 5, ABGH is the according 

parallelogram defined earlier. We further assumed that E is the leftmost point on road 1R  that can 

reach vehicle C on road 2R . Let ED EC FC L   , and CDEF is the according parallelogram. 

The region ABDC , according to a vehicle gap AC on road 2R , is called the Bernoulli region of 

vehicle A  in Case I. It is worth noting that BD has the length AC r . In addition, one has to note 

that Figure 5 just illustrates an example for the Bernoulli region. The distance headway of 

vehicles A  and C can be any value. The two parallelograms ABGH and CDEF  could have some 
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overlap. Hence, any distance headway on 2R is associated with a Bernoulli region. Or 

equivalently, any vehicle (as A in Figure 5) on road 2R has a Bernoulli region with according 

points B and D  defined above. Such region is critical to information propagation. In summary, 

we have the next proposition.  

 

Figure 5: A Bernoulli Region ABDC during Propagation. 

Proposition 1.  Information propagation along road 2R is gapped out at a vehicle location A  if, 

and only if, the associated Bernoulli region has a vehicle gap larger than L on both roads. 

By the language of random graph, when we say ‘the information propagation is gapped out,’ we 

mean that two neighboring vehicles on 2R are not in the same connected component. The 

Proposition 1 is obvious: if there is no link to connect A and C , the only situation for them in the 

same connected component is that some node within one connected component in BD connects 

with A and C , as shown in Figure 5. 

It is clear that information propagation gaps out if, and only if, the process fails to get through a 

Bernoulli region. Each vehicle on road 2R has an according Bernoulli region with a probability of 

success. Since the vehicle gaps on each road are i.i.d., one may roughly treat each Bernoulli 
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region as having an identical and independent probability of success. Propagating through 

vehicles on road 2R can, therefore, be considered as a Bernoulli process whose “trials” are the 

Bernoulli regions. The success means successful propagation through the Bernoulli region and 

failure means otherwise. The gap-out probability associated with a Bernoulli region is denoted 

by rp . In this report, we assess the value of rp by assuming independent Bernoulli regions. This 

assessment of rp could be fairly accurate but not exact, as explained below. This is why we call 

the Bernoulli process here an approximate Bernoulli process. 

This treatment using the Bernoulli process is not accurate because the probability of gap-out at a 

“trial” could be slightly correlated to the probability of no gap out at its proceeding trial. The 

Bernoulli regions associated with two consecutive vehicles on road 2R ; i.e., ABDC andCGEF , as 

in Figure 6, have an overlap of length r on road 1R .  When two consecutive gaps larger than L are 

present on road 2R , not gapping out in the first Bernoulli region might indicate, to a certain 

degree, vehicle presence in the overlap section on road 1R . From such perspective, r  is an 

important parameter in this study as it indicates the extent to which vehicular interaction takes 

place between the two roads. 

 

 

Figure 6: Overlap between Two Consecutive Bernoulli Regions. 

According to the Bernoulli process, the random number of gaps on 2R (or, Bernoulli regions) until 

the first gap out follows a Geometric distribution, whose mean is 1 / rp . In other words, if the 
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number of gaps before a gap out is denoted by rp , then we have [ ] 1/ 1rE N p  . In order to get 

the expected propagation distance on road 2R , we need to calculate the expected length of the gap 

before a gap-out. By the language of random geometric graphs, we treat iH  as i.i.d. random 

variables (in Equation 1) for the associated nodes in one connected component of the graph. 

As vehicles’ presence on both roads are independent of each other, the probability of gap out, rp

, is calculated as the product of two probabilities: one for a gap g larger than L on road 2R  and the 

other for a gap larger than L on road 1R within the range g r , where g is the vehicle gap on road

2R . Since the distance headway (or gap) of vehicles is assumed homogeneous along the roads, 

the probability of a gap larger than L on road 1R within a range y , denoted by ( )p y , can be 

calculated recursively by using conditional probability. If we denote by nextg the distance 

headway between the starting point on 1R  and next vehicle along the direction, by noting that

( |{ }) 1nextg y g L  , we have 

1 10

( ) ( ( | )),

( ) ( ) ( ) 1 .

next

L

L

p y E p y g

f t p y t dt f t dt




    
                                            [2] 

Obvious when , ( ) 0y L p y  . Hence, we have 

1 10
( ) ( ) 1 ( ),  ,

( )
0,  .

L
f t p y t dt F L when y L

p y
when y L

     
 


                                    [3] 

Where, ( )if  is the probability density function of the distance headway on road i , whose 

cumulative function is ( )iF . For the gap-out probability of a distance y on road 1R , Equation 3 

means that if no vehicle is present in [0, L], whose probability is 11 ( )F L , there is a gapout; if a 

vehicle is present at distance t  in [0, L] , the failure of detour on 1R  then depends on gapout over 

the remaining length y t , the probability for which is therefore 1( ) ( )f t p y t dt . Note here that 
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t  is the location of the first vehicle from the beginning of the Bernoulli region on road 1R . Figure 

7 illustrates this recursive relation. 

 

Figure 7: Illustration of Equation 1 – Conditional on Next Vehicle. 

The failure (gap out) probability of a Bernoulli region is 2 ( ) ( )r L
p f t p t r dt


  , meaning that 

there is vehicle distance headway larger than L on both roads. If we denote the event of success 

Bernoulli region by S , the expected length of each distance headway or gap associated with one 

Bernoulli region, denoted by [ | ]E g S , can be calculated as follows. 

2 20

2

( ) ( )(1 ( ))
[ | ] .

1 ( ) ( )

L

L

L

tf t dt tf t p t r dt
E g S

f t p t r dt





  


 

 


                                       [4] 

The denominator is the success probability of a Bernoulli region. The probability density 

function 2 ( )f in the numerator divided by the denominator leads to the conditional probability 

density function on no gap-out. The first term in the numerator corresponds to the case of a gap 

smaller than L on 2R ; and the second term refers to the case of a larger than L  gap on road 2R but 

of a success of the according Bernoulli region. If we denote [ ]E g as the expected distance 

headway on road 2R , Equation 4 can be simplified as follows: 
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2

2

[ ] ( ) ( ))
[ | ] .

1 ( ) ( )

L

L

E g tf t p t r dt
E g S

f t p t r dt





 


 




                                              [5] 

Therefore, the expected propagation distance can be approximated by the following: 

2

2

[ ] [ | ](1/ 1)

[ | ](1 )

[ ] ( ) ( )
.

r

r

r

L

r

E D E g S p

E g S p

p

E g tf t p t r dt

p



 




 
 

                                           [6] 

In addition, by using the Bernoulli process, we are able to find the variance of propagation 

distance 2D , 2[ ]V D . Recall the Equation 1, 2 1

N

ii
D H


  , where iH  are distance headways 

indexed from the initial transmitting vehicle. According to previous analysis, iH  is i.i.d. with H , 

whose distribution is the same with g under the event S . By the law of total variance, the 

variance of propagation distance can be obtained. Then the next proposition becomes obvious.  

Proposition 2. The mean and variance of information propagation distance on road 2R may be 

expressed as follows. 

2

2

2

[ ] ( ) ( )
[ ] ,

1 ( ) ( )

L

L

E g tf t p t r dt
E D

f t p t r dt





 


 


  

and 

2
1 1

2

[ ] [ [ | ]] [ ( | )]

[ ] ( ) [ ] ( )

N N

i i
i i

V D V E H N E V H N

E H V N E N V H

 

 

 

 

                                  [7]

 

Where, H has a probability density function as follows: 



 

22 
 

1

2

( ) / (1 ),  ,
( )

( )(1 ( )) / (1 ),  .
r

r

f t p for t L
f y

f t p t r p for t L

 
     

                                   [8] 

With Equation 8, we are able to numerically get [ ]E H and ( )V H . Therefore, Equation 7 can be 

evaluated with numerical method easily. The proposed model can also be applied to the special 

case when there is only one road. Setting 1 0.0  , one can show that Equations 6 and 7 lead to 

the following results. 

Proposition 3. Information propagation along a single road has an expected propagation distance 

and variance as follows. 

20
2

( )
[ ] ,

1 ( )

L
tf t dt

E D
F L





 

and 

2
2 20

2

( )
[ ] ( [ ]) ,

1 ( )

L
t f t dt

V D E D
F L

 



                                        [9]

 

Where, ( )f  and ( )F  are the respective density and cumulative functions of distance headway 

with two roads combined, and D  is the information propagation distance. 

We provide a short explanation. Note that ( ) 1.0p t r  always holds when 1 0  . Substitution of 

2D D  in Equation 6 gives
20

2

( )
[ ] ,

1 ( )

L
tf t dt

E D
F L



  and since N has a Geometric distribution, the 

following equations are easy to obtained: 

2

( ) ( )
[ ] ,    ( ) .

1 ( ) (1 ( ))

F L F L
E N and V N

F L F L
 

 
 

Hence, by Equation 7, we have the expression of ( )V D . 
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Proposition 3 was developed in Wang et al.  (2010). Here by a Bernoulli process, we have 

provided an alternative proof. 

CASE II 

As stated earlier, Case II satisfies such a condition:
3

2
d L . 

In Figure 8, the gap between two consecutive vehicles A and C is larger than L on road 2R as we 

are interested in the gap out probability. B is the leftmost point on road 1R that the vehicle at point 

A on road 2R can reach within a communication range L ; i.e., AB L . E is the furthest point on 

road 1R horizontally left of point C that is able to directly reach point C ; i.e., EC L . D is the 

furthest reach to the right directly from point E on road 1R ; i.e., ED L . In addition,G is the 

rightmost point on road 1R directly reachable by vehicle A , and clearly 2 22BG L d r   . F is 

the leftmost point reachable on road 2R by a vehicle at point E with CF BG . 1E is the leftmost 

point to the right of vehicle C  horizontally that can reach vehicle C . 1C is the rightmost point 

reachable on 2R by point 1E . 2C on road 2R corresponds to point D on road 1R . We have 2CC L . 

Obviously, BE AC and BD AC L  . We still refer to ABDC as a Bernoulli region, although 

with slight notational abuse about points B and D defined earlier. Note that the Bernoulli region 

in Case I has BD AC r  , which is different from Case II due to the different situations. In 

order to take a detour on road 1R  to C on 2R , there are two necessary conditions. First, there must 

be vehicle presence within the range [ , ]B G on road 1R ; otherwise, no vehicle within the section 

of a length L BG left of B is capable of propagating further till beyondG . This first condition 

implies ignorance of information coming from left of point B  on road 1R . Second, vehicles 

cannot gap out within [ , ]G D  in order to assist the propagation. Note that vehicles have 

probabilistic presence on road 1R , given the vehicle gap AC on road 2R . 
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Figure 8: An Approximation Bernoulli Region in Case II. 

There are two cases for one vehicle within the segment [ , ]B G  to propagate information to 

beyond point E , as follows: 

 Information is propagated to a vehicle within the range 1[ , ]E E . In this case, information 

is able to reach vehicle C on road 1R . 

 There is no vehicle within the range 1[ , ]E E , but information is propagated to a vehicle 

within the range 1[ , ]E D . We consider this case as not gapping out on road 2R  

(approximately). Note that in this case, the vehicle at location C may actually be skipped. 

The above discussions conclude that there should be no gap of L  or larger over the distance 

BD  in order for information to detour to the vehicle at point C. As a matter of fact, information 

getting through BD could have come from the vehicle at point A or from vehicles prior to location 

B on road 1R . For maneuverability, we simplify the process by ignoring the information that 

could have come from vehicles on road 1R left of point B . The effect of this ignorance is 

minimized by choosing the larger vehicle density for road 2R . 
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The above discussions simplify the process by assuming that information getting through to a 

vehicle at point within 1E D successfully propagates to the vehicle at point C at a probability 1.  

The assumption could partially compensate for the underestimate of information getting through 

BG  by ignoring that coming from left of point B , as in Figure 8. 

Therefore, the probability of getting through 1R  from vehicle A  to C  is approximated as follows 

by slightly modifying Equation 3, using the fact that 2 22BG L d  and BD AC L  . 

2 22 2 2
1 10
( ) ( ) 1 (2 ),  ,( )

0,  .

L d
f t p y t dt F L d for y Lp y

for y L

      
 


                           [10]

 

In calculation for Case II, the according new formulas in Proposition 2 are as follows: 

2 20
2

2

( ) ( )(1 ( ))
[ ] ,

( ) ( )

L

L

L

tf t dt tf t p t L dt
E D

f t p t L dt





  




 


 

and H has a probability density function as follows: 

1

2

( ) / (1 ),  ,
( )

( )(1 ( )) / (1 ),  .
r

r

f t p for t L
f y

f t p t r p for t L

 
     

 





 

27 
 

CHAPTER 4: 

NUMERICAL TESTS 

The numerical tests are designed to show the propagation distance in relation to the system 

parameters such as communication range, vehicle density, and road separation distance. A 

discrete numerical method is applied to solve the equations for the expectation and variance of 

successful propagation distance. A small step-length h is used for discretization to estimate the 

integrals of function ( )f x ; i.e., the integral
0

( )
a

f x dx is approximated by
0

( )
n

i
f ih h

 . When a  

is sufficiently large; for example, when a includes a vehicle distance headway at a probability of 

almost 1.0, one gets the integration
0

( )
a

f x dx . In our case, we take 30a L . The ( )p t , seen in 

Equations 2 through 8, can be estimated recursively by discretizing the integral and using the 

boundary value (0) 0p  . 

The simulation only takes into account the statistical property of distance headway without the 

consideration of a real mobility. And the communication connectivity is also simulated to be 

instantaneous. The more sophisticated simulation will be studied in the future. 

It is worthwhile to note that when a test instance is constructed, it only reflects the relativity of 

distance and vehicle density. The test instances constructed should cover a range of the relative 

magnitude of parameters. We set the communication range to be a standard unit 1.0. All the 

other lengths are measured against this unit, including the vehicle density. 

This study has tested both the case of Poisson vehicle distribution and other independent vehicle 

distance headway distributions using the formulas developed. 4000 runs of simulation are 

conducted for each instance to benchmark results from the analytical formulas. 

POISSON DISTRIBUTION OF VEHICLES ON THE ROADS 

In testing the formulas for Case I, the density for road 2R was set to 0.2, 0.6, 1.0, 1.5, and 2.0, 

respectively, each corresponding to a set of lower densities on road 1R . Each pair of road 
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densities for both roads had a set of varying road separation distances of 0.1, 0.5, and 0.8, 

respectively. Except for a particular case with a road 1R  density of 0.2, the expectation and 

variance of propagation distance were highly accurate in all instances of Case I. 

The test results for Case II show high accuracy, but slightly poorer than in Case I. For each test 

in Case I, by increasing the road separation distance to 0.9, 0.94, and 0.98, we got corresponding 

instances in Case II. Table 3 through Table 7 in Appendix A provides these results. 

The analytical approximation in case II is generally very close to the simulation results if the 

vehicle density on 1R  is smaller than that on 2R  However, we have a few cases in which both 

roads have high densities, which gives rise to large errors in the calculated numbers compared 

with simulation results, a distinct example of which is seen at 1 2 2.0    and 0.98d  . See 

Table 3 for details. This is most likely attributed to the violation of our assumptions in the 

development of the formulas for Case II. In Case II, the derivation implies that road 2 has a 

longer propagation distance. Based on this assumption, no vehicle left of point B on road 1 in 

Figure 8 is able to transmit the information to vehicles beyond point B . The magnitude of errors 

in Case II may be interpreted as a result of the extent to which this assumption is violated. For 

example, when road separation distance gets closer to the critical value 3 / 2 , the approximation 

errors in Case II become smaller because in this instance; the formulas for Case II depend less on 

the assumption. The reason for less dependence is due to ABDC being closer to the Bernoulli 

region defined in Figure 5. 

GAMMA DISTANCE HEADWAY DISTRIBUTION 

This study also tested a select number of cases in which the vehicle distance headway follows 

Gamma distributions on both roads. We set 2  to 2.0, and 1  to 1.2, 1.0, and 0.8, respectively, 

where i  is the mean distance headway on road iR , {1, 2}i . The road separation is 0.01, 0.1, 0.3, 

0.5, 0.7, and 0.8, respectively. In these cases, we set the variance of vehicle headway on 2R  to 

0.5 times its mean, and 1R  had a variance of vehicle headway equal to its mean. Note that 

Gamma distribution became exponential when the mean and variance were equal. Table 8 and 
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Table 9 in Appendix B show these test results. It appears that formulas in Case I provide good 

estimates for the mean. Analytical variance tends to be larger than from simulation, though the 

difference between them increases with road separation. 

TRUNCATED GAUSSIAN DISTANCE HEADWAY DISTRIBUTION  

This study tested on traffic with distance headway following the truncated Gaussian distribution, 

whose density function was as follows: 

(( ) / )
( ; ) , ,

1 (( ) / )

x
f x a x a

x

  
 


 

 
 

Where, ( ) is Gaussian density function, ( ) Gaussian cumulative function, a the truncation 

point,   the mean, and  the standard deviation of Gaussian distribution. Here a can be set to a 

reasonable value to control the minimum headway allowed. Generally, the smaller the   reaches, 

the higher the density becomes. As stated previously, L was set to 1.0. The coefficient of 

variation, ratio between standard deviation and mean of the distribution was set to 0.8. Table 10 

in Appendix C provides the results of each instance with the analytical values followed by 

simulation values. 

INFORMATION PROPAGATION ALONG TWO ZIGZAG ROADS 

In real application, two roads might not be suitable to for consideration as parallel lines. There is 

a need to test the proposed model in a different geometric structure of the roads. In this section, 

we apply our developed formulas to two parallel zigzag roads, as illustrated in Figure 9. 

The center lines of the two zigzag roads are apart from each other by a distance, d . The actual 

zigzag roads have an angle with the center line. We tested a series of instances with varying 

from 10 to 20 degrees. Each zigzag section was set to 0.8L , where L was the length of 

communication range and was standardized at 1.0. The headway on both roads follows Poisson 

distributions and the successful information propagation distance was measured by two different 

kinds of distance: 1) horizontal distance, measured horizontally from the sender and the last 
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receiver on the same road; and 2) actual curve distance between the sender and the furthest 

receiver. Table 11 through Table 14 in Appendix D, 1  and 2 denote the density on road 1R  and

2R , respectively; for the simulation results, 'Horiz' and 'Curve' denote the horizontal and curve 

distance, respectively. The theoretical results based on the proposed model, denoting by 

'Theoretical (Condensed),' was calculated based on the curve density divided by cos( ) . The 

motivation to do so was that we wanted to check in what manner the approximation worked well. 

 

Figure 9: Propagation along Zigzag Roads. 

From the results, one can figure out that if the horizontal successful propagation distance was 

measured, by using the condensed density, the model worked very well in estimation of both 

expectation and variance for all instances in Case I. However, if the curve distance was 

measured, as became larger, say, up to 20 degrees, the model underestimated the successful 

propagation distance. If the curve density was used, the theoretical results tended to be smaller 

than those when  got larger. For Case II, it was also obvious that when the density on 1R  

became relatively smaller, the theoretical results became more accurate. 

APPROXIMATION TO PROBABILITY DISTRIBUTION OF SUCCESSFUL 
PROPAGATION 

In application, researchers are concerned with the probability distribution of the propagation 

distance. In light of the result in Wang (2007), one may suspect whether the probability 

distribution of propagation distance follows a Gamma type. Therefore, we constructed for each 

case a Gamma distribution by setting the Gamma parameters in such a way that the resulting 

Gamma distribution had the same mean and variance as calculated with our formulas. We then 

graphically compared this approximate Gamma distribution with the simulated results. Although 
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such approach was too heuristic, it helped understand the 'approximate property' of the 

information propagation. 

The simulated frequency distribution and the constructed Gamma distribution showed a good fit 

in general. Two cases are presented as examples. In the first case, the distance headway follows 

an exponential distribution; in the second, the distance headway follows a Gamma distribution. 

The Case of Exponential Distance Headway 

In this case, the headway on each road was assumed to follow an exponential distribution. All the 

parameters are shown in Table 1. The results are shown in Figure 10, where the approximate 

Gamma function is denoted by the blue line and the simulation result frequency distribution is 

denoted by the red line. 

 

Table 1: Parameters for Gamma Approximation to Exponential Headway. 

Parameters for Poisson Headway Distribution 

1 1.2   0.5d   

2 1.5   1.0L   

Moments of Successful Propagation Distance 

Theoretical Mean = 3.1859 Simulation Mean = 3.2927 

Theoretical Variance = 12.9437 Simulation Variance = 13.8804 

Parameters for Gamma Approximation 

Mean of Gamma Distribution = Theoretical Mean of Propagation Distance 

Variance of Gamma Distribution = Theoretical Variance of Propagation Distance 
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Figure 10: Gamma Approximation with Exponential Distance Headway. 

Case of Distance Headway with Gamma Distribution 

The headway on each road is assumed to follow a Gamma distribution to make a more general 

case, and the variance of headway on road 2R equals 0.5 times its mean, and the variance of 

headway on road 1R  equals its mean. The values of parameters can be found in Table 2. The 

results are shown in Figure 11 where the Gamma distribution is denoted by the blue line and the 

simulation is denoted by the red line.  
 

Table 2: Parameters for Gamma Approximation. 

Parameters for Gamma Headway Distribution 

Mean Headway on R1 = 1.0 0.5d   

Mean Headway on R2 = 1.0 1.0L   

Moments of Successful Propagation Distance 

Theoretical Mean = 1.9108 Simulation Mean = 1.8816 

Theoretical Variance = 5.5412 Simulation Variance = 5.3965 

Parameters for Gamma Approximation 

Mean of Gamma Distribution = Theoretical Mean of Propagation Distance 

Variance of Gamma Distribution = Theoretical Variance of Propagation Distance 
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Figure 11: Gamma Approximation when Headway Follows Gamma Distribution. 
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CHAPTER 5: 

CONCLUSIONS 

Information propagation along traffic streams through inter-vehicle communication is an 

important process in the VANETs. This study examined a special case in which a network of two 

parallel highways was present as a step toward addressing information propagation on a discrete 

network. 

This study developed an approximate method based on the Bernoulli process to characterize the 

process of information propagation in terms of their expected value and variance. The 

simulation is used to evaluate the quality of this approximation. According to simulation, our 

developed formulas were highly accurate in almost all cases. The developed formulas were also 

robust, especially in Case I with a road separation distance below 3 / 2  times the transmission 

range, e.g., 3 / 2d L . The derivation in Case I was accurate for Poisson vehicle distribution, 

except for dependence on a weak assumption of independent Bernoulli regions. This weak 

assumption was roughly satisfied in almost all cases if the higher density of the two roads was on 

road 2R . The numerical tests indicated that the correlation between Bernoulli trials was normally 

negligible. Furthermore, when other vehicle headway distributions were applied, the formulas 

showed great robustness and still yielded results of high accuracy. An interesting result was that 

the formulas proposed in Case I took one road as a special case. The proposed formulas for Case 

II in which 3 / 2d L  also performed well, except for a small number of instances that had two 

comparable high densities for both roads and the road separation distance was large. Case II will 

be studied further in future work.  

 

The numerical test also showed an encouraging fit of Gamma distribution to the propagation 

distance distribution. The Gamma curve was defined by the calculated mean and variance 

through our proposed formulas. Another interesting observation was that the ratio between the 

mean and standard deviation of propagation distance was close to 1.0 in cases of large vehicle 

densities, an evidence of the two road case to support a conjecture in Wang (2007) that an 

exponential distribution is the limiting distribution for propagation distance. Note that the 
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presence probability of vehicles may be taken as the final probability after considering hopping 

failure, market penetration, signal conflict, and other factors. Users need to calibrate the 

probability according to practice. In addition, when significant transmission delay takes place, 

explicit consideration of multiple lanes on each road would be of interest. 
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APPENDIX A: 

POISSON DISTRIBUTION OF VEHICLES 

The distance headway distribution was assumed exponential with parameters 1 and 2 on road 1R  

and road 2R , respectively. Clearly, the two parameters reflect the traffic densities on the two 

roads, respectively. In the following tables, both analytical results based on the equations and 

simulation results are provided. In the tables that follow, d denotes the distance between the two 

roads, E the expected propagation distance, and V variance of the propagation distance. 

Furthermore, the numbers for E and V in each instance below start with the analytical value 

followed by its according simulation counterpart. 

Table 3: Instances of Exponential Headway at 2 =2.0. 

2 =2.0 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.2 

E 
3.1113 2.8018 2.3877 2.2633 2.2134 2.2009 

3.0062 2.6694 2.4599 2.2434 2.2808 2.1916 

V 

11.6432 9.5446 7.0530 6.3727 6.1081 6.0438 

10.8335 9.1231 7.2428 6.4460 6.1823 6.5348 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.4 

E 
3.1113 2.8018 2.3877 2.2633 2.2134 2.2009 

3.0062 2.6694 2.4599 2.2434 2.2808 2.1916 

V 

11.6432 9.5446 7.0530 6.3727 6.1081 6.0438 

10.8335 9.1231 7.2428 6.4460 6.1823 6.5348 
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Table 3: Instances of Exponential Headway at 2 =2.0 (Continued). 

2 =2.0 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.6 

E 
3.6960 3.2129 2.5862 2.3517 2.2398 2.2029 

3.7140 3.1669 2.6131 2.4177 2.3431 2.2929 

V 
16.1372 12.3752 8.2113 6.8543 6.2467 6.0544 

17.1476 11.8683 8.1146 7.8916 6.4712 6.2594 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.8 

E 
4.3863 3.7093 2.8551 2.4821 2.2834 2.2054 

4.3901 3.7136 2.8347 2.5968 2.4435 2.3348 

V 
22.3380 16.2562 9.9120 7.5969 6.4797 6.0681 

22.4843 16.0576 9.7043 8.3828 7.4897 7.3756 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.0 

E 
5.2010 4.3036 3.1991 2.6579 2.3468 2.2090 

5.1607 4.2211 3.1708 2.7975 2.6367 2.5097 

V 
30.8972 21.5632 12.3064 8.6551 6.8265 6.0867 

30.9821 19.6625 12.2637 9.6766 8.8439 7.9201 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.2 

E 
6.1623 5.0113 3.6258 2.8827 2.4323 2.2138 

6.1833 4.9362 3.6066 3.1974 3.0978 2.6989 

V 
42.7192 28.8155 15.6130 10.1024 7.3078 6.1126 

39.9055 29.6488 15.7733 12.8741 11.9535 9.1578 
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Table 3: Instances of Exponential Headway at 2 =2.0 (Continued). 

2 =2.0 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.4 

E 
7.2966 5.8511 4.1455 3.1609 2.5418 2.2206 

7.0643 5.6454 4.1856 3.4504 3.2973 2.9280 

V 
59.0621 38.7316 20.1396 12.0378 7.9472 6.1480 

58.6426 38.3815 20.6432 14.7272 14.1258 11.3427 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.6 

E 
8.6356 6.8452 4.7712 3.4979 2.6772 2.2296 

8.6578 6.8334 4.6095 4.1060 3.7288 3.3272 

V 
81.6785 52.3054 26.3137 14.5944 8.7735 6.1959 

86.7528 52.5455 26.1259 23.6484 18.1198 15.8284 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.8 

E 
10.2167 8.0206 5.5190 3.9003 2.8407 2.2415 

10.0141 8.0166 5.5345 4.6526 4.3466 3.6814 

V 
113.0139 70.9145 34.7279 17.9493 9.8216 6.2589 

105.0044 69.7134 34.2559 26.4321 22.4226 17.2950 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =2.0 

E 
12.0844 9.4093 6.4087 4.3760 3.0344 2.2567 

11.9310 9.4989 6.4212 5.2115 4.9744 4.1341 

V 
156.4857 96.4719 46.2018 22.3378 11.1355 6.3401 

148.8270 94.0844 48.9465 33.7764 30.0973 22.5572 
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Table 4: Instances of Exponential Headway at 2 =1.5. 

2 =1.5 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.2 

E 
1.5909 1.4914 1.3601 1.3330 1.3248 1.3241 

1.5857 1.4734 1.3512 1.3444 1.2504 1.3641 

V 
3.5498 3.1431 2.6463 2.5492 2.5197 2.5177 

3.5836 3.0704 2.6561 2.4956 2.3066 2.6697 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.4 

E 
1.9102 1.7079 1.4448 1.3650 1.3326 1.3254 

1.8504 1.7163 1.4866 1.3631 1.3638 1.3455 

V 
4.9905 4.0507 2.9668 2.6661 2.5475 2.5229 

4.9656 4.0167 3.0003 2.4637 2.7275 2.5846 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.6 

E 
2.2898 1.9777 1.5776 1.4231 1.3493 1.3269 

2.2175 1.9910 1.6233 1.4202 1.4391 1.3648 

V 
6.9873 5.3281 3.5051 2.8860 2.6080 2.5289 

6.7457 5.4012 3.7979 2.8366 2.9953 2.7851 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.8 

E 
2.7401 2.3078 1.7609 1.5108 1.3775 1.3288 

2.6796 2.2873 1.7607 1.5999 1.5299 1.4206 

V 
9.7504 7.1047 4.3145 3.2334 2.7119 2.5362 

9.6620 6.8648 4.5104 3.5000 3.3558 2.8838 
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Table 4: Instances of Exponential Headway at 2 =1.5 (Continued). 

2 =1.5 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.0 

E 
3.2738 2.7070 1.9990 1.6308 1.4192 1.3313 

3.3438 2.6597 2.0260 1.7561 1.6595 1.4942 

V 
13.5699 9.8603 5.4757 3.7386 2.8696 2.5457 

14.6653 9.3438 5.8894 4.7211 4.0426 3.1665 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.2 

E 
3.9053 3.1859 2.2977 1.7864 1.4767 1.3347 

3.7922 3.2927 2.3335 2.0241 1.8102 1.6269 

V 
18.8475 12.9437 7.1038 4.4418 3.0924 2.5583 

17.5766 13.8804 7.7589 5.7811 5.0603 3.9668 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.4 

E 
4.6522 3.7593 2.6647 1.9812 1.5500 1.3392 

4.5355 3.6857 2.6114 2.3179 2.0486 1.8385 

V 
26.1395 17.5985 9.3606 5.3964 3.3931 2.5752 

24.7830 16.5469 8.9771 7.9980 6.1810 5.4124 
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Table 5: Instances of Exponential Headway at 2 =1.0. 

2 =1.0 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.2 

E 
0.8789 0.8174 0.7407 0.7253 0.7203 0.7203 

0.8809 0.8219 0.7308 0.7316 0.6976 0.7084 

V 
1.3878 1.2109 1.0085 0.9707 0.9575 0.9583 

1.4658 1.2166 0.9456 0.9976 0.9541 0.9878 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.4 

E 
1.0723 0.9488 0.7929 0.7448 0.7249 0.7214 

1.0714 0.9657 0.8019 0.7526 0.7396 0.7266 

V 
2.0005 1.5995 1.1496 1.0219 0.9690 0.9623 

1.9719 1.7040 1.1348 1.0275 1.0360 1.0293 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.6 

E 
1.3057 1.1175 0.8781 0.7814 0.7348 0.7227 

1.2590 1.1373 0.8873 0.8314 0.8244 0.7585 

V 
2.8618 2.1661 1.3994 1.1218 0.9947 0.9667 

2.6795 2.2642 1.4475 1.3145 1.2957 1.0434 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.8 

E 
1.5863 1.3288 0.9993 0.8380 0.7521 0.7243 

1.5416 1.3634 0.9877 0.9298 0.8625 0.7557 

V 
4.0670 2.9756 1.7909 1.2856 1.0402 0.9718 

3.8586 3.1107 1.7473 1.6350 1.3956 1.1332 
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Table 5: Instances of Exponential Headway at 2 =1.0 (Continued). 

2 =1.0 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =1.0 

E 
1.9226 1.5890 1.1609 0.9177 0.7781 0.7262 

1.9858 1.5901 1.0878 0.9856 0.9231 0.8432 

V 
5.7473 4.1179 2.3717 1.5320 1.1112 0.9778 

6.0198 4.1090 2.2898 1.8237 1.6483 1.3757 

 

Table 6: Instances of Exponential Headway at 2 =0.6. 

2 =0.6 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.2 

E 
0.4616 0.4256 0.3826 0.3746 0.3714 0.3718 

0.4625 0.4349 0.3895 0.3808 0.3999 0.3742 

V 
0.5626 0.4822 0.3852 0.3817 0.3736 0.3768 

0.5507 0.5260 0.4185 0.3912 0.4303 0.3642 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.4 

E 
0.5746 0.5027 0.4139 0.3864 0.3740 0.3732 

0.5752 0.4833 0.4115 0.3907 0.3795 0.3908 

V 
0.8412 0.6615 0.4620 0.4084 0.3795 0.3821 

0.5266 0.6441 0.5065 0.4147 0.4103 0.3934 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.6 

E 
0.7142 0.6056 0.4673 0.4091 0.3799 0.3746 

0.7300 0.5955 0.4662 0.4205 0.4057 0.3754 

V 
1.2436 0.9366 0.5912 0.4605 0.3921 0.3877 

1.2706 0.8762 0.6109 0.5146 0.4454 0.3619 
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Table 7: Instances of Exponential Headway at 2 =0.2. 

2 =0.2 

 Case I Case II 

d  0.1 0.5 0.8 0.9 0.94 0.98 

1 =0.2 

E 
0.2462 0.2380 0.2338 0.2370 0.2344 0.2362 

0.1366 0.1201 0.1125 0.1097 0.1113 0.1041 

V 
0.1337 0.1118 0.0894 0.1053 0.0872 0.1058 

0.1369 0.1007 0.0874 0.0827 0.0829 0.0789 
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APPENDIX B: 

GAMMA DISTRIBUTION OF THE VEHICLE HEADWAY 

The headway on each road was assumed to follow a Gamma distribution with the parameters 

shown in Table 8. The theoretical and simulation results are shown in Table 9. 

Table 8: Configuration of Gamma Distribution. 

On Road 1  Mean of Gamma Distribution: 1  

Variance of Gamma Distribution: 1  

On Road 2  Mean of Gamma Distribution: 2  

Variance of Gamma Distribution: 20.5  

 

Table 9: Analytical and Simulation Results. 

2 =1.0 

d  0.01 0.1 0.3 0.5 0.7 0.8 

1 =1.2 

E 
2.0091 1.9950 1.8726 1.6380 1.3361 1.1807 

2.0073 1.9935 1.8924 1.6563 1.3195 1.1819 

V 
6.0299 5.9556 5.3284 4.2145 2.9533 2.3791 

6.3135 5.7853 5.6661 4.1474 3.0711 2.3346 

1 =1.5 

E 
1.6163 1.6072 1.5260 1.3611 1.1380 1.0235 

1.7259 1.6868 1.6146 1.3781 1.1591 1.0294 

V 
4.1071 4.0663 3.7099 3.0324 2.2139 1.8365 

4.8706 4.6104 4.4811 3.2178 2.3368 1.8945 

1 =1.8 

E 
1.3556 1.3496 1.2956 1.1803 1.0154 0.9303 

1.4862 1.4275 1.4163 1.2126 0.9954 0.9105 

V 
3.0120 2.9883 2.7773 2.3519 1.8012 1.5426 

3.8272 3.4366 3.3335 2.5664 1.8260 1.6399 





 

53 
 

APPENDIX C:  

TRUNCATED GAUSSIAN DISTRIBUTION OF THE  

VEHICLE HEADWAY 

 

Table 10: Instances of Truncated Gaussian Headway. 

2 =0.5,   = 0.01 

 Case I Case II 

d  0.2 0.5 0.8 0.9 0.94 0.98 

1 =0.2 

E 
4.0664 3.9808 3.7870 3.5697 3.6107 3.6720 

4.3995 4.2121 3.8474 3.7832 3.7621 3.6763 

V 
19.1593 18.4042 16.7506 14.9849 15.3117 15.8053 

23.8971 23.0550 17.1167 15.4219 16.3400 16.0258 

1 =3.0 

E 
4.2193 4.0975 3.8167 3.4963 3.5556 3.6446 

4.5921 4.4444 3.7313 3.6375 3.6791 3.7320 

V 
20.5435 19.4358 16.9992 14.4097 14.8738 15.5836 

23.9911 23.0739 16.0244 15.9636 16.6468 16.4426 

=1.0,   = 0.01 

 Case I Case II 

d  0.2 0.5 0.8 0.9 0.94 0.98 

1 =3.0 

E 
0.5395 0.5046 0.4535 0.3362 0.3638 0.4020 

0.5732 0.5185 0.4518 0.4178 0.4334 0.4471 

V 
0.7169 0.6353 0.5268 0.2559 0.3186 0.4072 

0.8505 0.6933 0.5448 0.4534 0.4773 0.5318 

1 =2.0 

E 
0.6247 0.5634 0.4707 0.2595 0.3088 0.3763 

0.6858 0.5716 0.4660 0.4461 0.4360 0.4557 

V 
0.9238 0.7701 0.5633 0.0896 0.1961 0.3473 

1.2108 0.8508 0.5561 0.5358 0.5116 0.5521 
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APPENDIX D:   

INFORMATION PROPAGATION FOR TWO ZIGZAG ROADS 

From Table 11 to Table 14, the simulation results of information propagation were measured in 

two ways: 1) horizontal distance, measured horizontally from the sender and the last receiver on 

the same road; and 2) curve distance, measured along the curve. They are denoted by 'Horiz' and 

'Curve,' respectively. Theoretical results are also provided in terms of projected density; i.e., the 

curve density divided by cos( ) . 
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Table 11: Instances of Exponential Headway on ZigZag Roads for 1 =0.5. 

1 =0.5, 2 =2.0 

 Case I Case II 

d  0.3 0.5 0.7 0.9 

  =10 Horiz E 3.3664 3.0594 2.7132 2.3175 

V 13.7026 11.6453 9.1897 6.5161 

Curve E 3.4183 3.1066 2.7551 2.3532 

V 14.1286 12.0073 9.4754 6.7087 

Theoretical 

(Condensed) 

E 3.3689 3.1007 2.7431 2.3743 

V 13.5001 11.5346 9.1449 6.9555 

  =15 Horiz E 3.3509 3.1932 2.8206 2.5264 

V 13.4040 12.1114 9.3242 7.8947 

Curve E 3.4691 3.3058 2.9201 2.6155 

V 14.3663 12.9809 9.9936 8.4616 

Theoretical 

(Condensed) 

E 3.5213 3.2382 2.8608 2.4696 

V 14.6347 12.4809 9.8666 7.4638 

  =20 Horiz E 3.6461 3.3592 2.9912 2.6634 

V 16.3080 13.5451 10.5167 8.3137 

Curve E 3.8801 3.5747 3.1831 2.8344 

V 18.4684 15.3395 11.9098 9.4150 

Theoretical 

(Condensed) 

E 3.7539 3.4479 3.0401 2.6141 

V 16.4545 13.9953 11.0177 8.2688 
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Table 12: Instances of Exponential Headway on ZigZag Roads for 1 =0.7. 

1 =0.7, 2 =2.0 

 Case I Case II 

d  0.3 0.5 0.7 0.9 

  =10 Horiz E 3.9288 3.5479 3.0228 2.5199 

V 18.0247 15.2847 11.3196 8.5763 

Curve E 3.9894 3.6026 3.0694 2.5588 

V 18.5879 15.7599 11.6716 8.8429 

Theoretical 

(Condensed) 

E 3.9664 3.5758 3.0673 2.4898 

V 18.4081 15.1225 11.3109 7.6142 

 =15 Horiz E 4.0655 3.5859 3.1493 2.5967 

V 19.5763 15.0090 12.5803 8.3987 

Curve E 4.2089 3.7124 3.2604 2.6883 

V 20.9818 16.0866 13.4514 9.0017 

Theoretical 

(Condensed) 

E 4.1572 3.7440 3.2068 2.5938 

V 20.0693 16.4498 12.2629 8.1962 

 =20 Horiz E 4.3199 3.8464 3.2776 2.9147 

V 21.7084 17.3916 13.4926 9.7362 

Curve E 4.5971 4.1257 3.4879 3.1017 

V 24.5842 19.6955 15.2800 11.0259 

Theoretical 

(Condensed) 

E 4.4496 4.0015 3.4199 2.7521 

V 22.7546 18.5891 13.7913 9.1223 
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Table 13: Instances of Exponential Headway on ZigZag Roads for 1 =1.0. 

1 =1.0, 2 =2.0 

 Case I Case II 

d  0.3 0.5 0.7 0.9 

 =10 Horiz E 4.9275 4.4419 3.7132 2.9614 

V 26.7850 22.0993 16.4029 11.0786 

Curve E 5.0035 4.5105 3.7705 3.0071 

V 27.6178 22.7864 16.9129 11.4231 

Theoretical 

(Condensed) 

E 5.0783 4.4749 3.7125 2.7508 

V 29.4708 23.1713 16.2638 9.2081 

 =15 Horiz E 5.2089 4.6258 3.7804 3.1169 

V 30.5780 24.7879 16.7966 11.8781 

Curve E 5.3927 4.7890 3.9138 3.2268 

V 32.7734 26.5676 18.0025 12.7309 

Theoretical 

(Condensed) 

E 5.3451 4.7042 3.8966 2.8745 

V 32.4157 25.4158 17.7728 9.9713 

 =20 Horiz E 5.6613 4.9242 3.9747 3.1638 

V 35.5937 27.7942 17.8093 11.2393 

Curve E 6.0246 5.2402 4.2297 3.3669 

V 40.3090 31.4762 20.1686 12.7282 

Theoretical 

(Condensed) 

E 5.7563 5.0573 4.1793 3.0636 

V 37.2323 27.0738 20.2211 11.1960 
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Table 14: Instances of Exponential Headway on ZigZag Roads for 1 =1.5. 

1 =1.5, 2 =2.0 

 Case I Case II 

d  0.3 0.5 0.7 0.9 

 =10 Horiz E 7.6225 6.3632 5.3606 3.8998 

V 63.4701 46.7651 33.3066 18.7436 

Curve E 7.7401 6.4614 5.4433 3.9600 

V 65.4435 48.2191 34.3421 19.3263 

Theoretical 

(Condensed) 

E 7.6912 6.6145 5.3065 3.4539 

V 65.2747 48.8942 32.1199 14.2038 

 =15 Horiz E 7.9230 6.9048 5.5446 4.1859 

V 66.3784 52.8162 33.9887 20.7906 

Curve E 8.2024 7.1484 5.7402 4.3336 

V 71.1441 56.6083 36.4290 22.2833 

Theoretical 

(Condensed) 

E 8.1539 7.0022 5.6079 3.6311 

V 72.9145 54.4267 35.6033 15.5652 

 =20 Horiz E 8.8628 7.3733 5.9583 4.4887 

V 88.2312 60.8332 42.0374 22.6167 

Curve E 9.4316 7.8464 6.3407 4.7767 

V 99.9195 68.8921 47.6062 25.6128 

Theoretical 

(Condensed) 

E 8.8751 7.6049 6.0754 3.9042 

V 85.6677 63.6214 41.3629 17.7853 

 


