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ABSTRACT 

This report demonstrates that the probability of 
violating a "not to be exceeded more than once per year", 
one-hour air quality standard can be bounded from above. 
This result represents a significant improvement over previous 
methods of ascertaining the impacts of pollution sources. 
Such methods essentially estimated the expected annual maximum 
concentration and then compared the estimate to that 
concentration "not to be exceeded more than once per year". 
The probabilistic method presented in this report is easy to 
use, inexpensive to implement, and it directly addresses the 
question of the likelihood of violating an air quality 
standard. Furthermore, employment of this probabilistic 
method eliminates the need for the subjective inputs and the 
subjective analyses of results which characterize the so-called 
"worst case" methods of determining air quality impact. 

iii 
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A PROCEDURE FOR ESTIMATING THE FREQUENCY DISTRIBUTION 
OF CO LEVELS IN THE MICRO-REGION OF A HIGHWAY 

by 

William A. Carpenter 
Faculty Research Scientist 

INTRODUCTION 

The U. S. Environmental Protection Agency (EPA), under 
the authority of the Clean Air Act of 1970 as amended, recuires 
highway agencies to submit to it all proposals for new highway 
facilities for environmental review prior to construction. 
The environmental review process includes an assessment of the 
impact of carbon monoxide (CO) on the micro-region of the 
proposed highway facility. 

The one-hour national ambient air quality standard 
(NAAQS) for CO, as presented in the Federal Register (1971), 
is "40 milligrams per cubic meter (35 ppm) maximum one-.hour 
concentration not to be exceeded more than once per year". 
If an environmental review concludes that a proposed project 
will violate the one-hour NAAQS for CO, then the EPA may 
prohibit construction of the project. Thus the assessment 
of the CO impact of a proposed highway facility can have very 
significant economic and environmental consequences. If a relatively clean facility were incorrectly assessed as being 
environmentally unacceptable, the potential economic gains 
derivable from the facility would be lost; while if a relatively 
dirty facility were incorrectly assessed as being environmentally 
acceptable, the air quality in the micro-region of the facility 
would be damaged. 

Air pollution levels are largely subject to the random 
influences of wind speed, wind direction and atmospheric 
turbulence. Thus the question of the environmental acceptability 
of a proposed facility with respect to the NAAQS for CO 
cannot be answered explicitly. The random nature of pollution 
levels limits statements concerning their magnitude to 
statements concerning their distributions. 
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Previous work on the problem of assessing the CO impact 
of a proposed facility has centered on fitting observed or 
simulated pollution levels to some distribution function such 
as the lognormal and making predictions about the order 
statistics from such a distribution. In 1965, Zimmer and 
Larsen (1965) cited empirical evidence from one-year data 
histories from Chicago, Cincinnati, Los Angeles, New Orleans, 
Philadelphia, San Francisco: and Washington, D. C., showing 
that pollution levels for a number of air pollutants were 
approximately lognormally distributed for all averaging times. 
In 1967, Larsen et al. (1967) presented empirical results from 
the analysis of five-year data histories from these same cities 
(excluding New Orleans) which again demonstrated that pollutant 
concentrations were approximately lognormally distributed for 
all cities for all averaging times. In 1971, the EPA published, 
as part of its air pollution series, a manual by Larsen (1971) 
in which he suggests that the expected annual maximum concentration, 
which he estimates as the exponential of the maximum order 
statistic from a normal distribution, be used as the design. 
value when determining control strategies and implementation 
plans. 

Later, Patel (1973) noted that in making the above 
suggestion Larsen had neglected the sequential dependence of 
air pollution levels, and had reversed the order of expectation 
and exponentiation in the determination of the maximum order 
statistic. Thus, Patel stated, Larsen's calculation of the 
expected annual maximum concentration, which was based on the 
assumption of a sequence of mutually independent, normally 
distributed random variables, was in error. In his response 
Larsen (1973) agreed that pollution levels are sequentially 
dependent, but argued that the use of his model was justified 
because it was an empirical model and because it was especially 
helpful for calculating a design value. Larsen also pointed 
out that by using the expected annual maximum rather than the 
expected annual second-maximum as the design value, his method 
would tend to minimize the frequency of violating the standards. 
Larsen also claimed in his response that the interchange of 
expectation and exponentiation would not produce significant 
errors. In a later article Larsen (1974) said that the data 
suggested his method underpredicted the expected annual 
maximum about as often as it overpredicted it and, therefore, 
hismethod was the recommended one. In commenting on the 
Larsen-Patel discussion, Neustadter and Sidik (1974) presented 
the results of a Monte Carlo simulation which indicated that 
for 24-hour averaged pollution levels (i.e., a yearly sample 
size of 365), Larsen's "expected annual maximum" could over- 
predict the observed average annual second-maximt• by from 
63% to 117%. 



In the Proceedinqs of the Symposium on Statistical 
Aspects of Air Quality Data (1974), Gifford, Benarie, Lynn and 
Saltzman all supported-the use of the lognormal distribution. 
Gifford (1959, 1974) presented a justification for the lognormal 
distribution in urban areas containing many sources by 
postulating that sequential air pollution levels in such areas 
constitute a first order multiplicative stochastic process. 
Such a process reduces to a first order autoregressive process 
in the logarithm of concentratien and thus, from the Central 
Limit Theorem, the logarithm of concentration will be 
normally distributed. Benarie (1974) presented empirical 
evidence from southwest France indicating that air pollution 
levels were approximately lognormally distributed, and that 
the geometric standard deviation of wind velocity radially 
from a point source compared within a factor of about 2 to the 
geometric standard deviation of the monitored pollution levels. 
Lynn (1974) compared a number of frequency distributions with 
respect to their ability to fit observed urban air quality 
data. He concluded that while none of the theoretical 
distribution functions studied was obviously superior, the two- 
and three-parameter lognormal distributions were convenient 
to use and produced a reasonable fit of the data. Saltzman 
(1974) also showed that his data tended to fit a lognormal 
distribution. 

Pollack (1975), in drawing on the data and results of 
this symposium for his report, concluded that the lognormal 
distribution-is an acceptable approximation to the distribution 
of pollutant levels in urban areas in the absence of nearby 
strong point sources. 

Bencala and- Seinfeld (1976) note .that several common 
distribution functions can be used to fit air pollution data, 
with the lognormal distribution being the most popular. They 
argue that the lognormal character of air pollution data can 
be partially justified by the approximate lognormality of 
radial wind speeds, and that, even though the wind speed 
distribution could not itself totally explain the distribution 
of pollutants, the lognormal distribution function is a useful 
approximation to the complex distribution of pollutant levels. 

In 1975, Kalpasanou and Kurchatova (1976) reported 
that the lognormal distribution did not fit their air pollution 
data from Sofia, Bulgaria, as measured by goodness-of-fit 
tests. This result, as later explained by Mage and Ott 
(1979), was due to the fact that the "fit" of the lognormal 
distribution as used by Larsen and others was on an 
"engineering" basis rather than on a "statistical" basis. 



Air pollution data cannot be said to be lognormally distributed 
on the basis of goodness-of-fit tests; however, their distribution 
functions do plot as approximate straight lines on lognormal 
probability paper, which has led many investigators to assume 
that the lognormal distribution is an acceptable approximation. 

Mage and Ott (1975) and Ott and Mage (1976) hypothesize 
that air pollution data can be fitted (in an engineering sense) 
by a censored three-parameter lognormal distribution. They 
show, using data from ten studies of air quality, that the 
censored three-parameter, lognormal distribution produces a 
better fit, in the squared error sense, to the data than does 
the standard two-parameter lognormal distribution function. 
Larsen subsequently (1977) proposed that air pollution data 
be modeled as variables from a three-parameter lognormal distri- 
bution. However, as later observed by Mage and Ott (1978), 
Larsen did not use the censored model in his 1977 paper and 
thus had to consider negative pollution values which altered 
his determination of the mean concentration. 

Snee and Pierrard (1977) pointed out that the annual 
average concentration was less subject to estimation errors than 
were the tail percentiles of observed data, and that the 
coefficient of variation of lognormal air pollution data seemed 
to be constant at about 0.5. Thus they proposed determining 
the expected annual maximum concentration from the lognormal 
distribution using the annual average concentration and a 
coefficient of variation of 0.5 to determine the parameters 
of the supposed underlying lognormal distribution. 

Turner (1974) was the first to address the problem-of 
predicting the impact of a proposed rather than an existing 
facility. He suggested using simulation to develop a simulated 
data base from which one could extract.the annual maximum 
pollution level. Benarie (1974) and Venkatram (1978) have 
noted that such a simulation would be excessively expensive. 
Kumar et al. (1976) have suggested a method for assessing the 
impact of a proposed facility using the ideas developed by 
Larsen. Their approach is to predict the annual mean and mean 

square concentrations and use these to estimate the parameters 
of the supposed underlying lognormal distribution. They 
suggest that the annual mean and mean square concentrations 
could be efficiently calculated using a climatological weighting 
scheme. (For instance, see Calder [1971]). However, they 
made the same independence assumption made by Larsen in order 
to estimate the expected annual maximum concentration from the 
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supposed underlying lognormal distribution. And the appropri- 
ateness of comparing an expected annual maximum to a standard 
based on the annual second-maximum is under question. Tikvart 
and Freas (1977) and Venkatram (1979) have proposed other 
simulation and distribution fitting methods, which again address 
the problem by finding some sort of order statistic to compare 
to the appropriate air pollution standard. These methods also 
rely on the independence assumption made by Larsen. 

Hirtzel and Quon (1979), in analyzing data on one- 
hour CO concentrations in Chicago, found a high degree of 
persistent correlation among successive values of one-hour CO 
concentrations. This sequential dependence, they explain, 
increases the variability of the error of estimate of the 
annual mean concentration and other air quality parameters. 
Thus the sequential dependence of air pollution levels is 
responsible for increased uncertainty in the parameters of 
distributions fitted to real or simulated air pollution data, 
and is also responsible for the error resulting from the use 
of results for independent observations to estimate pollution 
order statistics. 

Time series analysis as an alternative solution to 
the problem has not been extensively pursued, largely because 
of the resources needed to determine the parameters of a time 
series model and the uncertainty in both the chosen model and 
its parameters which would be manifested in the resulting 
estimate of an annual order statistic or probability of 
violating an air quality standard. 

Other methods for estimating the impact of a proposed 
highway facility are the worst-case methods such as that proposed 
by Habegger and Wolsko (1974). These methods consist of making 
a single estimate of the pollution level, generally using a 
Gaussian dispersion model with source, background, and 
meteorological input parameters intended to maximize the 
estimated pollution level, which is then compared to the air 
quality standard. Just as the practice of comparing the maximum 
order statistic to a standard based on the annual second-maxinLum 
has been questioned, the practice of comparing the worst-case 
order statistic to such a second-maximum standard is also 
questionable. In particular, the NAAQS do not specify any 
limits on maximum pollution levels. Furthermore, because the 
source, background, and meteorological input parameters for 
worst-case analyses are subjective estimates, such analyses 
yield only rule-of-thumb estimates of environmental impact. 
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PURPOSE 

From the work that has been done in determining the 
environmental acceptability of a proposed highway facility, 
two major problems are evident. The first is the assumption 
of the independence of sequential pollution levels in light 
of the high serial correlations which have been documented for 
atmospheric pollution levels, and the second is the general 
practice of determining the acceptability of a proposed 
highway facility by comparing the maximum order statistic to 
a standard which is based on the annual second-maximum. 
The object of this report is to develop a method for determining 
the CO impact of a proposed highway facility which does not 
require the independence assumption, the lognormal (or any 
other distribution function) assumption, or the comparison of 
an order statistic to the standard. 

Since pollution levels are random variables it would 
be natural to answer the question of the environmental 
acceptability of a proposed facility with respect to CO by 
estimating the probability that such a facility would violate 
the one-hour NAAQS for CO in any given year. Estimating the 
impact of a proposed facility probabilistically would 
eliminate the need for rule-of-thumb comparisons of order 
statistics with the standard. The need for the generally 
applied assumption of sequential independence results from 
the fact that we are generally unable to describe mathematically 
the joint probability distributions of one-year sets of 
pollution levels. This report presents a method of determining 
an upper bound, over all joint probability distribution 
functions which describe positively correlated sequential 
pollution levels, on the probability that a proposed highway 
facility would violate the one-hour NAAQS for CO. While a 
distribution-fitting process such as Larsen's could be employed 
to evaluate this derived upper bound, this report, will develop 
a procedure for evaluating this upper bound which will have a 
much smaller standard error of estimate than would be obtained 
by using a distribution-fitting method. 

The next section of this report describes the 
development of the upper bound on the probability of violating 
a one-hour standard not to be exceeded more than once per 
year. Next is presented a procedure for evaluating this upper 
bound, and then the sensitivity of this procedure to both 
random errors in estimation and to true changes in input 
conditions is compared to the sensitivity of the probability 
of violation determined using a distribution-fitting method 
such as Larsen's. 
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AN UPPER BOUND ON THE PROBABILITY OF VIOLATION 

This section demonstrates that the expected number of 
hours per year that the pollution level will exceed the one- 
hour standard is sufficient to establish an upper bound on 
the probability that a proposed facility will violate the 
one-hour NAAQS for CO. The demonstration entails an examination 
of the probabilistic behavior of the sequentially dependent 
pollution levels throughout a year. 

A General Case Uppe.r_Bou_n d 

Let X(t) be an indicator function for hour t (t=l,2,...T) 
such that X(t) 1 if the pollution level at time t is greater 
than the prescribed standard and X(t) 0 otherwise. 

T 
Let Y(T) 7. X (j); then the probability of violating the 

j=l 

NAAQS is the probability that Y(T) >2, or 

P(Violation) P[Y(T)>2] I-P[Y(T)=0] P[Y(T)=I], ---(I) 

where P[Y(T)=0] P[X(t) 0, for all t 1,2,3 ..T], ---(2) 

and 
T 

P[Y(T) i] Z P[X(j) 1 and X(t) 0 for all 
j=l 

t @j,t=l,2,...T] ---(3) 

We see from equations (1,2,3) that a complete determination of 
P(Violation) requires a knowledge of the joint distribution of 
the X(t)'s for the stochastic process [X(t) ,t=l,2,...T]. 

Let us consider, for a moment, the effect of the history 
of the stochastic air pollution process up until time t-i on 

the state of the process X(t) at time t. 
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We will assume that the physical process generating the pollution 
level at time t is a persistant process (i.e., that the 
pollution level at time t is influenced by past levels through 
the persistance of the factors which generated the past levels). 
Thus we write 

p[x(t)=llXt-=0] 
_-- p[X(t)=IIX(1)=...X(t-I)=0]< 

p[x(t)=iIxt+=0]---P[X(t)=iIx(t+l)=...X(T)=0]< 

Pl (t) ---P [X (t)=l] (4) 

which states that the probability of exceeding the standard, 
given that the standard has not been exceeded in the past, 
is bounded above by the probability the standard was exceeded 
at time t, given that it was not exceeded after time t, which 
is then itself bounded above by the probability of exceeding 
the standard at time t, given no information about the state of 
the process at times other than t. (Note that the P](t) are 
assu/ned to be knowns, while the conditional probabilities are 
assumed to be unknowns.) 

The probability of being in the violating or "l" state 
at time t is very small in any practical problem. Thus 
!-P (X (t) =l) can be approximated from above by exp {-P [X (t)=l] }. 
If we assume that exp {-P[X(t)=l]} is a closer approximation 

to I-P[X(t)=I] than l-P[X(t)=liXt-=0]° is for all t>l, then we 

can write 

{I-P[X(t)=IIXt--0]}- {I-P[X(t)=I]}> 

exp {-P [X t) =l } {l-P [X (t) =l] }, 

which implies, for all t>l, that 

[l-P[X(t)=llXt-=0] } > exp {-P [X t) =l }. (5) 
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Although equation (5) does not hold for t=l, since 

[l-P l(t) < exp [-Pl(t) 

the error of approximation at t=! is very small for small Pl(t) 
and thus we assume, for T very large, that 

T T 
• 

{l-P[X(t)=iIxt-=0]} 
> • exp[-Pl(t) ]. 

t=l --t=! 
---(6) 

From equations (2,6) we can write, using the chain 
rule of probability, that 

T 
P[Y(T)=0] •P[X(t)=0 

t=l 

T 

• {I-P [X (t) =If xt-=0] } 
t=l 

T 
>_ • exp[-P 

1 
(t) 

t=l 

T 
exp[- 7,p (t)] exp(-l) 

t=l 1 ---(7) 

T 
where I Z Pl(t) is the expected number of times that X(t) 

t=l 
will exceed the standard in T tries. Recalling equation (i), 
we see that 

P(Violation) < I-P [Y (T) =0 and 



thus from equation (7), the probability of violating the 
standard may be bounded from above as 

P(Violation) < l-exp(-l) ---(8) 

While equation (8) represents an upper bound on the 
probability that a proposed facility will violate the NAAQS, 
a tighter bound would result if we could incorporate P(Y(T)=I), 
the probability of exceeding the prescribed standard value 
exactly once in a year. 

An Hpper Bound Using. the Markovian Assumption 

Pollack (1975) has presented empirical evidence from 
hourly carbon monoxide studies which shows tha.t the partial 
autocorrelation function of air pollution levels is generally 
large for a one-hour lag time but is not significantly:different 
from zero for lags greater than one hour. Thus he claims that 
the stochastic process of sequential air pollution levels is 
adequately modeled as a first order Markov process. Gifford 
(1974) has also suggested that sequential air pollution levels 
constitute a first order process. We will assume that the 
indicators X(t) may be modeled adequately as a discrete Markov 
chain; i.e., that the stochastic process (X(t), t=l,2...T) 
has the property that the conditional distribution of 
X(t+l) given X(1), X(2) ...X(t) is equal to the conditional 
distribution of X(t+l) given only X(t), 

P[X(t+I)=jlX(1) ,X(2)...X(t)]=P[X(t+l)=jIX(t)]. ---(9) 

We will now show that by modeling the stochastic air 
quality process as a discrete Markov chain, we can express both 
P(Y(T)=0) and P(Y(T)=I) as functions of only the P (t) 's and 
a variable •, which will be defined next. We 

willlthen 
determine the maximum of P(Violation) over all valhes of R 
to determine the desired upper bound. 

i0 



Let us define, for i and j equal to zero or one, 

P. (t) P[X(t)=j], and 

P..(t) 
P[X(t)=jIX(t-l)=i], for t=2,3, ...T, and 

P[X(t)=j], for t=l. ---(i0) 

The state probabilities, P. (t), the probabilities that the 
process X(t) will be in state j at time t, are assumed to be 
known. (A method for estimating the Pl(t)'s is described in 
section 3.) The transition probabilitles, PiJ (t) the 

probabilities that the process X(t) will be in state j at 
time t given that it was in state i at time t-l, are assumed 
to be unknown. 

From equation (10) and the Markovian .assumption, 
we may write 

T 
P(y(T)=0) • P00(t) 

t=l 

T 
• (l-P01(t)) 

t=l 

T 
<_ exp (-7. P01(t)) 

t=l 
(ii) 

Thus recalling that P01(t) <Pl (t) <<l, there is 

be very nearly equal to l) such that 

a K>I (K will 

T 
P[Y(T)=0] exp [-• Z P01(t)]. 

t=l 
---(12) 

ii 
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Since we wish to express the probability of violating the 
standard in terms of the assumed known P. (t), we define 

3 

R(t) P01(t)/Pl(t)" ---(13) 

(Note that 0<_R(t)<l since 0<_P01(t)<_Pl(t).) From equation (13) 

we may now write equation (12) as 

T 
P[Y(T)=0] exp[-K • R(t)P!(t)], 

t=l 
---(14) 

which, since the Pl.(t) are non-negative and bonded, implies 
from the Mean Value Theorem of calculus that there exists an 

• (0<•<i) defined as 

T 
R 

t=l 01 (t)/l, ---(15) 

such that 

T 
P[Y (T)=0] exp[-KR Z P 

t=i 
l(t)], 

exp [-KRI ---(16) 

Equation (16) expresses the probability that Y(T) will be 
exactly zero in terms of • and I. 

1.2 



In a similar fashion, we will now develop an expression for 
the probability that y (T) will be exactly one in terms of 
R and •. 

Recalling equation (3) we may use the chain rule of 
probability and equations (11,16) with the Markovian 
assumption to write 

T-I j-i 
P[Y (T)=I] F. • P00(K) ]P01(J)P 

j=l k=l 

T 10(J+l) • P00(k) 
k:j+2 

T-I 
+[ • P00(k) ]P01(T) 

k=l 

T T-1 
• P00 ¢•:) • 

k=l j =i 
P01(J)PI0(J+I) ]/P00(J)P00(J+I) 

T-I 
> exp (-KRI) F. P 

j=l 

+ P01(T)/P00(T) }, 

01(J)PI0(J+I)+P01(T) ], ---(17) 

since the terms P00(t) are all _< i. To evaluate the summation 
in equation (16) we recall equation (4) with the Markovian 
assumption, 

P[X(t)=l]>_P[X(t)=iIX(t+l)=0] >_ P [X(t)=l[X(t-l)=0], (4) 

which states that the condition of a history of not exceeding 
the standard has a greater influence on the probability of 
exceeding the standard at time t than the condition of a future 
of not exceeding the standard has. From equation (4) and the 
definition of conditional probability, we can write 

13 
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Pl0(t+l) P[X(t)=llX(t+l)=0]P0(t+l)/Pl(t 

> P01 (t) P0 (t+l)/Pl (t) ---(18) 

Thus using equations (13,18), we can write the summation term 
in equation (17) as 

T-I T-I 
Z P01 (j) Pl0 (j+l) ;_•. • P01(j)P 

j=l 3=1 01 (J)P0 (J+l)/PIJ) 

T-1 
2 

> Z R (j)PI(J)P0(J+I) 
j=l 

T- IR2 
> H 7. (J)Pl(J)' 

j=l 
---(19) 

where H is defined as the minimum of P0(j) over all j. Since 
•<i and R(t)<_l, we find that the term P01(T) in equation .(17) 

may be bounded below as 

P01 (T) >_•R 2 (T) P1 (T) (20) 

Thus we can rewrite equation (17) using equations (19,20) as 

T P[Y(T)=I]_>exp(-•I) [• Z R 
2(t)P l(t) 

t=l 
---(21) 

14 
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Jensen's Inequality can now be used to reduce 
equation (21) to a function of R and I. The R(t) are bounded 
0<_R(t)<_l; the Pl(t) are positive, finite, and 

T 
T. [Pl(t)/l] I; 

t=l 

and the function f(R(t)) R2(t) is a convex function of R(t). 
Thus from Jensen's Inequality we may write 

T 
T. [R 2 (t) P 

t=l 

T 2 l(t)/•] > T. R(t)Pl(t)/l ] 
t=l 

---(22) 

which implies from equation (15) that 

T 
T. R 

2(t)Pl(t) 
> 

[21. 
t=l 

(23) 

From equations (21,23) we can now bound the probability of 
exceeding the standard exactly once per year by 

P[Y(T)=I] > 
• exp(-•l)• 2 ---(24) 

Recalling the definitions of • and •, 
we note that 

H and K are very nearly equal to one with [ slightly less than 
one and [ slightly greater than one. Thus, to a very good 
approximation, we can bound the probability of violating the 
NAAQS from above using equations (i,12,24) as 

P (Violation) <_l-exp (-•I) [i+•21 ---(25) 

15 
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We recall from equation (15) 

T 
R Z P01(t) ]/•, 

t=l 
(15) 

that the variable R is a function of the unknown transition 
probabilities for the stochastic process (X(t) ,t=l,2,...T) 
Thus to maximize the probability of violating the NAAQS over 
all possible stochastic air pollution processes (X(t) ,t=l,2...T), 
we can simply maximize equation (25) over all possible values 
of R. 

Letting Pv=l-exp (-•) (i+•2•) differentiating with 

respect to •, and setting the result equal to zero we find that 
the relative extrema of PV occur at 

• [l+_(1-h)½]/1. (26) 

We note from equation (26) that R will be a real number only 
when •<i. Therefore, for •>I, the end points •=0 and •=i 
mu•t be examined to find the max PV" Also, we recall that 
0<R<I, which implies, since 

[i+(i-•)½]/•>I 
for •<i, that 

•=[l-(l-l)½]/l 

produces a relative extremum of PV for l<l. Examination of the 
second derivative of PV with respect to • shows that 
• [i-(i-•)½]/• produces a relative maximum of PV when •<_I. 
Furthermore, since there is only one extremum of PV over 0<•<i, 
D.V evaluated at • (l-(l-l)½]/l 

is the global maximum of PV for 

.\<i. For the case of •>i, we see that PV (at R=0)=l-exp(-0) 
(i+0)=i-i=0, and Pv(at R=l)=l-exp(.-l)(l+l)>_P 

V 
(at R=0). Thus, 

we see that PV (at •=i) is a global maximum for PV over the 

interval 0<R<I when •>i. 
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We have seen that the probability of violating a "not 
more than once per year" NAAQS is bounded by 

P(Violation) < l-exp(-l) in the general case, ---(27) 

and by 

l-exp [-I+ (l-I ½ 
P(Violation)<-- {l-exp(-l) <i+•) 

]2[i-(I-•)½]/• 
for i<l, 

for •>i 
---(28) 

when the Markovian assumption is applicable. 

Equations (27,28) have the advantages of being relatively 
simple and of depending only on •. This dependence on only 1 
is important since the marginal probabilities, by their very 
definition, will contain all information (except that regarding 
the sequential dependence of pollution levels) relative to the 
air pollution problem at hand. Thus equations (27,28) are 
applicable to the problem of determining the probability of 
violating the NAAQS for any pollutant (reactive or nonreactive), 
emitted from any source or combination of sources, over any (non- 
overlapping)averaging time, as long as the marginal probabilities of 
exceeding the maximum allowable pollution level can be 
determined or estimated. In fact, equations (27,28) may be 
used in conjunction with an empirical procedure such as 
Larsen's, if it can be assumed that 

N 
NxP =l • P1 j 

j=l 

where P is Larsen's probability of exceeding the maximum 
allowable pollution level for each of the N time periods in a 

year. 

17 



3166 

EVALUATING THE UPPER BOUND ON P(VIOLATION) 

In the previous section, it was seen that one can 
determine an upper bound on the probability that a facility 
will violate a "not to be exceeded more than once per year" 
air quality standard given either I, the expected number of 
one-hour violations, or, equivalently, the Pl(t) 's, the 
marginal probabilities of exceeding the maximum specified 
pollution level for each hour in a year. In this section an 
efficient method for determining I from the marginal 
probabilities of violating the one-hour NAAQS for CO for each 
hour in a year will be developed. This method is based on 
the idea that when a random variable such as pollutant 
concentration can be expressed as a function of several other 
random variables such as meteorological variables, then the 
cumulative probability function of the first random variable 
(pollutant concentration) can be expressed in terms of joint 
probability function of the other random variables (the 
meteorological variables). 

In the following sections this idea will be developed 
to determine the marginal probabilities of exceeding a specified 
maximum CO concentration for each one-hour time period in a 

year. For this purpose the Gaussian dispersion formulation will 
be used as the functional relationship between CO concentration 
and meteorological, source, background, and geometric conditions. 

The Functional Relationship 

While there are numerous models of pollution levels 
as functions of meteorological, source, background, and 
geometric parameters, the Gaussian dispersion models are 
perhaps the best known. The Gaussian dispersion formulation 
will be used because of its simplicity and because its 
meteorological inputs are easily determined from readily 
available meteorological data such as those routinely collected 
by the National Oceanic and Atmospheric Administration (NOAA) 
Furthermore, it will be shown later that the final estimate of 
I is rather insensitive to unbiased errors of estimation in the 
Pl(t)'s and thus the exact choice of dispersion model is 
relatively unimportant. 

Equation (29) is a statement of the Gaussian dispersion 
formulation for short.source-to-receptor distances, it expresses 
the hourly concentration of a nonreactive pollutant in terms 
of the geometry and the hourly meteorological, source, and back- 
ground parameters. 
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x(t) (max[l,• (t) } -i 
N 
Y, D i[•(t) ,C(t) ,RC,SCi]S i(t)+B(t) 

i=l 

---(29) 

where 

x(t) time-average pollutant concentration at location 
RC for hour t, 

•(t) magnitude in meters/second of the time-averaged 
wind vector for hour t, 

•(t) direction of the time-averaged wind vector for 
hour t, 

C(t) atmospheric stability for hour t, 

RC receptor coordinates, 

N number of sources, 

SC0 source coordinates for the ith source, 
1 

Si(t) time-averaged emissions for the ith source 
for hour t, 

Di(-) the dispersion function for the ith source, 
and 

B(t) time-averaged background concentration at 
location RC for hour t. 

The dispersion function D• (') exhibits different forms 
for different types of sources. 

}or line, area, and volume 
sources the function Di(') will be the line, area, and volume 
integral, respectively, of the dispersion function for a point 
source. Point source dispersion functions are of the form, exp(-X2), 

and dispersion functions for higher dimensional 
2 

sources are of the form of integrals of exp(-X ). Thus the 
dispersion functions are not analytical in general and must 
be evaluated by numerical algorithms. In the developments 
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which follow only the numerical value and not the functional 
form (i.e., source-type) of the dispersion functions Di(') will 
be important. Therefore, the results here will apply to all 
source types. 

The Variables 

According to the Gaussian dispersion formulation, the 
time-averaged CO concentration for hour t is a random variable 
which is a function of the geometry and of the meteorological, 
source, and background conditions for hour t. Of the parameters 
determining pollutant concentration, the receptor location and 
the number and locations of the sources are constant and do not 
contribute to the random behavior of the time-averaged CO 
concentration for hour to The source emissions and background 
concentration at time t are ass,maed to be deterministic 
variables of time, and thus while they would contribute to the 
variation of concentration over time, they would not contribute 
to the random character of concentration at any fixed time t. 
The meteorological parameters --wind speed, wind direction, and 
stability class at time t are assumed to be random variables 
whose joint distribution function depends on time. The 
justification for treating the background and source terms 

as deterministic variables and treating the meteorological 
terms as random variables is discussed below. 

Background concentrations and source emissions are 
directly related to thecycle of human activity, which is, in 
turn, related to time of day, day of week, season, and year. 
For all realizations of a given hour, day of week, season, 
and year, approximately the same people would be engaged in 
approximately the same travel activities such as driving to 
work, school, church, or the supermarket; approximately the 

same industries and businesses would be engaged in approximately 
the same level of manufacturing, shipping, and power generation; 
and approximately the same homes, offices,, factories, and 
shops would have approximately the same space heating requirements; 
etc. Thus if we know the year, season, day of week, and hour 
of day we can estimate the background concentration and source 
emissions. The fact that there is a high correlation of human 
activities (and thus background concentrations and source 
emissions) with time, i.e., year, season, day of week, and 
hour allows us to assume that the source and background terms 

are deterministic variables. The error in I resulting from 
this assumption will be a function of the individual errors 
Of estimation in the source and background terms for each hour. 
In the next section of this report the sensitivity of the 
results for I to errors of estimation in the source and back- 
ground terms for each hour will be examined. 
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The meteorological variables wind speed, wind 
direction, and stability class while having a dependence on 
time (they vary with the hour of day and with season), also 
exhibit unexplained or random variation in addition to their 
patterned variation with time. To separate the variation in 
meteorology attributable to time i.e., the diurnal and 
seasonal variations from the random variation, we would 
(see for instance Calder [1971]) divide a year into some number 
of discrete categories (such as 96 categories for 24 one-hour 
periods per day in each of 4 seasons), and then subdivide and 
analyze historical meteorological data according to such 
categories. In this manner the variation with time will be 
manifested between subsets and the random variation will be 
manifested within subsets. 

Under the assumption that with 96 categories the 24- 
hour lag time between sequential observations in any given 
data category is sufficient to ensure that the observations are 
independent observations from an underlying stationary 
distribution, one can infer from the Ergodic Principle that 
the temporal parameters of the data subsets approximate the 
parameters of the underlying stationary distribution. Calder 
(1971) used this approach to define for each meteorological 
subset (i.e., time category) a discrete joint probability mass 
function as an estimator of the true underlying meteorological 
distribution. However, it is possible to extend Calder's 
approach by considering the wind vector in its rectangular 
rather than polar form. 

It follows from the Central Limit Theorem that time- 
averaged cartesian components of velocity under stationary 
turbulence can be modeled as bivariate-normal random variables. 
(See for instance Crutcher [1957], Pasquilie [1974], and 
Seinfeld [1975].) Furthermore, atmospheric turbulence can be 
categorized into stationary turbulence regimes such as the 
familiar Pasquille-Gifford atmospheric stability categories. 
Thus the joint probability function of the rectangular form 
time-averaged wind vector and the atmospheric stability 
category can be modeled as a mixed probability function in a 
fashion similar to that described by Crutcher (1962, 1977). 
First the distribution of the Cartesian components of the 
time averaged wind vector can be described within a given 
stability category by a bivariate-normal probability distribution 
function, and second the distribution of stability category 
can be described by a discrete probability mass function over 
all stability categories. 
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Specifically, if u(t) and v(t) are the horizontal 
Cartesian velocity components of the time-averaged wind vector 
and c(t) is the atmospheric stability category during time 
period t, then the probability density function of the vector 
[u(t) ,v(t) ,c(t)] is given by 

f [u(t) ,v(t) ,c(t) f[u(t) ,v(t)Ic(t) ]m[c(t) ---(30) 

where 

f[u(t) ,v(t)Ic(t) is the conditional bivariate-normal 
probability density function of the Cartesian components of 
the wind vector and talc(t)] is the discrete probability mass 
function over the set of stability categories. The parameters 
of both f[u(t) ,v(t)Ic(t) and m[c(t) in equation (30) can be 
easily estimated from historical meteorological data such as 
that collected by the NOAA. A set of computer programs for 
extracting such information from historical meteorological 
records has been developed by Carpenter et al. (1979) under 
the authority of the Virginia Highway and Transportation Research 
Council. 

Now to find the joint probability function of wind 
speed, wind direction, and stability class [•(t) ,•(t) ,c(t)] 
we note, since [•(t),•(t)] is the polar equivalent of 
[u(t) ,v(t)], that the inverse of the Jacobian of the 
transformation [u(t),v(t)]+[•(t),•(t)] is j-i •(t). Thus, 
from the Calculus we may write (see for instance Lindley [1969]) 
the conditional probability •unction of [•(t) ,e(t)] in terms 
of the conditional probability function of [u(t) ,v(t)] as 

f[• (t) ,e(t)Ic(t) f[u(t) ,v(t)Ic(t) ]•(t). ---(31) 

Equation (31) together with equation (30) demonstrates that 
the joint probability function of •(t) ,•(t) and c(t) may be 
written as 

f[•(t) ,•(t) ,c(t)] f[u(t) ,v(t)Ic(t)]m[c(t)]u(t). ---(32) 
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Determining P(x(t)>q) 

From equation (29) and the fact that X(t) is monotone 
non-increasing in • (t), we see that the probability that x(t) 
will exceed a given pollution level, q, may be written as 

P[x(t)>q] P({max[l,•(t)]) -I N 
•,S. (t)D 

1 
i=l 

i(')+B(t)>q) 

P{max[l,•(t) ]<Q(t) }, ---(33) 

where 

N 
Q(t) [7.S i(t)D 

i=l 
i (') ]/[q-B(t) is a function of the 

random variables e(t) and c(t). Equation (33), which cannot be 
evaluated as it stands, can be expanded as the expectation over 
all •(t) and c(t) of the conditional probability-that max[l,u(t)] 
is less than Q(t) given •(t) and c(t) i.e., 

P[x(t)>q] E P{max[l,•(t) ]<Q(t)I•(t) c(t) } ---(34) 
•tc 

Equation (34), with q equal to the maximum CO level specified 
in the air quality standard, defines the probability of 
exceeding the standard during time period t in terms of the 
cumulative conditional probability function of max [l,•(t)] 
and the joint probability function of e(t) and c(t). Since we 
can estimate the joint probability function of [u (t) ,e(t) ,c(t) 
from equations. (30,32), we can proceed to evaluate equation (34). 
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Since the max [l,•(t)]>l, the conditional cumulative 
probability function in equation (34) may be written as 

P{max[l,• (t) <Q (t) l•(t),c(t) } 
0, if 0<Q(t) <i, 

P[•(t)<Q(t)] if>Q(t) i, 

and 

i, if B(t) >q. ---(35) 

Therefore, defining 

Q(t) if Q(t)>l, 
0, if 0<Q(t)<l, 

if B(t)>q, 
and 

equation (34) can be written in terms of the meteorological 
probability function as 

P[x(t) >q] f f f f[•(t)Is(t) ,c(t) ]f[e(t) ,c (t) ]d•dedc 
• c 0 

---(36) 

From the chainrule of probability, we can rewrite equation (36) 
in terms of the empirically determinable probability functions 
f[u(t) ,v(t)Ic(t)] and m[c(t) as 

Q 
P[x(t) >q] / 7. / 

• c 0 

f [u(t) ,v(t)Ic(t)]• (t)d•m[c (t)]d•.--- (37) 
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The function, f[u(t) ,v(t)!c(t) ], we recall, is assumed 
to be a bivariate-normal probability function whose parameters 
are 

Var (u) 

Var (v) 

Cov (u,v) 

E[u(t)Ic(t)], 
Z[v(t)Ic(t)], 

Var[u(t) Ic(t) ], 

Var[v(t)Ic(t)], and 

Cov[u(t) ,v(t)Ic(t) 

Therefore, noting that •2 (t) u 
• (t)+v z (t) and 

e(t) tan 
1 [v(t)/u(t)], we can express the conditional 

probability function of [u(t),v(t)] as 

joint 

f [u(t),v(t)Ic(t) (2•K4)-Iexp[-½(KI•2+K2•+K3) ], 

(38) 

where 

K1 [cos • (•)Var (v) +Sin • (•)Var (u)-2Sin(e)Cos (a)Cov(u,v) ]/K•, 

K 2 
-2{Cos (e) •var (v) +S in (•)•Var (u)- [cos (•)•+S in (e) •] 

coy (u,v)/K 
4 
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K 3 
[•2var(v)+•2var(u)-2•cov(u,v)]/K{, and 

K 4 
[var(u)var(v)-cov 2 (u,v) ]½. 

Substituting equation (38) in equation (37) and carrying 
out the integration over ,u yields 

2 P[x(t)>q] f 7{K5[exm(-K6)-exp(-K2- 7)]/KI 
• c 

+ •2K5K2[erf(K6)-erf(K 7) ]/(2K l)3/2}m[c(t) Ida, 

---(39) 

where 

K 5 
(2•K4)-lexp(K2 K3/2) 6- 

K 6 
K2/(8K I)½, and 

K 7 (2K IQ + K 2)/(8K I)½. 

Although the integrand in equation (39) is not an 
analytical function, equation (39) can be numerically 
integrated over • and c to determine the probability that the 
CO level during time period t will exceed the maximum level 
specified in the NAAQS. 
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Computing 

Previously, we saw that l, the expected number of hours 
that will have pollution levels above the standard, is both 
necessary and sufficient to determine an upper bound on the 
probability of violating a "not to be exceeded more than once 

per year" air quality standard. We will now see that I can be 
computed without P[x(t)>q] having to be computed for each t. 

Recall that background concentrations and source 
emissions are deterministic functions of season, day of week, 
and hour of day, and that the joint probability function of 
the meteorological variables is a function of the season and 
hour of day• Thus, since every time t corresponds to some 
season, day of week, and hour of day, and since there are an 

average of 13.0357 Sundays, Mondays, etc., per season, we 
can write from the definition of I that 

T 4 7 24 
• _= 7. P[x(t)>q] -- 7. F• Z (13 0357) P [x (s ,d ,h) >q] 

t=l s=l d=l h=l 

(40) 

where 

P[x(s,d,h)>q] is the estimate of P[x(t)>q]. 

Equation (40) shows that there are only 672 unique estimates 
of the 8760 P[x(t)>q] 's, since each estimate will be repeated 
about 13 times per season. Thus, the computation of I requires 
actually evaluating only about 7.67% of the possible 8760 
marginal probabilities. 

A computer program to estimate I for highway applications 
has been developed according to the above principles. The 
program requires as input I) the parameters of the joint 
meteorological probability functions for each of the 96 season- 
hour categories in a year, 2) the 672 season-day-hour background 
and source terms (the program will handle up to ten source 
roadways), and 3) the number and location of the highway line 
sources and the location of the receptor. The cost of running 
this program is less than about $15. A listing and documentation 
of this computer program is contained in the Appendix. (Because 
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•was thought to be of interest to relatively few readers, the Appendix has not been included in all copies of the report. It 
may be obtained upon request.) 

SENSITIVITY ANALYSIS 

In the previous section a method for determining i, 
the expected number of hours per year during which the CO 
level will exceed 35 ppm, was examined. In this section it will 
be seen that this method is very insensitive to unbiased random 
errors while also being very sensitive to true parameter changes. 
It will also be seen that the estimation error of • obtained 
when using this method is much less than that obtained when 
estimating I from a distribution-fitting method such as Larsen's 
lognormal model. 

To examine the sensitivity of estimates of I and P(V) 
to changes (systematic or random) in the background, source, 
and dispersion terms in equation (29), we must find the 
derivations of Pl(t) with respect to these terms. However, 
the Pl(t)'s are, we recall, not analytical functions and cannot, 
therefore, be analytically differentiated. Thus, we must 
approximate the Pl(t)'s by analytical functions in order to 
approximate the derivatives of the Pl(t)'s with respect to 
the above parameters. In particular, we will approximate 
Pl(t) P[x(t) >q] as an exponential function of q (concentration) 
which, since the derivatives of q are analytically defined from 
equation (29), will then allow us to obtain the desired 
derivatives. 

The derivatives, dPl(t)/dX for X S i (t) B(t) ,Di(-) 
respectively, cannot be determined analytically •rom 

our 
definition of the Pl(t) 's, but if we approximate the Pl(t) 's 
as analytical functions of q, then we may write 

dP l(t)/dx -(dP l(t)/dq) (dq/dX) ---(41) 

where the derivatives dq/dX are defined from equation (29) 
which states that 

q max[l,• (t) -1 N 
Z S i(t)D i(-)+B(t) 

i=i 
(29) 
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The reason for the minus sign in equation (41) will be explained 
later. In order to approximate dPl(t)/d q in equation (41), we 
recall that the probability function of x(t) can be approximated 
by several distribution functions. In this section we will 
approximate the distribution of x(t) by the exponential distri- 
bution function. 

There are two basic reasons for assuming that the 
exponential distribution describes the random behavior of x(t). 
The first is that when the exponential distribution is used, 
the relationship between Pl(t) and q, 

Pl(t) P[x(t)>q] exp [-a (t) q] ---(42) 

has only the single parameter, a(t), which is readily evaluated 
from equation (42) as 

a(t) -in{P [x (t) >35] }/35. (43) 

The second justification for using the exponential distribution 
results from the fact the values of the Pl(t)'s are much less 
than 1 and thus only the slopes of the upper tails of the 
distributions of the x(t) are of interest. Since the slopes 
of the upper tails of the distribution of x(t) will be very 
small, the absolute •error in estimating dPl(t)/d q resulting 
from the use of equation (42) will also be very small. 

Using equation (42) to define the relationship between 
Pl(t) and q, we can write the derivatives of the Pl(t) with 
respect to q as 

dP l(t)/dq -a (t) exp[-a (t) q] 

-a(t)Pl(t ---(44) 
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Similarly, from equation (29) •;e find (assuming a single 
emissions source) that 

dq/dS(t) [q-B (t) ]/S (t) ---(45) 

dq/dB(t) i, and ---(46) 

dq/dD(.) [q-B(t)]/D(-). ---(47) 

To understand the need for the minus sign in equation 
(41), notice from equation (3.3) that a change in Pl(t) induced 
by a given change in q can also be realized by a change in 
X [X=S(t)gB(t), or D(-)] cf the opposite sign. In particular, 
if a change in q of Aq at constant X causes a change in Pl(t) 
of API(t), then at constant q a-change in X of AX -(dx/dq)Aq 
will also. produce a change of APl(t) in Pl(t), because AX is, 
from its definition, the change in X necessary to change q by 
the amount necessary to produce API(t). Thus we can write 
from equations (44,45) that 

dPl(t)/dS(t) 
= a(t)Pl(t) [q-B(t)]/S(t), ---(48) 

and from equations (44,46) that 

dP i(t)/dB(t) a(t)P l(t) (49) 

and from equations (44,47) that 

dPl(t)/dD(.) a(t)Pl(t) [q-B(t) ]/D(.). (50) 
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From Table 1 we can see that over the range of 
interesting l, we may estimate a(t) as approximately 0.25. 
This approximation will allow us, in turn, to estimate the 
sensitivity of I to S(t), B(t), and D(-) 

l0 

1 

I0 

Table 1 

Pl(t) a(t) 

-3 l0 .20 

-4 i0 .26 

-1 -5 l0 .33 

There are two sensitivity questions concerning X 
(X=S(t), B(t), or D(-)) and I or X and p(v). First, we wish 
to find the sensitivity of I and P(V) to systematic changes 
in X for each hour t, and second we wish to find the 
sensitivity of I and P(V) to independent random errors of 
estimation in X for each hour t. 

Since I is defined as the sum of the P 
defined as 

l(t) 's, A1 is 

T 
AI Z AP I 

(t) 
t=l 

(5i) 

For a given constant percentage change in the source emissions 
for every hour t, we find from equations (48,51) that 

T 
AI Z a(t)P 

t=l 
l(t) [q-B(t)] [•S(t)/S(t)], 

5 [AS (t)/S (t)]l, ---(52) 
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where [q-B(t) 
-- 

20, and a(t) 
-- 

0.25 for all t, and [AS (t) /S (t) 
is constant for all t. Thus we may write 

AI/I =5 [AS (t)/S (t)], ---(53) 

which states that for a given constant percentage change in 
S(t) for all t, the percentage response in I is approximately 
five times as great as the constant percentage change in source 
emissions. 

Recalling equation (28) for l>l, 

P(V) l-exp(-l) (i+I) ---(28) 

we see that 

dP(V)/dl I exp(-l) ---(54) 

Thus we may write 

AP(V) 512 [AS (t) /S (t) exp (-l) 

-- 3 [AS (t) /S (t) ---(55) 

for I in the range of 2. Equation (55) states that for a given 
systematic percentage change in S(t) for all t, the absolute 
response in P(V) is approximately triple the constant percentage 
change in source emissions. Thus we see that both I and P(V) 
are quite responsive to systematic changes in the source 
emissions. 
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The response of I and P(V) to a constant change in 
background concentration for each hour t may be found starting 
from equations (49,51). First we find that 

T 
A1 7, a(t)Pl(t) [AB (t) /B (t) B (t) 

t=l 

= 
41 [AB(t)/B(t) ---(56) 

where a(t)-• 0.25, B(t) -• 16, and [£B (t) /B (t) is constant for 
all t. Thus we may write 

AI/I 
= 

4 [AB(t)/B(t)]. ---(57) 

Equation (57). states that I changes by about 4% for every 1% 
change in B(t) which is realized across all t. Also from 
equations (54,56) we may write 

AP(V) 41Z[AB(t)/B(t)]exp(-l), 

2[AB(t)/B(t) ], ---(58) 

for I in the range of about 2. Equation (58) states that for 
a given constant percentage change in B(t) for all t, the 
absolute response in P(V) is approximately twice the fractional 
change in background emissions. Thus we see that both I and 
P(V) are very responsive to systematic changes in background 
concentration. 

Now let us consider the^effects of random errors of 
estimation on • and #(V). Let P•(t) be our estimate of Pl(t), 
the true probability that x(t)>35Ppm, and let 

£(t) Pl(t)-Pl(t) ---(59) 
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be the error of the estimate, Pl(t). We assume that e(t) 
is a random variable with mean zero and finite variance, 
and that the errors of^estimation are mutually independent. 
Continuing, we define I, our estimate of I, which is the 
sum of the Pl(t) 's, as 

T 
I 7• P1 (t) 

t=l 
---(6O) 

and we define the error of the estimate, l, as 

T 
z(l) l-I Z PI(+,)-P 

t=l 

T l(t) 7. £(t). 
t=l 

---(61) 

Equation (61) indicates, from the Central Limit Theorem• that 

s(1), the error in estimating I from the sum of the unbiased 
estimates of the Pl(t)'s, will be normally distributed with 
mean zero and variance equal to the sttm of the variances of 
the s(t) 's. Although the V(s(t))'s the variances of the 
s(t) 's --are unknown, we can reasonably assume, since both 
the magnitudes of the Pl(t)'s and the range of the P!(t)'s 
are <<i, that the standard deviations of the £(t)'s 
are equal to K×Pl(t)'s, where K--i; i.e., that the standard 
deviations are of about the same magnitude as the Pl(t)'s 
themselves. Thus we find the variance of the estimate, •, 
from 

T 
V(s(1)) K 

2 
• Pl(t) 2, 

t=l 
---(62) 

which is easily computed from the P 
of K. 

l(t) 's for any fixed value 
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To illustrate the magnitude of V[e(1)], consider the 

following. The set of Pl(t) for t=l,2,3,...T has a sample 
variance defined as 

V(Sample) T • (t) 2/T T 2 7. 1 (7• P (t)/T) ---(63) 
t=l t=l 1 

If we assume that the sample standard deviation is approximately 
equal to the sample mean (the range of the sample and the mean 
of the sample will be <<i), then we find that 

T T 
7. Pl(t) 2T( 7. PI(t)/T) 

t=l t=l 

2 2T(I/T) ---(64) 

Thus from equation (62) we can approximate the variance of the 

estimate, I, as 

Vie(1) ]•- K22(8760) (I/8760)2=K2×12 -4 ×2.3×10 ---(65) 

and the standard deviation of the error as 

--2 STD[s (I) ]=K×I× 1.5×10 ---(66) 

From equation (66) and the Central Limit Theorem, we can 

estimate the two-sigma confidence band for 

Thus, I estimated from the sum of the Pl(t) 's over all t is 
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very insensitive to unbiased random errors of estimation in 
the Pl(t)'s. For example, standard errors of the estimates 

Pl(t), equal to 100% of Pl(t) result in a standard error of the 

estimate, I, of only about 3% of I. 

Recall that we let the standard deviation of e(t) be 

KPI (t). Now analyzing e(t) with respect to the source, 
background, and dispersion terms, we see from equation (33) that 
the error of the estimate, •l(t), 

can be approximated as 

s(t)_- [dPl (t)/dS (t) ] £s (t) + [dPl (t)/dB (t) eB (t) 

+ [dPl(t)/dD(-)]£D(t), ---(67) 

where the errors of the estimatesof the source, background, 
and dispersion terms, S(t) ,B(t) and D(-) respectively, are 

e (t) S(t)-S(t), ---(68) 
s 

•B(t) B(t)-B(t), and ---(69) 

•D(t) D(.)-D(.). ---(70) 

The estimation errors e s(t) ,sB(t) and SD(t) are 
all assumed mutually independent and, therefore, the variance 
of their sum will equal the sum of their variances. Thus from 
equation (67) we can write the variance of the estimation 

error of Pl(t) in terms of the variances of the estimation 

errors of S(t) ,B(t) and D(-) as 

V(s(t)) [dP l(t)/dS(t) ]2V[es(t) 
+ 

[dPl(t)/dB(t)]2V[SB(t)] 

+ 
[dPl(t)/dD(-)]2V[SD(t)]. ---(71) 
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Now from equation (48) and the assumptions 
and (q-S(t))/S(t) --i00 ppm-m-sec/gm, 

-i that a(t)-- 0.25 ppm 

[dP l(t)/dS(t) ]2__ [25P l(t) ]2 ---(72) 

and, from equation (49) 

2 2 [dP l(t)/dB(t) --[.25P l(t) ---(73) 

and from equation (5) and the assumption that 
[q-B(t) ]/D(-) 0.2 

ppm-m2/gm, 
we can write [dPl(t)/dD(-) 

2 [0.05Pl(t)] Thus we may write from equation (71) that 

2 

V(s (t))--Pl(t) 2x{6.25x102V[ss(t) 
+ 6. 

25x10-2V[SB (t) 

+ 
2.5×I0-3V[SD(t) ]}, ---(74) 

Recalling from equation (62) that the variance of the error 

of estimate in Pl(t) is K2pI(t)2, and assuming that the 
variances of estimates V[es(t)], V[s•(t)], and V[eD(t)] are 
about constant over all t, we can wrlte from 
equation (66) that 

STD[s(1) ]--{6.25×102V[Ss(t) ]+6.25 i0 2V[SB(t) 

+ 
2.5xl0-3V[SD(t) ]}½1.50×10-2×I, ---(75) 

which expresses the standard deviation of the estimation error 

of I in terms of the variances of the estimation errors for 
the source, background, and dispersion terms. 
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Now we wish to estimate the magnitude of the variance 
terms in equation (75). Juneja (1977) has found a standard 
error of estimate for single vehicle emissions of about one- 
si•.-th of the mean vehicle emissions. Thus from the Central 
Limit Theorem, assuming that about 3,000 individual vehicles 
having independent estimation errors make up a highway line 
source, we can approximate the standard error of estimate of 

the total source emissions as about 3×i0-3×•(t) for a known 
fleet of vehicles. Scaling by a factor of ten to account 
for uncertainties in the number, type, age, speed, and 
condition of vehicles actually using a highway, we can 
conservatively approximate STD[Ss(t) = 3×10 -2. Newstadter 
and Sidik (1974) place the standard deviation of typical air 
pollution concentration data as being between 1.3 and 2.7. 
Thus, we can conservatively assume that STD[SB(t)] 

= 3. 
Turner (1974) suggests that the error in dispersion estimates 
can range between _+ 100% of the estimate. Thus for 2/g 

m D(-) i00 ppm-m and assuming that the error range is the 
three sigma range, we can conservatively estimate 

STD(SD (t)) .30 ppm-mZ/gm. Usin G these estimates we can rewrite equatlon (7-5) 
as 

STD[s(I) = (.56+.56+2.25) -2 ½xl.5xl0 xt, 

3xi0-2•. ---(76) 

Thus we see that • computed from the sum of the Pl(t)'s is 
very insensitive to random unbiased errors of estimation, and 
that, in particular, the two-sigma confidence limits on 

• are •±6% of •. 

To examine the sensitivity of P(V) --the probability 
of violating the NAAQS --to unbiased random errors of estimation 

we first let P(V) be our estimate of P(V), and let 

e(P) P(V)-P(V) ---(77) 
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be the error of the estimate P(V). For the case of I>i, we 

can see from equation (28) that 

s(P) -• [dP(V)/dl]×s(1) ---(78) 

and, therefore, 

2 V[e(P)] [dP(V)/dl × V[s(1)], ---(79) 

and 

STD[s(P)] = 
[dP(V)/dl]×STD[c(1)]. (80) 

Therefore, from equation (54), which gives the derivative of 
P(V) with respect to I for I>1, and equation (76), which 
approximates the standard error of estimate of •, we can 
write 

2 exp STD[e(P) •- I (-I) ×3×10 -2 ---(81) 

Differentiating equation (81) with respect to I, setting the 

result equal to zero and solving for X reveals that at t=2, 
the standard deviation of the error in the estimate of the 
probability of violating the N•QS takes on its maximum value 

over all positive X. This maximum of STD[•(P)] is 0.016. 

Although the actual probability distribution of e(P) is not 
known, we can be reasonably certain from the above that the 

true P(V) will be within P(V)_+0.03. 
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Now let us examine the sensitivity of 1 
L 

and PL(V), 
the estimates of I and P(V) determined from some distribution- 
fitting procedure such as one of those proposed by Larsen, 
to changes (systematic and random) in the underlying parameters. 

As discussed previously, a simulated set of air 
quality data can be fitted to a distribution function, such 
as the lognormal as proposed by Larsen, and the parameters of 

the distribution function used to calculate I_, the estimate 
of the expected number of one-hour pollution •evels >35ppm CO 

in a year. PL(V), the estimate of the probability of violating 
the NAAQS, can then be calculated by using 1 

L 
in equation (28). 

If the simulated data set used to determine I• is 
generated from the same historical meteorological dat•/%and 
source and background terms as were used to determine l, and 
if the dispersion model given by equation (29)/%is used to 

generate the data set, the response of 1 
L 

and PL(V) to 
systematic changes in the source and background terms will 

be identical to the response of I and P(V) to such changes. 
In particular, from equation (53) we find that 

AIL/IL -• 5 [AS (t) /S (t) ---(82) 

which states that the percentage response in IL.to a 

constant percentage change in source emissions is fivetimes 
greater than the percentage emissions change. Similarly, we 
find from equation (55) that 

APL(V) 3 [AS (t) /S (t) (83) 

i.e., that the absolute change in the estimated probability of 
violating the NAAQS is approximately triple the constant 
percentage change in source emissions. From equation (57) 

we find that the percentage change in 1 
L 

to a constant 
percentage change in B(t} is four times greater than the constant 
percentage change in the background concentration, i.e., 
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AIL/I 
L 

4 [AB (t) /B (t) ---(84) 

And from equation (58) we find that 

/PL(V) 2[AB(t)/B(t)], ---(85) 

which states that the absolute response of PL(V) to a constant 
percentage change in B(t) is about twice the fractional change 
in the background concentration. 

Although the responses of i 
L 

and PL(V) to systematic 
changes in the source and backgroun• terms are identical 

to the responses of • 
and P(V) to such systematic changes, we 

will see that the standard deviations of the errors of 

estimation STD [e(XL) and STD [•(PL ]are much greater than the 

standard deviations of the errors of estimation STD[•(1)] and 

STD[s (P) First let us cdnsider STD[•(I L) 

The Larsen estimate of I is defined as 

IL= 8760 × PL(X>35) ---(86) 

and the error of the estimate is defined as 

s(l L) =I- 1 L, ---(87) 
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where PL(X>35) is the probability that a randomly selected 

one-hour pollution level will be greater than 35 ppm as determined 
from the distribution function fitted to the data. The variance 
of the error of the Larsen estimate of • is, from equations 
(86,87), 

V[e(•,) ]=V(X-•L)=V()• L) (8760)2V[PL(X>35)]. (88) 

The variance of the Larsen estimate, PL(X>35), can be 

determined from the properties of the binomial distribution 
(with N the number of years of simulated data) as 

V[PL(X>35) ]=P (X>35)[ I-P (,X>35) ]/(8760×N) 

-• 
PL(X>35)/(8760×N) ---(89) 

since 1-P(x>35) =l. Thus, from equations (86,88,89), the 
variance of the error of the Larsen estimate of I is 
approximate ly 

V[S(•L 
-• 
8760×P L(X>35)/N, 

---(90) 

and the standard deviation of the error is 

STD[s (l L) 
= 

(IL/N) •. ---(91) 
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Recalling equation (76), we see that 

STD[s(1) 3×10-21. 
---(76) 

Therefore, we find (for a typical value of N=I0 years), 
STD[S(IL) ]>STD[s (I(] for I<_112 and, in particular, for I in 
the range of about 2, we find that 

STD[e(IL)] 0.45 and STD[s(1)] 0.06, or that 

STD[s(I L) ]/STD[£(1) 7.5. 

Similarly, the Larsen estimate of P(V), is defined 
by equation (28) as 

PL(V) l-exp(-IL) (I+IL) ---(28) 

for IL_>l, and the error of the estimate, PL(V), is defined as 

s (PL) P(V)-PL(V) ---(92) 
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We can approximate, 
estimate, PL(V), as 

as in equation (78) the error of the 

e(P L) --[dPL(V)/dlL]S(IL), (93) 

for small errors of estimation, •(I L) Thus, we can write 
the variance of the Larsen 

estimate-o• the probability of 
violating the standards from equation (93) as 

V[s(PL) [dPL (V) /d}, [e(l )], 
L L 

---(94) 

and the standard deviation of estimation error, • (PL) as 

STD[e(PL) 
-- 
[dPL(V)/dl.L]STD[E(IL) ]. ---(95) 

From equation (54) 
equation (95) as 

which defines STD[S(IL ], we can now write 

STD[e(P L) -- ILexp(-lL) (IL/N)½. (96) 

Recalling equation (81) we see 
I from the sum of the P] (t) 's, 

that for the method of computing 

STD[£(P)]-- I xp(-l)×3×10 2. (81) 

Thus, for N -- i0 

STD[•(P L) ]>STD[• (P)] for i<112 and in the range of i=2 

STD[S(PL)] 0.121 and STD[s(P)] -- 0.016 or 

STD[•(P L) ]/STD[•(P) 7.5. 
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SUMMARY AND FUTURE WORK 

This report has demonstrated that the probability 
of violating a "not to be exceeded more than once per year" 
one-hour air quality standard can be bounded from above. 
This bound has been shown to be a simple function of I. The 
parameter • is the expected number of hours during which the 
hourly average pollution levels will exceed the standard. 
Furthermore, from the definition of I and that of P (Violation) 
the probability of violating the standard --this result applies 
not only to one-hour standards, but also to any n-hour standard 
for which the n-hour intervals do not overlap. In other words, 
for any case in which I is well defined, and the Markov property 
holds, the upper bounds on the probability of violating a 
"not to be exceeded more than once per year" standard are those 
presented early in this report. 

For the special case of the one-hour standard for CO 
it has been shown that • and P(Violation) can be determined 
in a computationally efficient manner. This method of 
estimating • and P(Violation) is sensitive to real systematic 
changes in the underlying parameters, but it is very insensitive 
to unbiased errors of estimation in the hourly pollution 
parameters. In particular, this report has shown that this 
proposed method produces I and P(Violation) estimates having 
far smaller variabilities of estimate than • and P(Violation) 
estimates from distribution-fitting methods. 

An algorithm has been developed to analyze the impact 
of proposed highways on air quality with respect to the one- 

hour CO standard. This algorithm applies the results of this 
report to the specific problem of a particular nonreactive 
pollutant (CO), emitted from a particular source type (line 
sources), and time averaged over non-overlapping one-hour 
periods. These results can, however, also be applied to other 
pollutants with other averaging times and to other source types. 
The only restriction to estimating the upper bound on the 
probability of exceeding a "not to be exceeded more than once 

per year" standard for any pollutant over any averaging time 
from any source type is that the process must be Markovian and 
one must be able to estimate •, the expected number of averaging 
periods during which the time-averaged pollution level exceeds 
the standard per year. 
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For the case of the eight-hour standard for CO, the 
results of this report are not applicable. Even though 
sequential one-hour pollution levels are Markovian, sequential 
eight-hour overlapping pollution levels are not Markovian. 
Thus the major assumption of this report is violated by the 
eight-hour averaged pollution process. Furthermore, there 
does not exist a formulation such as equation (29) which 
expresses eight-hour averaged pollution levels as a function 
of eight-hour averaged meteorological, source, and background 
conditions, since the stationarity assumption implicit in 
equation (29) cannot reasonably be extended to periods as long 
as eight hours. 

The eight-hour problem will require further study for 
its solution. Simulation studies appear to offer promise 
as possible solutions to the problem. Also it may be possible 
to demonstrate that the indicator process for the eight-hour 
problem is Markovian even though the underlying eight-hour 
averaged pollution process is not Markovian. Such an approxi- 
mation would allow the results of Chapter 2 to be applied to the 
eight-hour problem as well as to the one-hour problem. 

Another possible approach to the eight-hour problem 
would be to consider non-overlapping eight-hour pollution 
averages. In this manner it may be possible to combine 
results for non-overlapping intervals into a composit result 
for overlapping intervals. 
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APPENDIX 

THE COMPUTER PROGRAM PROBCO1 

The computer program PROBCOI finds the probability that 
a highway line source (or a group of up to ten line sources) 
will cause a violation of the one-hour NAAQS for CO. PROBCOI, 
which uses the method developed in this report, is written in 
Fortran IV and implemented on a CDC Cyber 172 computer. The 
program requires less than four minutes of CPU time, and the 
maximum run cost is less than $15. The input requirements for 
PROBCOI are described below. 

The coordinate system used to locate the sources and 
receptors in PROBCOI is oriented such that +X is East, +Y is 
North, and the origiD is arbitrary. (Typically, one would 
simply use the Universal Traverse Mercator (UTM) coordinates 
found on all U. S. Geological Survey maps to specify the 
locations of the receptor and sources.) All distances 
(coordinates) inputted to PROBCOI must be specified in meters, 
all concentration inputs must be specified in ppm CO, and all 
source emissions inputs must be specified in micrograms/meter- 
second. The data card requirements for PROBCOI follow. 

Card i: Format (3(F6.0, lX)) 

Column l: The X-coordinate of the receptor. 
8: The Y-coordinate of the receptor. 

15: The height of the receptor. 

Card 2: Format (I2) 

Column i: The number of line sources included in 
this analysis. 

Card 3: Format (4(F6.0,IX)) (Line Source i) 

Column i: The X-coordinate of the West end point 
of Source I. 

8: The Y-coordinate of the West end point of 
Source i. 

15: The X-coordinate of the East end point of 
Source I. 

22: The Y-coordinate of the East end point of 
Source I. 
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Card 4: Format (4(F6.0,1X)), (Line Source 2). 

Column l: The X-coordinate of the West end point 
of Source 2o 

8: The Y-coordinate of the West end point 
of Source 2. 

15: The X-coordinate-of the East end point 
of Source 2. 

22: The Y-coordinate of the East end point 
of Source 2. 

Etcetera for each of the line sources in the analysis. 

Card N: Format (F2.0). 

Column i: The one-hour CO standard (=35 ppm). 

Card N+I: Format (I2) 

Column l: The number of Background/Source conditions 
(hereafter referred to as NBS) which can 

occur for each time period. (Typically 
equals seven for the seven days of the 
week. Although, for instance, a value 
of two for weekdays and weekends might be 
used.) 

Following Card N+I are 96 groups of cards, one group for each 
of the 96 time periods in a year. Each group contains NBS 
(recall that NBS the number of B/S conditions) cards, one 
card for each of the NBS background/source conditions. 
The 96 one-hour time periods •TP) are defined as: 

Time Periods Months Time 

1 0000 to 0100 ST 
to ll, 12, 1 to 
24 2300 to 2400 ST 

25 0000 to 0100 ST 
to 2, 3, 4 to 
48 2300 to 2400 ST 

49 0000 to 0100 DST 
to 5, 6, 7 to 
72 2300 to 2400 DST 

73 0000 to 0100 DST 
to 8, 9, i0 to 
96 2300 to 2400 DST 
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Notice that the one-hour shifts from Standard Time to Daylight 
Saving Time are incorporated in the definitions of the time 
periods. The (96 × NBS) background/source cards are specified 
as follows: 

Card TP1, B/S condition i: Format (F5.4,1X,F4.0,10 (IX,F6.0)). 

Column i: The fraction of the time that B/S condition 1 
for TPI will occur. 

7: Background concentration for TPI, B/S 
condition I. 

12: Emissions for source i, for TPI, B/S 
condition i. 

19: Emissions for source 2, for TPI, B/S 
condition i. 

26: Emissions for source 3, for TPI, B/S 
condition i. 

etc. 
75: Emissions for source I0, for TPI, B/S 

condition i. 

Card TP1, B/S condition 2: Format (F5.4,1X,F4.0,10(IX,F6.0)). 

Column i: The fraction of the time that B/S 
condition 2 for TP1 will occur. 

7: Background concentration for TPI, B/S 
condition 2. 

12: Emissions for source I, for TPI, B/S 
condition 2. 

19: Emissions for source 2, for TPI,• B/S 
condition 2. 

etc 
75: Emissions for source I0, for TPI, B/S 

condition 2. 

Etcetera for each B/S condition for TP1 up to, 

Card TP1, B/S condition NBS: Format (F5.4,1X,F4,0,10(IX,F6.0)). 

Column i: The fraction of the time that B/S condition 
NBS for TPI will occur. 

7: Background concentration for TPI, B/S 
condition NBS. 

12: Emissions for source i, for TPI, B/S 
condition NBS. 

etc 
75: Emissions for source i0, for TPI, B/S 

condition NBS. 
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Card TP2, B/S condition I: Format (F5.4,1X,F4.0,10(IX,F6.0)). 

Column l: The fraction of the time that B/S 
condition 1 for TP2 will occur. 

7: Background concentration for TP2, B/S 
condition I. 

12: Emissions for source i, for TP2, B/S 
condition i. 

etc 
75: Emissions for source I0, for TP2, B/S 

condition i. 

Etcetera for each B/S condition for TP2 up to, 

Card TP2, B/S Condition NES: Format (F5.4,1X,F4.0,10(!X,F6.0)). 

Columnar information defined in same manner as above. 

Etcetera for each B/S condition for each time period up to, 

Card TP96, B/S condition NBS: Format (F5.4,1X,F4.0,10(1X,F6.0)). 

A listing of the computer PROBCOI, its incorporated 
documentation, and a sample output for a six-lane roadway 
carrying heavy traffic and with the receptor located 15 meters 
from the nearest traffic lane follows. 
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