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ABSTRACT 

The capability to forecast traffic volume in an operational setting has been identified as a 
critical need for intelligent transportation systems (ITS). In particular, traffic volume forecasts 
will directly support proactive traffic control and accurate travel time estimation. However, 
previous attempts to develop traffic volume forecasting models have met with limited success. 

This research focused on developing such models for two sites on the Capital Beltway in 
Northern Virginia. Four models were developed and tested for the single-interval forecasting 
problem, which is defined as 

estimating traffic flow 15 min into the future. The four models 
were the historical average, time series, neural network, and nonparametric regression models. 
The nonparametric regression model significantly outperformed the others. 

Based on its success on the single-interval forecasting problem, the nonparametric 
regression approach was used to develop and test a model for the multiple-interval forecasting 
problem. This problem is defined as estimating traffic flow for a series of time periods into the 
future in 15-min intervals. The model performed well in this application. In general, the model 
was portable, accurate, and easy to deploy in a field environment. 

Finally, an ITS system architecture was developed to take full advantage of the 
forecasting capability. The architecture illustrates the potential for significantly improved ITS 
services with enhanced analysis components, such as traffic volume forecasting. 

iii 
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INTRODUCTION 

Virginia and the nation are facing transportation challenges of increasing magnitude and 
complexity. Because of financial and environmental constraints, the traditional solutions of 
constructing new facilities and enlarging existing ones are becoming less attractive. There is a 
need to improve the efficiency and safety of the extensive, existing transportation system. 
Imelligem transportation systems (ITS) will play an important role in accomplishing these 
improvements. 

ITS can be defined as the application of information technology to the surface 
transportation system. Information technology, which has been developed primarily in the 
defense, computer, and telecommunication industries, facilitates the collection, analysis, and 
dissemination of information describing the status of the transportation system. The fundamental 
objective of ITS is to provide an environment that allows for improved transportation decision 
making. For example, transportation agencies can use ITS to control traffic signals more 
efficiently and clear congestion-causing accidents more rapidly. Travelers can use ITS to make 
more informed decisions about when to travel, what mode of travel to use, and what rome to 
take. In short, ITS will allow society to use the surface transportation system more intelligently, 
resulting in safer, more efficient travel. 

Although ITS holds much promise, it is associated with significant risk. ITS hardware is 
developing at a rapid rate. For example, a wide variety of sensors and communication media that 
can support extensive data collection and transmission applications is currently on the market. 
However, software support systems, which process and analyze these data, are less advanced. 
Such systems are critical in that they provide the tree "intelligence" in ITS. A traffic control 
specialist cannot be expected to select optimal signal timings based on "raw" vehicle counts. 
Likewise, a traveler cannot be expected to identify the optimal route to a destination based on 

such counts. It is clear that advanced analysis tools, which include artificial intelligence, 
simulation, and optimization, are required to derive usable information from raw data. 

Traffic flow prediction, the ability to estimate future traffic volume (measured in units of 
vehicles/hour), plays a particularly important role in transforming raw data into usable 



information. Without a predictive capability, ITS will provide services in a reactive manner. For 
example, there will be a lag between the collection of data and the implementation of a traffic 
control strategy, resulting in the transportation system being controlled based on old information. 
In order to control the system in a proactive manner, ITS must have a predictive capability; that 
is, it must be able to make and continuously update predictions of traffic flows and link times for 
several minutes into the future using real-time data (Cheslow et al., 1992). 

Traffic flow prediction also plays a key role in providing travelers with high-quality rome 
guidance information. Travelers must be able to base their decisions on expected traffic 
conditions (Kaysi et al., 1993). Clearly, the success of ITS depends on the development of a 
traffic flow prediction capability. This leads to the conclusion that "special attention should be 
given to the ability to make short-term traffic predictions with real-time sensor data" (Cheslow et 
al., 1992). 

PURPOSE AND SCOPE 

The purpose of this project was to investigate the feasibility of forecasting freeway traffic 
flow and develop a framework in which to use a forecasting capability in ITS traffic management 
and traveler information services. 

All data used to develop and evaluate candidate forecasting models were collected at the 
Virginia Department of Transportation's (VDOT's) Northern Virginia Traffic Management 
System (TMS). This ensured that any model that was developed would be compatible with 
existing and future freeway traffic management systems. 

METHODS 

Five tasks were undertaken to accomplish the study's objectives: 

1. review of the literature 

2. collection of data 

3. development and evaluation of a single-interval model 

4. development and evaluation of a multiple-interval model 

5. development of ITS software support system architecture. 



Literature Review 

The literature on research in traffic flow forecasting was reviewed, and desirable 
characteristics of traffic flow forecasting models were identified. These characteristics were then 
used to select advanced or emerging models to apply in this study. 

Data Collection 

Data were collected for the development and evaluation of traffic flow forecasting models 
at two sites monitored by the Northern Virginia TMS. The sites are both on Virginia's Capital 
Beltway, as shown in Figure 1. This section of the Beltway is heavily traveled, with an average 
annual daily traffic volume of 149,000 vehicles (VDOT, 1993). As shown in the figure, the 
Telegraph Road site is westbound (or the inner loop), and the Woodrow Wilson Bridge site is 
eastbound (or the outer loop). 

ALEXAND 

WASHINGTON, D.C "- 
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Inner Loop 
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WW Bridge: 
Outer Loop 
VA---• MD 

Figure 1. Test Sites 



Average traffic volumes for 15-min intervals were collected at each site using the TMS's 
loop detectors over the period from June 3, 1993, to October 29, 1993. In order to allow for 
model development and evaluation, the data were split into two independent samples: the 
development data set and the evaluation data set. The development data set was composed of 
data collected from June through August, representing roughly 60% of the data, and the 
evaluation data set included data collected in September and October, roughly 40% of the data. 

Development and Evaluation of a Single-Interval Model 

Single-interval traffic flow forecasting models (models that at time t estimate traffic 
volume at time t + 15 min) were developed for each test site. The process varied based on the 
modeling technique used. However, in general, the development data set was used to define 
model parameters or "fit" the model to the site. 

The models were then evaluated to select the most promising model for application to 
multiple-interval traffic flow forecasting. The evaluation was based on the following 
performance indices" 

1. ability of the model to produce accurate forecasts, on average 

2. ability of the model to avoid significant overestimation or underestimation of future 
traffic volume 

3. consistency of the model's results at the two sites (this serves as an indication of the 
model's portability) 

4. ease of model calibration in a field environment. 

Development and Evaluation of a Multiple-Interval Model 

Using the single-interval model selected, a multiple-interval traffic flow forecasting 
model (a model that at time t estimates traffic volumes at time t + 15 min, t + 30 min, t + 45 
min,..., 24:00) was developed for each test site. This process used the development data set. 

The model was then evaluated based on the following performance indices" 

1. ability of the model to produce accurate forecasts, on average 

2• ability of the model to produce forecasts of comparable quality in the near term 
(periods within 1 hr of the forecast time) and the extended term (periods 3 to 4 hr 
after the forecast time) 



consistency of the model's results at the two sites (this serves as an indication of the 
model's portability) 

4. ease of model calibration in a field environmem. 

Development of ITS Support System Architecture 

A software architecture defines the functional components of a software system and 
details the relationships between the components. An ITS software support system architecture 
that fully utilized the capabilities of the multiple-imerval traffic flow forecasting model was 
developed. This was accomplished by idemifying the information needs of ITS decision makers 
and the sources of data in a "generic" ITS system. Then, analysis functions were idemified to 
extract the information from the data. Finally, the functions were organized to achieve an 
efficiem means of transforming ITS data imo usable information for decision makers. 

RESULTS AND DISCUSSION 

Literature Review 

Previous Efforts at Traffic Flow Forecasting 

"The short-term forecasting of traffic conditions has had an active but somewhat 
unsatisfying research history" (Davis & Nihan, 1991). Most attempts at developing forecasting 
models have been applied to signal control systems, such as the Urban Traffic Comrol System 
(UTCS). The number of freeway traffic flow prediction applications is limited. The approaches 
used for traffic prediction are largely dictated by the fact that traffic conditions are time- 
dependem and follow fairly well-defined patterns. Previous traffic flow prediction approaches 
can best be classified in two categories: historical data-based algorithms, and time series models. 

Historical Data-Based Algorithms 

The premise underlying these algorithms is that traffic patterns are cyclical. In other 
words, knowledge of "typical" traffic conditions on Tuesday at 5:30 P.M. will allow one to 
predict the conditions on any particular Tuesday at 5"30 P.M. AUTOGUIDE, a demonstration 
project in London, used the most simple historical data-based algorithm possible: a traffic 
database to predict travel times based on time of day (Jeffrey et al., 1987). 



UTCS uses traffic condition prediction in an attempt to control signals in a proactive 
manner. In general, it relies on historical data for prediction. A weakness of this system is that it 
requires an extensive set of historical data, making it difficult to install in a new setting 
(Stephanedes et al., 1981). The prediction capabilities of UTCS were enhanced in a second 
generation, UTCS-2, which uses "current traffic measures to correct for the traffic deviation from 
the average historical pattern" (Okutani & Stephanedes, 1984). In other words, if current traffic 
volumes are observed to be lower than normal, the historical average for the upcoming period is 
scaled down to reflect "current" conditions. 

It is interesting to note that the third generation, UTCS-3, abandoned the historical data- 
based algorithm and attempted to make predictions based only on current traffic measurements. 
However, experience has shown that UTCS-3 is incapable of performing at a level comparable to 
that of UTCS-2 (Stephanedes et al., 1981). 

Time Series Models 

Traffic management systems use detectors to measure traffic flow at time t, defined as 

x(t). A series of these measurements can be stored for use in predicting traffic flow at time t + D 
where D is the prediction interval. Therefore, the prediction problem can be formulated as 

estimate x(t + D), given x(t), x(t D), x(t 2D), etc. This formulation describes a time series. 
Many statistical techniques have been developed to model time series, and transportation 
researchers have applied many of them to traffic flow prediction. 

The Box and Jenkins technique is a widely used approach to specifying a variety of time 
series models (Nihan & Holmesland, 1980). The most well-developed Box and Jenkins 
technique is the auto regressive integrated moving average (ARIMA) method. ARIMA models 
require very little computational time for execution, an attractive quality for application in real- 
time traffic management. However, they have not shown much promise in traffic applications. 
Attempts to apply ARIMA models to UTCS "resulted in unsatisfactory goodness of fit and high 
errors; in certain cases they have not been more accurate than a simple moving average" (Okutani 
& Stephanedes, 1984). 

Advanced Modeling Techniques 

Based on the review of traffic flow forecasting research, one can conclude that three 
characteristics are desirable for models applied to the traffic prediction problem. First, the model 
must be able to represent complex relationships. Second, given the lack of traffic flow 
forecasting theory, the model must not require any prior knowledge of the functional form of the 
relationship. Third, as seen in the evolution of UTCS, the model should rely strongly on 

historical data. 



Two advanced modeling techniques, nonparametric regression and neural networks, 
possess these characteristics. The basic concepts underlying these models are described here. 
For more detail on nonparametric regression, the reader is referred to Eubank (1988). For more 
detail on neural networks, the reader is referred to Hecht-Nielsen (1990). 

Nonparametric Regression 

Most modeling techniques can be classified as parametric. A parametric model assumes 
that the functional form of the relationship between the dependent and independent variables is 
known (Eubank, 1988). For example, a linear regression model assumes a linear relationship 
between the dependent and independent variables. Given the functional form, a set of parameters 
can be defined to fit the function to the relationship in question. In the case of a linear regression 
model, the parameters are the slope and the y intercept. Using a parametric approach, therefore, 
results in two primary challenges: (1) identifying the functional form in question, and (2) 
defining parameters. 

In many cases, these challenges are difficult, if not impossible, to overcome. For 
example, there may be no supporting theory to justify the selection of a linear function to 
represent a particular relationship. In order to address these challenges, a new approach, 
nonparametric regression, has been developing rapidly over the last 20 years (Eubank, 1988). 
Nonparametric regression relies heavily on the data describing the relationship between 
dependent and independent variables. In essence, the approach locates the state of the system 
(defined by the independent variables) in a "neighborhood" of past, similar states. Once this 
neighborhood is established, the past cases in the neighborhood can be used to estimate the value 
of the dependent variable. 

Figure 2 depicts an example where a nonparametric model is used to estimate a single 
dependent variable, y, based on a single independent variable, x, given a data set of previously 
observed x,y pairs. The 13 previously observed x,y pairs are plotted. In order to estimate y when 
x 4, a neighborhood in the area of x 4 is established. The size of the neighborhood, described 
as k, the number of past observations to use in estimating y, is defined to be 3. Figure 2 shows 
the 3 previously observed x,y pairs selected from the data set to serve as the neighborhood. The 
nonparametric regression model generates the estimate for y by averaging the y values of the 
previously observed cases in the neighborhood. In this example, the model forecasts y 5.5 
given an x value of 4. 

The challenge to applying nonparametric regression effectively lies in choosing a set of 
independent variables that adequately describe the dynamics of the system being modeled. For 
example, if time served as the independent variable, the dependent variable estimate would 
simply be an average of past conditions at that time. In effect, this describes a historical data- 
based algorithm. On the other hand, the use of other independent variables may allow the model 
to be more selective in defining a neighborhood. This would likely result in a more responsive 
model. 
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Figure 2. Nonparametric Regression Neighborhood (x 4) 

Neural Networks 

Algorithmic approaches require that one fully understand the details of the problem at 
hand, e.g., how each independent variable affects the system as a whole. If one is addressing a 
problem with a long history of research and theory, such an approach is reasonable. However, if 
this is not the case, such an approach may be quite time-intensive, and possibly unsuccessful. 
The use of a neural network allows one to learn the system's behavior automatically from a 
database of past observations. This substantially reduces the time required for problem solving. 

A neural network learns a system's behavior using a rigorous mathematical procedure. 
The various neural network parameters, which can be thought of as being similar to regression 
coefficients, are iteratively modified to reduce the model's error when applied to the database. In 
fact, the neural network learning procedure is similar to the method of least squares used for 
developing regression models. 

Neural networks have been successfully applied to problems such as classification, 
forecasting, process control, and signal processing (Klimasauskas, 1991). One of their key 
advantages is the ability to perform highly nonlinear mappings. In addition, their structure is 
well suited for implementation on parallel computers. Finally, a neural network developer need 
not make any assumptions about the functional form of the underlying distribution of the data. 

A significant weakness of neural networks is the complexity of the learning process. A 
modeler must make many decisions with very little guidance. In addition, although the model 
captures the behavior of a system, it is difficult for one to understand exactly how it represents 
the behavior. In other words, one can learn very little about the underlying process modeled by a 
neural network. 



Data Collection 

A preliminary examination of the data collected revealed unique characteristics at each 
test site. The typical daily traffic pattern at Telegraph Road is displayed in Figure 3. Traffic 
peaked as expected during the morning and evening commute periods. However, given the high 
demands on the Beltway, the volumes were somewhat lower than expected. Assuming that the 
maximum capacity of each of the four lanes is 2,300 vehicles per hour, as defined in the 
Highway Capacity Manual (TRB, 1994), one would expect to see maximum volumes in the 
range of 8,000 to 9,000 vehicles per hour, as opposed to 4,200 vehicles per hour as seen in Figure 
3. This discrepancy can be attributed to the fact that the Woodrow Wilson Bridge, which has 
only three westbound lanes, is actually metering traffic as it comes into Virginia. 
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Figure 3. Daily Traffic Pattern at Telegraph Road Site 

The typical daily traffic pattern at Wilson Bridge is displayed in Figure 4. This site has 
significantly higher volumes than Telegraph Road. In addition, the peaks for the morning and 
evening commutes are more pronounced. In fact, during both peak periods, the three lanes 
operate near capacity, assuming a per lane capacity of 2,300 vehicles per hour as defined in the 
Highway Capacity Manual (TRB, 1994). 

On many occasions over the 5-month data collection period, malfunctions of the Northern 
Virginia TMS resulted in errors in volume measurements. For example, the loop detectors, 
central computer, and communications system failed on numerous occasions. As a result, the 
traffic volume measurements for roughly 20% of the time intervals over the data collection 
period were logged as missing values. 

Finally, based on discussions with personnel at the Northern Virginia TMS, it can be 
concluded that the data collected over the 5-month period reflected a wide variety of conditions, 
including incidents of varying magnitude, special events, and holiday travel. Although it would 
have been desirable to collect data in the winter and spring to examine seasonal effects, this was 
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Figure 4. Daily Traffic Pattern at Woodrow Wilson Bridge Site 

not possible due to the schedule and budget of the project. However, the database does reflect a 
wide enough set of conditions to serve as a solid basis in examining the feasibility of developing 
effective traffic flow forecasting models. 

Development and Evaluation of a Single-Interval Model 

Model Development 

The historical average, time series, neural network, and nonparametric regression traffic 
flow forecasting models were developed using the development data sets. 

Historical Average Model 

This model was simply formulated by computing the average volume for each time 
interval at each site. In this case, the average was computed using the development data set only. 
This model is easily developed at any loop detector site. 

Time Series Model 

The development of this model was challenging because of the large number of missing 
values in the database. In time series analysis, missing values distort the evenly spaced time 
series of data, which precludes the use of a time series model (SPSS, 1993). A suggested method 
to deal with missing values is to "fill in" the data using a method such as linear interpolation. 
However, a traffic volume time series often undergoes rapid, erratic changes between time 
intervals. Therefore, the use of a fill technique for missing values is likely to produce 
unacceptable results. 

10 



However, given that time series models have been used in previous traffic flow 
forecasting research efforts, a simplified model was developed for comparison purposes. In 
order to achieve a continuous, complete set of data for development, the average volumes for 
each time interval on each weekday were computed. This provided 5 consecutive days of 
development data with no missing values. The statistical software package SPSS was used to 
calibrate the model based on this set of data. 

Neural Network Model 

The objective of developing the model was to use sound network development principles 
without using an exhaustive iterative approach that looked at all possible combinations of 
parameters. Such an approach is normally used for one-of-a-kind neural network applications, 
such as stock market forecasting. However, to meet the needs of ITS, traffic flow prediction 
models must be capable of implementation on a "production" basis. In other words, the 
development, or calibration, process must be simple. There are not personnel available in the 
field to devote a significant amount of knowledge and time to neural network calibration at 
multiple sites. 

Only one network was developed to predict single-interval traffic volumes at the Beltway 
location. This network was calibrated using the development data set for Telegraph Road. 
Again, because expertise and time are scarce in the field, the network was developed at only one 
site in order to assess its portability. The neural network development software package 
NeuralWorks Professional II/Plus was used to define the neural network parameters. Although 
the package provides the modeler with significant assistance, it cannot be used effectively by 
someone unfamiliar with neural network theory. 

Nonparametric Regression Model 

The nonparametric regression modeling technique was coded in the programming 
language C for this application. The algorithm searches for k cases in the development data set 
that are the most similar to the case at hand. It then simply uses the average volume from the 
similar cases to forecast the future volume. This code was straightforward to develop and had 
the advantage of being very portable. To install the model, one simply "plugs in" a database 
from any site. 

The number of samples to use, k, was selected by applying the model using different 
values of k to a subset of the evaluation database at Telegraph Road, comprising 2 days worth of 
data. After the accuracy of the model was compared using the different k values, a k value of 10 
was selected for the single-interval traffic volume prediction model. 

11 



Model Evaluation 

The four models were applied and evaluated using the independent evaluation data sets 
collected at the Telegraph Road and Wilson Bridge test sites. 

Telegraph Road Site 

Table 1 shows the measures of error. Since the time series model cannot function in an 
environment with missing data, the evaluation data set would allow for testing it on only 2 
consecutive days. Table 2 shows the measures of the tendency to grossly over- or underestimate 
future traffic volume. Of particular note is the distribution of these measures. Performance 
during an evening peak period was considered to illustrate particular characteristics of the 
models. 

Table 1 
Error Measures at Telegraph Road Site 

Average Absolute Error Average Percentage 
Model (vehicles/hour) Error 

Historical average 214.6 9.57% 

Neural network 182.5 8.93% 

Nonparametric regression 167.3 7.54% 

Time series 195.0 9.03% 

alncludes only 2 days of evaluation data. 

Table 2 
Bad Miss Measures at Telegraph Road Site 

% Cases Over 10% Error 

Model Underestimate Overestimate 

% Cases Over 20% Error 

Underestimate Overestimate 

Historical average 14.02% 19.30% 3.95% 6.95% 

Neural network 24.08% 7.28% 10.02% 1.75% 

Nonparametric 13.31% 10.98% 1.87% 4.08% 
regression 

Time series 16.67% 

•Includes only 2 days of evaluation data. 

16.15% 5.21% 5.21% 
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Historical Average Model. This model had the highest average level of error among the 
four models, averaging 9.57% error per estimate. However, as can be seen, it did not grossly 
over- or underestimate future traffic volumes when compared to the other models. These results 
indicate that although the model cannot be expected to produce the most accurate forecasts, the 
forecasts should be within a reasonable range of the true value. 

Table 2 shows that the model tended to overestimate future traffic flow. This can most 
likely be attributed to the fact that the model has no way of reacting to extemal changes in the 
system, such as incidents. When incidents occur, reducing roadway capacity and effectively 
metering traffic, the model forecasts based on "normal," nonmetered conditions. 

Figure 5 illustrates the model's difficulty adjusting to external changes. From 3 P.M. until 
6 P.M., the model consistently forecast volumes higher than the actual volumes. 
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Figure 5. Historical Average Model Performance at Evening Peak Period 

Time Series Model. As seen in Tables 1 and 2, this model performed slightly better than 
the historical average model. It was associated with roughly the same number of bad misses as 
the other models (with the exception of the nonparametric regression model), but the misses were 
well distributed. For both the 10% and 20% levels, the model was equally likely to over- or 

underestimate the future volume. 

Figure 6 illustrates the model's performance during the evening peak period and indicates 
its weakness. The forecasts lagged one time period behind actual volumes. However, the most 
telling evidence of the model's poor potential for effective field application is that, due to missing 
values, it could be applied to only 2 days of the evaluation data set. It is clear that the time series 
model is poorly suited for application to the traffic flow prediction problem and, therefore, was 

dropped from consideration and not evaluated at Wilson Bridge. 
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Figure 6. Time Series Model Performance at Evening Peak Period 

Neural Network Model. As seen in Table 1, this model was the second most effective 
model among the four, with an average error of 8.93% per estimate. The most troubling aspect 
of its performance was the distribution of over- and underestimates, as shown in Table 2. For 
example, in nearly a quarter of the cases, it underestimated future traffic flow by at least 10%. 
Overestimates of 10% or more comprised only 7.3% of the cases. 

The cause of the model's tendency to underestimate future traffic volume is most likely 
the neural network development process. It is possible that cases in the development data that 
described incident conditions resulted in extreme modifications of the model's parameters. In 
other words, a few incident conditions in the development data may have caused the network to 
reduce flow estimates across the board. This illustrates that a careful selection of development 
data is necessary to calibrate a neural network properly, another significant challenge in the 
already demanding neural network development process. 

The model performed extremely well during the evening peak period, as shown in Figure 
7. In general, it did an excellent job of tracking fluctuation in actual traffic volume. However, in 
this case, the model benefited from a lower than normal traffic flow. As seen in Figure 5, the 
historical average volume was higher than the volumes on this particular day between 3 P.M. and 
6 P.M. In this example, the neural network model may have performed well because of its 
tendency to underestimate flow. 
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Figure 7. Neural Network Model Performance at Evening Peak Period 

Nonparametric Regression Model. This model significantly outperformed the other 
models at Telegraph Road. With an average error per estimate of 167 vehicles/hour, the model 
was the most accurate of the four considered. However, the area in which the model particularly 
shines is shown in Table 2. Whereas each of the other three models had errors of 10% or greater 
in more than 30% of the evaluation data set test cases, the nonparametric regression model had 
such errors in only 24% of the cases. Further, only 6% of the cases had an error of more than 
20%, roughly half that of the other models. Finally, the distribution of the bad misses was fairly 
even between over- and underestimates. 

Figure 8 illustrates the model's performance during the evening peak period. It reacted 
well to fluctuations in traffic volume and adjusted to the lower than normal traffic flow between 
3 P.M. and 6 P.M. 
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Figure 8. Nonparametric Regression Model Performance at Evening Peak Period 
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Woodrow Wilson Bridge Site 

Table 3 shows the measures of error. (The time series model was dropped from 
consideration.) Table 4 shows the measures of the tendency to grossly over- or underestimate 
future traffic volume. 

Table 3 
Error Measures at Woodrow Wilson Bridge Site 

Average Absolute Error Average Percentage 
Model (vehicles/hour) Error 

Historical average 

Neural network 

Nonparametric regression 

300.4 9.86% 

450.3 11.00% 

229.3 8.07% 

Table 4 
Bad Miss Measures at Woodrow Wilson Bridge Site 

% Cases Over 10% Error % Cases Over 20% Error 
Model Underestimate Overestimate Underestimate Overestimate 

Historical average 13.99% 19.85% 4.60% 6.33% 

Neural network 32.86% 12.11% 14.47% 5.58% 

Nonparametric 11.01% 14.58% 1.53% 4.68% 
regression 

Historical Average Model. Tables 1 through 4 make clear that the historical average 
model had an equivalent performance at both sites. These results illustrate that the model is 
portable in that consistent performance can be expected from it at any location where it is 
applied. Of course, this conclusion is intuitive, given that it is based on past observations at the 
site. However, the model's overall inaccuracy remains a serious drawback. As shown at 
Telegraph Road, and reflected in the relatively high error measures at Wilson Bridge, the 
model's inability to react to current conditions often results in inaccurate forecasts. 

Neural Network Model. As shown in Tables 3 and 4, this model had a significantly 
higher error rate at Wilson Bridge. The average error per estimate was 11.0%, as compared to 
8.9% at Telegraph Road. The most problematic indication of the model's poor performance is 
the fact that nearly half (45.0%) of the cases in the evaluation data set had errors of 10% or more, 
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and 20.1% of the cases had errors greater than 20%. In addition, the model was much more 
likely to underestimate future volume than overestimate it. 

The results at Wilson Bridge show that the model is not portable. The model was 
developed at Telegraph Road, where it did a reasonable job of estimating future volume, but it 
did not capture a "universal" underlying relationship between the transportation system's current 
status and the future volume. Rather, it is clear that for the model to be effective, it must be re- 
calibrated with data at each site where it will be deployed. 

Nonparametric Regression Model. This model was the most effective model at Wilson 
Bridge. In addition, its performance was comparable at both sites. The model was associated 
with an average of 8.0% error per estimate at Wilson Bridge, as compared to 7.5% at Telegraph 
Road. Further, only 6.2% of the cases in the evaluation data set had errors of more than 20%. 

Based on the performance indices described in the methodology, this model was judged 
to be most promising for application to multiple-interval traffic flow forecasting. It produced the 
most accurate average forecasts, produced the fewest bad misses, proved to be portable, and was 
demonstrated to be easily calibrated in the field. 

Development and Evaluation of a Multiple-Interval Model 

Model Development 

The nonparametric regression algorithm was modified slightly to meet the requiremems 
of the multiple-interval traffic flow forecasting problem. The most significant modifications 
were necessary to allow for a series of volumes to be predicted, rather than a single forecasted 
volume. In addition, modifications were needed to allow the model to function with missing 
values. The C programming language was used to automate the execution of the algorithm. The 
k value was defined using the same process described for the single-interval model. In this case, 
a k value of 3 was selected. 

Model Evaluation 

The model was applied for each day in the evaluation data set from 5 A.M. through 7 P.M., 
at intervals of 15 min. The resulting estimate was a time series of volumes for the remainder of 
the day, with intervals of 15 min. For example, at 1 P.M., the model would forecast volumes at 
1:15 P.M., 1:30 P.M., and so on, umil midnight. For each forecast, the error measures were 
averaged over four time periods, referred to as error intervals, as shown in Table 5. 
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Error Interval 

lhr 

2hr 

3hr 

4hr 

Table 5 
Multiple-Interval Forecasting Model Error Intervals 

Forecast Times Included in Error Interval Average 

t+ 15, t+30, t+45, t+60 

+ 75, + 90, + 105, + 120 

+ 135, + 150, + 165, + 180 

+ 195, + 210, + 225, + 240 

Telegraph Road Site 

Table 6 shows the average percentage error over the four error intervals. The error 

averages were calculated for three time periods and for the overall daily period. The periods 
roughly corresponded to times of prediction during the morning peak period, the mid-day period, 
and the evening peak period. 

Table 6 
Average Percentage Error at Telegraph Road Site 

Average Percentage Error Per Interval 

Time Period 1 Hr 2 Hr 3 Hr 4 Hr 

5:00-8:45 9.97% 10.77% 11.31% 11.51% 

9:00-14:00 10.84% 10.87% 10.74% 10.49% 

14:00-19:00 9.21% 10.16% 11.08% 12.19% 

Overall Average 9.99% 10.58% 11.03% 11.40% 

As discussed previously, the average percentage error for the single-interval 
nonparametric regression model at Telegraph Road was 7.5%. Table 6 shows that the multiple- 
interval model did not deliver this level of performance. However, it is important to note that the 
single-interval error measure was for 15-min forecasts, whereas the 1-hr error interval takes into 
account forecasts over a 1-hr period. Given this fact, a 9.21% average error over the 1-hr error 

interval during the evening peak period represents a fairly good performance. 

Overall, forecasts in the nearer term are more accurate than in the longer term. 
Particularly, this is true for the 1-hr error interval as compared to the 2-, 3-, and 4-hr intervals, 
especially during the peak periods. During the mid-day period, forecasts over all intervals were 
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of nearly constant accuracy. Given that mid-day is not a rash period, it is logical that volumes 
would be less predictable during this time. 

Although nearer-term forecasts are generally the more accurate, the performance of the 
model did not drop off significantly with the 2- to 4-hr error intervals. An average percentage 
error of 11.4% in the 4-hr error interval is quite respectable. Figure 9 illustrates the performance 
of a 6 A.M. forecast over an entire day. The model was able to predict the general trends in the 
volumes, keeping within roughly 350 vehicles/hour of the true volume. 
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Figure 9. 6 A.M. Forecast Series 

However, the forecast began to lose its effectiveness around 6 P.M. Figure 10 compares 
this forecast with one using more recent information, the 3 P.M. forecast. Clearly, the 3 P.M. 
forecast performed more effectively during the evening hours. This illustrates the need to 
continually re-forecast future traffic volume in an ITS application. 
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Figure 10. 3 P.M. Forecast Series 
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Woodrow Wilson Bridge Site 

Table 7 shows the measures of error over the four error intervals. The error averages 
were calculated for three periods, morning and evening peak periods and mid-day, as well as for 
the overall daily period. 

Table 7 
Average Percentage Error at Woodrow Wilson Bridge Site 

Average Percentage Error per Interval 

Time Period 1 Hr 2 Hr 3 Hr 4 Hr 

5:00-8:45 5.83% 7.04% 8.07% 8.82% 

9:00-14:00 10.95% 10.88% 10.62% 10.33% 

14:00-19:00 8.13% 8.99% 9.86% 10.86% 

Overall average 8.48% 9.10% 9.62% 10.10% 

The most striking aspect of the results at Wilson Bridge was that the multiple-interval 
model performed almost as well as the single-interval model. Over the 1-hr error interval, the 
average percentage error of the single-interval model was 8.1%, as compared to 8.5% for the 
multiple-interval model. This demonstrates that although the model was modified to allow for 
multiple-interval forecasting, its short-term performance suffered no significant deterioration. 

It is also important to note that the model performed noticeably better at Wilson Bridge 
than at Telegraph Road. In general, error levels were 1.5% less per corresponding error interval. 
It is difficult to attribute this difference to one factor. It is possible that the development data set 
at Wilson Bridge was more representative of a variety of conditions than at Telegraph Road. 
Therefore, it could better match patterns and develop more accurate forecasts. In real-world 
applications, such a difference could be overcome by more extensive data collection at all sites. 

Another possible reason for the difference could be the fact that Wilson Bridge operates 
near capacity during peak periods. This may reduce variability in volumes and allow for more 
accurate forecasting. Regardless of the difference, the model performed more than adequately at 
both locations, showing that such a model is portable and can be fielded successfully at multiple 
locations. 
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Development of ITS Software Support System Architecture 

The development of an accurate, portable, multiple-interval traffic flow forecasting model 
was shown to be feasible and practical. However, taken alone, such a model is of limited use to 
the transportation community. Individual travelers, and even traffic management system 
operators, will be hard pressed to use raw forecasts of a time series of volumes to improve their 
daily decisions. There is a need to identify a framework that will allow for the full utilization of 
the information comained in the forecasts. 

Figure 11 illustrates an example of an ITS software support system architecture that 
defines the framework for the utilization of a traffic flow forecasting capability and supports two 
key ITS services: freeway traffic management and traveler information. The traffic volume 
forecast module is central to this system architecture. Its output serves as the necessary input to 
additional modules, which combine to provide high-quality information to an operator for use in 
devising traffic control strategies and to a traveler for use in developing travel plans. The 
architecture has four main components: (1) a data layer, (2) an analysis layer, (3) an information 
layer, and (4) a decision layer. 

Traffic Volume 
Forecast Model 

Analysis 
Layer 

Incident Real-Time 
Detection Simulation 

Decision Traveler Information/ Freeway 
Layer Guidance Management 

Figure 11. ITS Software Support System Architecture 
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Data Layer 

The data layer consists of the raw traffic volume data collected and stored by the 
surveillance infrastructure of the freeway management system. Specifically, this layer consists 
of the vehicle detectors themselves, communications, and a database that stores past volume 
levels reported by detectors. 

Analysis Layer 

The analysis layer extracts information from the raw data collected in the data layer. As 
one will immediately see in Figure 11, the traffic volume forecast module is central to this layer. 
The module serves to provide valuable input to other analysis modules. 

The incidem detection module looks for unexpected changes in traffic conditions that 
would signify a disturbance in the flow of traffic. By quickly idemifying incidems, decision 
makers can take actions to minimize the impact on the transportation system. In most cases, 
incidem detection algorithms simply compare currem conditions with historical conditions to see 
if the facility is operating within "normal" parameters. The availability of forecast conditions 
may provide a better estimate of normal parameters than purely historical data, thereby 
improving the performance of this module. 

The traffic volume forecast module predicts the demand for travel; it does not provide 
any operational forecasting capability. The real-time simulation module provides this function. 
It provides information as to how the transportation system is expected to react to different levels 
of demand for travel. Currently, no simulation program is available that can operate within the 
tight time constraints of a traffic control system. Once such a program is developed, the traffic 
forecasting model developed in this research effort will allow the module to be implemented 
quickly and effectively. 

Information Layer 

The information layer is where the results of the analysis layer are merged with other 
"outside" information sources, such as police reports and motorist cellular telephone calls. A 
complete description of the status of the transportation system results from this merging 
operation. The objective of the information layer is to provide the most supportive environment 
for transportation decision making. Examples of information that are consolidated in this layer 
are the location and expected duration of disruptions to normal traffic flow, expected speeds on 
portions of the freeway system, operational problem locations, and areas operating below 
capacity. 
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Another important point to make about this layer is that the resulting status information 
will be "fed back" to the appropriate analysis modules, as seen in Figure 11. For example, the 
real-time simulation module needs to be updated with incident locations so that available 
capacity may be adjusted accordingly. 

Decision Layer 

Decisions are made and actions are taken at this layer of the architecture. The strength of 
the architecture lies in the fact that both modules in the layer, freeway management and traveler 
information/guidance, have access to high-quality information to support decision making. 
These two modules represent two of the primary ITS services. 

The objective of the freeway management module is to take action to ensure the most 
efficient possible flow of traffic over the freeway system. Decisions made in this module include 
alternate route determination, incident response, ramp metering, and perhaps even dynamic road 
pricing. The module relies on human operators for final decision making. However, it is likely 
that decision support tools will be required to take some of the load off the operators. For 
example, expert systems may be used to "screen" the information layer for specific problem 
locations and then present operators with suggested strategies to address the problems. 

The traveler information/guidance module is intended to assist a traveler in making 
effective travel decisions. These decisions include when to travel and what route to use. In 
effect, the module "packages" the information developed by the architecture in a form that is 
usable by the general public. For example, although the general public will not be able to use 
volume information effectively, they will be able to use average speed information or travel time 
estimates in making efficient travel decisions. 

CONCLUSIONS AND RECOMMENDATIONS 

The nonparametric regression modeling technique is well suited for application to traffic 
flow forecasting. Nonparametric regression models developed for sites on the Capital Beltway 
were accurate, responsive, and easy to implement at multiple locations. Based on this 
conclusion, the following recommendations are offered: 

Freeway traffic managemem software purchased by VDOT in the future should possess 
the capability to archive traffic volume data at strategic locations for a minimum of 12 
months. This will allow for the future incorporation of a nonparametric regression 
traffic flow forecasting model. 
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VDOT should implement the multiple-interval traffic flow forecasting model developed 
in this effort at the Suffolk TMS for further evaluation. The Virginia Transportation 
Research Council would work with Suffolk TMS staff to monitor the model's 
effectiveness over the long term. 

3. Language should be included in future requests for proposals for freeway managemem 
software that VDOT expects a product that meets or exceeds the functional capabilities 
of the ITS software support system architecture described in this report. Although the 
software may not include all of the components described, it must be capable of 
evolving to such an architecture. 

VDOT should consider investigating the application of the nonparametric regression 
modeling approach to arterial traffic volume forecasting. This forecasting model would 
directly support the real-time, adaptive control of signal systems. Such a study could be 
conducted by the Research Council or a state university, or it could take the form of a 
submission to the National Cooperative Highway Research Program (NCHRP). 
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