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ABSTRACT 

Performance prediction models are a key component of any well-designed pavement 
management system. This study used data compiled from the condition surveys conducted 
annually on Virginia's pavement network to develop prediction models for the interstate 
system. The study is being reported in two volumes, of which this is the second. 

The second volume describes the development and evaluation of the performance 
prediction models. An exploratory data analysis was first conducted to examine the data 
distribution, and to reveal the underlying relationships among the variables. "Robust" 
regression techniques were used to identify outlying observations that could adversely affect 
the regression analysis results. Stepwise regression was then used to select the significant 
predictors of deterioration. 

Different model forms were examined to identify the most suitable for fitting the data. The 
models were evaluated by checking their goodness-of-fit statistics and conducting a series of 
sensitivity analyses. To further assess the models' accuracy, their predictions were compared 
against field-observed values. An analysis-of-variance (ANOVA) test was also conducted to 

compare between the accuracy of two model forms and two model adjustment procedures. In 
general, the developed models provided an adequate fit and generated predictions that conformed 
with accepted engineering judgement. Comparisons with field observations showed their 
accuracy to be quite reasonable even for long-range predictions. Finally, the ANOVA results 
indicated that no significant differences existed between the two model forms tested or between 
the two adjustment procedures. 

iii 
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INTRODUCTION 

Performance prediction models greatly enhance the capabilities of a pavement management 
system, allowing an agency to predict the timing for maintenance or rehabilitation activities 
and estimate the long-range funding requirements for preserving the pavement system. These 
functions are crucial to the success of any pavement management process. 

In Virginia, a pavement performance model was developed by McGhee in 1984 from data 
collected on Interstate 81.1 It related the pavement distress maintenance rating (DMR), a 
composite index of distress damage, to cumulative equivalent single axle loads (ESALs). The 
model is not currently used because the ESAL data it was based on are not now accessible 
from within the Pavement Management System (PMS). Also, when this model was developed 
the Virginia Department of Transportation's (VDOT) PMS was still evolving, and condition 
data were limited. The annual condition surveys conducted since the model was originally 
developed have compiled substantial condition data, making more refined models possible. 

PURPOSE AND SCOPE 

An earlier phase of this study used condition data to construct a screened data base to 
support the modeling effort. 2 In this phase, the data base was used to develop prediction 
models for Virginia's interstate system. Specifically, this study had the following objectives: 

1. To identify the major factors affecting the condition of Virginia's pavements. 

2. To experiment with various model types, forms, and modeling approaches, and identify 
the most appropriate for Virginia's data. 

3. To compare the precision of the developed models and assess the accuracy of the overall 
prediction process. 



METHODOLOGY 

The research consisted of the following five major stages: 

2. 
3. 
4. 
5. 

Literature review. 
Preliminary data analysis and outlier detection. 
Significant predictors identification. 
Model development and evaluation. 
Model verification and accuracy assessment. 

The following sections describe each of these stages. 

Stage 1 Literature Review 

Significant variables affecting pavement deterioration that were identified by earlier 
studies, different modeling approaches that have been used, and the mathematical form of 
previous prediction models were reviewed. 

Significant Variables Affecting Pavement Deterioration 

Factors affecting pavement condition can be divided into the following categories: traffic 
loading, environment, pavement structural capacity, soil type, drainage condition, type of 
pavement, and maintenance activities. Within each category, a number of variables 
characterize the factor under consideration. Traffic loading is typically characterized by the 
cumulative number of 18-kips single axle loads (ESALs). Variables used to characterize the 
pavement structural capacity will depend upon the type of the pavement; for flexible 
pavements, for example, the structural number developed in relation to the AASHO design 
equations is usually employed. Indices such as the Thornthwaite index or the freezing index 
can characterize environmental factors. 3 

Often, however, not all of these variables are available. Moreover, some variables may 
sometimes be statistically insignificant in predicting pavement condition. This happens when 
the variable does not show significant variation over the study area. For example, 
environmental conditions may virtually be uniform over one state, and would not need to be 
included in the models. Any modeling effort should start by establishing the available 
variables that significantly affect pavement deterioration in the area under consideration. 
Results may differ from case to case. 

Iowa DOT's study of pavement performance models for composite and rigid pavements, 4 

for example, showed that the major factors affecting pavement condition on interstates were 



pavement loadings, base material type, and aggregate durability. For primary roads, the 
significant variables were pavement age, pavement thickness, soil subgrade, and reinforcement 
types. 

Gibby and Kitamura 5 identified factors affecting the condition of pavements owned by local 
governments: 

1. Previous pavement condition, 
2. Pavement age since last major rehabilitation or reconstruction work, 
3. Soil classification, 
4. Classification of roadway drainage, 
5. Surface thickness, 
6. Functional classification, 
7. Presence or absence of bus service, and 
8. Individual jurisdiction. 

An accurate assessment of the effect of traffic was not possible, since the data files used for 
that study did not contain ESAL information. 

As pointed out by Gibby, 5 because of the relationship between variables, some variables 
may be used as surrogates for others. For example, the road functional classification can be a 
surrogate variable for traffic levels, since the higher the classification of a road, the heavier 
the traffic. Another issue that needs special attention while selecting variables for model 
development is the problem of multicollinearity between variables. 6 Multicollinearity arises 
when independent variables that are highly correlated are included in the model. A common 
example is the high correlation between the age variable and the cumulative ESALs. To 
overcome this problem, their ratio (ESALs per year) may be used. 

Modeling Approaches 

The literature review showed that, with respect to deterministic models, there have been 
three basic approaches for modeling the deterioration of a particular network: a pavement 
"family" approach, a multivariate model approach, and a project-specific approach. A brief 
description of each of these approaches is given below. 

Pavement "Family Approach. 

In this approach, 7-9 pavements with similar characteristics are grouped together to form 
"families" or categories. Several combinations of factors can be used to define these 
"families." For example, the PAVER PMS, developed by the U.S. Army Corps of Engineers 
Research Laboratories, defines a pavement family as a group of sections having the same type, 



pavement use and pavement rank. 9 A recent study of Minnesota DOT prediction models 
adopted finer groups based on pavement type, functional class, district, thickness, subgrade 
soil strength and traffic levels. 7 

Once the families are defined, two-variable models relating the pavement condition 
measure to age are developed. Grouping is assumed to account for the effect of the other 
variables, such as traffic or structural strength. The developed model will represent the mean 
behavior of all sections in a particular family. When the family model is used to predict the 
condition of a particular section, it is adjusted if the observed current condition is different 
from that predicted by the model. This is usually done by drawing a curve through the 
observed pavement condition-age point parallel to the family curve. The adjusted model can 
then be used to predict the section condition for future years. 

Multivariate Model Approach 

In the second approach, 1°-13 pavement sections are broadly classified by factors like 
functional class, type or region. For each classification, models are developed relating the 
pavement condition to a number of variables such as pavement age, ESALs and structural 
capacity, not just to age as in the previous approach. Each pavement section within a 
classification will thus have its own performance pattern. Adjustments can still be made if the 
observed condition is different from the model prediction. This takes several additional 
factors into consideration, such as the inherent variations in materials quality and construction 
procedures, which the model did not consider. It also incorporates data feedback into the 
prediction process, since prediction is based on the most recent observation. 

This approach is used by the performance prediction models of the Illinois Pavement 
Feedback System (IPFS), 13 where the interstate system is divided into five broad groups 
according to pavement type. Performance prediction models are developed for each pavement 
type relating the pavement condition to the age of the pavement, its structural capacity and the 
cumulative ESALs to which it has been subjected. 

Project-Specific Approach 

The third approach, used by the Washington State PMS, TM develops project-specific 
prediction models, where a separate model relating the pavement condition to age is fitted for 
each project or analysis unit within the state system. The problem with this approach is that in 
some cases, such as a relatively new project, the number of points available for model fitting 
can be very small. For new projects, or when the project-specific curve provides unreasonable 
predictions, the approach is usually supplemented by standard or "family" curves. 



Regression Techniques 

In all of the above approaches, regression analysis is the basic tool for model development. 
The techniques used include simple linear, multiple linear, stepwise, and nonlinear regression. 
In addition, some modern regression techniques for outlier detection and optimal variable 
transformations were recently investigated by Lee and Darter. 15 

Prediction Model Form 

The prediction model form should satisfy applicable engineering boundary conditions, 
which should be established before the statistical data analysis. Lytton 6 identified six 
boundary conditions for damage prediction models expressing pavement damage on a scale of 
0-1: a) the initial value at time 0; b) the initial slope; c) the overall deterioration trend; d) the 
variation in slope along the service life of the section; e) the final slope; and f) the terminal 
value. A literature review revealed that not all of these conditions were actually satisfied in 
practice. Basically, previous prediction models assumed one of the following forms: 

Linear Model 

The linear model has the following general form: 

Y a 
0 

+ nix + a2x 
2 

+ + anx 
n 

(1) 

where, 
Y 

X1...X 
n 

al...a 
n 

pavement condition measure to be predicted; 
independent variables such as pavement age, traffic and structural capacity; 
regression coefficients. 

This model form failed to satisfy most boundary conditions, and therefore was generally 
used as an interim until more data became available. 16 Owing to its simplicity, it was also 
used to identify the significant variables affecting the pavement condition in the study area, 5 

and to point out major problems and unreasonable trends in the available data. 11 

Power Curve 

The form of a power curve is given as: 

a a a Y a 
0 x x 2 xn (2) 

where all terms are as previously defined. 



This model form was frequently used in previous studies, 5'12'17 and a number of states, 
including Washington and Illinois, adopted it in developing prediction models for their 
pavement management systems. 13.14 Unlike the linear form, the power curve can satisfy the 
initial boundary condition of zero distress at the beginning of the pavement service life. 

Sigmoidal Curve 

A sigmoidal (S-shaped) model is a curve with an inflection point and upper and lower 
asymptotes. This could be appropriate for predicting pavement condition indices, since such 
indices are typically bounded by an upper and lower value. By having an inflection point, the 
model can reflect the fact that the pavement rate of deterioration may differ throughout its 
service life. A simple sigmoidal model for prediction models can be expressed as 

-A 

Y=e r (3) 

where, 
Y 
A 
T 

pavement condition measure to be predicted, 
parameter representing pavement characteristics, and 
pavement age, or cumulative ESALs or a function of age and ESALs. 

Systems that use the sigmoidal form include Minnesota, 16 Ohio,11 and the Metropolitan 
Transportation Commission (MTC) of the San Francisco Bay Area. 3 

Polynomial Equation 

Polynomial prediction models have the following general form 

Y a 
o 

+ a• x + a 2 x 
2 

+ a. x" (4) 

where, 
Y 

X 

al...a 
n 

the pavement condition measure, 
the pavement age, 
regression coefficients, and 
refers to the degree of the equation. 

Polynomial models were used in previous studies to develop 2-variables models relating 
condition to pavement age. 8.9 However, because of data scatter, the polynomial curve would 
sometimes show an upward shift, suggesting that the pavement condition improved with time. 
To overcome this problem, the regression parameters were estimated using mathematical 
programming techniques, which allowed for imposing constraints on the slope of the curve. 9 



Since polynomial models are purely empirical, they are usually not recommended for 
extrapolation beyond the data range. 

Stage 2 Preliminary Data Analysis and Outlier Detection 

After the data base construction stage, 2 the research effort proceeded to preliminary data 
analysis and outlier detection. This stage consisted of three main tasks. The first task was to 
formulate an appropriate modeling approach. This involved deciding upon an appropriate 
classification scheme, identifying the potential explanatory variables, and selecting the 
statistical packages to use in the analysis. The second task was a series of exploratory data 
analysis procedures. Finally, the third task addressed the critical issue of detecting outlying 
observations using robust regression techniques. These tasks are described below. 

Task I Formulating an Appropriate Modeling Approach 

As previously discussed, the literature review revealed three basic approaches for 
prediction modeling: a "family" approach, a multivariate model approach, and a project- 
specific approach. The nature of the data suggested the multivariate model approach for this 
study. This approach permitted investigation of the effect of the different variables on 
pavement condition. It could be transformed into "family" modeling simply by using the 
pavement age as the single predictor, and adopting finer pavement groups or categories. 

The project-specific approach, on the other hand, was ruled out because the surveyed 
sections changed every year, which limited the available number of points for distinct sections. 
The very nature of the DMR score as a subjective measure suggests that basing a model on a 
small number of points is quite dangerous, since any error in one point will appreciably affect 
the precision of the model. 

The Categorization Scheme 

The distribution of the available data was examined to identify a suitable classification 
scheme that would yield categories of pavement sections with an adequate number of data 
points per group for model development. Figure 1 shows the number of points available for 
modeling by district and pavement type. The exact figures are in Table 1. The overlaid 
flexible pavements category had the largest number of available points for all districts, except 
for Fredricksburg. 

Based on the distribution of the available data points, the following sectioning scheme was 
adopted. Sections were first classified according to their pavement type into: a) overlaid 
flexible pavements, b) flexible pavements with no overlay, c) composite pavements with one 



overlay, and d) composite pavements with more than one overlay (the number of points 
available for the individual surface types within the "OTHER" category was inadequate for 
developing reliable models). Overlaid flexible pavement sections were then subdivided by 
district to give a separate model for each district; this controlled the variability 
arising from the fact that each district had its own rating team. 

Figure 1 Number of Observation Points by District & Pavement Type 
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Table 1. Number of Observation Points by District and Pavement Type 
(after saving the 5 % sample) 

District 

flexible w 

no overlay 

Bristol 45 

Salem 54 

Richmond 167 

Suffolk 76 

Fredricksburg 13 

Cuipeper 19 

Staunton 30 

Number of Points Available for Analysis 

flexible w 

overlay 
composite 

w/ 
overlay 

composite w/ 
> overlay 

OTHER Not 
included 

452 0 0 20 123 

623 0 0 6 111 

989 7 0 42 335 

81 49 6 18 53 

11 45 85 10 108 

77 6 0 2 46 

748 0 0 150 288 



The other three pavement type categories had too few points to develop district-specific 
models, so sections were classified by geographic regions combining a number of contiguous 
districts. Virginia's three basic geographic regions are" 

1. Valley and Ridge Western Mountains, containing Bristol, Salem and Staunton districts 
(denoted as Region 1). 

2. Piedmont, encompassing Lynchburg, Culpeper and Northern Virginia. 

3. Coastal Plain, containing Richmond, Suffolk and Fredricksburg districts (denoted as 

Region 2). 

Although the maximum number of classes defined under this classification scheme was 18 
(9 for overlaid flexible pavements and 3 each for flexible with no overlay, composite with one 

overlay and composite with more than one overlay), the scheme resulted in only 10 groups in 
our case (Figure 2). This is because data were not available for Lynchburg and Northern 
Virginia, 2 only some districts had composite pavement sections, and some groups contained 
very few observation points (less than 20). Adopting this classification scheme allowed the 
modeling process to capture differences in the deterioration trend of the various pavement 
types, as well as variations in the environmental conditions and paving materials. 

Figure 2 The Classification Scheme 
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Potential Explanatory Variables 

With the DMR representing the response variable for the models, the next step was to 
identify the potential explanatory variables that were expected to have an effect on the DMR. In 
general, explanatory or predictor variables may either be continuous or discrete (categorical) 
variables. The following paragraphs discuss the potential predictors identified for this study. 

Continuous Explanatory Variables. The variables depended upon the pavement 
category. For overlaid flexible pavements, the following four variables were identified: 

AGE: 
DEPTH: 
STRNO: 
YESAL: 

the age of the pavement in years since last overlay; 
the thickness of the last overlay in inches; 
the structural number of the underlying pavement structure; and 
the average yearly equivalent single axle loads in million ESALs. 

The YESALs were computed by dividing the cumulative ESALs to which a section had been 
subjected from the time of its construction to its rating date, by the section AGE. YESALs 
were used instead of the cumulative ESALs to avoid multicollinearity problems arising from 
the very high correlation between the cumulative ESALs and the section AGE. 

For flexible pavements with no overlay, these variables were reduced to AGE, STRNO, and 
YESAL. For composite pavements with either one or more overlays, the predictors were 
AGE, DEPTH (which in this case equaled the total thickness of the last asphaltic concrete 
overlay), and YESAL. 

Because of missing layer data, the DEPTH and STRNO variables were not available for all 
the records. This problem was especially evident for the structural number (STRNO) 
variable for overlaid flexible pavements in the Bristol, Richmond, Culpeper and Staunton 
districts, where records with a value for this variable were a very small fraction of the total 
number of points available. To avoid a drastic reduction in the number of points available 
for modeling, the STRNO variable was not used for these four groups. The unavailability of 
such an important variable inhibits the development of theoretically-based models. 

Categorical Explanatory Variables. In addition to continuous variables, the effect of other 
categorical variables on the DMR score had to be considered. Capturing the effect of these 
categorical variables required the use of dummy variables, which are variables that assume only 2 values, usually a and a 0 for linear models or 2.7183 and for nonlinear models. 
The number of dummy variables needed to represent a certain categorical variable is equal to 
one less than the number of levels that the categorical variable assumes. The following four 
groups of dummy variables were needed. 

10 



1. Dummy variables to identify the lane being rated. 

According to VDOT's rating practice, the lanes of the roadway section in a particular 
direction were rated as a one unit unless their construction histories were significantly 
different. Where individual lanes are rated separately, however, the deterioration 
trend of the traffic lane should be different from the inner lanes, which are subjected 
to lower truck traffic. To capture this effect, sections were divided into 2 groups, and 
a dummy variable, LANNO, was encoded as follows 

LANNO 0 if rating was performed on the whole section or on lane 1 (traffic lane) 
1 if any other lane (i.e. lane 2, 3 or 4) was rated. 

The decision to adopt the two groups described above was made after discussions 
with the pavement coordinators from the different districts. The two cases of rating 
the section as a whole and rating the traffic lane were grouped together, since even 
when the whole section is rated, the rater is still required to emphasize distresses 
observed in the traffic lane. 

2o Dummy variables for the number of lanes available per direction. 

To include this effect in the models, sections were divided into three groups: sections 
with 1 lane per direction, sections with 2 lanes per direction, and sections with 3 or 

more lanes per direction. Two dummy variables, RDTYP 1 and RDTYP2, were 
encoded to account for these levels. 

3. Dummy variables to distinguish among the individual routes within a group. 

To capture some characteristics that are specific to a particular route, dummy 
variables, ROUTID, were used to identify points belonging to the different routes 
within a district. The number of dummy variables equaled the number of different 
routes within a group minus one. 

4. Dummy variables to identify individual districts within a geographic region. 

Finally, for the cases where classification was based on geographic region rather than 
individual districts, dummy variables, DISTR, were used to identify points belonging 
to the individual districts within the region. 

There were two main reasons for using dummy variables like the LANNO and RDTYP 
variables, to account for factors that might have been captured using traffic lane distribution 
factors. First, dummy variables will capture the above effects even if ESAL data is missing, 
which it often is. Second, the lane distribution factors are not precisely known, and the use of 
default values may obscure or distort the ESAL's role in prediction. 

11 



Statistical Software Packages Used in the Analysis 

Three statistical packages were used for statistical analysis and modeling: S-PLUS 
software, Statistical Package for the Social Sciences (SPSS), and Number Cruncher Statistical 
System (NCSS). The combination of these three packages provided a powerful modeling tool, 
since each was employed where it offered certain advantages. For example, S-PLUS has very 
strong graphical capabilities, and was heavily used during the exploratory data analysis stage. 
It also contains modern regression techniques that enhanced the modeling effort. SPSS is very 
efficient in performing traditional linear and nonlinear regression procedures. NCSS is very 
well suited for quick preliminary experimentation with different model forms. 

Task 2 Exploratory Data Analysis 

Exploratory data analysis was used to" 

study the extent, range and distribution of the data, 
identify possible coding errors, 
check conformity with the basic assumptions of regression analysis, and 
understand the general relationships between the variables, x5 

The exploratory data analysis procedures used in this study are described below. 

Response Variable Distribution 

Regression requires that the residuals from the fitted model be independent and normally 
distributed. TM For this to be fulfilled, however, the response variable distribution should also be 
approximately normal. Therefore, the close-to-normal distribution for the DMR had to be 
verified for each of the 10 groups or data sets used. This was done by four exploratory analysis 
techniques available from the S-PLUS package, 15' 19 explained later in this report. 

Explanatory Variables Range 

As opposed to the response variable, explanatory variables are not required to satisfy any special conditions with respect to their distribution. It was only necessary to check the data 
range and potential errors by plotting the frequency histograms. 

Relationships Among Variables 

For a basic understanding of the interrelations among the variables, a scatter plot matrix 
was generated for each of the 10 basic groups. This matrix displayed the pairwise scatter plots 
for the different variables used in the analysis. 

12 



Task 3 Outlier Detection Using Robust Regression Techniques 

The screening of the data base during the data base construction stage was mainly to 
minimize the adverse effects of some obvious errors in the data base. However, other sources 

of error had not yet been considered, and possible outliers still needed to be detected and 
removed. Outlier detection was necessary because ordinary least square regression is highly 
sensitive to outliers; a single outlying observation can have a dramatic effect on the analysis 
results. 

The last decade has seen a number of "robust" regression techniques which attempt to fit 
the bulk of the data first and then search for outliers. The Least Median Squared Regression 
(LMS) devised by Rousseeuw in 198420, 21 was recently investigated for use with pavement 
data by Lee and Darter, 15 and was adopted by this study for outlier detection and removal. 
Robust regression was employed to detect outliers as follows: 

1. Robust regression was first run, and the standardized residuals from the LMS regression 
were determined. 

2. Data points with a value for the standardized residuals greater than 2.5 were identified as 
potential outliers. 

3. The detected points were closely investigated to determine those points with justifiable 
reasons warranting their exclusion. 

4. Traditional regression techniques were then performed after excluding detected outliers. 

One problem with the LMS method, however, is that the identified outliers are influenced 
by the assumed model form. 15 An inappropriate model will result in a number of points being 
flagged as outliers, even though the problem is the inability of the assumed model to fit the 
data, and not the alleged outliers. To minimize this problem, LMS regression was performed 
using two different model forms, and the potential outliers detected in each case were 
compared. Using different forms with different characteristics helped distinguish between 
"genuine" and "false" outliers. The two models used were: 

1. A linear model having the general form 

Y ao + al.xl + a2.x2 + a3.x3 + a4.x4 + an.X 
n 

(5) 

where, 

Y 

X X 
n 

ao an 

response or dependent variable 
explanatory or independent variables 
regression coefficients. 

13 



2. A nonlinear power model with the general form 

a a a a 4 a y a O. x x 2 x 3 x 4 x 
n 

(6) 

For LMS to be performed, however, this nonlinear model needed to be transformed into a 

linear form. This was done by taking the natural logarithm of both sides of the equation to 

yield: 

In (DMR•t.- DMR) In (ao) + al.ln(AGE) + a2.1n(DEPTH) + a:•.In(STRNO) + a4.1n(YESAL) 
+ as.ln(LANNO) + a 6.1n(RDTYP) + a7.1n(ROUTID) + as. In (DISTR) + In(error) (7) 

In the previous equation, DMRinit" is equal to 100 since this is the rating before any distress 
develops. However, in order to avoid the numerical problems that arise when the DMR score 

is equal to 100 (in such case the left-hand side will be equal to In (100-100) In(0) which is 
undefined), a constant value of 1 was added to give: 

In (101 -DMR) In (ao) + al.ln(AGE) + a2.1n(DEPTH) + a3.1n(STRNO) + a4.1n (YESAL) 
+as.In(LANNO) +a6.1n(RDTYP) + aT.ln(ROUTID) + a8. In (DISTR) +In(error) (8) 

To avoid multicollinearity problems which could adversely affect the results of the LMS 
regression, ordinary stepwise least squared regression was carried out first, and then LMS 
regression was run using only those variables that were included in the stepwise regression. 
The analysis resulted in two lists of potential outliers, one for each model form assumed. The 
two lists were compared and a second round of manual screening was performed. Extreme 
care was taken to delete points only when there were strong reasons supporting their 
exclusion. Essentially, points were removed if the section exhibited unexplainable fluctuations 
in its condition, or if the DMR value was beyond the range that should be expected for the 
corresponding age (for example, a section with a DMR value equal to 100 at an age of 8 
years). Table 2 gives the number of points deleted as a result of this second iteration of data 
cleansing. 

Stage 3 Significant Predictors Identification 

In this stage, the purpose was to select, from the available explanatory variables, a subset 
of good predictors to be included in the models. To this end, stepwise regression was 
performed on each of the 10 categories or groups assuming a linear model of the form: 
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DMR a0 + aI.(AGE)+ a2.(DEPTH) + a3.(STRNO) + aa.(YESAL) 
+ as.(LANNO) + a6.(RDTYP) + aT.(ROUTID) + as.(DISTR) + error (9) 

The Statistical Package for the Social Sciences (SPSS) was used to perform the stepwise 
regression analysis. The procedure uses a combination of forward selection and backward 
elimination for variable selection. For forward selection, a variable enters the model if the 
probability associated with the F-test for the hypothesis that its coefficient is 0 is less than or 

equal to 0.05. In backward elimination, the variable remains in the equation as long as the 
probability associated with an F-to-remove test does not exceed 0.10. 22 

Stepwise regression helped identify the least number of explanatory variables needed for 
reliable prediction, ensure that all variables included were statistically significant, and minimize 
multicollinearity problems in the developed models. 

Table 2. Number of Outliers Deleted for Each Group 

Grou.12 Number of Number of 
points deleted points remaining 

1. Overlaid flexible-Bristol 12 pts. 
2. Overlaid flexible-Salem 29 pts. 
3. Overlaid flexible-Richmond 28 pts. 
4. Overlaid flexible-Suffolk 4 pts. 
5. Overlaid flexible-Culpeper 5 pts. 
6. Overlaid flexible-Staunton 44 pts. 
7. Flexible / no overlay-Region 7 pts. 
8. Flexible no overlay-Region 2 13 pts. 
9. Composite with overlay 11 pts. 
10. Composite with > overlay 10 pts. 

404 pts. 
534 pts. 
861 pts. 
63 pts. 
69 pts. 
415 pts. 
96 pts. 
153 pts. 
88 pts. 
80 pts. 

Stage 4 Model Development and Evaluation 

With the significant predictors identified, the study moved into the model development and 
evaluation stage. This stage involved two major tasks. In the first task, a power model form 
was used to develop the required prediction models. The goodness-of-fit of the developed 
models was then evaluated and a sensitivity analysis conducted to assess the adequacy of their 
predictions. In task two, a sigmoidal (S-shaped) model was developed and evaluated. The 
performances of the power and sigmoidal models were then compared. 
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Task 1 The Development of a Power Prediction Model 

The linear model form failed to meet most of the boundary conditions established for a 

good performance prediction model. As just one example, the basic boundary condition for a 
section to have a DMR of 100 (no distress) at AGE 0 (beginning of service life) was rarely 
satisfied. There was a need to investigate more realistic model forms capable of satisfying 
some of the important boundary conditions and more accurately representing the actual 
deterioration trend. Compared with the simple linear model, the power curve was a more 
realistic form. This model, generally expressed as 

DMR DMRinit" -a O. 
(AGE) al (DEPTH) a2 (STRNO) a3 (YESAL) a4. 
(LANNO)•5.(RDTYP) a6. (ROUTID) aT. (DISTR) •8 (10) 

is capable of satisfying the initial boundary condition of no distress at age zero, regardless of 
the values for the other variables. 

Approaches for Fitting the Power Curve 

There are two options for fitting the power curve to the observed data. The first option is to 
transform the model into a linear form by taking the logarithm of both sides of the equation. The 
second approach is to directly fit the model using nonlinear regression techniques. Each 
approach has its own assumptions, advantages, and disadvantages. 

The basic assumption of the first approach is that the error term is multiplicative, as shown 
below. 

DMR DMRinit -a o. 
(AGE) al (DEPTH) a2 (STRNO) a3 (YESAL) a4. (LANNO) a5 

(RDTYP) •6. (ROUTID) •7. (DISTR) as. error (11) 

This allows the logarithmic transformation to be performed by taking the natural logarithm of 
both sides of the equation, as was done previously when using LMS regression for Outlier 
detection. 

The problem, however, is that in our case interest was in the response variable in its 
original metric (the DMR before transformation). Consequently, a reverse transformation 
would have to be performed to convert the transformed predicted value back to its original 
metric. Such a procedure, although a common practice, has two complications. First, the 
parameter estimates after transformation are no longer the least square estimates of the true 
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parameters. 23,24 Secondly, the goodness-of-fit statistics reported in this case strictly apply to 
the transformed model, and the detransformed regression equation will not usually have the 
same level of accuracy reported for the transformed one. is 

In the second approach, the error term is assumed to be additive, and thus the model 
cannot be transformed. 

DMR DMRinit" -a o. 
(AGE) al (DEPTH) •2 (STRNO) a3 (YESAL) a4. (LANNO) • 

.(RDTYP) a6. (ROUTID) a7. (DISTR) as + error 

This approach avoids the problems associated with variable transformation. The disadvantage, 
however, is mainly caused by the complex nature of nonlinear regression. For nonlinear 
models, there are no explicit expressions for the estimators, and the procedure has to use an 
iterative procedure which may fail to converge in some cases. Nonlinear regression also 
requires the user to specify the model form, and to guess at the initial values for the 
parameters to be used in the search procedure. 18 

In the current study, after examining the residuals resulting from the two approaches, the 
assumption of an additive error term seemed more plausible. Consequently, only the results 
from the nonlinear regression approach are reported. 

The Use of Nonlinear Regression in Power Model Development 

Equation (12) gives the general form for the power model. The predictor variables used 
for each group or data set were those identified from the stepwise regression. However, since 
the variables' significance could slightly change with the model form assumed, care was taken 
not to exclude any significant variable that would appreciably improve the fit in this case but 
that was not included in the previous stepwise regression step (this was only the case with one 
group in connection with the DEPTH variable). 

To obtain the initial parameter estimates required by the nonlinear regression search 
algorithm, the model was transformed into a linear form as previously described, and the 
parameters were estimated using linear regression. These estimates were then used by the 
iterative algorithm to find the estimates that would minimize the sum of the square of the 
residuals. To ensure the development of reliable models, the asymptotic standard errors for 
the parameters were consistently monitored to ensure that they were within reasonable limits. 
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Evaluation of the Power Model 

Plots were made of the predicted versus the actual DMR values for each category in order 
to assess the goodness-of-fit of the developed models. A sensitivity analysis was then 
conducted to ensure that the models' predictions conform with the basic engineering 
knowledge and to allow for an assessment of the relative importance of the different predictor 
variables. This mainly involved the generation of 3-dimensional and 2-dimensional plots 
showing the change in the DMR value with the variable/variables of interest. 

Task 2 The Development of a Sigmoidal Prediction Model 

Since the characteristics of the sigmoidal (S-shaped) model suggested that it could be 
appropriate for performance prediction modeling, this type of model was investigated for its 
ability to fit Virginia's data. The performance of the developed sigmoidal models was then 
compared to the simpler power models developed in the previous step, to assess whether the 
sigmoidal model was likely to significantly enhance prediction accuracy. 

Model Form and Initial Parameter Estimates 

The assumed sigmoidal model had the following general form: 

DMR 100 a 0 e 

-a (DEPTH) a2. (STRNO) a3. (LANNO) a4. (RDTYP) as. (ROUTID) a6. DISTR a7 

(AGE) aS. (YESAL a9 (13) 

The variables included for each category or data set were those identified from stepwise 
regression. 

To obtain initial estimates for the regression parameters, the model was rearranged and 
transformed into a linear form by taking the logarithm of both sides of the equation twice to yield 
the following form: 

In [- In 
100 DMR)] 

ln.a + a2" In(DEPTH) + a3.1n(STRNO + a4.1n(LANNO)+ as.In(RDTYP 
a 

o 

+ a6.1n(ROUTID) + aT.In(DISTR aa.ln(YESAL ag.ln(AGE (14) 

According to the above sigmoidal model specification, the parameter a0 represents the 
difference between the values of the upper and lower asymptotes of the curve (that is to say, a0 
represents the difference between the upper and lower bounds of the DMR values as given by the 
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model). Since the lower range for the available DMR data was generally around a DMR score of 
70, the value for the parameter a0 was initially assumed to be equal to 30. This allowed for 
calculating the left-hand side of the above equation, and linear regression was then used to 
estimate the remaining parameters. Since the sole purpose behind the above procedure was to 
provide reasonable initial estimates for the regression parameters, the assumption of a value for 
ao was not likely to appreciably affect the results of the subsequent analysis. Nonlinear 
regression was then performed to develop the final models. 

Evaluation of the Sigmoidal Model 

As done for the power model, the goodness of fit for the sigmoidal models was evaluated 
by plotting the predicted versus the actual DMR values. Sensitivity analyses were also 
conducted to ensure that the models were providing rational predictions. Finally, the 
deterioration trends predicted by the power and sigmoidal models, as well as the goodness-of- 
fit statistics for the two model forms, were compared. 

Stage 5 Model Verification and Accuracy Assessment 

The final stage of the study assessed the accuracy of the developed models. The stage 
consisted of two major tasks. The first task used the previously saved 5 % sample to assess the 
accuracy of the developed models when used to predict for different numbers of years into the 
future. In task two, the sample was employed to compare the predictive ability of the two 
model forms developed in the previous stage, and evaluate the effectiveness of two approaches 
for model adjustment that attempt to incorporate data feedback into the prediction process. 

Assessing the Accuracy of the Prediction Process and Adjusting the Developed Models 

Since the behavior of pavement structures is affected by many factors, the performance of 
a specific section typically differs from the mean response given by a deterioration model. In 
practice, therefore, when the observed condition of a section in a given year differs from that 
predicted by the model, the model should be adjusted to pass through the observed point. 
Predictions for future years are then made using this augmented curve. 

The literature on prediction model development shows two basic approaches for model 
adjustment. The first approach, exemplified by the PAVER system and the Illinois Pavement 
Feedback System (IPFS), essentially draws a curve through the observed pavement condition- 
age point parallel to the developed model (Figure 3). 
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Figure 3. The Horizontal-Shift Model Adjustment Approach 
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Mathematically, this horizontal shift is performed by solving the model equation for the AGE 
value that corresponds to the observed pavement condition, AGE'. Future predictions are then 
made assuming that such calculated value, AGE' is the current age for the section. 

The second approach, adopted by Cook and Kazakov, 25 diverts the curve vertically instead 
of horizontally, so that it passes through the observed point (Figure 4). 

Figure 4. The Vertical-Shift Model Adjustment Approach 
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This is done by using the actual drop in the pavement condition index from its initial value, 
D1, versus the theoretical drop, D2, to compute an adjustment factor, F, defined as: 
F D1 / D2. Future predictions are made by multiplying the theoretical drop by F, which is 
usually constrained to the interval of 0.75 to 1.25. 

Both adjustment methods were examined in the current study to determine if either was 

more appropriate than the other. 
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Preparing the Sample Data Set for the Analysis 

Owing to the predominance of the overlaid flexible pavement category, the 5 % sample for 
categories pertaining to the other pavement types resulted in very few data points for an 

assessment of the models' accuracy. The same was also true with the Suffolk and Culpeper 
overlaid pavement categories, where the number of points available for verification purposes 
was quite small. As a result, assessment was constrained to the prediction accuracy of the 
overlaid flexible pavement models in the Bristol, Salem, Richmond and Staunton districts. 

Since the sample was randomly selected, its points belonged to different survey years and 
to sections with different ages. Consequently, to assess the models' accuracy when used to 
predict for different numbers of years into the future, the sample data set points were 
categorized into four groups: 

Group A, used in the accuracy assessment of prediction for one year into the future, with 
the following two sets of points: 

Points corresponding to pavement sections which had a DMR value recorded for 
the (t-l) survey year, where t refers to the survey year of a data point in the sample 
set. This DMR value and its accompanying AGE value were used to adjust the 
prediction model. 

Points corresponding to sections that were less than one year old at the survey time. 
No adjustment was made in such cases. 

2. Group B, used in the accuracy assessment of 2 years' prediction, containing: 

Points belonging to sections with a DMR value recorded for the (t-2) survey year. 
Prediction was adjusted based on this DMR-AGE point. 

Points corresponding to sections which were between 1 and 2 years old at the time 
of the survey. No adjustment was made, even if a DMR value for the preceding 
year existed, in order to simulate prediction for two years into the future. 

3. Group C contained points to be used in measuring the accuracy of prediction for 3 to 4 
years. 

Predictions for 3 to 4 years were combined into one group in order to yield a 
sufficient number of points that can allow a reasonable assessment. 

4. Group D contained points to be used in measuring the prediction accuracy for 5 or more 

years. 

21 



Table 3 gives the number of points that were available within each group for the four districts. 

Table 3. The number of points available for model verification 

12 15 1. Overlaid flex in Bristol 13 

2. Overlaid flex in Salem 17 19 14 16 

3. Overlaid flex in 31 25 24 34 
Richmond 

4. Overlaid flex in Staunton 17 15 18 12 

The models' adjusted predictions were compared against the DMR observed values from 
this sample data set. For a quantitative assessment of the models' accuracy, the prediction 
error, defined as the difference between the observed and the predicted values, was calculated 
for each observation point. The mean of this prediction error, its standard deviation and 95 % 
confidence intervals were then computed for each district and each prediction level (number of 
prediction years into the future). 

Comparing the Performance of the Two Model Forms and the Two Adjustment Procedures 

To compare between the different models and adjustment procedures, the predicted DMR 
values were computed according to the power and the sigmoidal models; each being adjusted 
using the horizontal and vertical shift approaches (the linear model was not considered in this 
comparison since it failed to meet the boundary conditions established for a deterioration 
model). For each data point, 4 predicted values were estimated ( corresponding to the 2 model 
forms x 2 adjustment procedures), except for Richmond district where the sigmoidal model did 
not converge. 

An analysis-of-variance (ANOVA) test procedure was then performed to assess the effect on 
the response variable (the prediction error) of the following three factors: 

1. The number of years into the future for which prediction is performed, 
at levels 1 (prediction for one year) 

2 (prediction for two years) 
3 (prediction for three or four years) 
4 (prediction for five or more years). 
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2. The model form used in prediction, 
at levels 1 (the power model) 

2 (the sigmoidal model). 

3. The adjustment method used, 
at levels 1 (the horizontal-shift adjustment procedure). 

2 (the vertical-shift adjustment procedure). 

RESULTS AND DISCUSSION 

Exploratory Data Analysis 

Response Variable Distribution 

Four exploratory data analysis techniques were employed to check the distribution of the 

response variable, the DMR. Figure 5 shows the results of applying such techniques to check 
the DMR distribution for the Salem overlaid flexible pavement category data set. Results for 
the other data sets were quite similar. The figure contains four plots. 

In the upper left corner is a histogram which gives a crude picture of the DMR 
distribution. A histogram is also an effective tool for detecting possible coding errors, 
since points lying outside the reasonable or feasible range for a particular variable are 
readily apparent. 

The lower left plot shows a continuous curve representing a non-parametric estimate of the 
probability density function for the DMR. This curve provides a clear visualization of the 
variable distribution. 

A Box-and-Whisker plot is given in the upper right corner of the figure. In these plots, the 
box encloses the interquantile range for the variable, with the lower side giving the 25th 
percentile, the upper giving the 75th percentile, and the middle line showing the median. 
The whiskers extend to the 5th and 95th percentiles. Box plots depict the data range, 
skewness, and outliers. 26 

Finally, a normal probability plot, or q-q plot, is provided in the lower right corner. In 
this plot, the quantiles or percentiles of the DMR distribution are plotted against the 
quantiles of a normal curve. Under normality assumption, points on the scatter plot should 
lie approximately on a straight line. 26 
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The figure shows a quite normal distribution of the DMR, although it is somewhat skewed to 
the left because a high percentage of the sections were in the 98-100 DMR range, which 
signifies an excellent pavement condition. 

Figure 5. DMR Distribution for Salem Overlaid Flexible Pavements Data Set 
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Relationships Among Variables 

Figure 6 shows the scatter plot matrix for the Salem overlaid flexible pavement category 
data set. The scatter matrices for the other data sets are included in Appendix A, figures A-1 
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through A-9. In these figures, variable names in the empty rectangles to the left and bottom 
of an individual scatter plot refer to variables plotted on the y- and x- axis respectively. 

Figure 6. Scatter Plot Matrix for Salem Overlaid Flexible Pavements Data Set 
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The following observations can be deduced from the plots: 

Age, among all the other variables, seems to exhibit the strongest correlation with the 
DMR value. 

The relationship between the DMR and the AGE appears to be best represented by a 

concave or S-shaped curve. 

No significant interrelations among the independent variables can be readily detected, 
perhaps with the exception of the interrelationship between STRNO and YESAL in the 
data sets where STRNO was available. This indicates that, apart from the association 
between STRNO and YESAL, no major multicollinearity problems will be encountered. 

Stepwise Regression 

Stepwise Regression Models and Their Statistics 

Table 4 gives the models resulting from the stepwise regression analysis along with their 
associated statistics, all variable definitions and notations being as previously described. 

Discussion of Stepwise Regression Results 

Table 5 summarizes the predictor variables included in each of the above 10 models. 
With reference to Table 5 and the developed models, the following observations are made: 

AGE 
This variable was included in all 10 models, and was consistently found to have the largest 

correlation with the DMR and, by far, be its most significant predictor. Table 6 shows the 
ratio of the R 2 value resulting from using AGE as the single independent variable to that 
resulting from using all the variables included in the stepwise regression. The ratio ranged 
from 75 % to 100%. This finding accords with the findings of other researchers. 1° 

DEPTH 
DEPTH or the thickness of the overlay was included in 4 out of the 8 cases where it was 

applicable. The exclusion of the variable in some of the other cases was attributed to the fact 
that the available data set for the group had a distribution with a limited range for the values of 
this variable. For example, in Suffolk district, the thickness of the overlay ranged only from 
1.0 to 1.6 inches. Such a small variation had an insignificant impact on the DMR value. 
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Table 4. Stepwise Models and Their Statistics 

1 DMR 95.87 2.34(AGE) + 0.65(DEPTH) 0.69 3.77 292.51 0.0000 404 
+ 0.49(YESAL) 

DMR 88.21 1.41(AGE) + 1.35(DEPTH) 
+ 1.26(STRNO) + 2.92(LANNO) 0.66 4.02 253.65 0.0000 534 

DMR 99.87- 1.01(AGE)- 7.15(YESAL) 
+ 3.25(LANNO) 4.78(RDTYP2) 
+ 3.50(ROUT85) + 6.61(ROUT95) 

0.44 4.41 115.06 0.0000 861 

DMR 114.94 1.56(AGE) 2.91(STRNO) 
2.33(ROUT64) 0.72 3.13 55.09 0.0000 63 

5 DMR 100.99- 1.76(AGE) 
0.68 3.40 142.38 0.0000 69 

DMR 97.06 1.11(AGE) + 1.09(DEPTH) 
+ 5.03(LANNO)- 1.39(ROUT81) 0.54 3.82 121.63 0.0000 415 

DMR 92.62-1.11(AGE) + 2.32(LANNO) 
0.50 4.73 48.94 0.0000 96 

DMR 105.82- 1.09(AGE)- 1.68(STRNO) 
+ 2.21(ROUT464) 0.66 3.78 100.51 0.0000 153 

DMR 95.68 1.45(AGE) + 4.25(DISTR5) 
0.76 2.38 138.88 0.0000 88 

10 DMR 97- 1.90(AGE) + 1.54(DEPTH) 
+ 4.07(LANNO) 0.85 2.36 146.25 0.0000 80 

Group 
Group 
Group 
Group 
Group 
Group 
Group 
Group 
Group 
Group 

1: overlaid flexible pavements Bristol district 
2: overlaid flexible pavements Salem district 
3: overlaid flexible pavements Richmond district 
4: overlaid flexible pavements Suffolk district 
5: overlaid flexible pavements Culpeper district 
6: overlaid flexible pavements Staunton district 
7: flexible pavements with no overlay Region 
8: flexible pavements with no overlay Region 2 
9: composite pavements with one overlay 
10: composite pavements with more than one overlay 

27 



Table 5. Predictor Variables Status 

.overlaid flex- Bristol included included included not includ, not includ, not includ. 

2.overlaid flex- Salem included included not includ, included included not includ, not includ. ** 

3.overlaid flex-Richmond included not includ, included * included included included ** 

4.overlaid flex- Suffolk included not includ, not includ, included *** not includ, included 

5.overlaid flex-Culpeper included not includ, not includ. * *** *** not includ. 

6.overlaid flex- Staunton included included not includ. * included *** included ** 

7.flex no overlay-regionl included ** not includ, not includ, included not includ, not includ, not includ. 

8.flex no overlay-region2 included ** not includ, included not includ, not includ, included not includ. 

9.composite- overlay included not includ, not includ. ** *** not includ, not includ, included 

10.composite- > overlay included included not includ. ** included *** 

Explanatory variable was not available. 
** Explanatory variable is not applicable. 
*** All points belonged to the same level for the categorical variable, or only 6 points or less were available for the other level. 

Table 6. The Contribution of AGE 

Groul• 
1. Overlaid flexible-Bristol 
2. Overlaid flexible-Salem 
3. Overlaid flexible-Richmond 
4. Overlaid flexible-Suffolk 
5. Overlaid flexible-Culpeper 
6. Overlaid flexible-Staunton 
7. Flexible / no overlay-Region 1 
8. Flexible / no overlay-Region 2 
9. Composite with 1 overlay 
10. Composite with > overlay 

to DMR Prediction 

AGE contribution 
97.1% 
92.4 % 
74.9 % 
90.5 % 
100.0 % 
87.2 % 
96.0 % 
96.1% 
78.2 % 
94.9 % 
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YESAL 
This variable, which represented the average annual ESALs, was included in only 2 cases, 

despite its availability for all 10 data sets. This is quite encouraging, since it means that the 
adopted classification scheme and the use of dummy variables helped keep the YESAL 
virtually at a uniform level within each category. This reduced the significance of its role in 
the overall prediction process, allowing reasonable predictions to be made even in the absence 
of ESAL data. 

With respect to the coefficient sign, the variable assumed the correct sign for group 3, 
which signifies that an increase in the YESAL will inflict more damage, but not for group 1. 
To resolve this problem, group 1 was broken down into 2 subgroups: group la for sections 
belonging to 1-77, and group lb for those belonging to 1-81 or 1-381. This subdivision 
resulted in more homogeneous characteristics within the two finer subgroups. Accordingly, 
the significance of the role of either the STRNO or the YESAL variables was reduced, and the 
YESAL disappeared from the equation. The two developed models are in Table 7. 

Table 7. Refined Models for Group 1 

la DMR 97.49 2.45(AGE) 

DMR 96.59- 2.32(AGE) + 
0.65(DEPTH) 

0.74 3.66 229.03 0.0000 82 

0.66 3.84 306.69 0.0000 332 

STRNO 
The structural number of the pavement structure (STRNO) was only available and 

applicable in 4 data sets. Out of these, STRNO entered the models in 2 cases. However, 
STRNO did not always assume the correct sign. Normally, the model should indicate that the 
stronger the pavement structure, the less the damage; this was not the case for group 4. 
Consequently, in order to prevent incorrect conclusions and inferences from being drawn from 
the model, the regression analysis was repeated with this variable excluded. The new model 
for group 4 is shown below. 

DMR= 100.95 1.58(AGE) 2.85(ROUT64) 
R 2 0.70 & SE 3.25 

LANNO 
This dummy variable, which accounts for the lane rated, entered the model in 5 out of the 

7 cases where it was available. In the absence of ESAL data, the use of this variable was 

essential to account for the difference in the deterioration trends between the traffic and the 
inner lanes. 
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RDTYP 
RDTYP, which accounts for the number of lanes per direction of the roadway section, was 

included in one out of 9 cases. Since the YESAL played a minor role in the prediction 
process, it should be expected that the number of lanes per direction, which influences the 
share of each lane in the traffic load, would also have an insignificant effect. 

R 0 UTID 
This set of dummy variables, which differentiates between the different routes within a 

certain group, was included in 4 out of 9 cases. The ROUTID helped account for some of the 
characteristics particular to a certain route, and reduced the significance of the role played by 
the YESAL and STRNO variables. 

DISTR 
DISTR, the set of dummy variables used to identify individual districts, was included in 1 

out of 3 cases where classification was based upon geographic region. Statistical tests 
checking whether the deterioration trends for the overlaid flexible pavements category differed 

among the various districts indicated that DISTR was indeed a significant predictor. For 
example, when stepwise regression analysis was performed on an experimental data set 
pooling points from the three districts forming the Western Mountains region, the DISTR 
dummy variables were included in the model. This further justifies the subdivision of this 
category into groups of individual districts. 

The Poor Fit for the Richmond Model 

The fact that the majority of the categorical variables were included in the Richmond 
model, coupled with the large number of data points available for this group, suggested that 
the fit could be improved by breaking this category into finer subgroups. The subgroups 
adopted were as follows: 

Group 3a, for 1-64 pavement sections, 
Group 3b, for 1-85 pavement sections, 
Group 3c, for sections of 1-95 with 2 lanes per direction, and 
Group 3d, for sections of 1-95 with 3 or more sections per direction. 

This subdivision resulted in a considerable improvement in the fit for three of these subgroups 
as is shown in Table 8. 

The main purpose of linear stepwise regression analysis was to identify the significant 
predictors. The results were quite encouraging. The models were highly significant, with 
satisfactory coefficients of determination (R 2) values coupled with reasonable standard error. 

These were very satisfactory results for a preliminary model form. The simple linear model 
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form was also useful, in that it led to the adoption of a refined classification scheme that 
enhanced the modeling process. Figure 7 shows the refined classification scheme used for the 
subsequent modeling stages. 

Table 8. Refined Models for Group 3 

3a DMR 95.98- 1.91(AGE) 0.68 3.61 161.10 0.0000 77 

3b 

3c 

3d 

DMR 98.87- 1.15(AGE)- 
6.53(YESAL) 

DMR 107.12- 1.57(AGE)- 
9.60(YESAL) 

DMR 105.41 0.92(AGE) 
6.85(YESAL) 

+ 2.94(LANNO) 

0.63 3.34 

0.71 3.00 

0.37 4.66 

97.49 

61.88 

117.76 

116 

51 

600 

Figure 7. The Modified Classification Scheme 
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It is essential to raise a basic point about the nature of these models. All the models in the 
current study are empirical, and should not be applied beyond the range of the data used in 
their development. This is especially true here, since some important variables were missing, 
and others were excluded because their limited range had an insignificant effect on DMR 
prediction. Table 9 gives the range of the different variables for each group or data set. 

Table 9. Variable Ranges for the Different Groups 

la 0.2- 12.8 1.1 -2.7 a 0.2- 1.2 0, 1, 2 2 77 

lb 0.2 11.4 0.9 6.3 a 0.7 2.2 0,1, 2, 3 1,2,3 81,381 

2 0.0 14.8 0.6 4.6 3.8 6.9 0.7 2.2 0, 1, 2, 3 2,3 77, 81,581 2 

3a 0.0 10.5 1.0 2.2 a 0.2 0.8 0, 2 64 4 

3b 0.4- 15.6 0.5 1.5 a 0.5- 1.5 0, 2 85 4 

3c 0.1 12.5 0.9- 3.8 a 0.8- 1.6 0 2 95 4 

3d 0.1 16.9 0.9 4.4 a 1.6 2.8 0,1, 2, 3 3,4 95 4 

4 0.4- 13.0 1.0- 1.6 4.0- 5.4 0.5- 1.5 0 2,3 64,95,264,464 5 

5 0.3 9.7 1.3 3.0 a 0.2 0.8 0, 2 64, 66 6 

6 0.1 15.2 0.7 4.1 a 0.1 2.1 0, 1, 2 2 64, 66, 81 7 

7 0.4 17.3 b 4.2 6.8 0.1 2.0 0,1,2,3 2,3 64, 77, 81 1, 2, 8 

8 0.8 17.5 b 4.0 5.9 0.4 2.4 0, 1, 2, 3 2,3,4 64,95,264,464,664 4, 5, 6 

9 0.2 14.0 1.9 7.9 b 0.6 2.5 0,1 2,3 64,95,264, 664 4, 5, 6 

10 0.2 10.5 0.6 2.4 b 0.8 2.7 0, 1, 2 2 95 6 

a Variable was not available. 
b Variable is not applicable. 
c A value of 0 for the rated lane means that rating was performed on the section as a whole; lane numbering starts 

from the outer or traffic lane toward the median. 
d 1• Bristol 2 • Salem 4 • Richmond; 5 • Suffolk; 6 • Fredricksburg; 7 • Culpeper; 8 •, Staunton. 

The Power Model 

Table 10 shows the developed models along with their R 2 and standard error (SE) values. 
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Table 10. Power Models and their Statistics 

la DMR 100- 5.17.(AGE) °.68 0.80 3.24 

lb DMR 100 4.43.(AGE)°73.(DEPTH) -°°4 0.68 3.73 

2 DMR= 100- 15.63.(AGE)°.75.(DEPTH)-°.lT.(STRNO)-°.9z 0.67 3.94 
.(LANNO) -°.31 

0.72 3.42 

0.65 3.27 

3a DMR 100- 7.08.(AGE)°62.(YESAL)°.28 
3b DMR 100- 7.07.(AGE)°.44.(YESAL)°.39 
3c DMR 100- 5.06.(AGE)°.48.(YESAL)•.29.(DEPTH)-°.a° 0.72 3.03 

3d DMR 100- 2.30.(AGE)°.42.(YESAL)•.53.(LANNO)-°.•6 0.50 4.15 

4 DMR 100- 1.67.(AGE)°.92.(ROUT64) TM 0.71 3.24 

5 DMR= 100- 1.14.(AGE) 1"•8 0.68 3.40 

6 DMR= 100- 3.14.(AGE)°6•.(DEPTH)-°•5.(LANNO)-°.59.(ROUT81) °.°8 0.57 3.69 

7 DMR= 100- 6.03.(AGE)°-49.(LANNO) -°• 0.59 4.37 

8 DMR= 100- 1.82.(AGE)°-79.(LANNO)-°-2•.(ROUT95) o-• 0.68 3.74 

9 DMR 100 3.45.(AGE)°76.(DISTR5)-°.35 0.74 2.50 

10 0.87 2.21 DMR 100- 3.43.(AGE)°76.(DEPTH)°.•3.(LANNO)-°.68 

Power Model Evaluation Results 

Model's Goodness of Fit 

Figure 8 shows plots of the predicted versus the actual DMR values for 4 models. Plots 
for the remaining 10 models are included in Appendix B, figures B-1 and B-2. As these plots 
show, no erratic pattern is apparent and the power model appears to adequately fit the data. 
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Figure 8. Power Model Goodness-of-Fit 
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Sensitivity Analysis 

The results of a sensitivity analysis for the Salem overlaid flexible model appear in 
Figures 9 through 11. Figure 9 shows the sensitivity of the DMR prediction with respect to 
the pavement AGE and overlay thickness, DEPTH. Figure 10 depicts the sensitivity with 
respect to AGE and the structural number of the underlying structure. Figure 11 compares the 
deterioration trends of the different lanes. The performance of the model is quite reasonable 
and in agreement with basic engineering knowledge. Results for the other models are included 
in the Appendix B, figures B-3 through B-19. 

Figure 9.3-D Sensitivity Analysis for Salem Model, STRNO=6.0 & lane code 0 or 1" 

3-D Surface Plot, STRNO=6.0 

* The lane code identifies the lane being rated with a "1" for the outer or traffic lane. In the usual case when 
the roadway is rated as a whole, a "0" is used. 
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Figure 10.3-D Sensitivity Analysis for Salem Model, DEPTH= 1.4 & lane code 0 or 1 

3-D Surface Plot, DEPTH=1.4 

Figure 11.2-D Sensitivity Analysis for Salem Model, STRNO=6.0 & DEPTH=I.4 

DEPTH=1.4 in. & STRNO=6.0 

lane codes 0 or :• --.--.lane codes 2 or 

2 4 6 8 10 12 

AGE in Years 
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The Sigmoidal Model 

The developed models are shown in Table 11 along with their R 2 and SE values. As can 

be seen, a satisfactory model could be attained for only 8 groups; for the other 6 groups, the 
values for the asymptotic errors were too high to be acceptable. 

Table 11. Sigmoidal Models and Their Statistics 

-2.49 
la 

DMR 100 43.96 e 
(Aa•)°5' 0.83 3.02 

-2.14 (DEPTH) °'21 

lb 
DMR 100 23.52 e 

•A°e)"°2 0.73 3.44 

-0.74 (DEPTH) TM. (STRNO) °s°. (LANNO) TM 2 
DMR 100 28.68 e 

(•e)°76 0.70 3.78 

-6.05 (LANNO) °'24 

3d 
DMR 100 30.88 e 

(res'•L)•"t (AGE)°'s° 0.52 4.08 

-1.88 (DEPTH) TM. (LANNO) °'92 

6 
DMR IO0 18.46 e 

f'4ae)°•3 0.62 3.51 

-6.50 (LANNO) °'47 

7 
DMR 100 21.22 e 

fA•e)•"' 0.70 3.77 

-9.56 (LANNO) °'37 

8 
DMR 100 25.67 e 

(ROUTgS)°•6" (aGlr)"l' 0.71 3.55 

-2.48 (DEPTH) TM. (LANNO) °'7° 

10 
DMR 100 25.74 e 

f•e)o.•o 0.90 1.95 

Figures C-1 and C-2 (Appendix C) show plots of the predicted versus the actual DMR values 
for the sigmoidal models. The sensitivity analysis results are also in Appendix C, Figures C-3 
through C-15. The evaluation results indicated that, on convergence, the sigmoidal model also 
yielded an adequate fit, and gave logical predictions. 
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The Sigmoidal Versus the Power Curve 

Figure 12 contrasts the deterioration trends given by the power and sigmoidal models for the 
eight categories where a satisfactory sigmoidal model could be developed. These plots are for 
typical values for the section characteristics in each data set. The plots show that, unlike the 

power curve, the sigmoidal model can model a low deterioration rate region at the beginning of 
the section's life cycle. This explains to some extent the sigmoidal model nonconvergence for 

some groups; in such cases, sections essentially exhibited the same deterioration rate throughout 
their life. 

The plots also indicate that the differences between the sigmoidal model low rate 
deterioration region and the power curve are of appreciable significance only in the case of the 
flexible pavements with no overlay category. This is a rational conclusion, since distress 
should be expected to develop in original flexible pavement designs at a slower rate than in 
overlays or composite pavements. 

The R 2 and the standard error (SE) values for the two model forms in Tables 10 and 11 
support the above conclusion. The sigmoidal model provided an improved fit for the groups 
where it converged, with the greatest improvement in fit obtained for the flexible pavements 
with no overlay category in region one. 

The following conclusions can be drawn from the available data 

For all pavement types other than the flexible pavements with no overlay category the use 
of the simpler power curve seems to be adequate from a practical standpoint, although the 
sigmoidal model may provide for a slightly better fit. This conclusion is supported by the 
fact that the sigmoidal model failed to converge for some groups belonging to other 
pavement type categories. 

For flexible pavements with no overlay, the sigmoidal curve may be preferred over the 
power curve to reflect their initial slower deterioration rate compared to overlaid sections. 
The significant improvement in the fit for group seven justifies this conclusion. 

Moreover, the use of the power curve may be safer from an extrapolation point of view. 
The lower asymptote of the sigmoidal model does not really represent the absolute minimum 
value for the DMR. It represents an "artificial" minimum, heavily influenced by the 
threshold DMR value currently adopted by VDOT, since the range of the available data will 
be bounded by the threshold value. Consequently, the sigmoidal model cannot be used to 
investigate the effect of adopting a new threshold value which falls below its lower asymptote. 
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Figure 12. Comparing the Sigmoidai and Power Models 
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Accuracy Assessment Results 

Figures 13 through 16 show the models' adjusted predictions plotted against the observed 
sample data set DMR values for the four levels of prediction accuracy and for the four districts. 
In these figures, predictions were made using the non-linearly fit power model, and were 

adjusted using the horizontal-shift adjustment approach. The models provided good and 
reasonable predictions. Moreover, predictions for five or more years into the future were 

comparable to the one year prediction. 

The mean, standard deviation and 95% confidence intervals for the prediction error for each 
district are provided in tables 12 through 15. These tables show a quite satisfactory prediction 
accuracy. For the Bristol district, for example, the mean error for predicting for 5 or more years 
into the future was -0.13. In addition, one can be 95 % confident that the average error in 
predicting the DMR for this district will be within +2.0 DMR points. 

ANOVA Test Results 

The ANOVA results are provided in Appendix D, tables D-1 through D-4. In all four cases 
the interaction between the factors was insignificant (the p-value is greater than the usual tt of 
0.05). The absence of interaction effects allows for studying the effect of the individual 
factors, "the main effects," since it indicates that factor effects are not "averaging out" one 
another. Examining the p-values for the three factors for the four cases indicated that they 
were all greater than the 0.05 value. This led to the following conclusions: 

1. There are no true differences among the predictive accuracies of the two model types. 

2. The accuracy of predictions for different numbers of years is comparable. 

3. The performance of the two adjustment procedures is similar. 

Conclusion 1 was expected, since, as the previous stage of the study demonstrated, the 
performance of the three models was quite similar for overlaid pavements. Interestingly, the 
results indicated that the predictive accuracy for different years into the future was 
comparable. This conclusion, coupled with Conclusion 3 (the insignificant differences 
between the adjustment procedures), suggested that no appreciable improvement in the 
prediction process was obtained from using section-specific data to adjust the prediction 
models. This finding supported the assertion that a project or section-specific modeling 
approach for modeling the data currently available from VDOT was not quite appropriate. 
For the rather high level of contamination that the data exhibited, an approach that grouped 
similar pavements together seemed much safer. Such an approach was likely to minimize the 
problems associated with data errors, and helped reveal the overall deterioration trend. 
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Figure 13. Assessing the Prediction Accuracy for Salem District 
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Figure 14. Assessing the Prediction Accuracy for Richmond District 
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Figure 15. Assessing the Prediction Accuracy for Bristol District 
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Figure 16. Assessing the Prediction Accuracy for Staunton District 
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Tablel2. Prediction Error Statistics for Bristol District 

Number of Years 
of Prediction into 

the future 

Prediction Error Statistics 

Mean Standard Dev. 95 % Confid. Interval 

1 Year 0.17 2.93 1.94 1.60 

2 Years 1.10 3.83 [- 3.53 1.33 

3 or 4 Years 0.29 3.16 2.04 1.46 

5 + Years 0.13 2.64 2.16 1.90 

Tablel3. Prediction Error Statistics for Salem District 

Prediction Error Statistics Number of Years 
of Prediction into 

the future Mean Standard Dev.. 95 % Confid. Interval 

Year 0.38 3.37 2.11 1.35 

2 Years 0.97 3.23 2.52 0.60 

3 or 4 Years 1.76 3.54 3.80 0.28 

5 + Years 0.80 4.53 3.20 1.60 

Table 14. Prediction Error Statistics for Richmond District 

Prediction Error Statistics Number of Years 
of Prediction into 

the future 95 % Confid. Interval Mean Standard Dev. 

Year 0.744 3.47 2.02 0.53 

2 Years 0.13 3.84 [- 1.45 1.71 

3 or 4 Years 0.97 3.84 2.59 0.65 

5 + Years -0.09 4.54 [- 1.67 1.49 

Table 15. Prediction Error Statistics for Staunton District 

Prediction Error Statistics Number of Years 
of Prediction into 

the future Mean Standard Dev. 95 % Confid. Interval 

Year 0.50 4.25 2.68 1.68 

2 Years 0.41 3.65 2.42 1.60 

3 or 4 Years 0.57 4.66 2.90 1.74 

5 + Years 0.67 5.83 4.37 3.03 
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CONCLUSIONS 

Preliminary Data Analysis and Outlier Detection 

The basic conclusions derived from this stage of the study were: 

The majority of data points for the Interstate system belong to overlaid flexible pavements, 
thus allowing the development of a separate prediction model for each district. For the other 
categories, the number of data points available can only permit the classification scheme to 
be based on geographic regions, which groups 3 districts together. 

For overlaid flexible pavements, the number of sections with sufficient layer information to 
compute the structural number is relatively small compared to the total number of available 
points. 

The age of the section (AGE), among all other independent variables, exhibits the strongest 
correlation with the DMR, with their relationship best expressed as a concave or an S-shaped 
curve. 

With the exception of the interrelationship between the structural number (STRNO) and the 
yearly ESALs (YESAL), no other significant correlation among the independent variables 
exists. 

Significant Predictors Identification 

Conclusions for the significant variables affecting the pavement condition on Virginia's 
Interstate System are: 

AGE was by far the most significant predictor for the DMR score. Its contribution, measured 
by the ratio of the R 2 value resulting from its use as the sole predictor to that resulting from 
using all variables included in the stepwise regression, ranged between 75% and 100% for 
the different groups. 

The overlay thickness, DEPTH, was significant in predicting the DMR value, provided that it 
varied significantly among the sections under consideration. The variable was excluded from 
the model if the data base had a limited range for the values of this variable. 

No true assessment regarding the significance of the structural number, STRNO, in the 
prediction process could be made, since the variable was only available in a few cases. 
However, due to its high correlation with the yearly ESALs together with the absence of other 
variables, the variable could end up with the incorrect sign. 
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Yearly ESALs (YESAL) play a minor role in the prediction process, because the adopted 
classification scheme and the use of dummy variables helped preserve the variable virtually at 

a uniform level within each group. Reasonable predictions can thus be made even in the 
absence of this variable. 

5. The deterioration trend of the outer or traffic lane is significantly different from the inner 
lanes. 

6. All other factors being the same, the number of lanes available per direction does not seem to 
significantly affect the pavement condition. 

7. The use of dummy variables to differentiate among the different routes within a group may 
help capture some of the characteristics particular to a specific route. 

Differences among the deterioration trends of pavements belonging to different districts are 

detectable in some cases. This suggests that basing classification schemes on districts, 
whenever possible, is beneficial. 

Model Development and Evaluation 

From this phase of the study, the following conclusions, pertinent to Virginia's Interstate data, 
can be made: 

1. The power model provides for a satisfactory fit with reasonably high R 2 values and low 
standard errors. Moreover, its predictions conform with basic engineering knowledge. 

2. The sigmoidal model is capable of modeling a low rate deterioration region at the beginning 
of a section's service life. 

3. Differences between the sigmoidal curve's low deterioration region and the power curve are 

practically insignificant, except for the flexible pavement with no overlay category. 

From an extrapolation standpoint, the power model may be safer than the sigmoidal curve, 
because the sigmoidal curve's lower asymptote will typically reflect the lower limit of the 
available data, which is influenced by the current threshold value for the condition measure. 

Model Verification and Accuracy Assessment 

Based on the results from this part of the study, the conclusions regarding deterioration 
prediction for overlaid flexible pavements are: 

47 



1. No detectable differences between the prediction accuracy of the power model and the 
sigmoidal model exist. 

2. The accuracy of predictions for different numbers of years into the future is comparable. 

3. The performance of the two model adjustment procedures (the horizontal and the vertical 
shift) is similar. 

Conclusions 2 and 3 suggest that using section-specific data did not appreciably improve the 
accuracy of the prediction process. This, in turn, implies that a project- or section-specific 
modeling approach is not quite appropriate for the data currently available in the system. 

RECOMMENDATIONS 

The following recommendations are based on the results and conclusions of the study. 

For all pavement types other than the flexible pavements with no overlay category, the power 
curve is adequate for prediction, from a practical standpoint, even though the sigmoidal curve 

may provide a slightly improved fit. 

2. For non-overlaid flexible pavements, the sigmoidal curve is preferred, to reflect their initial 
slower deterioration rate. 

3. Given the quality of the data currently available, the development of section-specific 
prediction models is not highly recommended. 

Utility of the Developed Models 

The deterioration prediction models developed under the current study could serve many 
functions for VDOT. 

By predicting when maintenance or rehabilitation will be needed, the models will enable the 
Department to more accurately project the long-range funding needs for preserving Virginia's 
interstate network. 

2. The models can aid in performing remaining service life analyses for the different interstate 
segments. An example appears in Figure 17, where the models are used to estimate the 
remaining service life for a portion of 1-77 within the Carrol jurisdiction in the Salem 
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District. The remaining service life is based on the currently adopted DMR threshold value 
for interstate routes of 83. 

Figure 17. Remaining Service Life from February 1994 to a DMR of 83 

Remaining Service Life 
1-77 within Carol Jurisdiction, Salem 

0 2 4 6 8 10 12 14 16 18 
Jurisdiction Mile Post 

Through analyses like this one, decisions regarding rehabilitations can be based not only on 

the current DMR value, but also on the number of years the section is expected to remain in 
service. These analyses could also reveal sections with relatively uniform remaining 
lifespans, which could then be managed as a single unit. 13 

The developed models can also be used to study the effect of adopting different threshold 
values on the remaining service life of the network, and hence on funding requirements. 
Figure 18 is an example of such an analysis, where the models were employed to determine 
the gain in service life, represented by the shaded areas in the figure, resulting from lowering 
the threshold DMR from 83 to 81. Essentially, the developed models are a first step toward 
moving from the simplistic condition assessment analysis method currently used, to priority 
assessment and optimization analysis techniques. 

Suggestions for Future Research 

Although the developed models appeared to provide for reasonable predictions, the models 
were based on a database which suffered from a number of deficiencies and limitations. 2 In 
addition, the current practice for pavement condition assessment relies solely on a subjective 
windshield survey, which may fail to furnish a detailed and true picture of the section condition. 

49 



Figure 18. Effect of changing the threshold value on the remaining service life (I-77, Carrol jurisdiction, 
Salem District) 
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VDOT is moving towards the use of automated equipment for distress data collection, in an 

attempt to eliminate some of the problems associated with the manual survey method. The 
Department is planning to perform annual network-wide roughness surveys in coming years. 
Once enough data from these more reliable and less subjective sources have been compiled and 
the deficiencies of the database addressed, there will be an opportunity to develop additional 
performance models that can greatly enhance the prediction and analysis capabilities of the 
system. Specifically, models for predicting the individual distresses as well as roughness 
progression should be developed. Such models will allow more refined remaining service life 
analyses. 27 

Future studies should also consider adopting other approaches for performance prediction 
modeling. This could involve the development of probabilistic models, such as Markovian 
models and survivor curves, as well as the use of some of the nontraditional prediction tools that 
have recently received attention, including neural- and poly-networks. 
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Appendix A 

Preliminary Data Analysis Results 



Figure A-1 Scatter Plot Matrix for Overlaid Flexible Pavements in Bristol Category 
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Figure A-2 Scatter Plot Matrix for Overlaid Flexible Pavements in Richmond Category 
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Figure A-3 Scatter Plot Matrix for Overlaid Flexible Pavements in Suffolk Category 
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Figure A-4 Scatter Plot Matrix for Overlaid Flexible Pavements in Culpeper Category 
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Figure A-5 Scatter Plot Matrix for Overlaid Flexible Pavements in Staunton Category 
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Figure A-6 Scatter Plot Matrix for Non-overlaid Flexible Pavements in Region 1 
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Figure A-7 Scatter Plot Matrix for Non-overlaid Flexible Pavements in Region 2 
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Figure A-8 Scatter Plot Matrix for Composite Pavements with One Overlay 
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Figure A-9 Scatter Plot Matrix for Composite Pavements with more than one Overlay 

OOL 96 06 •9 

O- 

O- 
I' 

OoO 
OOO 

gO •o #o|• %•..'#o .•. 

eli 

nln 

0 

ol OOO. I, .no 

UJ 
•7 

9vO 1.,•3 9vO I.,,8 9vO 

-O 

65 



Appendix B 

Power Model Evaluation Results 
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Figure B-1 Power Model Goodness-of-Fit 
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Figure B-2 Power Model Goodness-of-Fit 
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Figure B-3 3,D Sensitivity Analysis for Bristol I-81 & 1-381 Overlaid Flex. Model 

Figure B-4 3-D Sensitivity Analysis for Richmond 1-64 Flex. Overlaid Model 
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Figure B-5 3-D Sensitivity Analysis for Richmond 1-85 Flex. Overlaid Model 

Figure B-6 3-D Sensitivity Analysis for Richmond 1-95 (2 lanes) Flex. Overlaid Model 
DEPTH 1.4 

3-D Surface Plot, DEPTH=I.4 in. 
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Figure B-7 3-D Sensitivity Analysis for Richmond 1-95 (2 lanes) flex. Overlaid Model 
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3-D Surface Plot, YESAL=1.2 

Figure B-8 3-D Sensitivity Analysis for Richmond 1-95 (3+ lanes) Flex. Overlaid Model 
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Figure B-9 3-D Sensitivity Analysis for Staunton Flexible Overlaid Model 

Figure B-10 3-D Sensitivity Analysis for Composite Pavements with > 1 Overlay 
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Figure B-11 2-D Sensitivity Analysis for Richmond 1-95 (3+ lanes) Flex. Overlaid Model 
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Figure B-12 2-D Sensitivity Analysis for Suffolk Flexible Overlaid Model 
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Figure B-13 2-D Sensitivity Analysis for Staunton Flexible Overlaid Model 
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Figure B-14 2-D Sensitivity Analysis for Staunton Flexible Overlaid Model 
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Figure B-15 2-D Sensitivity Analysis for Non-overlaid Pavements Model in Region 1 
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Figure B-16 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2 
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Figure B-17 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2 
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Figure B-18 2-D Sensitivity Analysis for Composite Pavements with One Overlay Model 
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Figure B-19 2-D Sensitivity Analysis for Composite Pavements with > 1 Overlay Model 
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Appendix C 

Sigmoidal Model Evaluation Results 
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Figure C-1 Sigmoidal Model Goodness-of-Fit 
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Figure C-2 Sigmoidal Model Goodness-of-Fit 
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Figure C-3 3-D Sensitivity Analysis for Bristol I-81 Overlaid Flexible Model 

Figure C-4 3-D Sensitivity Analysis for Salem Model, STRNO=6.0 & lane code 0 or 1 

3-D Surface Plot, STRNO=6.0 
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Figure C-5 3-D Sensitivity Analysis for Salem Model, DEPTH= 1.4 & lane code 0 or 1 

3-D Surface Plot, DEPTH=I.4 

Figure C-6 3-D Sensitivity Analysis for Richmond 1-95 (3+ lanes) Overlaid Flex. Model 

O 
O 

0 
•0 

86 



Figure C-7 3-D Sensitivity Analysis for Staunton Overlaid Flex. Model 

Figure C-8 3-D Sensitivity Analysis for the Composite with > 1 Overlay Model 
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Figure C-9 2-D Sensitivity Analysis for Salem Model, STRNO=6.0 & DEPTH= 1.4 
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Figure C-10 2-D Sensitivity Analysis for Richmond 1-95 (3+ Ins.) Overlaid Flex. Model 

o 

(:3 

YESAL=2.2 

0 2 4 6 8 10 12 
AGE in Years 

88 



Figure C-11 2-D Sensitivity Analysis for Staunton Overlaid Flex. Model 
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Figure C-12 2-D Sensitivity Analysis for the Non-overlaid Flex. Model for Region 1 
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Figure C-13 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2 
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Figure C-14 2-D Sensitivity Analysis for Non-overlaid Pavements Model, Region 2 
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Figure C-15 2-D Sensitivity Analysis for the Composite with > 1 Overlay Model 
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Appendix D 

Analysis-of-Variance (ANOVA) Test Results 
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Table D-1 ANOVA Test Results for Bristol District 

ANOVA Table for Response Variable: DIFFI 
Source DF Sum-Squares Mean Square 
A (YEAR 3 19.18902 6.39634 
B (MODEL 1 17.4265 17.4265 
AB 3 8.576534 2.858845 
C (ADJ 1 .3175798 .3175798 
AC 3 2.842005 .947335 
BC 1 2.939E-02 2.939E-02 
ABC 3 .2058712 6.862E-02 
ERROR 180 1847.888 10.26604 
TOTAL(Adj) 195 1900.417 

F-Ratio 
0.62 
1.70 
0.28 
0.03 
0.09 
0.00 
0.01 

Prob>F 
0 6010 
0 1943 
0 8409 
0 8606 
0 9642 
0 9574 
0 9992 

Table D-2 ANOVA Test Results for Salem District 

ANOVA Table for Response Variable: DIFFI 
Source DF- Sum-Squares Mean Square 
A (YEAR 3 60.02439 20.00813 
B (MODEL 1 2.562633 2.562633 
AB 3 3.787562 1.262521 
C (ADJ 1 .9172266 .9172266 
AC 3 .8230723 .2743574 
BC 1 .3241027 .3241027 
ABC 3 .1426018 4.753E-02 
ERROR 248 3502.714 14.12385 
TOTAL(Adj) 263 3571.659 

F-Ratio 
1.42 
0 18 
0 09 
0 O6 
0 O2 
0 O2 
0 00 

Prob>F 
0.2384 
0.6701 
0.9658 
0.7988 
0.9963 
0.8796 
0.9997 

Table D-3 ANOVA Test Results for Richmond District 

ANOVA Table for Response Variable: DIFFI 
Source DF Sum-Squares Mean Square 
A (YEAR 3 47.45429 15.8181 
B (ADJ 1 5.137249 5.137249 
AB 3 .8390875 .2796958 
ERROR 220 3758.526 17.08421 
TOTAL(Adj) 227 3811.753 

F-Ratio 
0.93 
0.30 
0.02 

Prob>F 
0.4291 
0.5834 
0.9971 

Table D-4 ANOVA Test Results for Staunton District 

ANOVA Table for Response Variable: DIFFI 
Source DF Sum-Squares Mean Square 
A (YEAR 3 9.356613 3.118871 
B (MODEL 1 .4035484 .4035484 
AB 3 3.84625 1.282083 
C (ADJ 1 .8532386 .8532386 
AC 3 .2719283 9.064E-02 
BC 1 1.291E-02 1.291E-02 
ABC 3 .8791642 .2930547 
ERROR 232 4573.435 19.71308 
TOTAL(Adj) 247 4589.565 

F-Ratio 
0 16 
0 02 
0 07 
0 04 
0 00 
0 00 
0.01 

Prob>F 
0.9243 
0.8862 
0.9783 
0.8352 
0.9996 
0.9796 
0.9975 
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