AD-733 764

REPORT NO. DOT-TSC-FAA-71-23

COMPUTER SYSTEMS PERFORMANCE
MEASUREMENT TECHNIQUES

). GERTLER, H. GLYNN,
V. HOBBS, F. WOOLFALL
TRANSPORTATION SYSTEMS CENTER

55 BROADWAY
CAMBRIDGE, MA. 02142

JUNE 1971
TECHNICAL REPORT

Avoilabi‘liiy is Unlimited. Document may be Released
To the National Technical Information Service,

Springfield, Virginia 22151, for Sale to the Public.

w

Prepared for

DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
800 INDEPENDENCE AVE., S. W.
WASHINGTON, D. C. 20546

TECHNICAL REPORT STANDARD TITLE PAG

1. Report No. 2. Government Accession No.

DOT-TSC-FAA-71- 23

3. Recipient's Catalog No,

4. Title and Subtitle

Computer Systems Performance Measurement Techniques

5. Report Date

June 30, 1971

6. Performing Organization Code

TCC

7. Author's)
Judith Gertler, Herbert Glynn, Vivian Hobbs,
Frederick Woolfall

8. Performing Organization Report No.

9. Performing Organization Name and Address
DOT/Transportation Systems Center
55 Broadway

Cambridge, MA 02142

10, Work Unit No.
FA-03

11. Contract or Grant No,

12. Sponsoring Agency Name and Address
Federal Aviation Administration
800 Independence Ave., S.W.
Washington, D.C. 20546

13. Type of Report and Period Covered

Technical Report

14, Sponsoring Agency Code

FAA RD-123

15. Supplementary Notes

16. Abstract

evaludtion.

Section 1:
and states objectives.

Section 2:

Appendix A:

ARTS III in terms of those concepts.

Appendix B:

Computer system performance measurement techniques, tools, and approaches are
presented as a foundation for future recommendations regarding the instrumentation
of the ARTS ATC data processing subsystem for purposes of measurement and

Introduces the subject of computer system performance measurement

Defines several computer system measurement approaches, describes the
event-monitoring and statistical sampling software techniques, and
discusses the various phases of a measurement process.

Defines the role of an Executive System in diverse computing environ-
ments and its effect on the design of a measurement package, discusses
fundamental operational concepts of Executive Systems, and reviews

Surveys the state-of-the-art of available simulation languages and
packages, summarizes their salient characteristics and provides
guidelines for evaluation and selection of a simulation capability.

17. Key Words

Computer Measurement, ARTS III Data
Processing, Executive Systems,
Simulation

18. Distribution Statement

19. Security Classif, (of this report) 20. Security Classif, (of this page)

Unclassified Unclassified

2]1. No. of Pages
71

22. Price

Form DOT F 1700.7 (s-69)

COMPUTER SYSTEMS PERFORMANCE
MEASUREMENT TECHNIQUES - T

Section Page
1.0 Introduction and Objectives.....................................l

1.1 INtroducCtion...ssessssssssssssssssssssssessessanssssnns . |
1.2 Objectives...2

2.0 Computer Systems Performance Measurement Methodology:eesssessssel
2.1 Direct Computer MeasurementS.....eseessssersens ciesEa e s ed
2.2 Measurement Techniques and Tools....... wanmae sie e T e B ied
2.3 Medsurement ProCESS. e ssisssss seesse sssiseneisessoveeseesss vl

Appendix A

Appendix B

iid

COMPUTER SYSTEMS PERFORMANCE
MEASUREMENT TECHNIQUES - T

1.0 INTRODUCTION AND OBJECTIVES

1.1 INTRODUCTION

Experience has shown that real-time computer system development is a
long, tedious, and expensive process. Corresponding rule—of-thumb
software estimates are on the order of two instructions per day and
include a percentage breakdown of the various phases [17] as: analysis
and design phases - 407, coding and auditing phases — 15%, and check-
out and test phases — 45%.

Experience has also shown that it is almost impossible to generate
software of any complexity which successfully and reliably accomplishes
its intended purpose and at the same time with no extra effort also
achieves a high level of system performance.

Yet prior to a few years ago little attempt was made to evaluate the
software systems developed and even as this report is being written, to
our knowledge, the art of computer systems performance measurement has
not been applied to meet the requirements and needs of a real-time
multiprocessor system such as the ARTS ATC System.

Computer systems performance measurement as applicable to the ARTS ATC
System, the subject of this report, entails the instrumentation of that
System for purposes of determining specifically what is going on while
the system is executing. The system developers and system evaluators
are to be provided the kind of data needed for sound judgments of
performance evaluation.

The overall report contains five sections and two appendices in two
volumes, of which the present Volume I containing Sections 1 and 2 and
Appendices A, and B is the result of FY71 effort. Volume II containing
Sections 3, 4 and 5 is expected to appear during FY72. 1In the present
Volume, following an introduction and statement of objectives, Section 2
entitled "Computer Systems Performance Measurement Methodology" begins

with a discussion of direct computer measurements.l The Section then
describes the two main measurement techniques (event-driven and sampling)

as well as a number of measurement tools. Lastly, it describes the measure-

-1-

IThis report does not discuss simulation and analytical studies.
Schwetman [21] contains a good discussion of these measurement classes.

ment process, paying particular attention to the data reduction and analysis
phase.

The appendices contain background information to aid in understanding the
problem. Appendix A entitled, "Executive System Fundamentals" describes the
overall purpose of Executive Systems and their operational concepts so that

the reader may gain better insight into the problem of performance measure-

ment as it relates to Executive operation and total computer system efficiency.
Appendix B describes most of the widely used general-purpose simulation languages
and system simulation packages. Criteria for evaluating the languages and
packages are suggested and few guidelines are given. This completes Volume I.

Volume II will begin with Section 3 describing current performance packages
and hardware monitors. Section 4 entitled, "Examination of Promising Perfor-
mance Measurement Tools" will categorize measurement tools as to their current
use and also as to their possible ATC applicability. It will enumerate the
attributes and features of measurement tools per se and relate these tools

as well as other promising or innovative techniques to the needs and require-
ments of real-time multiprocessor ARTS ATC Systems. In additionm, promising
measurement techniques where required are to be evaluated by means of proto-
type implementation and/or simulation. Section 5 contains the rationale and
criteria used for the selection of performance measurement tools, after which
the recommended real-time ARTS ATC multiprocessor performance measurement
tools are specified.

1.2 OBJECTIVES
The principal objectives of this study are:
o Define appropriate measurement tools to monitor and record
system activity for purposes of identifying where the time goes

in the actual operation of real-time multiprocessing ATC systems.

o Establish hardware/software requirements and specifications for
the application of such measurement tools.

o Define the appropriate roles of such performance measurement
monitors in the various phases of development of ATC software
systems.

2.0 COMPUTER SYSTEMS PERFORMANCE MEASUREMENT METHODOLOGY

2.1 DIRECT COMPUTER MEASUREMENTS

Direct computer measurement entails the obtaining of measurements

of an object computer-controlled system while that system is executing.
To date, the means to obtain such data include Hardware Monitors,
Software Monitors, and Hybrid Monitors.

2.1.1 Hardware Monitors. Hardware monitors [19] are usually a collec-
tion of counters, timers, and electronic probes. These probes or sensors
are attached to specific signal wires to measure the presence or absence
of electrical impulses. These signals are typically routed into a
programmable plugboard, in which wired logic can be used to produce

data or information on combinations of functions, such as total I/0

time or IO-CPU overlap. Such information obtained through the sensors

is summarized and usually written onto magnetic tape for future data
reduction. This measurement information can include:

CPU Utilization

I/0 Utilization

Peripheral Utilization

Overlap of CPU-I/0

Allocation of Time Between Problem Program and Supervisor
Op Code Usage

Data Base Activity

The advantages of hardware monitors are that they in no way affect or
degrade the operation of the system, they can monitor some details of
the activity of peripheral equipment that are not reflected in the CPU,
they can obtain op code usage, and they can obtain operand statistics.
Their disadvantages include their cost, their inability to accurately
relate hardware utilization to the software in operation at that time,
and they are unable to obtain software tables such as queues, pointers,
and program ID's,

2.1.2 Software Monitors. Software monitors for application to standard
batch processing and time-sharing computer installations fall into two
basic categories [20]:

(1) Configuration-Performance Evaluators
(2) Program-Performance Evaluators

Configuration-Performance Evaluators are designed to monitor the overall
hardware performance of the computer installation and its associated
peripheral equipment as it processes its normal mix of jobs. It performs
this function by measuring the execution activity of all channels and
devices during program runs. This measurement information includes:

CPU Utilization

I/0 Channel Utilization
Peripheral Utilization
Overlap of CPU-I/0
Queue Length

Program-Performance Evaluators are designed to monitor the performance
of program modules by measuring their execution activity. This
measurement information includes :

Channel Activity

Program Module Analysis

Entry Point Analysis (time spent in
each subroutine by entry point)

Timing Graph

Direct Time Distribution

Software monitors can provide comprehensive cause and effect analysis

of system performance. They can obtain quantitative variables which are
concerned with the magnitude of some quantity and descriptive variables
which identify the respective system element or,in the case of program-
performance, the module and segment names of the program being measured.
The level of data and the amount of data can be varied to meet the measure-
ment needs of the system. The disadvantages of software monitors are
that they incur additional overhead execution time which in turn distorts
the system. However, typically the overhead time incurred is 1-3%
depending on the measurement techniques and their frequencies of usage.
Other disadvantages of software monitors are their prohibitive execution
time in obtaining op code usage and operand statistics.

2.1.3 Hybrid Monitors. Hybrid monitors utilize both hardware and soft-
ware measuring tools to gather pertinent data, together with a software
analysis capability resident in an on-line auxiliary computer. The
auxiliary computer processes these data in a variety of ways:

1. In real-time, through the use of displays, as a quick-look
type system performance monitor.

2. Operating hardware measuring tools by means of program control.

3. Initiate software measuring tools as a result of the occurrence
of selected hardware monitor events.

4. Relating the hardware obtained data to the software in operation
at the time.

5. As a dynamic system performance monitor.

6. Formatting and vecording the data obtained by hardware and software
for future data reduction and analysis.

2.2 MEASUREMENT TECHNIQUES AND TOOLS

2.2.1 Measurement Techniques. There are two types of measurement tech-
niques: event-driven techniques and sampling techniques, A description
of each follows.

2.2.1.1 Event-Driven. An event-driven measurement technique is utilized
to record the occurrence of selected events within a computer system.
Hardware monitors are in this class of technique as are many software
measurement tools.

The mechanism for a software event—driven technique is a 'hook' which

is strategically implanted at various points throughout the software
(both in the supervisor and the user's program modules). This mechanism
generally consists of two instructiomns (e.g., EX SWITCH and NOP HOOKID
CODE)., When control reaches the hook, two possibilities exist:

1. During a recording run, the hook causes control to transfer to
the software monitor. The monitor in turn inspects the second instruc-
tion of the hook, thereby obtaining the identifying code which is used
to index to the appropriate collector routine. Control subsequently
returns to the instruction just past the hook with the machine registers
undisturbed.

2., During a normal run, control passes through the hook, i.e.,
it functions as a pair of NOP instructionms.

For IBM 360 series computers, this technique is further refined by the
use of a supervisor call instruction (SVC) that allows a program to cause
a unique, identifiable hardware interrupt. Implicit in the hardware
processing is the saving of the address of the next executable instruc-
tion, which permits a return to be effected without requiring the use of
a working register for linkage. This SVC instruction, for the recording

run, was previously stored into SWITCH and when control arrives at a
hook, it is this SWITCH that is the subject of an EXECUTE instructiom.
In addition, all other hardware interrupts (except machine checks) are
transferred to the software monitor with the CPU being placed in the
supervisor state (i.e., all interrupts marked). These interrupts are
then viewed as belonging to the following categories:

o Normal interrupts: The occurrence is time stamped, logged in
the output buffer, and the interrupt is passed on to its .appro-
priate routine.

o Software monitor interrupts: Each I/0 interrupt is checked to
see if it belongs to the software monitor, i.e., resulted
from a software monitor initiated tape operation. If not, it is
processed as a normal interrupt. If it does belong to the
software monitor, the completion is noted (buffer housekeeping)
and control is returned to the system at the point of interrupt.

o Hook interrupts: Each interrupt is checked to see if it was the
result of executing a hook., If not, it is processed as a
normal interrupt. Hook processing is terminated by returning
control to the interrupted module at a point immediately after
the hook location.

Software event-driven technique provides the means of obtaining the

most detailed insight of the system in operation. This presupposes

a good deal of knowledge of the system on the part of the user to judiciously
select the strategic locations for the hooks as well as the appropriate
data to be recorded by their respective collector type. The amount of
data to obtain in any given run depends on the needs of the user and also
on the degradation that the system can tolerate. This problem may
partially be solved by implementing a selectivity option such that as

a function of parameters, entered at the start of a run the monitor

can "turn off" any hook or group of hooks for the duration of that run.
Also the number and type of hooks depends on the stage of 'the develop-
ment of the system per se.

2.2.1.2 Sampling. Sampling technique involves interrupting the applica-
tion program periodically and recording status information. The obvious
advantage of this procedure is that the time spent gathering data is only

a fraction of that required to completely trace the execution of the program.
Currently available software packages utilizing sampling incur a 1 to 5%
incrase in overhead.

2,2.1.2.1 A Statistical Model of the Sampling Process. Agsume that an
application program ig executing. Nothing is known about the language
or logic of the program. Periodically the program is interrupted and
the address of the next instruction to be executed is recorded. No
assumptions can be made about the process being sampled, but the random
sampling procedure has definite characteristics——an intersample time OTr
sampling interval and a sample size.

The objective of the sampling procedure is to estimate the time distri-
bution for the execution of the program over all subroutines and address
locations. The best estimator for the percentage of time spent at a
given location is the number of times the location was observed divided
by the total number of samples takem.

The sampling procedure must be designed to satisfy a given level of
accuracy oY confidence limit. Two parameters of the sampling procedure
can be specified to control the accuracy of the results; they are the
gsample size and the sampling interval.

2.2.1.2.2 Sample Size. In order to derive 1imits for the proportions
which are observed, a distribution free statistical test must be used
since nothing is known about the program to be sampled. Bradley [1]
suggests the following procedure:

Let n = sample size
r = observed f# at the location
p = true 7 time spent at the location

Py = lower confidence 1imit for p

Py = upper confidence limit for p
o = l-confidence level

a; = 8y = af2

The confidence jevel selected by the experimenter represents the probability
that the true percentage is less than py but greater than’'pj. If the
observed result falls within these limits it can be accepted as a valid
estimate for the percentage of time spent at the location.

Using the binomial distribution the following equations are derived:

rzl n i 1 n—1i
i (i) Pl (_Pl)

il

n-i

T .
ay = 1 (1) By (P

i=0

These equations can be solved for p. and P, by entering the binomial

tables with n and r and finding the largest p satisfying the first

equation and the smallest p satisfying the second. Then at confidence

level l—al—a sP1°P<P,. The confidence interval can be calculated for
different vaiues of n and r to compare the increased accuracy with increased
sampling.

For large values of n (greater than 100) r/n converges to p. Binomial
tables usually do not contain values for n greater than 30 so it is
convenient to use another approximating technique for calculating the
confidence interval. The random variable:

r-np

z= 'Vh(r/n)(l-r/n)

(see Hogg and Craig, [3] is distributed n(0,1). Using the standard
normal tables we can find the confidence interval for given confidence
levels. For example, if n = 1000 and we observed r = 100, then
.081<p<.119 with probability ,05 and the estimate r/n = .10 may be used as
a valid estimate of p.

Application., A family of confidence curves can be derived using the theory
described above [20] (see Figure 2.1). Each curve represents a different
confidence level or a different probability that the results will be within
the interval read from the graph. For example, if the sample size is

8000, the observed frequency values will fall within 2 percent of the
actual value with probability .9999, Also, for a sample of 8000, the

2,2.1.2.3 Sampling Interval. The timing of the sampling 'interrupts

may be periodic or random. Periodic sampling uses a fixed intersample
time which is calculated by dividing the expected run time of the program,
T, by the desired number of samples, n. Boole and Babbage's PPE4 uses
this method.

Random sampling does not use a fixed sampling interval. A function for
calculating the intervals is part of the measurement program. Lambda's
LEAP4uses a random sampling technique.

#See Section 3 of Volume II for a description of these commercially available
proprietary packages.

CONFIDENCE CURVES FOR THE 8 CONFIDENCE INTERVAL (PERCENT)
99.99%, 99.9%,99%, 95% AND
80°5 CONFIDENCE LEVELS 7
I 8,000 samples are taken, the probability
that we will be within 2°% of the actual 6
value is 99.99%
5
\
4
\ I
o« JANDNNG
\‘ _93‘9".0__:_
2 \%fﬁ% e
9"*'& = RH:H““] I |]
g
1 ~ g = —
SAMPLE SIZE (IN THOUSANDS) 6 8 10 12 14 16 18 20 22 24
FIGURE 2.1

ACCURACY OF DATA AS A FUNCTION OF A NUMBER OF SAMPLES

Calculation of the Random Sample Interval. Assume that the probability
that a sample will occur at time t during the duration of the measurement
is distributed according to the Poisson function. Then the intersample
times are described by the negative exponential function:

p(t) = re”At

where A is the mean number of samples and 1/)A is the mean intersample

time. After each sample is taken the next sample is scheduled using a
random number generator and the above expression. The total number of
samples can be controlled by adjusting A, before or during execution of
the application program. (If A were changed during the sampling procedure,
then the weight of the samples would have to be adjusted accordingly.)

If the approximate execution time is known, A can then be set to

n/T(or 1/X = T/n). Note that for periodic sampling the interval is set

to T/n while random sampling uses an interval which varies about this
value.

Comparison of Periodic and Random Sampling. There are differing opinions
as to which method of interval selection is better. If periodic sampling
is used and the sampling period is in synchronization with a set of
instructions, then the results will not reflect the true time distribu-
tion over the entire program. Proponents of the fixed sampling interval
claim that the analyst interpreting the results of the measurement would
be able to spot synchronization and could alter the sampling interval
accordingly. Cantrell and Ellison [5] do not find possible syn-
chronization a problem and dismiss the issue.

-9-

2.2.2 Measurement Tools.? Sophisticated tools are needed to measure what
is going on inside a system while the system is executing. Such tools

in their implementation and/or fabrication utilize either the event-
driven or the sampling measurement technique together with software,

or hardware, or both. These tools are encompassed in an appropriate
monitor and should inherently relate to the system being measured,
reflecting measurement know-how and ingenuity.

A partial list of hardware, software, and hybrid tools follows.

2.2.2.1 Hardware Tools

2.2.2.1.1 Calendar Clock. A program readable calendar clock with an
associated program loadable time match register that is continuously
being compared by means of independent hardware for purposes of generating
an interrupt whenever a time match occurs.

This hardware feature enables one to utilize the measurement sampling
technique. Typical application, which is initiated by the occurrence
of an interrupt, might be the capturing and recording of pertinent
register data and program module type activity information.

2.2.2.1.2 Interval Timer. A program loadable time register which
generates an interrupt at the end of the appropriate time interval.

This hardware feature, although not as accurate timewise as the Calendar
Clock, functions in a similar manner.

2.2.2.1.3 Memory Cycle Counter. The memory cycle counter counts the
number of memory references made by the central processor.

Typical application would be the obtaining and recording of the contents
of this counter either periodically or at the completion of a run.

2.2.2,2 Software Tools

2.2.2.2.1 Supervisor Module Metering Package. This tool records time
spent executing selectable supervisor modules. For each selected module
the metering package records the number of times the module is invoked
and the total execution time accumulated within each of a number of ranges
of execution times for the respective module.

The tool in its implementation utilizes the event-driven measurement
technique.

Saltzer and Gintell [15] presents an excellent discussion of measure-
ment tools used in the instrumentation of Multics.

-10-

2.2.2.2.2 Sepment Utilization Metering Facility. A segmented system
provides a simple way to detect how time spent in the system is distributed
among the various components. This tool, utilizing the sampling technique,
sets the calendar clock to interrupt periodically. When the interrupt
occurs, the segment number of the segment which was executing is used to
index into an array of per-segment counters and the appropriate counter

is incremented by one. After the system has run fora while the resulting
distribution of segment utilization can be outputted.

2.2.2.2.3 Entries/Exits Facility. An "add-one-to-storage" instruction
is included in this sequence which increments a counter each time a
procedure or routine is entered. These counters enable a programmer to
determine later how many times a procedure has been called and to relate
that number to the number of calls to other procedures.

2.2.2.2.4 Missing Page Tracing Package. This package is used in a
virtual memory system and retains in a ring buffer the segment, page
number, and the time of day of the last 256 missing pages of the process
under measurement. Thus the data obtained provides the programmer with
sufficient information on how to reorganize his program to improve

its locality of reference.

2.2.2.2.5 Scheduling Algorithm Tracing Package. The general strategy
here is to write a user program which goes into a tight loop repeatedly
reading the calendar clock. Normally, successive clock readings differ
by the loop transit time. If a larger difference occurs, it is the result
of the processor handling an interrupt or executing another process.
These larger time differences, as well as the time they were noted, are
entered in a table and control returns to the aforementioned loop. When
the table is filled, its contents is written onto magnetic tape for
subsequent processing. This information helps build confidence that the
processor scheduling algorithm is working as predicted and it also
provides an independent confirmation of the time required to handle each
interrupt.

2.2.2,3 Hybrid Tools

2.2.2.3.1 Externally-Driven I/0 Channel. This hybrid feature, an
externally-driven input/output channel, currently utilized in the
instrumentation of Multics, permits another computer to monitor the
contents of primary memory. The channel is connected by a 2400 baud
telephone line to a PDP-8/338 programmable display computer. The data
rate involved--less than 60 words per second--presents a negligible
I/0 and memory cycle load to the Multics computer.

2.2.2.3.2 Graphic Display Monitor. The Graphic Display Monitor is a
subsystem of PDP-8/338 programs that use the aforementioned externally-
driven I/0 channel to interrogate locations of Multics memory. Multics

in turn during system initialization generates a table containing pointers

-11-

to interesting data bases. Standard displays have been developed to
observe queues, the arrays of module execution time distributions, and
the use of primary memory. Reportedly, observations of these displays
have been helpful in detecting bottlenecks in the system, and on several
occasions have exhibited the system passing through states previously
thought to be impossible.

2.3 MEASUREMENT PROCESS

The measurement process for computer system performance evaluation entails
data capturing, data collection, and data reduction and analysis.

2,3.1 Data Capturing. This is achieved either by hardware instrumenta-
tion, software instrumentation, or hybrid instrumentation. As previously
stated, when utilizing the event-driven measurement technique, proper
selection of the events to be monitored are of prime importance.

2.3.2 Data Collection. Generally magnetic tapes are used to record

the data. For the sampling measurement technique each sample might include
such data as an absolute instruction address, the name of the program
module, its segment number if the module is using overlays, and whether

the module was waiting (i.e., it is unable to proceed until the occurrence
of a known event such as I/0 completion) or executing. Similarly, the
event-driven measurement technique's data might include the program

module or event name, a time stamp, unique data associated with the

event such as queue lengths, queues, tables, pointers, variables, etc.

The key to high effectiveness in a measurement tool involves the prior
identification of the types of data most likely to be useful in the
performance evaluation of the object system (i.e., data collection
phase) and the tailoring of the information developed by the data reduc-
tion and analysis phase to meet the needs of the system developers

and the system evaluators.

2.3.3 Data Reduction and Analysis. This function is generally performed
off-line, encompassing a good deal of capability and flexibility in the
reducing of data collection tape(s). As previously stated, the information
developed by this phase should be tailored to meet the needs of the

system developers and the system evaluators.

The information per se should constitute comprehensive cause and effect
analysis of system behavior. Further, the information should be presented
depicting both a broad understanding of the system's overall timing

and a detailed time distribution of preselected program modules or system
components.

-12-

For illustrative purposes, a description of data reduction and analysis
type reports follows.?3

2.3.3.1 Channel Activity. The channel activity summary reports the
activity of all data sets encountered in the run. Statistics are printed

on the open, busy, and wait status of each data set, as well as on the
control unit busy status.

CHANNEL ACTIVITY SUMMARY

DONAMES ENCOUNTERED I[N 6.68 MINS,

SCANNED FOR 1/0 ACTIVITY: 5

TOTAL 1/0 WAIT TIME 0,0 MINS. (= 0.0 %).

AT LEAST ONE DATA SET OPEN FOR 6.68 MINS. (=100.00 X}.

AT LEAST ONE DATA SET BUSY FOR 0,00 MINS. (= Q.05 %).

AT LEAST ONE CUNTROL UNIT BUSY FOR 6.68 MINS. (2100.00 Zt.

NONAME FUNCTION DEVICE UNIT OPEN {MINS., %) BUSY (HINS., T} WAIT (MINS.,) UNIT {MINS., X}
LAMERROR WRIT DISK- 8 246 6,68 100.00 0,00 0.05 0.0 0.0 6.68 100.00
MRESULTS WRIT TAPE- | oc2 6.68 100.00 0.0 0.0 0.0 0.0 6.68 100,00
FYO5F00L READ WRIT DISK- 8 337 6.68 100.00 0.0 0.0 0.0 0.0 6.68 100,00
PROLOG EXCP TAPE- 1 oclt 6.68 100.00 0.0 0.0 0.0 0.0 6,68 100.00
FT06F001L READ WARIT DISk- 8 247 6,66 100.00 0.0 0.0 0.0 0.0 6.68 100.00

CPU ACTIVE IN 1/0 PROCESSING FDR 0.00 MINS. (= 0.05 % OF 6.68 MINS. SCANNED)

2.3.3.2 Module Analysis. The module analysis identifies by name and
function the modules involved in the execution of the program and reports
the space and time usage of each.

ENCUUNTERED IN 6.68 MINS,
MODULES 6
SvC 1D*'S: 0
TIME (MINS.}
MODULE NAME ORIGIN LENGTH ENTRY DIRECT INDIRECY
MAIN 000C00 00BFCH 0bEB6O 6.68 (=100.00 % 1 6.68
OVERLAY
REG SEG LNK

000C20 008FCS 1 1 0 4.87 (= 72.90 % THIS MODULE)

046700 06E838 1 2 1 0.0 {= 0,0 ¥ THIS MODULE]

070400 06EB38 1 3 1 0.0 (= 0.0 ¥ THIS MODULE)

070700 021700 1 & 1 1.80 (= 26.90 T THIS MODULE)
166019C0 OPENCLOS OFE960 000208 OFE960 0.0 (= 0.0 %) 0.0
166019CC GPENCLUS OFE908 000058 OFE908 0,0 (= 0.0 %) 0.0
1G6019Ct OPENCLUS OFEB20 000078 OFEB20 0.0 (= 0.0 X 0.0
166019CH OPENCLOS COFEB9B 000070 OFEB98 0,0 (= 0.0 %) 0.0
16601984 OPENCLIS OFE618 000180 QFE6LB 0.0 (= 0.0 X} 0.0
16601988 DPENCLOS OFESCO 000058 QFESCO 0.0 (= 0.0 %) 0.0
1EWSZOVR LOADER cecce 000338 078CCH 0.0 (= 0.0 %} 0.0
ENTIRE PARTITION (REGION) OLEBOO 00FQ00 = 60 K BYTES
TOTAL FREE (BLOCK) SPACE 003800 = 14 K BYTES

CPU PROCESSED SvC CALLS FOR 0.0 MINS, (= 0.0 T«

PRB EXECUTED FRAOM PROTECTED CORE FOR 0 MINS. (= 0.0 %).

-13-

2,3.3.3 Entry Point Analysis. This report, entry point analysis, shows
the time spent in each subroutine by entry point. This includes the
direct time, the indirect time (time spent in lower level calls through
the subroutine), and the total of these two. The indirect time is
further pinned down: For each subprogram, the report shows the sub-
programs it calls (and the relative time among these). For convenience,
the entry point analysis is ordered in three ways, as can be seen from
the example on this sheet. In summary, this analysis tells at a glance
"where the action is" and 'who" caused it at the level of the logic of
subprogram flow.

ALPHABETIC ORDER
ORDERED BY DIRECT TIME
ENTRY POINT ANALYSIS
enthy | L TTTTmmEEmmmTTTTT
_____ URDERED BY TOTAL TIME
ENTRY
ALOG [l CALLS ON CALLED BY
PERCENT PERCENT PERCENT ~ =m—mmmememcceme coceeeeeeeeweae
COSTE | exp w DIRECT INDIRECT TOTAL RELATIVE RELATIVE
ENTRY TIME TIME TIME ENTAY PERCENT ENTRY PERCENT
SQRT A e ———— | e aaeTEC Slinh aeeeed
EXP W
HALN 23,4 76.6 100.0 EXP W 47,1
170 061 wain SORT 17.5
COSTF 15.1
Barn 1/0 06 0.3
EXP W 36.1 0.0 3601 MATN 100.0
COSTF
SQRT 3.8 0.0 31.8 MAIN 90,5
22 ¢ COSTF 9.5
ALOG
F 5.6 6.0 11.6 ALOG 50.0 MAIN 100.0
S Ol Jesss o1 gast SQRT 50.0
170 06 ALOG 3.0 0.0 3.0 COSTF 100.0
1/0 06 0.0 0.2 0.2 sees 01 100.0 MAIN 100.0
ters 0] 0.2 0.0 0.2 1/0 06 100.0

—14-

2.3.3.4 Timing Graph. The entry point call structure timing graph is

a tree-like diagram of the significant paths through the hierarchy of
subprogram calls from the main program to final direct execution. This
information allows the user to identify the individual most significant
call chains and their relative timing. A given subprogram may make calls
on another subprogram from more than one place, and it is therefore
important to be able to understand the timing implications among these
separate calls.

{ EXP W]
(70T 36.1)
se(D[R 36.11)
(REL 47.11
{CALOOSAE)

L]

L]

.

.

.

. - - -
* [SORT)

* (TOT 24.7)

280 (D[R 24.T7)

* (REL 32.2)

* (CALOOS98) - aa -
A R (ALDG)
. (10T 3.00)
. s (D[R 3,00}
- . B S, - - ¢ [REL 5C.0)
{ MAIN) % [COSTF |« {CALOO194)
(TOT 100.) ® ({TOT 1l.61 - ===
(DIR 23.4)ese50{DIR 5,53 vt

[} 1 (REL 15.1}) * v -
(CALOD000)

.
* (CALOQOb22) ¢ { SOKT 1
. - * (TOT 3,000
L *s¢{DIR 3,00}
. (REL 50.0!
. - - - - {CALOOLBG)
* [SQRT) S e B
* {TOT 4.08)

*##%(DIR 4.08)

* (REL 5,32)

* {CALOOS6E)

.

.

.

.

.

«

€ 1/0 G6) [eeon 0])
(TOT .215) (701 .215)
€ (DIR .Q00)*®*Re%(D]R ,215)
(REL .282) (REL 100.)
(CALOO378)} (CALOOQOO)

2.3.3.5 Direct Time Distribution. The direct time distribution analysis
shows at a glance the detailed distribution of running-time spent by
individual instruction locations in core, at the machine code level.

For programs in higher-level languages, this analysis is related to the
original source program by reference to assembly listings. For each
interval of code, the report reflects absolute time, percent time, and

time density. The graphic display of time density is no mere histogram,

as the intervals are adjusted automatically to magnify trouble spots for
easier analysis. Thus, one often obtains reselution to the level

of individual machine instructions, but only when that level is significant.

-15-

ENTRY

ALOG

EXP W

1/0 08
SQRT

sexs O}

MAITN

COSTF

ABSOLUTE
INTERVAL

DIRECT TIME DISTRIBUTION ANALYSIS

CUMULATIVE
RELATIVE PERCENT PERCENT TIME
INTERVAL TIME TIME DENSITY DENSITY INDICATO

ROUY SEGMENT - SYSTEM AND LIBRARY ROUTINES

6F422-6F423
6F424~6F45F
6F460-6F4TF
6F4BO-6F5CT
6F5C8-6F503
6F504-6F508
6F50C-6F5E3
6F5E4-6F5FB
6FSFC-6F5FF
6F600-6F601
6F604-6F611
6F612-6F619
bF61A-bF61D
6F6LE-6F621
6F622-6F631
6F632-6F435
6F636-6Fbal
6F642-6F643
bF644-6Fb4T
6F648-6F649
6F64A-6F653
bF&54-6F655
6F656-6F657
6F658-8F65F
6F660-6F667T
6F66R~6Fb69
6F6LA-6FbTF
6F680-6F680
&F6BE-6F690
6F69E-6FTTD
&FTTE~-TOC3F
T0C40-70C47
T0C48-70C4B
T0C4C-TOC4F
TOCS5G-T0C57
70C58-70C&8B
70C6C-T0C6D
TOCLE-TOCHF
T0CTO-70CTL
TOCT2-70CTF
70C80-70C83
70CB84-T0C89
T0CBA-70CBB
70CHC-TUC99
70C9A-70C98
T0C9C-70CAL
70CA2-70CA3
T0CA4-TOCAS
TOCA6-T1555
T1556-7671F

6F422-6F423 0.0 0.0 0.0
00000-00038B 0.9 0.9 0.014
0003C-0005B 1.3 2.1 0.040 #
0005C-00U1 A} 1.3 3.4 0.004
00000-00008 Q.4 3.9 0.036 *
0000C~00013 1.1 4.9 Oal36 4w
00N14-0001B . 6.2 0al6] *ie
0001C-000313 . 1.5 0.054 &
00034-00037 . 8.2 0.186]1 #es
00038-00038B - 9.4 0,322 eeedew
00C3C-00049 . 10.5 0.077 »
Q004A-00051 . 1l.6 0.134 oo
00052-00055 . 13.1 0.376 eessrvisd
00056-00059 . l4.4 0.322 eesnes
00054-000869 15.5 0.067 &
Q006A-G0060 17.0 0.376 #edness
OQC6E-00079 18.2 0.107 *e
00074-0007B 20.2 0: 966 REEEQEOTR4EEEEEOS
0C0TC-0007TF 2046 0.107 ¢e
00CB0-00081 22.7 1.073 *vnstnsssvonnnisnensd
00082-00080 24.2 0.150L
0008C-0008D 27.7 1.717
00CBE-0008F 27.9 0.107
00090-00097 29.6 0.215
00098-C009F 3l.1 0.188
00040-N304A1L 35.6 2,253 LA LI LI IEEITE 277
000A2-G0O0B7 36.9 0.059 ¢
000BR-000CS 36.4 0,107 #»
0JCCé6-00005 0.094 ¢»
000D6-00185 40.6 0,003
06000-014C1 40.6 0.0

00CG0-00007
00008-00008
0000C-0000F
00010-00017
00018-00028
00C2C-0GC020D
0002E-U002F
00030-00031
00C32-0003F
00040-00043
00044-00049
0004 4A-00C48
0004C~-G0059
0005A-0005B
0005C-00061
00062-00C63
000&64-00065
00GC66-00915
00000-051C9

fl.4 0,107 #»
42.5 0,268
43.8 0.322
45.1 0. 161
46,8 0.086
49.4 l.288
49.4 0.0
51,3 0. 946 SUFFAINSRINS
52.6 0.092 ¢» .
53.9 0.322 LEE)

55.6 0.286
60.7 2.575
62,0 0.092 *¢

65.5 LoTl7 SOAueséhb et tr ettt bdonsaetnsdns
67.0 0.250
12,5 2,790 PERERRAEERO O RO IRR
T3.4 0,429 s66asses

T4 7 0.001

T4.9 0.000

CEERE QL NER IO R

LLES I A LA A LI R T e IR Y)

230 EREANROR AN OS

O O U W e N i e ON e e O G C e & e O W e N O e e b e e e 1) e
NWOIPUNPWUNNWUHUIOT~NWWe— 0D VN NWM NP PP OW =W w0 Ww
w
©
b
o

UVERLAY FOUR - START OF PRUGRA“ cone

76720-T6C5F
T6C60-T6CTF
76C80-T6CAD
T6CAE~T6LB0
T6CBE-T6CBF
76CCO-T76CCS
76CCH-T6CDS
76C06-76CD8
T6CDC-T6LES
T6CEA-T6CED
T6CEC-T&CFL
T6CF2~-76CF3
T6CF4-T60D19
T6D1A-T6DST
T6D58-T76E57
T6ESB-T6F 45
16F46-T6F B3
T6F B4=-T6F AL
T6FA2-T6FCO

00000~0053F
00540-0055F
00560-00580
O05BE-CC59D
0059E~0059F
005A0-005A5
Q0546-00585
00586-00588
0058C-CO5C9
005CA-005C8
605CC~-005D1
00502-00503
005D4—-005F9
005FA-00637
00638-00737
00000-0GOED
000EE-Q0L28B
00L2C~-00149
0014A-00168

T4.9 0.0

To. 4 0,047 »
77.5 0.023
79.2 0.107
82.6 1.717
83.5 0.143
B85.2 0.107 *¢
8hel 0el43 2w
87.3 0.092
90.6 1400 ¥Rt ossetoossusnsninatnn
91.8 0e215 ¢y

92.5 0.322 #*eeene

93.8 0,034 *

95,1 0.021 .

95.3 0,001
96,4 0,005
97.6 0.021
99.1 0.050
100.0 0.028

VARG ENN N SN G RGNS C OO S kb RGOS

Ok, OO~ WO~ OWm~—~O
-

VP W NWRErERNWO~NDE N0

-16-

APPENDIX A

EXECUTIVE SYSTEM FUNDAMENTALS

CONTENTS

Section
1.0 Introduction . + « « « + & « =« a e -
2.0 The Role of An Executive System.
3.0 System Profiles and Design Philosophies. .

3.1 General Purpose Batch Processing. D

3.2 General Purpose Time-Shared System.

3.3 Real-time Systems e

3.4 Summary Comments. . . 5 i o &
4.0 Operational Concepts . « « « « « + &

4,1 Multiprogramming and Multiprocessing.

4.2 Interrupt Processing. . s i e

4.3 Protection . . « . . . P~

4.4 TFailure Detection & Recovery. . . .
5.0 ARTS III System Overview

APPENDIX A

EXECUTIVE SYSTEM FUNDAMENTALS

1.0 INTRODUCTION

In order to gain insight into the problem of performance measurement as
it relates to Executive operation and total computer system efficiency,
one must have an understanding of the overall purpose of Executive
Systems and their operational concepts. Proper measurement and intelli-
gent evaluation of a particular system requires knowledge of the specific
design goals of that system together with its implementation details.

The design goals and rationale for implementation decisions in the

ARTS III system can be better understood and highlighted by a back-
ground in general Executive System fundamentals. This Appendix attempts
to define the role of an Executive and to introduce some of the basic
characteristics which distinguish the design philosophies of General-
Purpose Batch Processing, General-Purpose Time Sharing, and Real Time
Executive Systems for the purpose of demonstrating the comparative role
of various types of Executive in different computer environments.
Fundamental concepts indigenous to the operation of most large-scale
Executive systems will be presented. Finally, the ARTS IIT System
will be reviewed in terms of its design classification and operational
concepts.

2.0 THE ROLE OF AN EXECUTIVE SYSTEM

An Executive System, broadly stated, is a collection of special-purpose
programmed processes which operate in, control, and service a computer
facility.

Its major responsibilities usually include:

1. Scheduling and monitoring the flow of programs and data.

2 Management of hardware and software resources.

3. Synchronization and control of input/output operations on
behalf of applications programs.

4. Protection of programs and data from unauthorized access or
destruction by other programs.

5. Communication between the internal activity of the computer
system and the operator or programmer.

6. Participation in hardware and software error detection,
diagnosis, and recovery.

Basically, an Executive System provides services which are performed in
response to requests by "users". A user may be an operator, a program(mer) ,

or a piece of hardware such as a teletypewriter, remote terminal, or
central processor. The extent to which any of these services are supplied
as well as the algorithms and techniques employed in supplying them,

may vary greatly from installation to installation. Hardware design
vagaries and diversified computing requirements account for dis-
similarity among Executive Systems.

b

3.0 SYSTEM PROFILES AND DESIGN PHILOSOPHIES

The basic design philosophy of a particular Executive is strongly
influenced by the primary "type" of service it is intended to supply.
The need for a tailored approach to Executive design may best be illus-
trated by a brief discussion of several distinct computing environments
and some of their evincive characteristics.

3.1 General-Purpose Batch Processing

Assume the primary type of service to be provided is one of General-
Purpose Batch Processing.

3.1.1 Response Time and Man-Machine Interaction

One of the fundamental attributes of any computer system is its
"response time". The response time of current Batch Processing systems
is referred to as "turnaround time'" and is usually measured in minutes
or hours. It is defined as the time elapsed between submittal of a

job for processing and return of output from that job. The programmer
has no contact with the job during that time, hence no programmer-
machine interaction. All resource information necessary to process a
job must be provided, in advance of execution, by the programmer via
some form of control language. This mode of operation is most suitable
for production runs where changing data is processed against programs
which have been written and debugged; in other words, jobs which are
not subject to daily code modification. '

3.1.2 Workload Implications

Since the overall mission is General Purpose, the Executive should be
designed to manage a wide variety of applications such as simulation,
mathematical analyses, data reduction, report generation, list processing,
and various scientific and commercial studies. Such disparity of
application is usually accompanied by different data-base requirements and
gives rise to a need for variety in peripheral equipment, i.e., magnetic
tape, random access disk, card readers, line printers, plotters and
punches. It follows that support for these devices and data bases must
be provided to the programming community in the form of comprehensive

I/0 (input/output) packages comprising a tractable approach to the

handling of differing record formats, file organizations, data access
characteristics and device peculiarities. These considerations contribute
complexity and extensive code to the Executive.

3.1.3 Scheduling Considerations

Inherent in a General-Purpose system is a wide variation in job running
time, memory space requirements, and processor vs channel use. These
attributes, combined with an assortment in number and type of computer
user, affords a lack of predictability about workload which must be
addressed through flexibility in the scheduling process.

Batch Processing describes the manner in which jobs are collected and
run. Jobs gathered by operators are physically read into the system

in batches, placed in queues, and selected for execution by means of

a scheduling algorithm. Customarily, the scheduling algorithm for a
General-Purpose Batch Processing situation is designed to deal with the
relative priorities of jobs in the queues and their anticipated running
time. It should also allow for operator alteration of the priority
structure of queued jobs. Its prime orientation within the priority
framework is to achieve optimal use of critical machine resources such
as core storage, processor time, 1/0 time, and common auxiliary storage
devices through various '"load balancing' techniques. The decisions
incorporated in the scheduling algorithm often demand that a fairly
elaborate statement of the resource requirements for each job be made
by the programmer. This is accomplished via control cards which
accompany the job when it is submitted for processing. The information
coded on control cards is interpreted and stored in tables by the
interpreter routine of the Executive for subsequent use by the scheduler
and other resource management modules. Control cards are a characteris-
tic means of communication in the Batch Processing System, since there
is no programmer interaction during job processing.

3.1.4 Overhead

Overhead in a computer system falls into two categories. (1) Time
spent executing Executive code or, from another point-of-view, time
spent away from application work, and (2) Volume of Executive code.

Since a General-Purpose system is by definition broad in its potential
scope of application, it usually requires more overhead time than special-
purpose systems in order to properly co-ordinate diverse activity and
provide specialized assistance to individual programs. A great deal

of complex code is typical of such systems for much the same reasons.

However, the implementation of General-Purpose Executives is for the
most part modular; that is, constructed of independent and asynchro-
nous processes. It is, therefore, not necessary for the Executive

to be wholly contained in main memory at any one time. The lenient
expected response time (turnaround time) in General-Purpose Batch
Processing systems makes tolerable the small amount of additional over-
head time required to swap certain Executive modules in and out of
core storage on an as-needed basis. This procedure makes it possible
to leave larger amounts of core storage available to the applications
programs while still providing those programs with desirable Executive
services.

3.1.5 Storage Allocation

In representative General-Purpose Batch Processing systems, a given
program is allotted a portion of main memory large enough to contain
the complete program (or the largest overlay segment) and its
necessary data buffers. That portion of storage is reserved by the
program until it terminates execution. The programmer is usually
charged with specifying in advance the maximum amount of core storage
the job will require. Alternatively, the Executive may be appointed
to calculate the program's memory requirement from other available
information, or default to a fixed value. In either case, the space

a program may occupy is restricted only by the total amount of main
storage available in the computer configuration, or local convention.
Since there is usually more than one job in main memory at any given
time, the memory requirements of a job will more than likely affect
the scheduling of that job for execution and resultantly, will impact
the response time. A Batch Processing Executive normally attempts to
maximize the use of main storage, because it is an expensive commodity.
In some systems, it is possible for the programmer to dynamically
release portions of the memory originally allotted to his program.
When this occurs, the Executive may find sufficient unassigned space
to schedule another program thereby improving efficiency. On the other
hand, a few systems also provide the ability to request additional
memory space during program execution. In this event, it may be
necessary for the Executive to remove or '"roll-out" a lower priority
program in its entirety in order to assign the additional space to the
requesting routine. The removed program will be automatically rolled-
in again for subsequent completion when storage is available. This
procedure gives the programmer latitude in optimizing his own use of
memory. Variations on these basic philosophies can be found in most
General-Purpose Batch Processing Systems.

3.2 GENERAL-PURPOSE TIME-SHARED SYSTEM

A Time-Shared System is one in which a hardware and software complex

is shared among many independent on-line users simultaneously. The
sharing should be invisible to the user; that is, each one views the
system as solely dedicated to his job. Upholding the illusion of a
system dedicated to an individual while serving many users concurrently
is a primary design goal of a Time-Shared Executive.

3.2.1 Response Time and Man—-machine Interaction

Time-shared computer users are connected directly with the system by
way of telecommunications media such as telephone lines. Their physical
means of communication can vary over a large selection of equipment,

but consists, typically, of a typewriter terminal and perhaps a cathode
ray tube.

The response time with such a configuration may be defined as the time
elapsed between the sending of a message by the typewriter terminal
operator and receipt of a reply from the computer. This time is expected
to be measured in fractional seconds, seconds, or perhaps minutes subject
to the nature of the communication. For example, if the message was

a request to compile and execute a program previously filed by the user,
it is reasonable to expect a few minutes to pass before output arrives

at the terminal site. On the other hand, if the terminal is being
utilized in a conversational mode, that is, a programmer is in the process
of writing a program and each line of the program is being compiled or
scanned for syntax errors by the computer as it is completed, a response
in terms of no more than a few seconds is paramount. Otherwise, the user
will become impatient and the system will have failed to adequately
perform its desired function. There is a high degree of man-machine
interaction in a time-shared system.

3.2.2 Workload Implications

A Time-Shared environment is extremely useful for interactive writing,
debugging and modifying of programs, for making on-the-spot inquiries
against a data base, as a teaching aid, and in the realm of graphical
displays, where altering parameters related to a mathematical or simulation
model allows one to immediately witness the effects of the change.

In essence, time-sharing is appropriate whenever problem solving or basic
service can be improved by immediate and direct dialogue with the computer.
It brings the power of a large computer directly to an office or laboratory
and places a potent tool in the hands of the user.

A General-Purpose Time-Shared System must be prepared to simultaneously
handle a wide range of applications. The selection of different terminal
devices available for these applications imposes an additional requirement

for special and extensive programming support on the Executive system.

A pliant, uncomplicated Command Language is essential to effect easy
communication between user and system. An elaborate user file system
must be managed by the Executive with minimum involvement on the part of
the user community. Protection of individual files from accidental or
unauthorized access is of particular import in a system where many people
are sharing data files and programs as well as the computer hardware.
Identification of valid users becomes crucial when anyone with proper
terminal equipment may dial into a system over phone lines and potentially
usurp time and misuse information. Data arriving concurrently from
numerous remote sites must be reliably handled and error-checked.
Hardware resources must be dexterously switched from user to user to meet
stringent response-time demands. These are characteristic problems to

be considered in Time-Shared Executive design.

3.2.3 Scheduling Considerations

The overriding concern in the scheduling philosophy of a Time-Shared system
is equitable distribution of computer service to active terminals, This
translates readily, from the users point-of-view, into reasonable response
time. An important concept in the many approaches to the Time-Shared
scheduling problem is time-slicing. Each user is allotted a small slice
of time for use of the system. At the end of the time slice the program
is suspended and system resources are given to the next eligible user.

The program is continued when the Executive allots it another time-slice.
This procedure is followed for all active users. The length of the time-
slice or quantum is a critical decision and may in fact be dynamically
adjusted by the Executive to suit the situation at hand. In a relatiyely
unsophisticated form of round-robin scheduling, where the Executive attends
to each terminal in a cyclic fashion, the slice of time may be solely a
function of how many terminals are physically attached to the computer,
and chosen to fix an upper limit on the average response time. It could

be accomplished by dividing a set amount of time equally dmong the active
terminals. Of course, this is an oversimplification, attempting only to
illustrate a concept. Most Time-Shared scheduling algorithms are indeed
more complex, taking into consideration the differences in modes of
operation at the various terminals together with their accompanying
response time requirements, computer resource balancing, and a priority
structure.

3.2.4 Overhead

Overhead in terms of Executive code in a General-Purpose Time-Shared

system is much the same as that of a General-Purpose Batch Processing
system. A large amount of intricate code is characteristic, Modular design
provides a solution to Executive memory requirements by allowing most of

the kecutive routines to be stored on high-speed bulk storage devices

and swapped in and out of main memory in viable parcels as needed.

A-6

Overhead time can be somewhat disguised by the fact that no one terminal
operator or his work is likely to utilize all facilities continuously.

In an interactive environment, there is a considerable amount of "think
time expended on the part of the programmer at a terminal. During this
"ehink" time, the Executive is free to perform functions unrelated to
that particular user. pdditionally, the printing of output to a terminal
may be carried on under the auspices of the I/0 channel with minimum
Executive attention, providing further opportunity for Executive module
swapping and performance of other support services classified as overhead.
It is always necessary, of course, to fine tune those sections of Execu=
tive code which are frequently used or those which consume an unusual
amount of time in relation to the service provided.

3.2.5 Storage Allocation

Given that Time-Shared System 18 obligated to provide seryice to a
aumber of terminals simultaneously, an interesting problem presents
itself. How is memory toO be simultaneously available to all users? One
approach is to divide it equally among the terminals thereby restricting
each user to a fixed size partition which is a fraction of the real
capacity of the equipment, and leave to the programmer the problem of
fragmenting his work to fit the partition. However, since we are dealing
with an illusion in a Time—Shared System, that of a total computer
complex solely at one user's disposal, a more satisfactory approach is to
extend that illusion to the apportionment of main memory by effectively
giving each user all of main storage. The concept 1is known as virtual
memory . Within the virtual memory context, the job is no longer limited
in size to the amount of main memory available, but is bounded, in theory,
only by the total of all high-speed storage, main and auxiliary, in the
configuration. 1In practice, of course, the practical upper 1imit falls
short of that mark. One implementation of the virtual memory concept

is that of demand paging. Main memory is considered to consist of equal
size blocks known as ""page frames'’ which accommodate blocks of instruc-—
tion code or data known as "pages''. A job is automatically divided into
pages. References made during program execution to instructions or data
result in the movement of those pages containing the referenced material
from auxiliary storage to core. Inactive pages may be moved out of core
to mke room for other applications. This can be done without any effort
or knowledge on the part of the programmer. The Executive, possibly
assisted by specialized hardware, performs the chores of ascertaining that
a needed page is missing from memory, locating that page OD auxiliary
storage, moving it into available space in memory (perhaps, first making

space available by moving out a dormant page), and resolving the logical
address reference with the actual physical location of the page. This
technique permits all active terminal users to simultaneously operate on their
programs or data, each viewing his job and data as entirely core resident;
when in reality, memory is shared among all users with only certain active
pages of each job present at any one time.

3.3 REAL-TIME SYSTEMS

A Real-Time System can be defined as one in which incoming data about an
active environment is processed by the computer complex in sufficient
time to provide results which may be used to immediately influence that
environment.

That definition could be applied to a Time-Shared system, since a Time-
Shared system is a form of Real-Time System. To further differentiate

the type of Real-Time system to be considered, let us stipulate that it

is not used in a "conversational" mode and that input and output may be
directly from and/or to electrical or electromechanical equipment as

well as from and/or to Human Beings. The primary function of such systems
is control or assistance in control of a specific environment.

Real-Time data processing is a valuable tool wherever precise decisions
must be instantaneously made concerning large, complex, and rapidly

changing systems.

3.3.1 Response Time

It can be seen from our definition of real-time systems that the response
time requirements are rather strict. Certain critical automated processes
within a given application may require a reply from the computer within
milliseconds. Other less critical operations may be tolerant of longer
delays; but seldom is the response time expected to exceed a few seconds,
Required response time in Real-Time systems may be said to be immediate,
where immediate is quantified by the nature of the operation and may range
in unit from, say, microseconds to seconds. Man-machine interaction is

of a different nature in Real-Time systems than it is in Time-Shared
systems. There is no dynamic alteration of programs or experimentation
with data. 1In a Real-Time situation, the man-machine interaction, if any
at all, usually consists of a man-made inquiry or request and a machine
reply; or perhaps, merely the entry of new data by man into the machine

or the display, in some form, of results or status from machine to man.

In the most rigid Real-Time environments, output is directly used to control
a live process with no intervention by man except in a monitoring capacity.

3.3.2 Workload Implications

A Real-Time system is a special-purpose system. The specific application,
acceptable limitations, and performance specifications are well defined
in advance of its fabrication. It is designed to perform a particular
overall function. There is no need to complicate the Executive with
general-purpose code to support all possible categories of computer user
and their different data base and device requirements. The programs
constituting the application are delineated in the planning stage and can
therefore be adequately provided for in the design of the Executive.

The heaviest burdens placed on Executive, Hardware, and Application tasks
are that of speed and reliability.

The speed of the entire computer system is ultimately limited by the
hardware, but poorly designed or coded application programs or Executive
modules can seriously hamper performance. Therefore, strict attention
must be paid to efficient algorithms and program coding conventions in
all areas of the total system.

Reliability in both hardware and software is of the utmost importance

in Real-Time Systems. Failure of either can be disastrous. As a result,
particularly thorough debugging and exhaustive testing of program modules
is critical. Hardware redundancy is essential. A cooperative system of
hardware and software error detection and automatic recovery facilities
and procedures is indispensable.

3.3.3 Scheduling Considerations

A rapid scheduling process 1is fundamental in a Real-Time system. The
attainment of a speedy scheduling mechanism is aided, however, by the
special-purpose nature of the system. Since all the tasks comprising
the system are known, the hierarchical structure of various tasks is
determinable. The necessary order of execution and/or the relative
priorities of the programs can be established and, for all but unusual
circumstances, fixed. The scheduling process is thereby simplified and
need not contain the elaborate decision making machinations of general-
purpose systems. If requests or inquiries are to be made of the system
during its operation, provision must also be made to schedule the inquiry
related programs without degrading performance or interfering with
critical tasks. Accommodating random inquiries and their respective
response time constraints adds to the intricacy and overhead of the
scheduling process.

3.3.4 Overhead

It is difficult to overlap or hide overhead in a Real-time environment.
However, Executive complexity and volume of code are potentially minimized

A-9

in Real-time special-purpose systems because one is dealing with a specific
application and well-defined requirements. Reasonable restrictions can

be placed on use of languages, record formats, data base characteristics,
and device selection without fear of hindering an unknown computer user.

If need be, time spent in swapping modules can be reduced by making the
Executive and much-used application tasks entirely core-resident. Fine
tuning of Executive code is also a potential source of reduced overhead
time.

Overnead in a Real-Time system, however, cannot be defined in terms of
Executive performance alone. The combined performance of all tasks in
the network must be considered. The programs and programming techniques
in a Real-Time system are uniquely controllable, since there are no
remote unidentifiable programmers during system development. Good
programming practices can be enforced and each program in the system can
be optimized individually and as a part of the whole integrated network.
A poorly performing task can be isolated for improvement and overall
system bottlenecks can be identified and eased.

3.3.5 Storage Allocation

Allocation of storage can be either static or dynamic in a Real-Time
Special-Purpose system. The choice depends on response time constraints
imposed by the environment, the amount of money available for equipment
(particularly storage), the potential speed of the integrated hardware,
and the amount of system's programmer time and effort to be expended.

A completely static arrangement has all Executive and Applications program
modules entirely and continuously present in main memory at pre-established
locations. All data input and output areas are fixed in size and location.
This approach has the advantage of no I/0 overhead for module swapping

and thus increased speed of operation and decreased response time. It
also requires minimum effort on the part of the Executive since programs
are loaded once and never moved, except in the event of hardware failure.
This lessens the quantity of Executive code as well as its complexity.

The most obvious disadvantages are (1) that extremely accurate upper

limit estimates must be made regarding the volume of input and output

data to be processed by each task during peak periods so that adequate
main storage may be set aside, (2) during non-peak periods much of main
memory is unused, (3) large quantities of expensive high-speed storage
must be attached to the system, (4) Expanding the software capability

of the system may require additional main memory and possibly other hard-
ware modifications to accommodate the main memory addition.

A-10

Dynamic storage allocation has none of the cited disadvantages of static
allocation, unless all programs are expected to experience peak loads
simultaneously. New programs can usually be added to the system without
hardware modification or purchase of additional memory. Memory is allocated
on an as-needed basis for programs and/or data, thereby allowing for
processing of background or support jobs in available memory during non-
peak conditions. This method promotes greater flexibility and efficiency
in the general use of storage. Also, errors in peak-load estimates are
less serious and peak-load growth can be reconciled. Disadvantages
include (1) increased overhead in terms of both time and code, (2)
potential degradation of response time, (3) additional complexity in the
Executive wihich requires a sophisticated design and programming effort,
as well as more lead time for coding, debugging, and shakedown, (4)

debugging is more difficult due to the intricacy and dynamic character
of the system.

3.4 SUMMARY COMMENTS

It should be evident at this point that Executive Systems. are tailored

to their operating environments. They can differ greatly in overall
purpose and, therefore, in design philosophy and implementation primitives.
The anticipated workload characteristics, or lack thereof, are for the

most part peculiar to an installation and must be taken into account in

the ndividual tailoring process. Systems vary, among other things, in

their response time requirements or definition of reasonable service,

in their scheduling goals and overhead considerations, and in their approach
to storage allocation.

It is worthy of note, here, that the manner in which Executive services
and algorithms are implemented usually depends heavily on the idiosyn-
crasies and features of the central processor and related hardware with
which it is to co-exist. It should also be pointed out that many systems
do not fall readily into the pure categories of Batch Processing, Time
Shared, or Real Time systems, as described, but are actually combinations
of those philosophies.

It follows then, that measurement and evaluation of a particular computer
system must be an equally tailored undertaking or the results will be
misleading, or irrelevant. A thorough knowledge of the system objectives
is therefore required; as is an understanding of the employed software
concepts and of the hardware features and potential. Application of
measurement tools also requires familiarity with system implementation
details.

A-11

4.0 OPERATIONAL CONCEPTS

Although Executive System designs depend heavily on the hardware with
which they are involved and on the primary type of service function thev
are to perform, the following operational concepts may be found in most
Executive Systems.

4.1 Multiprogramming and Multiprocessing

Multiprogramming describes the process of maintaining more than one
program concurrently in a state of activity on a given hardware system.
This may be accomplished by software interleaving of program execution
on a single processor, simultaneous execution of programs on several
distinct processors in the same configuration, or a combination of
both.

In a multiprogramming environment, the active tasks in the system contend
with each other for use of hardware and software resources, particularly
central processor time. An Executive system exerts control over the
environment and achieves organized activity by monitoring program and
equipment status and switching resources between jobs to balance the
ever—-changing supply and demand.

When more than one central processor is used the system is said to be

a multiprocessor system. Multiprocessing is a way to achieve a form of
multiprogramming and to increase the systems workload capacity. However,
multiprogramming does not necessarily require or imply multiprocessing. When
the system has a multiprocessor configuration, there exists, in addition

to the software contention for processor use, a potential hardware

contention between processors for access to memory modules.

4,2 Interrupt Processing

An interrupt is a hardware initiated transfer of processor control to a
fixed memory location, usually within the Executive area. Interrupts
occur randomly to signal a particular type of significant event, such as
program termination, expiration of a specified time interval, completion
of an I/O transaction, or operator intervention.

Most large-scale computer systems are interrupt-driven; that is, the
interrupt system is the vehicle for placing central control for coordina-
tion of activity in the hands of Executive routines. For instance, the
transfer, by the Executive, of central processor use from one task to another
is normally triggered by an interrupt. Since there are a number of possible
conditions which could cause an interrupt, the Executive, upon receipt of
control, first determines the reason for a particular class of interrupt

and then proceeds on the prescribed course of action. After the Executive
has responded to the interrupt condition, it passes control to one of the
eligible tasks in the system. The task receiving control of the proces-—
sor after the interrupt may not be the one which was executing when the
interrupt occurred. The relative eligibility of tasks for execution is
often altered as a result of the interrupt.

A classic example of this procedure is one in which a high-priority
task becomes dormant awaiting the completion of an I/0 operation. A
lower priority task is assigned use of the central processor while the
high-priority task waits. When the interrupt occurs, signaling the
completion of the high-priority task's awaited I/0 transaction, the
lower-priority task's activity is suspended and control is returned to
the high-priority task. When any interrupt occurs, the Executive saves
all pertinent information about the state of the program which was
interrupted so that it can be subsequently continued without losing
information critical to its progress.

The interrupt mechanism is also the computer's line of communication with
the outside world. An operator desiring dialogue with the Executive
regarding the status of the system presses a button or flips a switch
which generates an interrupt. The interrupt is routed to the operator
communications routine of the Executive and contact has been established.
Data acquisition or display equipment ready for information exchange,
interrupts a processor to initiate the data transfer or acknowledge its
receipt. In each case the Executive intervenes and routes the interrupt
to its proper processing routine.

4.3 Protection

Protection became an important problem with the advent of multiprogramming.
It is normally handled with the aid of special hardware facilities. The
nature and use of these hardware protection facilities varies with computer
design, but the results are similar overall. Protection capability

is supplied in two areas, control and access.

Control protection is effected by the provision of two machine operation
modes, a '"privileged" or Mexecutive" mode and a "user' or ''program"

mode. In the executive mode all instructions of the machine can be
executed including those which actually cause the assignation of the
processor to a particular task and those which change the mode or status

of machine operation. In the user or program mode, all instructions which
might interfere with the proper operation of the executive or other program
tasks are prohibited. Control protection is usually enforced by causing

a switch to the privileged mode of operation accompanied by an immediate

transfer to an executive routine, whenever an attempt is made while in

A-13

user mode to execute a privileged or otherwise unacceptable instruction.
This allows the Executive to obtain processor control for analysis of the
offense and determination of the proper course of action while keeping
the remaining tasks in the system operational. In such systems, a user
requiring a service which implies the legitimate use of a privileged
instruction, communicates a "request for service" to the Executive
through a special "executive call" instruction. The instruction trans-
fers control and a coded service request to the Executive for disposition,
and the request is carried out on behalf of the user by the Executive.

Memory access protection is provided through various schemes which prevent
any user from illegally reading or writing over another user's core
resident programs or data. This may be accomplished by assigning a

unique protection code to all the blocks of memory assigned to a particu-
lar user and disallowing access to those blocks by any other user.
Protection is achieved by comparing each user's protection code with the
code assigned to the storage block that the user is attempting to access.
Other schemes use special registers to contain the address bounds of

each program in the system and compare addresses for validity as each
access is attempted. Most protection methods provide some means for

users to voluntarily share data or programs with other users. Sharable
information may also be protected to various degrees, i.e., read only,
write only, execute only, or be made accessible only to certain other users
through special "access'" codes. If an illegal access is attempted,

an interrupt will occur causing the Executive to take control and perform
whatever action is necessary to maintain the integrity of the system.

4.4 TFailure Detection and Recovery

Abnormal conditions in a computer system may arise from many different
sources such as operator errors, program coding errors, device failures,
channel failures, parity errors, and power fluctuations. In most large-
scale systems, some provision is made for hardware and software components
to work hand-in-hand in detection of errors and reduction of their

impact.

The amount of error checking and recovery capability incorporated in a
given system varies largely with the environment for which it is intended
and local overhead vs reliability considerations. For example, a system
crash in a General-Purpose Batch Processing facility is costly and
annoying, but the collapse of a Real-Time system could have catastrophic
consequences. It would, therefore, be justifiable to spend a greater
proportion of equipment money and development effort in real-time systems
on failure detection and automatic recovery capability.

A-14

Redundant hardware is a costly but effective means of reducing the risk
of failure due to hardware error. Duplicate processors, memory modules,
channel paths, and auxiliary devices can be integrated into the system
in such a way as to permit reconfiguration in the event of malfunction
in a critical component. Executive software aids in the reconfiguration

process and also restarts, refreshes, and/or relocates affected program
modules and data bases.

In systems where failure is less disastrous than in real-time applica-
tions, hardware redundancy is unusual. The existing hardware modules

may be equipped with retry capability. For example, an error condition
detected by the hardware in accessing memory could cause an automatic
hardware retry of that access before declaring an error condition. If

the failure persists, it is reported to Executive software for disposition.
If the error is not repeated on a hardware retry, its occurrence can still be
recorded by the Executive for subsequent reporting and analysis,but the
system may proceed as though it never occurred.

All error conditions need not be candidates for Executive processing.
Certain classes of error, such as invalid data in an input record could
be more reasonably handled by the application program responsible for the
data. Each computer installation must independently judge the relative
merits of various levels of error detection and recovery facility as

they relate to their operating environments

A-15

5.0 ARTS III SYSTEM OVERVIEW

The ARTS III system (in multi-IOP or multi-CPM mode) may be classified
as a real time multiprocessor system. It is real time by virtue of the
fact that the outputs of its programs are immediately used to assist

in control of the air traffic situation in a terminal area; and multi-
processor by definition, since in a multi-IOP or CPM mode, more than one
processing element in the configuration may be actively engaged in
program execution. It follows that most of the programs operate with
rigid response time requirements and that the existing man-machine
interaction'is not "conversational' but rather of an inquiry-response

or data entry-display nature.

Scheduling in the ARTS III multiprocessor system consists of task
selection by an available processing element from one of two tables of
eligible tasks, the planned task table and the pop-up task table. A
planned task is one which is executed at regular intervals governed by
some cyclic process such as a radar beacon scan. The planned tasks in
the system are ordered in groups known as cycles. Within each group or
cycle the tasks are arranged in a network which identifies their inter-
dependencies in the following manner. Associated with each task in

a cycle is a list of predecessor tasks and a list of successor tasks.

A planned task is eligible for execution if it has no predecessors or
when all of its predecessor tasks have been completed. When a given
task itself has been processed, its list of successor tasks is used to
find other tasks in that cycle which may be now eligible for execution.
Some tasks are restricted for execution to a particular processor, or
processor type, and therefore will not be selected in the search of

the planned task table by available,but otherwise inappropriate, processors.
All tasks in a cycle must be completed before a new cycle is begun and
all processors operate on tasks in the same cycle. The pop-up task
table consists of tasks which are executed aperiodically at the request
of planned tasks, or possibly as a result of an external inquiry or
request. An entry for the task is placed in the table only when an
explicit request for its execution has been made. Each of these tasks
has a "time-for-execution'" value associated with it in the pop-up table
as a result of the request; and the smallest time value of all the tasks
in the table is stored separately as an indication of the next time at
which a pop-task is to be scheduled for execution. Available processors
select tasks from this table as each of the task's 'time-for-execution"
arrives. The pop-up task table's smallest time value is examined before

A-16

the planned task table is searched, thus providing a mechanism for high-
priority entrance to a task. This relatively low-overhead type of
scheduling procedure is possible because implicit in the special-
purpose nature of the system is the fact that all programs, along with
their resource requirements, are determined in advance of system opera-
tion. 1In addition to expressing the actual dependency one task has on
another's completion, the predecessor-successor network can be used to
purposely space processing of tasks which may have conflicting resource
requirements, such as access to the same memory module, and thereby
reduce a form of system inefficiency.

An attempt to minimize overhead is reflected in the static storage
allocation scheme. All operational programs and data bases in the
ARTS III system are memory resident at all times and located at fixed
storage locations. They remain at the original load-time addresses
unless a system failure recovery procedure dictates their reallocation.
Address assignment and linkage resolution are effected from relocatable
program modules and tables during the system build process and may be
modified by the operator at that time to accommodate last minute hard-
ware reconfiguration. An effort will be made to optimize the initial
storage assignment at each ARTS III site in order to minimize memory
access conflicts.

Interrupt handling in the ARTS III multiprocessor system is not entirely
centralized. The interrupt processing module of the Executive will
process all but the Executive Service Request (ESR) interrupts and the
application program I/O interrupts. There is a separate Executive module
for handling requests for service communicated to the Executive by the
application tasks. Requests may be made to initiate or terminate I/0
operations, pass operator messages, provide normal program terminaticn,
schedule a pop-up task, modify cycle advance criteria, extend task
addressing capability, clear overflow designators after arithmetic
operations, alter channel interrupt ability or channel assignment for a
specified peripheral, request I/0 interrupt capture, and obtain informa-
tion about IOP and channel assignment for a specific peripheral. The
task making the Executive Service Request will pass to the Executive
Service Request module those parameters necessary to select the desired
service option and provide additional information peculiar to the
requested service. Interrupts associated with task I/0 transactions
will be processed directly by the responsible task. The control informa-
tion necessary to route I/0 interrupts to each task will be transmitted
to the Executive via an ESR or established during the system build
process. It is expected that this procedure will reduce system overhead
by eliminating Executive screening of task related I/0 interrupts.

A-17

Both control and memory access protection are provided in the ARTS III
multiprocessor system. Control protection is addressed through the
provision of a privileged mode of operation for certain Executive
instructions. If execution of these instructions is attempted while in
non-Executive mode, an interrupt will occur causing control to be
transferred to the Executive. Most of the privileged instructions are
I/0 related. Read and write memory access protection is provided through
the use of 16 "memory lockout registers'. These registers each contain
the address bounds of one 16k memory module and an indicator for read
lockout and/or write lockout for each 2k set of addresses within a
particular module. When a task is initiated the memory lockout
registers are loaded by the Executive with the proper read and write
lockout values for that task. As each storage access is made by the
task the significant memory lockout register is examined to determine
validity of the access. 1If the access is invalid, an interrupt will
occur and control will be transferred to the Executive. Similar protec-~
tion is also provided during an I/0 operation to prevent an IOP from
writing input data into a protected area.

When two or more processors are simultaneously executing programs, the
possibility arises that more than one of the programs may require

access to the same data base. This becomes a problem, for example,

when one program wants to modify (write into) the data base while another
wants to read it. Such conditions can be avoided in the ARTS TIT
multiprocessor system through proper use of special access control
instructions. Invoking the access control instructions results in access
to the data base by a particular processor for read operations as long

as no other processor is modifying the data base. However, a processor
cannot gain read access if another processor already has write access;
nor can a processor gain write access if any other processor has either
read or write access.

Even though various protection approaches are employed in a system,
errors and failures do occur. In a real time system such ‘as ARTS III,
failure detection and automatic recovery are extremely important. In
order to minimize the impact of system malfunction both hardware and
software tools are employed. For example, during system operation the
Executive software monitors the time a processor spends on a task by
consulting a ''time-away-from exec' table. The table contains an entry
for each processor in the system. Before a processor begins a task,
it updates its entry in the table with a maximum 'time-away-from-exec"
value. The table is periodically searched by other processors in the
configuration and, if the value provided by a processor has been exceeded,
an error condition is declared. This procedure deters the occurrence
of an "endless loop" in a processor. Hardware detected malfunctions

A-18

such as power tolerance error, illegal function code execution, privileged
operation error, protection violation, and memory parity error are
handled with the aid of Executive routines. The ARTS III multiprocessor
system will employ additional hardware for malfunction recovery in the
form of a Reconfiguration and Fault Detection Unit (RFDU). The

purpose of this unit is to serve as a central monitor point where infor-
mation regarding detection of major hardware errors is routed and
displayed, and where hardware reconfiguration is implemented. Two IOPs
in the system will be able to obtain information about the status of
critical system elements. One or the other of these two IOPs will be
interrupted when the RFDU encounters an error condition. The offending
element (IOP, CPM or memory module) will be isolated from the system

by the combined efforts of the RFDU and Executive recovery software and
replaced with a redundant hardware element if one exists. In the

event redundant hardware is unavailable, the Executive recovery routines
will work hand in hand with the operational tasks to gracefully reduce
the system workload by eliminating non-critical tasks and reasonably
degrading the performance of critical applications. These techniques
should provide enhanced reliability to the total system.

A-19

Ll

IT.

IT1.

IV.

VI.

TN ETOAUCTLON s + » v o o s o6 o a s ans amsaiaasoissanesioaas s nsonesiosssnassss
Criteria for Evaluation. ... reearennrnnrsssseiioseeiaiioeeiaas
System Simulation Packages....eeeerernmiirniratiiiniinie i,
A. Computer System Simulator (CSS)«c.cecvrvrrrrrrnraaniiarenennen.
B. Extendable Computer System Simulator (ECSS).......ccooovenen...
C. Computer-Aided System Evaluation (CASE)........covveernnnnnnnn
D. Systems Analysis Machine (SAM).......cevvviiiiinnniniieiennann.
E. System and Computer Evaluation and Review Technique (SCERT)..

General-Purpose Simulation LanguagesS:.:....eveevvrenereuiorrcuieenes
K. HOCUS:+ so womss wis siommie s oin mimias s sosowas vbossss g ss seaioidion ss e
B, BASP s comaant sis ewwio o saemines semenen we n pemnmee mt fomss 48 G0 380
C. SIMSCRIPT: « oo ssaasassssnnesossssssnssssassssnnnnosansssnsssses
D. GPSS e s vnevvonansssssantatsasasssoseisasseiasionsstaetasssseonns
Summary of Salient Characteristics..sseiarceeneaiiiiirnerannnannene

APPENDIX B

A Survey of Available System Simulation Packages
and General-Purpose Simulation Languages

Some Guidelines for Selection of a Simulation Capability...........

11 June 1971

ADDENDA

After the publication of this report, SIMSCRIPT was sold by Simulation
Associates to CACI, Inc. A new version of the SIMSCRIPT compiler
known as SIMSCRIPT II.5 has been announced by CACI. The salient
features of the latest version is that it utilizes double precision

floating point arithmetic. Pricing data has not yet been obtained
from CACI.

I. INTRODUCTION

Computer simulation has proved to be a valuable tool in studying the be-
havior of dynamic systems. The technique provides a method for monitoring
the state of a system over time. Alternatives to simulation are mathematical
analysis, experimentation with either the actual system or a prototype model,
or seat-of-the—pants intuitive judgement. All of these have limitationms.
Mathematical analysis may be intractable because of the complexity of the re-
lationships within the system. Experimentation can be costly, and it may be
difficult to measure critical factors such as queue statistics. The seat-of-
the-pants approach carries a high risk.

The problem of computer system design and evaluation has become more complex
due to the development of time-sharing, multiprocessing, and real-time systems.
The cost of the equipment prohibits experimentatiom. Selection of a new system
based on intuitive reasoning is also ruled out by the magnitude of the invest-
ment. A reliable technique in forecasting the performance of proposed systems
is simulation.

Simulation, in differing levels of detail, can be applied to the problems of
design, development and evaluation of computer system. Use of simulation in
the design phase gives the analyst a better understanding of the interactions

of the proposed system components. Since a simulation is a dynamic model,
status "snapshots'" of the simulated system may be obtained at prescribed time
intervals. Periodic status data along with cumulative statistics provide a com-
prehensive picture of the operation of the system under study.

A simulation model might be utilized to locate bottlenecks and evaluate proposed
solutions during system development. An installed operational system can be
studied, evaluated, and fine-tuned by systems personnel at the user facility

via simulation of selected system cross-sections emphasizing suspected performance
weaknesses. In addition, the process of designing a simulation model for the
purpose of actual system performance evaluation assists in identification of

those operational characteristics which must be measured in order to make eval-
uation by any technique possible and meaningful.

This survey was performed in order to establish the state-of-the-art of the
techniques for system simulation which might be appropriate for computer system
performance evaluation and adaptable to in-house equipment. A description of

the state-of-the-art of the most widely used general purpose simulation languages
and system simulation packages is contained in this appendix. Criteria for eval-
uating the languages and packages are suggested and a few guidelines for selection
are given.

IT. CRITERIA FOR EVALUATION

Each simulation application has unique requirements with respect to the
complexity of the problem and the skills of the analysts involved. Also,
computer facilities and budget restrictions may vary. The choice of a
particular simulation language or a system simulation package will be
made by evaluating the alternatives in terms of a set of selected
criteria. In this section, several criteria for use in evaluating the
alternative approaches are presented. The decision maker would select
the factors which are critical for his particular situation. It is
doubtful that the entire set would apply to one application.

A notation of SSP means that the criteria applies only to system
simulation packages; SL applies only to simulation languages.

A. Scope
SL (1) Capability to model discrete and/or continuous systems
(2) Basic items that are simulated and their properties
SSP (3) Ability to modify basic elements available in system
library
SL (4) Facility for collecting performance statistics

(a) Utilization of facilities

(b) Average queue length

(c) Idle time of system components

(d) Total cost for simulated time span
(5) Output capability

(a) Automatic at end of run
(b) Optional (report generator)

(6) Input format

(a) Coding forms
SSP (b) Special language to describe the system

(7) Ability to handle complex computations

(8) Ability to include subroutines or programs written
in another language

B.

C.

(9)

Diagnostic and debugging aids

Implementation

(1)
(2)
(3)
(4)
(5)

(6)

(7)

(8)

SSpP

Prerequisite programming experience
Prerequisite modeling experience
Man-days of training required

User preparation time for each run
Compilation and execution speeds

(a) Relationship to object machine
(b) Batch mode for models

Hardware and software requirements
(a) Memory

(b) Compiler

(c) Peripheral devices

(d) Specific machine

Market history

(a) Length of time
(b) Users

Cost
(a) Rent, lease, buy, or non-proprietary

(b) Per run charge
(c) One-time study done by vendor

Technical Support

(1)

(2)

Training

(a) Cost

(b) Courses available and duration

(c) Organization providing user education
Documentation

(a) Language manual

(b) Textbook and sample problem

B-3

(¢) Operating instructions
(d) Input or coding forms

(3) Maintenance and system support after training and
implementation

(a) System updates
(b) Newsletter

(¢) Technical advice

(4) VUser Association

B-4

ITI. SYSTEM SIMULATION PACKAGES

In this section fivesystem simulation packages are described: SCERT,
SAM, CASE, ECSS and CSS. The material is presented in terms of struc-
ture, use of the package, and implementation. A summary section is also
included to recap the important features of each package.

The section on Computer System Simulator is brief because there is very
little literature available about it; it is not marketed as the others
are. It is included in this report to illustrate the efforts of an
individual firm, IBM, in developing an internal simulation capability.
More material is available on SCERT, SAM and CASE since they were
developed primarily to be marketed.

A. Computer Simulation System

Computer Simulation System (CSS) was developed by IBM in response to the
need of IBM system designers for an analytical tool for predicting and
evaluating new computer systems. CSS provides a language and structure
to model a large variety of computer systems at differing levels of
detail. [15]

The program is written in 360 assembler and requires 256K bytes of
core to simulate a system. Larger models of S/360 (i.e., 65,67) are
most appropriate for running CSS because it is processor bound.

CSS is a proprietary program designed primarily for use by IBM personnel.
Customers may use CSS only by submitting their system specification

data to IBM. The program cannot be modified to meet unique customer
requirements.

Since CSS was written and designed for internal company use, it is not
marketed and special arrangements must be made to use 1it.

B. Extendable Computer System Simulator

The Extendable Computer System Simulator (ECSS) was developed by RAND
Corporation in order 'to improve the ease and the speed with which one
can develop a model of a computer system". [p. 5, 13] In particular,
the developers of ECSS wanted to develop a system simulation package
which would (1) have a simple input format, (2) minimize programming
and debugging, (3) provide capabilities for extending the language, and
(4) allow for a flow-oriented or event-driven model.

STRUCTURE
An ECSS simulation is composed of three sections. First, the definition

section specifies the clock units, storage units (i.e., bytes or bits)
and any other dimensional quantities that are required. The system

B-5

description section defines the number and types of components in the
system, their operating characteristics and the communication links
between the units. (ECSS does not include a library of hardware and
software characteristics so the programmer must provide this information.)
In the system description section, the elements of the system are

grouped into subclasses, classes, and pools. The third section of an
ECSS job is the Job Load Description which describes the operation of the
system.

USING ECSS

ECSS is coded in a high level English-like language. The system is
written in SIMSCRIPT so the programmer may code portions of his system
in SIMSCRIPT. The current version of ECSS requires that the programmer
resort to some SIMSCRIPT II programming to reflect software features of
the simulated system.

All of the distribution functions used in SIMSCRIPT are available with
ECSS. Performance statistics are accumulated in the same way (sece
Section IV, C, for details on SIMSCRIPT). Likewise, debugging and
diagnostics are similar to SIMSCRIPT.

IMPLEMENTATION

Since ECSS is written in SIMSCRIPT II, a copy of SIMSCRIPT must be
available to run ECSS. A copy of ECSS, a non-proprietary program, may
be obtained from Rand Corp. for a small fee to cover handling.

SUMMARY

An advantage of using ECSS is that the analyst can test hypothetical
operating systems and hardware. However, since the program contains no
library, a feasibility check is not performed for standard hardware/
software and the analyst must check the specifications himself as well
as provide operating characteristics.

ECSS is easy to program and use since the input format is in English-like
sentences and phrases, but object-time execution efficiency is sacrificed.

C. Computer-Aided System Evaluation (CASE)

Computer Learning and Systems Corporation developed and markets CASE, a
proprietary systems analysis package. It can be used in the areas of
feasibility studies, overall systems design, equipment selection, configura-
tion management and product planning for computer hardware and software.
Batch-processing, multiprogramming, multiprocessing time-sharing and
real-time systems can all be analyzed.

B-6

STRUCTURE

CASE is Dbest described in terms of its major logical components:

1. Definition of the System - The workload of the simulated system
is described in whatever level of detail is known. Files are defined, the
run sequence is specified, and the type of system is indicated. Run
characteristics may include the source language, input and output devices
and internal processing activity. Of these items, many may be left
unspecified and CASE will supply the missing information to allow
optimum processing.

The initial hardware configuration may be specified in general terms
or it may be specified in very specific terms. Experience has shown
that the initial configuration should be as general as possible and that
CASE can assist the analyst in determining a more specific configuration.
The items that may be specified include CPU, memory size, number and type
of channels, number and type of magnetic tape drives, and number and type
of card readers, printers and card punches.

2. CASE Simulation - Two analyzers make up the major part of CASE.
There are an independent processing analyzer (IPA) for single run and
batch mode systems, and a concurrent processing--real-time analyzer
(CPA/RTA). The IPA analyzes control input, the initial configuration
and workload to make certain that the configuration is feasible. If
the simulated system is batch mode, IPA then simulates the processing.
CPA/RTA takes the results of IPA for non-batch systems plus the scheduling
and real-time controls to determine a work schedule and then simulates
the workload in multiprogramming mode.

3. CASE Library - Characteristics of currently available hardware
and software are in the CASE library. Included in the library are
operating characteristics as well as pricing data.

4, System Optimization - After reviewing the performance of the
simulated system the analyst may adjust the workload design or the
configuration. These adjustments will be made after careful analysis
of the information provided by the CASE output reports.

5. Reports - Analysis reports are generated with each run to
provide the information needed to make the configuration and system
design modifications required to lead to the desired evaluation objec-
tive. un the final run management reports are prepared to completely
document the final solution.

USING CASE

Computer Learning and Systems provides CASE training on a variety of
levels. A brief description of the courses follows:

B-7

1. CASE Executive Seminar - This course is for managers who require
a broad overview of the use of simulation techniques, and the results
that can be expected. It briefly discusses simulation in systems design,
analysis of CASE reports, multiprogramming scheduling, etc. (one day)

2. Introductory Seminar - This seminar is of prime interest to
CASE customers and prospects who require a first level working knowledge
of the system. These are technically oriented sessions. (two days)

3. Basic CASE Use - This course will permit experienced customer
analyst personnel to use the system. It deals primarily with input
preparation and analysis of results, and includes a discussion of the
CASE 1library, CASE algorithms, and systems design philosophy using sim-
ulation. (five days)

4. Advanced CASE Use - This course is a more "in depth' course
designed for the CASE user. It expands on the basic course and includes
instruction in system optimization and the use of CASE as a design tool.
Also included is the handling of special hardware/software situations.
(three days)

5. Real Time CASE - This course discusses the building of the real
time model, collection of input data, and analysis of system bottlenecks,
stressing techniques for using CASE as a tool for the proper design and
configuration of real time systems. (three days)

Users of CASE have reported that it is relatively easy to use. There are
three basic input forms for coding the files, workload, and configuration.

To date there have been approximately 40 CASE users. They include North
Carolina National Bank, First National City Bank, U.S. Forest Service and
the U.S. Air Force.

IMPLEMENTATION

CASE is written in FORTRAN and requires 200K bytes of core to run. To
date, it has been implemented on I[BM S/360 model 50, GE 600, CDC 6000,
and Univac 1108. Technical support is provided by Computer Learning and
Systems Corporation.

SUMMARY
According to the available literature, CASE appears to be technically
sound for simulating computer systems. However, CASE has only been on the

market for a year so no firm conclusions may be drawn with respect to
maintaining CASE at the state-of-the-art.

B-8

D. Simulation Analysis Machine (SAM)

Applied Data Research Inc., introduced SAM in the summer of 1970. It is
the newest of the system simulation packages. The problem areas which
SAM is designed to handle include system configuration, file distribution,
operating system design and program system design.

STRUCTURE
The SAM system consists of five distinct elements or parts:

1. Model Library - This library of predefined hardware/software
systems contains operating characteristics and costs of currently
available equipment. The library includes predefined models of processors,
peripheral equipment and software.

5. Translator - The configuration to be simulated is described in the
SAM language. This input is converted into internal numeric representa-
tions by the translator.
5. Model Generator - The numeric representations created by the
translator are input to the SAM Generator which establishes the rela-
tionships of the various modules to produce the complete model of the
system under study. In effect, this section acts as a linkage editor.

4. Interpreter - This portion of SAM "executes' the model produced
by the Generator. As the model is executed, performance statistics are
compiled.

5. Data Analyzer and Reporter - The data gathered by the SAM
Interpreter is processed and a series of standard reports describing
the performance of the system may be selectively produced. In addition,
the user may generate specialized reports suited to his particular needs
using the collected data. The standard reports include CPU Summary,
Cost Effectiveness Report and Facility Usage Report.

A useful feature of SAM is that completely hypothetical hardware and

software can be tested by specifying the characteristics in the SAM
language.

B-9

USING SAM

As mentioned above, SAM has its own language for inputting system designs.
A five-day course is required for an experienced programmer to learn the
SAM language. SAM allows the user to include his own FORTRAN or Assembly
language modules in the generated model since SAM is FORTRAN IV compatible.

At the present time, Goddard Space Flight Center is using SAM; there
are four other industrial customers.

IMPLEMENTATION

SAM is available from ADR Inc., under a leasing arrangement for $2500
per month with a three-month minimum. Varied leasing plans using only

portions of the model library are also available. Single study contracts
may be arranged.

SAM is written in FORTRAN and requires 225K bytes of core to run. It

has been implemented on IBM S/360 model 50. If the client does not have
in-house computer facilities to run SAM, he can use the system as installed
at ADR's Computer Center in an interactive mode through a remote terminal.

SUMMARY
Conceptually, SAM appears to have some features not available in the

other currently available packages, in particular, the ability to test
hypothetical hardware and software.

E. System and Computer Evaluation and Review Technique (SCERT)

Comress Inc. developed and markets SCERT, the first proprietary systems
simulation package. The package provides the capabilities for (1)
selecting hardware configurations to meet anticipated work load require-
ments, (2) designing new systems, including determining how existing
hardware can be used more effectively, and (3) evaluating the performance
of systems and programs currently in operation.

STRUCTURE

SCERT is a series of software packages which has been designed to simulate
computer systems. As an integrated group of programs, it runs in many

different phases. Conceptually, however, SCERT can be viewed as consisting
of five primary functional phases:

(1) Introduction of Processing Requirements - This first phase
accepts input definitions outlining the workloads and processing require-
ments of the system to be simulated. Characteristics of the files as
well as the systems environment (i.e., programmer experience and
salaries), frequency of each job, and internal processing activity are
specified in this phase. A mathematical model of each comnuter run 1is
built and validated.

(2) Introduction of Hardware/Software To Be Simulated - In this
phase the hardware and software configuration is introduced. Software
packages such as sort routines, the operating system, and the compilers
to be used in program preparation are specified. In addition, channel
assignments and the communications network can be described. The SCERT
factor library contains performance specifications for all currently
available hardware and software. The SCERT simulation uses data from
this factor library to build a mathematical model of the hardware/software
configuration and to validate the compatibility of the models built in
PHIASE T with the configuration.

(3) Presimulation Algorithms - The models built in PHASE I are
passed against the model of the hardware and software. A series of calcula-
tions which structure and parameter the nonhardware-oriented models to the
performance abilities are performed.

(4) Simulation - The data and models of the prior phases are incor-
porated to simulate processing. Whenever multiprogramming or multi-
processing are simulated, a special SCERT routine is employed to reflect
these features.

(5) Output Reports - SCERT has been designed to produce a series of
standard reports. The reports available for a particular run depend upon
the type of system being simulated (batch, multiprogramming, multi-
processing, time-sharing) and the options selected by the analyst. The
reports have been designed to provide information which is useful in
evaluating the system efficiency. For example, the Computer Canabilities
Report tabulates simulated break-out of thru-put requirements. This
report provides a means to pinpoint critical hardware areas. Table 1
sunmarizes the standard SCERT output options.

If the analyst wants to evaluate the characteristics of a hypothetical
configuration, there are several alternatives available. The easiest would
be to modify the system software represented in the simulation. Another
possibility would be to have Comress analysts enter the proposed elements
in the factor library. Finally, the results of an external simulation
program written in another language could be incorporated into the SCERT
input.

B-11

Table 1

SUMMARY OF STANDARD OUTPUTS

Orientation
Report Title Level of Detail
Primary Secondary Minor
Computer Complement Intermediate Audit Cost/Performance Documentation
Central Processor Utilization Intermediate Cost/Performance Analysis
Programming Requirements Intermediate Implementation Cost/Performance
Application Summary High Implementation Cost/Performance
Computer Capabilities Intermediate Analysis Cost/Performance
Cost Summary High Cost/Performance
Real Time Analysis
Event Processing Intermediate Analysis Audit
Hardware Utilization Intermediate Analysis Cost/Performance
Systems Response Intermediate Cost/Performance Analysis
Memory Requirements Intermediate Analysis Implementation
Multi-Programming Schedule Intermediate Audit Implementation Analysis
Detailed Analysis Lowest Audit Analysis Implementation
Summary Analysis High Cost/Performance
System Documentation Lowest Documentation

B-12

USING SCERT

SCERT has its own language for inputting system specifications. A
seasoned programmer analyst with about three years of experience can learn
to use and apply SCERT after completion of a two-week training course
offered by Comress, the vendor of SCERT. Comress provides documentation
and input forms as well as customer education.

1f the user intends to program SCERT (rather than hiring Comress analysts
to perform the study), customer education classes are available at $500
per person for a ten-day introductory cOUTSE. The first week of the
introductory course includes the SCERT language and input forms. In the
second week analyst training for modelling batch and multiprogramming
systems is given. An additional one-week post-graduate course is offered
for modeling time-sharing systems.

At the present time, there are approximately 80 users of SCERT; to date
there have been 400 SCERT clients. In the Boston area companies that

have used SCERT include Hartford Insurance Co., John Hancock Insurance Co.,
§tate Street Bank, and New England Telephone Co.

IMPLEMENTATION

SCERT is marketed by Comress. It can be leased or a study contract can
be arranged with Comress analysts. There is a one-vear minimum for
leasing SCERT, and the rental ranges from $1500 to $3000 per month
depending upon what portion of the factor library is used. Table 2
summarizes the different leasing plans.

SCERT requires 110K bytes of memory and can be run on IBM S/360 model

40 and up under 0S8 or p0S. In addition, it has been implemented on the
UNIVAC 1108 and RCA Spectra 70/45. 1f on-site facilities are not available
for SCERT, customers may submit their runs to Comress who in turn has them
run at a local service bureau. 1f this procedure is used, there is a

$500 reduction on the monthly lease.

Comress provides monthly updates to the factor library. Analyst support
is available at $250 per day. A large technical staff is also available
to aid clients with implementation problems. In addition, there is a
SCERT users' association.

SUMMARY

SCERT is the oldest proprietary simulation package available. The
experience of users has been incorporated into the design of the system,
and the result is a highly sophisticated system backed by an experienced
technical staff. There are several features of this system that should
be considered when selecting a system simulation technique.

B-13

(1) If model does not contain a parameter to reflect a particular
function, or to adjust some activity the user can do little to overcome
the difficulty. However, Comress is sensitive to clients' needs and
might be willing to modify the SCERT program to handle the situation.

(2) Comress has a very capable technical support staff,

(3) An in-house computer is not required to use SCERT.

B-14

Type
Basic

Flexible

Comprehensive

Monthly

Rental Fee!

Table 2

SCERT LEASING PLANS

$1,500

$2,000

$3,0003

! Based on l-year lease. Deduct $500 if not run in-house.
2 Number of 2-week sessions. Multiple copies of SCERT within an organization

reduces the rental charge.

Factor Education Sets of
Library Included® Documentation
Any 2 general CPU None 1

Any 2 CPU or 1 1

all general CPU

Entire factor 2 1
library

3 For TSC this fee would be $1,000 since DOT already leases SCERT.

B-15

IV. GENERAL-PURPOSE SIMULATION LANGUAGES

The descriptive material in this section is organized like that in the
previous one., Four simulation languages are discussed: GPSS, SIMSCRIPT,
GASP, and HOCUS. HOCUS was introduced in the United States in the fall

of 1970 so there are not yet any HOCUS customers and little material is
available.

A. Hand or Computer Universal Simulator (HOCUS)

HOCUS was developed by P-E Consulting Group Ltd. and has been used by a
number of European firms. It is particularly useful for simulating
process models. Since no programming experience is required, HOCUS can
be used and understood by line management. Models can be rapidly set up
and run by less specialized analysts using a simple logic language.

HOCUS uses the concepts of entities and activities (like SIMSCRIPT and
GASP). However, HOCUS provides only a limited simulation capability with
far less sophistication than GPSS or SIMSCRIPT. It requires only 8K
words of storage and a FORTRAN compiler so it can be run on a small
computer. Some HOCUS clients use HOCUS for initial simulation efforts
and then convert their models to GPSS or SIMSCRIPT.

The purchase price for HOCUS is $14,000 which includes 5 days of
consulting. It may also be leased on a quarterly basis for $2000 per
quarter including 2 days of consulting. A three-day HOCUS training
course is available for $290 per student or on-site for $2500.

B. GASP

GASP was developed at U.S. Steel Corporation in 1963 in response to a
need for a language to simulate steel manufacturing processes. At that
time, there was no gemeral-purpose simulation language available so the
developers of GASP merely expanded upon an existing scientific language,
FORTRAN. ;

STRUCTURE

GASP formalizes an approach to simulation by specifying common elements of
simulation studies and providing subprogram tasks that are independent of
individual problems; it is not a language. Twenty-three FORTRAN subprograms
linked and organized by a main program comprise the system.

GASP depicts the world 'as made up of entities that are described by .
attributes and related through files. The status of the simulated system
can be changed if entities are created or destroyed, if attribute values

change or if file contents are altered.

B-16

Elements, the resources of the simulated system, may be temporary or
permanent. Some examples of elements are the CPU, program module, and
card rcader in a computer system. FEach of these items has distinguishing
characteristics or attributes. The CPU has a fixed number of registers;
the card reader has a maximum speed, and a program module has a core
requirement. Events, such as a program utilizing the CPU, cause the
status of the system to change.

GASP provides a simulation timer. The programmer may control the length
of a run through this timer which represents ''simulation time' or by
the number of events.

At the termination of a run, standard output is automatically produced.
It includes the mean, variance, maximum and minimum of simulation-
generated data as well as a frequency count for this data. Contents of
all queues and the maximum and average queue length are also provided.
Additional output may be programmed in FORTRAN.

The size of a GASP model depends upon the core capacity of the object
machine. GASP is usually used on small computers which cannot support
a more complex simulation language.

USING GASP

A working knowledge of FORTRAN is a prerequisite to using GASP. Since
GASP 1is composed of FORTRAN subroutines, an inexperienced programmer could

not use the language. However, an experienced FORTRAN programmer will
have no difficulty in learning to use GASP.

GASP utilizes the FORTRAN compiler so diagnostics are limited to those
provided by the compiler. Additional GASP features to facilitate debugging
and error detection are (1) automatic monitoring of program variables,

(2) selective tracing of program flow, and (3) programmed dumping of all
system variables. The same time consuming compilation runs and lengthy
debugging experienced with FORTRAN occur with GASP.

Simulation Associates offers a two-day seminar on GASP. (Cost of the
session is $175.) The seminar is designed primarily for programmers,
engineers and systems analysts and provides a working knowledge of GASP.
An industrious FORTRAN programmer could probably learn to use GASP by
reading the language manual and an available text (see ref. 14).

IMPLEMENTATION

GASP is a non-proprietary program. The program may also be obtained
from Simulation Associates for $25.

The language is particularly suitable for use on small computers for which
no other simulation language exists. It has been implemented on the
IBM 1130, 1800 and S/360, GS 225 and 415; SDS 930, and CDC 3400. The

B-17

only requirements for implementation are a FORTRAN compiler and 8K
words of memory.

Since GASP is merely a collection of FORTRAN subroutines, the subroutines
could be used for any purpose.

SUMMARY

There are several features of GASP which should be kept in mind when
selecting a simulation language:

1. A knowledge of FORTRAN is required to use GASP.
2. GASP can be implemented on any computer with a FORTRAN compiler.
3. Debugging is time-consuming.

4. GASP is not suitable for complex large-scale simulations. Higher
level simulation languages provide more modeling statements and are able
to simulate large systems more efficiently than GASP.

The structure of SIMSCRIPT is very much like GASP. Installations with
small computers may want to test skeleton models of large systems using
GASP in-house and then convert them to SIMSCRIPT for the full-blown
model on a larger system.

5. GASP is best suited for organizations with infrequent simulation
study requirements and organizations with limited computer facilities.

C. SIMSCRIPT

SIMSCRIPT was developed by the RAND Corporation to meet the demand for a
general-purpose simulation language. It is rated by some as the most
powerful simulation language now generally available.

STRUCTURE

SIMSCRIPT is an event-oriented simulation language for analyzing discrete
systems. (An event-oriented language monitors the status of a system
and the effect of cvents on the system.) The language can be broken down
into the following basic elements:

1. Entities - The resources of the simulated system. Entities may
be equipment or items that use the equipment and may be temporary or
permanent. Temporary entities are created and destroyed during the
exccution of a simulation while permanent entities remain during the run.
Each entity is described by attributes which may be temporary or permanent.
A card reader, tape drive and program are examples of entities in a
computer system.

2. Sets - Groups of Entities. All of the tape drives in a computer
system would be a set.

3. Event Routines - Activities of the system. Processing of jobs
would be represented by a series of activities. Events may be endogenous,
arising from actions within the system, OT €XOgenous, arising from actions
in the system environment. An endogenous event would be a program using
a peripheral device while an eXogenous event would be an operator
interrupt.

The sequence of events in real-time is represented by creating and
destroying temporary entities. For example, in a simulated multiprocessor,
a program module would be a temporary entity. It would be '"created" when
it was ready for input processing and "'destroyed'" when output was
completed. Simulation time is monitored by the simulator clock which
assumes time is expressed in terms of days, hours, and minutes. The clock
units may be redefined according to the user's needs.

There is no standard output at the end of a simulation run. All output
reports are produced by the report generator and must be formatted by the
programmer. The report generator provides the capability to produce
sophisticated output, but an equivalent amount of sophisticated coding is
also required.

All of the computational facilities of FORTRAN that might be required
for simulation have been included in the SIMSCRIPT language. If
necessary, FORTRAN subroutines can be incorporated into the model. A
time saving feature of SIMSCRIPT is that portions of a model may be
compiled and retained for future runs rather than recompiling with every
Tun.

USING SIMSCRIPT

SIMSCRIPT is designed for an experienced FORTRAN programmer. The language

is complex and an inexperienced programmer would have difficulty in

learning to use it. Even experienced programmers have found debugging

a SIMSCRIPT model to be difficult since diagnostics are limited. SIMSCRIPT II
Plus, available from Simulation Associates, includes extensive compilation
and execution diagnostics designed to reduce designing time. The lack of
structure of the language also adds to the debugging time required.

There are quite a few good SIMSCRIPT language manuals available. A
SIMSCRIPT language manual, application description, and operator's manual
may be obtained from the RAND Corporation. In addition, SIMSCRIPT
textbooks have been published by Prentice-Hall (see Kiviat, Villaneuva

¢ Markowitz, The SIMSCRIPT TI Programming Language and Shukiar, A FORTRAN
Programmer's Introduction to SIMSCRIPT II).

B-19

Simulation Associates distributes this book to all SIMSCRIPT II Plus
clients. The text is broken down into five separate levels with each
level keyed to the degree of experience in simulation programming.

Two courses on SIMSCRIPT II are available from Simulation Associates.
An introductory 2-day seminar is designed to provide an overview of the
language. A 5-day in-depth course is also offered for programmers,
systems analysts, and O.R. analysts involved in the study of complex
systems. The costs for the introductory and in-depth courses are $200
and $425 respectively.

IMPLEMENTATION

The public domain version of SIMSCRIPT II is available from SHARE.

SHARE merely distributed copies of the language and provides no maintenance
or support. This version of SIMSCRIPT requires 150K bytes of memory.

It las been implemented on (1) CDC 3600, 6400, 6600, 6800; (2) UNIVAC 1107,
1108; (3) GE 625, 635, and (4) IBM S/360.

SIMSCRIPT II Plus has been marketed for about one vear. Approximately
40 companies are using SIMSCRIPT II Plus on a trial basis, and eight
have decided to lease it.

SIMSCRIPT II Plus, including complete technical support, is available
from Simulation Associates. The cost for the service is $6,000 for the
first year; this fee declines by $500 per year until $25,000 has been
paid by the end of the fifth year. The price beyond the fifth year is
$1,000 per year. The same services can be purchased on a monthly basis
at 600 per month.

If suitable in-house facilities are not available, SIMSCRIPT II Plus

can be used through the time-sharing facilities of Computer Software
Systems, Inc. CSS leases SIMSCRIPT from Simulation Associates. Therefore,
the only charges incurred in using SIMSCRIPT through CSS are the normal
time-sharing rates. By using CSS the user also has the advantage of
debugging his model in a time-sharing mode. CSS rates are the following:

time-sharing mode:
$.38 per CPU second
$15 per connect hour
batch mode:
$.24 per CPU second if run between 6-8 p.m.
$.16 per CPU second if run overnight
plus I/0 charges for cards and printer.

B-20

At present, SIMSCRIPT II Plus is available only for IBM System/360
computers with at least 256K bytes of core. A version for RCA equipment
will be available in January 1971. Simulation Associates can rewrite this
language for other computers under an implementation contract.

The major differences between SIMSCRIPT IT Plus and the public domain
version of SIMSCRIPT are the following:

1. Simulation Associates reports that compared with the public
domain version, SIMSCRIPT II Plus requires 85% of the execution time,
40% of the compilation time, and only 5% of the assembly time. These
performance improvements are significant enough to justify purchase of
SIMSCRIPT IT Plus for any organization that will be making substantial
use of the program, since the savings in computer time can more than offset
the cost of leasing the program.

2. SIMSCRIPT II Plus will operate under any version of 0S/360;
the public domain version will not operate properly under MVT or MFT II.

3. Simulation Associates provides full installation and maintenance
support for SIMSCRIPT II Plus. The public domain version is totally
unsupported.

4. Additional instructions have been added to SIMSCRIPT II plus,
along with powerful debugging features such as a traceback to the source
statement in which an error occurred.

SUMMARY

There are several salient features of SIMSCRIPT which should be kept in

mind when considering the use of this language. They include the following:

1. An inexperienced programmer could not easily learn SIMSCRIPT.
2. All output must be specified by the user.
3. Debugging is time consuming.

=

4. There are a number of good language manuals available for
SIMSCRIPT.

5. SIMSCRIPT has been implemented on most large machines.

6. SIMSCRIPT is a powerful simulation language designed to model
large-scale systems.

7. A large model computer is required to run SIMSCRIPT.

B-21

-

8. SIMSCRIPT II Plus is obviously superior to SIMSCRIPT II. The
extent to which the language will be used should be considered when
deciding whether or not the advantages of the pay version justify the
fee.

U. General-Purpose Simulation System

One of the oldest and most widely used simulation languages is IBM's
General-Purpose Simulation System (GPSS). GPSS is a language designed
specifically for simulating discrete systems. The applications of GPSS
are limited by the ingenuity of the programmer rather than by the scope
of the language.

STRUCTURE

GPSS is a transaction-oriented language; a transaction-oriented language
is designed around entities moving through the system. A transaction
might be a message, a customer, a cargo ship, parts moving through a
factory, or a program module. In contrast an event-oriented language
monitors the status of a system as events effect the system.

The language can be broken down into the following elements:

1. transactions - the units of traffic that are created and moved
through blocks by the GPSS program (i.e., a message)

2. facilities - represent equipment which can be used by only one
transaction at a time (i.e., a card reader, a bank teller, a stock clerk)

3. storages - represent equipment that can service more than one
transaction at a time (i.e., core storage in CPU)

4. random number generators - 8 ''pseudo-random'" number generators
which generate repeatable series of numbers

5. blocks - 43 specific block types each of which represents a
characteristic activity of a system. The block types include entering
and leaving queues, using and leaving a facility or storage, transferring
to another part of the system and tabulating results (see Table 3). Each
block type has a unique block-diagram symbol so that GPSS models can be
flow-charted before coding is begun,

6. standard numerical attributes - are used to save and report
information such as the total number of transactions that entered and

left a queue

7. chains - groups of transactions in the simulated system

B-22

Table 3
SOME GPSS BLOCK-DIAGRAM SYMBOLS

BLOCK TYPE SYMBOL
ADVANCE A,B
A,B

DEPART B @

A
LEAVE s |

QUEUE B Q\/)
TEST

B-23

Entities or transactions move through the simulated system. The sequence
of events in real-time is represented by the movement of transactions

from block to block in simulated time. For example, in a simulated
multiprocessor computer system, a program module would be the transaction.
The path of the program in the system might entail waiting for the CPU,
accessing peripheral devices, and calling additional core resident modules.
The programmer can select any time unit he desires. Time might be in
seconds, minutes or nano-seconds.

GPSS automatically collects and prints a standard statistical output
unless the user chooses to suppress it. The standard output includes
the following:

1. average utilization, total number of entries and average usage
time per transaction for each facility.

2. average contents, average utilization, total number of entries,
maximum contents, and average usage time per transaction for each storage.

3. for each queue, maximum contents, average contents, total entries,
average time in queue per transaction, and contents of the queue at the
termination of the model.

4. mean, standard deviation, number of entries and frequency tabula-
tion for each table.

5. the value of any savevalues (savevalues are variables set aside
by the user to save specific values).

Using the report generator the programmer can receive graphical
output as well as select and title which of the standard outputs he wishes
to receive. For a simple model, the standard output is usually sufficient.

The size of a GPSS model depends upon the core capacity of the machine
used.

USING GPSS

GPSS is specifically designed for a new programmer and no prior computer
experience is required. The unique flowcharting scheme greatly facilitates
coding. Standardized coding forms are available from IBM.

Virtually any system may be modeled using GPSS. However, if the
programmer finds that a particular computation is cumbersome to perform
in GPSS, he can incorporate 360 Assembler or FORTRAN subroutines into
the GPSS model.

B-24

IBM offers a 5-day GPSS training course at a cost of $340 per student.

A similar course is also offered by Simulation Associates. Due to the
lack of instructional material, such a course is mandatory for any
programmer attempting to use GPSS. The only documentation available from
IBM are the GPSS Users Manual and System Manual; both are designed as
reference manuals not instruction texts. No programmed instructicn course
is currently available. An introductory textbook [16] has been published
in a preliminary edition and is a tremendous improvement over available
IBM materials. A 2-day advanced course on GPSS is also offered by IBM.

Coding and debugging a model require a relatively short time compared
to a scientific language such as FORTRAN or ALGOL. Debugging a GPSS
model is facilitated by the <cellent diagnostic messages. If desired,
models may be batch run.

The time required to assemble and run a GPSS model depends upon:

(1) the machine being used, (2) the number of blocks in the mocel,
(3) the complexity of the conditional logic in the model, and (4) the
number of queues in the model. No meaningful time estimates can be
made since all GPSS models vary in length and complexity.

IMPLEMENTATION

GPSS is marketed by IBM. The most recent version of GPSS (GPSS/ 360
version 2) is available for $/360 and is rented by IBM for $20 per month.
The source language is 360 Assembler. GPSS rumns on S/360 (DOS or 0s)
with a minimum of 64K bytes of memory. GPSS/360 version 1 is available
frec to S/360 customers, but it is no longer maintained by IBM. GPSS TII,
an earlier version of GPSS written in FORTRAN, has been implemented for
the Univac 1107 and 1108. It is available from Univac on a rental basis.

GPSS/360 version 2 provides a few advantages over version 1. The signifi-
cant differences are the following:

1. A real-time TIMER for model interruption and centinuation.

2. Ability to incorporate independently compiled FORTRAN subroutines.

3. Improved diagnostic aids.

4. Provision for CGPSS/360 data sets on 2314 direct access storage
devices. (Version 1 assumes 2311 storage devices but this can be altered
at run time.)

The improvements in version 2 are not critical to the user.

SUMMARY

Before selecting to use GPSS for a particular problem, the analyst should
be aware of the following advantages and disadvantages of using the

language:

B-25

B-28

9SINn0o
NVd YO LdT¥DS Yoom-1 TeUOTIdO pexnbay
40 o3poTMmou 9SIN0D YooM-T 9SIN0D Y9oM-T -WIS Se SWES| 9sInod ysoMm-T{ f9sanod Aep-0T 9sIn0d ABp-¢ Sututea]
NVILd0d sousTIadxe 90USTISAXS odus txodxe sjuowe Tnboy
NYJ LU0 NVILYCA Juou ‘LATYDSWIS Jutuuwexfoxdisinduwod siesl ¢ 3utunrexdox Sutunuexsoxd
pPoSn ST UOTSISA
sjoys] snyd II Ssarun wo3sAs yo -xedo PENREN) PaX33o
-deus woelsdg Jurunsuod-swIl 2aInjeof adeil Y 518071 ooy ST A3TIT1Iq ST £31114
‘sdT3soudeIpReq ued 3SuIdIngsp SOT3souseIp LdIyns| 031 xojelsueil ~-13edwod oxem -13edwod exem| spre SurSSnqep
NValdodl oT3s0udeip xter 31oTTdxe Axea -WIS SE SWes Aq poonpoad| -31j30s/oxempaey| -31F0S/9IeMpPIBRY § o13coude1q
(ATUO UOTSIOA soden3uel
IS qQUasSSY| Aed) NVULYOA JIoUl0 UYITM
NV 104 NV 04 ‘IS8T quLBsSyY LdTUDSKIS NVI.LI0d suou suou | A31T1qT3RdUO]
UOT1BINI TFUOD
5 PEOTIOM
S1USWe3B1S a8en3ue| WwIoF | “SOTTJ IOF WIOoF
NVH.Ld04) SP02 LJI¥ISWIS 9p0d $SdH O TIT-ysTrdug o8enfueT-[yS| -9YI-UI-TTTH -9Yl-uI-TT1J jewxoy 3ndug
101BISUS3 jaodey
SJUSWOIE]S SWIIYI0T) SOUO PoJO]TIEl
ndino ., Aousenbaxg A11e1089dsS
NVdLd0o4 ., 93ex103S3 sjxodax urex8oxd
¢ L{xewums| urexdoaxd L A3TTTO®RY 1d1d0s pazITeBIDads 10 sixodax syxodsx -13uw § indin
dSVY Isnu ISSNSOIISTIIBLS anany -WIS SEB oues 5 pIBpUB1S *P31s 10997198 Bixodox sSTSATBUY 1xo0day
a3rX01S
Jo A310®ded A1BIQTT ATBIqQTI A1eIqQIT HSVD
¢ SUOTIOBSUBIL WVS X039BF I¥90S
jo A3txotad Iosn s129lqo
S9INqrilie $93INQTIIIE 5 sxsjouweied A4 poutfsp A1111qraefuod soeJasjur ‘poads ‘3s00 J0 sotjxesdoxd
sonanb
sdnoxd xosn shusuaTo
SOT 1 s19s sofeaolsf 1eoT3IoyzOdAy 31E93 UBD
SIUSWS T3 S9T3T3US SOTATITTIORJ iio1s4As Sutyexedo Pol1BINUIS
SIUSAD S3ULAD suot3oESuUBRI} ‘sTeiopdrrod ‘-n-g'n ‘re-T ‘eremiyos/eoftempaey xoindwod | Suteq sidalqo
dSvd LdITYOSKIS SSdd §S04 WVS LdEDS HSVD
SIDVNONV'T SHOVIOVd

DILVINWIS WHLSAS

B-29

AIOWaUI St /0L
SPIOM 8 (Axousu ra300dg VOU 80TT DVAINN
§ 1o 1dwo) OVAINN + DdD so14q yp9) dn NILd + SI0D SOTT OJVAINN 0009 2dD
NVHLY04 09¢/S + 0g Tepou 1d140S s014q)57z |930d $914q NOTT ‘009 39 pajuewoTdut
YyiIm AUy s934q JOSI 09¢/S -WIS SB SUEg ‘0S-09¢/S 0¥-09¢/S ‘0S-09¢/S SQUTUIEN
*20Ssy WIS ~dxon swolsAs j UOTIBZTUBSIQ
*20SSYy ‘WIg ‘ TUVHS WgT pueyd way ssaxmon| Sutuxeoq -duwo) SutyeurdtIQ
- ou
-50ssy ‘utg woxg| /078 @ UOTSIOA
294 owrl UoTSISA Aed|Aed osTe ‘sIasn odey I0J puey
-ouo0 - §Z$| ‘TIyvHS 03 991 09¢ /S 031 904 juoij 001$ 9seo] asea] 25eaT 3100
- dxo)
puey § -o0ssy
NOILVTINWIS WOLF
sTenuew ‘s1x93 oI qeITRAR SY00Qq3X3],
1x91| ‘TTEAB [BISASS 1X81 "20p WEI paseal sT o8eyoed ueUM STGETTEAR h sTenuep
dsvy LdTdOSHIS §SdD sS04 WS Jd90S 4SvD
SHOVADNVY'T SAOVIIVd

N

ILVINHIS WHLSAS

VI. Some Guidelines for Selection of A Simulation Capability

Every installation has unique simulation requirements. Depending upon
the related criteria and simulation applications, the appropriate plan
might be the use of a system simulation package as well as a language,
or only one of these approaches. In selecting the appropriate
capability for a particular installation we suggest the following
guidelines:

1. If there is a need for extensive complex system simulation, a
package is probably the best method. There is no development time lag
or risk with a tested package.

2. The currently available packages, CASE, SAM, and SCERT, appear
to be about the same technically and pricewise, but SCERT has been proven
worthwhile on the market while the other two are new in the field.

3. Users of the packages and languages prove to be an excellent
source of information about the utilization of the techniques and should
be contacted.

4, HOCUS and GASP are useful for small computers (8K words).
HOCUS is extremely easy for non-computer people to use, but it is
expensive. If experienced FORTRAN programmers are available, problems
can be analyzed using GASP.

5. SIMSCRIPT and GPSS are the most powerful simulation languages
and, if feasible, one should be selected. The selection of one over the
other depends upon: (a) the in-house computer available, (b) the
experience of the analysts involved, (c) the complexity of the model
to be analyzed, and (d) the budget allocation.

If in-house computer facilities will not support GPSS or SIMSCRIPT,
prototype models might be tested using GASP in-house. Then the full-
blown model could be written in one of the sophisticated languages and
run on an outside computer. Budget limitations would determine whether
or not SIMSCRIPT II Plus could be rented and how many employees could
participate in language classes.

6. Evaluate capabilities of the available computer facility to
determine which of the alternatives could be run in-house.

7. Evaluate in-house programming skills to determine the related
educational requirements for each alternative.

B-30

10.

11.

12.

13.

14,

Bibliography On Simulation

GPSS/360 User's Manual, IBM Form Number 1120-0326.

SCERT: Systems and Computers Evaluation and Review Technique,

Comress, Inc., Washington, D.C., 1967.

Bairstow, Jeffrey N., "A review of systems evaluation packages,"

Computer Decisions, June 1970, p. 20.

Boehm, B.W., Computer Systems Analysis Methodology: Studies in

Measuring, Evaluating, and Simulating Computer Systems, R-520-NASA,

Rand Corp., Santa Monica, 1970.

Gordon, Geoffrey, System Simulation, Prentice-Hall, Englewood Cliffs,

1969.

Gould, R.L., "GPSS/360 - an improved general-purpose simulator,"
IBM Systems Journal, 8, 1 (1969), pp. 16-27.

Hutchinson, George K., & Maguire, John Norris, ''Computer Systems
Design and Analysis Through Simulation," Proceedings of Fall Joint

Computer Conference, 1965, pp. 161-167.

Kiviat, Philip J., Villaneuva, R., § Markowitz, Harry M., The
Simscript II Programming Language, Prentice-Hall, Englewood Cliffs,

1969.

MacDougall, M.H., "Computer System Simulation: An Introduction,"
Computing Surveys, 2,3 (Sept. 1970), pp. 211-242.

Markowitz, Harry M., Hausner, Bernard, § Karr, Herbert W., SIMSCRIPT -

A Simulation Programming Language, Prentice-Hall, Englewood Cliffs,

1963.

Merikallio, Reino A.; ''Simulation Design of A Multiprocessing System,"

Fall Joint Computer Conference, 1968, pp.

1399-1410.

Naylor, J.H. et al, Computer Simulation Techniques, John Wiley and

Sons, New York, 1966,

Nielson, N.R., ECSS: An Extendable Computer System Simulator,

RM-6132-NASA, Rand Corp., Santa Monica, 1970.

Pritsker, A. Alan B. & Kiviat, Philip J.,
Prentice-Hall, Englewood Cliffs, 1969.

B-31

Simulation With GASP II,

15

16.

17.

18.

Seaman, P.H., Sourcy, R.C., "Simulating Operating Systems," IBM
Systems Journal, 8,4 (1969), Pp. 264-279,

Schriber, Thomas J., GPSS/360 Introductory Concepts and Case
Studies, University of Michigan, Ann Arbor, 1968 (Preliminary

Edition).

Shukiar, H.J., A FORTRAN Programmer's Introduction to SIMSCRIPT II
RM-5937-PR, Rand Corp., Santa Monica, 1969.

»

Teichroew, Daniel § Lubin, John Francis, "Computer Simulation -
discussion of the technique and comparison of languages ,"
Communications of the Association for Computing Machinery, 9, 10

(Oct. 1966), pp. 723-741.

B-32

	FAA-71-23.pdf
	FAA-71-23 PT.2

