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PREFACE

The work described in this report was performed in the context
of an overall program at the Transportation Systems Center concerned
with the assessment of various techniques for Civil Aviation Secu-
rity. The program is sponsored by the Department of Transportation
through the Syétems Research and Development Service of the Federal

Aviation Administration.
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1. INTRODUCTION

A continuing need exists for techniques which will detect con-
cealed explosives. Probably the most effective method found to
date is the use of dogs trained to "sniff' the minute amounts of
characteristic vapor given off by an explosive.1 Such dogs are not
generally available; both their training and maintenance are costly,
since they usually work only with a particular handler, and, they
can operate effectively for only relatively limited periods. Con-
sequently, efforts have been under way for several years to develop

machines which can electronically "sniff'" explosives.

The principal requirements for such devices are high sensiti-
vity and high specificity. Sensitivity 1is necessary to detect the
minute quantities of the characteristic vapor. The amount of vapor
given off varies greatly with the type of explosive; typically the
concentration in the ambient air may be less than one part per
billion. Specificity is needed to avoid response to non-explosive
substances (false alarm). Additional desirable characteristics
are simplicity, fast response, and low cost. Table 1 presents the
various devices currently available for explosives-vapor detection.
As can be seen, the electron-capture detector, except for pocr speci-
ficity, has most of the features desired in an explosives-effluent
detector. It was for this reason that work at TSC was devoted to
further study of the electron-capture technique.

TABLE 1. CHARACTERISTICS OF EXPLOSIVES-VAPOR DETECTORS

Sensitivity Specificity Complexity Cost Response

Gas Chromatograph < ppb Excellent High High Slow
Mass Spectrometer ~ ppb Fair High High Fast
Bioluminescence Detector ~ ppb Fair Low Low Fast
Electron-Capture Detector < ppb Poor Low Low Fast




2. ELECTRON-CAPTURE DETECTORS

An electron-capture detector (Figure 1) is basically an ioni-
zation chamber in which electrons are produced from a radioactive
cathode (tritium or nickel-63). These electrons are injected into
a stream of inert carrier gas (helium or argon) where they rapidly
dissipate their energy to a thermal level by inelastic collisions
with the molecules of the carrier gas. The thermal electrons are
collected by a positive electrode (anode) and constitute a constant
(standing) current, NO electrons/second. When an electron-capturing
substance is introduced into the carrier gas, the standing current
decreases to a reduced level, N electrons/second, where

N = N, exp (XKC).

0
X 1s a constant factor, K and C, respectively, are the electron-
attachment coefficient and the corncentration of the electron cap-
turing substance. Substances known to be electron-capturing are
alkyl halides, conjugated carbonyls, nitrates, nitriles, organo-
metallics, oxygen and water.

Electron-capture detectors are fast-responding and low in
cost. They have a sensitivity of about 1 ppb for most compounds,
but are not specific. High specificity can be obtained by means
of a gas chromatograph column on the inlet to the detector. This
technique is used by the Hydronautics-Iseral Vapor Trace Analyzer
(VTA) Model 103A (Figure 2). The chromatograph column permits
time separation and analysis of the different compounds as they
arrive at the detector. Thus, a "window" can be found for the

detection of a given substance, such as an explosives effluent.

The Hydronautics VTA has a sensitivity to the effluent of
dynamite [ethylene glycol dinitrate (EGDN)] of about 0.03 ppb.2
One of the factors which contributes to this high sensitivity is
the concentrator at the inlet to the gas chromatograph column.
This concentrator is a 0.05 in. diameter platinum wire, 2.0 cm.
long, mounted in a Teflon valve. In the '"sampling" position of
the valve, room air is passed over it for 5 seconds at a rate of 10

liters per minute. Explosive vapor is absorbed on the wire. The
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Hydronautics Vapor Trace Analyzer

Figure 2.



valve then rotates 90° to the ''detect' position where helium gas
passes over the wire; the wire is heated, and the explosive vapor
is desorbed and carried into the column for separation and detec-
tion. (A more detailed discussion of vapor concentrators is given

in Appendix A).

Because of the presence of the gas chromatography column and
the concentrator, the response time of the Hydronautics VTA is
slow (about 18 seconds for EGDN). The instrument is costly (about
$18,000.00), heavy (90 1bs.), and fairly complex.

Another type of commercial instrument- employing the electron-
capture detector is the Ion Track Instruments Model 27 Gelignite
Detector (Figure 3). This instrument has a semi-permeable membrane
in the inlet ahead of the electron-capture detector. The membrane
reduces the concentrations of oxygen, nitrogen, and other light
gases sufficiently to permit real-time sampling of atmospheric air
without valves or rubber septa such as those used in gas chromato-
graphy. The ITI Model 27 is less expensive (about $1800), light-
weight (about 10 pounds), and easy to use. Its sensitivity to
dynamite (EGDN) is 0.8 ppb. It responds to many classes of electron-
capturing compounds. However, it recovers much more slowly when
the compound in question is an explosive, so in the hands of a

trained observer it does have some degree of specificity.

The ITI Model 58 (Figure 4), is identical in concept to the
ITI Model 27, except that the inlet, membrane, and detector can
be heated to 200°C. This feature gives the instrument greater
sensitivity and a more rapid recovery, since explosives vapors do
not condense on the walls of the inlet, membrane, and detector
housing. Its sensitivity to EGDN is somewhat better than that of
the Model 27. The instrument is portable, easy to operate, and
costs $5,500.
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3. DEVELOPMENT OF THE PROTOTYPE EXPLOSIVES DETECTOR

3.1 BACKGROUND STUDIES

In the course of a prior TSC study of commercially available
explosives detectors,2 a mass spectrometer with a field-ionization
source and a membrane-separator inlet was used to produce a signa-
ture characteristic of dynamic effluent (Figure 5). The character-
sitic peaks at 30 and 46 atomic mass units were identified as being
due to NO' and NOE ions respectively. The following questions had
to be addressed: (1) whether some of these observed compounds were
present in the natural effluent of dynamite; (2) how easily they
could pass through the membranes; (3) whether there was any frag-
mentation of EGDN in passing through the membranes.

To answer these questions measurements utilizing various types
of oxides-of-nitrogen detectors were carried out, described in detail
in Reference 2, which readily established the following: (1) The
amount of NO in an air sample saturated with dynamite effluent
(assumed to be about 50 ppm EGDN)3 was typically about 0.05ppm, and
that of NO2 less than 1 ppm. (2) Passage of a calibrated NO sample
through a single membrane reduced the NO concentration by about 80%.
(3) When an air sample saturated with dynamite effluent was applied
to a single membrane, the NO concentration after passage was again
only about 20% of the original 0.05 ppm level, so no significant
fragmentation of EGDN into NO had taken place during its passage
through the membrane. It was found, however, that heating the air
stream containing EGDN to near 200°C produced a major effect, de-
pending on the type of detector employed: the signal of an oxides-
of-nitrogen detector increased; the signal of an electron-capture
detector decreased, and at 220°C, disappeared completely. Other
tests showed that the vapors of non-explosive, electro-negative
compounds, such as perfume and nitrobenzene (in shoe polish), con-
tinued to be detectable by electron capture, even at temperature
as high as 250°C. From these tests, it was concluded that EGDN
was thermally decomposed into oxides of nitrogen; non-explosive

vapors, on the other hand were stable. These observations led to
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Dynamite vapor was passed through the tube into an electron-capture
sensor at various temperatures, monitored by a thermo-couple. It
was established that a temperature of 250°C was sufficient to com-
pletely decompose the vapor. The length of the decomposition tube
had to be adequate to ensure complete decomposition of the effluent
at a sample flow rate of at least four liters per minute. This
flow rate was necessary in order that dynamite could be detected

at a distance of four feet from the inlet in a period of less than
six seconds. This required flow rate was obtained with a Brailsford
diaphragm pump. Various lengths of stainless-steel tubing were
tried with it; 12 inches was found to be the minimum length for

complete decomposition of dynamite vapor at 250°C.

Two Ion Track Instruhent Model 27 electron-capture sensors
were used, each consisting of a stainless-steel housing, one-half
inch in diameter, containing a tritiated titanium radioactive foil
mounted concentrically around a collector wire on the axis of the
housing. The semi-permeable silicone membrane supplied with these
sensors* is mounted in the sample inlet upstream of the detector
(see Figure 6); it limits the concentration of oxygen reaching the
detector to 10 ppm or less. This factor is important, because
oxygen molecules are electron-capturing; their presence reduces
the standing current and thus decreases the sensitivity. Pre-
purified argon gas is the recommended carrier gas and the optimum
flow rate is that which results in the maximum standing current.

3.3 PROTOTYPE EXPLOSIVES DETECTOR

A prototype explosives detector, shown in Figure 8, was fab-
ricated based on the design as established above: it uses a dual-
inlet system, with the heated inlet at 250°C, two ITI Model 27
electron-capture sensors with Philips semi-permeable membranes,
argon carrier gas, and a sample flow rate of 4 liters per minute.

*Philips Company, the Netherlands; General Electric's dimethyl
silicone membrane material is equally effective.

12
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lf, RESULTS AND CONCLUSIONS

Table 2 compares the responses of the "hot'" and 'cold"
electron-capture sensors. It can clearly be seen that a differ-

ence exists only for explosive electronegative compounds.

The unit's sensitivity was determined by injecting 1 cc of air
saturated with dynamite vapor (52 ppm* of EGDN) into the inlet.
Taking into account the dilution of the sample and the magnitude
of the response, the instrument's sensitivity to EGDN was found
to be 0.1 ppb.

The prototype instrument has been shown to respond rapidly
to dynamite, smokeless powder, TNT, C-4, and Swiss sheet explosive.
Its reliability as a detector of bombs in suitcases has been tested
at some length; three sticks of 40% dynamite placed within a packed
suitcase for 40 minutes can be detected, and an alarm sounded, in
less than 6 seconds.

*At room temperature the saturated vapor pressure of dynamite
is 4 x 10-2 torr; this pressure corresponds to a concentration
of 52 ppm in air at atmospheric pressure.

19



TABLE 2. RELATIVE RESPONSES OF ELECTRON-CAPTURE SENSORS

Sensor Response

No. 1 No. 2 | Response Difference
Substance Room Temp | 250°C (No. 1 - No. 2)
Explosives
Dynamite 900 0 900%
TNT 8 0 8%
Swiss Sheet 96 0 96*
Smokeless Powder 600 0 600%
C-4 120 0 120%*
Non-Explosives
Electronegative:
Nitrobenzene 695 695 0
m-dinitrobenzene 100 100 0
2,4-dinitrotoluene 0 0 0
p-nitrotoluene 725 725 0
Trichloroethylene 800 800 0
Carbon Tetrachloride 800 800 0
Bath Lotion ("Fabulous') 150 150 0
Perfume (""Jeuvelle") 390 390 0
Nitric Acid Vapor 600 600 0
Non-Electronegative:
Methyl Ethyl Ketone 0 855 negative #
Ethyl Alcohol 0 0 0
Isopropyl Alcohol 0 0 0
Acetone 0 465 negative #
Ethyl Acetate 0 205 negative #

* Response difference positive.

Detector alarms.

# Response difference negative (Due to formation of electro-

negative decomposition product in sensor No. 2).

does not alarm.

20
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APPENDIX

VAPOR CONCENTRATORS

A.1 BACKGROUND

The successful performance of a vapor concentrator in the
Hydronautics VTA suggested that a vapor concentrator might be a
valuable accessory to other explosives detectors. The concen-
trator as an independent sampling device is inexpensive and has
a wide potential application in the screening of selected areas
in airports and of the interior of airplanes in the event of a
bomb threat. Furthermore, under appropriate conditions, it can
also enhance the sensitivity of explosives detectors. For this
reason, work was initiated on a study of concentrators.

A.2 CONCENTRATOR CONFIGURATION

Two concentrator configurations which could be attached to a
"gun" containing a sampling pump and subsequently to the proto-
type explosives detector, were designed and tested. The first
configuration, termed "wire" concentrator (Figures A-1, A-2),
consisted of a teflon housing with a central platinium wire, 2
inches long. The wire could be heated electrically by a pulsed
supply (Figures A-3, A-4) to release adsorbed material. The second
configuration, termed "column" concentrator, shown in Figure A-5,
consisted of a glass tube, 0.25 inches in diameter, 3 inches long,
which could be filled with a column of various adsorbents, packed
between cotton plugs. To release adsorbed material, the tube was
placed in an aluminum block, sandwiched between two resistance
coils powered by a variable transformer.

A.3 TESTING AND RESULTS

All tests were performed with the prototype explosives de-
tector.

(a) Wire Concentrator

A 5-second sampling of EGDN vapor by the concentrator
produced a detector reading of more than 5,000 divisions. However,

22
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when the 5-second sampling was followed by 30-seconds sampling of
air, the detector reading decreased to 200 divisions; after a 2-
minute sampling of air, no detection whatever was registered.

Thus, although platinium was a good adsorber, it did not retain
adsorbed material on prolonged exposure to a flow of air. (It
should be noted that the concentrator of the Hydronautics VTA
operates only on a 5-second sampling period prior to the desorption

cycle, with no subsequent sampling exposure.)
(b) Column Concentrator.

Adsorbent materials tested included Johns Manville
Chromosorbs 101, 102, 104, and glass wool. Of the three chromo-
sorbs, 102 was superior; however, there were serious drawbacks:
desorption upon heating was non-uniform and the detector response
was broadened; also, desorption continued at a finite rate after
the heating was discontinued, which produced a non-zero detector
response. Glass wool performed best. Retention of adsorbed
material was not degraded seriously by subsequent flushing with
air, release on heating was rapid and uniform, and ceased quickly
when heating was discontinued. Figure A-6 shows the results of
desorption on heating the glass wool after one minute of sampling
at the seam of an attache case containing an empty plastic bag
in which water-gel explosive (15% EGDN) had been stored. (The
empty bag had been left in the attache case for two months.)

The solid line represents the output of the cold sensor; the
dotted line that of the "hot" sensor. The signal was sufficient
to peg the prototype explosives detector on the medium sensiti-

vity range.

A.4 CONCLUSIONS

The results of the tests demonstrate the feasibility of using
a concentrator at a site remote from an explosive detector. The
detector must be specific for explosives, since the concentrator
will also collect vapors of innocuous non-explosive materials.
Such a concentrator would be useful at airports, where a large

number of searches might be required, (e.g., after receipt of a

28
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Figure A-6. Sensor Response of Prototype Explosives Detector
to EGDN from Glass-Wool Column Concentrator
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bomb threat). In such a case, concentrators on sampling "guns"
could be used to check a large number of suitcases at the airport's
various baggage facilities, and then be returned to a central
explosives detector for testing. Sampling personnel could carry

as many as a dozen concentrators, and rapidly sample at many
locations, before returning to the detector. This procedure would
be more convenient and considerably less expensive than the use

of multiple detector units.
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