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Important functions of the Traffic Flow Management System (TFMS) include
predicting air traffic demand for National Air Space (NAS) elements (air-
ports, fixes and en route sectors) for several hours into the future, and using
these predictions to alert traffic flow management (TFM) specialists to poten-
tial congestion when predicted demand exceeds available capacity. The cur-
rent TFMS Monitor/Alert functionality uses deterministic predictions,
neglecting their stochastic nature. This paper focuses on improving the accu-
racy and stability of traffic demand predictions for airports and sectors by
considering the uncertainty in aggregate demand count predictions. The
emphasis is on uncertainty caused by errors inherent in TFMS during proc-
essing flight data not affected by future air traffic control. We propose a
constructive approach for improving aggregate demand predictions under
uncertainty based on linear regression that includes TFMS demand counts
for several adjacent time intervals within a sliding time window. Numerical
examples based on TFMS data showed that the regression models produce
more accurate (up to 22% reduction in the standard deviation of errors in
demand predictions) and more stable (fewer crossings of the Monitor/Alert
threshold) predictions than current TFMS predictions. For airports, regres-
sion significantly reduced the total number of missed alerts (21%) with a
small increase in the total number of false alerts (3%). For sectors, the reduc-
tion in missed alerts was 22%, with an increase in false alerts of 8%.
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INTRODUCTION

The key functions of the Traffic Flow Management System (TFMS)
include predicting air traffic demand for National Air Space (NAS)
elements (airports, fixes and en route sectors) for several hours
into the future, monitoring predicted demands, and alerting traffic
flow management (TFM) specialists to potential congestion at NAS
elements wherever and whenever predicted demand exceeds avail-
able capacity. The information on the magnitude and duration of
congestion helps a TFM specialist in the decision making process for
resolving congestion problems.

The TFMS currently makes deterministic predictions of aggre-
gate traffic demand counts per 15-minute interval and does not
consider uncertainty in the predictions. A general methodology
for traffic demand predictions in TFMS is based on processing
the flight plan data for individual flights to predict times for
flight events along the flight plan routes from origin to destina-
tion airport and aggregating the flights within specific time
buckets. For the flights still on the ground, the prediction of
future flight events starts from the estimated time of departure
(ETD) at the origin airport. As soon as a flight departs, the TFMS
uses the flight tracking radar data (e.g., en route TZ messages)
that include coordinates of the flight in the airspace along with
the time stamp to predict flight events starting from this point
along the remaining route to the destination airport. The pre-
diction algorithm uses aircraft speed and considers predictions
for wind along the route. Many factors contribute to errors in
predicting times of flight events. The major contributor to pre-
diction errors for individual flights is uncertainty in flight depar-
ture time for those flights that are still on the ground. After a
flight has departed, there is often some deviation from the flight
plan route, so that the flight coordinates in TZ messages usually
deviate from the plan. TFMS projects the coordinates of the last
TZ message to the flight plan route and continues predicting
flight events from this point on the route further along the
planned route up to the destination airport. There are also differ-
ences between flight speeds used in predicting flight event times
and actual flight speed as well as errors in wind predictions.
Another contributor to the errors is inaccuracy in modeling flight
ascent and descent profiles in TFMS. TFMS uses several profiles
customized by airports that usually differ from actual flights’
accent and descent profiles. All those factors contribute to uncer-
tainty in flight event predictions and the errors are considered as
“internal”, inherent TFMS errors that absorb errors in TFMS
flight modeling as well as in processing flight tracking messages.
When TFMS predicts aggregate demand counts for NAS elements
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for specific time intervals (15-minute intervals at airports and
one-minute interval in sectors) it deterministically aggregates
the flights whose estimated times for being in the NAS elements
fall within the time intervals. The predicted aggregate demand
counts are compared with capacities (or Monitor Alert Parameter,
called MAP) to determine whether the NAS element is potentially
congested or not. Those aggregate demand count predictions play
a crucial role (along with MAP values) in identifying potential
congestion and subsequent TFM decision making process on trig-
gering remedial Traffic Management Initiatives (TMIs) to avoid
congestion. The question is how accurate are the deterministic
aggregate demand predictions? In this paper, we are interested
in analyzing the prediction errors inherent in TFMS without con-
sidering the sources of errors outside TFMS, such as unexpected
flight cancellations or pop up flights.

The errors in traffic demand predictions make the deterministic
predictions not only inaccurate but also unstable, with the possibility
of significant variation during consecutive demand updates.
The instability of demand predictions may lead to instability of
TFMS Monitor/Alert. Alerts will flicker on and off when demand
exceeds capacity at a specific 15-minute interval and, the successive,
updated demand for the same interval is below capacity due to pre-
diction error.

High accuracy and stability of traffic demand predictions should
play an especially important role in predicting congestion and
its severity when traffic management initiatives, such as ground
delay programs (GDP), rerouting or miles in trail (MIT), are contem-
plated. Inaccurate predictions may be costly because

* Over-predicted demands may lead to excessively conservative
strategies by over-controlling traffic with the possibility of
unnecessary ground delays. Excessively conservative strat-
egies may lead to the loss of valuable arrival slots during
collaborative decision making (CDM) GDP slot allocation
procedures.

¢ Under-predicted demands may lead to excessively aggressive
strategies that under-control traffic with the possibility of exces-
sive airborne delays.

¢ Instability of traffic demand predictions may cause frequent flick-
ering of alerts during consecutive traffic updates (i.e., alerts being
turned on and off frequently). This reduces the credibility of the
system, and may lead to unnecessary TFM actions.

Currently, there is a significant effort in aviation research commu-
nity to develop a probabilistic TFM within the NextGen program that
would improve the TFM decision making process by bringing it closer
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to reality. Probabilistic TFM acknowledges the stochastic nature of
predictions and incorporates characteristics of uncertainty in pre-
dictions into the decision-making process.

Several publications have presented the concepts and potential
applications of probabilistic TFM as well as modeling and benefit
analysis. A general concept of probabilistic TFM and representa-
tion of uncertainty in air traffic demand and capacity predictions
for identifying and managing congestion in NAS elements are
described in Wanke et al. [1, 2, 3], Mueller et al. [4] and
Ramamoorthy et al. [5]. Ball et al. [6] presented a methodology for
analyzing effects of uncertainty in traffic demand predictions on
Ground Delay Programs. A method for relating the uncertainty in
individual flight time predictions to probabilistic characteristics of
aggregate demand counts was presented in Meyn [7]. A sequential
decision-making approach to probabilistic TFM that makes it pos-
sible to update TFM strategies in accordance with updated proba-
bilistic forecasts on demand and capacity was described in Wanke
and Greenbaum [8].

Gilbo and Smith [9, 10, 11] proposed a different approach to
dealing with uncertainty in aggregate demand predictions and
improving the accuracy of the predictions. The approach recognizes
the stochastic nature of predictions and, for estimating traffic
demand prediction at each 15-minute interval of interest, it uses a
linear regression of deterministic predictions for several consecu-
tive 15-minute intervals surrounding the 15-minute interval of
interest, both preceding and following ones, along with the deter-
ministic prediction for this interval. As a result, the demand
estimations for each 15-minute interval of a time period are
represented by a linear regression of a set of deterministic pre-
dictions within a sliding time window. For example, in the case
when regression includes deterministic predictions at three consec-
utive 15-minute intervals, the sliding window has the 45-minute
width with the interval of interest in the middle of the window,
and the regression comprises a linear combination of determin-
istic demand predictions for an interval of interest (in the middle
of the 45-minute window) along with demand predictions for two
immediately adjacent intervals, the preceding and the following
ones. The major reasoning behind using such a regression model
is as follows. An aggregate demand prediction for an interval com-
prises those predictions for individual flights with ETAs in that
interval. Because ETA predictions for flights are uncertain and
contain random errors, it is possible (indeed, quite likely) that a
flight’s predicted ETA will move from one interval to an adjacent
interval during flight updates. Therefore, the aggregate count pre-
dictions for adjacent intervals may provide useful information
for improving the aggregate count prediction for the interval of
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interest. A prediction model that considers aggregate counts
in adjacent intervals thus provides a mechanism for implicitly
transferring uncertainty in individual flights’ predictions into
aggregate demand predictions making those predictions more accu-
rate and more stable than the deterministic predictions. More
detailed material can be found in [12] where the authors showed
how the use of uncertainty in predicting flights’ arrival times re-
sulted in predicting aggregate traffic demand at airports via the
weighted averages of deterministic demand predictions in adjacent
15-minute intervals.

The models presented in this paper were calibrated for nine
airports and thirteen en route sectors using data from the summer
of 2005 and the winter and spring of 2006. The models were then
validated using 7 days of data (from the summer of 2005 and the
winter of 2006) that were not in the original calibration set. The
analysis showed that the regression model provided a reduction in
demand prediction errors of nearly the same magnitude as
reported in Meyn [7] but the effect was achieved by a simpler
prediction algorithm.

Characteristics of accuracy in demand predictions provided by
linear regression can be directly applied to probabilistic representa-
tion of traffic demand, which is a core part of probabilistic TFM. In
particular, the regression provides the expected values of demand
and the distribution and/or standard deviation of prediction errors
can be used for determining the area of uncertainty around
expected values restricted by specific percentiles (e.g., between
25" and 75 percentiles).

The next question is how the improvements in accuracy of
demand predictions provided by regression model would improve
the quality of Monitor/Alert. This paper presents the results of
comparative analysis of various Monitor/Alert characteristics at
several US airports and en route sectors under current TFMS
deterministic demand predictions and under regression model
predictions. The Monitor/Alert characteristics included both sta-
bility (rate of flickering in alert status) and accuracy in predicting
alert status. It appeared that the regression model provided
improvements in Monitor/Alert characteristics such as stability
and the number of missed alerts.

The remainder of this paper is in the following sections:

Accuracy of Current TFMS Traffic Demand Predictions

Linear Regression Approach for Traffic Demand Predictions at
Airports and Sectors

¢ Model Validation

Impact on Monitor/Alert

Conclusions
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ACCURACY OF CURRENT TFMS TRAFFIC
DEMAND PREDICTIONS

This section describes the results of analysis of the quality of current
TFMS predictions of traffic demand in a 15-minute interval. This
analysis was performed on selected airports and sectors using histor-
ical data from the following 34 days:

¢ January 1-19, 2006
¢ April 10-16, 2006 and
* May 5-12, 2006.

The results for the three months were similar. Therefore, this sec-
tion presents only the January analysis. In 2009, additional data was
gathered for the sectors during the week of April 10-16, 2009.

The data was collected and analyzed for nine airports (ATL, BOS,
DFW, LAX, MCI, MIA, ORD, SFO, and STL), and thirteen sectors
(ZBWO02, ZBW17, ZID82, ZID83, ZID86, ZLC06, ZLC16, ZMP20,
Z0OB57, ZOB67, ZOB77, ZSE14, and ZTL43).

For airports, the data includes the number of arrivals in a 15-
minute interval. For sectors, the data includes the peak number of
flights within a one-minute bucket of a 15-minute interval. TFMS
predicts both of these quantities.

Figure 1 illustrates the distributions of errors in 15-minute traffic
demand predictions at ATL airport for various look-ahead times
(LAT). In this figure, the distributions are nearly symmetric. The
mean errors are close to zero and standard deviations increase with
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Figure 1. Histogram of Prediction Errors for ATL, January Data.
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increasing LAT. The curve for LAT < 1 hour has a standard deviation
of 4.5 flights; while the curve for LAT > 2 hours has a standard devi-
ation of 6 flights.

Analysis of accuracy of demand predictions for en route sectors
showed that the prediction errors have slightly asymmetric distribu-
tions with heavier right-hand tails that indicate that the over-prediction
of traffic demand is more likely than under-prediction. Figure 2
illustrates the distributions of demand prediction errors for sector
ZBWO02 for various LAT. In this example, the average error ranges from
1 to 2 flights, and the standard deviation ranges from 3 to 4.5.

Rather than showing separate histograms of the error for every
airport and sector, Tables 1 and 2 display the average and standard
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Figure 2. Histogram of Prediction Errors for ZBW02, January Data.

Table 1. Errors in TFMS Demand Predictions for Airports

Average Error Standard
(Predicted—Actual Flights) Deviation of Error

Average # of

Flights per LAT: LAT:
Airport 15 min 05—-1hr1.25-2hr 225—-6hr 0.5—-1hr 1.25—-2hr 2.25-6hr
ORD 18 —1.57 —2.27 —2.59 4.26 4.93 6.32
ATL 16 0.36 0.05 —0.81 5.15 5.26 6.00
DFW 13 —0.27 —0.39 —0.76 2.70 3.15 4.16
LAX 11 0.36 —0.31 —0.65 2.71 3.16 3.79
MIA 7 0.00 0.10 —0.34 2.28 2.66 3.07
BOS 6 —0.25 —0.45 —0.60 2.80 2.93 3.39
SFO 6 0.04 —0.27 —0.49 2.16 241 2.96
STL 5 —0.01 —0.06 —0.41 1.66 2.25 2.60
MCI 3 0.10 0.32 0.14 1.32 1.58 1.92
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Table 2. Errors in TFMS Demand Predictions for Sectors

Average Error

A\;i;akge (Predicted — Actual Flights)  Standard Deviation of Error

occupancy LAT: LAT:
Sector inl15min 0.5-1hr 1.25—-2hr2.25—-6hr 0.5—1hr 1.25—-2hr 2.25—-6 hr
ZBW02 8 0.83 1.82 1.02 3.45 4.06 4.48
ZBW17 3 1.21 2.23 1.53 249 2.39 2.99
ZID82 9 —0.12 —0.20 —-1.73 3.34 3.92 4.13
ZID83 7 0.27 0.03 —1.86 3.47 4.20 4.24
ZID86 9 0.08 —0.12 —1.29 3.71 4.37 4.61
ZL.C06 9 0.40 —0.02 —2.29 2.85 3.09 3.72
ZLC16 8 0.07 —-0.71 —2.81 3.57 4.29 4.57
ZMP20 8 1.12 1.52 —0.30 251 3.17 3.84
ZOB57 5 —0.18 —0.66 —0.82 2.67 2.99 3.07
Z0OB67 7 0.73 0.65 0.21 3.08 341 3.42
ZOBT77 7 1.15 2.09 3.08 341 494 6.41
ZSE14 6 0.03 0.04 —0.66 2.36 3.01 3.07
ZTL43 7 —0.18 —0.51 —2.10 2.56 3.57 3.31

deviation of errors in 15-minute traffic demand predictions for vari-
ous LAT at selected airports and sectors, respectively.

Table 1 shows that average errors in demand predictions for
airports are close to zero (except for ORD) in a wide range of LAT.
For ORD, however, TFMS under-predicts demand by approximately
2 flights per 15-minute.

Table 2 shows no clear pattern in average error for sector demand.
In most sectors, except ZBW02, ZBW17, ZMP20, and ZOB77, the
average errors are close to zero for look-ahead times within two
hours, and at some of them the error significantly increased for
longer LAT with the tendency of under-prediction (e.g., ZLCO06,
ZLC16, ZID82 — 86 and ZLT43). Some sectors demonstrated over-
prediction between one and three flights per 15-minute (e.g., ZBW02,
ZBW17, and ZOBT77).

For both airports and sectors, Tables 1 and 2 showed that standard
deviations of TFMS demand prediction errors increase with increas-
ing look-ahead times. The busier airports (e.g., ORD, ATL) also have
a larger standard deviation.

LINEAR REGRESSION APPROACH FOR TRAFFIC
DEMAND PREDICTIONS

Suppose that at time n TFMS made a deterministic prediction F(t, n)
of traffic demand for a 15-minute interval that starts at time t > n
(i.e., for interval [t, t+ 15]). The Look Ahead Time of the prediction
is (t — n). The estimation of traffic demand prediction A(¢,n) for
interval t can then be obtained by a regression model that includes
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the deterministic predictions F(t, n) for this interval and the preced-
ing and following 15-minute intervals. In the case when regression
includes predictions F(t — 15, n) and F(t + 15, n) for one interval
earlier and one interval later than 15-minute interval of interest t,

respectively, the estimated traffic demand A(t,n) for interval t pre-
dicted at time n is

A(t,n) =aF(t-15,n) + bF(t, n) + cF(t + 15, n) + k& )
=A(t,n) +¢(t.n),
where
a, b, ¢, and k are regression parameters to be determined,
A(t, n) — correct prediction (with zero error) of number of flights at
interval ¢ when prediction was made at time n,
&(t, n) —a random error term that reflects uncertainty in predictions
(currently ignored by TFMS).

With this notation, regression model (1) with a = ¢ = k = 0 and
b = 1 represents the current TFMS demand prediction model:

A(t,n) =F(t,n) = A(t,n) +&(t, n).

The idea of using a linear regression over deterministic predictions
for several consecutive 15-minute intervals to improve the accuracy
of 15-minute demand predictions at each interval was first proposed
by the authors in 2005 [9].

The motivation for involving predictions for adjacent intervals in
the regression model is reduction of uncertainty in traffic demand
predictions caused by errors in prediction of flights’ estimated time
of arrival (ETA) at airports or sectors and, as a result, the poten-
tial random migration of ETA for a flight from one 15-minute
interval to another during consecutive updates. As a result, the
same flight can contribute to aggregate counts in different, most
likely adjacent, 15-minute intervals during consecutive demand
updates.

The motivation can be best illustrated by Figures 3 a) and b) that
present the probability density function (pdf) of the prediction error
in Estimated Time of Arrival (ETA) at an airport for an individual
flight. For illustration only, the pdf represents a random error with
standard deviation of 15 minutes that might correspond to pre-
dictions with LAT of more than two hours. On Fig. 3 a), the ETA is
within the 15-minute interval t, and the flights should be counted in
the aggregate demand for this interval. However, due to random
error in ETA predictions, the flight has the probability P; to be
counted in a 15-minute interval t, and noticeable probabilities P; 15
and Py, 5 to be counted in adjacent 15-minute intervals t — 15 and
t + 15, respectively (see the corresponded striped areas in Fig. 3 a)).
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a)t-30 t-15 t\ t+15 t+30 b) ¢ 30¢-18 t t+15¢+30
ETA Time ETA Time

Figure 3. Illustration of probabilities for a flight to arrive at adjacent intervals.

Fig. 3 b) illustrates the case when the flight’s ETA falls withina t — 15
interval and, according to deterministic demand prediction, this
flight should contribute to aggregate demand for t — 15 interval.
However, there are noticeable probabilities Py and P; 30 that the
flight would contribute to the adjacent intervals t and t — 30, respec-
tively. That is why one could expect that considering deterministic
demand count predictions at the preceding and following adjacent
intervals, along with the demand count for the interval of interest,
and including them in the regression model, might take into account
uncertainty in aggregate demand predictions in current TFMS and
improve the accuracy of demand predictions.

Figure 4 illustrates an example of possible migration of ETAs from
one 15-minute interval to another due to errors in ETA predictions.
At 1200, a demand prediction was made for a 45-minute period from
1500 to 1545. Nine flights were predicted with an ETA for each flight:
two flights predicted for the first 15-minute interval (the ETAs of two
flights, Flight 111 and Flight 112, are within (1500 — 1514) interval),
four flights for the second 15-minute interval and three flights for
the third interval. Five minutes later, at 1205, the predictions
were updated, and the ETAs for some flights appeared in another
15-minute interval (see the thick lines in Figure 4). In particular,
the ETA of Flight 112 moved from (1500 — 1514) interval to the
adjacent (1515 — 1529) interval; Flight 113’s ETA moved to an earlier,
(1500 — 1514) interval; Flight 116’s ETA moved from (1515 — 1529) to
(1530 — 1544) interval. As a result, the aggregate demand predictions
changed from 2, 4 and 3 to 2, 3 and 4 flights for each 15-minute
interval between 1500 and 1545.
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Prediction at 1200 for Updated prediction at 1205
1500 — 1545 period for 1500 — 1545 period

ETA ETA
1500 /light 111 1500
2 flights Flight 112 \ 2 flights
/Flight 113 \
1515 /
T ——Flight 114 — N 1515
4flights __—Flight 115 —3flights

————Flight 116
1530 e — 1530
——— Flight 117 ——
3flights ——— i1 4 flights

‘\\—‘_\— 2 '/
1545 Flight 119 {545

Figure 4. Two consecutive updates of traffic demand predictions.

To generalize, if the random errors in predictions of time of flight
arrival at a NAS element can put the flight to an earlier or later
15-minute interval during consecutive flight updates, it is possible
that the predicted demand counts for those adjacent intervals
could provide useful information for improving predictions for the
15-minute interval of interest.

So far, we discussed the reasoning for using deterministic pre-
dictions for several consecutive 15-minute intervals in a linear
regression model for improving demand predictions by taking into
account uncertainty that accompanies current TFMS deterministic
demand predictions. There are other factors, however, that could be
considered in the regression model with subsequent analysis to esti-
mate their impact on demand prediction properties, such as

— Look Ahead Time (LAT) that affects the accuracy of deterministic
predictions, and, hence, the accuracy of regression model

— The width of a sliding window and its location relative to the
15-minute interval of interest that determines the number of pre-
ceding and following intervals for which deterministic predictions
are included in the regression model

— Active (airborne or landed flights) and proposed (flights that have
not yet departed from the origin airport) components of determin-
istic TFMS predictions of traffic demand

The following regression models were analyzed:

Model 0: A(t, n) = F(t, n) (current TFMS deterministic predictions)
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Model 1: A(t,n) =—a Ft-15,n) + b Ft,n) +ecFt+15,n) + k
(regression includes TFMS predictions for (t— 15) and
(t +15) adjacent intervals)

Model 2: A(t,n) = g F(t — 30, n) + ¢ F(t — 15, n) + b F(t, n) +
¢ F(t+15, n) + h F(t + 30, n) + & (regression includes
TFMS predictions for two adjacent intervals on each side
of interval of interest)

Models 1 and 2 were considered to estimate the effects of including
deterministic predictions in adjacent intervals in the regression
model as well as impact of predictions in more distant intervals
(Model 2) on accuracy of demand predictions. The above regression
models were analyzed from the following viewpoints:

* Determining parameters (coefficients) of regressions for airports
and sectors

¢ Evaluating impact of various variables in the regression

* Comparing demand prediction accuracy provided by various
regression models

* Determining benefits that regression models provide relative to
current TFMS predictions.

The models were calibrated on TFMS datasets from

¢ June 21-25 and July 13—-17, 2005
¢ January 1-19, 2006
¢ April 10-16, 2006 and May 5-12, 2006

The calibration was performed separately on

— integrated datasets that combined the data for all airports and
sectors, respectively, so that regression coefficients were not
airport- or sector- specific;

— datasets for individual airports and sectors so that the regression
coefficients could vary by airport and sector.

Table 3 presents a summary of results of analysis of regression
models 0, 1, and 2 performed on combined datasets of TFMS data for
all nine airports and thirteen sectors, respectively, for two ranges of
look-ahead times: LAT < 1hr and LAT between 1 and 2 hrs. The table
includes regression coefficients, correlation coefficients R?, average
and standard deviation of demand prediction errors as well as per-
cent reduction of standard deviation provided by regression models
relative to TFMS demand predictions.

Table 3 shows that, among the weight coefficients a, b and ¢ in both
Model 1 and Model 2, coefficient b is the largest one, and coefficient
a is greater than coefficient c. Recall that coefficient b determines the
weight of deterministic prediction for a 15-minute interval of interest
in the regression models, while coefficients ¢ and ¢ determine the
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weights for deterministic predictions in immediate earlier and later
adjacent intervals, respectively. As for coefficients g and 4 in Model 2
that determine the contributions of deterministic predictions for
more distant 15-minute intervals into the regression, they are much
smaller than coefficients @ and ¢, respectively. It means that deter-
ministic predictions for more distant intervals relative to the interval
of interest have much smaller weights in the regression model, and,
hence, make a very small contribution in the predicted demand.

Table 3 also demonstrates that regression models that include
deterministic predictions for adjacent 15-minute intervals provide
noticeable improvements in accuracy of demand predictions in
comparison with current TFMS deterministic predictions. The major
improvement provides the regression Model 1 that includes TFMS
predictions for two immediately adjacent 15-minute intervals. For
airports, the Model 1 reduces standard deviation of prediction error
of current TFMS by 18%. For sectors, the reduction is smaller
(approximately 10%).

Another observation from Table 3 shows that including addi-
tional predictions for more distant intervals in the regression
(Model 2) does not contribute significantly to improving demand
prediction accuracy in comparison with Model 1 for both airports
and sectors.

To examine the possible impact of separating active and proposed
flights in total demand count predictions, a third regression model
(Model 3) was considered, which included active and proposed com-
ponents of TFMS demand predictions within 45-minute sliding
window:

Model 3: A(t,n) = a; Active(t — 15, n) + a, Proposed (t — 15, n) +
b; Active (t, n) + bo Proposed (t, n) + ¢; Active (t + 15, n) +
co Proposed (t + 15, n) + &

where Active (t, n) and Proposed (t, n) are active and proposed com-
ponents of TFMS demand prediction F(t, n) for 15-minute interval t
made at time n, respectively: F(t, n) = Active (t, n) + Proposed (t, n).

Analysis showed that Model 3 did not improve demand prediction
accuracy in comparison with Model 1.

Including predictions for adjacent intervals in the regression
models resulted in improving demand prediction quality for both
airports and sectors in terms of correlation coefficient R% The regres-
sion models tended to have better correlations R? for the airports
than for the sectors. Airport models had R? in the 0.8 to 0.9 range,
while the sector models had R? in the 0.6 to 0.7 range. It is worth
noting that the current TFMS predictions provide a high correlation
for airports and lower correlation for sectors (see Table 3). Lower
values of R? for the regression model for sectors can be explained
by the fact that the measures for sector and airport demand are
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different. Sector demand considers maximum one-minute counts
applied to an entire 15-minute interval. Therefore, sector demands
in adjacent 15-minute intervals are actually the maximum one-
minute counts in adjacent intervals and, hence those relatively
distant in time one-minute peaks might make much weaker contri-
bution to the regression model than the aggregate 15-minute counts
in adjacent intervals at airports.

More detailed analysis of above regression models confirmed that
the regression Model 1 provided the major improvements in TFMS
traffic demand predictions and more complex models, Model 2 and
Model 3, did not add significant additional improvement. Therefore
the rest of the paper is concentrated on more detailed analysis of
Model 1

A(t,n) =aF(t—-15n)+bF(t,n) +cF(t + 15,n) + &

and its application for improving traffic demand prediction accuracy
and monitor/alert function.

REGRESSION MODEL FOR AIRPORT
DEMAND PREDICTIONS

In this section, we will analyze coefficients of the model for both non-
airport-specific and airport-specific cases. In each case, the accuracy
of the predictions will be analyzed.

Table 4 shows the coefficients of the regression model for various
look-ahead times estimated on the datasets that integrated the his-
torical TFMS demand prediction data for all nine airports considered
in this study (non-airport-specific case)

Table 5 shows the coefficients of regression model estimated for
each airport on the TFMS prediction data for look-ahead times
between one and two hours (airport-specific case).

Both tables show (similar to Table 3) that, among the regression
weight coefficients a, b, and ¢, coefficient b is consistently the larg-
est and coefficient ¢ is the smallest. This means that the pre-
dicted demand counts at the 15-minute interval of interest (F(t, n)

Table 4. Non-Airport-Specific Model: Regression Coefficients for Various
Look-ahead Times

Look-ahead Time (hrs.)

Regression Coefficients <1 1-2 2-3 3-4 4-5
a 0.25 0.30 0.31 0.29 0.28
b 0.60 0.54 0.47 0.45 0.41
c 0.22 0.20 0.25 0.28 0.28
k —0.30 —0.10 0.30 0.68 1.17
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Table 5. Airport-Specific Regression Coefficients

Airports
Regression Coefficients ATL BOS DFW LAX MCI MIA ORD SFO STL

0.24 019 0.19 0.30 0.13 0.16 0.37 019 0.18
0.42 046 067 0.59 061 0.59 048 0.62 0.57
0.18 017 0.18 0.10 0.13 0.20 0.18 0.14 0.22
1.79 129 -043 045 0.02 026 1.15 0.28 —-.008

a0 oR

component) have the highest weight (coefficient ) in the regression
model, while the demand counts at the preceding and the following
15-minute intervals (F(t — 15, n) and F(t + 15, n) components, re-
spectively) have smaller weights. Additionally, coefficient a is con-
sistently greater than coefficient ¢ (in one case, when LAT > 4 hours,
they are equal). In other words, the preceding counts F(t — 15, n)
contribute to the regression with a higher weight than the following
counts F(t + 15, n). The latter reflects the common observation that
flights are more often late than early, so that the flights predicted to
arrive at (t — 15) interval are more likely to arrival later at interval
t than the flights predicted to arrive at (t + 15) interval would arrive
earlier at interval t. The regression coefficients tended to change
with increasing look-ahead time. In particular, coefficient b becomes
smaller for the longer look-ahead times, which might be explained by
reduction in accuracy of flight ETAs predictions for longer LATS,
while coefficients @ and ¢ insignificantly increase, still remaining
much smaller than b.

In Table 4, coefficient k& (constant term of the regression) varies
around 0 while slightly increasing with LAT. It is close to 1 flight
per 15-minute for the LAT exceeding 4 hours. For airport-specific
regressions (see Table 5), coefficients k are close to 0 at six of nine
airports. Table 5 demonstrates the correlation between behavior of
coefficients b and k: the smaller b the greater k. Moreover, when b is
smaller than 0.5 (in Table 5 it is between 0.42 and 0.48) coefficient 2
is greater than 1 (between 1.15 and 1.79), but it is reduced and
becomes close to 0 when b is greater than 0.5.

Tables 4 and 5 show that regression coefficients a, b and ¢ vary
depending on airport and LAT. However, each of them varies within a
narrow range.

The regressions with airport-specific coefficients were used for
both validation testing and comparison with current TFMS.

Given a limited variability of regression coefficients, the follow-
ing simplified regression model with the single set of coefficients
a =025 b=055 ¢ =02 and £k = 0 was also used for airport
validation testing:

A(t,n) =025F(t—15,n) + 0.55 F(t,n) + 0.20F(t +15,n).  (2)
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REGRESSION MODEL FOR SECTOR
DEMAND PREDICTIONS

Regression analysis was also performed for sectors, where traffic
demand is measured by the peak number of flights within a one-
minute bucket of a 15-minute interval. Regression Model 1, which
includes demand predictions for two adjacent intervals, was used for
sector demand prediction, and its parameters were determined on
the historical datasets collected at the same dates as for airports.
Table 6 shows the coefficients of this model for various look-ahead
times obtained for the datasets with combined data for all sectors
considered. Again, coefficients were as expected, with b being the
largest, and the value of b decreased as look-ahead times increased.
However, the constant term was substantially larger for the sector
model than for airports (compare Table 6 with Table 4).

Over the course of the analysis, a number of regression models
were considered. They included, along with the number of flights in
two immediate adjacent intervals, additional variables such as the
numbers of flights in two more distant intervals, active and proposed
flights, and the look-ahead time. Those additions did not provide any
significant benefits and showed very small improvements in the basic
model [9]. Accordingly, a model [10] was developed where some of the
coefficients depend on a precise look-ahead time. Table 7 shows the
values of these coefficients for several specific look-ahead times esti-
mated from the sets of data collected for all sectors considered

From this table, coefficients b and % can be extrapolated as linear
functions of LAT for LAT < 2 hrs, while coefficients ¢ and ¢ remained
constant.

Table 6. Sector Model: Coefficients for Various Look-ahead Times
Look-ahead Time (hrs.)

Regression Coefficients <1 1-2 2-3 3-4 4-5
a 0.27 0.21 0.20 0.19 0.20
b 0.44 0.36 0.25 0.23 0.21
c 0.08 0.14 0.14 0.16 0.16
k 1.23 2.54 3.26 3.75 3.89

Table 7. Sector Model Coefficients

Look-ahead Time

Regression Coefficients 0 1hr 2 hrs
a: F(t—15,n) 0.25 0.25 0.25
b: F(t,n) 0.51 0.38 0.25
c: F(t+15,n) 0.14 0.14 0.14

k: Constant —0.28 1.21 2.69




100 GILBO AND SMITH

Expressed in terms of an equation, the sector regression model
with coefficients as shown in Table 7 is as follows,:

A(t,n) = 0.25F(t — 15,n) + (0.51 — 0.13 LAT) F(t, n)
+0.14F(t +15,n) + 1.49LAT — 0.28
=A(t,n) +¢(t,n), (3)

where LAT is the look-ahead time in hours, and 0 < LAT < 2

MODEL VALIDATION

The accuracy and volatility of predictions from the regression
models were tested using 7 days of data that were not in the cali-
bration set. The data included some 27,000 predictions for various
airports, time of prediction (n), and event time (t) combinations, and
some 33,000 predictions for various sectors, time of prediction (n),
and event time (t) combinations. The days included three days in
July 2005 (Friday July 22, Saturday July 23, Wednesday July 27)
and four days in February 2006 (Tuesday February 14 — Friday
February 17). The look-ahead time was between 30 minutes and
two hours.

Airport Model

To assess the impact of regression models on accuracy of demand
predictions relative to current TFMS predictions, the accuracy anal-
ysis was performed for each airport using both airport-specific
regressions and a single, non-airport specific regression model from
equation (2). Parameters for airport-specific regressions were taken
from Table 5.

Table 8 shows the average and standard deviation of demand
prediction errors for TFMS (the existing model), the new single
regression model and the new airport-specific regression models.
In the Table, “Average Error” refers to Predicted minus Actual
number of flights per 15-minute, while the “Correlation” is the
correlation coefficient between predicted and actual numbers of
flights.

Table 8 shows that the TFMS and the single regression model
applied to individual airports provide similar average errors in traffic
demand predictions: a small fraction of one flight at SFO, MIA, STL,
LAX and MCI, close to one flight at ATL DFW and BOS, and more
than two flights at ORD. Not surprisingly, the airport specific regres-
sion significantly reduced the average errors at many airports: at
ORD, the error reduced from —2.63 in TFMS to 0.98, at ATL it re-
duced from 1.02 in TFMS to 0.52. There was, however, an increase in
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average error at LAX from 0.24 to 0.48, but the error remained
within a fraction of one flight.

The standard deviations of prediction error (Table 8) show a more
noticeable improvement in prediction accuracy, with all airports
showing an improvement. Linear regression reduced the standard
deviation at each airports ranging from 11% to 21% (except for DFW,
where the reduction was smaller). The single regression (2) and the
airport-specific regressions are very close in terms of accuracy of
traffic demand predictions at airports.

Table 8 shows that the correlation between predicted and actual
demand counts varies by airport and in most cases is high. The
regression models provide slightly higher correlation than TFMS
predictions with 4% — 10% increase in correlation coefficients (except
DFW where a high correlation of 0.85 remained unchanged). It is
worth noticing that a single regression model (2) provided nearly the
same correlation as airport-specific models.

To assess the sensitivity of accuracy of the regression model to its
coefficients, several values of the coefficients were applied to the
validation data sets. For values of coefficient b ranging from 0.45 to
0.6, coefficient a ranging from 0.2 to 0.35, coefficient ¢ ranging from
0.2 to 0.25, and all coefficients adding to one, there was very little
change (less than 3%) in the standard deviation.

Sector Model

To assess the impact of regression model on accuracy of sector demand
predictions, an analysis of the current TFMS and regression model
(equation 3) predictions was performed using historical TFMS data
that was not in the calibration data set for the same 13 sectors consid-
ered for the model calibration.

Table 9 shows characteristics of demand prediction accuracy at spe-
cific sectors. In the table, Average Error refers to Predicted minus
Actual number of flights per 15-minute, while the Correlation is
the correlation coefficient between predicted and actual numbers
of flights.

The regression model reduced the standard deviation of demand
prediction errors at all sectors considered (except ZLC06 and ZMP20):
the reduction ranged from 5% at ZBW17 to 22% at ZID83 and ZOB77.
The results for average errors were mixed but mainly without signifi-
cant difference in absolute values of errors (except ZMP20 and
ZLC16). The regression model did not make any noticeable difference
in increasing correlation coefficients for sector demand predictions.
For majority of sectors considered, the correlation coefficient is lower
than for airports, which can be explained by the differences in air-
port and sector demand definitions: aggregate number of flights per
15-minute vs. one-minute peak demand within a 15-minute interval.
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Table 9. Accuracy of Demand Predictions by Sector

Average Error Standard Deviation

(flights per 15-min) of Prediction Error Correlation
Sectors TFMS Regression TFMS Regression TFMS Regression
ZBW02 1.42 —0.16 4.28 3.69 0.79 0.81
ZBW17 2.00 1.84 2.69 2.55 0.89 0.88
ZID82 —0.22 —1.07 3.52 292 0.64 0.63
ZID83 0.10 —0.66 4.00 3.12 0.54 0.52
ZID86 —0.09 —0.69 3.46 2.88 0.56 0.59
ZLC06 0.24 —1.09 3.09 3.10 0.83 0.84
ZLC16 —0.72 —-1.79 4.39 4.08 0.61 0.62
ZMP20 2.39 0.48 3.09 3.02 0.88 0.89
Z0OB57 —0.79 —0.64 2.82 2.60 0.58 0.62
Z0B67 0.81 0.02 3.52 3.10 0.59 0.61
ZOBT7 1.05 0.41 3.91 3.05 0.58 0.58
ZSE14 0.40 0.17 2.68 2.26 0.62 0.65
ZTL43 —-1.19 —1.28 3.44 298 0.47 0.47
All Sectors Combined  0.42 —0.34 3.65 3.19 0.66 0.67

IMPACT ON MONITOR / ALERT

For traffic flow managers, unstable predictions can manifest them-
selves as frequent changes in alert status (flickering) where Monitor/
Alert switches on and off as the prediction crosses the capacity
threshold. The problem is most evident when demand is near capac-
ity. When demand remains far below capacity, there might be no
alert, even though the volatility of the demand predictions is still
high. Similarly, if demand is far above capacity, there is always
an alert. In this study, in order to avoid predictions being overly
influenced by TFM actions, we focused on non-congested days, with
demand usually less than capacity (alert thresholds) represented
in TFMS.

It is difficult to verify the accuracy of predictions when pre-
dicted demand is far above capacity. A simple comparison of pre-
dicted demand with actual traffic may be misleading. Since actual
traffic, generally speaking, cannot exceed capacity, such a pre-
diction would generally result in a Traffic Management Initiative
(TMI) that would bring the actual demand to the capacity level
by delaying or rerouting some flights. At the time the prediction
was made, it may have been perfectly accurate; however, the sub-
sequent TMI then changed the actual demand. Therefore, in this
study the analysis was conducted on the data from low demand
days when TMIs are unlikely and the errors in predictions are
likely not affected by control decisions of traffic management spe-
cialists. In the absence of air traffic control, the inaccuracy in
demand predictions is primarily caused by “internal” TFMS
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errors that accompany the processing of flight data. That is why
in the low demand periods it is reasonable to expect that pre-
dicted demand is close to what would actually happen. However,
the rarity of alerts in low demand periods make, it difficult to
analyze the benefits of improved accuracy of demand predictions
for monitor/alert improvements. Therefore, this study proposed to
reduce capacity thresholds in order to increase the number of
alerts.

To create a more meaningful comparison between current TFMS
and the new regression model with respect to stability of traffic
demand predictions, an artificial alert threshold equal to the average
number of flights in a 15-minute interval was created for airports.
For sectors, a threshold was created that approximated the average
number of flights present in the sector. The artificial thresholds
are shown in Table 10 and Table 12. In most cases, this reduced the
alert threshold.

By artificially creating alerts during what were, in reality, non-
congested conditions, we could analyze alerts during times where
TFM actions are not being taken and predicted demand is likely to
be close to what actually would occur subject to “internal” TFMS
prediction errors. Several measures were examined:

* The total number of times the demand prediction exceeds the
threshold (number of alerts).

* The number of changes in alert status (crossing the threshold)
of airport or sector. This is the number of times the demand
prediction crosses the capacity threshold during consecutive
traffic updates. To minimize flickering of alerts, a lower value
is better.

¢ Number or probability of false alerts (Type I errors) and failures to
alert, or missed alerts (Type II errors). False alerts happen when
the predicted demand exceeds capacity due to prediction errors
while the correctly predicted demand does not. Missed alerts hap-
pen when the predicted demand does not exceed capacity while the
correctly predicted demand exceeds capacity.

Figure 5 illustrates the concepts. The bar (a) on the left half of
Figure 5 represents a true demand prediction below MAP so that
there should be no alert. However, the prediction has some uncer-
tainty associated with it, and there is a chance that the prediction
might be higher than the MAP; hence the possibility of a false
alert. In the right half (b), the true predicted demand is higher
than the MAP, so there should be an alert. However, the uncer-
tainty in the prediction might result in a failure to alert, or missed
alert.

Note that the smoothing of consecutive demands (e.g., via
regression) can cause a change in the total number of alerts. This
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Figure 5. [lustration of probabilities of false and missed alerts.

change can go in either direction depending on the demand pat-
terns. It is reasonable to expect a change in the number of alerts.
For instance, when predicted demand exceeds MAP (and TFMS
would alert this interval) but demands in adjacent intervals are
much lower than MAP, the smoothing process would result in
estimated expected demand that does not exceed MAP and
there would be no alert. In this case the predicted demand in a

single interval was not big enough to make expected demand
higher than MAP.

Airport Demand Prediction Stability and Impact on
Monitor/Alert

Table 10 shows the number of alerts, crossings of the alert threshold,
false and missed alerts at airports. The numbers in the Regression
columns correspond to airport-specific regression models.

The “Grand Total” row in Table 10 shows results aggregated for all
airports. The last row of the table shows percents of differences in the
total numbers relative to TFMS numbers.
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Table 11. Summarized Monitor / Alert Measures for Airports
Airport-Specific

TFMS Single Regression Regression
Number of Alerts 14716 16216 15572
Crossing the Threshold 3146 1850 2030
False Alerts 2823 3374 2914
Missed Alerts 3567 2618 2802

The single-regression model, applied to airports, provided results
similar to those shown in Table 10.

Table 11 shows the summarized Monitor/Alert measures for TFMS,
the single regression model and the airport-specific regression model.

For these models, there were a substantial number of instances
where predicted demand exceeded the artificial threshold. However,
regression significantly improved stability in identifying alerts: for
demands estimated by regression models, the number of crossings of
this threshold has been reduced by an average of 35%. Regression
also provided significant reduction in the number of missed alerts in
comparison with the TFMS Monitor/Alert: 21% reduction by airport-
specific regression, and 27% reduction by single regression model.
The airport-specific regressions insignificantly increased the num-
ber of false alerts (3% higher than under TFMS) while the single
regression gave a higher increase (around 19%). This table illus-
trates potential benefits of using regression models, especially air-
port-specific models, for improving Monitor/Alert at airports. It also
should be noted that the numbers of false and missed alerts are
often in a tradeoff relationship: as one increases the other tends to
decrease.

Sector Demand Prediction Stability and Impact on
Monitor/Alert

A similar analysis was performed for sectors using the model shown
in Equation 3. There were 39,236 observations. The summarized
results are shown in Table 12.

The “Grand Total” row in Table 12 shows results aggregated for all
sectors. The last row of the table shows percents of differences in the
total numbers relative to TFMS numbers.

Here, similar to the airports, the regression model for predicting
demand at sectors showed much fewer instances of crossing the alert
threshold than current TFMS, which indicates improved stability.
The total number of missed alerts decreased by 22%, while the num-
ber of false alerts increased by 8%.
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Discussion

The TFMS deterministic predictions of traffic demand at each 15-
minute interval can be considered as a time series, each element
of which contains random errors. The linear regression of TFMS
deterministic traffic demand predictions for immediately adjacent
time intervals performs a weighted average of the time series within
a 45-minute moving time window which contains three consecutive
15-minute predictions. The moving weighted average provided by
linear regression smoothes the time series of deterministic TFMS
predictions and reduces prediction errors in comparison with the
current TFMS prediction errors. The question is in what cases the
regression approach for traffic demand predictions is most beneficial
to the Monitor/Alert function. When predicted demand at a 15-
minuite interval is far above or far below the MAP, this particular
15-minute interval will or will not be alerted with or without a
moderate reduction of prediction error. However, when traffic
demand is in a closer proximity to the MAP, the higher level of
prediction errors could cause more frequent flickering of predicted
demand around the MAP during periodic updates of demand pre-
dictions. Because of the flickering, alert status of airport or sector
would change from on to off and vice versa. Reducing prediction
errors in these cases would increase stability in alert identification.
Additionally, smoothing of the TFMS traffic demand time series by
linear regression would result in substantially fewer crossings of the
alert threshold for both airports and sectors, providing the TFM
specialists with more stable and more reliable information about
potential alerts.

The impact of using regression models on the number of false and
missed alerts depends on the severity of congestion, namely, the mag-
nitude and duration that the predicted demand exceeds the MAP. In
cases of sustained high demand, significantly exceeding the MAP
over a period of time, both current TFMS and regression model pre-
dictions will provide small numbers of false and missed alerts. The
relationship between the number of false and missed alerts changes
as traffic demand becomes closer to the MAP. When demand only
slightly (e.g., by 1 or 2 flights) exceeds the MAP in a few time inter-
vals, TFMS will alert the entire 15-minute interval in a sector
regardless of the magnitude of a single minute overload. The regres-
sion model smoothes those TFMS demands and will likely bring them
below the MAP. This could lead to an increase in the number of
missed alerts in comparison with TFMS. In a situation like this, the
TFM specialist might ignore the TFMS alert, recognizing that it is
not significant. The most positive impact of demand predictions via
linear regression on Monitor/Alert reliability (in terms of missed
and false alerts) occurs in the cases of moderate congestion, when
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predicted demands are frequently higher than the MAP. In these
cases, the number of missed alerts can be substantially reduced in
comparison with the current TFMS Monitor/Alert. This reduction
might be accompanied by a smaller increase in the number of false
alerts, as missed and false alerts are generally in a tradeoff relation-
ship. Tables 10 and 12 illustrate this effect.

CONCLUSIONS

TFMS currently makes its aggregate traffic demand predictions
based on deterministic projections of traffic and neglects random
errors in predictions. The TFMS predictions can be improved by
including in the calculation a factor for uncertainty. The new pre-
diction models that were proposed and analyzed in this study took
into account uncertainty in traffic demand predictions and showed
improvements in both accuracy and stability of demand predictions
compared with current TFMS.

The research was focused on analysis and characterization of errors
in aggregate demand predictions inherent in TFMS and on improve-
ments of TFMS predictions by using a new prediction approach based
on linear regression that includes, along with deterministic pre-
dictions for the 15-minute interval of interest, the predictions for
two immediate adjacent 15-minute intervals (t — 15) and (t + 15).
Including demand predictions for adjacent intervals would take
into account possible random migration of some flights from one
15-minute interval to another during consecutive demand updates
due to errors in predictions of flight arrival times. The proposed new
models were used for predicting demands at airports and sectors.

The results of the study can be summarized as follows:

¢ Statistical analysis of TFMS historical data provided a characteri-
zation of the uncertainty in current TFMS aggregate demand
predictions. Average errors and standard deviation of prediction
errors were estimated at nine airports and thirteen en route
sectors for various look-ahead times (LAT) ranging from 30
minutes to 6 hours.

* Linear regression was proposed and used as a new prediction
model that improves accuracy of aggregate demand predictions.

* The parameters of regression models were calibrated on historical
TFMS demand data for selected airports and sectors for various
look-ahead times.

* The regression models were tested on data not in the original
calibration set for look ahead times ranging from 30 minutes to
2 hours. It showed an improvement in accuracy of demand pre-
diction in comparison with the current TFMS predictions.
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» For airports, the reduction in standard deviation over the cur-
rent TFMS predictions averaged 13 percent, and ranged be-
tween 2 and 21 percent, depending on the airport.

= For en route sectors, the reduction in standard deviation over
the current TFMS predictions averaged 12 percent, and ranged
between 0 and 22 percent, depending on the sector.

* Improvements in accuracy of demand predictions by the new
regression models provide significant benefits for the stability of
the Monitor/Alert function mainly in cases when predicted demand
counts are in the vicinity of airport or sector capacity, when the
instability and high fluctuations of successive demand predictions
may therefore cause significant instability and fluctuations (flick-
ering) in the display of alert status. When capacity was set equal to
average demand, the number of changes in alert status decreased
by 35 to 49%, depending on the airport or sector.

* For airports and sectors, the new model significantly reduced the
number of missed alerts, at the cost of a smaller increase in false
alerts.

* The material presented in the paper has a direct connection with
probabilistic representation of traffic demand: the expected de-
mand provided by regression and dispersion around it can be
easily translated to an uncertainty band around expected demand
that covers the area where demand values could be predicted with
a certain probability.
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ACRONYMS

CDM Collaborative Decision Making
ETA Estimated Time of Arrival
ETD Estimated Time of Departure
GDP Ground Delay Program

LAT Look-Ahead Time

MAP Monitor / Alert Parameter
MIT Miles in Trail

NAS National Airspace System

NextGen Next Generation Air Transportation System
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TFM Traffic Flow Management
TFMS Traffic Flow Management System
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