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Introduction 

Cornering lamps were first featured on US automobile lines in the early 1960’s, 

appearing on the Cadillac DeVille in 1962.  The feature later migrated to models offered 

by other General Motors divisions such as Buick, Oldsmobile, and Pontiac later in the 

decade (citation).  The 1962 Cadillac DeVille brochure (The Old Car Manual Project, 

2010) describes the feature as projecting “…a 30 degree fan shaped 50-candle power 

beam, perpendicular to the side of the car, thus illuminating the roadside and road signs 

for extra safety in turning corners at night.”  The feature eventually appeared on models 

offered by Ford in 1966, and Chrysler in 1968. European manufacturers did not offer 

cornering lamps until after 2005, when ECE Regulation No. 119 (ECE R119; United 

Nations Economic Commission for Europe, 2005) was adopted, although the 1967 

Citroën DS did feature a swiveling headlamp to help illuminate turns.  Japanese 

manufacturers began offering cornering lights in the late 1980’s.  Today, cornering lamps 

are frequently offered as standard equipment on many luxury-class vehicles, and are 

offered by most worldwide manufacturers.  Cornering lamp functionality can be found 

embedded within sophisticated adaptive frontlighting systems (AFS) (e.g., 2010 BMW 

Series 1), combined with fog lamps (e.g., 2011 Volkswagen Touareg) or implemented as 

a separate lighting function (e.g., 2010 Cadillac DTS). 

This report examines the recommended characteristics of the illumination 

function of front cornering lamps as described in the Society of Automotive Engineers 

Recommended Practice J852 (SAE J852), Front Cornering Lamps for Use on Motor 

Vehicles (Society of Automotive Engineers, 2001), and ECE R119/48, Uniform 

Provisions Concerning the Approval of Cornering Lamps for Power-Driven Vehicles/ 

Uniform Provisions Concerning the Approval of Vehicles with Regard to the Installation 

of Lighting and Light-Signalling Devices (United Nations Economic Commission for 

Europe, 2005, 2008).  The recommended light distributions for cornering lamps will then 

be compared to low-speed turn maneuvers observed during naturalistic driving to 

determine how well the recommendations fit a driver’s illumination needs over the path 

of the turn.  It is important to note that cornering lamps also likely provide useful 

illumination unrelated to turn trajectory.  For example, when turning into a driveway, 
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illumination of out-of-path objects can help drivers notice potential future conflicts with 

pedestrians; when stopped at an intersection a vehicle’s cornering lamps can help 

illuminate pedestrians in crosswalks; when driving along a dark road searching for a 

turnoff, cornering lights may improve drivers’ awareness of the roadway edge.  The 

present analysis does not explicitly address these cornering scenarios; it does, however, 

address the illumination needs implied in an active turn maneuver and is consistent with 

cornering illumination activated by either steering wheel angle or yaw rate sensing.   

Front Cornering Lamp Photometry and Operation. A direct comparison between 

SAE J852 and ECE R119/48 is provided in Table 1.  Notably, the documents differ in the 

use of reference coordinates describing the photometric output of the cornering lamp: 

SAE J852 uses an axis perpendicular to the vehicle’s longitudinal axis; ECE R119’s axis 

is parallel to this axis.  In US models of the 1960’s through the 1980’s, cornering lamps 

were commonly mounted on the left and right front fenders, forward of the front wheel 

well (Figure 1).  The axis of a cornering lamp was thus originally perpendicular to the 

vehicle axis.  In later designs, the lamp is positioned farther forward and nearer to the 

front headlamps (Figure 2).  In European models, the cornering function is closely related 

to adaptive frontlighting system (AFS) function and may be integrated directly into the 

forward lighting assembly (e.g., 2010 Renault Modus, Clio III) or associated with fog 

lamp operation (e.g., 2010 BMW Series 3).   

 

Figure 1. 1983 Oldsmobile 98 cornering lamp. 
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Figure 2.  2009 Cadillac DTS.  Cornering lamps are positioned below headlamps in the 
forward front corners of the vehicle. 

Other notable differences between the two documents include generally lower 

photometric minimums at the specified test points and lower maximums at H in ECE 

R119, although higher maximums seem to be acceptable in the 10-90 U range 

surrounding the lamp.  ECE R48 also allows a generally wider range of lamp mounting 

heights, although the regulation further restricts mounting height not to exceed the height 

of the dipped beam.  ECE R48 is also more specific about the acceptable speed range for 

cornering lamp activation, recommending activation only at speeds below 40 km/h.  In 

contrast, US automobile manufacturers seem to have adopted 35 mph (56 km/h) as their 

definition of low-speed.  Other criteria for activation are similar in the two documents, 

although the steering angle criterion is not specific.  Finally, criteria for lamp deactivation 

are similar between the two documents, with exception of the role of vehicle speed in 

deactivating the lamp.  The SAE recommended practice suggests that the lamp may be 

deactivated when speed becomes high or if the vehicle is stopped “to avoid discomfort to 

other road users.”  ECE R48 is comparatively firmer on this point and requires 

deactivation only above 40 km/h. 
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Table 1 
Comparison between SAE J852 and ECE Regulations 119 and 48. 

Characteristic SAE J852 ECE Regulation 119 & 48 Notes 

Photometry 

Minimums (left): 
2.5 D – 30 L: 300 cd 
2.5 D – 45 L: 500 cd 
2.5 D – 60 L: 300 cd 
 
 
Maximums (left): 
10 U to 90 U – 5 to 135L: 125 cd 
4 U – 5 to 135 L: 200 cd 
2 U – 5 to 135 L: 300 cd 
1 U – 5 to 235 L: 400 cd 
0 U – 5 to 235 L: 500 cd 

Minimums (left): 
2.5 D – 30 L: 240 cd 
2.5 D – 45 L: 400 cd 
2.5 D – 60 L: 240 cd 
10 U to 10 D – 30 L to 60 L: 1 cd 
 
Maximums(left): 
0 to 90 U – L and R: 300 cd 
.57 D – L and R: 600 cd 
Below .57 D – L and R: 10,000 

The original reference 
axis in the SAE 
recommended practice is 
perpendicular to 
longitudinal axis of the 
vehicle. The SAE 
coordinates have been 
converted to the reference 
axis used in ECE R119, 
the longitudinal axis of 
the vehicle. 
Specification is given for 
the driver side (left) 
lamps; to convert to 
passenger side (right) 
coordinates, left angular 
offsets should be changed 
to right. 

Mounting 
Height 

Minimum: 305 mm 250 mm ECE R48 stipulates that 
cornering lamp mounting 
height cannot exceed 
height of dipped beam  
(United Nations 
Economic Commission 
for Europe, 2008). 

Maximum: 760 mm 900 mm 

Activation 

Activated if all the following 
conditions are met: 
 
Headlamps = ON 
 
Direction indicator = ON 
AND/OR  
Steering Angle = NOT Straight 
  
Vehicle speed = “Low” 

Activated if all the following 
conditions are met (ECE R48): 
 
Headlamps = ON 
 
 Direction indicator=ON 
AND/OR 
Steering angle = NOT Straight 
 
Vehicle Speed < 40 km/h 

Many US manufacturers 
define low vehicle speed 
as less than 35 mph (56 
km/h). 

Deactivation 

Deactivated if any of the 
following conditions are true: 
 
Headlamps = OFF 
 
(Direction Indicator = OFF 
AND/OR  
Steering Angle = Straight) 
 
(Optional) 
Vehicle Speed is high. 
Vehicle is stopped. 

Deactivated if any of the 
following conditions are true: 
 
Headlamps = OFF 
 
(Direction Indicator = OFF 
AND/OR 
Steering Angle = Straight) 
 
Vehicle Speed > 40 km/h 
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Method 

The trajectories of naturalistic turning behavior were compiled for 87 drivers 

participating in the Road Departure Crash Warning (RDCW) field operational test 

(LeBlanc et al., 2006).  For each driver, low speed turns were selected in which vehicle 

speed was less than 56 km/h (35 mph) throughout the turn, and a heading change of 

between 45 and 150 degrees occurred from the start to the finish of the turn.  For each 

point in the trajectory, a stopping time was calculated based on an estimated brake 

reaction time of 1.5 seconds, and a uniform deceleration rate of 0.3 g (2.94 m/s2) from the 

current speed of the vehicle.  The future vehicle position at this time offset was then used 

to calculate an angular offset and distance from the current vehicle position.  Thus, the 

calculation produced moment-to-moment distances and angular offsets to the future 

position of a turning vehicle (i.e., r, θ pairs).  The analysis thus attempts to determine the 

distribution of distances and angles along a turn trajectory for which a driver might need 

adequate illumination to enable sufficient time to stop the vehicle to avoid an object in 

the turn path. 

The vehicles used in the RDCW field test were 2003 Nissan Altima 3.5 SE sedans 

outfitted with on-board data acquisition systems capable of recording GPS information. 

Subjects 

The turning behavior of 87 drivers was analyzed. The pool of drivers included 47 

male and 40 female drivers.  They were divided into three age groups: young (20 to 30 

years, 32 total); middle (40 to 50 years, 28 total); and old (60 years and older, 27 total).   

Analysis 

Turn Selection Criteria. Turn trajectories of a fleet of instrumented 2003 Nissan 

Altima 3.5SE sedans was recorded using a global positioning system (GPS) to provide 

latitude and longitude coordinates, along with measures of vehicle speed, heading angle, 

and yaw rate, recorded at a fixed rate of 10 Hz.  Turns were initially detected by scanning 

vehicle time histories for yaw rates that exceeded a minimum of 8 degrees per second, 

and then tracking backward and forward in the time history for yaw rates below 0.5 
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degrees per second, defining the start and stop of the turn, respectively.  Turns that 

exceeded 35 mph (56 km/h) during this interval were removed from the sample.  Turns 

located on limited access roads and freeway ramps were also removed from the sample—

in most cases, these turns exceeded the low speed turn criterion for cornering lamp 

operation; turns on local roads, and on major and minor surface streets were retained.  

The turn sample was also filtered to include only turns in which there occurred a heading 

change of between 45 and 150 degrees.  Finally, turns involving excessive GPS dropouts 

were also removed from the sample.  Thus, the selected turns were expected to conform 

to the general operating environment implied in SAE J852 and ECE R119. 

Data Processing.  The distribution of total heading change included in the 

sampled turns was calculated to provide an overview of the general characteristics of 

turns examined in this analysis.  In addition, a breakdown of the average number of turns 

by age group and gender was also developed to further characterize the sample of turns. 

Each sampled GPS coordinate in the turn trajectory was transformed to 

rectangular metric coordinates.  These coordinates, which represent the center of a 

vehicle, were split into separate trajectories to represent the approximate lateral offset of 

a cornering lamp mounted to each side of a vehicle.  For the Altima, trajectories were 

defined for left and right offsets from the center of the vehicle based on a vehicle width 

of 1.8 m.  Thus, a left-side and right-side trajectory was computed for each turn.  Based 

on the measured vehicle speed, a future stopping time was calculated for each point in the 

turn trajectory based on a uniform deceleration of 0.3 g (2.94 m/s2).  An angular heading 

offset and distance was calculated from the current vehicle position to the vehicle’s future 

position at the stopping time offset (shown in Figure 3).  For left turns, this calculation 

used the left-side vehicle trajectory; for right turns, the right-side trajectory was used. 

This reduced the effective vehicle turn radius by half the width of the vehicle.  The points 

were then weighted by vehicle speed to weight turns by distance travelled (instead of 

time spent in the turn).  For example, if one vehicle is travelling twice the speed of 

another, when sampled at 10 Hz, the slower moving vehicle will produce twice the 

number of samples over the same distance.  If the unweighted observations were then 

combined, the low-speed trajectory would have twice the weight of the high speed 
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observations.  After weighting points by vehicle speed, the results reflect the distance 

travelled (rather than time spent) at that trajectory. 

For each subject, the distribution of weighted angular offsets and distances was 

compiled separately for left and right turns.  These distributions were then normalized for 

each subject and combined so that subjects contributed equally to the overall 

distributions.  That is, the raw number of turns a subject executed did not affect the 

weight of that subject’s data in the overall distribution. 

 

 
Figure 3. Calculation of distance and angular offset for each point in the path of a turning 

vehicle.   The future location is determined by the calculated time required to bring the 
vehicle to a stop. 
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Results 

Distribution of Heading Change. The distribution of heading changes in the 

sample of turns is shown in Figure 4.  The abrupt cutoff at ± 40 degrees reflects the 

filtering criteria applied to the sample. A similar cutoff was also applied to turns above ± 

150 degrees, although less than 5% of turns exceeded a heading change of 120 degrees.  

Turns of 90 degrees dominated the sample, which appeared to be symmetrically skewed 

toward smaller heading changes. 
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Figure 4.  Distribution of heading change among drivers in sample. Right turns are 

indicated by positive heading change, left turns are negative heading changes.  The bars 
in the histogram sum to 100 percent. 

Turn Count by Age, Sex, and Direction. In the driver sample, younger drivers 

produced more turns on average than either the middle aged or older drivers.  Older and 

middle aged females also produced fewer turns than their male counterparts.  These 

differences do not necessarily reflect different propensities to execute turns among the 

subjects, but instead mirror overall differences in the amount of driving performed during 

the four-week period of the field test (LeBlanc et al., 2006).  Younger drivers produced 

slightly more left turns in the sample than right turns, unlike middle aged and older 

drivers.  The differences in turn quantities were offset by separately calculating 
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distributions within age group, sex, and turn direction and then combining them with 

equal weight. 
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Figure 5.  Average number of turns by direction, driver age, and gender. 
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Distribution of Future Position along a Turn Trajectory.  Figure 6 provides a 

contour map of the distribution of the future positions of a vehicle, relative to the current 

position based on turn trajectories compiled from the RDCW database of naturalistic 

driving data.  The future position was determined by calculating the time it would take to 

stop a vehicle, given its current speed and assuming a brake initiation latency of 1.5 sec 

and a deceleration rate of 0.3 g (2.94 m/s2).  It is important to recognize that Figure 6 

does not represent vehicle path trajectories.  The six red markers along the 30, 45, and 60 

degree radials (left and right) identify the approximate position of where the photometric 

minimum points intersect the ground plane.  This calculation is based on an assumed 

mounting height of 0.46 meters, the average mounting height associated with fog lamps 

(Schoettle, Sivak, & Nakata, 2002), and both the SAE and ECE locations of photometric 

minimum points.  As can be seen in Figure 6, these points do not appear to be well 

aligned with the future position of turning vehicles. 

It is also noteworthy that the left and right distributions appear to be bimodal, 

with peaks near each lamp’s origin as well as peaks approximately 15 meters away at 

around ±32 degrees.  The bimodal distribution is a likely consequence of whether the turn 

is initiated from a stop, or whether it is part of a continuous transition between a straight 

direction of travel followed by a turn—as when turning at an intersection with a green 

traffic signal.  To examine this in more detail, the distribution of vehicle speed at the start 

of each turn was compiled across the sample (shown in Figure 7).  As expected, the initial 

speed distribution is also bimodal, suggesting that some turns are initiated after the 

vehicle stopped, while others are initiated without a stop. 

 There also appears to be some asymmetry in the left and right distributions of 

future vehicle offset. For example, the right turn distribution suggests a need for path 

illumination at near distances at offset angles less than 15 degrees, while in left turns, 

path illumination at near distances would be more suited at angular offset between 15 and 

30 degrees.  One reason for this difference may that the characteristics of turn execution 

in each direction are markedly different.  For example, at signalized intersections it is 

generally permissible to make a right turn on red after stopping, while left-turning 

vehicles are required to stop and remain stopped.  It is possible that right-turning vehicles 

frequently creep through intersections when a stop is signaled, without actually coming to 
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a full stop.  In such a case, the lead-up to the turn might involve low speeds and small 

angular deviations until a sufficient gap is detected to allow merging into the flow of 

crossing traffic.  This pattern is less likely to occur in left turns.   

Another difference between the left and right turns is that the distribution of 

future positions in left turns extends farther distances along the radial with less acute 

angular offsets (i.e., close to the -30 degree radial). In contrast, the right turn distribution 

suggests slightly larger angular offsets and nearer future positions.  This is likely related 

to differences in the average turn radius of left versus right turns.  Left turns, with larger 

turn radii, might support traversal at slightly higher vehicle speeds and less acute angular 

deviations. 
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Figure 6.  Birds-eye view of projected future locations.  The three red points to each side 
indicate the projected pavement locations of minimum photometric test points described 

in both the SAE J852 Recommended Practice and ECE Regulation 119.  The origin of the 
entire diagram (0,0 meters) represents the midline/front of the vehicle. The slightly 

separate origins of the two grid overlays coincide with the approximate positions of left 
and right cornering lamps (0.8 meters to either side of the midline). The colored contours 

indicate relative density. 
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Figure 7.  Vehicle speed at the start of a turn for left and right turns. The observed 

distributions are bimodal, suggesting turns initiated from stopped versus moving vehicles.   
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Conclusion 

This analysis of the distribution of future locations along a turn path is the first 

examination of turn kinematics performed by drivers under natural conditions.  The 

results seem to suggest that both SAE J852 and ECE R119/48 may be a less-than-perfect 

matches to a driver’s needs, if illumination of the turn trajectory were the primary 

objective of cornering lamps.  For example, the downward aim of the highest minimum 

test points (2.5 D, 45L and 45R) would intersect the roadway short of the peak future 

path locations on both the left and right sides, unless the mounting height of the lamp 

exceeded 700 mm.  Such height is close to the range limit indicated in SAE J582 and is 

well above the center of the range indicated in ECE R48.  This being said, it should be 

noted that there are no maximums in SAE J852 below H, while ECE R119 fixes a 

maximum of 600 cd at .57 D and 10,000 cd below .57 D, thus clearly permitting 

illumination to reach this range while complying with each specification.  It should also 

be noted that the angular offsets of the minimum photometric points described in the two 

specifications are not well aligned with the actual distribution of future positions within 

the turns examined in this dataset.  In both SAE J582 and ECE R119, the photometric 

points are centered around 45 L and 45 R, while the future position data appears to 

suggest the future path is centered around 32 L and 32 R for moving turns, and below 30 

L and 15 R for turns initiated from stops or near-stops.   

Of course, there are also many important objects to view around a roadway that 

are not in the travel path of the turning vehicle.  This includes fixed objects such as lane 

and roadway boundary markings and signage positioned beside the road, some of which 

may not be reflectorized; it also includes objects such as pedestrians, pedalcyclists, and 

animals that may wander into the travel path of the vehicle.  The present data do not 

specifically address these circumstances, although further modeling of the geometric 

characteristics may provide some guidance in optimizing the cornering light distribution 

for the driver.  
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