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ABSTRACT 
 
Both public and private entities are concerned with the impacts of future toll revenue, and 

the effects of tolled facilities on system congestion.  Due to the inherent complexity of 

transportation systems, it is impossible to predict travel demand and congestion conditions 

exactly, and simplistic attempts to account for this consistently underestimate true levels of 

congestion.  Thus, in the context of roadway pricing, there is a need to develop mathematical 

models which explicitly account for both demand and supply uncertainty in both the short-term 

and long-term time scales.  This project will develop these models, which will be suitable either 

to determine the best pricing policies to maximize revenue or minimize congestion, or to 

evaluate alternative toll policies according to these metrics.  Thus, these models will produce 

more accurate predictions of toll revenues and congestion levels than are available using current 

methods.   
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EXECUTIVE SUMMARY 
 

Transportation systems are highly complex, since their operation depends both on human 

behavior as well as events such as incidents and weather which are themselves unpredictable, or 

even chaotic.  Thus, it is impossible to predict system conditions even in the short-term, let alone 

for longer time horizons.  At the same time, it is incorrect to base predictions on nominally 

“average” or “expected” system conditions – due to the nonlinearity of transportation systems, 

this approach consistently underestimates congestion levels. (Waller et al., 2001)  Instead, one 

must fully incorporate this uncertainty into the modeling process, accounting for it at each step. 

Uncertainty plays an integral role in pricing transportation networks. Transportation 

agencies have commonly used tolls to generate revenue to offset infrastructure construction and 

maintenance costs.  More recently, private firms have been allowed to own and operate 

transportation facilities as well. However, most of these tolls and revenue forecasts are based on 

a single, deterministic point estimate of roadway demand and supply. Failure to account for the 

uncertainties inherent in travel patterns when establishing toll policies leads to inaccurate 

predictions of both congestion levels and revenue. 

Therefore, there is a need to develop methodologies to support toll pricing decisions 

which account for the uncertainties in future demand and road usage. This problem is especially 

relevant in recent times with an increase in the number of highway Build-Operate-Transfer 

(BOT) projects, in which private firms attempt to recover and profit on their investment through 

tolling. Failing to account for future uncertainty can result in overestimation of the future cash 

flow causing significant losses for investors, or unnecessary congestion throughout the network. 

This report includes a review of existing methodologies related to modeling supply- and 

demand-side uncertainty mathematically, incorporates these techniques into pricing models, 

allowing both optimal toll policies to be found (satisfying goals such as revenue maximization or 

congestion minimization), and allowing alternative toll policies to be evaluated according to a 

variety of measures of effectiveness, and examines the suitability of these models for a variety of 

applications, such as prediction of toll revenues, transportation planning, and alternative analysis 

involving BOT projects. While considering both demand and supply side uncertainty, the 

framework developed in this report also allows the benefits of real-time travel information to be 

compared directly against the benefits of responsive pricing, allowing planning agencies to 
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identify the value of these policy options or contract terms in publicly- or privately-operated toll 

roads.  Specifically, six scenarios reflect different combinations of policy options, and 

correspond to different solution methods for optimal tolls.   

 

Background 

Broadly speaking, the sources of uncertainty in transportation systems can be classified in 

several ways, according to the time scale (short-term/operational vs. long-term/planning), and to 

whether travel supply or demand is affected.  For instance, incidents affect roadway supply 

(capacity) in the short-term, while uncertainty in future economic conditions affects travel 

demand in the long-term.  These are discussed in more detail in the following subsections. 

 

Demand-Side Uncertainty 

Demand-side uncertainty occurs both in the short-term (operational) and the long-term 

(planning) time scales, and these two effects must be considered.  In the short-term, daily 

demand fluctuations contribute to unreliability of travel times, which has demonstrable effects on 

route choice behavior.  In the long-term, changes in land use or travel demand patterns may lead 

to a facility which is either overused or underused, as compared to the design scenario.  When 

tolls are involved, both of these also have significant implications for revenue streams, in 

addition to the usual effects on congestion levels.   

Numerous works have focused on developing bi-level mathematical programming 

formulations and solution algorithms for the network design problem under uncertain demand 

(Karoonsoontawong and Waller, 2006; Ukkusuri, Tom, and Waller, 2007; Waller and 

Ziliaskopoulos, 2007). Gardner, Unnikrishnan, and Waller (2008) show that marginal social cost 

prices obtained using the expected value of demand can significantly deteriorate system 

performance especially when the actual system state deviates from the planned forecasted 

conditions. Chen et. al. (2007) studied the problem of setting optimal tolls and capacity on a 

subset of links in a highway B-O-T project under demand uncertainty. In this study, private 

investors set tolls to maximize profit and to offset the construction cost under numerous 

regulations imposed by the state and other stakeholders.  More recently, Li. et. al. (2007) 

developed a bilevel mathematical programming formulation to determine the optimal tolls to 

improve travel time reliability under uncertain demand and capacity. 
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Supply-Side Uncertainty 

Supply-side uncertainty occurs from nonrecurring changes in roadway capacity: incidents 

are the most significant source of this type of uncertainty, although weather, special events, and 

construction also contribute to this.  This affects toll revenue in three distinct ways: first, 

motorists prefer more reliable facilities to less reliable ones, which has an impact on habitual 

route choice even when no disruption occurs.  Second, when roadway capacity is reduced, toll 

revenue is adversely affected because fewer vehicles can use the facility.  Finally, if tolls can be 

varied in response to supply uncertainty, the operator must choose how to adjust prices in order 

to reflect realized conditions, according to their particular objective and constraints. 

This type of uncertainty has several impacts on the effectiveness of congestion pricing, 

primarily depending on what information travelers have, and on the ability of the system 

operator(s) to vary tolls in response to observed conditions.  These two affects can work 

synergistically: Yang (1999) showed that responsive pricing and travel information “complement 

each other and that their joint implementation can reduce travel time more efficiently.”  Similar 

results were shown by de Palma and Lindsey (1998).  More recently, Lindsey (2008) show that 

marginal-cost congestion pricing still generates enough revenue to construct the socially-optimal 

amount of capacity, as long as drivers are informed and tolls are responsive; this generalizes an 

earlier result of Mohring and Harwitz (1962). 

Aside from the impact on system congestion, supply-side uncertainty also impacts toll 

revenues directly, because travel time reliability plays a key role in users’ travel choices, often 

being nearly as significant as average travel time (Small et al., 2005).  This has been revealed by 

many researchers using a variety of econometric techniques, regardless of how reliability is 

measured: for instance, Small et al. (2005) and Liu et al. (2007) use the difference between the 

80th- and 50th-percentile travel times, while Pinjari and Bhat (2006) used the maximum 

additional travel time that might be required.  For additional details, Bates et al. (2001) and 

Noland and Polak (2002) provide overviews of theoretical and empirical research in valuation of 

travel time reliability.  Without using methods such as these to determine user route choice, it is 

impossible to accurately predict either toll revenue or to produce the tolling policies which 

maximize revenue or minimize congestion levels. 
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Demonstrations are provided on both the Sioux Falls and Anaheim networks. Under 

conditions of both supply and demand uncertainty, results indicate that providing information to 

drivers implemented alongside responsive tolling may reduce expected total system travel time 

by over 9%, though more than 8% of the improvement is due to providing information, with the 

remaining 1% improvement gained from responsive tolling.    

 



   
 

 x

 



   
 

 xi

TABLE OF CONTENTS 
 
DISCLAIMER ............................................................................................................................. iv 

ACKNOWLEDGEMENTS......................................................................................................... iv 

ABSTRACT ................................................................................................................................. v 

EXECUTIVE SUMMARY ......................................................................................................... vi 

LIST OF FIGURES .................................................................................................................... xii 

LIST OF TABLES...................................................................................................................... xii 

INTRODUCTION ........................................................................................................................ 1 

BACKGROUND .......................................................................................................................... 3 

LITERATURE REVIEW ............................................................................................................. 7 

MODEL FORMULATION ........................................................................................................ 11 

DEMONSTRATIONS................................................................................................................ 19 

CONCLUSION .......................................................................................................................... 29 

REFERENCES ........................................................................................................................... 31 

 

 



   
 

 xii

LIST OF FIGURES 
 
Figure 1. Six different information scenarios .............................................................................. 14 

Figure 2. Sioux Falls network and base parameter values (dashed lines represent  

freeway links) .............................................................................................................. 20 

Figure 3. Impact of Demand Uncertainty on System Performance and Revenue ....................... 33 

Figure 4. Impact of Supply Uncertainty on System Performance and Revenue ......................... 34 

Figure 5. Impact of Supply and Demand Uncertainty on System Performance  

and Revenue ................................................................................................................ 35 

Figure 6.  Impact of Incident Severity on System Performance and Revenue ............................ 36 



   
 

 xiii

LIST OF TABLES 
 

Table 1.  Comparison of MOE’s for all scenarios for Sioux Falls network, base case ............... 27 

Table 2.  Comparison of MOE’s for all scenarios for Anaheim network, base case .................. 27 

Table 3.  Computation time needed for samples different scenarios, in seconds ........................ 28 



   
 

 x

 



   
 

 1

INTRODUCTION 
 
 

Roadway pricing is of great interest today as state and federal governments seek funding 

for building and maintaining transportation infrastructure.  This interest is demonstrated by the 

increasing number of regions implementing roadway tolling, and by the growing number of 

public-private partnerships (PPPs) and other innovative financing structures.  In addition to 

serving as an alternate revenue stream, tolling has demonstrated potential to reduce travel delay 

by providing incentives to choose a travel route, mode, or departure time which is less 

burdensome to society. 

In the case of PPPs, tolls are often collected from the public to pay back the cost of the 

project, and to generate future revenue for the private investor.  Such investors are highly 

concerned with the risk of this investment, in addition to the expected rate of return over the 

project lifetime (Nijkamp and Rienstra, 1995).  This risk arises from deviations in the predicted 

revenue which accrue both in the short-run (due to daily fluctuations in demand or capacity 

disruptions such as incidents) and in the long-run (due to prediction errors in forecasting land 

use, travel demand, or the future roadway system).  Including these events in pricing models is 

critical for accurately evaluating the investment success of a toll project. 

Even for publicly-operated facilities, these uncertain events wield major influence over 

the revenue generated from tolls, as well as the degree to which congestion can be managed.  In 

terms of congestion management, resilience in the face of short-term capacity disruptions (such 

as incidents or poor weather) plays a central role even in long-term planning; it is well-

demonstrated in the mode and route choice literature that short-term reliability wields 

considerable influence on habitual decision-making (see, for instance, Small et al., 2005; Pinjari 

and Bhat, 2006; or Liu et al., 2007), often of the same order of magnitude as average travel time. 

Furthermore, innovative technologies now allow tolls to be varied dynamically, and methods for 

developing and analyzing responsive pricing strategies must be applied.   

In this context, the contribution of this paper is the development of a framework for 

considering different toll policy options or contract terms, accounting for uncertainty both on the 

supply-side and on the demand-side.  Methods are given for quantifying the benefits of 

responsive tolling and real-time travel information, such as advanced traveler information 

systems (ATIS).  The former is directly related to toll implementation, while the latter naturally 
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complements decision making under uncertainty, as shown by the long history of information 

and pricing models in the economics literature (described in more detail in the background 

section).  As a result, (i) the effects of information and toll flexibility in pricing problems can be 

quantified, allowing both public agencies and private entities to know the value of these options 

when setting a toll policy or negotiating PPP contracts; (ii) revenue variability due both to short-

term supply disruption and long-term forecasting error can be measured; and (iii) the error 

introduced by assuming known future conditions can be quantified.  
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BACKGROUND 

 
 
Demand Uncertainty 

As with all traffic flow modeling, travel demand is a key factor in determining network 

performance, yet inherent uncertainty in the prediction process makes it difficult to properly 

account for.   Changes in land use such as suburban sprawl, increasing population, and changing 

gas prices, are just a few of the reasons accurately predicting long term travel demand is virtually 

impossible. Given the long-range planning setting of this work, we only consider long-term 

demand uncertainty. The actual (future) demand realization is unknown when the tolls are being 

set; after the tolls are set (and after some time) the actual demand is realized and the users 

equilibrate deterministically. This assumption is motivated by the idea that users gain knowledge 

of the actual demand level through their own driving experience, and over time have learned the 

optimal route minimizing their travel time.  Short-term demand fluctuations are not considered in 

this work because neither the drivers nor the network manager could possibly know the demand 

realization on a specific day until after it is past, and therefore it cannot affect either the routes 

chosen or the tolls set on a specific day.  The impact of demand elasticity is not considered here, 

as the focus of this work is to specifically isolate the effects of uncertainty.  To a limited degree, 

the effect of elasticity can be incorporated in the probability distributions chosen for travel 

demand, or by creating artificial links between each origin and destination, as described in Sheffi 

(1985).  

 

Capacity Uncertainty 

Network capacity is another major factor in network performance, and like demand, 

capacity is subject to change on a regular basis. In contrast to demand, short term capacity 

changes (rather than long term) are of greater concern because they are more subject to 

uncertainty. Long term capacity changes, such as added and removed lanes, are more controlled 

factors, and can be accounted for more appropriately through multi-scenario analysis. 

Furthermore, it has been repeatedly demonstrated in the mode and route choice literature that 

short-term reliability plays a critical role in long-term, habitual traveler decisions, as described in 

the literature review.  Thus, in this paper, capacity uncertainty is only considered in the short 
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term, as the result of day-to-day fluctuations due to accidents, temporary lane closures, 

construction, variations in driver behavior, weather, and similar factors.  This type of uncertainty 

directly leads to unreliability in travel times, which has a clear impact on long-term user 

behavior, especially when traveler information is provided and users can switch routes in 

response to system conditions.  

Even with knowledge of supply and demand uncertainty, the common practice is still to 

determine toll prices on traffic networks based on a single, expected demand value and “typical” 

roadway capacity, or to represent a deterministic demand-supply relationship through elasticity. 

This is partially due to the computational cost in determining the optimal prices under 

uncertainty due to the numerous possible stochastic scenarios, but for certain traveler 

information and toll flexibility scenarios, tractable numerical (or even analytical) procedures are 

available.  

 

Role of Information and Responsive Tolling 

Real-time information is a natural mitigation strategy in stochastic networks: if what is 

uncertain is made known, the effects of stochasticity are reduced, and indeed information only 

has value because of uncertainty.  The most important issues in stochastic network modeling 

concern the information available to each of the parties (in this case, the network manager and 

the drivers) when they make their decisions (toll prices and travel routes, respectively).  In this 

work, travelers are assumed to be either fully informed about network conditions before 

embarking on travel, or having no information except the probability distributions based on 

experience; likewise, the network manager is either able to vary the tolls in response to realized 

network conditions, or must levy the same tolls every day.  The options for pricing (either to 

vary tolls in response to incidents and short-term disruption, or to levy static tolls regardless of 

the network state) reflect either technological options or legal ones, allowing the value of flexible 

pricing to be quantified for the purposes of cost-benefit analysis; and the options for traveler 

behavior allow a similar analysis for ATIS implementation.  These assumptions generate six 

possible scenarios relating to the information available to motorists when choosing a travel route, 

and to the ability of the network manager to adjust the toll in response to network conditions, as 

discussed more precisely in the following section.  
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Research Objectives 

Considering the above mentioned issues of uncertainty, pricing and information, this 

research aims to answer the following questions:  

 

1) What role does uncertainty play in network behavior?  

How does the system performance and revenue generated vary under conditions of 

supply and demand uncertainty when the network is subject to tolling?  What is the 

difference in network performance and toll revenue collected when (a) not considering 

any uncertainty at all, (b) only considering supply uncertainty, (c) only considering 

demand uncertainty, and (d) considering both supply and demand uncertainty.   

2) What is the benefit of providing information to the public?  

What is the impact of providing information to users on current network conditions? How 

does the expected system performance change when this information is available to 

users? What is the effect on the revenue generated? Does there appear to be incentive for 

private operators to provide information to roadway users? 

3) What is the benefit of responsive pricing?  

With responsive pricing the tolls are allowed to vary, or respond to the actual network 

conditions, rather than remain fixed day-to-day. What is the quantitative benefit of 

responsive tolling capabilities? What impact does responsive tolling have on the expected 

system performance? What impact does it have on expected revenue? How does the 

system performance vary under responsive tolling when information is/is not provided to 

users? When should network controllers implement responsive tolling techniques?  For 

private investors, what is the value of negotiating contract terms which allow responsive 

pricing? 
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LITERATURE REVIEW 

 

There has been much research on how users respond to prices, and how to set prices to 

achieve specific objectives including minimizing the total toll collected, minimizing the 

maximum toll collected, minimizing the number of toll booths and so forth. (Hearn and Ramana, 

1998; Yildrim and Hearn, 2005)  One of the more common pricing objectives is to maximize 

social welfare (or system performance) by setting the link tolls to be equal to the difference 

between the private cost experienced by the user on a link and the total cost experienced by the 

link users due to the individual’s decision to travel. These resulting tolls are known as marginal 

social cost prices, and are in accord with the theory developed by Pigou (1920).  One common 

assumption in most of the previously mentioned works is that the marginal cost tolls are based on 

a single value of travel demand or a deterministic elastic demand relationship, and a 

deterministic level of network capacity.  

Studying the impact of demand uncertainty on the traffic assignment problem has 

received increasing attention in recent years. Waller et al. (2001) showed that neglecting the 

impact of long term demand uncertainty by using a single fixed estimate of future demand can 

result in significant underestimation of the future system performance, which could further result 

in sub-optimal network design decisions (Duthie et al., 2009).  Whether or not this same effect 

applies to network pricing problems is still an active research question, but it is obvious that 

demand will play a major role in the success of a tolled transportation system, at least from the 

perspective of revenue and investment risk. Lam and Tam (1998) determined probability 

distributions for the future toll revenue and traffic flow when numerous input parameters such as 

population and probable toll charges were assumed to follow a normal distribution. Chen and 

Subprasom (2007) studied the problem of setting optimal tolls and capacity on a subset of links 

under demand uncertainty by private investors to maximize profit in a highway build-operate-

transfer project under numerous regulations imposed by the state and other stakeholders.  

However, this study does not directly address robustness and focuses on the implications of 

regulations and second best pricing strategies. In the area of robust first best tolling under 

uncertain demand, previous work by Gardner et al. (2008) demonstrated the potential problem 

associated with using the expected demand to deterministically calculate link tolls. Nagae and 

Akamatsu (2006) formulated the problem of choosing the optimal toll level from two discrete 
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values as a stochastic singular control problem where the demand was assumed to vary following 

a stochastic differential equation. More recently, Li. et. al. (2007) developed a bi-level 

mathematical programming formulation to determine the optimal tolls to improve travel time 

reliability under uncertain demand and capacity where users are assumed to make route choices 

based on the multinomial logit model. Numerical results are provided on a small network 

although no solution methodology is presented for large networks.  

Most of the research into the effect of capacity disruptions on roadway pricing has been 

descriptive, (that is, studying how tolls affect reliability), rather than prescriptive (that is, 

studying how tolls should be set under uncertainty).  Examples of the latter include studies of the 

I-15 FasTrak project in San Diego, California (Supernak et al., 2003) or California State Route 

91 (Liu et al., 2004), estimating travelers’ valuation of reliability by comparing performance on 

tolled lanes to parallel free lanes.   

Even though the focus of the models in this paper is long-term, short-term capacity 

disruptions have been demonstrated to play a substantial role in habitual routing and mode 

choice decisions.  The importance of travel reliability has been measured to be of the same order 

of magnitude as the importance of typical travel costs.  For instance, in an analysis of SR-91 data 

in California, Small et al. (2005) estimated a $19.56/hr value of reliability, as compared to a 

$21.46/hr value of travel time.  “Reliability” can be defined in different ways; Small et al. (2005) 

used the difference between the 80th- and 50th-percentile travel times (approximately one 

standard deviation in many probability distributions), as did Liu et al. (2007).  Pinjari and Bhat 

(2006), on the other hand, used the maximum additional time that might be required for a trip 

(and also identified reliability as being nearly as important as average conditions in mode 

choice), while de Palma and Picard (2005) proposed four different utility functions to specify 

preferences towards short-term travel time reliability.  More comprehensive overview of 

theoretical and empirical issues in valuation of travel time reliability can be found in Bates et al. 

(2001) and Noland and Polak (2002).   

Regarding analytical models of pricing under uncertainty, the majority of the research has 

been conducted in idealized settings and small networks.  For instance, Verhoef et al. (1996) 

showed that information provision and unresponsive tolling was nearly as effective as a perfectly 

responsive toll, at least in a small two-link network.  de Palma and Lindsey (1998) show that 

improved information always improves welfare, whether in un-tolled networks, networks with 
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fixed (unresponsive) tolls, or in networks with responsive tolls. When information is provided 

and tolls are perfectly responsive, Kobayashi and Do (2005) show that marginal cost prices 

maximize social welfare in networks with a single origin-destination pair and no overlapping 

routes.  In general, when information provision is costly, Emmerink et al. (1996) shows that no 

subsidy or tax is needed to yield the socially optimal proportion of informed users.  Yang (1999) 

also found that information provision and responsive tolling exhibit complementary, synergistic 

effects in numerical tests on a small network. Previous work by Boyles et al. (2010) studied the 

problem of tolling under stochastic supply conditions, and found that attempts to incorporate 

uncertainty into nonresponsive tolls involve significantly higher prices, under the assumption of 

deterministic demand. 

These past works on pricing under uncertainty have considered a variety of different 

price flexibility and traveler information scenarios, with and heuristic or sampling-based 

techniques developed for larger networks.  In this light, the major contribution of this paper is 

common framework for quantifying the effect of different assumptions on toll flexibility and 

traveler information.  This comparison is performed on the basis of benefits to society, toll 

revenue, the variability in these quantities due to uncertainty, and can be applied by agencies 

considering different options for addressing uncertainty (for instance, by quantifying the effects 

of ATIS alone, responsive pricing alone, and both together).  Solution methods for each of these 

scenarios for large-scale networks also had to be created, adapting these techniques from the past 

literature to fit into the common assumptions described in the following section. 
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MODEL FORMULATION 

 
 
Notation 

Consider a stochastic transportation network G = (N, A, D, Ω1, P1, Ω2, P2) consisting of a 

set of nodes N; a set of directed arcs A; a demand matrix D with |N| rows and columns, mapping 

the demand for travel from every node to every other node; a set of demand realizations Ω1 with 

probability distribution P1; and a set of roadway supply realizations Ω2 with probability 

distribution P2. 

Each demand realization corresponds to a possible value of the demand matrix D. Each 

arc (i,j) can exist in one or more states Sij (different states may represent, for instance, “typical 

conditions,” “mild incident”, “severe incident”, “thunderstorm”, and so on) with a corresponding 

delay function tij
s(xij) mapping the demand for travel xij

  on this link to its delay in state s ∈ Sij.  

The supply realizations ω2 ∈ Ω2 thus associate each arc with one of its possible states.  The 

supply and demand realizations may be either dependent or independent, and in this respect are 

only limited by the ability to generate or sample appropriately correlated realizations. 

Drivers are rational self-optimizers, whose perception of travel times, the demand 

realization Ω1, and the distribution of supply realizations (Ω2, P2) are accurate, and who seek to 

minimize their generalized travel cost, defined as the sum of their travel time and any 

(nonnegative) arc tolls τij levied by the network manager, assumed to be measured in time units 

for notational convenience.  More precise definitions of user and network manager behavior 

depend on the specific information scenarios, discussed in the next subsection.  The network 

manager, in turn, sets prices so as to maximize social welfare.  This represents the perspective of 

a public agency, or a private entity whose contractual arrangement also favors the public welfare. 

 

Information Scenarios 

Two types of agent exist in this model: the network manager, responsible for setting tolls; 

and the drivers, who choose routes such that no individual can improve his or her travel time by 

switching routes.  We consider three possibilities for the information the network manager has 

when making their decisions, and two possibilities for the information drivers have, leading to a 

total of six information scenarios.  Each of these corresponds to a particular pricing strategy or 
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framework: if the network manager is unable to vary tolls flexibly in response to the demand or 

supply realizations (either for technological, legal, or contractual reasons), the prices are the 

same each day, exactly as if the network manager had no access to information on day-to-day 

conditions.  For drivers, access to ATIS provides information on the supply realization on a 

given day, whereas if such information is not provided, the travel decision will be the same on 

each day (simply because there is no reason for it to change in our static equilibrium framework). 

More specifically, for the network manager, we assume that they must either levy 

completely unresponsive tolls (UT); that they may vary tolls in respond to the demand 

realization, but not the supply realization (DRT) (long-term flexibility, but short-term 

constraints) , or that they have the ability to use fully responsive tolls (FRT) to adapt to the 

demand and supply realizations.  In the UT case, the same toll must be levied regardless of the 

demand and supply realizations ω1 and ω2, perhaps representing a contractual agreement or legal 

framework in which tolls must remain fixed over an extended period.  In the DRT case, tolls can 

depend on the demand realization, and are expressed τij(ω1).  In the FRT case, the tolls do in fact 

depend on both of these; this is denoted τij (ω1,ω2).   

For drivers, we assume that they either have no information on travel conditions (NI) 

before choosing routes, or that they are fully informed (FI).  In the NI case, travelers minimize 

the expected travel cost, based on expected travel times and the expected tolls.  That is, the state-

dependent delay functions tij
s(xij) are replaced with a single delay function tij(xij) = Eω2 [tij

s(xij)] 

representing the expectation over all supply realizations, with any state-dependent tolls handled 

similarly.  Therefore, the link flows do not depend on the supply realization, and are simply 

denoted xij(ω1). In the FI case, travelers know the supply realization ω2 and the current value of 

the toll vector τ exactly before choosing their routes; their route choices thus form a user 

equilibrium with respect to the cost functions corresponding to link states ω2 and tolls τ, and the 

link flows are state-dependent and denoted xij(ω1,ω2).  In all cases, drivers are aware of the 

demand realization ω1, as this is learned through experience in the long run.  Unlike the network 
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manager, a scenario in which drivers are ignorant of both the demand and supply realization is 

inconsistent with the assumptions of experienced drivers.1  

The six information scenarios corresponding to possible combinations of NI, FI, UT, 

DRT, and FRT are now discussed in more detail.  Figure 1 provides a graphical interpretation of 

the sequencing of the four events which define these scenarios.  Although there are twenty-four 

permutations of these events, the demand realization always precedes the supply realization (as 

the former is long-term, and the latter short-term), and the demand realization always precedes 

route choice (as drivers are always aware of the demand matrix).  Furthermore, whenever the 

network manager and drivers have the same information available to them, the network manager 

“moves first” without loss of generality due to the equilibrium assumption.  These precedence 

relations limit the set of allowable scenarios to six.  As it turns out, one of these is a special case 

of another, leading to a total of five distinct scenarios, as demonstrated in the following section. 

 

                                                 
1 The case of short-term demand uncertainty would admit drivers uninformed of the demand matrix, as in 

the equilibrium models Clark and Watling, 2005 or Unnikrishnan et al., 2009.  Although an interesting variation, 

this requires a fundamentally different equilibrium concept which is beyond the scope of this paper. 
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Figure 1. Six different information scenarios 

 

Evaluation Criteria 

A major issue that arises with privately managed transportation projects results from the 

conflicting objectives of private and public entities. Generally a private firm is interested in 

maximizing profit, while a public agency strives to maximize public welfare. These two 

objectives often lead to different project design parameters (such as toll levels and capacity). 

With this in mind this paper evaluates vehicular delay, measured as total system travel time 

(TSTT), and calculate the corresponding expected revenue generated, denoted as E[TSTT] and 

E[R] respectively. An additional criterion results from the stochastic nature of this work wherein 

the variability of system performance is also of interest. Under conditions of uncertainty 

“optimal” tolls should be robust across changes in demand and supply levels.  Therefore the 

standard deviations of the E[TSTT] and E[R] are also calculated and compared for the different 

scenarios, denoted as σ[TSTT] and σ[R] respectively. Collectively, these four metrics are the 

measures of effectiveness (MOEs) for these models.  Computation times are also noted for the 

different cases. 
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SOLUTION METHODS 

This section presents methods to determine tolls and link flows for each of the six 

scenarios described above.  These methods bear some resemblance to those of Gardner et al. 

(2010) and Boyles et al. (2010), where demand and supply uncertainty was considered 

separately.  However, considering both sources of uncertainty together introduces additional 

complexity: solution methods must be developed for five scenarios, rather than three as in 

Boyles et al. (2010); and the proliferation of realizations (up to |Ω1||Ω2|) demands the use of 

efficient sampling techniques rather than complete enumeration even in medium-sized networks. 

 

No Information/Unresponsive Tolls (NI/UT) 

 For this case, we seek a single vector of tolls τ independent of the supply and demand 

realization, and a collection of flow vectors x(ω1) which depend on the demand realization but not 

the supply realization.  If the number of demand realizations is large or infinite, it one can 

estimate the four MOEs using sampling techniques; a comparison of sampling techniques for 

transportation networks with uncertain demand can be found in Duthie et al. (2009) We seek a 

solution to the mathematical program 

( ) ( )( )
( ) ( ) 1

11

),(
1211

][,Eq  s.t.

min

2

2

2

ωωω

ωωωω
ω

ω

ω

∀+∈


τtx

τ

E

ddxtx
ji
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where ( )τt +][,Eq 2

21
ω

ωω E  represents the set of equilibrium link flows given demand realization 

ω1  and cost functions τt +][ 2

2

ω
ωE .  Since the tolls cannot depend on the demand realization, this 

is a nonseparable mathematical program with equilibrium constraints (MPEC) which is difficult 

to solve exactly.  Thus, heuristics are needed. 

The most direct method is to use a single point estimate D0 of demand, and determine the 

marginal cost tolls when the demand is D0 and the cost functions are ][ 2

2

ω
ω tE .  A simple point 

estimate is ][
1

DD0
ωkE=  for some constant k.  For instance, using k = 1 would set prices 

according to the mean demand, while k > 1 or k < 1 would set prices according to an inflated or 

deflated demand value, respectively.  Previous research by Gardner et al. (2010) found that 

deflating the mean demand by 20% resulted in the most robust tolls under demand uncertainty 
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when roadway capacity was deterministic.  In the following section, different k values are 

explored.  

 

Full Information/Unresponsive Tolls (FI/UT) 

For this case, we seek a single vector of tolls τ independent of the supply and demand 

realization, and a collection of flow vectors ( )21,ωωx  which depend on both the supply and the 

demand realization.  That is, we seek a solution to  
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As with the NI/UT case, this is a nonlinear MPEC which, in general, cannot be solved to 

optimality.   Simple averaging is a tractable heuristic which performs well in practice.  For each 

demand and supply realization (or a sample), the set of first-best tolls is determined, and the 

arithmetic average of these is used as a solution to the FI/UT problem.  That is, multiple 

instances of FI/RT (described in the following subsection) are solved and averaged.  With 

deterministic demand, and in a two-link, single OD network, Lindsey (2009) showed that this 

method is indeed exact.  In more complicated networks with multiple OD pairs, Boyles et al. 

(2010) showed that this method still produces high-quality solutions. 

 

No Information/Demand Responsive Tolls (NI/DRT) 

For this case, we seek toll vectors τ(ω1) and flow vectors x(ω1) which depend only on the 

demand realization, not the supply realization.  In this case, the problem decomposes by demand 

realization, that is, we seek solutions to 
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This is the well-known deterministic first-best toll setting problem with the demand table 

corresponding to ω1 and the cost functions ][ 2

2

ω
ω tE , which can be solved by setting tolls equal to 

the marginal link cost multiplied by the link’s flow. 
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Full Information/Demand Responsive Tolls (FI/DRT) 

      In this case, the tolls depend only on the demand realization, but the flows depend on both 

the supply and demand realizations, that is, we seek vectors τ(ω1) and ( )21,ωωx  which solve  

( ) ( ) ( )( )
( ) ( )( ) 21
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,,min
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ωωωωωω
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τ
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As with the NI/DRT scenario, the problem decomposes by demand realization; and as in the 

FI/UT scenario, the optimal tolls for each demand realization can be approximated through 

sampling supply realizations and averaging.   

 

No Information/Fully Responsive Tolls (NI/FRT) 

If drivers receive no information on the supply realization, neither is there any value in 

varying the toll accordingly, as drivers cannot adapt their route choice to the toll on that day.  

Thus, the link flows will be constant from day-to-day regardless of any toll variation attempting 

to account for supply uncertainty, and this scenario is in fact a special case of NI/DRT and can 

be solved as such.   

 

Full Information/Fully Responsive Tolls (FI/FRT) 

This case is the simplest to solve.  We seek a collection of toll and flow vectors ( )1
2 ωωt  

and ( )1
2 ωωx  which depend on both the supply and demand realizations, that is,  
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In this case, we simply solve a deterministic first-best pricing problem for each network 

realization (ω1,ω2) and calculate the four MOEs. 

 

Untolled Scenarios (NI/No Toll; FI/No Toll) 

As an additional basis for comparison the user equilibrium assignment solution without 

tolls is computed for two cases, without information (NI/No Toll) and with full information 

(FI/No Toll).  When pricing a deterministic network to maximize social welfare, the difference 
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between TSTT in the user equilibrium and system optimal objective values without tolls provides 

an upper bound on the improvement in system performance which tolling can produce.  In this 

paper the network is stochastic, and the new objective value is an expected system performance.  

The expected system performance for the NI/No Toll and FI/No Toll scenarios can be used in a 

similar manner.  The larger the difference in E[TSTT] for untolled (NI/No Toll or FI/No Toll) 

and the tolled scenarios, the closer the tolls are to bringing the network to a system optimal state, 

and thus more optimal. Comparing the evaluation criteria without tolls to the five 

information/tolling scenarios provides valuable information on the role of information and 

dynamic pricing on network system performance and revenue generated under conditions of 

uncertainty.  

 



   
 

 19

 
DEMONSTRATIONS 

 
 
Experiment Design 

The network used in the analysis of this work is the well-known Sioux Falls network, and 

can be seen in Figure 2.  Network data, including travel demand, are obtained from Bar-Gera 

(2009).  This network contains 24 nodes (all of which are origins and destinations) and 76 links.  

Demand is assumed to be normally distributed, with a specified coefficient of variation; demand 

is also truncated at zero to ensure non-negativity.  Arterial arcs are assumed to exist in only one 

possible state, while freeway arcs exist in one of two states (“no incident” and “incident 

present”).  Travel times are given by the well-known Bureau of Public Roads cost function, with 

shape parameters 0.15 and 4; capacity during an incident is a fixed proportion of the “no 

incident” capacity.  This proportion is varied parametrically in the analysis that follows.  Supply 

and demand realizations are assumed independent. 

For each of the scenarios described above (five information/tolling and two un-tolled) we 

compute the four MOEs.  By adjusting various parameters such as the number of realizations, 

planning demand, level of demand uncertainty, level of supply uncertainty, and incident severity, 

we can gain insights into the impact of uncertainty in tolled transportation networks when 

information and responsive tolling are/are not implemented.  A list of the parameters and the 

values used in the base case are shown in Figure 2. 
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Figure 2. Sioux Falls network and base parameter values  
(dashed lines represent freeway links) 

 

The realizations drawn for each scenario parameter specifies the number of demand 

realizations sampled from a normal distribution using antithetic sampling. Multiple realizations 

are necessary to evaluate expected system behavior when conditions are uncertain. The planning 

demand multiplier is multiplied by the expected demand to determine the planning demand value 

used to compute prices for the NI/UT scenario. (that is, the k-value) This parameter is 

disregarded in the remaining three scenarios where the tolls are set using the true demand. The 

demand coefficient of variation gives the ratio of the standard deviation and mean value for 

demand. In the base case it is set at 0.4, or 40% of the mean demand. The value of travel time 

remains constant at $10/hr for all evaluations. The freeway incident probability specifies the 

probability that an incident occurs independently on each link in the network, and set at 0.1 in 

the base case. Finally the freeway incident capacity multiplier specifies the percentage of link 

capacity that remains if an incident does occur. In the base case this is set to .333, meaning 2/3 of 

the capacity is removed from a link if an incident does occur.  The effect of varying these 

parameters is discussed in the remainder of this section. 

The base case scenarios and computation time are also evaluated for the Anaheim 

planning network, containing 416 nodes (38 of which are origins and destinations) and 914 links.  

Sensitivity analysis with all parameters is omitted for this network for reasons of brevity. 

 

Realizations drawn for each scenario 100
Planning Demand Multiplier 1
Demand Coefficient of Variation 0.4
Value of travel time ($/hr) 10
Freeway Incident probability 0.1
Freeway Incident Capacity Multiplier 0.333

Parameter values for Base Case 
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Sample Size 

The base case was evaluated with the number of realizations ranging from 10 to 1000. 

The system results stabilized at near 100 realizations for supply and demand each, a total of 

10,000 realizations. for all five scenarios and four MOEs. This suggests that 10,000 realizations 

provide a reasonable tradeoff between solution stability and computational effort, at least in this 

network. This number of realizations was used in all of the following experiments. 

 

Planning demand  

As previously stated, the planning demand parameter k only arises in the NI/UT case 

where it is used to determine the tolls. We evaluated each of the scenarios for planning demands 

varying between 50% and 150% of the expected demand value and found the results to be robust 

across all planning demands. Variations did occur (for the NI/UT scenario only) among the 

computational times, which increased for lower planning demands, whereas the expected value 

and standard deviation of the revenue increased for higher planning demands. Because there was 

not sufficient evidence to use a planning demand other than the expected demand, k is set to 1 in 

all of the scenario evaluations. 

 

Level of Uncertainty  

As stated previously one of the main focuses of this work is the impact on network 

performance when both the supply and demand are random variables. As part of the evaluation 

we will consider various cases such as isolated demand uncertainty, isolated supply uncertainty, 

and when both demand and supply may vary. The demand coefficient of variation and freeway 

incident probability are both evaluated within the range of 0 to 0.9. When the demand variance 

is 0 the demand is deterministic, when the freeway incident probability is 0 no incidents will 

occur, therefore the supply is deterministic. Each of the five information/tolling combination 

scenarios is evaluated for each level of uncertainty to evaluate the role of information and 

responsive tolling under varying stochastic conditions. 

 

Isolated Demand/Supply Uncertainty 

For the isolated cases of uncertainty where only demand is uncertain or only supply is 

uncertain, all the criteria evaluated are higher under conditions of supply uncertainty relative to 
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demand uncertainty for all information/tolling scenarios. This suggests that when the two types 

of uncertainty occur in isolation, supply uncertainty has a greater impact on network 

performance than demand uncertainty, resulting in increased travel times on average. In addition 

both cases of isolated uncertainty result in higher E[TSTT] and E[Revenue] then the fully 

deterministic case, suggesting that the fully deterministic case underestimates system 

performance and expected revenue.  

 

Role of Demand Uncertainty   

To evaluate the role of demand uncertainty on a network where supply is also stochastic, 

we fix the freeway incident probability, (set to the base case, 10% likelihood of an incident 

occurring per link), and vary the demand coefficient of variation, while the remaining parameters 

remain constant at their base case values. The results are summarized in Figure 3, where the x-

axis is the demand coefficient of variation, and the y-axis is in units of either TSTT (min) or 

revenue (dollars). Each graph represents one of the MOEs. Legends are not included in the 

remaining Figures (4,5 and 6), but the reader can refer to that in Figure 3. 

From the E[TSTT] results there are a few conclusions to draw. Most obvious is the benefit 

associated with providing information. There is a significant difference between the four 

scenarios where information is provided and the remaining three where information is not 

provided. This information-based difference also appears in the σ[TSTT], where the three cases 

with “full information” have very similar σ[TSTT] values which are all lower than the “no 

information” scenarios. The E[TSTT] is highest for the NI/NO TOLL case, followed by the 

NI/UT and NI/DRT, demonstrating that the tolls (even under stochastic conditions) improve 

system performance over the un-tolled state. The fact that it is lower under NI/DRT than under 

NI/UT is expected as well, since the responsive tolling has the additional benefit of determining 

tolls based on the actual demand. Again for the case of “full information”, all scenarios where 

tolls are applied, FI/UT,FI/DRT and FI/FRT improve the system performance over the no-tolls 

scenario, FI/NO TOLL. Additionally the FI/FRT case has the lowest E[TSTT], again suggesting 

responsive tolling offers improvement over unresponsive tolling. There is negligible 

improvement from the FI/UT to the FI/DRT scenario, which suggests it is not beneficial to set 

tolls responsive to only demand levels when full information is provided to the users. And 
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surprisingly, the improvement from FI/UT to the FI/DRT scenario decreases as the level of 

demand uncertainty increases.  

The revenue results do not display quite the same consistent behavior as the system 

performance.  Again there is a disparity between the cases of “no information” and “full 

information”. The two “no information” scenarios resulted in higher expected revenues than the 

“full information” scenarios. And for each information scenario, the responsive tolling resulted 

in higher E[R]. Independent of information, the two responsive scenarios resulted in higher σ[R]. 

This is possibly because in the responsive tolling scenarios fluctuations in both link flows and 

toll levels occur, where as in the unresponsive tolling, the tolls do not change once they are set, 

only the flows vary due to changes in the demand. FI/DRT has the lowest E[R], performing 

worse than the UT cases. 

With respect to demand uncertainty, both the E[TSTT] and E[R] vary minimally as the 

level of uncertainty increases up until the demand coefficient of variation reaches 0.4. Once the 

parameter surpasses 0.4 the E[TSTT] and E[R] increase quickly. In particular the E[R] for the 

NI/DRT case increases and diverges quickly from the other scenarios. The reasoning for such 

behavior is that a higher variance results in random demands realizations that greatly exceed the 

expected demand value, which result in high levels of congestion, and significantly higher travel 

times, regardless of the tolls that are set. In addition, the expected revenue will increase because 

the tolls will be higher due to the increased marginal costs which reflect this overloading of the 

network. The σ[TSTT] increases more consistently with the level of uncertainty, while the σ[ R] 

increases at varying rates dependent on the scenario.  

 

Role of Supply Uncertainty 

Similar to above, the role of supply side uncertainty is explored independent of demand 

uncertainty by varying the freeway incident probability and fixing the demand coefficient of 

variation at 0.4. Again the remaining parameters remain constant at their base case values. The 

results for each of the scenarios and each of the criteria evaluated are provided in Figure 4.  

The results for the E[TSTT] and E[R] resemble the results from those of demand 

uncertainty with regards to the relative order of the information/tolling scenarios, with the 

exception that for higher levels of supply uncertainty the FI/DRT scenario actually performs 

slightly worse than the FI/UT scenario (with a higher E[TSTT]), and the E[R] behaves more 
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radically. The same reasoning applies here as well with regards to the benefits of information and 

responsive tolling. Additionally, as supply uncertainty increases both E[TSTT] and E[R] increase, 

and all scenarios appear to converge in value, while in the case of demand uncertainty; the 

different scenarios diverged. The “convergence” may be a result of drivers choosing to travel on 

more arterial links which are deterministic, and the “convergence” occurs under the deterministic 

arterial-only situation. In contrast there is no “deterministic” alternative for uncertain demand, 

and increased levels of uncertainty will only results in more extreme behaviors. As supply 

uncertainty increases there is also a more consistent increase in E[TSTT] and E[R], contrasting 

the stable behavior we saw with low levels of demand uncertainty. Under supply uncertainty the 

σ[TSTT] behaves much more sporadically than in the case of demand uncertainty, especially for 

the “no information” cases, and  is on average much lower. These “no information” scenarios 

result in significantly higher σ[TSTT] values at lower levels of uncertainty, but seem to stabilize 

after the probability of an incident exceeds 0.3. The “full information” scenarios result in very 

similar σ[TSTT] values across all levels of uncertainty, which increase until the probability of an 

incident reaches 0.5, at which point the σ[TSTT] actually begins decreasing. This may be due to 

similar reasoning as before, where more people travel on the deterministic arterials, resulting in 

less variation in flows, and therefore less variation in revenue. With the exception of the NI/RT 

case the σ[ R] is relatively stable and similar for all scenarios. As in the case of demand 

uncertainty the NI/DRT case results in a much higher σ[ R], again likely a result of changes in 

both flow patterns and tolls. 

 

Demand and Supply Uncertainty 

The following analysis is useful for gaining insight into more realistic network behavior, 

when both the supply and demand levels vary. In this evaluation the parameters are increased 

proportionally from the deterministic case (0 for both parameters) to 1 for demand coefficient of 

variation and 0.6 the freeway incident probability (moving right along the x-axis), and the results 

are shown in Figure 5. The results are consistent with those we have seen previously in the 

individual uncertainty cases. The same disparity exists between “information” and “no 

information” cases, as well as the relative ranking between the various scenarios in the expected 

behavior. The E[TSTT] and E[R] are higher when both supply and demand are variable, 

compared with the two previous uncertainty studies, as well as the deterministic case. The main 
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difference in the case of full uncertainty is in the standard deviations. The σ[TSTT] for the “no 

information” cases are again much higher than the “full information” cases for lower levels of 

uncertainty. However after the level of uncertainty increases beyond a certain point, the σ[TSTT] 

for all seven cases converges to the same value and continue to increase almost linearly. The 

σ[R] behaves the same as it does for when just the demand uncertainty level varies.  

 

Severity of Incident 

Another parameter that is of interest is the freeway incident capacity multiplier. This 

parameter dictates the amount of link capacity that remains if an incident occurs, and is varied 

between 0 and 0.8 to explore different levels of incident severity on network performance. In this 

analysis the uncertainty levels remain constant and the additional parameters remain fixed at 

their base case values. The results can be seen in Figure 6. The x-axis represents the percentage 

of link that is closed if an incident occurs, so the level of severity increases as you move right 

along the x-axis. The y-axis’ are same as before. The case for entire link closure was also 

considered however the results are not shown in the Figure because they are beyond the scale of 

the graph.  

From the results it is clear that increased severity levels negatively affect network 

performance, as expected. Additionally, as the severity increases, or percentage of link closure 

exceeds half, the role of information becomes more vital, and the E[TSTT] diverges quickly for 

all the “no information” scenarios. This implies that information will be more beneficial where 

incidents are more severe rather than more likely to occur. For similar reasoning, where incidents 

are minor and result in less than 40% of the link to be closed, the role of information, as well as 

responsive tolling appears almost negligible. The same divergent behavior between “full 

information” and “no information” scenarios is apparent in the σ[TSTT]. The E[R] is again 

higher for the “no information” cases, and the σ[ R] is much higher for cases of responsive 

tolling. This is likely an exaggerated case of what we saw previously with responsive tolling; the 

flows will be changing dramatically in cases of severe incidents, on top of the varying tolls, 

further increasing the variability of network performance. 
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Base Case Analysis 

Tables 1 and 2 summarize results of the four MOEs for the scenarios considered, all 

evaluated using the base case parameters. The results reveal expected network behavior under 

moderate levels of both demand and supply uncertainty, and provide a basis for comparative 

analysis regarding the value of information and responsive tolling. The values in the last column 

quantify the expected improvement in system performance when information is provided, 

responsive tolling is implemented, or both. The values are the percentage decrease in E[TSTT] 

for each scenario relative to the “no information” un-tolled case (NI/No Toll). It is clear that the 

maximum system improvement occurs by providing both information and fully responsive 

tolling (FI/FRT), where the expected total system cost is decreased by 11.15%, as opposed to 

only 2.11% when no information or responsive tolling is available (NI/UT). The benefit of 

providing information is captured by the difference in expected system performance between the 

NI/UT and FI/UT scenarios, equal to 8.37% for the base case. Similarly the benefit of responsive 

tolling is represented by the difference in expected system performance between the FI/UT and 

FI/FRT scenarios, which is only 0.67% for the base case. These results indicate that the impact 

of providing information is significantly higher than the impact of responsive tolling for the 

Sioux Falls network used here. Additionally, demand responsive tolling just marginally improves 

expected system performance over unresponsive tolling, indicating responsive tolling should 

account for both supply and demand realizations..  

Responsive tolling does however have a large impact on the expected revenue under “no 

information” (NI/DRT), where the revenue is the highest of the five pricing scenarios. In the 

FI/UT scenario the expected revenue is increased as well, more than twice that of the NI/UT 

scenario, and the total system cost and both standard deviations are lower, suggesting 

information better serves both objectives previously mentioned, improving social welfare and 

increasing profit. 
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Table 1.  Comparison of MOE’s for all scenarios for Sioux Falls network, base case 

Scenario E[TSTT] 

(min) 

σ[TSTT] 

(min) 

E[R] 

(dollars) 

σ[R] 

(dollars) 

Decrease in E[TSTT] 

vs. NI/No Toll 

NI/No Toll 8538139 838426 0 0 – 

FI/No Toll 7846987 493686 0 0 8.09% 

NI/UT 8357858 769090 1277977 19739 2.11% 

NI/DRT 8347075 757485 3177593 239055 2.24% 

FI/UT 7643559 515138 2650235 41070 10.48% 

FI/DRT 7631709 512605 2442940 39705 10.62% 

FI/FRT 7586454 503678 2670099 305063 11.15% 

 

 

Table 2.  Comparison of MOE’s for all scenarios for Anaheim network, base case 

Scenario E[TSTT] 

(min) 

σ[TSTT] 

(min) 

E[R] 

(dollars) 

σ[R] 

(dollars) 

Decrease in E[TSTT] 

vs. NI/No Toll 

NI/No Toll 2120646 796254 0 0 – 

FI/No Toll 2032213 785619 0 0 4.17% 

NI/UT 2079640 790124 238937 7986 1.93% 

NI/DRT 2076945 788354 597226 100750 2.06% 

FI/UT 2008060 785263 516560 17543 5.31% 

FI/DRT 2013593 786220 1147137 70154 5.05% 

FI/FRT 1997288 785049 520572 520123 5.82% 
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Computation Time 
 

All models were solved on a 2.83 GHz, dual quad-core Q9550 machine running 

Windows XP with 3.25 GB memory.  When needed, user-equilibrium traffic assignment was 

solved using the Frank-Wolfe algorithm to a relative gap of 10-4.  Although a relative gap of 10-5 

is recommended in Boyce et al. (2004), our judgment is that evaluating additional samples to a 

looser relative gap is preferred to evaluating fewer realizations to a tighter gap.  Computation 

times for both the Sioux Falls network and the Anaheim network are reported in Table 3, in 

terms of the average time needed for each sample.  The total computation time for a given 

analysis can be approximated by multiplying the figures in this table by the number of samples 

required (100 in the results presented in this section).   

 Note that these computation times include both the time needed to find the optimal tolls, 

and to evaluate their performance, both of which involve repeated use of antithetic sampling. 

 

Table 3.  Computation time needed for samples different scenarios, in seconds 

Scenario  Sioux Falls  Anaheim 

NI/No Tolls  1.09   1.11 

FI/No Tolls  0.49   0.55 

NI/UT   0.71   1.18 

NI/DRT  2.17   3.80 

FI/UT   1.41   2.12 

FI/DRT  1.51   2.36 

FI/FRT  1.22   1.88 
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CONCLUSION 
 
 

This report presented a modeling framework for representing uncertainty in long-term 

travel demand, and in day-to-day network capacity, in the context of pricing problems.  By 

considering five different scenarios on user information and flexibility in pricing, the value of 

these options can be quantified for a given network, providing guidance both to public agencies 

and private entities in developing toll policies and in influencing legal structures regarding toll 

regulation.   

Tractable solution methods were presented for all of these information scenarios; when 

tolls can be varied flexibly, they are exact.  When tolls must be independent of the demand and 

supply realization, heuristics were provided.  These methods were all applied to the well-known 

Sioux Falls network, to demonstrate the relative benefits of providing information and/or 

responsive tolling under conditions of uncertainty. These methods were also implemented on the 

Anaheim network, and comparable results were obtained. Although both improve the system 

performance, in this experiment information was more valuable than responsive tolling.  Clearly 

this result is highly dependent on the network and modeling parameters, but serves to illustrate 

the type of benefit quantification which can guide policy implementation alongside a cost 

analysis.  Again, for Sioux Falls, providing information alone with unresponsive tolls seemed to 

provide the most robust results, with both lower system cost and increased revenue over the no-

information scenario, and with relatively low variance.  Finally, it is clear that both supply and 

demand uncertainty should be considered simultaneously, as congestion levels are 

underestimated when they are evaluated independently, or not at all. 

It would be both interesting and useful to extend this analysis to other scenarios such as 

limited information, imperfect information, or costly information for travelers; constraints on the 

links which can be tolled (or on the maximum toll); or when users can switch routes due to 

information received while traveling.  Another significant limitation of all of the models 

discussed thus far is their static nature.  While introducing a host of methodological and 

computational difficulties, a dynamic model of congestion would improve the fidelity of these 

models greatly. 
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Figure 3. Impact of Demand Uncertainty on System Performance and Revenue 
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Figure 4. Impact of Supply Uncertainty on System Performance and Revenue 
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Figure 5. Impact of Supply and Demand Uncertainty on System Performance and Revenue 
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Figure 6.  Impact of Incident Severity on System Performance and Revenue 
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